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Abstract

The Frequency Assignment Problem (FAP) is an important problem that arises in the
design of radio networks, when a channel has to be assigned to each transceiver of the
network. This problem is a generalization of the graph coloring problem. In this paper
we study a general version of the FAP that can include adjacent frequency constraints.
Using concepts from landscapes’ theory, we prove that this general FAP can be expressed
as a sum of two elementary landscapes. Further analysis also shows that some subclasses
of the problem correspond to a single elementary landscape. This allows us to com-
pute the kind of neighborhood information that is normally associated with elementary
landscapes. We also provide a closed form formula for computing the autocorrelation
coefficient for the general FAP, which can be useful as an a priori indicator of the per-
formance of a local search method.

Keywords: Fitness Landscapes, Elementary Landscapes, Frequency Assignment

1. Introduction

We define a landscape for a combinatorial optimization problem as a triple (X, N, f),
where f : X → R defines the objective function and the neighborhood operator function
N(x) generates the set of points reachable from x ∈ X in a single application of the
neighborhood operator. If y ∈ N(x) then we say that y is a neighbor of x. The landscape
that is so induced can be used as a search space for optimization using local search.
Without loss of generality, we can define f so as either to be minimized or maximized
over X . In this work we assume that f is minimized.

Elementary landscapes are a special form of landscape which have a number of par-
ticular properties. One of these properties is that they fulfill the so-called Grover’s wave
equation:

avg{f(y)}
y∈N(x)

= f(x) +
λ

d

(

f̄ − f(x)
)
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where d = |N(x)| is the size of the neighborhood, which we assume the same for all the
solutions in the search space (regular neighborhood), f̄ is the average solution evaluation
over the entire search space, and λ is a problem characteristic constant. The wave
equation also makes it possible to compute the average value of the fitness function f
evaluated over all of the neighbors of x with a single function evaluation; we denote this
average using avg{f(y)}y∈N(x):

avg{f(y)}
y∈N(x)

=
1

d

∑

y∈N(x)

f(y)

Other properties also follow. Assuming f(x) 6= f̄ and 0 < λ/d < 1 then one can show by
simple algebra,

f(x) < avg{f(y)}
y∈N(x)

< f̄ or f(x) > avg{f(y)}
y∈N(x)

> f̄.

This means that all maxima are greater than f̄ and all minima are smaller than f̄ [1].
Grover [2] first showed that certain problems (the Traveling Salesman Problem, Graph

Coloring, Min-Cut Graph Partitioning, Weight Partition, as well as Not-all-equal-SAT)
have common and natural local search neighborhoods that can be modeled using the
wave equation. Stadler [3] named this class of problems “elementary landscapes” and
has explored various properties of elementary landscapes.

Whitley and Sutton [4] used a component model to explain why certain classes of
elementary landscapes obey the wave equation. This involves decomposing the objective
function f into a linear combination of cost components. The cost components sometimes
take the form of a cost matrix; for example, the distance matrix that is used to calculate
the distance between cities in the Traveling Salesman Problem is such that each distance
is one component of the cost function. For an n city problem, the evaluation of one tour
is a linear combination of n distances. In Graph Coloring, the components can also be
defined to be the weights of a lower triangular cost matrix M , where mi,j = 0 when i ≤ j.
In Graph Coloring the cost is usually 1 for each conflicted edge; however, we show in
this paper that the Graph Coloring problem is still elementary when an arbitrary weight
matrix is used to assign costs to conflicted edges.

If the landscape is not elementary, the objective function can be written as a sum of
elementary functions [5]. This decomposition into elementary functions is well-known for
some problems. This is the case for all the pseudo-boolean functions and MAX-k-SAT in
particular [6]. The reader interested on landscapes’ theory can find in [7] a nice survey
by Reidys and Stadler.

The three main contributions of this paper are the following ones. First, we prove
that the cost function of a generalized form of the Frequency Assignment Problem (FAP)
can be written as the sum of at most two different elementary landscapes. We analyze
the theoretical implications of this fact. Second, we show that special cases of the gen-
eralized FAP can be expressed as a single elementary landscape. And third, we provide
a closed form formula for computing the autocorrelation coefficient of any instance of
the generalized FAP in polynomial time. This coefficient has interesting applications in
practice since it is an a priori indicator of the performance of a local search method
based on the underlying neighborhood. We use the elementary landscape decomposition
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to derive the formula. This work extends the results presented in [8], where the authors
proved that some particular versions of the FAP used here can be decomposed as a sum
of two elementary landscapes.

The organization of the paper is as follows. In the next section we present the required
background on landscapes’ theory. Section 3 describes the FAP in detail. In Section 4
we prove that the cost function of a FAP is the sum of two elementary landscapes in the
general case, and Section 5 derives the conditions under which the cost function is an
elementary landscape. Section 6 presents a closed formula for computing the autocorre-
lation coefficient for any instance of the problem in polynomial time. We also provide
the least upper bound and the greatest lower bound of the autocorrelation coefficient.
Finally, Section 7 concludes the paper and outlines future work.

2. Background on Landscapes’ Theory

In this section we present some fundamental results on landscapes’ theory. Most of
the results presented here can be found in previous work [7]. However, we highlight some
observations that can be easily derived from well-known facts but are not present in the
previous literature as far as we know.

Let X be a finite set of solutions, f : X → R be a real-valued function defined on
X and N : X → P(X) the neighborhood operator. We can represent the neighborhood
operator by its adjacency matrix

Axy =

{

1 if y ∈ N(x)
0 otherwise

The degree matrix D is defined as the diagonal matrix

Dxy =

{

|N(x)| if x = y
0 otherwise

Any discrete function over the set of candidate solutions, e.g. f , can be characterized
as a vector in R

|X|. Any |X | × |X | matrix can be interpreted as a linear map that acts
on vectors in R

|X|. The Laplacian matrix of a neighborhood operator is defined as

∆ = A − D

The Laplacian matrix acts on function f as follows

∆ f =













∑

y∈N(x1)
(f(y) − f(x1))

∑

y∈N(x2)
(f(y) − f(x2))

...
∑

y∈N(x|X|)

(

f(y) − f(x|X|)
)













The component x of this matrix-vector product can thus be written as:

(∆ f)(x) =
∑

y∈N(x)

(f(y) − f(x)) (1)
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In this paper, we will restrict our attention to regular neighborhoods, where |N(x)| =
d > 0 for a constant d, for all x ∈ X . When a neighborhood is regular, ∆ = A − dI.
Stadler defines the class of elementary landscapes where the function f is an eigenvector
(or eigenfunction) of the Laplacian up to an additive constant [3]. Formally, we have the
following

Definition 1 (Elementary function and landscape). Let (X, N, f) be a landscape and
∆ the Laplacian matrix of the neighborhood operator N . The function f is said to be
elementary if there exists a constant b, which we call offset, and an eigenvalue λ of −∆
such that (−∆)(f − b) = λ(f − b). The landscape itself is elementary if f is elementary.

In the following we use −∆ instead of ∆, as usual in the literature, to work with non-
negative eigenvalues. According to the previous definition, every elementary function, f ,
can be written as the sum of an eigenfunction of −∆, g, and a constant b, i.e., f = g + b.
Taking into account basic results of linear algebra, it is not difficult to prove that if f is
elementary with eigenvalue λ, af + b is also elementary with the same eigenvalue λ. The
next properties are a consequence of the particular characteristics of −∆.

Proposition 1. Given the function f : X → R and the Laplacian ∆ defined on the
neighborhood operator N the following properties hold:

1. If f is a constant function, i.e., f(x) = b ∀x ∈ X for a constant b, then (−∆) f = 0
and f is eigenfunction of −∆ with eigenvalue λ = 0.

2. If f is elementary for the neighborhood N with eigenvalue λ, then there exists a
constant b such that

avg{f(y)}
y∈N(x)

= f(x) +
λ

d
(b − f(x)) (2)

where d is the size of the neighborhood.

Proof. For the first property we can use Equation (1) and write:

(−∆ f)(x) =
∑

y∈N(x)

(f(x) − f(y)) =
∑

y∈N(x)

(b − b) = 0

This happens for each x ∈ X , so −∆ f = 0 and it is an eigenfunction of −∆ with
eigenvalue 0.

For the second property we use again Equation (1) to write:

(∆ f)(x) =
∑

y∈N(x)

(f(y) − f(x)) =
∑

y∈N(x)

f(y) − d f(x)

Dividing by d the previous equation we get:

1

d
(∆ f)(x) = avg{f(y)}

y∈N(x)

−f(x) (3)

Since f is elementary with eigenvalue λ, there exists a constant b such that −∆(f −
b) = λ(f − b). Then, we can write with the help of (3):

1

d
(∆(f − b))(x) =

1

d
(∆ f)(x) = avg{f(y)}

y∈N(x)

−f(x) = −
λ

d
(f(x) − b)
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where we used the first property to remove b from the first member. We can rewrite the
two last members as

avg{f(y)}
y∈N(x)

= f(x) +
λ

d
(b − f(x))

Equation (2) is quite similar to the Grover’s wave equation. The only difference is
the constant, which in Grover’s equation is b = f̄ , where f̄ is the average of the function
f over the entire solution set X , that is, f̄ =

(
∑

x∈X f(x)
)

/|X |. In the following we will
prove that Grover’s equation is valid if the neighborhood is symmetric. We say that a
neighborhood N is symmetric if for all x, y ∈ X it holds that y ∈ N(x) implies x ∈ N(y),
that is, if y is neighbor of x then x is neighbor of y. As far as we know, Equation (2)
has not previously been reported in the literature. Its relevance comes from the fact that
it is valid in all the regular neighborhoods (not only in the symmetric ones). For the
symmetric neighborhoods the following lemma holds.

Lemma 1. Let N be a symmetric neighborhood over the solution set X and ∆ its Lapla-
cian matrix. If f is an eigenvector of −∆ with λ 6= 0 then f̄ = 0.

Proof. Two eigenvectors of a symmetric matrix with different eigenvalues are orthogonal.
In Proposition 1 we proved that any constant function is an eigenvector of −∆ with
eigenvalue λ = 0. Thus, if f is an eigenvector of −∆ with eigenvalue λ 6= 0 then f
is orthogonal to any constant function. In particular, it is orthogonal to the function
(1, 1, . . . , 1) and we can write:

f =
1

|X |

∑

x∈X

f(x) =
1

|X |
(1, 1, . . . , 1)f = 0

In the previous lemma the reader should notice the requirement λ 6= 0. In Proposi-
tion 1 we proved that constant functions are eigenvectors of −∆ with λ = 0. Now we
can ask the opposite: are all the eigenvectors of −∆ with λ = 0 constant functions? The
general answer is no. However, there exists a kind of neighborhoods in which the answer
to the previous question is yes. We say that a neighborhood N is connected if for each
pair of solutions x, y ∈ X we can find a finite sequence of solutions x = x1, x2, . . . , xq = y
such that xi+1 ∈ N(xi) for i = 1, 2, . . . , q − 1. If the neighborhood N is connected then
the multiplicity of the eigenvalue λ = 0 is one [5], and this means that only constant
functions are eigenvectors of −∆. With all the previous results we are ready to enunciate
the following

Theorem 1 (Grover’s wave equation). Let (X, N, f) be a landscape where the neighbor-
hood, N , is regular and symmetric. Then, f is elementary if and only if there exists a
constant λ such that the following expression holds

avg{f(y)}
y∈N(x)

= f(x) +
λ

d

(

f̄ − f(x)
)

∀x ∈ X (4)

and λ is the eigenvalue of f .
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Proof. First we consider that the neighborhood is regular and symmetric, and that the
function f is elementary. As we previously proved, this implies that there exists a
constant b such that Equation (2) holds. We only need to prove that this constant
b is exactly f̄ . In the proof of Proposition 1 we saw that b is a constant for which
(−∆)(f − b) = λ(f − b). This means that g = f − b is an eigenvector of −∆ with
eigenvalue λ. If λ = 0, Equation (4) trivially holds. If λ 6= 0 we know by Lemma 1 that
ḡ = 0. Then, we can write: f̄ = ḡ + b = b, and Equation (4) holds.

Now, let us consider that Equation (4) is true. Then, we can multiply (4) by d and
write

∑

y∈N(x) f(y) = d f(x) + λ
(

f̄ − f(x)
)

, which we can write in vectorial form as:

−∆f = λ(f − f̄)

Since −∆f̄ = 0 we can write:

−∆(f − f̄) = λ(f − f̄)

so f is elementary with eigenvalue λ.

From Grover’s wave equation we conclude that in an elementary landscape there
exists a linear relationship between the average of the function in the neighborhood of
a solution and the value of the function in that solution. We now ask if the linear
relationship is something exclusive for elementary landscapes or not. The following
proposition positively answers this question.

Proposition 2. Let (X, N, f) be a landscape where the neighborhood, N , is regular and
symmetric. Then, f is elementary if and only if there exist two constants α and β such
that:

avg{f(y)}
y∈N(x)

= αf(x) + β ∀x ∈ X (5)

and the constants α and β are related to the offset b and the eigenvalue λ of f by the
following expressions:

α = 1 −
λ

d
, β =

λb

d
(6)

Proof. If the landscape is elementary then Equations (5) and (6) follow from Theorem 1.
Let us prove the reciprocal implication. We assume that (5) holds. Then, we can multiply
both members by d to write:

∑

y∈N(x)

f(y) = d αf(x) + d β = d f(x) + d (α − 1)f(x) + d β

If we subtract d f(x) we have:
∑

y∈N(x)

f(y) − d f(x) = d (α − 1)f(x) + d β

At this point we must consider two cases. First, let us consider the case in which α = 1,
then we can write the previous equation in vectorial form as:

∆f = d β











1
1
...
1
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Multiplying by the row vector (1, 1, . . . , 1) in both members we get:

(1, 1, . . . , 1)∆f = d β(1, 1, . . . , 1)











1
1
...
1











= d β |X |

However, due to the symmetry of the neighborhood it is possible to write:

d β |X | = ((1, 1, . . . , 1)∆f)
T

= fT ∆











1
1
...
1











= 0

which implies β = 0 since d and |X | are greater than zero. Then, −∆f = 0 and f is an
elementary landscape with λ = 0. This does not necessarily mean that f is a constant,
since the neighborhood is not necessarily connected. If the neighborhood is connected,
f must be a constant function.

Now, let us consider the case in which α 6= 1. Then, we can write in vectorial form:

∆f = d (α − 1)f + d β











1
1
...
1











Taking into account the results of Proposition 1 and the definition of elementary
landscape we can write:

−∆











f +
β

α − 1











1
1
...
1





















= −∆f = −d (α − 1)











f +
β

α − 1











1
1
...
1





















and f is elementary with eigenvalue λ = −d (α − 1) and offset b = −β/(α − 1).

The previous result provides a useful characterization of elementary landscapes that
allows us to simplify the proof that a given landscape is elementary (or not). Although
the result can be easily derived, to the best of our knowledge it has not been reported
in the previous literature and it has not been used to check if a landscape is elementary.
When f is not an elementary landscape Equation (5) does not hold, but we can find a
generalization of the equation that does hold if f is the sum of n elementary landscapes.
This general expression is presented in the following

Theorem 2. Let (X, N, f) be a landscape in which the neighborhood, N , is regular and
symmetric. Then, f is the sum of n non-constant elementary landscapes fi if and only
if there exist some constants αi for i = 0, 1, . . . , n such that

avg{f(y)}
y∈N(x)

= α0 + α1f(x) +

n
∑

i=2

αifi(x) ∀x ∈ X (7)
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Proof. We can prove this by induction on n. In the base case, n = 1, Proposition 2 holds
and the statement is true. For the inductive step let us assume that the statement is
true for n − 1 and let us prove the result for n.

The function f is the sum of n elementary landscapes fi, that is:

f =

n
∑

i=1

fi

If we subtract fn in the previous equality, then f − fn is the sum of n− 1 elementary
landscapes. We can apply the inductive hypothesis to compute the average value in the
neighborhood of an arbitrary solution x. That is, a set of constants αi exists such that:

avg{f(y)− fn(y)}
y∈N(x)

= α0 + α1(f(x) − fn(x)) +

n−1
∑

i=2

αifi(x) (8)

Since fn is an elementary landscape, according to Proposition 2 we can write

avg{fn(y)}
y∈N(x)

= β0 + β1fn(x)

and the previous expression can be written as:

avg{f(y)}
y∈N(x)

= α0 + α1(f(x) − fn(x)) +

n−1
∑

i=2

αifi(x) + avg{fn(y)}
y∈N(x)

= α0 + α1(f(x) − fn(x)) +

n−1
∑

i=2

αifi(x) + β0 + β1fn(x)

= (α0 + β0) + α1f(x) +

n−1
∑

i=2

αifi(x) + (β1 − α1)fn(x)

and Equation (7) holds for n.
Let us prove now the reciprocal implication. Let us assume that Equation (7) holds

for a given f , where all fi are elementary landscapes under an appropriate neighborhood
graph. Since fn is a non-constant elementary landscape we can apply Proposition 2 and
write avg{fn(y)}y∈N(x) = β0+β1fn(x) with β1 6= 0. Then, Equation (7) can be rewritten
as:

avg{f(y)}
y∈N(x)

= α0 + α1f(x) +

n−1
∑

i=2

αifi(x) +
αn

β1

(

avg{fn(y)}
y∈N(x)

−β0

)

= α0 + α1f(x) +

n−1
∑

i=2

αifi(x) + avg{αn(fn(y) − β0)/β1}
y∈N(x)

In order to simplify the expressions let us define the function g = αn(fn − β0)/β1.
We can rewrite the previous expression in the following way:
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avg{f(y)− g(y)}
y∈N(x)

= avg{f(y)}
y∈N(x)

− avg{g(y)}
y∈N(x)

= α0 + α1f(x) +

n−1
∑

i=2

αifi(x)

Using the inductive hypothesis f − g is the sum of n − 1 elementary landscapes and
this implies that f is the sum of n elementary landscapes since g is also an elementary
landscape with the same eigenvalue as fn.

The previous result allows us to compute the average value of the objective function
in the neighborhood of a given solution x from the value of the objective function f and
n − 1 elementary components fi in x. This average value could be useful in practice
for guiding a search method, but to access this information it requires that we know
the elementary components of the objective function. We will highlight later that this
decomposition is also useful in theory (for computing the autocorrelation coefficient).
The next question is this: is it possible to write any objective function as the sum of
elementary landscapes? The answer is affirmative when the neighborhood is symmetric,
as the following theorem proves.

Theorem 3 (Elementary landscape decomposition). Let (X, N, f) be a landscape where
the neighborhood, N , is symmetric. Then, there exist n elementary landscapes with
1 ≤ n ≤ |X | such that f can be written as the sum of all of these n elementary landscapes.

Proof. From linear algebra we know that if a square real matrix −∆ of size |X | is sym-
metric then there exists an orthogonal basis of the vectorial space R

|X| that is composed
of eigenvectors of −∆. Then, we can write every vector of R

|X| as the weighted sum of
the vectors in the orthogonal basis. If we translate these concepts into the landscapes
language this means that for any symmetric neighborhood N it is possible to find an
orthogonal basis composed of elementary functions. Then, any function f can be written
as the sum of a set of elementary landscapes.

3. Frequency Assignment Problem (FAP)

The frequency assignment problem is the last step in the layout of a radio network,
like a 2G (second generation) cellular mobile network. Prior to tackling this problem,
the network designer has to address some other issues: where to install the base stations
or how to set configuration parameters of the antennae (tilt, azimuth, etc.), among
others [9]. Once the sites for the base stations are selected and the sector layout is
decided, the number of transceivers (TRXs) to be installed per sector has to be fixed.
This number depends on the traffic demand that the corresponding sector is expected to
support. Frequency assignment lies on the assignment of a channel (a frequency band)
to every TRX [10]. The optimization problem arises because the usable radio spectrum
is generally very scarce and, consequently, channels have to be reused by many TRXs in
the network.

However, the multiple use of the same channel may cause interferences that might
reduce the quality of service down to unsatisfactory levels. Indeed, significant interference
may occur if the same or adjacent-channels are used in neighboring overlapping cells.
Computing this level of interference is a difficult task that depends not only on the
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channels, but also on the radio signals and the properties of the environment. Several
ways of quantifying this interference exist, ranging from theoretical methods to extensive
measurements [11]. They all result in the so-called interference matrix, denoted by M .
Each element mij of M indicates the degradation of the network quality if TRXs i and
j operate on the same channel. This is called co-channel interference. In addition to co-
channel interference it may exist a so-called adjacent-channel interference, which occurs
when two TRXs operate on adjacent channels (i.e., one TRX operates on channel p and
the other on channel p + 1 or p − 1). Co-channel and adjacent-channel interferences are
the most important ones in the design of a radio network. But we could also be interested
in considering interferences due to overlapping of channels with a larger separation. This
is in accordance with real-world applications, since the amount of interference between
two channels depends on the separation of the channels [12].

Thus in our generalized form of the frequency assignment problem, we consider both
co-channel interference and adjacent channel interference as well as interferences due to
frequencies with a larger separation. We can then generate specialized versions of FAP.
For example, by setting the adjacent channel interference to zero, the basic form of the
FAP is created in which only co-channel interference is considered.

We can assign a cost to each possible interference that can occur in a channel as-
signment. Then, the objective in FAP is to minimize the cost due to interferences in a
radio network. An additional generalization of this problem also considers the possibility
of additional costs due to the mere fact that a given channel is used by a given TRX,
e.g., a fee could be charged to a telecommunication company for using a channel in a
given location. In general, the set of channels that can be assigned to each TRX might
be different. We assume that the valid channels of each TRX are sorted and we use an
integer number to represent their position in the sorted set. We also assume, without
loss of generality, that the number of valid channels is the same in all the TRXs and we
denote this number with r. We denote with n the number of TRXs in the radio network.

In order to take into account all the previous considerations and keep a compact
formulation of the problem we define an array of weights w ∈ R

n×n×r×r in which we
denote each element with wp,q

i,j where i, j ∈ {1, . . . , n} and p, q ∈ {1, . . . , r}. We can
interpret the element wp,q

i,j as the cost of having channel p in TRX i and channel q in
TRX j. Before giving the expression for the cost function, let us define the solution space
X . One solution for this problem is a map from the TRXs set, denoted with V , to the
set of possible channels F = {1, 2, . . . , r}. Thus, the solution space is X = FV . Using
the array of weights we can define the cost function as:

f(x) =
n
∑

i,j=1

w
x(i),x(j)
i,j (9)

The cost element wq,p
j,i has the same meaning as wp,q

i,j , so we can set one of them to
zero. However, for the sake of clarity and without loss of generality, we will take the
convention that wp,q

i,j = wq,p
j,i for all i, j, p, q. Then, the cost element wp,q

i,j with i 6= j must
be interpreted as half the cost of having channel p in TRX i and channel q in TRX j. If
i = j the element wp,p

i,i is the additional cost of having channel p in TRX i.
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4. Landscape Decomposition of the generalized FAP

Once we have defined the solution space X and the cost function f , we need to specify
the neighborhood N for the problem. We say that two solutions x, y ∈ X are neighbors if
there exists a transceiver v ∈ V such that x(v) 6= y(v) and for the remaining transceivers
w we have x(w) = y(w). This neighborhood is symmetric, connected, and regular with
size d = n(r − 1).

Once we have completely defined the landscape, let us rewrite the cost function (9)
in a more convenient way, as a linear combination of data-independent functions:

f(x) =

n
∑

i,j=1

r
∑

p,q=1

wp,q
i,j ϕp,q

i,j (x) (10)

where ϕp,q
i,j is an indicator function defined as:

ϕp,q
i,j (x) =

{

1 if x(i) = p ∧ x(j) = q
0 otherwise

(11)

Now we can focus on the indicator functions ϕp,q
i,j . In the following we prove that

these functions are not always elementary in the considered neighborhood, but each one
is the sum of at most two elementary landscapes. Furthermore, the eigenvalues of the
two elementary landscapes are independent of the values of i, j, p and q. In order to
prove this statement we need to introduce an auxiliary function (or family of functions)
φp,q

i,j,α defined as:

φp,q
i,j,α(x) =







α if x(i) = p ∧ x(j) = q
−1 if x(i) = p ⊕ x(j) = q

0 otherwise
(12)

where ⊕ denotes the exclusive-or logic operator. That is, φp,q
i,j,α(x) is α if the transceivers

i and j operate on their target channels p and q, respectively, −1 if only one (not both) of
the transceivers operates on its target channel, and 0 if none of the transceivers operates
on their target channels. In the following, for the sake of simplicity we will remove the
parameters i, j, p, and q from the name of the function when there is no confusion. For
this function the following result holds:

Lemma 2. For the neighborhood N defined above and given i, j, p and q with i 6= j, the
function φp,q

i,j,α is an elementary landscape with eigenvalue λ = 2r for α = r− 2 and with
λ = r for α = −2.

Proof. For the proof we use the characterization of elementary functions given in Propo-
sition 2. We distinguish three different cases which are symbolically represented in Fig-
ure 1. In the figure, each node represents the set of solutions for which one of the three
branches in (12) is true. We label the nodes with the value that φp,q

i,j,α takes for all the
solutions in that node. There exists an arc (u, v) if all the solutions in node u have
at least one neighboring solution in node v. The label of arc (u, v) is the number of
neighbors in v that any solution in u has.

Given a solution x, the average in the neighborhood of x can be easily computed
taking into account the condition that x fulfills:

11



α −1 0

(n − 2)(r − 1)

2(r − 1)

1

(n − 1)r − n

r − 1

n(r − 1) − 2

2

Figure 1: Transition graph for functions φα.

• Case φα(x) = α. In this case the transceivers i and j operate on their target
channels. If we focus on the neighboring solutions we find that there are 2(r − 1)
neighbors with φα(y) = −1 and no neighbor with φα(y) = 0. Then, the average
value of φα(y) in the neighborhood is

avg{φα(y)}
y∈N(x)

=
(d − 2(r − 1))α − 2(r − 1)

d
= α −

2(r − 1)(α + 1)

d

• Case φα(x) = −1. In this case one of the transceivers, either i or j, operates on its
target channel. There is one neighbor with φα(y) = α and (r − 1) neighbors with
φα(y) = 0. Then, the average value of φα(y) in the neighborhood is

avg{φα(y)}
y∈N(x)

=
(d − r)(−1) + α

d
= −1 +

r + α

d

• Case φα(x) = 0. In this case none of the transceivers operates on their target
channels. There are two neighbors with φα(y) = −1. Then, the average value of
φα(y) in the neighborhood is

avg{φα(y)}
y∈N(x)

=
−2

d

Once we have computed the average value of φα(y) in the neighborhood for the three
cases, we need to solve the following linear equation system in order to check whether or
not it can be solvable and Proposition 2 can be applied:





α 1
−1 1

0 1





(

a
b

)

=





α − 2(r−1)(α+1)
d

−1 + r+α
d

− 2
d





The previous system has three equations and two variables, so it could be unsolvable.
However, the system can be solved for two values of α, namely: α = r − 2 and α = −2
with solution a = 1 − r+α+2

d
and b = −2/d. This means that we can write:

avg{φα(y)}
y∈N(x)

= φα(x)

(

1 −
r + α + 2

d

)

−
2

d

12



According to Proposition 2, from the previous expression we conclude that the φα(x)
functions are elementary landscapes with eigenvalue λ = r + α + 2 and average value
(offset) φ̄α = −2/(r+α+2). For α = r−2 we have eigenvalue λ = 2r and φ̄r−2 = −1/r,
while for α = −2 we have eigenvalue λ = r and φ̄−2 = −2/r.

Using the auxiliary functions, the indicator function ϕp,q
i,j can be written as:

ϕp,q
i,j =

1

r

(

φp,q
i,j,r−2 − φp,q

i,j,−2

)

(13)

independently of the values of the parameters i, j, p and q. With this expression and
the result of Lemma 2 we can state that if i 6= j then ϕp,q

i,j is the sum of two elementary
landscapes whose eigenvalues are independent of the parameters. If i = j we cannot
apply Lemma 2 but we have the following result.

Lemma 3. For the neighborhood N defined above, the function ϕp,p
i,i is an elementary

landscape with eigenvalue λ = r and ϕp,q
i,i = 0 for p 6= q.

Proof. The function ϕp,q
i,i can be written using the Kronecker’s Delta as ϕp,q

i,i (x) =
δp

x(i)δ
q

x(i). According to the properties of δ, ϕp,q
i,i = 0 if p 6= q. If p = q then we

have ϕp,p
i,i (x) = δp

x(i). For this case we distinguish two cases:

• Case ϕp,p
i,i (x) = 1. In this case the transceiver i operates on channel p. There

are r − 1 neighbors with value 0 and the remaining ones have value 1. Then, the
average value of ϕp,p

i,i (y) in the neighborhood is

avg{ϕp,p
i,i (y)}

y∈N(x)

=
d − (r − 1)

d
= 1 −

r

d
+

1

d

• Case ϕp,p
i,i (x) = 0. In this case the transceiver i does not operate on channel p.

There is one neighbor with value 1 and the remaining ones have value 0. Then, the
average value of ϕp,p

i,i (y) in the neighborhood is

avg{ϕp,p
i,i (y)}

y∈N(x)

=
1

d

Once we have computed the average value of ϕp,p
i,i (y) in the neighborhood for the two

cases, we need to solve the linear equation system:
(

1 1
0 1

)(

a
b

)

=

(

1 − r
d

+ 1
d

1
d

)

The previous system has two equations and two variables, and the solution is a = 1− r
d

and b = 1/d. This means that we can write:

avg{ϕp,p
i,i (y)}

y∈N(x)

= ϕp,p
i,i (x)

(

1 −
r

d

)

+
1

d

From the previous expression we conclude that all the ϕp,p
i,i (x) functions are elementary

landscapes with eigenvalue λ = r and average value ϕ̄p,p
i,i = 1/r.

13



As a consequence of the two previous lemmas, we can state the first main contribution
of this paper, which is the following

Theorem 4. For the neighborhood N defined above for the generalized FAP, the function
f is the sum of two elementary landscapes with eigenvalues λ1 = 2r and λ2 = r.

Proof. According to (10) we can write:

f =

n
∑

i,j=1

r
∑

p,q=1

wp,q
i,j ϕp,q

i,j =

=
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j

(

φp,q
i,j,r−2 − φp,q

i,j,−2

)

+

n
∑

i=1

r
∑

p=1

wp,p
i,i ϕp,p

i,i

=
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,r−2 −
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,−2

+

n
∑

i=1

r
∑

p=1

wp,p
i,i ϕp,p

i,i

Now we combine the terms of the previous expression in the following way and we
define two new functions:

f2r =
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,r−2 (14)

fr = −
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,−2 +
n
∑

i=1

r
∑

p=1

wp,p
i,i ϕp,p

i,i (15)

The function f2r is elementary with λ = 2r since it is the weighted sum of elementary
landscapes with λ = 2r. For the same reason, fr is elementary with λ = r. Then,
f = f2r + fr is the sum of two elementary landscapes with eigenvalues λ1 = 2r and
λ2 = r.

Since f is not an elementary landscape, Proposition 2 does not hold for f , that
is, we cannot compute the average function value in the neighborhood of one solution
avg{f(y)}y∈N(x) using the function value of the solution f(x). Instead, according to
Theorem 2 we also need the value of one of the elementary components for the solution
as the following proposition holds.

Proposition 3. For the neighborhood N defined above and the cost function f of the
generalized FAP the following expressions both hold:

avg{f(y)}
y∈N(x)

=

(

1 −
2r

d

)

f(x) +
r

d
fr(x) +

r

d
(2f̄ − f̄r) (16)

avg{f(y)}
y∈N(x)

=
(

1 −
r

d

)

f(x) −
r

d
f2r(x) +

r

d
(f̄ + f̄2r) (17)
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Proof. Since f = f2r + fr we can write:

avg{f(y)}
y∈N(x)

= avg{f2r(y)}
y∈N(x)

+ avg{fr(y)}
y∈N(x)

= f2r(x) +
2r

d

(

f̄2r − f2r(x)
)

+ fr(x) +
r

d

(

f̄r − fr(x)
)

= f(x) −
2r f2r(x) + r fr(x)

d
+

2r f̄2r + r f̄r

d
(18)

Now we can advance in two directions. If we want to obtain (16) we replace f2r by
f − fr in (18) and we write:

avg{f(y)}
y∈N(x)

= f(x) −
2r f2r(x) + r fr(x)

d
+

2r f̄2r + r f̄r

d

= f(x) −
2r f(x) − r fr(x)

d
+

2r f̄ − r f̄r

d

=

(

1 −
2r

d

)

f(x) +
r

d
fr(x) +

r

d
(2f̄ − f̄r)

If we want to obtain (17) we replace fr by f − f2r in (18) and we write:

avg{f(y)}
y∈N(x)

= f(x) −
2r f2r(x) + r fr(x)

d
+

2r f̄2r + r f̄r

d

= f(x) −
r f(x) + r f2r(x)

d
+

r f̄ + r f̄2r

d

=
(

1 −
r

d

)

f(x) −
r

d
f2r(x) +

r

d
(f̄ + f̄2r)

5. Elementary Landscapes in the FAP

In this section we study under which circumstances a specific instance of the gen-
eralized FAP corresponds to a single elementary landscape. We want to derive some
conditions that can be later checked on actual problem data to determine whether a
given instance of the problem is elementary or not. As a consequence, we could then
define problem subclasses for the generalized FAP that are also elementary.

As we saw in the previous section, the function f we are considering is, in the general
case, the sum of two elementary functions, f2r and fr, defined according to Equations
(14) and (15), respectively. The data of the problem is the array of weights wp,q

i,j , which
can be considered a four-rank tensor. Our purpose now is to investigate what are the
conditions that this array of weights must fulfill for the function f to be an elementary
landscape. Since we know the decomposition of f into elementary components we just
have to study under which conditions f2r and fr are constant functions. In effect, if f2r

is a constant function, then, f = f2r + fr will be an elementary landscape with λ = r. In
the same way, if fr is a constant, then f will be an elementary landscape with λ = 2r.
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Thus, our first goal is to investigate what are the conditions that the weights wp,q
i,j must

fulfill in order for the elementary components of f to be a constant. This is the objective
of Lemmas 4 and 5. Later, in Theorem 5 we summarize the results.

To simplify the notation in the following results, let us define the following matrix
based on the weight array w:

ui,a =

n
∑

j = 1
j 6= i

r
∑

q=1

wa,q
i,j +

r

2
wa,a

i,i =

n
∑

j = 1
j 6= i

r
∑

q=1

wq,a
j,i +

r

2
wa,a

i,i (19)

Let us start with fr. The following lemma presents the conditions under which fr is
a constant function.

Lemma 4. Given the neighborhood N defined for the FAP, the elementary function fr

defined in Equation (15) and the symmetry requirement of the array of weights wp,q
i,j =

wq,p
j,i , then fr is a constant function if and only if the weights satisfy the following condi-

tion: for all i ∈ V there exists a constant ci such that

∀a ∈ F ui,a = ci (20)

Proof. According to Equation (12) we can write φp,q
i,j,−2(x) = −(δp

x(i)+δq

x(j)), where i 6= j.

If i = j then we have ϕp,p
i,i (x) = δp

x(i). Then, we can write fr as:

fr(x) = −
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,−2(x) +

n
∑

i=1

r
∑

p=1

wp,p
i,i ϕp,p

i,i (x)

=
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j (δp

x(i) + δq

x(j)) +

n
∑

i=1

r
∑

p=1

wp,p
i,i δp

x(i)

=
1

r

n
∑

i, j = 1
i 6= j

(

r
∑

p,q=1

wp,q
i,j δp

x(i) +
r
∑

p,q=1

wp,q
i,j δq

x(j)

)

+
n
∑

i=1

w
x(i),x(i)
i,i

=
1

r

n
∑

i, j = 1
i 6= j

(

r
∑

q=1

w
x(i),q
i,j +

r
∑

p=1

w
p,x(j)
i,j

)

+
n
∑

i=1

w
x(i),x(i)
i,i

If we rename the mute variable q by p and use the property of the weights array
wp,q

i,j = wq,p
j,i we can rewrite fr(x) as

fr(x) =
1

r

n
∑

i, j = 1
i 6= j

(

r
∑

p=1

w
x(i),p
i,j +

r
∑

p=1

w
x(j),p
j,i

)

+

n
∑

i=1

w
x(i),x(i)
i,i

=
1

r

n
∑

i, j = 1
i 6= j

r
∑

p=1

w
x(i),p
i,j +

1

r

n
∑

i, j = 1
i 6= j

r
∑

p=1

w
x(j),p
j,i +

n
∑

i=1

w
x(i),x(i)
i,i
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We should notice that the first and second terms in the last expression are the same
(the only difference are mute variables i and j). Then, we can write:

fr(x) =
2

r

n
∑

i=1











n
∑

j = 1
j 6= i

r
∑

p=1

w
x(i),p
i,j +

r

2
w

x(i),x(i)
i,i











=
2

r

n
∑

i=1

ui,x(i)

In order for the previous function to be a constant it is necessary that for all i there
exists a constant ci such that ui,x(i) = ci for all the possible values of x(i). To prove this,
let us suppose that this is not true, that is, there exists a transceiver i and two solutions
x and y such that ui,x(i) 6= ui,y(i). Let us also assume that solutions x and y only differ
in the channel of TRX i. Then, the following expression is true: ui,x(k) = ui,y(k) for all
k 6= i. Thus,

∑n

i=1 ui,x(i) 6=
∑n

i=1 ui,y(i), and the function fr(x) 6= fr(y). Since all the
possible values of x(i) are the elements of F , the condition for fr to be a constant is
that for each i there exists a constant ci such that ui,a = ci for all a ∈ F . And this is
Equation (20).

This condition is also sufficient, since if for all i there exists a constant ci such that
ui,a = ci for all a ∈ F , then

fr(x) =
2

r

n
∑

i=1

ui,x(i) =
2

r

n
∑

i=1

ci

The value fr(x) is then independent of x and fr is a constant function.

Let us now characterize when f2r is constant. In this case, we have the following
result.

Lemma 5. Given the neighborhood N defined for the FAP, the elementary function f2r

defined in Equation (14) and the symmetry requirement of the array of weights wp,q
i,j =

wq,p
j,i , then f2r is a constant function if and only if for each pair of transceivers i, j ∈ V

there exist two vectors ̟(i,j) and π(i,j) such that it is possible to write:

wp,q
i,j = ̟(i,j),p + π(i,j),q (21)

Proof. According to Equation (12) we can write φp,q
i,j,r−2(x) = rδp

x(i)δ
q

x(j) − δp

x(i) − δq

x(j),
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using the Kronecker’s delta. Then, we can write f2r as:

f2r(x) =
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,r−2

=
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j (rδp

x(i)δ
q

x(j) − δp

x(i) − δq

x(j))

=
1

r

n
∑

i, j = 1
i 6= j

(

r
∑

p,q=1

r wp,q
i,j δp

x(i)δ
q

x(j) −

r
∑

p,q=1

wp,q
i,j δp

x(i) −

r
∑

p,q=1

wp,q
i,j δq

x(j)

)

=
1

r

n
∑

i, j = 1
i 6= j

(

r w
x(i),x(j)
i,j −

r
∑

q=1

w
x(i),q
i,j −

r
∑

p=1

w
p,x(j)
i,j

)

=
1

r

n
∑

i, j = 1
i 6= j

(

r w
x(i),x(j)
i,j − 2

r
∑

q=1

w
x(i),q
i,j

)

=

n
∑

i, j = 1
i 6= j

w
x(i),x(j)
i,j −

2

r

n
∑

i=1

(

ui,x(i) −
r

2
w

x(i),x(i)
i,i

)

If f2r is constant, then given two solutions x and y that differ only in the channel of
an arbitrary l ∈ V , it must hold that f2r(x) = f2r(y). The contrary is also true, that is,
if for all l ∈ V and for all the solutions x and y that only differs in the channel of TRX
l it happens that f2r(x) = f2r(y) then f2r is a constant function. To prove this let us
suppose that we have two arbitrary solutions x and y. Then, we can define a series of
solutions x = s1, s2, . . . , sn+1 = y in which two consecutive solutions only differ in the
channel of one transceiver, that is, si and si+1 differ in the channel of transceiver i and
si(i) = x(i) and si+1(i) = y(i). Since f2r(si) = f2r(si+1), then f2r(x) = f2r(y).

Then, we focus now on all the pairs of solutions x and y that differ in the channel of
an arbitrary transceiver l. For f2r to be a constant function the value of f2r(x) − f2r(y)
must be zero. To simplify the notation let us call a = x(l) and b = y(l). Then, we can
write:
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f2r(x) − f2r(y) =
n
∑

i, j = 1
i 6= j

(

w
x(i),x(j)
i,j − w

y(i),y(j)
i,j

)

−
2

r

n
∑

i=1

(

ui,x(i) − ui,y(i) −
r

2
w

x(i),x(i)
i,i +

r

2
w

y(i),y(i)
i,i

)

=

n
∑

j = 1
j 6= l

(

w
a,x(j)
l,j − w

b,x(j)
l,j

)

+

n
∑

i = 1
i 6= l

(

w
x(i),a
i,l − w

x(i),b
i,l

)

−
2

r

(

ul,a − ul,b −
r

2
wa,a

l,l +
r

2
wb,b

l,l

)

= 2

n
∑

j = 1
j 6= l

(

w
a,x(j)
l,j − w

b,x(j)
l,j

)

−
2

r

(

ul,a − ul,b −
r

2
wa,a

l,l +
r

2
wb,b

l,l

)

Taking into account that f2r(x) − f2r(y) must be 0 we can write:

2

n
∑

j = 1
j 6= l

(

w
a,x(j)
l,j − w

b,x(j)
l,j

)

=
2

r

( r

2
wb,b

l,l −
r

2
wa,a

l,l + ul,a − ul,b

)

(22)

The previous expression must be true for all the solutions x. In particular, it must
be true for all the values that x(j) can take. This implies that for all j ∈ V there must

exist a constant ca,b
l,j such that for all q ∈ F the following must hold: wa,q

l,j −wb,q
l,j = ca,b

l,j . If
we focus on matrix wl,j , the previous expression means that rows a and b of that matrix
must differ in a constant. Since the expression must be valid for all l, j, a and b, all the
rows in each matrix wl,j must differ in a constant (which depends on the values of l, j
and the rows, in general). It is not difficult to see that if the rows of matrix wl,j differ
in a constant then there exist two vectors, which we denote with ̟(l,j) and π(l,j), such
that wp,q

l,j = ̟(l,j),p + π(l,j),q . This way we have proven that condition (21) is necessary.
Now, let us prove that condition (21) is also sufficient. Let us insert the definition

of wl,j based on the vectors ̟(l,j) and π(l,j) in (22). First, we must observe that the

constant ca,b
l,j = wa,q

l,j − wb,q
l,j can be written as:

ca,b
l,j = ̟(l,j),a + π(l,j),q − ̟(l,j),b − π(l,j),q = ̟(l,j),a − ̟(l,j),b
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Then, (22) can be written as:

2

n
∑

j = 1
j 6= l

(

̟(l,j),a − ̟(l,j),b

)

=
2

r

n
∑

j = 1
j 6= l

r
∑

q=1

(

wa,q
l,j − wb,q

l,j

)

=
2

r

n
∑

j = 1
j 6= l

r
∑

q=1

(

̟(l,j),a − ̟(l,j),b

)

Since both terms are equal, condition (22) is true and f2r is constant.

Using Lemmas 4 and 5 we can summarize the results in the following

Theorem 5. Given the neighborhood N defined for the generalized FAP and the function
f defined in Equation (10), according to the decomposition of f in elementary compo-
nents, four scenarios are possible depending on the array of weights w:

• f is a constant function, that is, an elementary landscape with λ = 0, if conditions
(20) and (21) hold.

• f is a non-constant elementary landscape defined in (14) with λ = 2r if condition
(20) holds but condition (21) does not hold.

• f is a non-constant elementary landscape defined in (15) with λ = r if condition
(21) holds but condition (20) does not hold.

• f is a sum of two non-constant elementary landscapes f2r and fr defined in (14)
and (15), respectively, if conditions (21) and (20) do not hold.

Proof. From lemmas 4 and 5 the three first cases are direct. To complete the proof we
need to discard the possibility that in the fourth case f is constant. Let us suppose that
f is constant in this case. Then, f2r = f − fr should be at the same time an elementary
landscape with λ = r and λ = 2r, but this is not possible since r > 0. Then, f cannot
be constant in the fourth case.

In the following we will study some subclasses of the problem that are elementary
with λ = 2r. Condition (20) is the most general one for this case, but we can obtain
a simpler condition that implies the previous one. The simpler condition is that for all
i, j ∈ V with i 6= j there exists a constant ci,j such that it holds:

∀a ∈ F

r
∑

q=1

wa,q
i,j = ci,j (23)

and wa,a
i,i = 0 for all i ∈ V and all a ∈ F . In other words, for each matrix wi,j the rows

must sum the same value. Since wi,j = (wj,i)
T , the columns must also sum the same

value.
All the instances of the general FAP that fulfill condition (23) are elementary with

constant λ = 2r. We highlight three important subproblems that satisfy (23):
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• Symmetric Adjacent FAP: In this case, two transceivers have a contribution to
the cost function if their channels are the same (direct cost) or adjacent (adjacent
cost). Frequencies 1 and r are considered adjacent. The direct cost and the adjacent
cost does not depend on the channels but they can depend on the transceivers. For
each pair of transceivers i, j ∈ V the matrix wi,j is of the form:

wi,j =















d a 0 · · · 0 a
a d a · · · 0 0
0 a d · · · 0 0
...

...
...

. . .
...

...
a 0 0 · · · a d















• Basic FAP (weighted graph coloring): In this case, only direct costs are
considered, that is, two transceivers have a contribution to the cost function if
their channels are the same. The direct cost can be different for each pair of
transceivers. For each pair of transceivers i, j ∈ V the matrix wi,j is of the form:

wi,j =











d 0 · · · 0
0 d · · · 0
...

...
. . .

...
0 0 · · · d











This subproblem is a kind of graph coloring in which each edge has a weight that
can be different from 1.

• Graph coloring: This is a particular case of the previous situation in which the
direct cost is 1 or 0. Thus, the matrix wi,j is the identity or the zero matrix
(depending on the pair of edges).

To finish this section let us summarize the classification of subproblems of FAP accord-
ing to the landscape decomposition. The two main subproblems with practical interest
are the so-called Basic Frequency Assignment Problem (BFAP) and the Asymmetric Ad-
jacent Frequency Assignment Problem (AAFAP). The BFAP is defined to be exactly the
same as the Weighted Graph Coloring problem. Conflicts may occur when two different
transceivers are assigned the same channel. This subproblem is an elementary landscape
with constant λ = 2r as we have just seen. The AAFAP on the other hand, can be
decomposed as the sum of two elementary landscapes but, in the general case, it is not
an elementary landscape. A third subproblem of FAP with no practical application but
with a theoretical interest is the Symmetric Adjacent Frequency Assignment Problem
(SAFAP) which, as we have just shown, is an elementary landscape. Finally, all the
subproblems of FAP in which conflicts between channels with a separation larger than 1
are considered can be decomposed as a sum of two elementary landscapes, and they are
not always elementary.

6. Autocorrelation Coefficient of FAP

We are going now to use the elementary landscape decomposition found in the pre-
vious section to derive a closed form formula for the autocorrelation coefficient of the
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FAP. The autocorrelation coefficient ξ of a problem is a parameter proposed by Angel
and Zissimopoulos [13] that gives a measure of its ruggedness, which is related to the
performance that local search methods have on the problem. In [14] the same authors
provide a set of experimental results using a Simulated Annealing algorithm that sug-
gests that the higher the value of ξ the better the performance of the algorithm. One
possible explanation for this observed behaviour is given by the autocorrelation length
conjecture, which claims that in many landscapes the number of local optima is directly
related to its ruggedness [15].

The definition of ξ is based on the autocorrelation function proposed by Wein-
berger [16]. Let us consider a random walk {x0, x1, . . .} on the solution space such
that xi+1 ∈ N(xi). The autocorrelation function r is defined as:

r(s) =
〈f(xt)f(xt+s)〉x0,t − 〈f(xt)〉

2
x0,t

〈f(xt)2〉x0,t − 〈f(xt)〉
2
x0,t

(24)

where the averages, denoted with 〈·〉 in this case, are computed over all the starting
solutions x0 and all the solutions in the sequence. The autocorrelation coefficient is then
defined as ξ = 1

1−r(1) .

Stadler [3] proved that if f =
∑

i aiφi is a Fourier expansion of f in a landscape, then
the autocorrelation function of f is given by

r(s) =
∑

i6=0

a2
i

∑

j 6=0 a2
j

(

1 −
λi

d

)s

(25)

where λi is the eigenvalue associated to the elementary function φi. In particular, for an
elementary landscape r(s) = (1 − λ/d)s, and the autocorrelation coefficient is ξ = d/λ.
In general, if the landscape is not elementary we have the following result

r(1) =

∑

i6=0 a2
i

(

1 − λi

d

)

∑

j 6=0 a2
j

=

∑

i6=0 a2
i −

∑

i6=0 a2
i

λi

d
∑

j 6=0 a2
j

= 1 −

∑

i6=0 a2
i

λi

d
∑

j 6=0 a2
j

and the autocorrelation coefficient can be computed as

ξ =
d
∑

j 6=0 a2
j

∑

i6=0 a2
i λi

(26)

The sum of the squared Fourier coefficients a2
j associated to the same eigenvalue λi is

|X |(f2
i − fi

2
), where fi is the sum of all the elementary components aiφi with the same

eigenvalue λi and the overline represents the average over the entire search space X .
In particular, for the general FAP we get the following expression for the autocorre-

lation coefficient

ξ =

(

Br

r

d
+ B2r

2r

d

)−1

(27)
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where the values Br and B2r are defined as

Br =
rn(f2

r − fr

2
)

rn(f2 − f
2
)

=
f2

r − fr

2

f2 − f
2 (28)

B2r =
rn(f2

2r − f2r

2
)

rn(f2 − f
2
)

=
f2
2r − f2r

2

f2 − f
2 (29)

and are called the amplitude of the eigenvalues r and 2r, respectively. Br and B2r are
defined only in the case in which the objective function f is not a constant function (the
denominator of Bλ is the variance of f in the search space). On the other hand, the
expression Br + B2r = 1 holds (see [7] for more details).

The previous expressions allows to compute the exact autocorrelation coefficient of
FAP using the landscape decomposition of the objective function. This is a theoretical
application of the landscape decomposition shown in Section 4. In order to complete the
computation we need a closed formula for

∑

x∈X f2
r and

∑

x∈X f2. In vectorial form,
the previous expressions are the squared norm of vectors fr and f . Let us start with f .
According to (10) we can write:

∑

x∈X

f2 =
∑

x∈X

n
∑

i,j,i′,j′=1

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′ ϕp,q
i,j (x)ϕp′,q′

i′,j′ (x)

=

n
∑

i,j,i′,j′=1

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′

(

∑

x∈X

δp

x(i)δ
q

x(j)δ
p′

x(i′)δ
q′

x(j′)

)

=
n
∑

i,j,i′,j′=1

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′ t({(i, p), (j, q), (i′, p′), (j′, q′)}) (30)

where we commuted the order of the sums, used the fact that ϕp,q
i,j (x) = δp

x(i)δ
q

x(j), and

introduced a new function t that is defined as

t : P(V × F ) → N (31)

S 7→ t(S) =
∑

x∈X

∏

(i,p)∈S

δp

x(i) (32)

In (30) the function t is applied to S = {(i, p), (j, q), (i′, p′), (j′, q′)}. However, it
should be noticed that the number of elements of S is not always four, since some of
their members (pairs) could coincide for some combinations of the mute variables i, j, i′,
etc. Although we have now an expression for

∑

x∈X f2, this expression is not practical,
since it includes a factor, t, that requires a summation over all the elements of X . In the
following we are going to simplify the expression of t to make the computation feasible.
We can observe that t is, in fact, a counting function. It is counting the number of
elements in X that fulfill a given condition. Let us rewrite the definition of t as:

t(S) =
∑

x∈X

∏

(i,p)∈S

δp

x(i) =
∑

x∈X

True





∧

(i,p)∈S

x(i) = p



 (33)
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where True is a function that maps a Boolean value to {0, 1}. It is 1 if the Boolean
expression is true and 0 if it is false. The function t counts the number of solutions
(elements in X) that fulfills the condition

∧

(i,p)∈S x(i) = p. With some simple arguments
we can find an alternative definition for t that is much easier to compute.

First, we must observe that if we find two tuples (i, p) and (j, q) in S such that i = j
and p 6= q, then the value of t(S) must be zero because it is not possible to satisfy at the
same time x(i) = p and x(j) = q. We can characterize this situation using the condition
|first(S)| 6= |S|, where first : V × F → V is the function that maps a pair to its first
element. That is, if the number of pairs in S is not equal to the number of first elements
of these pairs, then there exist in S at least two pairs of the form (i, p) and (i, q) with
p 6= q and t(S) = 0.

Second, if the previous situation does not hold, that is |first(S)| = |S|, then the pairs
in S set the value for |S| components of the solution vector. The number of solutions in
X with the fixed components is t(S) = rn−|S|. Now, we are able to redefine t as:

t(S) =

{

rn−|S| if |first(S)| = |S|
0 if |first(S)| 6= |S|

(34)

The new definition does not require any summation over X and it is computation-
ally efficient (O(|S|)). This also makes the computation of

∑

x∈X f2 efficient with a
corresponding complexity of at most O(n4r4).

Let us continue now with the computation of
∑

x∈X f2
r . Using (15) we can write:

∑

x∈X

f2
r =

∑

x∈X











1

r2

n
∑

i, j, i′, j′ = 1
i 6= j i′ 6= j′

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′ φp,q
i,j,−2(x)φp′,q′

i′ ,j′,−2(x)

−
2

r

n
∑

i, j, i′ = 1
i 6= j

r
∑

p,q,p′=1

wp,q
i,j wp′,p′

i′,i′ φp,q
i,j,−2(x)ϕp′,p′

i′ ,i′ (x)

+

n
∑

i,i′=1

r
∑

p,p′=1

wp,p
i,i wp′,p′

i′,i′ ϕp,p
i,i (x)ϕp′,p′

i′,i′ (x)





=
1

r2

n
∑

i, j, i′, j′ = 1
i 6= j i′ 6= j′

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′

(

∑

x∈X

(δp

x(i) + δq

x(j))(δ
p′

x(i′) + δq′

x(j′))

)

+
2

r

n
∑

i, j, i′ = 1
i 6= j

r
∑

p,q,p′=1

wp,q
i,j wp′,p′

i′,i′

(

∑

x∈X

(δp

x(i) + δq

x(j))δ
p′

x(i′)

)

+

n
∑

i,i′=1

r
∑

p,p′=1

wp,p
i,i wp′,p′

i′,i′

(

∑

x∈X

δp

x(i)δ
p′

x(i′)

)

If we use again the function t we can write:
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∑

x∈X

f2
r =

1

r2

n
∑

i, j, i′, j′ = 1
i 6= j i′ 6= j′

r
∑

p,q,p′,q′=1

wp,q
i,j wp′,q′

i′,j′











∑

l ∈
{(i, p), (j, q)}

∑

l′ ∈
{(i′, p′), (j′, q′)}

t(l ∪ l′)











+
2

r

n
∑

i, j, i′ = 1
i 6= j

r
∑

p,q,p′=1

wp,q
i,j wp′,p′

i′,i′





∑

l∈{(i,p),(j,q)}

t(l ∪ {(i′, p′)})





+

n
∑

i,i′=1

r
∑

p,p′=1

wp,p
i,i wp′,p′

i′,i′ t({(i, p), (i′, p′)}) (35)

The previous expression suggests an algorithm for computing
∑

x∈X f2
r with com-

plexity at most O(n4r4). The expressions for f and fr are shorter. The expression for f
can be written as:

f =
1

rn

∑

x∈X

n
∑

i,j=1

r
∑

p,q=1

wp,q
i,j ϕp,q

i,j (x) =
1

rn

n
∑

i,j=1

r
∑

p,q=1

wp,q
i,j

(

∑

x∈X

δp

x(i)δ
q

x(j)

)

=
1

rn

n
∑

i,j=1

r
∑

p,q=1

wp,q
i,j t({(i, p), (j, q)}) (36)

The expression for fr is:
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fr =
1

rn

∑

x∈X











−
1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j φp,q

i,j,−2(x) +

n
∑

i=1

r
∑

p=1

wp,p
i,i ϕp,p

i,i (x)











=
1

rn











1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j

∑

x∈X

(δp

x(i) + δq

x(j)) +
n
∑

i=1

r
∑

p=1

wp,p
i,i

∑

x∈X

δp

x(i)











=
1

rn











1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j (t({(i, p)}) + t({(j, q)})) +

n
∑

i=1

r
∑

p=1

wp,p
i,i t({(i, p)})











=
1

rn











2rn−1

r

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j + rn−1

n
∑

i=1

r
∑

p=1

wp,p
i,i











=
2

r2

n
∑

i, j = 1
i 6= j

r
∑

p,q=1

wp,q
i,j +

1

r

n
∑

i=1

r
∑

p=1

wp,p
i,i (37)

Using the previous results we can state the following

Theorem 6. The autorrelation coefficient ξ of the landscape of any instance of the
generalized FAP with the neighborhood operator defined in Section 4 can be computed in
O(n4r4).

Proof. Equations (30), (35), (36) and (37) allows to compute f2, f2
r , f and fr using

algorithms of complexity O(n4r4), O(n4r4), O(n2r2) and O(n2r2), respectively. The
results can be combined in (28) to compute Br and, hence, the value of B2r = 1 −
Br. Finally, the autocorrelation coefficient ξ can be determined with (27). The final
complexity of this computation of ξ from the data of the instance is, thus, O(n4r4).

Now let us compute the greatest lower bound and the least upper bound of ξ. We
can write (27) in the following way:

ξ =
n(r − 1)

r(2 − Br)
(38)

where we used the fact that B2r +Br = 1. The coefficients Bλ are between 0 and 1. The
minimum value for ξ is obtained when Br = 0, where we have ξlb = n(r − 1)/(2r). The
maximum value is reached when Br = 1 and we have ξub = n(r − 1)/r. Then, for the
FAP we have

n(r − 1)

2r
≤ ξ ≤

n(r − 1)

r
(39)
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The previous expression provides an upper and a lower bound for ξ. Furthermore, we
know that these bounds can be reached in practice. According to Theorem 5, the lower
bound ξlb is reached when condition (20) holds but condition (21) does not hold. That
is, f is an elementary landscape with λ = 2r. Similarly, the upper bound ξub is reached
when condition (21) holds but condition (20) does not hold (f is an elementary landscape
with λ = r). Thus, ξlb and ξub are the greatest lower bound and the least upper bound
of ξ, respectively. One interesting implication of this is that, fixing the values of n and
r, the autocorrelation coefficient of any instance of graph coloring is lower than or equal
to the autocorrelation coefficient of any instance of the generalized FAP.

7. Conclusions and Future Work

In this paper we have studied the Frequency Assignment Problem from the point of
view of the landscapes’ theory. We have proven that the general FAP can be written
as a sum of two elementary landscapes. A practical application of this decomposition
is the computation of the average value of the objective function in the neighborhood
of a solution using only the value of the elementary components in that solution. We
have given conditions under which the problem is an elementary landscape and we have
highlighted some subclasses of the problem that are elementary. In particular, the graph
coloring problem is an elementary subclass of FAP. The landscape decomposition of FAP
has allowed us to provide a method for computing the autocorrelation coefficient for
any instance of the problem in polynomial time. From a practical point of view, the
autocorrelation coefficient is a tool that can be used to understand why a local search
method is better than another for a given problem. Furthermore, it can be used to guide
the design of new operators and search methods.

As future work we plan to develop a systematic methodology for decomposing ob-
jective functions into elementary landscapes using elementary concepts of linear algebra.
Such a methodology could be useful for finding the decomposition of general landscapes.
The previous work on this topic [7] is based on the Fourier expansion of the objective
function in terms of a basis of eigenvectors of the Laplacian. Our plans are to build a
methodology which does not require the Fourier expansion but it is based on the analysis
of small instances of the problem and the generalization of this analysis. Furthermore,
we expect the methodology to be partially mechanical, thus allowing to develop software
tools for applying it. This methodology has partially been applied for obtaining the re-
sults shown in this paper but their details have been omitted. We also plan to study the
practical implications of all the theoretical results presented here. The improvement of
search methods and the explanation of the behaviour of some search algorithms are just
two examples of possible applications of the theoretical results. In this paper we have
provided some characterizations for the elementary landscapes and the sums of elemen-
tary landscapes that can be useful for decomposing other objective functions. We can
study new problems and analyze their landscape decomposition in a similar way as we
did with the generalized FAP in this paper.
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