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Abstract. Multimemetic algorithms (MMAs) are memetic algorithms
that explicitly exploit the evolution of memes, i.e., non-genetic expres-
sions of problem-solving strategies. We consider a class of MMAs in which
these memes are rewriting rules whose length can be fixed during the
run of the algorithm or self-adapt during the search process. We analyze
this self-adaptation in the context of spatially-structured MMAs, namely
MMAs in which the population is endowed with a certain topology to
which interactions (from the point of view of selection and variation op-
erators) are constrained. For the problems considered, it is shown that
panmictic (i.e., non-structured) MMAs are more sensitive to this self-
adaptation, and that using variable-length memes seems to be a robust
strategy throughout different population structures.

1 Introduction

Memetic algorithms [8] are a pragmatic integration of population-based global
search techniques and trajectory-based local search techniques [6]. They rest
on the notion of meme [2], which within this optimization context translates
to computational problem-solving procedures. While different possibilities have
been defined in the literature, such procedures are usually local-search tech-
niques. Furthermore, they are often fixed or pre-defined and therefore the MA
can be regarded as operating with static implicit memes. This fact notwith-
standing, the explicit management of memes has been around for some time
now –cf. [7]–, and can be found in, e.g., multimemetic algorithms (MMAs) [5].
Therein, each solution carries memes determining the way self-improvement is
conducted. Such memes are themselves subject to evolution and hence conform
a self-adaptive search approach.

While early population-based algorithms often used a panmictic approach,
whereby any two solutions within the population could interact for reproduc-
tive purposes, more general population structures have been in use in the last
decades – see e.g. [1, 4]. However, the deployment of such structures on MMAs
has been less explored. Some steps to fill this gap were firstly taken in [9], in
which an idealized model of spatially-structured MMAs was defined, hinting at
the usefulness of spatial structures in this context (the slower convergence of the
population buying time for good memes to express themselves). These findings
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have been also validated elsewhere on actual MMAs using fixed-length memes.
Here we turn our attention to the use of memes of self-adaptive complexity
in combination with spatially structured populations, analyzing comparatively
their effectiveness in this context. To do so, let us firstly define the particular
multimemetic scenario we have considered. This is done next.

2 Multimemetic Approach

As mentioned above, the core idea of MMAs is the explicit treatment of memes
within the evolutionary process. Hence, we shall firstly describe the representa-
tion of memes, before getting into the deployment of spatial structure on MMAs.

2.1 Meme Representation and Self-Adaptation

Memes are taken to be non-genetic expressions of problem-solving strategies and
as such can be represented in many ways depending on the level of abstraction
and problem dependance considered. Following some ideas posed by Smith [10]
in the context of pseudoboolean function optimization, we consider in this work
memes expressed as pattern-based rewriting rules [condition→action] as follows:
let [C → A] be a meme, where C,A ∈ Σr with Σ = {0, 1,#} and r ∈ N. In
this ternary alphabet ‘#’ represents a wildcard symbol; now, let g1 · · · gn be a
genotype; a meme [C → A] could be applied on any genotypic substring into
which the condition C = c1 · · · cr fits, i.e., for which gi · · · gi+r−1 = c1 · · · cr
(for the purpose of this comparison, wildcard symbols in the condition match
any symbol in the genotype). If the meme were to be applied on position i,
its action would be to implant the action A = a1 · · · ar in that portion of the
genotype, i.e., letting gi · · · gi+r−1 ← a1 · · · ar (in this case, the interpretation
of wildcard symbols is as don’t-change symbols, that is, keeping unchanged the
corresponding symbol in the genotype). In order to avoid positional bias, the
order in which the genotype is scanned to check for potential meme application
sites is randomized. If a match is found the meme is applied and the resulting
neighboring genotype is evaluated. A parameter w determining the maximal
number of meme applications per individual is used to keep the total cost of the
process under control. The best neighbor generated throughout the precess is
kept if it is better than the current genotype.

The main advantage of having memes linked to individuals is giving the
algorithm the ability to discover appropriate neighborhoods definitions for the
corresponding solution, so as to effectively exploring neighboring points. Such
neighborhoods can evolve alongside solutions, providing a self-adaptive means to
boost the search by means of this dynamic definition of the local improvement
mechanism. This self-adaptation is not limited to the actual definition of the
neighborhood for a certain fixed radius (i.e., Hamming distance) but can also
involve this radius itself. To do so, the length r of the meme is defined within a
certain interval {lmin, · · · , lmax}. Initially, each meme has a random length in that
range. Subsequently, in each evolutionary step before a certain meme is going
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to be mutated and then applied, its length can be incremented or decremented
by one much like in [10]. This is done with a certain probably pr (in the case of
increasing the meme length, a new random symbol is appended in the rightmost
position; if the length is decreased the rightmost symbol in the meme is removed).
By doing so, the length of the rewriting rule can be dynamically adjusted by
evolutionary means, thus providing a self-adaptive control of its complexity: long
memes are powerful tools for performing large jumps in the search space but, on
the other hand, they are more specific and hence can have lower applicability.
It is up to the algorithm to discover the appropriate meme complexity in each
moment.

2.2 Spatial Structure

The spatial structure of the population can be regarded as a topological struc-
ture upon which individuals in the population are projected. More precisely, let
T be this topological structure, comprising µ sites (µ being the population size),
each of them identified by an index i ∈ {1, · · · , µ}. We can characterize this
structure using a Boolean µ×µ matrix S. Each entry Sij represents the interac-
tion potential between two sites in the structure. More precisely, let Sij= true

if, and only if, the individual at the i-th site can interact with the individual at
the j-th site.

In this work we consider interaction matrices induced by a particular spatial
arrangement of individual sites in a grid: let µ = a × b; each site i can then be
represented by a pair of coordinates (ix, iy) ∈ {1, · · · , a} × {1, · · · , b}. Now, let

d : ({1, · · · , a} × {1, · · · , b})2 → N be a distance measure between sites. Given
a certain neighborhood radius ρ, we take Sij ⇔ (d(i, j) 6 ρ), i.e., two sites can
interact if they are within a certain distance threshold. Different spatial struc-
tures arise from the use of alternative distance measures. We have considered
the following possibilities:

1. Panmixia: d(·, ·) = 0.

2. Moore neighborhood: d((ix, iy), (jx, jy)) = max(|ix − jx|, |iy − jy|).
3. von Neumann neighborhood: d((ix, iy), (jx, jy)) = |ix − jx|+ |iy − jy|.

The above operations are modulo coordinate ranges so as to make them
toroidal. Fig. 1 illustrates these spatial structures.

3 Experimental Analysis

In order to analyze the impact of meme self-adaptation on the MMAs described
in previous section we have considered two pseudoboolean optimization prob-
lems. These are described in Sect. 3.1; subsequently we shall analyze the results
in Sect. 3.2.
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Fig. 1. Illustration of the different neighborhoods considered. The black cell indicates
an arbitrary individual and the grey cells denotes its neighbors. From left to right:
panmictic, Moore and von Neumann. In the last two cases, ρ = 1.

3.1 Benchmark and Settings

The functions considered in the test suite are Deb’s trap function [3] (TRAP)
and Watson et al.’s hierarchical if-and-only-if function [12] (HIFF). These are
defined as follows. Consider firstly the TRAP function. A basic 4-bit trap is
defined as

ftrap(b1 · · · b4) =

{
0.6− 0.2 · u(b1 · · · b4) if u(b1 · · · b4) < 4

1 if u(b1 · · · b4) = 4
(1)

where u(s1 · · · si) =
∑

j sj is the unitation (number of 1s in a binary string)
function. A higher-order problem can be built by concatenating k such traps,
and defining the fitness of a 4k-bit string as the sum of the fitness contribution of
each block. In our experiments we use k = 32 subproblems (i.e., 128-bit strings,
opt = 32).

As to the HIFF function, it is a recursive epistatic function based of the
interaction of increasingly large building blocks. It is defined for binary strings
of 2k bits by using two auxiliary functions f : {0, 1,×} → {0, 1} (to score the
contribution of building blocks), and t : {0, 1,×} → {0, 1,×} (to capture their
interaction), where ‘•’ denotes a null value. These are defined as:

f(a, b) =

{
1 a = b 6= •
0 otherwise

t(a, b) =

{
a a = b

• otherwise

These two functions are combined as follows:

HIFFk(b1 · · · bn) =

n/2∑
i=1

f(b2i−1, b2i) + 2 ·HIFFk−1(b′1, · · · , b′n/2) (2)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1. We have considered k = 7 (i.e., 128-bit
strings, opt = 576)

We consider MMAs as described in Sect. 2, with a population size of µ = 100
individuals. These MMAs follow a generational reproductive plan with binary
tournament for parent selection, one-point crossover (pX = 1.0), bit-flip muta-
tion (pM = 1/`, where ` = 128 is the number of bits), local-search (conducted
using the meme linked to the individual) and replacement of the worst parent
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(an inherently elitist strategy, following the model presented in [9]). Offspring
inherit the meme of the best parent, which is subsequently subject to muta-
tion with probability pM . A run is terminated upon reaching 25,000 evaluations,
and 20 runs are performed for each problem and algorithm. We consider meme
lengths bounded by lmin = 3 and lmax = 9, and use pr = 1/lmax for length
self-adaptation. For comparison purposes we also consider fixed-length memes
(r ∈ {3, 6, 9}). Spatially structured MMAs consider a 10× 10 grid and a neigh-
borhood radius ρ = 1.

3.2 Experimental Results

The numerical results of the different MMAs are shown in Table 1. Qualitatively,
panmictic MMAs (regardless of meme lengths) seem to perform comparatively
worse than the corresponding Moore/von Neumann versions, thus supporting
the positive impact that the slower convergence induced by the latter spatial
structures has on the final results. This is further supported by the slight su-
periority of the MMA with von Neumann topology over the MMA with Moore
topology, which has a faster convergence rate, both at the genotypic and the
memetic level – see Fig 2.

Let us now focus on the effect of meme lengths. If we firstly observe the results
of using fixed-length memes, it seems that the intermediate value r = 6 offers
the best tradeoff between memetic richness and meme specificity among the
values considered. This offers a first gauge to the way meme lengths self-evolve.
Indeed, if we take a look at Fig. 3 we can see that average meme lengths oscillate
around values close to 6, indicating the fully self-adaptive MMA seems to be
locating this area of memetic interest. This is further vindicated by the fitness
results and the number of times the optimum is found by each algorithm: the

Table 1. Results (20 runs) of the different MMAs on the two problems considered.
The number of time the optimum is found (nopt), the median (x̃), the mean (x̄) and
the standard error of the mean (σx) are indicated.

TRAP HIFF
topology r nopt x̃ x̄± σx nopt x̃ x̄± σx

panmictic 3 5 30.4 29.5 ± 0.5 1 390.0 404.1 ± 14.9
6 9 30.4 29.6 ± 0.5 4 382.0 420.3 ± 20.4
9 3 28.4 28.7 ± 0.5 2 362.0 382.0 ± 16.6

3 − 9 8 29.0 29.2 ± 0.6 8 456.0 475.3 ± 20.8

Moore 3 8 31.2 30.4 ± 0.4 5 444.0 460.0 ± 17.0
6 10 31.2 30.0 ± 0.5 8 456.0 476.4 ± 19.7
9 7 29.8 29.8 ± 0.4 6 456.0 449.0 ± 21.4

3 − 9 11 32.0 30.8 ± 0.4 7 460.0 471.8 ± 19.5

von Neumann 3 6 30.8 30.1 ± 0.5 9 464.0 501.0 ± 16.9
6 13 32.0 30.9 ± 0.4 12 576.0 518.4 ± 17.0
9 10 31.8 30.4 ± 0.4 9 464.0 491.7 ± 18.6

3 − 9 15 32.0 31.2 ± 0.3 12 576.0 515.6 ± 18.1
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Fig. 2. Evolution of diversity of the different MMAs on the TRAP function. The top
row corresponds to genetic diversity and the bottom row to memetic diversity. From
left to right: panmictic, Moore, and von Neumann topology.
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Fig. 3. Evolution of meme lengths in self-adaptive MMAs with different topology.
(Left) TRAP. (Right) HIFF.

MMA3−9 performs analogously or better than the MMA6 (the difference is more
marked in favor of MMA3−9 in the case of panmictic population). The general
decreasing trend of meme lengths in this MMA3−9 is an interesting phenomenon.
We conjecture it is due to the fact that as evolution progresses, the algorithm
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Fig. 4. Meme success ratio (percentage of meme applications resulting in an improve-
ment) of the different MMAs on the TRAP function. From left to right: panmictic,
Moore, and von Neumann topology.

starts to locate optimal or near-optimal solutions and the role of memes might
be changing from being a search artifact (trying to find search directions to the
optimal) to function as an error-correcting mechanism (correcting perturbations
introduced by mutation on already (near-)optimal solutions), i.e., their role turns
from exploratory to exploitative. This interpretation is consistent with the meme
success rates (percentage of meme applications that result in an improvement)
shown in Fig. 4. Notice that these follow an upwards trend (and that the values
for MMA3−9 are normally superior to the remaining MMAs, in particular for
non-panmictic populations), which may be indicating this active role as the
result of error correction (fitness values are rather stable in those later evolution
stages, and hence a high success rate would rather be interpreted as lower-
quality solutions being repaired back to known optima than to the discovery of
new better solutions). The evolution of diversity also fits nicely in this picture
since –as seen in Fig. 2– the genetic diversity seems to decrease faster for the
fully self-adaptive MMA (more clearly in the case of von Neumann topology),
while memetic diversity stays comparatively higher.

4 Conclusions

It is well known that parameterization is a major issue in memetic algorithms
[11], even more so if we consider MMAs which need additional parameters con-
trolling meme representation. For this reason, the study of self-adaptation mech-
anisms alleviating this parameterization problem is of paramount interest. We
have studied a class of spatially-structured MMAs featuring self-adaptation of
meme lengths. The results obtained on two problems and three topologies (pan-
mictic, Moore and von Neumann) indicate that the self-adaptation of meme
lengths is not detrimental and sometimes even beneficial, although mainly in
the case of panmictic population. We attribute this latter effect to the non-
panmictic MMAs being more robust to suboptimal parameterization. At any
rate, self-adaptation of meme lengths globally seems an adequate strategy for
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the problems considered, since it does not penalize performance and saves config-
uration time. Needless to say, further experimentation on other problems would
be useful to confirm these findings. Work is underway in this direction. Another
line for future development implies the use of other population structures, as
well as analyzing the scalability of the approach.
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References

1. Collins, R.J., Jefferson, D.R.: Selection in massively parallel genetic algorithms.
In: Belew, R.K., Booker, L.B. (eds.) Fourth International Conference on Genetic
Algorithms. pp. 249–256. Morgan Kaufmann, San Diego, CA (1991)

2. Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)
3. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.

(ed.) Second Workshop on Foundations of Genetic Algorithms. pp. 93–108. Morgan
Kaufmann, Vail, Colorado, USA (1993)

4. Gorges-Schleuter, M.: ASPARAGOS: an asynchronous parallel genetic optimiza-
tion strategy. In: Schaffer, J.D. (ed.) Third International Conference on Genetic
Algorithms. pp. 422–427. Morgan Kaufmann, San Francisco, CA (1989)

5. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. In: Merelo, J., et al. (eds.) Parallel Problem Solving
From Nature VII, Lecture Notes in Computer Science, vol. 2439, pp. 769–778.
Springer, Berlin (2002)

6. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Tech. Rep. Caltech Concurrent Computation
Program, Report. 826, California Institute of Technology, Pasadena, California,
USA (1989)

7. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization. Mcgraw-Hill’s Advanced Topics In
Computer Science Series, pp. 219–234. McGraw-Hill, London UK (1999)

8. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms, Studies in
Computational Intelligence, vol. 379. Springer, Berlin Heidelberg (2012)

9. Nogueras, R., Cotta, C.: Analyzing meme propagation in multimemetic algorithms:
Initial investigations. In: 2013 Federated Conference on Computer Science and
Information Systems. pp. 1013–1019. IEEE Press, Cracow (Poland) (2013)

10. Smith, J.E.: Self-adaptative and coevolving memetic algorithms. In: Neri, F.,
Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, Studies in Com-
putational Intelligence, vol. 379, pp. 167–188. Springer, Berlin Heidelberg (2012)

11. Sudholt, D.: Parametrization and balancing local and global search. In: Neri, F.,
Cotta, C., Moscato, P. (eds.) Handbook of Memetic Algorithms, Studies in Com-
putational Intelligence, vol. 379, pp. 55–72. Springer, Berlin Heidelberg (2012)

12. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic
algorithms: Summary and additional results. In: 1999 IEEE Congress on Evolu-
tionary Computation. pp. 292–297. IEEE Press, Washington D.C. (1999)


