
A logic-based approach to compute a direct basis

from implications

P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, E. Rodŕıguez-Lorenzo,
amora@ctima.uma.es

Universidad de Málaga

September 19, 2014

Abstract

Formal Concept Analysis is an emergent area in the topic of data anal-
ysis based on lattice theory. In this framework, a context is defined as
the relation between a set of objects and a set of attributes and from here
it is possible to extract relevant knowledge. One of the important topics
is to study the implications between the attributes considered. In a con-
text, some equivalent sets of implications can be compute using different
techniques. We are studying the direct optimal basis, which enables us to
compute the closure of a set of attributes in just one iteration. A Prolog
method has been implemented that computes a direct basis from a set of
implications.

1 Preliminaries

Formal Concept Analysis (FCA) considers a formal context as the relationship
between a set of objects and a set of attributes. Formally, this relation can be
defined as follows:

Definition 1.1 Let G be a set of objects, M a set of attributes, and I ⊆ G×M
a binary relation between G and M , then the triple K = (G,M, I) is called a
formal context.

In this triple, I is a binary relation between G and M such that, for o ∈ G and
a ∈ M , o I a means that the object o has the attribute a. Two mappings are
defined:

• ()′ : 2G → 2M is defined for all A ⊆ G as A′ = {m ∈M | g I m for all g ∈
A}.

• ()′ : 2M → 2G is defined for all B ⊆M as B′ = {g ∈ G | g I m for all m ∈
B}.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62901625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

These two mappings are closure operators and their fixpoints are the so-
called formal concepts.

Definition 1.2 A formal concept is a pair (A,B) such that A ⊆ G, B ⊆M ,
A′ = B and B′ = A. Consequently, A and B are closed sets of objects and
attributes, respectively called extent and intent.

If the following partial ordering

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or equivalently B1 ⊇ B2)

is considered in the set of all the formal concepts, then this set has the structure
of a complete lattice, the concept lattice associated to the context.

In FCA, the study of attribute implications is an important topic that allows
us to capture all the information which can be deduced from a context. In fact,
these implications summarize the semantics of the context. They are expressions
of the form A → B, where A and B are sets of attributes. A context satisfies
the implication A → B if every object that has all the attributes from A also
has all the attributes from B.

Definition 1.3 An (attribute) implication of a formal context K = (G,M, I) is
defined as a pair (A,B), written A→ B, where A,B ⊆M . Implication A→ B
holds (is valid) in K if A′ ⊆ B′.

One can find in the literature a lot of works focused on how to compute
the attribute implications, and specially on how to improve the implications
obtained [9]. A basis of a set of implications is a basis of least cardinality. Some
approaches compute the Duquenne-Guigues basis [7], focusing on the minimality
of the cardinality of the set of implications. In [5], we have developed a method
to remove redundant attributes in this kind of minimal basis. In [6] a new logic-
based method to obtain a basis with minimal size in the left-hand side of the
implications was proposed.

We emphasize the survey proposed by Bertet and Monjardet in [3]. In this
work, the authors studied five unit implicational systems obtained by different
authors in different fields and show that these formalisms are, in fact, identical.
Between these definitions we outline the following:

Definition 1.4 A set of implications, Σ, is said to be minimal or non-redundant
if, for all X→Y ∈ Σ, the set Σ r {X→Y } is not equivalent to Σ.

Definition 1.5 A set of implications, Σ, is called minimum set if |Σ| ≤ |Σ′|
for all set of implications Σ′ equivalent to Σ.

Definition 1.6 A set of implications, Σ, is said to be optimal if ||Σ|| ≤ ||Σ′||
for all set of implications Σ′ equivalent to Σ, where the size of Σ is defined as

||Σ|| =
∑

{X→Y ∈Σ}

(|X|+ |Y |)

2

Σ = {X0→Y0, . . . Xn→Yn} be a set of implications, it is said a left-minimal
basis if there does not exist a Xi→Yi and a subset X ′

i (Xi such that Σ \
{Xi→Yi} ∪ {X ′

i→Yi} is equivalent to Σ.
One of the main problems in FCA is the computation of the closure of a set

of attributes. Interesting approaches to this problem can be seen in [2, 3, 8].

Definition 1.7 A set of implications, Σ, is said to be direct if the computation
of the closure with respect to Σ of any set X of attributes requires just one
iteration, that is, a unique traversal of the set of implications.

Obviously, the direct-optimal property is the combination of the directness
and optimality properties and a method to obtain a direct-optimal basis is
proposed in [2].

In this paper, we introduce a Prolog implementation based on the Simpli-
fication Logic proposed in [4] to compute a direct optimal basis from a set of
implications. The use in FCA of the logic programming paradigm, via the Pro-
log language, is explored and proposed as a framework to develop fast prototypes
in which the methods based in logic are implemented in a direct way.

2 Simplification logic and closures

In [4], the Simplification Logic for Functional Dependencies (i.e. implications)
called SL

FD
, was proposed. This logic is equivalent to well-known Armstrong’s

Axioms [1]. The main difference is that SL
FD

avoids the use of transitivity,
and is guided by the idea of simplifying the set of functional dependencies by
efficiently removing redundant attributes.

SL
FD

considers reflexivity as an axiom scheme, together with the following
inferences rules:

[Ref]
A ⊇ B

A→B

[Frag]
A→B ∪ C

A→B
[Comp]

A→B, C→D

A ∪ C→B ∪D
[Simp]

A→B, C→D

A ∪ (C rB)→D

If we have a set of implications Σ and a set of attributes A, the closure of A
in SL

FD
is defined as the maximum set of attributes A+ such that Σ ` A→A+.

Theorem 2.1 Let K = (G,M, I) be a formal context and Σ a basis for K. For
all A ⊆M , the equality A+ = A′′ holds.

We introduced an efficient algorithm to compute the closure of a set of
attributes which improves the classical closure algorithms in [8], where the in-
terested reader can find all the details of the algorithm, which was implemented
in Prolog as the predicate closure. We show an example about the execution
in Prolog with this predicate.

Example 2.1 Let Ω = a, b, c, d, e, f a set of attributes. We would like to com-
pute the closure of A = {a}.Σ = {ab→ c, bd→ d, de→ f, ce→ f}.

3

? closure([a],[implication([a], [b,c]), implication([a,b], [e]),

implication([c], [f]), implication([c,e], [g])).

% the result is

? ([a,b,c,e,g]).

True.

The set of attributes {a, b, c, e, g} is the closure of {a}.

3 Computing a direct optimal basis

In this section, we show how the SL
FD

is the main foundation of the new
method to compute the direct optimal basis from a set of implications. As we
stated before, the best choice to make the implementation is Prolog, since the
method is logic-based.

The input of the Prolog program is a set of attributes M and a set of im-
plications Σ over the attributes in M . The output is the direct optimal basis
equivalent to this set of implications.

The main predicate of the method developed is

directoptimalSL(ImplicationsInput,DOBasisOutput)

which receives the set of implications from the input file ImplicationsInput,
and renders the direct optimal basis, which equivalent to the input, in the output
file DOBasisOutput, .

There are two main operations in the method:

• applyCompositionSimplification is a predicate which applies exhaus-
tively the rule composition-simplification to any pair of implications to
obtain a direct basis.

• applySimplification is a predicate that applies exhaustively the rules of
SL

FD
to remove redundancy in the direct basis obtained in the previous

step in order to get a direct optimal basis.

Below, we outline the description of the Prolog method applySimplificationLogic

which calls these two main predicates.

applySimplificationLogic:-

fixPoint_Non,

applyCompositionSimplification,

removeRedundancy,!.

The predicate applyCompositionSimplification is applied exhaustively
until the fixpoint is reached. To begin with, the method collects all the implica-
tions in a List, called ListImplications, and invokes the predicate compositionsimplificationrule
that applies the rule to any pair of implications.

4

applyCompositionSimplification:-

fixpoint(no),

fixPoint_Yes,

findall([implication(X,Y)],implication(X,Y),ListImplications),

compositionsimplificationrule(ListImplications),

applyComposition,

applyCompositionSimplification.

applyCompositionSimplification.

compositionsimplificationrule([]):-!.

compositionsimplificationrule([implication(X,Y) |Rest]):-
compositionsimplification([X,Y],Rest),

compositionsimplificationrule(Rest),!.

compositionsimplification([_,_],[]):-!.

compositionsimplification(implication(A,B),[implication(C,D) |Rest]):-
cs(implication(A,B),implication(C,D)),

cs(implication(C,D),implication(A,B)),

compositionsimplification(implication(A,B),Rest).

where the predicate cs applies the following rule derived from the SL
FD

:

cs(implication(A,B), implication(C,D)) = implication(A∪CrB,Dr(A∪B)}

When an implication is added in certain step of the previous algorithm, the
flag fixpoint takes the value false in order to repeat the method again.

The second step is the exhaustive application of the rules of SL
FD

to remove
redundancy [4]. It has been implemented with the predicate applySimplification.

applySimplification:-

lrSimplificationRule,!,

applySimplification.

applySimplification.

% lrSimplification Rule: X → Y, Z → U to X → Y, Z-Y → U-Y

% Z-Y → U-Y if X included in Z

% Z → U another case

Example 3.1 In this example, we will compute the direct basis of the following
set of implications stored in the file ganter.txt:

implication([a],[b]).

implication([a],[c]).

implication([d],[b]).

5

implication([c],[b]).

implication([a,b,c,d],[e]).

implication([a,b,c,d],[g]).

implication([a,b,c,e],[d]).

implication([a,b,c,e],[g]).

We call the Prolog predicate:

directoptimalSL(’ganter.txt’,’Output_ganter.txt’).

and it renders the direct optimal basis as follows:

-- INPUT --

:- dynamic implication2/2.
→ Preparing the input for Simplification:

→ Reduction:

→ Composition:

implication([a,b,c,e],[g]) FD removed

implication([a,b,c,e],[d]) FD removed

implication([a,b,c,e],[d,g]) FD added

→ Composition:

implication([a,b,c,d],[g]) FD removed

implication([a,b,c,d],[e]) FD removed

implication([a,b,c,d],[e,g]) FD added

→ Composition:

implication([a],[c]) FD removed

implication([a],[b]) FD removed

implication([a],[b,c]) FD added

-- Implications composed and reduced:

:- dynamic implication/2.
implication([c], [b]).

implication([d], [b]).

implication([a, b, c, e], [d, g]).

implication([a, b, c, d], [e, g]).

implication([a], [b, c]).

∗∗ First Step ∗∗
→ Equivalence - Composition + Simplification:

implication([c],[b]) + implication([a,b,c,e],[d,g]) |---
implication([a,c,e],[d,g]) FD added

→ Equivalence - Composition + Simplification:

implication([c],[b]) + implication([a,b,c,d],[e,g]) |---
implication([a,c,d],[e,g]) FD added

→ Equivalence - Composition + Simplification:

implication([d],[b]) + implication([a,b,c,e],[d,g]) =
implication([a,c,d,e],[g]) not added implication([a,c,e],[d,g])

→ Equivalence - Composition + Simplification:

implication([a],[b,c]) + implication([a,b,c,e],[d,g]) |---
implication([a,e],[d,g]) FD added

→ Equivalence - Composition + Simplification:

6

implication([a],[b,c]) + implication([a,b,c,d],[e,g]) |---
implication([a,d],[e,g]) FD added

∗∗ Second Step ∗∗
.......

.......

∗∗∗ END Composition + Simplification (A direct basis) ∗∗

implication([c], [b]).

implication([d], [b]).

implication([a, b, c, e], [d, g]).

implication([a, b, c, d], [e, g]).

implication([a], [b, c]).

implication([a, c, e], [d, g]).

implication([a, c, d], [e, g]).

implication([a, e], [d, g]).

implication([a, d], [e, g]).

∗∗∗ BEGIN Simplification: Removing redundancy ∗∗
→Equivalence - Simplification and Simplification + Axiom:

implication([c],[b]) + implication([a,b,c,e],[d,g]) |---
implication([a,b,c,e],[d,g]) Implication removed

implication([a,c,e],[d,g]) yet exist

→ Equivalence - Simplification and Simplification + Axiom:

implication([c],[b]) + implication([a,b,c,d],[e,g]) |---
implication([a,b,c,d],[e,g]) Implication removed

implication([a,c,d],[e,g]) yet exist

→ Equivalence - Simplification and Simplification + Axiom:

implication([a],[b,c]) + implication([a,c,e],[d,g]) |---
implication([a,c,e],[d,g]) Implication removed

implication([a,e],[d,g]) yet exist

→ Equivalence - Simplification and Simplification + Axiom:

implication([a],[b,c]) + implication([a,c,d],[e,g]) |---
implication([a,c,d],[e,g]) Implication removed

implication([a,d],[e,g]) yet exist

∗∗ OUTPUT: DIRECT OPTIMAL BASIS

implication([c], [b]).

implication([d], [b]).

implication([a], [b, c]).

implication([a, e], [d, g]).

implication([a, d], [e, g]).

7

4 Conclusions

We have presented a Prolog implementation of a novel method to compute the
direct optimal basis from a set of implications. The soundness and correctness
of the method will be included in a extended version of this paper. As future
work, we are planning a comparison with other methods in the literature.

Acknowledgements

Supported by grants TIN12-39353-C04-01 and TIN2011-28084 of the Science
and Innovation Ministry of Spain, co-funded by the European Regional Devel-
opment Fund (ERDF).

References

[1] W.W. Armstrong, Dependency structures of data base relationships, Proc.
IFIP Congress, pp. 580–583, 1974.

[2] K. Bertet, M. Nebut, Efficient algorithms on the Moore family associated
to an implicational system, DMTCS, 6(2): 315–338, 2004.

[3] K. Bertet, B. Monjardet, The multiple facets of the canonical direct unit
implicational basis, Theor. Comput. Sci., 411(22-24): 2155–2166, 2010.

[4] P. Cordero, M. Enciso, A. Mora, I.P, de Guzmán: SLFD logic: Elimination
of data redundancy in knowledge representation, LNCS 2527: 141–150,
2002.

[5] P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, Computing Minimal
Generators from Implications: a Logic-guided Approach, CLA 2012: 187–
198, 2012.

[6] P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, Computing Left-
Minimal Direct Basis of implications, CLA 2013: 293–298, 2013.

[7] J.L. Guigues and V. Duquenne, Familles minimales d’implications infor-
matives résultant d’un tableau de données binaires. Math. Sci. Humaines,
95, 5–18, 1986.

[8] A. Mora, P. Cordero, M. Enciso, I.Fortes, Closure via functional de-
pendence simplification, International Journal of Computer Mathematics,
89(4): 510–526, 2012.

[9] K. Nehmé, P. Valtchev, M. H. Rouane, R. Godin, On Computing the Min-
imal Generator Family for Concept Lattices and Icebergs, LNCS 3403:
192–207, 2005.

8

