
A Parallel Evolutionary Algorithm for Prioritized

Pairwise Testing of Software Product Lines

Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano,
Evelyn Nicole Haslinger, Alexander Egyed and Enrique Alba

April 9th, 2014

Abstract

Software Product Lines (SPLs) are families of related software sys-
tems, which provide different feature combinations. Different SPL testing
approaches have been proposed. However, despite the extensive and suc-
cessful use of evolutionary computation techniques for software testing,
their application to SPL testing remains largely unexplored. In this paper
we present the Parallel Prioritized product line Genetic Solver (PPGS), a
parallel genetic algorithm for the generation of prioritized pairwise testing
suites for SPLs. We perform an extensive and comprehensive analysis of
PPGS with 235 feature models from a wide range of number of features
and products, using 3 different priority assignment schemes and 5 prod-
uct prioritization selection strategies. We also compare PPGS with the
greedy algorithm prioritized-ICPL. Our study reveals that overall PPGS
obtains smaller covering arrays with an acceptable performance difference
with prioritized-ICPL.

1 Introduction

A Software Product Line (SPL) is a family of related software systems, which
provide different feature combinations [21]. The effective management and re-
alization of variability – the capacity of software artifacts to vary – is crucial
to reap the benefits of SPLs such as increased software reuse, faster product
customization, and reduced time to market.

Because of the large number of feature combinations in typical SPLs, vari-
ability modelling poses a unique set of challenging problems for software testing.
In recent years many verification and testing SPL approaches, which rely on dif-
ferent techniques, have been proposed (e.g. [5, 6, 8, 16]). However, and despite
the extensive and successful use of evolutionary computation techniques for soft-
ware testing [12, 18], their potential application to SPL testing remains largely
unexplored, in particular regarding test prioritization.

In this paper we present the Parallel Prioritized product line Genetic Solver
(PPGS), a genetic algorithm for the generation of prioritized pairwise testing

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62901882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

suites for SPLs. PPGS receives as input a feature model that denotes a set of
valid feature combinations and computes a set of products that covers the de-
sired pairs of feature combinations according to a priority scheme that assigns
different priority weights to a set of products. This scheme has been sketched
in [16] and it is currently successfully applied in an industrial setting. We
performed a comprehensive evaluation of PPGS with 235 feature models with
a wide range of number of features and number of products, using 3 different
weight priority assignment methods and 5 product prioritization selection strate-
gies. In addition, we compared PPGS with prioritized-ICPL [16], an alternative
greedy algorithm implementation. For the statistical comparison analysis both
algorithms were executed 30 times for each feature model and combinations of
priority assignment and product prioritization which yielded a total of 79800
independent runs that required about two weeks of computation on a 64-core
dedicated cluster. Our study revealed that overall PPGS obtains smaller cov-
ering arrays with an acceptable performance difference with prioritized-ICPL.
However, the performance difference tends to decrease as the number of products
of the feature models increase. We believe these results shed light on the po-
tential benefits that evolutionary algorithms and other search based techniques
can bring for variability modeling problems such as testing.

In summary, the contributions of our work are: i) Formalization of the SPL
testing prioritization scheme presented in [16], ii) Implementation of this scheme
with the evolutionary algorithm PPGS, and iii) Comprehensive evaluation and
comparison of PPGS and the prioritized-ICPL algorithm.

2 Feature Models and Running Example

Feature models have become a de facto standard for modelling the common and
variable features (depicted as labelled boxes) of an SPL and their relationships
(depicted with lines) collectively forming a tree-like structure, which denotes the
set of feature combinations that the products of an SPL can have [17]. Figure 1
shows the feature model of our running example, a hypothetical SPL of aircraft
machines obtained from the SPLOT repository [19]. Each feature, apart from
the root, has a single parent feature and can have a set of child features. Notice
here that a child feature can only be included in a feature combination of a valid
product if its parent is included as well.

The root feature is always included. There are four different kinds of hier-
archical feature relationships: i) Optional features are depicted with an empty
circle and indicate that they may or may not be selected if their respective par-
ent feature is selected. An example is feature Engine; ii) Mandatory features
are depicted with a filled circle and indicate that they have to be selected when-
ever their respective parent feature is selected. For example, features Wing and
Materials; iii) Inclusive-or relations are depicted as filled arcs crossing over a
set of lines connecting a parent feature with its child features. They indicate
that at least one of the features in the inclusive-or group must be selected if
the parent is selected. An example is feature Materials that if selected at

2

Figure 1: Aircraft SPL Feature Model

Prod A Wi E Ma H S L Pi J Me Wo Pl C

p0 X X X X X X X
p1 X X X X X X X
p2 X X X X X X X
p3 X X X X X X X
p4 X X X X X
p5 X X X X X X X
p6 X X X X X X X
p7 X X X X X X X

Table 1: Sample Feature Sets of Aircraft SPL

least one of the features Metal, Wood, Plastic, and Cloth must be selected;
iv) Exclusive-or relations are depicted as empty arcs crossing over a set of lines
connecting a parent feature with its children features. They indicate that ex-
actly one of the features in the exclusive-or group must be selected whenever
the parent feature is selected. For example, if feature Engine is selected, then
either feature Piston or feature Jet must be selected.

Besides the parent-child relations, features can also relate across different
branches of the feature model with so called Cross-Tree Constraints (CTC).
These constraints as well as those implied by the hierarchical relations between
features are usually expressed and checked using propositional logic, for further
details refer to [3].

Definition 1. Feature List (FL) is the list of features in a feature model.

Definition 2. Feature Set (FS) is a 2-tuple [sel,sel] where sel and sel are re-
spectively the set of selected and not-selected features of a member product. Let
FL be a feature list, thus sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL.
The terms p.sel and p.sel respectively refer to the set of selected and unselected
features of product p.

Definition 3. A feature set fs is valid in feature model fm, i.e. valid(fs,

fm) holds, iff fs does not contradict any of the constraints introduced by fm.

The FL for the Aircraft feature model is [Aircraft, Wing, Engine,

Materials, High, Shoulder, Low, Piston, Jet, Metal, Wood,

Plastic, Cloth]. For example, the feature set p0=[{Aircraft, Wing,

Engine, Materials, High, Piston, Plastic}, {Shoulder, Low, Jet,

3

Metal, Wood, Cloth}] is valid. As another example, a feature set with
features Piston and Jet would not be valid because it violates the constraint
of the exclusive-or relation which establishes that these two features cannot
appear selected together in the same feature set. In our running example, the
feature model denotes 315 valid feature sets. Some of them are depicted in
Table 1, where for any given feature set its selected features are ticked (X) and
its unselected features are empty. In this table, we use as column labels the
shortest distinguishable prefix of the feature names (e.g. Wi for feature Wing).

3 Prioritized Pairwise Covering
Arrays in SPL

In this section we provide a formal definition of the priority scheme implemented
by PPGS based on the sketched description provided in [16] and its supporting
code.

Definition 4. A prioritized product pp is a 2-tuple [fs, w], where fs represents
a valid feature set in feature model fm and w ∈ R represents its weight. Let ppi
and ppj be two prioritized products. We say that ppi has higher priority than
ppj for test-suite generation iff ppi’s weight is greater than ppj ’s weight, that is
ppi.w>ppj .w.

As an example, let us say that we would like to prioritize product p1 with a
weight of 17. This would be denoted as pp1=[p1,17].

Definition 5. A pairwise configuration pc is a 2-tuple [sel, sel] representing
a partially configured product, defining the selection of 2 features of feature list
FL, i.e. pc.sel ∪ pc.sel ⊆ FL ∧ pc.sel ∩ pc.sel = ∅ ∧ |pc.sel ∪ pc.sel| = 2. We
say a pairwise configuration pc is covered by feature set fs iff pc.sel ⊆ fs.sel ∧
pc.sel ⊆ fs.sel.

Consider for example the pairwise configuration that indicates
that feature Plastic is selected while feature Cloth is deselected
pc1=[{Plastic},{Cloth}]. Notice that pc1 is covered by products p0

and p2 of Table 1. Another example is pairwise configuration pc2=[{High,
Wood},{}] with features High and Wood selected and no feature unselected.
This configuration is covered by products p4 and p5 of Table 1. A last example
is pc3=[{},{Shoulder, Low}], with no selected features and Shoulder and
Low as unselected features. This configuration is covered by all the products
shown in Table 1. In total, for all the 315 products denoted by the feature
model of Figure 1, there exist 240 valid pairwise configurations.

Definition 6. A weighted pairwise configuration wpc is a 2-tuple [pc,w] where
pc is a pairwise configuration and w ∈ R represents its weight computed as
follows. Let PP be a set of prioritized products and PPpc be a subset, PPpc ⊆
PP, such that PPpc contains all prioritized products in PP that cover pc of wpc,
i.e. PPpc = {pp ∈ PP |pp.fs covers wpc.pc}. Then w =

∑
p∈PPpc

p.w

Let us consider the following set of prioritized products from Table
1. Let PP={[p0,17], [p1,17], [p2,15], [p3,15], [p4,13] , [p5,13],

4

[p6,6], [p7,6]} with ppi = [fsi,wi], and assume that the remaining 307
products of our feature model in Figure 1 (i.e. 315 minus 8 shown in the
table) have priority weight values of 0. The weight of pairwise configuration
pc1=[{Plastic},{Cloth}] is then wpc1.w= pp0.w+pp2.w = 17+15 = 32, that
is, the summation of the weights of the products whose feature sets cover pc1

with weight greater than zero, namely p0 and p2. Similarly, the weight for pc2
(High and Wood selected) is wpc2.w= pp4.w+pp5.w = 13+13 = 26, and for pc3
wpc3.w=102 computed by summing all the product weights because their fea-
ture sets all cover pc3. In total, the eight products shown in Table 1 generate
169 weighted pairwise configurations with value greater than zero.

Definition 7. A prioritized pairwise covering array ppCA for a feature model
fm and a set of weighted pairwise configurations WPC is a set of valid feature
sets FS that covers all weighted pairwise configurations in WPC whose weight
is greater than zero: ∀wpc ∈ WPC (wpc.w > 0 ⇒ ∃fs ∈ ppCA such that fs
covers wpc.pc).

Let us consider the prioritized products set PP just described above. The
following table lists six products that together constitute a ppCA:

A Wi E Ma H S L Pi J Me Wo Pl C

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X

Notice that the first three rows correspond to products p1, p2 and p5 of
Table 1. Also notice that the last three products are not part of that table even
though their weights are considered zero in our running example. That is, their
selection led to a ppCA with a smaller number of products than the original
set. Next we describe how this pairwise prioritization scheme was implemented
by PPGS.

The optimization problem we are interested in consists of finding a prioritized
pairwise covering array, ppCA, with the minimum number of feature sets, that
is: find ppCA with minimum |ppCA|. What makes the problem far from trivial
is the constraints imposed to ppCA by Definition 7.

4 Algorithm Description

The Parallel Prioritized product line Genetic Solver (PPGS) is a novel con-
structive genetic algorithm which follows the master-slave model to parallelize
the evaluation of the individuals [1]. It computes a ppCA as defined in the
previous section. In each iteration, PPGS adds one new product to a partial
solution until all pairwise combinations are covered. Algorithm 1 sketches the
pseudocode of PPGS. It uses as inputs a feature model FM and the set of pri-
oritized products for the test suite generation. At the beginning, the test suite
is initialized with an empty list (Line 2) and the set of remaining pairs (RP) is
initialized with the weighted pairwise configurations present in at least one of

5

the given prioritized products (Line 3), as it was described in Section 3. In each
iteration of the external loop (Lines 4-23) the algorithm creates a random initial
population of individuals (Line 6) and enters an inner loop which applies the
traditional steps of a generational evolutionary algorithm (Lines 7-20). That is,
some individuals (products in our case) are selected from the population P (t),
recombined, and mutated. PPGS represents a product by only the list of se-
lected features, so the operators only affect the selected features. If a generated
offspring individual is not a valid product (i.e., it violates any constraint derived
from the feature model), it is transformed into a valid product by applying a
Fix operation (Line 13) provided by the FAMA tool [23].

Since the evaluation is performed in parallel in this algorithm, the fixed in-
dividuals are stored in a structure for later evaluation of them (Line 14). After
we leave the inner loop (Lines 7-20), the evaluation is performed in parallel
(Line 16), and finally the individuals are inserted in the offspring population Q.
The fitness value of an offspring individual (Line 16) is the sum of the weights
of the weighted pairwise configurations that would remain to be covered after
adding the offspring solution to the test suite. Thus, this fitness function must
be minimized in order to first select the product that covers weighted pair-
wise configurations with higher weights. Notice that, as the search progresses,
the cost of computing the fitness function is reduced because every time less
weighted pairwise configurations remain uncovered.

In Line 18, the best individuals of P (t) and Q are kept for the next generation
P (t+1). The internal loop is executed until a maximum number of evaluations is
reached. Then, the best individual (product) found is included in the test suite
(Line 21) and RP is updated by removing the weighted pairwise configurations
covered by the selected best solution (Line 22). Then, the external loop starts
again until there is no weighted pair left in the RP set.

We set the configuration parameters of PPGS with values frequently ob-
served in the literature for genetic algorithms: crossover strategy one-point with
a probability of 0.8, selection strategy binary tournament, population size of 10
individuals, mutation that iterates over all selected features of an individual and
replaces a feature by another randomly chosen feature with a probability of 0.1,
and termination condition of 1,000 fitness evaluations and full weight coverage
in the external loop.

Let us show an example of the execution of the inner loop of PPGS, as-
suming RP contains the following entries [wpc1, wpc2, wpc3], where wpc1.pc

= [{Engine, Piston},{}], wpc2.pc = [{Cloth}, {Plastic}] and wpc3.pc=

[{Jet}, {Plastic}]. Figure 2(a) shows the selected features of two valid prod-
ucts. PPGS applies the evolutionary operators only to the selected features. The
dashed square indicates the cross-over point for the two individuals. Figure 2(b)
shows the result of the crossover. Figure 2(c) illustrates mutation of the first
recombined individual, the mutated element Jet is underlined. Notice that this
product is invalid because features Piston and Jet are mutually exclusive (see
Figure 1). This situation requires the application of a fix operation to provide
an actual valid product shown in Figure 2(d). Once a valid product is found,
the algorithm generates all its possible pairs and removes them from a copy of

6

Algorithm 1: Pseudocode of PPGS.

1: proc Input:feature model FM, prioritized products prods
2: TS ← ∅ // Initialize the test suite
3: RP ← weighted pairs to cover(prods)
4: while not empty(RP) do
5: t=0
6: P(t) ← Create Population() // P = population
7: while evals < totalEvals do
8: Q ← ∅ // Q = auxiliary population
9: for i ← 1 to (PPGS.popSize / 2) do
10: parents←Selection(P(t))
11: offspring←Recombination(PPGS.Pc,parents)
12: offspring←Mutation(PPGS.Pm,offspring)
13: Fix(offspring)
14: ParallelEvaluator.addSolution(offspring)
15: end for
16: solutions←ParallelEvaluator.evaluate();
17: Insert(solutions,Q)
18: P(t+1) := Replace (Q,P(t))
19: t= t + 1
20: end while //internal loop
21: TS ← TS ∪ best solution(P(t))
22: RemovePairs(RP, best solution(P(t)))
23: end while //external loop
24: return TS
25: end proc

the RP set, from which the fitness value is computed as the number of pairs
that remain still uncovered. In our example, wpc2 and wpc3 are covered by the
product on Figure 2(d), thus the fitness function for this individual is wpc3.w,
the remaining weight that has not yet been covered. The inner loop is repeated
until the algorithm reaches 1,000 evaluations. Then, the best individual is re-
moved from RP, the covered pairs, and the product is added to the current test
suite TS. When there are no more weighted pairs to be covered or the maximum
number of fitness evaluations has been reached, the algorithm returns its current
TS value.

PPGS has been implemented using jMetal [7], a Java framework aimed at the
development, experimentation, and study of metaheuristics for solving optimiza-

Figure 2: Evolutionary Operations

7

tion problems. Additionally and as mentioned before, PPGS uses a framework
for the analysis of feature models called FAMA [23]. This framework provides a
simple, easy-to-use, and extensible programming API that supports a common
and basic set of feature model operations.

5 Evaluation

This section describes how our evaluation was carried out. We start with the
algorithm used to compare and contrast PPGS, followed by the methods em-
ployed to assign priorities, the selection of the products to prioritize, the exper-
imental corpus of feature models, and the software and hardware infrastructure
used.

5.1 Prioritized-ICPL (pICPL) Algorithm

To compare and contrast our PPGS algorithm we employed prioritized-ICPL,
a greedy algorithm to generate n-wise covering arrays developed by Johansen
et al. [16]. Prioritized-ICPL does not compute covering arrays with full cover-
age but rather covers only those n-wise combinations among features that are
present in at least one of the prioritized products, as was described in Section 3.
We must highlight here that the pICPL algorithm uses data parallel execution,
supporting any number of processors. Their parallelism comes from simultane-
ous operations across large sets of data. For further details on prioritized-ICPL
please refer to [16].

We should remark that an earlier and more well-known version of a greedy
algorithm for SPL pairwise testing by the same authors Johansen et al. is also
called ICPL [15]. However that version did not consider prioritization. To avoid
any confusions and as a short hand notation, henceforth we will use the term
pICPL to refer to prioritized-ICPL.

5.2 Weight Priority Assignment Methods

We considered three methods to assign weight values to prioritized products.

5.2.1 Measured values

For this type, the weights were derived from non-functional properties values
obtained from 16 real SPL systems, from different problem domains and im-
plemented using different technologies, that were measured with the SPL Con-
queror approach [22]. This approach aims at providing reliable estimates of
measurable non-functional properties such as performance, main memory con-
sumption, and footprint. It works by performing a set of actual property mea-
surements on different products (usually a proper subset of all the feature com-
binations denoted by a feature model) with different feature interaction types.
The measured values are then used to compute the estimated property values
for the feature combinations that were not measured. This choice of weight

8

SPL Name Prop NF NP NC PP%
Prevayler F 6 32 24 75.0
LinkedList F 26 1440 204 14.1
ZipMe F 8 64 64 100.0
PKJab F 12 72 72 100.0
SensorNetwork F 27 16704 3240 19.4
BerkeleyDBF F 9 256 256 100.0
Violet F 101 ≈ 1E20 101 ≈ 0.0
Linux subset F 25 ≈ 3E24 100 ≈ 0.0
LLVM M 12 1024 53 5.1
Curl M 14 1024 68 6.6
x264 M 17 2048 77 3.7
Wget M 17 8192 94 1.15
BerkeleyDBM M 19 3840 1280 33.3
SQLite M 40 ≈ 5E7 418 ≈ 0.0
BerkeleyDBP P 27 1440 180 12.50
Apache P 10 256 192 75.0

Footprint, Main memory consumption, Performance, Number of Features,
Number of Products, Number of Configurations, Percentage of Prioritized

products.

Table 2: Measured Values Case Studies Summary

priority assignment allows us to emulate more realistic scenarios whereby soft-
ware testers need to schedule their testing effort giving priority, for instance, to
products or feature combinations that exhibit higher footprint or performance.

For our work, we use the actual values taken on the measured products
considering pairwise feature interactions. Table 2 summarizes the SPL systems
evaluated, their measured property (Prop), number of features (NF), number of
products (NP), number of configurations measured (NC), and the percentage of
prioritized products (PP%) used in our comparison as explained shortly.

5.2.2 Rank based values

For this second type of weight values, we selected the products to prioritize based
on how dissimilar they are when compared to all other products of an SPL, and
assigned them priority weights based on their rank values. For further details
please refer to the associated materials. The intuition behind this assignment
choice is that by giving the same weight value to two of the most SPL-wide
dissimilar products, the weight values will be more likely spread among a larger
number of pairwise configurations making the covering array harder to compute.
In addition, this enables us to select different percentages of the number of
products for prioritization as elaborated in Subsection 5.3.

9

5.2.3 Random Values

For this type of weight values, we randomly generate weights between the min-
imum and maximum values obtained with the ranked based values approach.

5.3 Product Prioritization Selection

We selected the products for prioritization based on the priority assignment
method. For the measured values assignment method, all the measured products
were used as our prioritization products. In three cases this meant including all
the products of the product line. Please refer to Table 2 for further details. For
the rank based values and the random values assignment methods, a percentage
of the products denoted by each individual feature model was used for product
prioritization. The selected percentages are: 5%, 10%, 20%, 30%, and 50%.

5.4 Experimental Corpus

We created three groups based on both the number of products denoted by the
feature models and how their priority was assigned as shown in Table 3. Group
G1 was formed with 160 feature models, whose number of products ranges from
16 to 1000 products, and that were evaluated with rank based and random
values. Group G2 was formed with 59 feature models, whose number of products
ranged from 1000 to 80000 that were also evaluated with rank based and random
values. The threshold value to divide groups G1 and G2, and the selected
percentages were chosen to provide an ample variety of number of products
to prioritize. Group G3 was formed with 16 feature models, with number of
products ranging from 16 to ≈3E24 that were evaluated with measured values.

We obtained 16 feature models from SPL Conqueror, 5 from Johansen et
al. [16], and 201 from the SPLOT website [19] (a repository for the feature
model analysis research community). Thus in total we employed 222 distinct
feature models. Please notice that we also incorporated 5 SPL Conqueror feature
models to G1 and 8 to G2. This yields a grand total of 235 feature models to
analyze. For G1 and G2 the problem instances are computed considering that
for each feature model two priority assignment methods are used with three
different prioritization selection percentages. For example, this yields for G1
160 × 2 × 3 = 960 instances. In total 1330 problem instances were analyzed,
with two algorithms PPGS and pICPL, with 30 independent executions. This
means that the data of a total of 79800 independent runs was generated and
analyzed.

5.5 Hardware and Software Setup

PPGS and pICPL are non-deterministic algorithms, so we performed 30 inde-
pendent runs for a fair comparison between them. As performance measures we
analyzed both the number of products required to test the SPL and the time
required to run the algorithm. In both cases, the lower the value the better the

10

G1 G2 G3 Summary
NFM 160 59 16 235
NP 16-1K 1K-80K 32- ≈3E24 16- ≈3E24
NF 10-56 14-67 6-101 6-101

WPA RK,RD RK, RD M
PP% 20,30,50 5,10,20 ≈0.0 – 100
PI 960 354 16 1330

NFM: Number Feature Models, NP: Number Products, NF: Number
Features, WPA: Weight Priority Assignment, RK: Rank based, RN:

Random, M: Measured, PP%: Prioritized Products Percentage, PI: Problem
Instances

Table 3: Evaluation Case Studies Summary

performance, since we want a small number of products to test the SPL and
we want the algorithm to be as fast as possible. All the executions were run in
a cluster of 16 machines with Intel Core2 Quad processors Q9400 (4 cores per
processor) at 2.66 GHz and 4 GB memory running Ubuntu 12.04.1 LTS and
managed by the HT Condor 7.8.4 cluster manager. Since we have four cores
available per processor, we have executed only one task per single processor, so
we have used four parallel threads in each independent execution of the analyzed
algorithms. The total 79800 independent runs of our evaluation required about
two weeks of computation on a 64-core dedicated cluster.

6 Results and Analysis

In this work we have used two different statistical techniques to measure different
aspects of the comparison.

6.1 Wilcoxon Test

In order to check if the differences between the algorithms are statistically sig-
nificant or just a matter of chance, we applied the non-parametric Wilcoxon
rank-sum test. We highlight in the tables the statistically significant differences
with a confidence level of 95% (p-value under 0.05).

In Table 4 we summarize the results obtained for group G1, feature models
with up to 1000 products. Each column corresponds to one algorithm and in
the rows we show the number of products required to reach 50% up to 100%
of total weighted coverage. The data shown in each cell is the mean and the
standard deviation of the 30 independent runs. We highlight with a light gray
background those values that are better with respect to the other algorithm
with a statistically significant difference. We can observe that PPGS requires a
smaller number of products to test the SPL with a significant difference when we
consider a coverage level of 80% up to 99%. In the rest of the cases the differences

11

are not statistically significant, so we cannot claim that one algorithm is better
than the other. Regarding the time, pICPL is around 6 times faster than PPGS
with a statistically significant difference. The time is given in milliseconds in
the tables.

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.200.40 1.200.40 96% 4.001.23 4.371.42

75% 1.920.51 1.980.58 97% 4.381.32 4.711.54

80% 2.150.59 2.250.68 98% 4.831.46 5.181.74

85% 2.470.72 2.580.81 99% 5.581.71 5.871.99

90% 2.880.86 3.131.03 100% 7.562.85 7.563.03

95% 3.721.14 4.061.33 TIME 2389728669 1011618842

Table 4: Mean and standard deviation of 30 indep. runs for G1 (significant
differences are highlighted)

Table 5 shows the results for group G2: feature models with 1000 to 80000
products. We use the same legend and notation as for Table 4. In this case the
advantage of PPGS over pICPL is larger than in the previous case. First, we can
observe that PPGS is better than pICPL with statistically significant difference
in all the coverage percentages except 100%. Regarding the computation time,
PPGS is faster than pICPL but without statistically significant difference. From
these results, the trend we can observe is that as the number of products of the
SPL grows PPGS is still better in quality than pICPL while it is also better
in runtime. Part of our future work is to verify if this trend holds for feature
models with a larger number of products.

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.160.36 1.360.83 96% 4.980.97 5.833.14

75% 2.090.42 2.471.65 97% 5.551.10 6.433.27

80% 2.390.52 2.861.79 98% 6.341.34 7.233.48

85% 2.730.59 3.272.08 99% 7.661.88 8.594.11

90% 3.360.76 3.982.38 100% 14.5710.65 13.799.98

95% 4.590.90 5.423.12 TIME 2737287.2E+5 6381642.1E+6

Table 5: Mean and standard deviation of 30 indep. runs for G2(significant
differences are highlighted)

Let us now focus on group G3, feature models with measured weight values.
Table 6 shows the average number of products required to cover each SPL and
the time for both pICPL and PPGS over the 16 models. According to the
statistically significant differences the conclusions in this group of models are
similar to the conclusions in the previous ones: PPGS is better in quality (lower
number of products) while pICPL is faster. In detail, regarding the quality of
the solutions, PPGS is better than pICPL in 68 model-coverage combinations
with statistical significant difference, while pICPL is better than PPGS only in
19 model-coverage combinations. Regarding the time, pICPL is usually faster
than PPGS with a statistically significant difference, with the only exception
of the SensorNetwork model, in which they do not have statistically significant
difference.

12

If we take a closer look at the data in the table and taking into account
the statistical significant differences, we can observe that PPGS is overall bet-
ter than pICPL in 8 out of the 16 models, namely: Apache, BerkeleyDBF,
BerkeleyDBP, LLVM, PkJab, SensorNetwork, Violet and Wget. On the other
hand, pICPL is better only for 2 models when all coverage percentages are con-
sidered: Prevayler and ZipMe. In the remaining 6 models pICPL is better for
some percentages while PPGS is better for others.

Model Alg. 50% 75% 80% 85% 90% 95% 96% 97% 98% 99% 100% TIME

Apache
PPGS 2 3 3 4 4 6 6 6 7 7 7 10394
pICPL 2 3 3 4 5 6 7 7 7 8 8 7582

Berk.DBF
PPGS 2 4 4 5 5.97 6.97 6.97 6.97 7.97 8 8.17 11213
pICPL 2 4 5 6 7 8 8 8 8 9 9 8152

Berk.DBM
PPGS 2 3 3 4 4.73 6.87 7.80 8.77 9.97 11.90 23.33 117607
pICPL 2 3 3 4 6 7 8 8 10 11 21 94512

Berk.DBP
PPGS 1 2 2 3 3 4 4.83 5 5.93 7 10.60 47361
pICPL 1 2 3 3 4 6 6 6 6 7 12 57291

Curl
PPGS 2 3 3 3.97 4.03 5.83 6 6.50 7.37 8.07 9.63 17454
pICPL 2 3 3 4 4 6 6 6 7 7 8 6382

LinkedList
PPGS 1 2 2 2 3 4.23 5 5 6.13 7.79 13.37 60684
pICPL 1 2 2 3 3 4 4 5 7 11 14 71151

Linux
PPGS 2 4 4 5 6 7 7.67 8 8.37 9.40 11.10 49385
pICPL 2 4 5 5 6 8 8 8 8 9 10 30522

LLVM
PPGS 2 3 3.03 4 5 6 6 6.07 7 8 8.17 12805
pICPL 2 3 4 4 5 6 7 7 7 8 8 9032

PKJab
PPGS 1 2 2 3 3.07 4 5 5 5 6 7 11439
pICPL 1 2 3 3 3 5 5 6 7 8 8 4661

Prevayler
PPGS 2 3 3 3 4 5 5 5.60 6 6 6 8091
pICPL 2 3 3 3 4 5 5 5 6 6 6 2412

S.Network
PPGS 1 3 3 3 4 5.03 5.47 6 6.97 7.87 13.97 71971
pICPL 1 3 4 5 6 8 9 9 10 11 17 74181

SQL.Mem
PPGS 1 2.17 2.90 3.23 4.07 6.14 6.97 7.93 9.23 11.70 31.53 903118
pICPL 1 3 4 4 5 8 8 9 11 14 28 407991

Violet
PPGS 1 1 1 2 2 2.93 3 3.07 3.30 4.53 12.83 31376054
pICPL 1 1 1 2 2 3 3 4 4 6 15 2471691

Wget
PPGS 2 2.13 3 3.07 4 5.43 6 6.40 7 8.03 11.37 31525
pICPL 2 3 3 4 4 6 6 7 7 9 11 19612

x264
PPGS 1.23 2.23 3 3.07 4 5.30 6 6.50 7.23 8.47 12.10 37368
pICPL 1 2 3 3 4 5 6 7 7 9 13 13441

ZipMe
PPGS 2 3 3 4 5 6 6 7 7 7 7.03 13035
pICPL 2 3 3 4 5 6 6 6 7 7 7 6142

Table 6: Group G3. When considering array sizes PPGS is statistically better
than pICPL in 69 cases, and pICPL is better in 18 cases.

As a general conclusion of this first analysis we can say that if the number
of products to test is a critical aspect for the Testing Engineer, PPGS should
be applied to generate these products instead of pICPL. The time required by
PPGS is usually no longer than a few minutes, which is a reasonable time to
generate a better quality test suite. We argue this is the most common scenario
in software companies with SPLs, where carrying on each product test can re-
quire hours if not days to perform, specially if they involve complex software and
hardware setups [16]. On the other hand, pICPL could be employed when the
number of products to test is not a critical issue and a slightly faster generation
of the test suite is preferable.

13

6.2 Â12 statistic

In order to properly interpret the results of statistical tests, it is always advisable
to report effect size measures. For that purpose, we have also used the non-
parametric effect size measure Â12 statistic as recommended by Arcuri and
Briand [2]. Given a performance measure M , Â12 measures the probability that
running algorithm A yields higher M values than running another algorithm B.
If the two algorithms are equivalent, then Â12 = 0.5. If Â12 = 0.3 entails one
would obtain smaller results 70% of the time with A. Table 7 shows the Â12

statistic to assess the practical significance of the results. In this table a value
lower than 0.5 means that PPGS is better than pICPL, a value greater than
0.5 means pICPL is better than PPGS and 0.5 means a draw. At a first glance,
we can see that most of the times (31), PPGS obtains smaller test suites for all
percentages of coverage, meanwhile pICPL is only better than PPGS twice. We
have highlighted with dark and light gray background the lowest and highest
values of the table (0.2497 and 0.5157). The lowest value indicates that PPGS
obtains a better test suite than pICPL for 98% of coverage in a model of G2 in
more than 75% of the cases. The highest value indicates that pICPL obtains
a better test suite for 100% coverage in a model of G1 with a probability near
0.5. In general, this statistic reconfirms that PPGS gets better test suites than
pICPL in terms of the number of products.

Group 50% 75% 80% 85% 90% 95%

G1 0.4985 0.4729 0.4511 0.4473 0.3785 0.3501
G2 0.4529 0.4193 0.3760 0.3726 0.3436 0.2887
G3 0.5104 0.4562 0.2844 0.3563 0.3198 0.3239

Group 96% 97% 98% 99% 100%
G1 0.3410 0.3703 0.3634 0.4000 0.5157
G2 0.2847 0.2647 0.2497 0.2595 0.4945
G3 0.3312 0.3135 0.3927 0.3068 0.4166

Table 7: Â12 statistical test results for all groups. PPGS yields better test suite
size values.

7 Threats to Validity

We identified two main threats to validity in our work. First, we used a single
assignment for the parameters values of PPGS based on the authors’ experience.
A change in the values of these parameters could have an impact in the results
of the algorithm. Thus, we can only claim that the conclusions are valid for
the combination of parameter values that we used. Second, the selection of
feature models for the experiment corpus can indeed bias the results obtained.
To counteract this threat, we used 3 different sources for our feature models.
From them we selected a number of feature models as large as possible, with the
widest ranges of both number of features and number of products. We should

14

point out that beyond the ranges of our groups G1 and G2, the feature analysis
tool FAMA that we employ for PPGS presents a performance and scalability
bottleneck. Addressing these limitations is part of our future work.

8 Related Work

There exists substantial literature on both search based testing and SPL test-
ing. In this section, we briefly summarize those pieces of work closest to ours.
Within the area of Search-Based Software Engineering a major research focus
has been software testing [12]. A recent overview by McMinn highlights the
major achievements made in the area and some of the open questions and chal-
lenges [18]. Relevant in this realm is the work by Ferrer et al. who propose a
test prioritization genetic algorithm [10]. However, in clear contrast with our
work their algorithm is not for SPLs but for systems without variability. Some
of the very few applications of search based techniques to SPL are summarized
next. Garvin et al. applied simulated annealing to combinatorial interaction
testing for computing n-wise coverage for SPLs [11]. Ensan et al. propose a
genetic algorithm approach for test case generation for SPLs [9]. In contrast
with our work, they use as fitness function a variation of cyclomatic complexity
metric adapted to feature models, their goal is not n-wise coverage and they do
not consider priorities. Henard et al. propose an approach that uses a dissimi-
larity metric that favors individuals whose n-wise coverage varies the most from
the current population thus increasing the chances of wider coverage [13]. A
key difference with our work is that the prioritization is not based on assigned
weights that have a perceived market or quality value. Recent surveys on SPL
testing [6,8], attest the increasing relevance of the topic within the SPL commu-
nity but also confirm that the latent potential of search based testing techniques
remains largely untapped. Perrouin et al. propose an approach that translates
t-wise coverage problems into Alloy programs and rely on its automatic instance
generation to obtain covering arrays [20]. Hervieu et al. employ constraint pro-
gramming for computing pairwise coverage from feature models [14]. In sharp
contrast with our work, none of these algorithms considers any prioritization
criteria.

9 Conclusions and Future Work

In this paper we formalized a SPL testing prioritization scheme and presented
its implementation with PPGS. We evaluated PPGS with 235 feature models
of different characteristics using different selection criteria for product priori-
tization. Furthermore, we compared PPGS with greedy algorithm pICPL, a
comparison that totalled 79800 independent runs. Our analysis showed that
while PPGS obtains overall shorter covering arrays it exhibits a performance
difference with pICPL that tends to decrease for the feature models with larger
number of products. It should be noted though that the current PPGS imple-

15

mentation is not fine-tuned for performance, so part of our future work is to
evaluate alternative representations of population individuals and evolutionary
operations, and to streamline the feature model analysis support. Addressing
these two limitations will extend our study to include feature models with more
than 80,000 prioritized products. Also, recall that the current stopping condi-
tion of PPGS is a fixed number of evaluations. We plan to study the impact on
performance of different approaches to adapt this stopping condition based on
the characteristics of feature models. A starting point is the work of Bhandari
et al. [4]. We believe our work sheds light on the potential of search based
techniques for SPL testing.

10 Acknowledgements

This research is partially funded by the Austrian Science Fund (FWF) project
P25289-N15 and Lise Meitner Fellowship M1421-N15, the Spanish Ministry of
Economy and Competitiveness and FEDER under contract TIN2011-28194 and
fellowship BES-2012-055967. It is also partially founded by project 8.06/5.47.4142
in collaboration with the VSB-Tech. Univ. of Ostrava and Universidad de
Málaga, Andalućıa Tech. We thank Martin Johansen, Øystein Haugen, and
Norbert Siegmund for their help with pICPL and SPLConqueror

References

[1] E. Alba and G. Luque. Parallel genetic algorithms, volume 367 of Studies
in Computational Intelligence. Springer-Verlag, 2011.

[2] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for as-
sessing randomized algorithms in software engineering. Softw. Test. Verif.
Reliab, 2012.

[3] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis of feature
models 20 years later: A literature review. Inf. Syst., 35(6):615–636, 2010.

[4] D. Bhandari, C. A. Murthy, and S. K. Pal. Variance as a stopping criterion
for genetic algorithms with elitist model. Fundam. Inform., 120(2):145–164,
2012.

[5] H. Cichos, S. Oster, M. Lochau, and A. Schürr. Model-based coverage-
driven test suite generation for software product lines. In MoDELS, pages
425–439, 2011.

[6] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor, E. S.
de Almeida, and S. R. de Lemos Meira. A systematic mapping study of soft-
ware product lines testing. Information & Software Technology, 53(5):407–
423, 2011.

16

[7] J. J. Durillo and A. J. Nebro. jmetal: A java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760 – 771, 2011.

[8] E. Engström and P. Runeson. Software product line testing - a systematic
mapping study. Information & Software Technology, 53(1):2–13, 2011.

[9] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary search-based test
generation for software product line feature models. In CAiSE, pages 613–
628, 2012.

[10] J. Ferrer, P. M. Kruse, J. F. Chicano, and E. Alba. Evolutionary algorithm
for prioritized pairwise test data generation. In T. Soule and J. H. Moore,
editors, GECCO, pages 1213–1220. ACM, 2012.

[11] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements
to a meta-heuristic search for constrained interaction testing. Empirical
Software Engineering, 16(1):61–102, 2011.

[12] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineer-
ing: Trends, techniques and applications. ACM Comput. Surv., 45(1):11,
2012.

[13] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon. Bypassing the combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software product lines. CoRR,
abs/1211.5451, 2012.

[14] A. Hervieu, B. Baudry, and A. Gotlieb. Pacogen: Automatic generation of
pairwise test configurations from feature models. In T. Dohi and B. Cukic,
editors, ISSRE, pages 120–129. IEEE, 2011.

[15] M. F. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for generating
t-wise covering arrays from large feature models. In SPLC (1), pages 46–55,
2012.

[16] M. F. Johansen, Ø. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen.
Generating better partial covering arrays by modeling weights on sub-
product lines. In R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, ed-
itors, MoDELS, volume 7590 of Lecture Notes in Computer Science, pages
269–284. Springer, 2012.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University,
1990.

[18] P. McMinn. Search-based software testing: Past, present and future. In
ICST Workshops, pages 153–163. IEEE Computer Society, 2011.

17

[19] M. Mendonca. Software Product Line Online Tools(SPLOT), 2013.
http://www.splot-research.org/.

[20] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon. Automated and
scalable t-wise test case generation strategies for software product lines. In
ICST, pages 459–468. IEEE Computer Society, 2010.

[21] K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[22] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and
S. S. Kolesnikov. Scalable prediction of non-functional properties in soft-
ware product lines: Footprint and memory consumption. Information &
Soft. Technology, 55(3):491–507, 2013.

[23] P. Trinidad, D. Benavides, A. Ruiz-Cortes, S. Segura, and A. Jimenez.
Fama framework. In Software Product Line Conference, 2008. SPLC ’08.
12th International, pages 359–359, Sept.

18

