
Entropy-based High Performance Computation
of Boolean SNP-SNP Interactions Using GPUs

Carlos Riveros1, Pablo Moscato1, and Manuel Ujaldón2

1Centre for Bioinformatics, Biomarker Discovery and Information-based Medicine
University of Newcastle, Australia

2Computer Architecture Department, University of Malaga, Spain

Abstract. It is being increasingly accepted that traditional statistical
single nucleotide polymorphism (SNP) analysis of genome-wide associa-
tion studies (GWAS) reveals just a small part of the heritability in com-
plex diseases. Study of interactions between SNPs has been suggested
as a plausible approach to identify additional SNPs that contribute to
disease but that do not reach genome-wide significance or exhibit only
epistatic effects. We have introduced a methodology for genome-wide
screening of epistatic interactions which is feasible to be handled by state-
of-art high performance computing technology. Unlike standard software
[1], our method computes all boolean binary interactions between SNPs
across the whole genome without assuming a particular model of inter-
action. Our extensive search for epistasis comes at the expense of higher
computational complexity, which we tackled using graphics processors
(GPUs) to reduce the computational time from several months in a clus-
ter of CPUs to 3-4 days on a multi-GPU platform [2]. Here, we contribute
with a new entropy-based function to evaluate the interaction between
SNPs which does not compromise findings about the most significant
SNP interactions, but is more than 4000 times lighter in terms of com-
putational time when running on GPUs and provides more than 100x
faster code than a CPU of similar cost. We deploy a number of optimiza-
tion techniques to tune the implementation of this function using CUDA
and show the way to enhance scalability on larger data sets.

1 Introduction

GPUs have consolidated in parallel computing as low-cost platforms yet high
performance alternatives whose scope of application spreads beyond graphical
territory. On the programming side, CUDA [3] and OpenCL [4] have established
the mechanisms for data intensive general purpose applications to exploit GPUs
extraordinary power with remarkable scalability.

A natural scientific field to deploy this computational force is bioinformatics.
The advent of the Human Genome Project has brought to the foreground of
parallel computing a broad spectrum of data intensive biomedical applications
where biology and computer science join as a happy alliance between demanding
software and powerful hardware. Since then, the bioinformatics community gen-
erates computational solutions to support genomic and post genomic research [5]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62900357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

in many subfields such as gene structure prediction, phylogenetic trees, protein
docking, and sequence alignment, just to mention a few.

The huge volumes of data produced by genotyping technology pose challenges
in our capacity to process and understand data. In the field of genotyping exper-
iments, ultra high density microarrays have jumped from 50.000 genes contained
in a simple array to more than 5 million genetic markers. Furthermore, current
clinical studies include hundreds of thousands of patients instead of thousands
genetically fingerprinted a few years ago. The situation remains challenging, but
when one has to choose a candidate to cope with this computational challenge,
the GPU immediately comes to our minds.

The high performance computing capabilities of GPUs make now possible
to tackle demanding applications on these huge volumes of data. Among these
applications, the exhaustive search for associations of gene–gene interactions
with disease (epistasis) is particularly challenging. The use of this interaction
structure to reveal effects not readily seen in individual SNP-based analyses im-
proves clinical analysis in many different ways [2], and constitute the cornerstone
and major motivation for our biomedical application. In this work, we conduct
a GPU implementation for a method based on a genome-wide screen of SNPs
boolean function interactions using information entropy as evaluation function,
and a subset from a real Genome-Wide Association Study as benchmark input
data set (see section 7.1). The method is also readily extensible to the study of
gene–environment interactions.

2 Related Work

Moore et al [6] used attribute interaction to select potential interacting SNPs and
construct interaction graph. A major weakness of this method is that informs
about the interaction between genetic data, but often cannot distinguish which
two-locus model is proper for the interaction effects.

There are powerful methods to reduce dimensionality and to get a set of SNPs
that can interpret the results best. Among them, we may cite the following three:

– S-statistics [7] within multilocus statistics methods.
– BOOST [8] and its GPU-accelerated version, GBOOST [9], are methods re-
lated to log-linear models which demonstrate its equivalence to logistic regres-
sion used by statistical methods, the most computationally expensive ones.

– Multifactor Dimensionality Reduction (MDR) [10] as data mining counter-
parts which does not distinguish a particular model. These techniques have
already taken advantage of GPU performance with impressive results [11, 12].

BOOST and S-Statistics model SNP–SNP interactions through statistical
modelling, and MDR classifies SNP variants combinations as low-risk or high-
risk and measures the odds of such combinations.

To overcome these problems, we search for interactions patterns by comput-
ing all possible interactions between any two SNPs, and then measuring inter-
action strength by p-value or by class information entropy. In [2] we developed

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 3

Table 1. The 16 boolean functions of two variables and its five unique binary functions,
F1 to F5. Other functions are marked as either trivial (T) (always true or false) or unary
(U) (only depend on a single variable).

Inputs
A 0 0 1 1 Boolean Identifier
B 0 1 0 1 function and logic

O1 0 0 0 0 0 T
O2 0 0 0 1 A ∧ B F1: AND
O3 0 0 1 0 A ∧ ¬B F2: ANDN
O4 0 0 1 1 A U
O5 0 1 0 0 ¬A ∧ B F3: NAND
O6 0 1 0 1 B U
O7 0 1 1 0 A ⊗ B F4: XOR
O8 0 1 1 1 A ∨ B ¬F5

Inputs
A 0 0 1 1 Boolean Identifier
B 0 1 0 1 function and logic

O9 1 0 0 0 ¬(A ∨ B) F5: NANDN
O10 1 0 0 1 ¬(A ⊗ B) ¬F4

O11 1 0 1 0 ¬B U
O12 1 0 1 1 ¬(¬A ∧ B) ¬F3

O13 1 1 0 0 ¬A U
O14 1 1 0 1 ¬(A ∧ ¬B) ¬F2

O15 1 1 1 0 ¬(A ∧ B) ¬F1

O16 1 1 1 1 1 T

the former and accelerated its computation on GPUs. Here, we focus on the
latter, addressing an optimized CUDA implementation which is also compared
with our former study using p-value.

3 SNPs and Boolean Functions

Common genotyping platforms measure SNPs as biallelic variations. The stan-
dard genotyping process can only assert if the individual has (or has not) one
and/or the other allele variant at a particular locus. The individual is then la-
belled as heterozygous if both variants are detected, and homozygous in one or
the other variant if only one was detected. Accordingly, we considered each SNP
variable as 2 different independent binary variables, denoted as rsNM , rsNm for
SNP rsN , where the subscripts M and m indicate the 2 variants for that SNP.

Any interaction between two binary SNP variables rsAx and rsBy can be
expressed across the data set as a binary function operator relating the result
value to the two interacting operands. For two operands, there are 16 different
ways to combine binary values to obtain another binary value, we list those cases
in Table 1. Two results are trivial functions: either always true (1) or always
false (0), another four results are unary functions: either equal to the A input,
or to B , or their negated forms. The remaining ten functions can be expressed
in terms of five unique binary functions and their negated forms.

4 Significance Measurement

From a statistical point of view, significance is attributed to variables based on
the observed frequency of appearance of values in the populations under study
(“cases”, “controls”). Variables whose difference is above a certain user-defined
confidence threshold based on the accumulated probability of observing such

4 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

difference through chance alone are attributed association with the populations.
Statistical methods assign a P-value to such difference, computed approximately
from the χ2 statistic, or exactly from the non-parametric Fisher Exact Test;
for details we submit the interested reader to the classical references[13, 14].
Alternatively, a significance can also be attributed based on the class information
entropy difference carried by the variable.

4.1 Entropy

The information entropy H of a discrete variable x assuming L different values
over N samples, with ni samples of value xi is:

H = −
L∑

i=1

pi log pi = −
L∑

i=1

ni

N
log

ni

N
.

where the probability pi of observing a random sample with value xi has been
replaced by the observed frequency ni/N . If the samples carry a class label, we
can then define the class entropy of the variable x as the weighted sum of entropy
for each label, that is

HP =
P∑

q=1

(
Cq

N

)
Hq = −

P∑
q=1

Cq

N

L∑
i=1

Cq,i

Cq
log

Cq,i

Cq
= −

P∑
q=1

L∑
i=1

Cq,i

N
log

Cq,i

Cq
(1)

where there are P possible labels, and Cq,i samples carrying the label q have
been observed with value xi,

∑
q Cq,i = ni,

∑
i Cq,i = Cq. The index P refers to

the partition of the set of M samples induced by the P labels.
We are interested in variables that decrease their class entropy when analyzed

under the partition P,

∆H0→P = H0 − HP ≥ 0. (2)

For a binary variable (taking only values 0 and 1) on a bipartition (“disease–
control” study), the change in entropy is:

∆H = − (
n+1

N
) log(

n+1

N
) − (

N − n+1

N
) log(

N − n+1

N
)

+ (
n01

N
) log(

n01

n0+
) + (

n0+ − n01

N
) log(

n0+ − n01

n0+
)

+ (
n11

N
) log(

n11

n1+
) + (

n1+ − n11

N
) log(

n1+ − n11

n1+
).

5 CUDA

As a programming interface, CUDA consists of a set of C language library func-
tions where the following elements meet:

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 5

Table 2. Data structures and parameters involved in our CUDA implementation.

Name Size Description
bitArray 2 × nS × nI matrix of 64-bit integers. A value for 2 × nS binary SNPs (for each nI).
validArray nS × nI matrix of bits (one per SNP value). Validity of each SNP to account for missing values.
mask Constant mask of bits. For each individual, if belongs to disease or control.
values nF × Q array of p-value or entropy values. Q is chosen heuristically based on avail. resources.
counts 2 × nF × Q array of counts. For true bits in each class, for each function.
validCounts 2 × Q array of valid counts. For marginals.
index nF × Q array of indices. Interaction between functions and binary SNPs.

Parameter Meaning in our implementation Value for our normalized data set (benchmark)
nS Number of SNPs. 100 000
nI Number of individuals. 1 000
nF ” boolean functions (see section 3). 5
nV ” independent variants per SNP (see section 3). 2
Q The CUDA grid size (granularity of parallelism). Number of threads per grid (see Table 7)

– A program is decomposed into blocks that run logically in parallel (physically
only if there are resources available). Assembled by the developer, a block is a
group of threads that is mapped to a single multiprocessor.

– All threads of concurrent blocks on a single multiprocessor divide the re-
sources available equally amongst themselves. The data is also divided amongst
all of the threads in a SIMD fashion with a decomposition explicitly managed
by the developer.

– A kernel is the code to be executed by each thread. Conditional execution of
operations can be achieved based on a unique thread ID.

In the CUDA model [3], all of the threads can access all of the GPU memory,
but, as expected, there is a performance boost when threads access data resident
in shared memory, which is explicitly managed.

6 An entropy-based CUDA implementation

To tackle a CUDA implementation of our methods, a preliminary observation for
the five chosen boolean functions show that three are symmetric in their argu-
ments (AND, NANDN, XOR) and the other two are mutually complementary.
As a consequence, only half of the (nS)2 pairs need to be computed. Two types
of final results are of interest:

1. The list of N most significant interactions (where N is user defined). This
requires a “running list” of topmost interactions, maintained by the CPU.

2. The aggregated sum of interactions significance, for each SNP. This requires
an array of nS “running sums”, also maintained by the host.

The data structures involved within our CUDA code are summarized in Table
2, along with the set of parameters which determine the size of the running
benchmark. The parameter Q determines the granularity in which the problem
is decomposed; it is chosen based on CUDA block size and available resources
on the GPU. Ideally, each kernel invocation should work on a grid as large as
possible. A comparison of relative per-thread time is given in Table 5.

6 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

We have decomposed our implementation into four kernels (see Table 3),
giving us ample space to tailor launch parameters to the different arithmetic
intensity and resource usage of each step.

Table 3. CUDA kernels considered for our GPU implementation.

Kernel Task

init Initializes output data structs. and resets counters.
count Computes Boolean functions and bit counting.
entropy Computes entropy for the computed results.
sort Indirect sorting of results prior to transfer to host.

Our count kernel has the highest register use of 46 for compute capability
2.0 (Fermi cards) and 33 for compute capability 1.3 (Tesla), and therefore only
one block can run per Fermi multiprocessor. The maximum block size is in this
case 640 threads, and the multiprocessor occupancy tops at 42%. The number
of registers could not be reduced due to the intrinsic nature of the algorithm.

The sorting stage was implemented using the well-tuned radix sort from
Merrill & Grimshaw, incorporated into the thrust:: library [15]. The speedup
obtained is at least 4x compared to the same algorithm on CPU, and makes a
case for sorting on device since data is already there. Examination of register
usage by the different kernels suggest that a marginal improvement might be
realised by a different geometry for the entropy computation phase.

6.1 Exploiting the memory hierarchy

The most important issue to take care of when aspiring to develop an efficient
GPU implementation for our GWAS is the fact that data have to be handled on
the fly, avoiding as much as possible any temporary storage on file.

Shared memory The count kernel was the more appropriate kernel to bene-
fit from a shared memory implementation. However, the alternative performed
worse than any non-shared memory version, for all feasible block sizes and GPU
platforms. Data reuse was to enough to amortize the cost of the extra copy in
shared memory, but shared memory resources limit the number of blocks that
were able to be computed in parallel. Therefore, the final balance was negative
in terms of performance and we finally decided to discard this variant.

Coalescing An additional 2 to 3 msecs. per kernel invocation was obtained by
rearranging input data layout such that all memory fetches for a given SNP are
contiguous in memory, and each block works on a consecutive range of SNPs.
On the other hand, output data coalescing was improved by arranging output
data in contiguous memory for a block. All experimental timings presented are
with the coalescence-improved versions of our code.

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 7

Table 4. Summary of hardware features for the GPUs used in this work.

Processor type CPU GPU #1 GPU #2 GPU #3

Processor model Xeon E5645 Tesla C1060 Tesla C2050 GeForce GTX 480
Number of cores 6 240 448 480
Core speed 2.4 GHz 1.30 GHz 1.15 GHz 1.40 GHz
Processing power 14.4 GFLOPS 312 GFLOPS 515.2 GFLOPS 672 GFLOPS

Memory speed 2× 666 MHz 2× 800 MHz 2× 1.50 GHz 2× 1.85 GHz
” bus width 192 bits 512 bits 384 bits 384 bits
” bandwidth 32 GB/s 102 GB/s 144 GB/s 177 GB/s
” size (type) 48 GB (DDR3) 4 GB (GDDR3) 3 GB (GDDR5) 1.5 GB (GDDR5)

7 Experimental analysis

To demonstrate the effectiveness of our techniques, we have conducted a number
of experiments on different architectures. See Table 4 for hardware features.

7.1 Computational challenges and input data set

For a GWAS, undertaking the exhaustive evaluation of all binary SNP inter-
actions is a daunting task. Computation time is linear on number of samples
and quadratic on number of SNPs. A well tuned distributed implementation of
the interaction count procedure takes about one month of processing time in
a cluster of 128 cores. Our reference GPU implementation is the method de-
scribed using p-values as evaluation function [2], that takes about 3 days on a
dual-socket quad-core CPU server endowed with 4 nVidia C2050 GPUs for a
data set containing 1315 samples.

A typical GWAS has more than 105 SNPs, measured for thousands of sam-
ples. An order of magnitude of the number of binary interactions evaluated is
nF× 1

2 (nV×nS)2 = 5× 1
2 (2 ·5 ·105)2 ≃ 2.5·1012, where nV is the number of inde-

pendent variants per SNP (2 in our case), nF is the number of binary functions
(5 in our case), and nS is the number of SNPs. For our tests, we have considered
a reference data set consisting of 100000 SNPs and 1000 samples, with 762 sam-
ples as “controls” and 328 as “disease”. This data set was obtained through a
normalization process, generated by randomly selecting SNPs and samples from
a larger study, preserving control/disease ratio. In addition, the algorithms have
been tested against complete GWAS and reported elsewhere (see [16, 2]).

7.2 Optimal block and grid size

Using our input data set, we have conducted a number of experiments varying
CUDA block sizes, grid sizes (the Q parameter) and GPU cards. For each GPU
card, the times per thread remain virtually equal for block sizes of 64 (8x8),
128 (8x16), 256 (16x16), 320 (16x20) and 512 (16x32) threads (see Table 5). for

8 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

Table 5. Average processing time per grid execution (in milliseconds) and per thread
(in nanoseconds) for our algorithm when using the GPU as co-processor, for three
different grid sizes in Mthreads (see Table 7).

GPU (Nvidia model) Tesla C1060 Tesla C2050 GeForce GTX480

Grid size (# threads) 1 M 4 M 8 M 1 M 4 M 8 M 1 M 4 M 8 M

Thread time (ns.)
init 1.27 1.26 1.22 0.81 0.80 0.80 0.60 0.59 0.58
count 19.94 19.72 19.30 3.68 3.63 3.58 2.79 2.75 2.71
entropy 1.17 1.18 1.03 4.02 3.97 3.93 3.07 3.03 3.00

Kernel time (ms.)
init 1.33 5.26 10.17 0.85 3.34 6.63 0.63 2.46 4.87
count 20.81 82.65 160.61 3.84 15.20 29.81 2.91 11.51 22.57
entropy 1.23 4.94 8.58 4.19 16.63 32.68 3.20 12.69 24.94

Total time (ms.) 23.37 92.85 179.36 8.88 35.17 69.12 6.74 26.67 52.37

Table 6. Processing times (in milliseconds for each cycle on a grid, and in seconds
overall) given grid sizes of 1M, 8M and 16M threads (10M for GeForce).

GPU (Nvidia model) Tesla C1060 Tesla C2050 GeForce GTX480
Grid size (in threads) 1 M 8 M 16 M 1 M 8 M 16 M 1 M 8 M 10 M
Number of cycles 19306 2485 1225 19306 2485 1225 19306 2485 1953
Cycle time (ms.) 83.6 651 1145 76.4 293.6 574.1 44.1 183.1 228.9

Kernel 23.4 179 367 8.9 69.1 139.2 6.7 52.4 66
Sort 43.7 395 624.5 28.6 142.5 279.8 8.6 60.2 75.2
Copy 11.1 76.9 153.3 13.8 77 150.2 10.1 70.4 87.6
Merge 28.0 27.6 27.5 28.9 29.3 29.7 25.3 24.1 22.3

Total (secs.) 1622 1610 1403 1480 726 703.6 857 453 448
Range of variability ± 66 ± 350 ± 15 ± 4 ± 10 ± 4.5 ± 71 ± 7 ± 2.8
% of variability ± 4% ± 21% ± 1% ± 0.3% ± 1.4% ± 0.6% ± 8.2% ± 1.5% ± 0.6%

results and Table 7 for threads geometry). As the GPU time per grid execution
scales linearly with the size of the grid, the total execution time for the whole
dataset is roughly independent of grid size and block size, provided the pro-
cess becomes GPU-bound. The total computation time can then be accurately
estimated as the product of: (grid size) × (block size) × (time per thread) ×
(number of grid launches).

Table 7. Block and grid sizes used when partitioning the problem using CUDA.

Block Grid 1M Grid 8M Grid 10M Grid 16M
Grid of 1 Mthreads Grid of 8 Mthreads Grid of 10 Mthreads Grid of 16 Mthreads

Threads Blocks (threads Blocks (threads Blocks (threads Blocks (threads
per block per grid per grid) per grid per grid) per grid per grid) per grid per grid)
8× 8 128× 128 (1,048,576) 362× 362 (8,386,816) 404× 404 (10,445,824) 512× 512 (16,777,216)
8× 16 128× 64 (1,048,576) 362× 180 (8,340,480) 404× 202 (10,445,824) 512× 256 (16,777,216)

16× 16 64× 64 (1,048,576) 180× 180 (8,294,400) 202× 202 (10,445,824) 256× 256 (16,777,216)
16× 20 64× 50 (1,024,000) 180× 144 (8,294,400) 202× 160 (10,342,400) 256× 204 (16,711,680)
16× 32 64× 32 (1,048,576) 180× 90 (8,294,400) 202× 100 (10,342,400) 256× 128 (16,777,216)

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 9

Total execution times and grid execution times for three different grid sizes
are given in Table 6 (there appears to be an anomaly in the internal selection of
parameters performed by the sort routine for the particular case of the 8× 8, 8M
grid and C1060 platform (see the 395 value), which increases the total execution
time by more than 50%.

The grid sizes are outlined in Table 7, where they correspond to approxi-
mately 1, 8 and 16 million threads per grid (except in the GTX480 GPU, where
the largest grid that can be computed contains 10 million threads). The merge
operation executes on the CPU concurrently with the kernel on the GPU.

At the end, the computational time depends on which processor holds the
bottleneck. In order to perform a deeper analysis of our execution, a profil-
ing process was carried out. Figure 1 illustrates the time elapsed by those ker-
nels/processes that CPU and GPU are responsible of. For a better understand-
ing, we show time concurrently running on both sides, with processors synchro-
nized when transfers (copies) are required. Results pose four different scenarios
depending on large, larger, small and smaller grid sizes:

– A large grid size leads to GPU-bound. A higher degree of overlap be-
tween communication, GPU kernel execution and CPU execution (by using
asynchronous transfers and multiple buffering) would reduce the total exe-
cution time and increase the size of the grid for which the process becomes
GPU-bound. This is our winner scenario, and it is recommended to maximize
the grid size to the extent permitted by video memory available once input
data has been discounted (global memory in CUDA).

– A small grid size leads to CPU-bound. For grid sizes around 2 million
threads and smaller, the merge time on CPU becomes larger than the kernel
time on GPU. The process is then CPU-bound, and overall execution times
are penalized. Our loser scenario, with smaller grid sizes of a million threads
involving (slower) CPU processing sufficiently long to exceed the asynchronous
simultaneous kernel processing.

A more compact timeline could be achieved for smaller grid sizes if the time
spent sorting would be used on the CPU for merging. Current ::thrust::sort()
implementation synchronizes CPU and GPU multiple times during execution,
and to overcome this limitation we would require a multithreaded CPU imple-
mentation of our algorithm. Instead, our code relies more on massive parallelism
on the GPU and adjusts itself to varying block and grid sizes, which allows us
to employ simple heuristics in determining the value of the parameter Q. For
example, in single card machines where the GPU is also the graphics processor,
video memory can be the limiting factor. But in our experiments, where the
GPU is seen as a co-processor and plays entirely the role of an accelerator, raw
computational power can be more decisive. Next section confirms our hypothesis.

7.3 Influence of GPU resources: Tesla versus GeForce

An interesting survey on the GPU side concerns comparing different platforms
where the same algorithm can be executed to determine which hardware re-

10 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

(a) Code profiling. (b) Block diagram for processors and memories.

Fig. 1. (a) Timeline of CPU and GPU execution, for a CPU-bound case (1 Mthreads)
and a GPU-bound case (8 Mthreads). (b) The way CPU/GPU interact with memory.

Table 8. Upper side: Elapsed time (in seconds) and speed-up when running a CPU
single threaded version of our algorithm versus our GPU-assisted versions using CUDA.
Lower side: Performance/cost analysis normalized to the CPU case for each GPU.

CPU: Tesla C1060 Tesla C2050 GeForce GTX480
Xeon E5520 (grid of 16 Mthr.) (grid of 16 Mthr.) (grid of 8 Mthr.)

Computation 45234.2 1195.0 37.9x 506.9 89.2x 270.2 167.4x
CPU-GPU communication None 187.5 183.4 170.3
Total execution time 45234.2 1384.9 32.7x 698.8 64.7x 441.2 102.5x
Estimated cost (release date) $400 $1600 $1600 $400
Scalability Reference Good Better Best
Performance/cost ratio 1 8.17 16.17 102.50

sources are more critical on a successful acceleration. In general, Teslas are en-
dowed with a smaller number of cores and a lower clock rate, which essentially
means less GFLOPS (Giga FLoating-point Operations Per Second), whereas
GeForces have less memory capacity. According to Table 4, our Tesla C2050
doubles the video memory size, but suffers from 24% fewer GFLOPS with re-
spect to the GeForce GTX480.

As it can be observed comparing total execution times in Table 6, once the
process becomes GPU-bound the time remains approximately constant, and dif-
ferences between platforms reflect the above mentioned hardware differences.
In this case, and provided the binary SNP data matrix fits in memory, the
processing can be split in a succession of sequential computations over non-
overlapping grids, and the two most important factors become total number of
cores and core frequency, which are responsible of the raw computational power
(GFLOPS). GeForce GTX480 outshines Tesla C2050 by 55 to 60% less time;
the error-correcting memory (ECC), which the C2050 has but the GTX480 does
not, adds an additional delay in memory access of around 6-8% on top of the
GFLOP difference. And hardware investment is around five times smaller on the
GeForce, which also plays in favor of being selected as our favorite architecture.

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 11

7.4 Acceleration against CPU counterparts

Another interesting comparison goes to put side by side our GPU running times
versus those obtained on our high-end Intel CPU Xeon E5520. Table 8 con-
tributes with these numbers for our input data set. GPU gains exceed two or-
ders of magnitude, even after considering the overhead of CPU-GPU commu-
nications. This is mainly due to the higher degree of data parallelism exploited
through a fine grain strategy on the GPU. In general, a coarse grain via multiple
threads (task parallelism) is not a scalable alternative for our SNP-SNP interac-
tion problem, and we need to switch into CUDA and GPUs to pursue significant
acceleration factors.

7.5 Cost/performance ratio on each platform

The lower half of Table 8 incorporates a study where the cost and release date are
included for each hardware platform. Our reference unit is the performance/cost
on CPU, and from that departure point, speed-ups are reduced a factor of four
on the two Teslas because the processor cost is four times higher. Gains are
maintained for GeForces because its price is similar to that of the Xeon CPU.

We can also see the good scalability exhibited by the GPU architecture:
The older the model, the worst performance for a similar cost (comparing the
two Teslas). And yet there is another interesting conclusion comparing GPUs of
similar age in the last two columns: High performance computing on the GPU is
achievable with a modest budget, as gamers make mid-end and low-end products
increasingly popular but at the same time computationally demanding.

7.6 Further improvements

Additional refinements may lead to even better execution times. For example,
making use of CPU cores via a multithreaded implementation and GPU capa-
bilities to execute and transfer simultaneously on Fermi platforms. This way, the
copy to host and merge operation on the CPU could be executed concurrently
with the sequence init-count-entropy-sort for an additional factor of at least
2x speedup in the total processing time. At the same time, this may draw the
benefit of a dual or even quad core CPU depending on the number of running
threads that programmer can deploy at a given time.

7.7 Comparing evaluation functions: Entropy versus p-value

As we explained in section 4, every single SNP-SNP interaction is evaluated
through a significance function whose computational complexity is critical for
determining the entire workload and therefore the execution time.

A primary goal of this work was to reduce the computational complexity of
such function without compromising the identification of the most significant
SNP-SNP interactions. Our final assessment goes to quantify to what extent
our entropy-based method has contributed to that reduction with respect to

12 Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs

the former statistical methods relying on P-values. Using the same Tesla C2050
GPU and identical parameters, the evaluation of the P-values with the Fisher
exact test takes 67.14 seconds for running what we were able to replicate here in
just 16.4 milliseconds. This represents an improvement factor higher than 4000,
which goes far beyond our initial expectations.

8 Summary and conclusions

We have developed GPU-based epistasis models and an entropy-based method
to explore gene-gene interaction in SNPs aimed at discovering their potential ge-
netic meaning. Experimental results on real data are shown to demonstrate that
this method is effective in detecting gene-gene interaction which may contribute
to the understanding of genetic mechanisms of common diseases. Our approach
constitutes an alternative way to previous studies based on p-value which are
more demanding computationally but similar in expression of interest.

We focus on CUDA for exploiting fine-grained parallelism, raw processing
power and the memory hierarchy of the GPU, leading to speed-up factors ex-
ceeding two orders of magnitude versus counterpart methods implemented on
high-end Intel Xeon CPUs. This is extraordinarily valuable in our case study
where large-scale data sets and time constraints meet for a very demanding
computation that is often unfeasible on a sequential computer. Our implemen-
tation also becomes competitive against other coarse grain parallelism alterna-
tives such as distributed-memory and shared-memory multicomputers, and we
have proven that it is a scalable solution evolving towards a more competitive
performance/cost ratio as times goes by.

Acknowledgments. This work was supported by the Hunter Medical Research
Institute Bioinformatics Fellowship, Australia, and the Ministry of Education of
Spain under Project TIN2006-01078 and mobility grant PR2011-0144. We also
thank NVIDIA for hardware donation under the following awards: Professor
Partnership 2008-10, CUDA Teaching Center 2011-13, CUDA Research Center
2012-13 and, finally, CUDA Fellow 2012-13.

References

1. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., Sham, P.C.: PLINK: a tool set for
Whole-Genome association and Population-Based linkage analyses. The American
Journal of Human Genetics 81(3) (2007) 559–575

2. Riveros, C., Vimieiro, R., Holliday, E.G., Oldmeadow, C., Wang, J.J., Mitchell,
P., Attia, J., Scott, R.J., Moscato, P.: Identification of genome-wide SNP-SNP
and SNP-clinical boolean interactions in age-related macular degeneration. In:
Methods and Technologies for Biomarker Analysis (tentative). [In Review]. Wiley-
VCH (2013)

Entropy-based HPC of Boolean SNP-SNP Interactions Using GPUs 13

3. Nvidia Corporation: CUDA home page (2010) Nvidia Developer Zone,
https://developer.nvidia.com/category/zone/cuda-zone.

4. The Khronos Group: OpenCL - the open standard for parallel programming of
heterogeneous systems (2013) version 2.0, http://www.khronos.org/opencl/.

5. RoseIndia: A web site dedicated to bioinformatics tools, links, resources and tuto-
rials (2009) http://www.roseindia.net/bioinformatics.

6. Moore, J., Gilberta, J., Tsai, C.: A flexible computational framework for detecting,
characterizing, and interpreting statistical patterns of epistasis in genetic studies
of human disease susceptibility. J. 241 (2006) 252–261

7. Hoh, J., Wille, A., Ott, J.: Trimming, weighting and grouping snps in human
case-control association studies. Genome Res (11) (2001) 2115–2119

8. Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N.L., Yu, W.: BOOST: a
fast approach to detecting Gene-Gene interactions in genome-wide Case-Control
studies. The American Journal of Human Genetics 87(3) (2010) 325–340

9. Yung, L.S., Yang, C., Wan, X., Yu, W.: GBOOST: a GPU-based tool for detecting
gene-gene interactions in genome-wide case control studies. Bioinformatics 27(9)
(2011) 1309–1310

10. Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction
software for detecting gene-gene and gene-environment interactions. Bioinformatics
19(3) (2003) 376–382

11. Sinnott-Armstrong, N., Greene, C., Cancare, F., Moore, J.: Accelerating epistasis
analysis in human genetics with consumer graphics hardware. BMC Research
Notes 2(1) (2009) 149

12. Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., Shi, Y.: SHEsisEpi, a GPU-
enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals
the risk genetic epistasis in bipolar disorder. Cell Res 20(7) (2010) 854–857

13. Fisher, R.A.: Statistical methods for research workers. Genesis Publishing Pvt Ltd
(1932)

14. Agresti, A.: A survey of exact inference for contingency tables. Statistical Science
7(1) (1992) 131–153 ArticleType: research-article / Full publication date: Feb.,
1992 / Copyright c⃝ 1992 Institute of Mathematical Statistics.

15. Merrill, D., Grimshaw, A.: High performance and scalable radix sorting: A case
study of implementing dynamic parallelism for GPU computing. Parallel Process-
ing Letters 21(02) (2011) 245–272

16. Riveros, C., Vimieiro, R., Moscato, P.: Cross-association of epistatic interactions in
age-related macular degeneration. In: BDC 2012 Biomarker Discovery Conference
@ Shoal Bay, Shoal Bay, Australia (2012)

