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Abstract. The Test Suite Minimization problem in regression testing
is a software engineering problem which consists in selecting a set of test
cases from a large test suite that satisfies a given condition, like maximiz-
ing the coverage and/or minimizing the oracle cost. In this work we use
an approach based on SAT solvers to find optimal solutions for the Test
Suite Minimization Problem. The approach comprises two translations:
from the original problem instance into Pseudo-Boolean constraints and
then to a propositional Boolean formula. In order to solve a problem, we
first translate it into a SAT instance. Then the SAT instance is solved
using a state-of-the-art SAT solver. Our main contributions are: we cre-
ate an encoding for single and multi-objective formulations of the Test
Suite Minimization Problem as Pseudo-Boolean constraints and we com-
pute optimal solutions for well-known and highly-used instances of this
problem for future reference.

Keywords: Test suite minimization, satisfiability problem, multi-objective
optimization

1 Introduction

In the last years the performance of Boolean satisfiability (SAT) solvers has been
boosted by the introduction of techniques like clause learning, watched literals,
and random restarts [1]. Nowadays it is possible to solve SAT instances up to
half million variables1, covering a search space of roughly 2500000. If we com-
pare this cardinality with the cardinality of several combinatorial optimization
problems, the difference is considerable in favor of SAT. Thus, we wonder if we
can take advantage of this progress in the SAT community to solve interesting
optimization problems. In particular, we wonder if we can use the algorithms
and tools developed for the SAT problem to find optimal solutions in NP-hard
Software Engineering optimization problems, for which metaheuristic techniques
are being used at the moment. The answer is yes, and even the SAT community
itself has explored other applications of SAT solvers to problems that arise in
model checking, planning, and test-pattern generation, among others [2].

1 The reader can visit http://www.satcompetition.org/ for details.
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The main challenge to solve combinatorial optimization problems using SAT
solvers is the translation of the target problem to a Boolean Propositional for-
mula. Unfortunately, few problems have an obvious representation as a propo-
sitional formula. To overcome this, a common technique is to introduce an in-
termediate representation for the original problem closer to a Boolean formula.
One kind of intermediate representation are Pseudo-Boolean (PB) constraints,
which are closely related to SAT. PB constraints provide big expressive power
and could be translated to SAT in an automatic way [3].

In this work, we present an approach to solve two variants of the Test Suite
Minimization Problem (TSMP) [4] up to optimality using SAT solvers. This
is done by modelling TSMP instances as a set of Pseudo-Boolean constraints
that are later translated to SAT instances. With the help of a SAT solver the
instances are solved and the resulting variable assignment provides an optimal
solution for TSMP. Hsu and Orso [5] have tackled this problem in a manner
closely related to us, however our contribution over theirs is twofold: we provide
the optimal solutions for instances from SIR [6,7], and we apply the approach
to a multi-objective formulation of TSMP, obtaining the Pareto Front (and a
Pareto optimal set). A similar approach based on Integer linear programming
has been used by Zhang et al. for the Time-Aware Test-Case Prioritization [8].
Test-Case prioritisation is a problem related to the TSMP, in which the goal is
to find an optimal order in which to execute test cases.

The remainder of this article is structured as follows. In Section 2 we intro-
duce background concepts of SAT solvers and Pseudo-Boolean constraints. In
Section 3 we introduce the TSMP and two formulations for this problem: single
and multi-objective formulations. In Section 4 we present the application of the
proposed approach to the TSMP. Section 5 shows experimental results applying
the proposed approach for a set of open well-known instances under the single
and multi-objective formulations. Finally with Section 7 we conclude the paper.

2 Background

The Boolean Satisfiability problem (SAT) consists in determining if there exists
a Boolean variable assignment that makes true a given a propositional Boolean
formula. SAT was the first decision problem shown to be NP-Complete [9] and is
one of the most important and extensively studied problems, since any other NP
decision problem can be translated into SAT in polynomial time. Thus, if there
exists a polynomial time algorithm to solve the SAT problem, then P = NP.
This would answer one of the more important questions in computer science and
would bring a great revolution in complexity theory. The algorithms known to
solve this problem have complexity O(2n) in the worst case.

The propositional Boolean formulas are frequently expressed in Conjunctive
Normal Form (CNF) when they are used as input for the SAT solvers. That is,
a Boolean formula is in this case a conjunction of clauses, each one consisting
in a disjunction of literals (variables negated or not). Let us denote with xi the
Boolean variables for 1 ≤ i ≤ n, that is, xi ∈ {true, false}. A clause Cj is a



Boolean formula of the form Cj = xj1 ∨ xj2 ∨ . . . ∨ xjk ∨ ¬xjk+1
∨ ¬xjk+2

∨ . . . ∨
¬xjk+l

. A propositional formula in CNF takes the form F =
∧m

j=1 Cj . When a
Boolean formula is expressed in CNF, a solution to a SAT instance consists in
an assignment which satisfies all the clauses.

2.1 SAT Solvers

In 1962, Davis, Longemann and Loveland [10] presented a backtracking algo-
rithm based on a systematic search which is the base of current SAT solvers. A
backtracking algorithm works by selecting at each step a variable and a Boolean
value for branching. In each branching step either true or false can be assigned
to a variable. Then, the logical consequences of each branching are evaluated.
Each time a clause becomes unsatisfiable, a backtrack is performed. The back-
track corresponds to undoing branching until a variable is reached for which only
one possible Boolean value has been explored. These steps are repeated until the
root is reached.

The current state-of-the-art SAT solvers, commonly named Conflict Driven
Clause Learning (CDCL) solvers, introduce improvements over the described
backtracking algorithm. Some of these improvements are:

– Clause learning: consists in identifying conflicts between assignments and
adding clauses that express these conflicts [11].

– Non-chronological backtracking: when a conflict occurs, allows to back-
track to specific decision levels [12].

– Variable (value) selection heuristic: establishes rules for determining
which variable should be selected and which value the variable should take [13].

– Random restarts: allows the restart of the search from scratch. Usually
performed as a function of the number of backtracks [14].

These are some of the main techniques included in current CDCL solvers. The
interested reader can deepen on these techniques in [1] (chapter 4). In this paper
we use the SAT solver MiniSat [15], which is a CDCL solver that includes the
techniques described above. MiniSat was designed to be easily extensible, is
implemented in C++ (the original source code is under 600 lines) and has been
awarded in several categories of the SAT Competition.

2.2 Optimization Problems and Pseudo-Boolean Constraints

SAT is a decision problem, that is, it answers a question (the Boolean formula)
with a yes/no answer (satisfiable or unsatisfiable). However, we are interested in
optimization problems, in which the goal is to minimize or maximize an objec-
tive function. Thus, we need to transform the optimization problem into one or
several decision problems that can be translated into a Boolean formula. Let us
denote with f : X → Z the objective function of the optimization problem2 and

2 We focus on integer functions but this is not a hard constraint in practice since
floating point numbers in the computers have a finite representation and could be
represented with integer numbers.



let us suppose without loss of generality that we want to find a solution x∗ ∈ X
that minimizes3 f , that is, f(x∗) ≤ f(x) for all the solutions x ∈ X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y ∈ X for which the constraint f(y) ≤ B holds,
where B ∈ Z takes different integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y) ≤ B1

f2(y) ≤ B2

...
fm(y) ≤ Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y) ≤ B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

n∑
i=1

aixi �B (1)

where � ∈ {<,≤,=, 6=, >,≥}, ai, B ∈ Z, and xi ∈ {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coefficients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem

as the minimization of −f .



The PB constraints make easier the translation of combinatorial optimization
problems into a SAT instance, since we can use PB constraints as an intermediate
step in the translation. This step from the original problem formulation to the
set of PB constraints requires human intervention. It is desirable to model the
problem using a low number of Boolean variables and PB constraints in order
to avoid an uncontrolled increase of the search space. In Section 4 we detail the
translation to PB constraints of the Test Suite Minimization Problem.

2.3 Multi-objective Optimization

A general multi-objective optimization problem (MOP) [16] can be formally
defined as follows (we assume minimization without loss of generality).

Definition 1 (MOP). Find a vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n) which satisfies

the m inequality constraints gi (x) ≥ 0, i = 1, 2, . . . ,m, the p equality con-
straints hi (x) = 0, i = 1, 2, . . . , p, and minimizes the vector function f (x) =
(f1(x), f2(x), . . . , fk(x)), where x = (x1, x2, . . . , xn) is the vector of decision
variables.

The set of all values satisfying the constraints defines the feasible region Ω
and any point x ∈ Ω is a feasible solution. It is common in MOPs that not
all the objective functions can be simultaneously minimized, there are some
conflicts between them. This means that decreasing the value of one objective
function implies increasing the value of another one. For this reason, the goal
of multi-objective search algorithms is not to find an optimal solution, but a
set of non-dominated solutions which form the so-called Pareto optimal set. We
formally define these concepts in the following.

Definition 2 (Pareto Optimality). A point x∗ ∈ Ω is Pareto optimal if for
every x ∈ Ω and I = {1, 2, . . . , k} either ∀i∈Ifi (x) = fi(x

∗) or there is at least
one i ∈ I such that fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if no feasible vector x exists
which would improve one objective without causing a simultaneous worsening in
at least another objective. Other important definitions associated with Pareto
optimality are the following:

Definition 3 (Pareto Dominance). A vector u = (u1, . . . , uk) is said to dom-
inate v=(v1, . . . , vk) (denoted by u 4 v) if and only if u is partially smaller than
v, i.e., ∀i ∈ I, ui ≤ vi ∧ ∃i ∈ I : ui < vi.

Definition 4 (Pareto optimal set). For a given MOP f(x), the Pareto op-
timal set is defined as P∗ = {x ∈ Ω|¬∃x′ ∈ Ω,f(x′) 4 f(x)}.

Definition 5 (Pareto Front). For a given MOP f(x) and its Pareto optimal
set P∗, the Pareto front is defined as PF∗ = {f(x)|x ∈ P∗}.

Obtaining the Pareto optimal set and the Pareto front of a MOP are the
main goals of multi-objective optimization.



3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. One problem related to regression testing is the
Test Suite Minimization Problem (TSMP). This problem is equivalent to the
Minimal Hitting Set Problem which is NP-hard [17]. Let T = {t1, t2, · · · , tn}
be a set of tests for a program where the cost of running test ti is ci and let
E = {e1, e2, · · · , em} be a set of elements of the program that we want to cover
with the tests. After running all the tests T we find that each test can cover
several program elements. This information is stored in a matrix M = [mij ] of
dimension n×m that is defined as:

mij =

{
1 if element ej is covered by test ti

0 otherwise

The single-objective version of this problem consists in finding a subset of
tests X ⊆ T with minimum cost covering all the program elements. In formal
terms:

minimize cost(X) =

n∑
i=1

ti∈X

ci (2)

subject to:

∀ej ∈ E ,∃ti ∈ X such that element ej is covered by test ti, that is, mij = 1.

The multi-objective version of the TSMP does not impose the constraint of
full coverage, but it defines the coverage as the second objective to optimize,
leading to a bi-objective problem. In short, the bi-objective TSMP consists in
finding a subset of tests X ⊆ T having minimum cost and maximum coverage.
Formally:

minimize cost(X) =

n∑
i=1

ti∈X

ci (3)

maximize cov(X) = |{ej ∈ E|∃ti ∈ X with mij = 1}| (4)

There is no constraint in this bi-objective formulation. We should notice here
that solving the bi-objective version (2-obj in short) of TSMP implies solving
the single-objective version (1-obj). In effect, let us suppose that we solve an
instance of the 2-obj TSMP, then a solution for the related 1-obj TSMP is just
the set X ⊆ T with cov(X) = |E| in the Pareto optimal set, if such a solution
exists. If there is no solution of 2-obj TSMP with cov(X) = |E|, then the related
1-obj TSMP is not solvable.



4 Solving TSMP Instances using PB Constraints

In this section, we will present the proposed approach for solving the TSMP using
SAT solvers. First, we detail how the two versions of TSMP can be translated
into a set of PB constraints and then we present the algorithms used to solve
both versions of TSMP with the help of the SAT solvers.

4.1 Translating the TSMP

The single-objective formulation of TSMP is a particular case of the bi-objective
formulation. Then, we can translate the 2-obj TSMP into a set of PB constraints
and then infer the translation of the 1-obj TSMP as a especial case.

Let us introduce n binary variables ti ∈ {0, 1}: one for each test case in T . If
ti = 1 then the corresponding test case is included in the solution and if ti = 0
the test case is not included. We also introduce m binary variables ej ∈ {0, 1}:
one for each program element to cover. If ej = 1 then the corresponding element
is covered by one of the selected test cases and if ej = 0 the element is not
covered by a selected test case.

The values of the ej variables are not independent of the ti variables. A given
variable ej must be 1 if and only if there exists a ti variable for which mij = 1
and ti = 1. The dependence between both sets of variables can be written with
the following 2m PB constraints:

ej ≤
n∑

i=1

mijti ≤ n · ej 1 ≤ j ≤ m. (5)

We can see that if the sum in the middle is zero (no test is covering the
element ej) then the variable ej = 0. However, if the sum is greater than zero
ej = 1. Now we need to introduce a constraint related to each objective function
in order to transform the optimization problem in a decision problem, as we
described in Section 2.2. These constraints are:

n∑
i=1

citi ≤ B, (6)

m∑
j=1

ej ≥ P, (7)

whereB ∈ Z is the maximum allowed cost and P ∈ {0, 1, . . . ,m}, is the minimum
coverage level. We required a total of n + m binary variables and 2m + 2 PB
constraints for the 2-obj TSMP.

For the 1-obj TSMP the formulation is simpler. This is a especial case of the
2-obj formulation in which P = m. If we include this new constraint in (7) we
have ej = 1 for all 1 ≤ j ≤ m. Then we don’t need the ej variables anymore
because they are constants. Including these constants in (5) we have:

1 ≤
n∑

i=1

mijti ≤ n 1 ≤ j ≤ m, (8)



which is equivalent to:

n∑
i=1

mijti ≥ 1 1 ≤ j ≤ m, (9)

since the sum is always less than or equal to n. Thus, for the 1-obj TSMP the
PB constraints are (8) and (9).

4.2 Translation example

In this section we show through a small example how to model with PB con-
straints an instance of the TSMP according to the methodology above described.
Let T = {t1, t2, t3, t4, t5, t6}, E = {e1, e2, e3, e4} and M:

e1 e2 e3 e4
t1 1 0 1 0

t2 1 1 0 0

t3 0 0 1 0

t4 1 0 0 0

t5 1 0 0 1

t6 0 1 1 0

If we want to solve the 2-obj TSMP we need to instantiate Eqs. (5), (6) and
(7). The result is:

e1 ≤ t1 + t2 + t4 + t5 ≤ 4e1 (10)

e2 ≤ t2 + t6 ≤ 4e2 (11)

e3 ≤ t1 + t3 + t6 ≤ 4e3 (12)

e4 ≤ t5 ≤ 4e4 (13)

t1 + t2 + t3 + t4 + t5 + t6 ≤ B (14)

e1 + e2 + e3 + e4 ≥ P (15)

where P,B ∈ N.

If we are otherwise interested in the 1-obj version the formulation is simpler:

t1 + t2 + t4 + t5 ≥ 1 (16)

t2 + t6 ≥ 1 (17)

t1 + t3 + t6 ≥ 1 (18)

t5 ≥ 1 (19)

t1 + t2 + t3 + t4 + t5 + t6 ≤ B (20)



4.3 Algorithms

This section describes the procedures used to find the optimal solutions to the
single- and multi-objective formulation of TSMP. Algorithm 1 shows the steps
needed to find the optimal solution in the single-objective formulation. We as-
sume, without loss of generality, that full coverage can be reached. If this is not
the case we can just remove from E the program elements that are not covered
by any test case.

Algorithm 1 Procedure to compute the optimal solution for 1-obj TSMP

Input: TSMP matrix M
Output: optimal solution S∗

1: B ← 1
2: result ← false
3: while not(result) do
4: Translate (M, B) into a set of PB constraints: Eqs. (8) and (9)
5: Transform the set of PB constraints into a SAT instance I
6: Run the SAT solver with I as input
7: if SAT solver found solution then
8: S∗ ← assignment found
9: result ← true

10: else
11: B ← B + 1
12: end if
13: end while

We can observe that the pseudocode in Algorithm 1 follows the description we
introduced in Section 2.2 to solve an optimization problem using SAT solvers. In
this case the procedure is adapted to solve the 1-obj TSMP. When the algorithm
ends, the value of B is the minimal number of tests required to get full coverage.
In the algorithm, the value of B is increased in 1 unit in each iteration (line 11).
However, it is possible to use a search strategy based on a binary search in the
interval [1, n] for the B value.

In Algorithm 2 we show the procedure used to find a Pareto optimal set for
the 2-obj TSMP. In this case the initial value of B will be the one found by
the Algorithm 1, which is run in line 2. Each iteration of the loop in line 6 of
Algorithm 2 can be seen as a modification of the value P in Eq. (6). This way
the algorithm computes the maximum number of elements covered by B test
cases. The value of B is decreased in each iteration of the external loop in order
to explore the complete Pareto front. Again a binary search could be applied to
P or B in order to accelerate the search.



Algorithm 2 Procedure to compute the Pareto optimal set for the 2-obj TSMP

Input: TSMP matrix M
Output: Pareto optimal set
1: Pareto optimal set = ∅
2: Run Algorithm 1
3: P = |E|
4: while B ≥ 1 do
5: found ← false
6: while (P ≥ 1) and (not(found)) do
7: Translate (M, B, P ) into a set of PB constraints: Eqs. (5), (6) and (7)
8: Transform the set of PB constraints into a SAT instance I
9: Run the SAT solver with I as input

10: if SAT solver found solution then
11: Add the assignment found to the Pareto optimal set
12: found ← true
13: else
14: P ← P − 1
15: end if
16: end while
17: B ← B − 1
18: end while

5 Experimental Results

We performed an experiment to check our approach using the programs from
the Siemens suite [6] available at SIR4 (Software-artifact Infrastructure Repos-
itory). The Siemens programs perform a variety of tasks: printtokens and
printtokens2 are lexical analyzers, tcas is an aircraft collision avoidance sys-
tem, schedule and schedule2 are priority schedulers, totinfo computes statis-
tics given input data, and replace performs pattern matching and substitution.
The coverage matrix M can be obtained from the data in the SIR. For the cost
values ci we considered that all the costs are 1: ci = 1 for 1 ≤ i ≤ n. As a
consequence, the cost function of a set of test cases is just the number of test
cases. We implemented Algorithms 1 and 2 as shell scripts in Linux and we used
MiniSat+ [3] as Pseudo-Boolean solver. MiniSat+ translates PB constraints into
Boolean formulas (in CNF), and uses MiniSat [15] as SAT solver engine.

In a second experiment we transformed the instances into equivalent ones
with fewer test cases. We can do this because we are considering that all test
cases have the same cost. Under this assumption we can remove any test case
for which there is another test case covering at least all the elements covered by
the first one. In formal terms, if test case ti covers program elements Ei ⊆ E and
test case th covers program elements Eh ⊆ E where Ei ⊆ Eh, then we remove ti
from the original test suite and the Pareto front of the instance does not change,
because any solution having test case ti cannot get worse after replacing ti by th.

4 http://sir.unl.edu/portal/index.php



The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover

printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is



Table 2: Pareto optimal set and Front for the instances of SIR.
Instance Elements Tests Coverage Solution

printtokens 195 5 100% (t2222, t2375, t3438, t4100, t4101)
194 4 99.48% (t1908, t2375, t4099, t4101)
192 3 98.46% (t1658, t2363, t4072)
190 2 97.43% (t1658, t3669)
186 1 95.38% (t2597)

printtokens2 192 4 100% (t2521, t2526, t4085, t4088)
190 3 98.95% (t457, t3717, t4098)
188 2 97.91% (t2190, t3282)
184 1 95.83% (t3717)

replace 208 8 100% (t306, t410, t653, t1279, t1301, t3134, t4057, t4328)
207 7 99.51% (t309, t358, t653, t776, t1279, t1795, t3248)
206 6 99.03% (t275, t290, t1279, t1938, t2723, t2785)
205 5 98.55% (t426, t1279, t1898, t2875, t3324)
203 4 97.59% (t298, t653, t3324, t5054)
200 3 96.15% (t2723, t2901, t3324)
195 2 93.75% (t358, t5387)
187 1 89.90% (t358)

schedule 126 3 100% (t1403, t1559, t1564)
124 2 98.41% (t1570, t1595)
122 1 96.82% (t1572)

schedule2 119 4 100% (t2226, t2458, t2462, t2681)
118 3 99.15% (t101, t1406, t2516)
117 2 98.31% (t2461, t2710)
116 1 97.47% (t1584)

tcas 54 4 100% (t5, t1191, t1229, t1608)
53 3 98.14% (t13, t25, t1581)
50 2 92.59% (t72, t1584)
44 1 81.48% (t217)

totinfo 117 5 100% (t62, t118, t218, t1000, t1038)
115 4 98.29% (t62, t118, t913, t1016)
113 3 96.58% (t65, t216, t913)
111 2 94.87% (t65, t919)
110 1 94.01% (t179)

to equal the running time of the SAT-based method for each reduced instance.
For the two heuristic algorithms we show the average coverage and number of
test cases over 30 independent runs.

Regarding the computational time, we observe that all the instances can
be solved in much less time using the reduction. The speed up for the SAT-
based approach ranges from more than 200 for tcas to more than 2000 for
printtokens2. All the instances can be solved in around 2 seconds with the ex-
ception of replace, which requires almost 6 minutes. In the case of the heuristic
algorithms, we observe that LS reaches full coverage in all the instances and
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Fig. 1: Pareto front for the SIR instances

Table 3: Information about clauses-to-variables ratio, computation time of Al-
gorithm 2, average coverage and number of test cases for the two heuristic algo-
rithms for the instances from SIR.
Instance Ratio Algorithm 2 Local Search Genetic Algorithm

Original (s) Reduced (s) Avg. Cov. Avg. Tests Avg. Cov. Avg. Tests
printtokens 4.61 3400.74 2.17 100.00% 6.00 99.06% 5.16
printtokens2 4.61 3370.44 1.43 100.00% 4.60 99.23% 3.56
replace 4.62 1469272.00 345.62 100.00% 10.16 99.15% 15.46
schedule 2.19 492.38 0.24 100.00% 3.00 99.84% 2.90
schedule2 4.61 195.55 0.27 100.00% 4.00 99.58% 3.70
tcas 4.61 73.44 0.33 100.00% 4.00 95.80% 3.23
totinfo 4.53 181823.50 0.96 100.00% 5.00 98.89% 5.13

independent runs. However, the required number of test cases is non-optimal in
printtokens, printtokens2 and replace. LS obtains optimal solutions in the
rest of the programs. However, we should recall here that LS cannot ensure that
the result is an optimal solution, as the SAT-based approach does. In the case
of GA, it is not able to reach full coverage in any program.

It is interesting to remark that almost all the resulting SAT instances ob-
tained from the translation are in the phase transition of SAT problems except
the one for schedule. It has been shown experimentally that most of the in-
stances where the ratio of clauses-to-variables is approximately equal to 4.3 are
the hardest to be solved [18].



6 Threats to validity

We identified two major threats to validity in our approach. The first one is re-
lated to the inherent difficulty of the SAT problem for which there is no known
efficient algorithm to solve it. This implies that there is a limit in the number
of test cases that can be addressed with our method. For example, in the ex-
periments we observed a high execution time to solve two of the seven instances
without the reduction: replace and totinfo. Further experiments with more
and larger instances could show what are the actual limitation of our approach
in real-world software.

The second one concerns the complexity of the translation from the PB
constraints to SAT clauses. This complexity is exponential in the worst-case but
not in practice. In our experiments the time required for this translation was
very small. We think this is a consequence of having unitary cost for the tests. If
we consider non-unitary cost for the tests, the translation could require a non-
negligible amount of time. Furthermore, the resulting SAT instance could be
more difficult to solve in this case, making the approach impractical. To study
these issues we need more experiments using larger instances and non-unitary
costs for the tests. These costs could be based on the tests execution time.

7 Conclusion and Future Work

In this work we show an approach to optimally solve the TSMP. This approach
comprises two translations to obtain a SAT instance which is solved by a state-
of-the-art SAT solver. The power of current SAT solvers give us the possibility of
solving to optimality TSMP instances that were previously solved in an approx-
imate way using metaheuristic algorithms. With the help of MiniSat+ we solved
well-known and highly-used instances of a single- and a bi-objective formulation
of the TSMP problem. Most of the instances were solved in less than 2 seconds
and all of them required less than 6 minutes.

The approach presented here to solve the TSMP problem can be easily ex-
tended to other hard problems in Search-Based Software Engineering and other
domains. As future work we plan to consider different cost coefficients for the
different test cases in the TSMP.
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15. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,
A., eds.: Theory and Applications of Satisfiability Testing. Volume 2919 of LNCS.
Springer Berlin / Heidelberg (2004) 333–336

16. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons (2001)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

18. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: Proceedings of the tenth national conference on Artificial intelligence.
AAAI’92, AAAI Press (1992) 459–465


	On the application of SAT solvers to the Test Suite Minimization Problem

