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Abstract

Procedural content generation (PCG) is a research field on the rise,
with numerous papers devoted to this topic. This paper presents a PCG
method based on a self-adaptive evolution strategy for the automatic gen-
eration of maps for the real-time strategy (RTS) game Planet Wars. These
maps are generated in order to fulfill the aesthetic preferences of the user,
as implied by her assessment of a collection of maps used as training set. A
topological approach is used for the characterization of the maps and their
subsequent evaluation: the sphere-of-influence graph (SIG) of each map is
built, several graph-theoretic measures are computed on it, and a feature
selection method is utilized to determine adequate subsets of measures to
capture the class of the map. A multiobjective evolutionary algorithm is
subsequently employed to evolve maps, using these feature sets in order to
measure distance to good (aesthetic) and bad (non-aesthetic) maps in the
training set. The so-obtained results are visually analyzed and compared
to the target maps using a Kohonen network.

1 Introduction

Within the field of computational intelligence we find the procedural content
generation (PCG) [1] for games, which represents a set of algorithmic techniques
used to automatically generate game content, whether it be maps, levels, 3D
models, music and/or even rules. The employment of PCG provides several ad-
vantages to the development of video games, such as a reduction in the expenses
linked to manually creating the content, a reduced amount of used memory and
the ability to create infinite games (e.g., new levels/characters/missions can be
automatically created to extend the lifetime of the game). PCG has been ap-
plied adequately during the development of several successful commercial games
such as Borderlands saga or the sandbox games Minecraft and Terraria.

PCG covers various methodologies, being our work focused on the search-
based procedural content generation (SBPCG) [2]. This search-based method-
ology consists in generating a substantial amount of game resources in order
to find, through a guided search (e.g., via meta-heuristics) those assets that
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meet a certain level of quality. Therefore, it is necessary to define the quality
criterion for the generated content. The quality criteria we used in this study
was how aesthetic the generated resources were (more specifically, the content
we consider are maps for a real-time strategy game). In our earlier work [3, 4],
we used two different criteria when generating and evaluating the maps, in
particular balance (i.e., no player gets an advantage over the other) and level
of dynamism (measured in terms of resource fluctuations or by evaluating the
nature of confrontations between the players). The goal in both cases was to
produce interesting games providing atractive challenges to the players. While
fulfilling our requirements of balance and dynamism, the generated maps lacked
aesthetic (for example, maps with their planets clustered in a small region), an
interesting property that a map might has and that may conduct to obtain even
more appealing games; for this reason, we now analyze how to incoporate this
feature to our generated maps.

The chosen game, Planet Wars, is a real-time strategy game developed in
the context of the Google AI Challenge competition. This game genre offers
a wide variety of artificial intelligence research problems [5] (such as opponent
modelling, spatial and temporal reasoning, resource management and real-time
planning). Planet Wars is a game about conquering planets and fighting space
battles between several players. The goal is to conquer all the planets while
trying to eliminate all opponents. These planets, which can hosts ships and are
distributed over a 2-dimensional plane, may belong to any player or be neutral
(that is, the planet belongs to nobody). Non-neutral maps produce new ships
every turn, depending on their size. Players send groups of ships (i.e., fleets)
from planets they control to other ones. If the player owns the target planet
then the number of arriving ships is added to the number of defending ships on
that planet, otherwise a battle takes place in the target planet: ships of both
sides destroy each other so the player with the highest number of ships owns
the planet (with a number of ships determined by the difference between the
initial number of ships). The distance between the planets affects the required
time for a fleet to arrive to her destination, which remains fixed during the
fleet movement (that is, it is not possible to change the destination of a moving
fleet). Although the game is played in turns, players issue their orders at the
same time, so it can be considered as a real-time game. Games can end when a
player has defeated the other or when the maximum number of turns is reached
(the winner is the player with the highest number of controlled planets).

2 Background

RTS games have been used many times as a tool to measure the efficiency and
performance of artificial intelligence techniques [6]. This kind of games offer sev-
eral fundamental AI research problems, such as adversarial real-time planning,
opponent modelling, spatial and temporal reasoning, decision making under un-
certainty and resource management. As in this paper, PCG techniques usually
generate maps for differente games, as displayed by the considerable number
of papers on this topic [1]. For example, Togelius et al. [7] presented a PCG
system that was able to create tracks for a racing game using a parameter vector
with a deterministic genotype-to-phenotype mapping. Frade et al. proposed the
use of genetic programming to evolve maps for videogames, (i.e., terrain pro-
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gramming), using either subjective human-based feedback [8, 9] or automated
quality measures such as accessibility [10] or edge-length [11]. Another example
by Mahlmann et al. [12], who suggested a search-based map generator based on
the transformation of low resolution matrices into higher resolution maps (using
cellular automatas) for a simplified version of the RTS game Dune II.

3 Map Characterization

The maps from Planet Wars are made of a certain number of planets np dis-
tributed over a 2D plane. Every planet is defined by their position on the plane
(coordinates (xi, yi)), their size si and a number of ships wi. The size si sets
the rate at which a planet will generate new ships every turn (as long as the
planet is controlled by any player) while the remaining parameter, wi, indicates
the number of defending ships. We denoted a map as a list [~ρ1, ~ρ2, · · · , ~ρnp

],
where each ~ρi is a tuple 〈xi, yi, si, wi〉. It is mandatory to specify the initial
home planets of the players, which were fixed as the first two planets ~ρ1 and
~ρ2. The number of planets np is not fixed and should range between 15 and
30 as set by the rules of the Google AI Challenge 2010 (this variable number
of planets is included in the self-adaptive evolutionary approach described later
on).

We characterized every map by computing several measures from the map’s
spheres-of-influence graph (SIG) [13]. This kind of graph can be used to extract
information about a set of points and establishes a relationship between them,
which is based on their spatial arrangement and is not affected by rotation,
translation and scaling (see Figure 1). SIGs can be applied to many research
areas and applications, such as in computer vision (as a low-level operator for
object recognition from input dot patterns), data mining (for clustering objects
with similar attribute values) and computer graphics (for defining surfaces over
point clouds). The procedure for generating the SIG for a certain map is as
follows:

1. For each planet pi placed at (xi, yi), compute the distance di to the closest
planet

di = min
j
{‖(xi − xj , yi − yj)‖ | j 6= i} (1)

where ‖v‖ is the Euclidean norm of vector v.

2. For each planet pi, draw a circle with center (xi, yi) and radius di

3. Build the SIG as a graph G(V,E), where V = {p1, · · · , pnp
} and (u, v) ∈ E

iff the circles with centers in u and v intersect.

We gathered two sets of maps, which were used later as a baseline to compare
with, one of them containing 100 maps with good aesthetics and the other one
including 100 non-aesthetic maps. An expert evaluated the maps and tagged
them as aesthetic or non-aesthetic, based on her perceptions and artistic criteria.
Then we computed several measures relating to the previously generated SIGs,
namely:

• Number of connected components (sub-graphs in which any two vertices
are connected by paths).
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Figure 1: A sphere-of-influence graph.
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Figure 2: Distribution of aesthetic (circles) and non-aesthetic (crosses) maps
according to the values of the variables from group A (a) and B (b)

• Average node’s degree (number of edges incident to the node).

• Density of the graph, which measures the ratio between number of edges
and nodes (specifically for undirected graphs δ = 2m/(n(n − 1)), with n
and m being the number of nodes (i.e. np) and edges respectively).

• Average clustering coefficient. The clustering coefficient ci of a node quan-
tifies how interconnected (or grouped) with his neighbors it is. Mathemat-
ically, ci = 2Ei/ [ki(ki − 1)] where Ei is the number of edges connecting
the immediate neighbors of node i and ki is the degree of node i.

• Pearson correlation between the size of the nodes and their betweenness.
The latter is a measure of the importance as intermediate gateway of a
node in a graph, as is computed as the average fraction of shortest paths
between any two nodes that go through a third certain node.

• Pearson correlation between the size of the nodes and their degree.
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• Size assortativity, i.e., Pearson correlation coefficient between the size of
nodes connected in the graph.

Subsequently, we created a Random Forest classifier for each possible combi-
nation of the above measures and we evaluated the performance of the classifiers
by a Leave-one-out (LOO) cross-validation. Each classifier had 50 estimators
(i.e., decision trees), bootstrap sampling and the Gini impurity criterion as the
function to measure the quality of the splits. After analyzing the AUC (Area
under ROC curve) values of the different combinations, we decided to use the
following groups of variables as the map characterization (see Figure 2):

• Group A: Graph’s density (δ), correlation between node size and be-
tweenness (ρSB), and size assortativity (ρSize) (i.e., Pearson correlation
coefficient between the size of connected planets). (AUC = 0.9916)

• Group B: Graph’s density (δ), clustering coefficient (ci) and Pearson’s
correlation coefficient between planets’ sizes and their degree (ρSG). (AUC =
0.9984)

We compared the similarity between maps using these two groups of features
in the following way: each map is characterized by a tuple 〈δ, ρSB , ρSize〉 and
〈δ, c̄i, ρSG〉; then the Euclidean distance between these tuples defined the similar-
ity among the planets they represented. The previously defined sets of aesthetic
and non-aesthetic maps made up a baseline to compare with so the problem
of generating aesthetic maps turned into an optimization problem about min-
imizing the distance between generated and aesthetics maps while maximizing
their distance to non-aesthetic maps. The latter was essential in order to insert
diversity into the set of generated maps, hence avoiding the creation of maps
that were very similar to the aesthetic ones.

4 Procedural Map Generation

We used a NSGA-II multi-objective self-adaptive (µ+λ) evolution strategy (with
µ = 10 and λ = 100) as the map generator. The objectives, as described in sec-
tion 3, were to increase and reduce the distance between the generated maps and
non-aesthetic and aesthetic maps, respectively. The solutions are represented as
mixed real-integer vectors of planets, planet’s coordinates (xi, yi) are real-valued
numbers but sizes si and initial number of ships wi are positive integers. To
overcome this situation we considered a hybrid mutation operator with different
methods for parameters of either type. For real-valued parameters, it used a
Gaussian mutation; as for integer variables, it used a method that generates
suitable mutations [14, 15].

The method for integer variables is similar to the mutation of real values
but, in this case, the difference of two geometrically distributed random vari-
ables produces the perturbation (instead of the normal distributed random vari-
ables used by the Gaussian mutation). Real-valued parameters 〈r1, ..., rn〉 were
extended with n step sizes, one for each parameter (thus providing the means
for self-adaptation), resulting in 〈r1, ..., rn, σ1, ..., σn〉. The mutation method is
specified as follows:

σ′i = σi · eτ
′·N(0,1)+τ ·Ni(0,1) (2)

r′i = ri + σi ·Ni(0, 1) (3)
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Figure 3: Cumulative set of non-dominated generated solutions (circle) for group
of variables A (a) and B (b) and maps from aesthetic (triangle) and non-aesthetic
(square) baseline sets.

where τ ′ ∝ 1/
√

2n, and τ ∝ 1/
√

2
√
n. A boundary rule is applied to step-sizes

to forbid standard deviations very close to zero: σ′i < ε0 ⇒ σ′i = ε0 (in this
algorithm, σ0 comprises a 1% of the parameter’s range).

Regarding integer-valued parameters 〈z1, ..., zm〉 they were extended in a
similar way as real-valued parameters, resulting in 〈z1, ..., zm, ς1, ..., ςm〉. The
following equations define the mutation mechanism:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1)) (4)

ψi = 1− (ς ′i/m)

1 +

√
1 +

(
ς ′i
m

)2
−1 (5)

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−
⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
(6)

where τ = 1/
√

2m and τ ′ = 1/
√

2
√
m.

In the case of the recombination, we chose a “cut and splice” operator that
recombines two individuals by swapping cut pieces with different sizes. It selects
one cut point for each individual and then swaps these pieces, getting two new
individuals with a different number of planets in relation to their parents (af-
fecting the complexity of the maps, i.e., the number of planets in the solutions,
and enabling the algorithm with additional self-adaptation features).

As described in section 3, vectors of three components characterized every
map, so the Euclidean distance between these vectors measures the likelihood
between the maps they represent. The fitness function is, precisely, the median
Euclidean distance from the individual to every map from the set of aesthetics
(minimization objective) and non-aesthetics (maximization objective) maps.
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Figure 4: Distribution of the variables from each group, group A (a) and group
B(b), for both non-dominated solutions and baseline maps.

5 Experimental Results

We conducted two sets of experiments, one for each group of variables. Each
set of experiments consisted of 20 runs of the evolutionary algorithm described
previously, with 100 generations per run, obtaining a set of non-dominated
solutions in each. Then we calculated the cumulative set of non-dominated
solutions for each group (see Figure 3). As we can see, the relationship between
both distances is linear regardless of the group of variables used, specifically in
the middle range of the Pareto front. This suggests that it is hard to increase
the distance of the solutions to non-aesthetic maps without also increasing it
toward the aesthetic maps, in addition to the high density of the search space.
Furthermore, we should observe that there are aesthetic maps from the baseline
with a higher mean difference to non-aesthetics maps than some non-aesthetic
ones, and vice versa (i.e., there are aesthetic maps that are more similar to
non-aesthetic maps than other non-aesthetic ones, and vice versa). This hints
at the subjectivity of the expert during the process of map classification.

Regarding how the characterization values of baseline and generated maps
are distributed (see Figure 4), we can observe that there are not high differences
between the variables from aesthetic and non-aesthetic maps. However, some
values from non-dominated maps, such as ρSB and ρSize from group A, are
higher than their corresponding values from baseline maps, which should explain
the high distance between some of the non-dominated solutions and baseline
maps (as seen in Figure 3).

We created two self-organizing maps (SOMs), one for each group of vari-
ables, so that we could be sure about the validity of the generated maps and
we could make a comparison between both groups of variables. These maps are
artificial neural networks that are trained using unsupervised learning to gen-
erate a discretized representation of the input space [16]. In this case, we built
both SOMs with 32 × 32 process units over a non-toroidal rectangular layout,
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(a) (b)

Figure 5: Map’s distribution over the SOMs (groups A (a) and B (b)). Red for
non-aesthetic, green for aesthetic and blue for non-dominated.

using our baseline maps as the training set, and then, we projected the non-
dominated solutions onto the SOM (see Figure 5). As we can see in both cases,
they were not able to establish a clear distinction between aesthetic (green) and
non-aesthetic (red) maps (note the overlapped zones). Regarding the projected
solutions, they occupy a distinct region in the case of group A, while in group
B the region is blurred (even some solutions are located in a different area:
specifically the lower right area). Besides, the red component of the solutions
from group B seems to be greater than the group A red component, which may
indicate that the results obtained from the group B variables are lower quality.

6 Conclusion

In this paper we have presented a method for automatically generating maps for
the RTS game Planet Wars, based on evolution strategies. The quality of these
generated maps was based on their aesthetics, specially on measures calculated
from topological properties of the sphere-of-influence graph computed for each
map. We conducted a study in order to discover which measures are the most
significant, using for this purpose random forest classifiers, obtaining two sets
of three measures each (groups A and B). We tested our method using both
sets of measures, projecting the solutions (altogether with the baseline maps)
on a self-organizing map. Experiments showed that there is a linear relation-
ship between the objectives of the algorithm, i.e., it is difficult for the method
to generate maps that seem to aesthetic maps without seeming also to non-
aesthetic. Furthermore, observing the SOM, it seems that the results obtained
using the first group of variables (graph’s density, correlation between node size
and betweenness, and size assortativity) had better quality than those obtained
by the second group (density, clustering coefficient and Pearson’s correlation
coefficient between planets’ sizes and their degree). In any case, the method
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Figure 6: Map samples: maps from baseline with good (a) and bad (b) aesthetics
and maps generated using the variables from groups A (c) (d) and B (e) (f)
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is capable of generating fully playable aesthetic maps for the aforementioned
real-time strategy game.

Future work will try to explore the connection between aesthetics and playa-
bility (as defined in [3, 4]), defining augmented fitness functions to take the latter
into accout. We also plan to introduce the user in the loop in order to refine
the automated aesthetic criterion.
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