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Abstract

A Project Scheduling Problem consists in deciding who does what during the soft-
ware project lifetime. This is a capital application in the practice of software en-
gineering, since the total budget and human resources involved must be managed
optimally in order to end in a successful project. In short, companies are principally
concerned with reducing the duration and cost of a project, and these two goals
are in conflict with each other. In this work we tackle the problem by using genetic
algorithms (GAs) to solve many different software project scenarios. Thanks to our
newly developed instance generator we can perform structured studies about the
influence the most important attributes of the problem have on the solutions. Our
conclusions show that GAs are quite flexible and accurate for this application, and
an important tool for automatic project management.

Key words: Automatic software management, genetic algorithm, project
scheduling

1 Introduction

The high complexity of currently existing software projects justifies the re-
search into computer aided tools to properly plan the project development.
Current software projects usually demand complex management involving
scheduling, planning, and monitoring tasks. There is a need to control peo-
ple and processes, and to efficiently allocate resources in order to achieve
specific objectives while satisfying a variety of constraints. In a general way,
the project scheduling problem consists in defining what resources are used
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to perform each task and when it should be carried out. The tasks may be
anything from maintaining documents to writing programs, and the resources
include people, machines, time, etc. The objectives are usually to minimize
the project duration, to minimize the project cost, and to maximize the prod-
uct quality [4]. In an actual project, the manager wants an automatic plan
reconciling as far as possible these three conflicting goals.

Some work exists which proposes and discusses advanced management tech-
niques [2,22] and tools [15,17] which can help software managers in their work.
Computers are usually applied at several steps of the software management
process. We can find expert systems to diagnose problems in the software de-
velopment [21], neural networks for deciding when to deliver the software to
the users [7], genetic algorithms for project scheduling [4], CASE tools for the
knowledge management of software development [11], all of them forming a
new field of knowledge related to computer assisted project management. In
this paper we focus on the Project Scheduling Problem solved with genetic
algorithms [10]. The factors addressed are related to the time, human skills,
budget, and project complexity involved. All of these factors make our study
more difficult and mean a step toward their application to actual software
project planning scenarios. We first define an optimization problem to deal
with the search for highly efficient management and propose the use of ge-
netic algorithms to solve it [1]. With the proposed tool a project manager
can evaluate different scenarios in order to later be able to take decisions on
the actual project itself. We perform some in silico experiments [25] based on
several automatically generated project scenarios.

The article is organized as follows. In Section 2 the Project Scheduling Problem
is defined. Section 3 describes the genetic algorithms proposed and Section 4
discusses the representation of the individuals and the fitness function, two
very important issues when applying GAs to a problem. We use an instance
generator to automatically create the different project scenarios, which is de-
scribed in Section 5. Finally, the experimental study and results are presented
in Section 6, and some conclusions and future work are included in Section 7.

2 The Project Scheduling Problem (PSP)

The PSP is related to the Resource-Constrained Project Scheduling (RCPS),
an existing problem which has been extensively tackled in the literature and
which has been solved with both exact techniques [6,19,24] and metaheuristic
ones [12,18,20]. However, there are some differences between PSP and RCPS.
First, in PSP there is a cost associated with the employees and a project cost
which must be minimized (in addition to the project duration). Besides, in
RCPS there are several kinds of resources while PSP has one only kind (the
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employee) with several possible skills. We must notice that PSP skills are
different from RCPS resource types. In addition, each activity in the RCPS
requires different quantities of each resource while PSP skills are not quan-
tifiable entities. The problem as defined here is more realistic than the RCPS
because it includes the concept of an employee with a salary and personal
skills, also capable of performing several tasks during a normal working day.
In [4] a genetic algorithm is used to solve this kind of problem with an ap-
proach which is similar to our statement. Let us specify the details of the
problem tackled in this work.

The resources considered are people with a set of skills, and a salary. These
employees have a maximum degree of dedication to the project. Formally,
each person (employee) is denoted with ei, where i goes from 1 to E (the
number of employees). Let SK be the set of skills, and si the i-th skill with i
varying from 1 to S = |SK|. The skills of the employee ei will be denoted with
eskills

i ⊆ SK, the monthly salary with esalary
i , and the maximum dedication to

the project with emaxded
i . The salary and the maximum dedication are both

real numbers. The former is expressed in fictitious currency units, while the
latter is the ratio between the amount of hours dedicated to the project and
the full working day length of the employee. Let us consider an example to
clarify the concepts. Let us suppose that we have a software company with five
employees. We need to perform a software application for a bank presenting
the scenario shown in Fig. 1.

SK = {s1, s2, s3, s4, s5}

s1: Programming expertise

s2: Leadership

s3: Database expertise

s4: UML expertise

s5: Web design expertise

eskills
1

= {s1, s4} eskills
2

= {s2, s3, s4} eskills
3

= {s5} eskills
4

= {s1, s2} eskills
5

= {s4, s5}

emaxded
1

= 1.0 emaxded
2

= 1.0 emaxded
3

= 0.5 emaxded
4

= 1.0 emaxded
5

= 1.2

e
salary
1

= $2, 000 e
salary
2

= $2, 500 e
salary
3

= $1, 700 e
salary
4

= $3, 000 e
salary
5

= $2, 200

Fig. 1. Possible staff of an example software company.

In this figure we supply information about the different skills of the employees,
their maximum dedication to the project at hand, and their monthly salary.
For example, the employee e2, who earns $2,500 each month, is a database
expert (s3), a UML expert (s4), and is able to lead a group of people (s2). Her
colleague, the employee e4, is also able to lead a group (s2) and, in addition,
she is a great programmer (s1). These two employees and the employee e1 can
spend all of their working day developing the application (maximum dedica-
tion equal to one) but this doesn’t mean that they do it. On the contrary,
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the employee e3 can only dedicate half of her working day to the project. We
can find several reasons for this fact: perhaps the employee has a part-time
contract, or she has administrative tasks to carry out in the company during
part of the day. The employee e5 can work overtime, her maximum dedication
is greater than one (emaxded

5 = 1.2), and this means that she can work on the
bank application up to twenty percent more than in an ordinary working day.
In this way, we can model the extra time of the employees, a quite “real world”
feature included in the problem definition. However, the project manager must
take into account that an overloaded employee can increase her mistake rate
and with it the number of errors of the software developed. This leads to a
lower quality of the final product and, possibly, to the need to correct or to
develop again the wrong parts. In any case, the consequence can be an in-
creased project duration. This does not affect the problem definition, it is a
matter of psychology, but it is an important issue that project managers must
take into account.

Let us leave the example for the moment and let us study how the tasks of
a software project are modelled. The tasks are denoted with ti, where i goes
from 1 to T (the number of tasks). Each task ti has a set of required skills
associated with it that we denote with tskills

i and an effort teffort
i expressed

in person-month (PM). The tasks must be performed according to a Task
Precedence Graph (TPG). It indicates which tasks must be completed before
a new task is begun. The TPG is an acyclic directed graph G(V,A) with a
vertex set V = {t1, t2, . . . , tT} and an arc set A, where (ti, tj) ∈ A if the task ti
must be completed, with no other intervening tasks, before task tj can start.
In order to continue with our example we show in Fig. 2 all the tasks of the
software project in hand.

t1: Perform UML diagrams t5: Test the software

t2: Design the database t6: Database design documents

t3: Implementation t7: User manual

t4: Design the Web page templates

Fig. 2. Task Precedence Graph of the bank application.

For each task we inform of the effort in person-month and the set of required
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skills. For example, the task t1, which consists in performing the UML dia-
grams of the project in order to be used by the employees in the following
tasks, requires UML expertise (skill s4) and five person-month. In the same
figure we show the TPG of the project, drawing an arrow from task ti to task
tj if the former must be completed before the latter starts. For example, after
the UML diagrams of the application are completed (t1) the design of the web
page templates for the documentation of the application (t4) and the database
design (t2) can be started. However, these two tasks must be completed before
the database design documentation is produced (t6).

Our objectives are to minimize the cost and the duration of the project. The
constraints are that each task must be performed by at least one person, the
set of required skills of a task must be included in the union of the skills of the
employees performing the task, and no employee must exceed her maximum
dedication to the project. The first constraint is necessary in order to complete
the project: if there is even one undone task the project is not complete. The
third constraint is obvious after the definition of maximum dedication. How-
ever, we could discuss more on the second constraint and we will do so below.

At this point we can talk about the number of skills involved in a project.
This number can be viewed as a measure of the degree of specialization of
the abilities involved in the project. That is, with a larger number of skills
the abilities needed to perform the whole software project are divided into a
greater number of portions than if it needed a reduced number of skills. In
our example we could further break down some of the skills. For instance,
we can divide the programming expertise into three skills: Java expertise,
C/C++ expertise, and Visual Basic expertise. On the other hand, the number
of skills can be viewed as a measure of the amount of abilities needed to
perform a project. One example could be developing software for controlling
an airplane (large variety of skills needed) versus our bank application. Thus,
the number of skills of a project in our model has a dual interpretation in
the real-world: the degree of specialization of the abilities involved versus the
amount of abilities needed to perform the project. The correct interpretation
depends on the specific project. From the project manager point of view,
the skills assigned to each task and employee depends on the division of the
abilities required for the project at hand. For example, we can do a very fine
division of the abilities if our employees are very specialized (they are experts
in very concrete domains). In such a situation we have a lot of very specific
skills involved in the project. Each task can require many of these skills and
the employees have a few skills each. In the opposite direction, if our employees
have some notions on several topics we have a few skills associated with vast
domains. The number of skills required by the tasks is smaller than in the
previous scenario.

Once we know the elements of a problem instance, we can proceed to describe
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the elements of a solution to the problem. A solution can be represented with
a matrix X = (xij) of size E × T where xij ≥ 0. The element xij is the degree
of dedication of the employee ei to the task tj. If the employee ei performs the
task tj with a 0.5 dedication degree she spends half of her working day on the
task. If an employee does not perform a task she will have a dedication degree
of 0 for that task. This information helps to compute the duration of each task
and, indeed, the start and end time of each one, i.e., the time schedule of the
tasks (Gantt diagram). From this schedule we can compute the duration of the
project (see Fig. 3). The cost can be calculated after the duration of the tasks
taking into account the dedication and the salary of the employees. Finally,
the overwork of each employee can be calculated using the time schedule of
the tasks and the dedication matrix X.

Fig. 3. A tentative solution for the previous example. Using the task durations and
the TPG the Gantt diagram of the project can be computed.

In order to evaluate the quality of a given project management solution, we
take into account three issues: project duration, project cost, and solution
feasibility. To compute the project duration, denoted with pdur, we need to
calculate the duration of each individual task (tdur

j ). This is calculated in the
following way:

tdur
j =

teffort
j

∑E
i=1 xij

(1)

The next step is to compute the starting and ending times for each task (tstart
j

and tend
j ). At the same time (thus allowing our algorithm to have a reduced

computational cost), the algorithm also calculates the project duration, which
is the maximum end time ever found.
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The project cost pcost is the sum of the fees paid to the employees for their
dedication to the project. These charges are computed by multiplying the
salary of the employee by the time spent on the project. The time spent on
the project is the sum of the dedication multiplied by the duration of each
task. In summary:

pcost =
E∑

i=1

T∑

j=1

esalary
i · xij · t

dur
j (2)

Now, we detail how the constraints are checked. In order to find out if a
solution is feasible we must first check that all tasks to be performed by
somebody, i.e., no task is left undone. That is:

E∑

i=1

xij > 0 ∀j ∈ {1, 2, . . . , T} (3)

The second constraint of a feasible solution is that the employees performing
the task must have the skills required by the task:

tskills
j ⊆

⋃

{i|xij>0}

eskills
i ∀j ∈ {1, 2, . . . , T} (4)

Now, we can discuss the meaning of this constraint. Observe that, if a task
requires a skill, the constraint demands at least one person, not necessarily all
of them, have that skill. This makes sense in some situations, for example when
the skill is the capacity to lead a group of people and the task requires one
only leader to be appointed. Hence, it is possible that one employee working in
a task have none of the required skills of the tasks. In particular, the employee
can have no skill. In this way, we can model scenarios where some employees
do not have the required skills of the task they work on, but they are in
contact with other employees which have the skills and they can learn the
skills. However, in some scenarios we need all the people working on a task to
have a required skill. For example, coming back to our bank application we
can require that all the employees implementing the application (t3) be expert
programmers. To tackle this scenario we can impose a dedication degree of zero
on the task to all the employees without the required skill. In our particular
case we can set xi3 = 0.0 for all the employees ei without the skill s1, that
is, e2, e3, e5. This means that the elements of the solution matrix with a zero
value imposed are not considered when the optimization algorithm is applied,
reducing in this way the number of problem variables. However, when the
solution is evaluated a zero value is inserted in the corresponding positions of
the matrix.

According to the second constraint, the tasks requiring a skill which no em-
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ployee has cannot be performed and the project cannot be finished. When this
happens all the solutions proposed for the scheduling problem are unfeasible
because they violate the second constraint. The project manager can solve this
problem in several ways. Firstly, s/he can hire one or several new employees
with the required skills. We can model this situation in our formulation of the
PSP by enlarging the set of employees with the new ones. Furthermore, if the
new employees are hired only to perform the task with the demanded skill
we can set the degree of dedication of the new employees to zero for all the
other tasks. A second solution to the problem consists of training some of the
employees in order to have the required skills. In our model this solution is
performed by adding new skills to the employees trained.

Finally, in order to compute the overwork pover we need the starting and ending
times for each task, previously computed. For each employee ei we define her
working function as:

ework
i (t) =

∑

{j|tstart
j

≤t≤tend
j

}

xij (5)

If ework
i (t) > emaxded

i the employee ei exceeds her maximum dedication at
instant t. The overwork of the employee eover

i is:

eover
i =

∫ t=pdur

t=0
ramp(ework

i (t) − emaxded
i )dt (6)

where ramp is the function defined by:

ramp(x) =







x if x > 0

0 if x ≤ 0
(7)

In Fig. 4 we illustrate the working function of the employee e5 in our example.
We have included the tasks that she performs at any time. The bold line is
the function ework

i (t) and the broken line indicates the maximum dedication
of the employee (1.2). When the working function passes above the maximum
dedication there is overwork. The total overwork of the project is the sum of
the overwork for all the employees, i.e.:

pover =
E∑

i=1

eover
i (8)
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Fig. 4. Working function of the employee e5 in our example.

3 Genetic Algorithms

In this article we use a GA to solve the PSP, and thus a discussion of this
kind of metaheuristic is appropriate in order to make this work self contained.
Genetic Algorithms (GAs) are stochastic search methods that have been suc-
cessfully applied in many search, optimization, and machine learning problems
in the past [1]. Unlike other optimization techniques, GAs maintain a popu-
lation of encoded tentative solutions that are competitively manipulated by
applying some variation operators to find a global optimum. To achieve this
goal the problem variables are encoded (binary or floating point, for example)
into what are called the chromosomes, which are merged and manipulated by
the genetic operators to improve their associated quality (called the fitness).
Thus, one individual is composed of one chromosome and its associated fit-
ness, and the set of individuals forms the population used by the algorithm.
Population-based algorithms contrast with trajectory-based ones (like simu-
lated annealing) in that they search from multiple points at the same time,
thus reducing the probability of getting stuck in local optima; in addition, they
can offer multiple optima to the same problem, an interesting feature that the
researchers can use to have an assorted set of solutions to the problems in
hand.

After creating an initial set of solutions (in a random way or by using a seeding
algorithm) it is usual that GAs apply a crossover operation to recombine the
contents of two parents in a new one. This will be modified later by the
mutation operation which alters some of the contents of the individual. Not
all the individuals participate in the reproduction, only the fittest ones (elitism
is very common) are selected from the population by a selection operator like
binary tournament (each parent is selected as the best of two randomly taken
individuals). The operators are applied in a stochastic way, thus each one
has an associated probability of application in the iterative loop (each step is
called a generation). Usually, the best individuals in the present and the newly
created generation are combined in order that the best ones can be retained
for use in the next step of the algorithm (elitist replacement).

The outline of a general GA is presented in Fig. 5. It begins by randomly
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creating a population P (t = 0) of µ solutions (individuals), each one encoding
the p problem variables, usually as a vector over B = {0, 1} (I = Bp·lx) or R
(I = Rp). An evaluation function Φ is used to associate a quality real value
to every solution. The stopping criterion ι of the reproductive loop is to fulfill
some condition such as reaching a number of generations or finding a solution.
The final solution is identified as the best solution found.

t:=0;
P (0):={~a1(0), . . . ,~aµ(0)} ∈ Iµ; // initialize
P (0): {Φ (~a1(0)) , . . . , Φ (~aµ(0))}; // evaluate
while not ι (P (t)) do // Reproductive loop

P ′(t):=sΘs
(P (t)); // select

P ′′(t):=⊗Θc
(P ′(t)); // recombine

P ′′′(t):=mΘm
(P ′′(t)); // mutate

P ′′′(t) : {Φ (~a′′′
1 (t)) , . . . , Φ (~a′′′

λ (t))}; // evaluate
P (t + 1):=rΘr

(P ′′′(t) ∪ Q); // replace
t:=t + 1;

endwhile;

Fig. 5. Pseudocode of a Genetic Algorithm.

Metaheuristics and, in particular, GAs are not as intensively applied in the
software engineering domain as they are in fields like engineering, mathemat-
ics, economics, telecommunications or bioinformatics [1,13]. However, the work
of Clarke et al. [5] is a good reference for solving software engineering prob-
lems with metaheuristics. They identify three areas where the metaheuristics
have been successfully applied: software testing, module clustering, and cost
estimation. In software testing the approach adopted in the literature is the
generation of test data with metaheuristics in order to detect faults in the
software execution [14,16] or to find out the worst case execution time of a
code fragment [27]. For module clustering, the metaheuristic algorithms are
used to get a partition of the system components into clusters with high co-
hesion among components in the same cluster and a loose coupling among
different clusters [8]. Finally, in the cost estimation problem the goal is to
estimate the effort needed to carry out a software project [3]. Clarke et al.
point out other software engineering domains where metaheuristics could be
applied: definition of requirements, system integration, maintenance, and re-
engineering using program transformation. In fact, some applications of GAs
exist concerning the software engineering experimentation [9], software inte-
gration [23], and software release planning [28].
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4 Representation and Fitness Function

In this section we discuss the representation of the solutions in the genetic
algorithm and the fitness function employed. As we said in Section 2 a solution
for the problem is a matrix X whose elements xij are non-negative. Here we
have to decide how to represent these elements. In this article we consider that
no employee works overtime, so the maximum dedication of all the employees
is 1. For this reason the maximum value for xij is 1 and we have xij ∈ [0, 1].
On the other hand, we use a GA with binary string chromosomes to represent
problem solutions and hence we need to discretize the interval [0, 1] in order to
represent the dedication degree xij. We distinguish eight values in this interval
that are equally distributed, and employ three bits to represent them. The
matrix X is stored in the chromosome ~x in row major order 1 . The chromosome
length is E · T · 3. Fig. 6 shows the representation used.

Chromosome
0 1 0 1 1 0 0 0 1 0 0 1 1 · · ·0 1 0
︸︷︷︸

-

000 0/7
001 1/7
010 2/7
011 3/7
100 4/7
101 5/7
110 6/7
111 7/7

Binary to
dedication degree






0.286 · · ·
...

. . .






X matrix

-

Fig. 6. Representation of a solution in the genetic algorithm.

To compute the fitness of a chromosome ~x we use the next expression:

f(~x) =







1/q if the solution is feasible

1/(q + p) otherwise
(9)

where

q = wcost · pcost + wdur · pdur (10)

and

p = wpenal + wundt · undt + wreqsk · reqsk + wover · pover (11)

1 We use ~x to refer to the chromosome (binary string) which represents the matrix
solution X.
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The fitness function has two terms: the quality of the solution (q) and the
penalty for unfeasible solutions (p). The two terms appear in the denomina-
tor because the goal is to minimize them, i.e., maximize f(~x). The quality
term is the weighted sum of the project cost and duration. In this term, wcost

and wdur are values weighting the relative importance of the two objectives.
These weights allow us to adapt the fitness according to our necessities as
project managers. For example, if the cost of the project is a main concern,
the corresponding weight must be high. However, we must have into account
the order of magnitude of the project cost and duration. This can be done
by setting all the weights to one in a first try and executing the GA several
times. Then, the cost weight is divided by the average project cost and the
duration weight is divided by the average project duration. In this way, the
weighted terms related to project cost and duration are in the same order of
magnitude. At this point the project manager can try different weight values
in order to adapt the solutions proposed by the GA to its necessities.

The penalization term p is the weighted sum of the parameters of the solu-
tion that make it unfeasible, that is: the overwork of the project (pover), the
number of tasks with no employee associated (undt), and the number of skills
still required in order to perform all the tasks of the project (reqsk). Each
of these parameters are weighted and added to the penalty constant wpenal.
This constant is included in order to separate the fitness range of the feasible
solutions from that of the unfeasible ones. The weights related to the penalties
must be increased until a great number of feasible solutions is obtained. The
values for the weights used in this work are shown in Table 1. They have been
obtained by exploring several solutions and with the aim of maintaining all
the terms of the sum within the same order of magnitude.

Table 1
Weights of the fitness function

Weight Value

wcost 10−6

wdur 0.1

wpenal 100

wundt 10

wreqsk 10

wover 0.1
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5 Instance Generator

In order to perform a meaningful study we must analyze several instances
of the scheduling problem instead of focusing on just one, which could bias
the conclusions. To do this we have developed an instance generator which
creates fictitious software projects after setting a set of parameters such as
the number of tasks, the number of employees, etc. An instance generator is
an easily parameterizable task which derives instances with growing difficulty
at will. Also, using a problem generator removes the opportunity to hand-
tune algorithms to a particular problem, therefore allowing greater fairness
when comparing algorithms. With a problem generator the algorithms can
be evaluated on a high number of random problem instances, since a different
instance can be solved each time the algorithm runs, then the predictive power
of the results for the problem class as a whole is increased. In this section we
describe in detail the instance generator.

The components of an instance are: employees, tasks, skills, and the task
precedence graph (TPG). Each of these components have several parameters
which must be determined by the instance generator. There are two kinds of
values to be generated: single numeric values and sets. For the numeric values
a probability distribution is given by the user and the values are generated by
sampling this distribution. In the case of sets, the user provides a probability
distribution for the cardinality (a numeric value) and then, the elements of
the set are randomly chosen from its superset.

All the probability distributions are specified in a configuration file. This file
is a plain text file containing attribute-value pairs. We can see a sample file
in Fig. 7. Each parameter of the instance has a key name in the configuration
file that we can see in Table 2. The value of a key name is the name of the
probability distribution sampled to generate the value of the parameter. The
probability distributions have parameters that are specified with additional
key-value pairs with the form: <key-name>.parameter.<param> = <value>

For example, the property employee.skill in the sample file of Fig. 7 indicates
that the number of skills of the employees are 6 or 7 from the 10 possible skills
(property skill.number).
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# Configuration File for the Instance Generator

task.number = UniformInt

task.number.parameter.minvalue = 30

task.number.parameter.maxvalue = 30

task.cost = Round

task.cost.parameter.distribution = Normal

task.cost.parameter.distribution.parameter.mu = 10

task.cost.parameter.distribution.parameter.sigma = 5

task.skill = UniformInt

task.skill.parameter.minvalue = 2

task.skill.parameter.maxvalue = 3

graph.e-v-rate = Normal

graph.e-v-rate.parameter.mu = 1.5

graph.e-v-rate.parameter.sigma = 0.5

employee.number = UniformInt

employee.number.parameter.minvalue = 15

employee.number.parameter.maxvalue = 15

employee.salary = Normal

employee.salary.parameter.mu = 10000

employee.salary.parameter.sigma = 1000

employee.skill = UniformInt

employee.skill.parameter.minvalue = 6

employee.skill.parameter.maxvalue = 7

skill.number = UniformInt

skill.number.parameter.minvalue = 10

skill.number.parameter.maxvalue = 10

Fig. 7. A sample configuration file for the instance generator.

Table 2
Key names of the configuration file and their associated parameter

Key name Parameter

task.number Number of tasks

task.cost Effort of the tasks

task.skill Number of the required skills of the tasks

employee.number Number of employees

employee.salary Salary of the employees

employee.skill Number of skills of the employee

graph.e-v-rate Ratio edges/vertices of the TPG

skill.number Cardinality of the skills set

The instance generator reads the configuration file and then generates the
skills, the tasks, the TPG, and the employees, in that order. For each task
it generates the effort value and the required skill set. For each employee it
generates the salary and the set of skills. The pseudocode of the instance
generator is shown in Fig. 8.
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S = sample (skill.number);
SK = {1,. . . ,S};
T = sample (task.number);
for i = 1 to T do

teffort
i = sample (task.cost);

tskills
i = ∅;

card = sample (task.skill);
for j = 1 to card do

s = random (SK/tskills
i );

tskills
i = tskills

i ∪ {s};
end;

end;
evrate = sample (graph.e-v-rate);
A = ∅;
for i = 1 to evrate ∗ T do

edge = random edge (ta, tb) with a < b and not in A;
A = A ∪ {edge};

end;
E = sample (employee.number);
for i = 1 to E do

esalary
i = sample (employee.salary);

eskills
i = ∅;

card = sample (employee.skill);
for j = 1 to card do

s = random (SK/eskills
i );

eskills
i = eskills

i ∪ {s};
end;

end;

Fig. 8. Pseudocode of the instance generator.

The numeric values of an instance are: the number of tasks, the effort of the
tasks, the number of employees, the salary of the employees, and the num-
ber of skills. The sets of an instance are: the required skills of the tasks,
the skills of the employees, and the set of edges of the TPG graph. For the
set of edges we do not specify a distribution for the cardinality directly, but
for the ratio edges/vertices, that is, the generated numeric value is multi-
plied by the number of tasks to get the number of edges of the TPG. The
maximum degree of dedication of the employees is not part of the instance
itself, but a part of the optimization problem. This parameter can be dif-
ferent for each employee and is established in the solver configuration file.
For this reason the values for this parameter are not generated. A deeper
description of the generator, and the program itself can be found at URL
http://tracer.lcc.uma.es/problems/psp.
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In this article, we use the instance generator to study instances with different
parameterizations, that is, different number of tasks, employees, and skills. The
difficulty of the instances depends on these parameters. For example, we expect
the instances with a larger number of tasks to be more difficult than those with
a smaller set of tasks, as in real world projects. This is common sense since
it is difficult to do more work with the same number of employees (without
working overtime). Following this reasoning, when we increase the number of
employees while maintaining the number of tasks we expect easier instances to
emerge from the generator. However, these rules of thumb are hard to find in
complex projects like ours, because there are interdependencies of some other
parameters which have an influence on the difficulty of an instance. One of
these parameters is the TPG: with the same number of tasks one project can
be tackled by few employees in the same time as another project with different
TPG.

On the other hand, if we compare instances with the same number of tasks we
expect that, as the number of employees decreases, the project spans a longer
time. However, with an increment in the number of employees we identify two
opposing trends influencing the cost: with more people working operational
costs rise, but at the same time the project duration is reduced and the ex-
penditure is reduced. Hence, we cannot conclude anything about the project
cost directly from the number of employees.

With respect to the number of skills of the project we expect that instances
which have a higher number of demanded skills to be more difficult to solve.
With more skills we have more specialized employees and we expect to need
more employees to cover the required skills involved in a task. Hence, the em-
ployees work on more tasks and probably some of them exceed their maximum
dedication degree thus making the solution unfeasible. All these features make
it very important for the project manager to have an automatic computer tool
for taking decisions.

6 Experimental Study and Results

For the experimental study we generated a total of 48 different instances with
the instance generator and solved them with a genetic algorithm. We have
separated the instances into five benchmarks. In the first three groups we
change one only parameter of the problem. With these studies we want to
study how sensitive results obtained are to the variation of these parameters.
In the last two groups we change several parameters at the same time. In this
way we study whether or not the results change in the way suggested by the
studies of the first three groups.
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To solve the instances we use a genetic algorithm with a population of 64
individuals, binary tournament selection, 2-D single point crossover, bit-flip
mutation, and elitist replacement of the worst (steady-sate genetic algorithm).
The stop criterion is to reach 5000 steps of the main loop (5064 evaluations).
We performed 100 independent runs for each instance. In Table 3 we summa-
rize the GA parameters.

Table 3
Parameters of the GA

GA parameters

Population 64

Selection 2-tournament (2 inds.)

Recomb. 2-D SPX

Mutation Bit-Flip (1/length)

Replacement Elitist

Stop 5000 steps

The 2-D single point crossover [26] is an unusual recombination operator ap-
plied to tables. It randomly selects a row and a column (the same in the two
parents) and then it swaps the elements in the upper left quadrant and in the
lower right quadrant in both individuals (Fig. 9).

Fig. 9. 2-D Single Point Crossover.

In the following subsections we present the studies performed and the results
for all the identified benchmarks.

6.1 First benchmark: variation of the number of employees

The first step is to study the influence which the number of employees has on
the solutions. We use four different instances of the problem with the same
software project, i.e., they have the same tasks and the same TPG. The only
difference in the instances is the number of employees. The maximum ded-
ication and the salary of the employees is also the same. In addition, the
constraint related to the skills is not taken into account. That is, all the em-
ployees have the necessary skills to perform any given task. This situation has
been modelled by introducing only one skill and providing all the employees
with that skill. All the instances are based on the same software project with
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ten tasks, thus, the total work to be done is always the same. For this reason
we expect the project duration of the solutions proposed by the genetic al-
gorithm to decrease when the number of employees increases. More precisely,
the project duration and the number of employees must have an inverse rela-
tionship and their product must be constant. In Table 4 we show the results
obtained with four different numbers of employees: 5, 10, 15, and 20. For each
case we present the hit rate (percentage of runs getting a feasible solution),
the average duration of the feasible solutions proposed, and the product of the
number of employees and the average project duration in months.

Table 4
Results obtained when the number of employees changes

Employees Hit rate Avg. Duration Avg. E × pdur

5 87 21.88 109.40

10 65 11.27 112.70

15 49 7.73 115.95

20 51 5.88 117.60

We observe in the results that the hit rate decreases when the number of
employees increases, that is, the problem becomes more difficult when we
increase the number of employees. It could seem that with more employees it
would be easier to find a solution for the problem. However, in this situation
the third constraint (requiring no overwork) is more difficult to satisfy. At the
same time the search space is larger and this does not help the search process.
As we predicted before, the project duration decreases when the number of
employees is increased. In fact, the product of the number of employees and
the average duration is very similar for the different instances (forth column).
However, it increases slightly with the number of employees for the same reason
that the hit rate is reduced: the instances are more difficult for the GA. The
cost of the software project is exactly the same in all the solutions because all
the employees have the same salary, that is, the cost of a one person-month is
fixed throughout all the instances.

6.2 Second benchmark: variation of the number of tasks

Now we study the influence of the number of tasks on the solutions. We solve
three instances where we maintain the employees and we change the software
projects. In particular, the three software projects have a different number of
tasks: 10, 20, and 30. As in the previous benchmark, all the employees have
the same salary and maximum dedication. For this reason all the solutions
for the same project have the same cost. Since we use the same probability
distribution in order to generate the cost of the project tasks in the three
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projects we expect an increase in the project cost with an increase in the
number of tasks. In addition, we do not consider the second constraint, so we
expect a proportional relationship between the duration and the cost of the
projects. Furthermore, if all the employees are working all the time for the
project the ratio between the cost and the duration must be exactly the sum
of the salary of the employees. In the instances there are five employees with a
monthly salary of $10, 000, so the cost-duration ratio must be near $50, 000. In
Table 5 we present the results of the three instances. For each case we present
the hit rate, the project cost in dollars, the average duration in months of the
feasible solutions proposed, and the average cost per month of the projects in
dollars per month.

Table 5
Results obtained when the TPG changes

Tasks Hit rate Cost Avg. Duration Avg. pcost/pdur

10 73 980000 21.84 44944.33

20 33 2600000 58.29 44748.35

30 0 - - -

From the results we observe that the problem becomes harder when the num-
ber of tasks increases. In fact, the genetic algorithm is not able to obtain
any feasible solution for the software project with 30 tasks. The reason for
this behavior is the same as in the previous benchmark: when the number of
tasks is increased it is more difficult for the GA to get a solution satisfying
the overwork constraint. We also observe that the cost of the projects (third
column) and the project durations (fourth column) increase with the number
of tasks. The cost per month of the project (fifth column) is near $50, 000 in
the two cases as we predicted. This parameter cannot be greater than $50, 000
because this implies a violation of the overwork constraint. When the value
of this parameter is near the optimal one ($50, 000 in our case) this means an
efficient allocation of employees to tasks. We conclude from the results that
the allocation gained for the ten tasks instance is more efficient than that
obtained for the 20 tasks one. We can explain this result with the increase in
the search space when shifting from ten to twenty tasks.

6.3 Third benchmark: variation of the employee expertise

In this section we study how the skills per employee, i.e. the expertise of the
employees, influences the results. We solve five instances with the same soft-
ware project and the same number of employees. The employees all have the
same monthly salary and the same maximum dedication. The only difference
among the instances concerns the employee skills. We analyze five different
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values for the number of skills of the employees: 2, 4, 6, 8, and 10. The em-
ployee skills are randomly selected from the set of ten skills of the project. All
the tasks require five different skills. In Table 6 we present the hit rate, the
average duration of the projects, and the average cost per month.

Table 6
Results obtained when the number of skills per employee changes

Skills Hit rate Avg. Duration Avg. pcost/pdur

2 39 21.71 45230.15

4 53 21.77 45068.64

6 77 21.98 44651.28

8 66 22.00 44617.02

10 75 22.11 44426.90

We observe that the problem is harder to solve with a lower number of skills
per employee, that is, if the expertise of the employees is low it is more difficult
to allocate them to the tasks without violating the skills constraint (the second
one).

We can notice that the average project duration obtained in the different
instances remains almost constant with a slight increase for higher values
of the employee expertise. This means that the GA is able to allocate the
employees to the tasks in a more efficient way when the level of employee
expertise is lower. The reason is that the feasible region of the search space
is enlarged when the employees have more skills, and therefore the average
quality of the solutions included in the feasible region decreases.

6.4 Fourth benchmark: expertise specialization fixed

In this benchmark we include 18 different problem instances generated with
the instance generator. In these instances the software projects are different
and we change simultaneously all the previously studied parameters. In par-
ticular, we assign different values to the number of employees, the number of
tasks, and the number of employee skills. The number of skills of the instances
is always 10. The number of employees can be 5, 10, or 15 and the number
of tasks 10, 20, or 30. Two ranges of values are considered separately for the
number of skills of the employees: from 4 to 5, or from 6 to 7. As in the pre-
vious benchmarks the maximum dedication for all the employees is 1.0 (full
working day). We show in Table 7 the hit rate for all the instances (from 100
independent runs).

From these results we can conclude that the instances with a larger number of
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Table 7
Hit rate for the fourth benchmark

4-5 skills 6-7 skills

Employees Employees

Tasks 5 10 15 5 10 15

10 94 97 97 84 100 97

20 0 6 43 0 76 0

30 0 0 0 0 0 0

tasks are more difficult to solve than those with a smaller set of tasks, as we
concluded in Subsection 6.2. In the second row of results we observe an inverse
relationship between the number of employees and the difficulty of the prob-
lem. This contrasts with the results of the first benchmark (Subsection 6.1).
What is happening? The main difference between the two cases resides in the
skills. In the first benchmark we did not consider the constraint of the skills
and this time we do. When the number of employees increases it is more diffi-
cult to satisfy the overwork constraint but it is easier to satisfy the constraint
of the skills because the staff is highly skilled. These two trends conflict with
each other, but in this case the second one seems to be predominant.

In order to better illustrate the meaning of these results we plot the solutions
obtained in a graph showing their cost versus their duration (Figs. 10 and 11).
Cost and duration are clear tradeoff criteria in any project. This is the kind
of graph that a manager would like to see before taking any decision on the
project. We have put a label of the form <tasks>-<employees> near the
solutions of the same instance.

In the figures, the solutions of each instance are observed as point swarms.
Their elongated form depends on the scale of the axis (chosen to maintain the
solutions of all the instances in the same graph), however we can appreciate a
slight inclination of the swarms showing the mentioned tradeoff between cost
and duration: when the cost of a solution is smaller, its duration is longer.

As we expected, when the number of employees decreases for a given number
of tasks, the project spans a longer time. This observation is maintained de-
spite each point swarm is representing a different instance with different TPG.
In the figures we can notice that a larger number of employees does not neces-
sarily mean a more expensive project in all the cases. However, we cannot get
any fundamental conclusion about this because the instances belong to very
different software projects.
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Fig. 10. Results with 4-5 skills per employee. Labels show the number of tasks and
employees of the instance.

6.5 Fifth benchmark: employees expertise fixed

In this final benchmark composed of 18 instances we study the influence of the
number of different skills on a project. This will shed some light on existing
large companies where an assorted set of persons of varied experience are to
be optimally assigned to software projects. In this case we fix the range of the
number of skills per task and employee from 2 to 3. The number of tasks can
be 10, 20, or 30 and the number of employees takes values 5, 10, and 15 as
in the previous benchmark. The number of different skills is either 5 or 10. In
Table 8 we show the results.

Table 8
Hit rate for the fifth benchmark

5 skills 10 skills

Employees Employees

Tasks 5 10 15 5 10 15

10 98 99 100 61 85 85

20 6 9 12 8 1 6

30 0 0 0 0 0 0
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Fig. 11. Results with 6-7 skills per employee. Labels show the number of tasks and
employees of the instance.

As in the previous subsection we can see that an increment in the number of
tasks means an increment in the difficulty of the problem. The participation of
more employees usually implies a decrement in the difficulty of the instance (it
is easier to manage the project). However, we can now conclude one additional
fact: we confirm, as expected, that a larger number of demanded skills makes
the instance more difficult (in general) to solve.

From Figs. 12 and 13 we conclude that the cost of the project increases with
the number of tasks, and the duration of the project decreases with the in-
crement in the number of employees. This was also observed in the previous
benchmarks. However, with more employees, the overall cost of the project is
reduced in all the cases, a fact that was not observed before (only similar to
10-15 and 20-15 in Fig. 10). Previously we argued that different instances use
different projects and for this reason we cannot obtain any definitive conclu-
sion. Here, we are in the same situation but analyzing the particular solutions
of the instances we observe that with a larger number of employees all of them
work on all the tasks at a low degree of dedication. In this way, the tasks are
performed more quickly and the global cost of the project is low.
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Fig. 12. Results with 5 skills. Labels show the number of tasks and employees of
the instance.

6.6 Further Understanding of the Dynamics of our Algorithm

In order to end our presentation of results we plot the average best fitness
evolution of some instances in the 100 runs. Our goal is to offer a trace of
the search performed by the GA. In Fig. 14 on the left we can see the evolu-
tion of the instances with 10 tasks and 5 skills: the final average best fitness
increases with the number of employees. With a larger number of employ-
ees the algorithm can compute a more efficient scheduling that reduces the
duration and/or the cost of the project, which increases the fitness value of
the solutions. This trend can also be observed in Fig. 14 on the right for the
10-tasks/10-skills instances.

In Fig. 15 we plot the evolution of the instances with 10 tasks, 10 skills, and 4-
5 and 6-7 skills per employee. In this case the relationship between the fitness
and the number of employees is not so clear. However, we can notice that
for the instances with 10 and 15 employees the number of skills per employee
significantly affects the best attained fitness: with 6-7 skills per employee the
best fitness is higher than with 4-5: i.e., a varied and larger set of skills can be
profited from if an automatic tool such as ours is used in project management.
This is in accordance with the idea that more qualified people do the work
better. However, this trend was not observed with 5 employees, meaning that
even efficient people need a work group of help in real world projects.
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Fig. 13. Results with 10 skills. Labels show the number of tasks and employees of
the instance.
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Fig. 14. Average best fitness evolution of the instances with 10-tasks/5-skills (left)
and 10-tasks/10-skills (right). The label empi identifies the instance with i employ-
ees.

The two final plots (Fig. 16) show the evolution in the instances with 5 skills
and 20 and 30 tasks. Note in the right plot that the instances have a quasi-
logarithmic evolution with a very low fitness. The algorithm fails to find a
feasible solution for these instances and all the individuals are then penalized,
thus maintaining their fitness values below 0.01.
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Fig. 15. Average best fitness evolution of the instances with 10-tasks/4-5-skills per
employee (left) and 10-tasks/6-7-skills per employee (right). The label empi identi-
fies the instance with i employees.
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Fig. 16. Average best fitness evolution of the instances with 20-tasks/5-skills (left)
and 30-tasks/5-skills (right). The label empi identifies the instance with i employees.

7 Conclusions

In this work we have tackled the general Project Scheduling Problem with
genetic algorithms. This problem is essential for the software engineering in-
dustry nowadays and automatically finding “good” solutions to it can save
software companies lots of time and money. A software manager can study
different scenarios with such an automatic tool to take decisions on the best
project for her/his company. Furthermore, in our approach, s/he can adjust the
fitness weights to better represent particular real world projects. The Project
Scheduling is a combinatorial optimization problem and an exhaustive search
can take too much time to get a solution. Here, as in some other work [4],
the utility of metaheuristic techniques for the problem is clearly stated. Our
contribution to the software engineering management is an automated tool
based on genetic algorithms that can be used to assign people to the project
tasks in a nearly optimal way trying different configurations concerning the
relative importance of the cost and duration of the project. Although the
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project model is very simple it can serve as a first step in the application of
evolutionary algorithms to the in silico experiments in software engineering.

We have used a genetic algorithm, and have performed an in depth analy-
sis with an instance generator. We solved 48 different project scenarios and
performed 100 independent runs for each test to get statistically meaningful
solutions. The results show that the instances with more tasks are more dif-
ficult to solve and their solutions are more expensive. In the same way, the
projects with a larger number of employees are easier to tackle and can be
driven to a successful end in a shorter time. However, the relationship be-
tween employees and cost is not that simple: in some cases it is direct and in
other cases it is inverse.

In the future we plan to add new instances with additional aspects to study the
influence of the instance parameters on the difficulty, such as the complexity of
dealing with a large team or the overhead of assigning a large set of tasks to an
employee. Also, we will solve the problem with other metaheuristic algorithms.
In particular, we can directly apply multiobjective metaheuristic algorithms
to optimize the two objectives tackled in the work (duration and cost of the
projects). In addition, we plan to apply our algorithms to real world data in
order to illustrate how to use the techniques in a real software project. Finally,
we will extend the model to face real world problems from industry, once we
know which are the best techniques to apply (the goal of this first study).

A Average Best Fitness Evolution Plots

In this appendix we include the evolution of the average best fitness in the
instances of the last two benchmarks. We decided to include this appendix to
offer an in depth view of our results that could be interesting for only some
readers. We group related instances in the same graph in order to compare
the traces. When doing so, the question is how to group the instances. To
clarify the presentation we decided to group the instances according to three
different criteria.

The first criterion consists of maintaining in the same graph all the instances
which have the same number of project skills, skills per employee, and the same
number of tasks. As we have four possible configurations of project skills and
three different tasks we get 12 graphs in this way, that are shown in Fig. A.1. In
this figure we find all the graphs shown in Section 6. Let us observe the smooth
curves of the third row, all of them belonging to the 30 tasks instances where
the GA does not obtain any feasible solution. This contrasts with the “noisy”
curves of the central row (20 tasks instances) for which the GA does indeed
enter into the feasible region of solutions (always after 2000 steps approx.).
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The main conclusion that we draw from these graphs is that the final best
fitness value increases in general with the number of employees.

The second grouping is made by plotting together in the same graph the in-
stances which have the same number of employees and the same configuration
of skills (Fig. A.2). Again we have 12 graphs with three traces per graph
(number of tasks). The first observation is that only the curves of the 10-tasks
instances always get over the feasible solution fitness value (0.01). The point
at which the curve starts rising depends on the number of employees. With a
larger number of employees the rising is delayed, perhaps due to the larger size
of the chromosome. In some graphs (like the one of the 5-employees/10-skills
instance) we see a modest rising of the 20 tasks curves.

Finally, the third criterion is to group the instances which have the same
number of tasks and employees, thus obtaining the nine graphs of Fig. A.3.
In the first column (10 tasks instances) we can see that the final best fitness
of the 5-skills instances is above the 10-skills instances one. This was already
discussed in Section 6 when we observed that projects involving 10 skills were
more difficult to solve than those requiring 5 skills. On the other hand, the
point at which the curves start a deep ascent is delayed with the increment
in the number of employees (this was also observed in Fig. A.2). The second
column helps us to conclude that a larger number of employees makes the
search easier.
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Fig. A.1. Tasks and skills fixed (horizontal: 5, 10, 10/4-5, 10/6-7 skills, vertical: 10, 20, 30 tasks).
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Fig. A.2. Employees and skills fixed (horizontal: 5, 10, 10/4-5, 10/6-7 skills, vertical: 5, 10, 15 employees).
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Fig. A.3. Employees and tasks fixed (horizontal: 10, 20, 30 tasks, vertical: 5, 10, 15 employees).
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