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Abstract

In biological systems, a marvelous diversity of form and function emerges from
evolutionary processes at all levels, from molecules to organisms and ecosystems. This
evolution of diversity is one of the major questions in Biology, and it is investigated in
many different biological disciplines, as evolutionary developmental biology, molecular
biology and evolutionary theory. As the scope of this question is exceedingly vast,
no single conceptual framework can be expected to encompass all the aspects of this
evolution of diversity.

In recent years, as computational methods have become prevalent in Biology, the
evolution of diversity has been studied using computational models and simulations.
In this context, this doctoral dissertation employs a computational approach to explore
three different aspects in the evolution of diversity: developmental processes, the
interaction between the body and its control system, and evolutionary dynamics. Each
one of these aspects is studied in a specific and abstract domain: tensegrity structures,
models of molecular motor proteins, and virtual plant communities based on L-systems.
In each domain, the results show different evolutionary mechanisms giving rise to
diversity of form and function: the complexification of developmental processes, the
coevolution of form and function, and ecological interactions. From the perspective
of evolutionary computation, new evolutionary methods are presented, with several

applications: generation of tensegrity structures and automatic agent design.

vii
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Chapter 1

Introduction

In the last decades, the divide between Computer Science and Biology has become
increasingly blurred. On the one hand, a diverse array of computational methods
(collectively known as bio-inspired computing) have been inspired from an equally
diverse range of biological systems. On the other hand, most biological disciplines
have become (or are in the process of becoming) absolutely dependent on diverse
computational methods, as researchers have been driven to integrate them into their
workflows. Likewise, computational models of biological systems are now prevalent in
Biology. This doctoral dissertation constitutes an interdisciplinary work, sitting at the
boundary between Computer Science and Biology.

Arguably, evolutionary theory is one of the disciplines where the divide between
both sciences is more permeable. Considering the flow of ideas from Biology to
Computer Science, evolutionary dynamics can be easily abstracted into algorithmic
patterns, inspiring computer scientists to devise evolutionary-based metaheuristic
techniques for optimization, collectively called evolutionary computation. In the
opposite direction, not only computational methods have been incorporated into
evolutionary research, but also purely synthetic computational models are being
increasingly used to research questions in evolutionary dynamics.

An intriguing aspect of evolutionary theory is the evolution of diversity: in the
last hundreds of millions of years, Earth has witnessed the evolution of an astonishing
variety in the size, morphology, function, organization and behavior of living organisms.
Currently, the question of why organisms present such a rich diversity is far from

satisfactorily answered. This question is mirrored in evolutionary computation, where
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the generation and maintenance of diversity in evolutionary algorithms is a major area
of research.

Science often faces challenging questions and problems, which may seem intractable
if they are tackled directly. Answers and solutions are often obtained by abstracting
reality in order to analyze simplified, mathematical models of it. However, in relation
to the previously mentioned question of the evolutionary origins of diversity in living
organisms, it is reasonable to expect that no single answer, no single conceptual
framework is the sole explanatory factor for this question, but a range of them
contribute to diversity at different levels. To explore them, this doctoral dissertation
presents three simple computational models, each one profoundly different from the
others. In this way, each model is suited to study different causes of diversity.
Specifically, the models explore the roles in the evolution of diversity of developmental
processes (Chapter 2), the coevolution of body and control system (Chapter 3) and
evolutionary dynamics (Chapter 4).

The rest of this introductory chapter is organized as follows. Sections 1.1 to 1.5 are
devoted to present the main lines of the dissertation, to put in context each one of the

three models:

e Section 1.1 describes the rising popularity of agent-based models in computational

biology (applicable to all of the dissertation).

e Section 1.2 presents an overview of evolutionary theory from the perspective of

evolutionary developmental biology (Chapter 2).
e Section 1.3 provides a brief description of molecular motors (Chapter 3).

e Section 1.4 presents a short introduction to evolutionary computation (Chapters 2

and 3).

e Section 1.5 describes the concept of morphological computation (Chapters 2

and 3).

Finally, Section 1.6 provides an brief outline of the dissertation.
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1.1 Agent-based models for computational biology

Evolutionary theory is concerned with understanding in detail the evolutionary pro-
cesses that have configured all the diverse living organisms along the history of Earth.
Of singular interest is the study of evolutionary change at or above the species level,
popularly known as macroevolution. Evolutionary scientists have traditionally studied
it only indirectly, at first with the tools of taxonomy, systematics and paleontology,
then with population genetics, and with increasingly sophisticated technologies that
have enabled the blossom of new disciplines, like molecular phylogenetics. However, it
is difficult to study evolutionary processes in detail, as scarce and incomplete evidence
must be patched together from the structure of extant organisms at different scales
(from anatomy to genetic data) and paleontological records.

Therefore, much of evolutionary research takes the form of assessment of math-
ematical models of evolution through computational and/or analytical methods.
Traditionally, these models of evolutionary dynamics have been formulated as systems
of differential equations [145], whether well mized (ODEs) or spatially extended
(PDESs), in which the established goal is to find analytical solutions. These approaches
present a number of drawbacks, however, since their formulation and resolution demand
expert mathematical knowledge, yet they also have to remain simple enough to be
mathematically tractable. For all these reasons, mathematical descriptions at the
macroscopic level are generally unrealistic and difficult to extend with new features.

Another approach is to perform direct experimentation: experimental evolution, the
study of evolutionary dynamics in organisms growing in precisely controlled conditions.
However, this approach is somewhat limited in scope, as practical considerations limit
it to study simple and fast-reproducing organisms (see for example [199, 217]).

On the other hand, there is an alternative approach to experimental evolution,
made possible by the increasing power of computers: agent-based models. These
models describe communities in a bottom-up fashion through the properties of their
individual members, the developmental, functional and behavioral rules they obey, and
the interactions with one another and the environment [76]. They can be considered
as computational models of experimental evolution.

A great number of agent-based evolutionary computational models have been

recently proposed, whether at the abstract level of large interacting populations [26,
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221] or at the fine-grained level of multicellular growth [51]. Agents can be
modeled in many ways beyond simplified abstractions of actual living organisms; for
example, as computer programs [163], structures derived from L-systems [17] or formal
automata [127].

Potentially, agent-based models can be used to produce large-scale computational
experiments that can condense long evolutionary periods into short computing time
frames, while making vast collections of data available for the analysis and extraction
of relevant properties [115, 121]. Moreover, increasing computer power and storage
capacity provide the means to actually simulate explicative models of biological
evolution. The three models presented in this is dissertation are agent-based, albeit
each one is profoundly different from the others. Chapter 4 presents a synthetic agent-
based model of evolution to study the evolutionary dynamics of diversification, while
in Chapters 2 and 3 populations of agents evolve under the rules of evolutionary
algorithms; diversity of form and/or function ensues from different aspects of the model

rather than proper evolutionary dynamics.

1.2 Evolutionary developmental biology

The now traditional modern evolutionary synthesis is still the current mainstream
school of thought [130], used by many evolutionary biologists as the conceptual frame
for evolutionary theory, stressing population genetics as the main tool to understand
evolution. Under this view, diversity of form and function is a byproduct of evolutionary
dynamics, gradually and passively increasing as diverse sets of alleles arise among
different subpopulations of individuals, and these are expressed in consequently diverse
sets of phenotypes, adapting to new environments. Genetic information is at the center
of the stage. This leads to the view that phenotypes are decoded versions of their
corresponding genotypes [129]. However, this point of view, highly abstract, makes it
difficult to research the causes of the evolution of diversity at a mechanistic level [112].

An alternative approach is originated from the following observation: the phenotype
of an organism is generated by a developmental process, that is to say, the process which
transforms a zygote into a full-fledged organism. The developmental process can be
described, at its core, as a complex choreography of precisely-timed events, as cells in

the developing organism divide, change their physicochemical properties, and arrange
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into cell sheets and other configurations, folding into increasingly complex forms [60].

Therefore, the evolution of phenotypes is largely the evolution of the corresponding
developmental processes. At first glance, this seems just a complementary observation
to the view of evolution as variation, inheritance and selection of the genes in a
population of organisms, since the complex choreography that is a developmental
process is regulated by the genotype of the organism. In fact, in the last decades,
the new discipline of evolutionary developmental biology (evo-devo) has emerged as the
study of developmental processes from an evolutionary perspective. Developmental
processes seem to be a key component in the evolution of diversity [14]. From
a mainstream point of view, the goal of evo-devo can be roughly described as
understanding how genotypic variation translates to phenotypic variation, as changes
in the genome modulate the developmental process.

However, an alternative point of view is the following: the developmental process
is the result of a very convoluted interplay between the genome and laws of geometric
and chemico-physical nature [60]. Thus, the key is not just in the genome, but in that
interplay as a whole. Under this interpretation, the genome is displaced from the center
of the stage: to understand how diversity arises through evolutionary dynamics, genes
are not sufficient; physics are at least equally important, since the way in which physical
processes are influenced by the genome become the key to understand diversity, and
developmental processes can inherently impose a bias to evolutionary dynamics [5].

It is even debatable whether the genome has to be the main source of regulatory
control in development: non-genetic features of chemico-physical nature may be even
more determinant in some contexts, especially in the early stages of multicellular
evolution [144] and in some unicellular organisms [71]. Chapter 2 presents a model
where diversity ensues from convoluted developmental processes with minimal genetic

control; while in the other chapters there is not a strong component of development.

1.3 Molecular motors

Biological molecular motors are nanoscale devices capable of transforming chemical
energy into mechanical work, associated to many vital functions at all scales [173].
While these molecular motors are primarily studied in molecular biology, they are

of interest to many other disciplines, from medicine [69] and cladistics [202] to
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nanotechnology [205].

From a computational point of view, the characteristics and dynamics of these
motors are studied at multiple time scales, ranging from very detailed and complex
molecular dynamics simulations spanning a very small amount of time [99, 104, 119],
to extremely simple and coarse-grained theoretical models of their working cycles [77,
215]. They have been extensively studied in order to understand their biochemical and
structural features [203], and their processivity, i.e., the way some of them are able to
walk along filaments taking many steps in a row [68, 209, 225].

However, this research is performed only in the (relatively few) instances known
from molecular biology. In Chapter 3, heuristics inspired by elastic network analy-
sis [161] and behavior-finding methods [120] are applied to explore a subset of the
configuration space of template molecular structures that are able to transform chemical
energy into directed movement. Thus, this particular and very specific domain (the
study of molecular motors) is used as a testbed for the study of the evolution of diversity
under very specific and constrained conditions (walking over a filament with a fixed
cycle of operation), with the interesting result that, in fact, from the coevolution of
the structural configuration (form) and the induced gait pattern (function), molecular

motion can be attained in many different ways.

1.4 Evolutionary computation

Nature has always been a source of inspiration for engineers and scientists. In this
regard, computer engineers are no exception: many algorithmic techniques have been
inspired in nature; to name the most relevant: artificial neural networks, artificial
immune systems, ant colony optimization and evolutionary algorithms [67].
Evolutionary algorithms are metaheuristic techniques used to find admissible
solutions to optimization problems. Most evolutionary algorithms follow a common
pattern: a changing set of candidate solutions (the population) undergoes a repeated
cycle of evaluation, selection and reproduction with variation. The first step in the
algorithm is to generate the candidate solutions of the initial set, usually in a more or
less random way. Each candidate is then evaluated using the fitness function, i.e., an

heuristic rule to measure its quality as a solution to the problem!. After the evaluation

IThis is the meaning of fitness in evolutionary computation, and is the meaning commonly used
in this dissertation. This is inspired in (but should not be confused with) the concept of fitness
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phase, selection is performed: a new set of candidate solutions is generated from the
old one from copies of the candidate solutions; each candidate solution is copied a
number of times probabilistically proportional to its fitness. This step decreases the
diversity of the population, which is restored by applying to a fraction of the candidate
solutions some operator designed to increase the variation (for example, mutation or
recombination operators). These steps (the previously mentioned evaluation, selection
and reproduction with variation) are applied iteratively; the effect is a slow, biased
change in the population; the mean (and best) fitness gradually increases as superior
solutions are promoted through selection and new variations are created.

While this algorithmic pattern is common to all evolutionary algorithms, a wide
range of different algorithms use different sets of selection rules, variation operators and
solution encoding. The most relevant varieties are genetic algorithms [84], evolutionary
strategies [8], evolutionary programming [59] and genetic programming [107]. Among
these variants, Holland’s proposal (genetic algorithms) is one of the most popular.

In a genetic algorithm, the encoded form of a candidate solution is named the
genotype, while the phenotype is the translation of that coded form into a solution.
Holland’s original formulation of genetic algorithms is strongly associated with a plain
and direct encoding of genotypes as binary strings, but this is not necessarily the case
in all instances. In fact, the models presented in Chapters 2 and 3 use what can be
described as genetic algorithms (though with far more elaborated encodings) to evolve
diverse structures. However, to avoid any potential misunderstanding, these will named
with a more generic label, as evolutionary algorithms.

A recent trend in evolutionary computation, named artificial embryogeny, is the use
of artificial developmental processes as indirect encodings for candidate solutions [183];
that is to say, instead of encoding solution in a more or less direct way, they are encoded
as some specification to direct or modulate some kind of abstract developmental
process. The point is to enable evolutionary algorithms to tackle bigger and more
complex problems, as well-engineered indirect encodings reduce the complexity, size
and dimensionality (with all the associated issues of optimization in high-dimensional

spaces) of the genetic spaces where the evolutionary search is performed [47]. Chapter 2

in evolutionary biology: a measure of the ability of an individual to propagate its genes (often
incorrectly assumed to be just the reproductive success). In general, the word fitness will be used
in the evolutionary computation sense in Chapters 2 and 3, while the biological sense will be used in
Chapter 4.
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provides an extreme example of indirect encoding through developmental process, while
in Chapter 4 agents are also indirectly encoded, but in a less convoluted way, using a

developmental process based on rewriting rules from formal language theory.

1.5 Morphological computation and tensegrity

The term morphology refers to the form, shape or structure of an object. The concept of
morphological computation has emerged in recent years in the field of Robotics, to name
the idea that the behavior of a robot does not only depend on the nature of the control
system and its wiring to the body of the robot, but also on the morphology of the body
itself [154, 157]. This means that, if the morphology of the robot is taken into account
in the design, the control system can be simpler than expected, by exploiting the
dynamics of interaction between the body and the control system. Paul [154] provided
a proof of concept for this idea by designing a robot with a XOR-type behavior, while
its control system was based on simple one-layer perceptrons (which cannot solve the
XOR function); the XOR-type behavior was the result of the interplay between the
control system and the structure of the robot.

This concept has been applied to design bipedal robots with minimal control
systems [128] and robots with open-loop controllers and minimal numbers of degrees of
freedom which self-stabilize fast gait patterns and generate diverse sets of behaviors, all
of it through the interaction between the body and the control system [157]. The key is
that the way the robot is built (not only the morphology; but the characteristics of the
constituent materials) can non-linearly modulate the activity of the control system.

While this concept has been primarily used in the context of Robotics, it represents
a useful paradigm in other fields. An example of morphological computation in agent-
based models is Lobo’s model of path followers [120]: relatively simple agents evolved
to follow curved paths, whose control systems are implicitly their own structures. As
an example in the context of Biology, molecular motors [173] can be considered as
nanoscale devices with a significant degree of morphological computation, because of
their inherent nature: these motors are enzymes that walk over cytoskeletal filaments
inside biological cells; and their locomotion is the self-organized outcome of two factors:
their morphology and the biochemical details (which can be collectively deemed as

the control system) of the cycle of interaction with the filament. In Chapter 3, an
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evolutionary algorithm is used to evolve diverse structures inspired in molecular motors;
their equally diverse gait patterns arise from the complex interaction between their
structures and their cycle of operation, by morphological computation.

Tensegrity structures show potential to enable morphological computations: they
are stable structures composed of compression-bearing rigid elements, balanced by a
network of tensioned cables, such that the whole structure is in equilibrium [138].
Because some elements of a tensegrity structure bear compression while others bear
tension (the so-called self-stress of the structure, which is analyzed from a mathematical
perspective in Appendix A), tensegrity structures store potential energy; as a side
effect, they also have highly non-linear dynamics. These facts have been used to
design tensegrity-based walker robots [153]; whose gait patterns are modulated by
the non-linear interaction between the control system and the characteristics of the
structure. In developmental processes, the genome can be considered to play the role
of control system. Chapter 2 presents an evolutionary algorithm using a model based
on tensegrity structures to generate diverse developmental processes (in turn generating
diverse final morphologies). The primary role as control system of the developmental
process is not provided by a genome, as usual, but by the non-linear dynamics of the

tensegrity structures themselves.

1.6 Outline

The rest of this dissertation is organized as follows. Each one of the next three chapters
introduces a different topic, then describes a model in the context of that topic, and uses
it to study different aspects of the topic; among these aspects is present the evolution
of diversity, mostly shown by examples of diverse evolved agents.

Chapter 2 introduces an artificial model of development with minimal genetic
control; using evolutionary algorithms to study how diversity arises from the com-
plexification of developmental processes. Chapter 3 changes the domain to molecular
biology, studying the characteristics of artificial models of molecular motors designed
with an evolutionary algorithm, and how diversity can emerge even in very constrained
settings. Chapter 4 introduces a fairly different model where agents evolve through
ecological interactions (not properly an evolutionary algorithm, but an artificial model

of evolution); interesting evolutionary dynamics emerge as a result. These chapters
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constitute the main part of the dissertation. After them, a summary with the main
conclusions is presented in Chapter 5. Appendix A presents a novel mathematical
analysis of tensegrity structures, which are used in Chapter 2; the analysis is too long
to be included as a section of that chapter. Appendix B provides a visual representation
of three simulations analyzed in Chapter 4. Finally, Appendix C details some practical
aspects of the implementation of the models and simulations, and Appendix D is a

Spanish version of the summary and conclusions of the dissertation.



Chapter 2

Diversity by complex

developmental process

The thesis of this chapter revolves around the proposal of tensegrity structures
as excitable media able to undergo complex developmental processes with minimal
genetic control. While development plays a critical role in the emergence of diversity,
its mechanical and chemical actions are usually considered to be inextricably correlated
with genetic control. Since in most extant species the complex growth from a zygote to
the adult organism is orchestrated by a complex gene regulatory network, the prevalent
view is that the evolution of diverse morphologies must result from the evolution of
diverse complex gene networks.

However, in this chapter we propose an abstract model of self-regulated structure
without genetic regulation, but only modulation of initial conditions. Morphologies
are generated by a simple evolutionary algorithm searching for complex instances of
unfolding dynamics based on tensegrity structures. The usual regulatory function of the
genome is taken over by physical constraints in the structures, making morphological
diversity a pure product of structural complexification, thus providing an example
for the hypothesis that developmental processes leading to morphological diversity
are the result of a complex interplay of physical forces, and genes play a modulating

and stabilizing role in developmental processes, rather than guiding them [87]. From

Part of the results presented in this chapter have been accepted to be published
in [53].

11
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the perspective of evolutionary computation and artificial development, the model
presented in this chapter represents a working example of how small the genetic
component of the model can become, while still enabling an evolutionary search to
solve a problem.

The evolutionary approach used in this chapter is similar to the one used in
Chapter 3, though there is not a straightforward environmental goal to drive the
generation of diversity, but it arises as a byproduct of the complexification of
developmental processes.

This chapter is organized as follows. Section 2.1 provides an historical background
and an introduction on the potential of complex developmental processes to drive the
evolution of morphological diversity, along with a brief exposition of the perspective
from evolutionary computation, and an introduction to the concept of tensegrity. An
abstract and computational model of complex developmental process is described in
Section 2.2. Then, experimental results using this model are presented and analyzed
in Section 2.3, and finally in Section 2.4 the significance of the model is discussed. See
also Appendix A for a mathematical study of tensegrity structures related to this work,

but not directly concerned with the issue of diversity.

2.1 Introduction

In this chapter, we discuss about diversity of form, i.e. diversity of morphology. The
aim is to design computational models inspired in biological development capable
of generating diversity. The phenotype of a multicellular organism is generated
by a complex developmental process, which transforms a single fertilized cell, the
zygote, into a full-fledged living architecture composed of millions to trillions of cells.
At its core, this process is a fascinating self-made choreography of precisely timed
events, during which cells in the growing organism spontaneously divide, modify their
physicochemical properties, and arrange into layers and tissues, themselves folding
into increasingly complicated shapes to form organs and appendages [60]. The recent
discipline of ewvolutionary developmental biology, or evo-devo, studies development
from an evolutionary perspective (and vice-versa). It examines how phenotypic
variation arises from the interplay between the physics of growth and both genetic and

environmental variations. Evo-devo takes the viewpoint that morphological trends in
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evolution are biased to a large extent by developmental mechanisms [5], re-interpreting
the traditional but simpler concept of phenotypic plasticity [211]. It also applies to
some unicellular organisms, albeit at the molecular scale [70].

In this context, genetic regulatory networks (GRNs) are emerging as a unifying
operating concept [37]. A GRN model postulates that the genome can be described
as a vast and complex network of interacting genes, promoting and repressing each
other’s expression through the intermediation of produced proteins that bind to specific
regulatory sites on the DNA. Abstracting out the highly convoluted pathways and
feedback loops between genes, RNA, proteins and metabolites, the state of a GRN
can be formalized as a set of transcription levels, one for each gene; in the simplest
case, a on/off state for each gene. From there on, it is conceptualized as a dynamical
system that follows different trajectories in state space, typically landing on fixed-point
or limit-cycle attractors. Each attractor can then be interpreted as a cell type with
precise behavior and properties [98]. Added to the discovery of the homeobor genetic
toolkit, development is construed as a highly complex process tightly modulated by
an underlying GRN model: large-scale, coordinated changes in the phenotype are a
more or less direct consequence of small, localized changes in the regulation of the

developmental process [211], be they genetic [185] or environmental [206] changes.

2.1.1 An historical perspective

In a dissertation with a strong biological inspiration, it is not possible to discuss about
diversity of form without taking into account a biological perspective. To put evo-
devo in an historical context, we will summarize two of the main schools of thought in
evolutionary theory!.

In the first school of thought, traditionally identified with the modern evolutionary
synthesis (but also known as Neo-Darwinism), genes are at the center of the
evolutionary stage [179]. In this paradigm, the genome is essentially considered
as a blueprint, and the process of decoding the programmed information in this

blueprint is not viewed as a primary area of interest in evolutionary theory [129].

'While the theory of evolution is universally accepted in the scientific community, many details
remain to be worked out, and controversies over the subtle (and sometimes not-so-subtle) details linger
for decades. Consequently, the history of the relevant evolutionary thought in the last decades is so
rich that a comprehensive analysis would fill several books [18, 72, 113]. However, since this is not the
place to discuss these issues in depth, only a summarized account of the controversies will be provided
in this introduction.
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Evolution is considered the result of differential changes in gene frequencies among
populations, resulting from genetic variation which is directly expressed into phenotypic
variation and thus subject to natural selection. In this view, changes are always
extremely subtle, and macroevolution is explained as essentially microevolution over
very long stretches of time. Consequently, diversity is understood to be a byproduct
of evolutionary dynamics, gradually building up as diverse sets of alleles arise among
different populations of individuals, and these are expressed in consequently diverse
sets of phenotypes, adapting to new environments.

In the second school of thought, which may be called structuralism [87], evolution
is thought to operate at the level of organisms, which are considered as complex self-
organizing entities. While natural selection is still given a key (or at least significant)
role, organisms are considered as complex systems and this fact must be taken into
account when considering them from any point of view (especially for their evolutionary
history). In this framework, scientists have suggested that diversity arises from the
differences in the self-organization of the developmental processes of different organisms,
and morphological evolutionary trends are biased to a large extent by development [5].

It is important to note that, however bitter the debate may become [184], it is
not a black and white one: there are many differing points of view ranging from
these two extreme positions, and even staunch supporters of gene-centric evolution (as
Richard Dawkins [38]) will generally concede that biases in developmental genotype-
phenotype mappings may constrain natural selection in some ways, while it would be
fairly difficult to find a structuralist (even a radical one, as Brian Goodwin [70]) ready
to dismiss the genome and/or population genetics as a totally irrelevant part of the
equation. The controversy is better understood as different scientists coming from
fairly different scientific traditions, with different research interests and methodologies,
stressing different parts of the subject, and more often than not misunderstanding
the statements from people in the other side, and raging about the subject and their
opponents.

In this context, it is interesting to frame the controversy in terms of Mayr’s
distinction between proximate and ultimate biological causes [129]. A proximate cause
is a direct factor (physiological, developmental or environmental) to explain a biological
trait, while ultimate causes are specific events and general laws providing historical

explanations for the traits, interpreted as evolutionary dynamics. In Mayr’s conceptual
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map, proximate and ultimate causes roughly correspond to how and why questions,
clearly separated in their scope and explanatory power. However, structuralists
promote a more holistic approach [112], were traditionally prozimate causes (like
evidently, developmental processes, but not only them) are also used to understand
evolutionary dynamics.

Traditionally, gene-centric evolution has been the mainstream discipline, while
structuralists tend to be either outcasts (however brilliant and inspiring their work
may be; D’Arcy Thompson being a classical example [194]) or polemic individuals,
as Kauffman [98] or Gould [72]. In the last decades, structuralism is steadily gaining

support through evolutionary developmental biology (evo-devo).

2.1.2 Evo-devo: a new synthesis

While the traditional Neo-Darwinian view focuses on population genetics to explain
how biological diversity of form is shaped by evolutionary dynamics driven by natural
selection, it is debatable whether it is able to provide a mechanism to explain how or
why this diversity arises in the first place. A detailed knowledge of the genome enables
scientists to pinpoint where and when different genes are expressed in the embryo, but
it is insufficient to understand how the organism builds itself [140]. To cover this gap,
evo-devo researchers describe developmental processes as a coupling between genetic
regulatory networks and cellular biomechanics and chemical signaling [60, 211]. In
this chapter, focus is put on the latter part of that interplay: the physical properties
enabling biological diversity of form; specifically, the potential of tensegrity structures
(see Section 2.1.4) to generate a wide diversity of forms.

Highly complex morphologies can be generated by developmental processes.
Mechanical cues (strain, compressive forces, bending forces, and so on) play a key role
in development by modulating cell differentiation, influencing the direction of growth,
and deforming tissues [80]. Even late-stage (post-embryogenesis) events, such as the
folding of the mammalian gut, are primarily determined by mechanical dynamics [171].
Geometrically, the embryogenesis of a typical triploblastic animal consists of a set
of complex and carefully timed developmental steps, which dynamically change the
physical properties of the cells, the surrounding extracellular matrix and the differential
adhesiveness among cells and between cells and other substrates [60].

At a mechanical level, several types of morphogenetic processes can be distin-
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guished, such as cell sheets growing in a given direction, or cells detaching from these
sheets and migrating to create new groups. Some of the most common morphogenetic
processes include invagination, where a sheet of cells folds inward at a point or line,
possibly resulting in the folded cells detaching to form another sheet (e.g., the neural
tube), and branching, in which a tube recursively branches off into a fractal-like pattern

(e.g., lung organogenesis [91] or vasculogenesis [106]).

2.1.3 Artificial development

Moving now to an engineering perspective, the model presented in this chapter
can be framed in the context of artificial development: an emerging field at the
crossroads of computational biology, artificial life and evolutionary computation that
studies computational models of developmental processes toward various scientific and
engineering applications [183]. Typically, the use of evolutionary methods to conduct
a parameter search or stochastic optimization becomes especially difficult when the
individuals are complex systems, i.e. made of a large number of interacting components,
because of their high dimensionality (number of degrees of freedom). Therefore, the
application of evolutionary algorithms to very complex problems is limited by the ability
to efficiently encode solutions to these problems.

To solve this issue, complex solutions to complex problems are proposed to be
encoded indirectly through developmental processes (via a developmental or generative
stage), in a compact way, reducing the size of the genome and thus enhancing the
efficiency of evolutionary algorithms (despite the added developmental calculation).
However, with the introduction of a developmental stage, a new layer of complexity
is added, since in most models of artificial development published up to date, indirect
encoding is implemented through a complex interaction between the genotype (often a
genetic regulatory network) and the developing phenotype. Examples abound: Lipson’s
robots with genetic encoding based on L-systems [85], later versions of Framstick’s
genomes based on genetic programming techniques [102], or Lobo’s path followers with
artificial genomes [120].

Some researchers have investigated more complex and biologically realistic models
of developing phenotypes with the intention of minimizing the size and complexity of
the genotype even further to make it more amenable to evolutionary methods [47].

This represents, in essence, an application of morphological computation [154, 157] to
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developmental processes: a methodology to exploit the dynamics of interaction between
(in this case) the developing phenotype and the genetic control (see Section 3.1.1
for more details). In this respect, the model presented in this chapter represents a
test on how small can be the genetic machinery of a model of artificial development
while still enabling an evolutionary search to solve a problem (in this specific case, of
complex developmental processes giving rise to a diversity of morphologies). To this

aim, tensegrity structures are used, as explained in the next section.

2.1.4 Tensegrity

Once the biological and engineering perspectives have been presented, this section
presents the concept of tensegrity, which plays a key role in the model used in this
chapter.

Historically, many definitions of tensegrity structure? have been proposed [96].
Most of them are variations on the original definition of Snelson [180] and Fuller [65],
respectively the creator and the namer of the concept (from a contraction of tensional
integrity). The most generic definition of the concept can be phrased in the following
way: a tensegrity structure is a stable object composed of a set of compression-
bearing rigid elements connected by a network of tensioned cables, such that the
sum of forces acting on each vertex is null [138]; that is to say, there is a balance of
forces maintaining the structure in equilibrium. The compressive and stretching forces
sustained by the elements of the tensegrity structure are defined collectively as the self-
stress of the structure. This self-stressing characterizes the high structural resilience of
tensegrity structures, known as tensile integrity [138]. Combined with an exceptionally
high rigidity-to-mass ratio, all these properties make tensegrity structures an object
of active study with numerous applications in architecture, civil and mechanical
engineering [138].

The last decade has also seen applications of tensegrity structures in Robotics,
evolving control systems for walking tensegrity robots by analytical [73] and evolu-
tionary [153] methods, optimizing the dynamical response of wing frameworks [10],

exploiting large-scale couplings and nonlinear dynamics of tensegrity structures to

2While the word tensegrity has been commonly used as a noun to name structures of a certain class,
this usage results in awkward wording (particularly derived terms like tensegrital, tensegritic, etc., or
the lengthy periphrases used to avoid them) when describing the properties of these structures. To
avoid this issue, the term tensegrity structure will be used in the following.
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Figure 2.1: An example of tensegrity
structure. Tensegrity structures are
composed of compression-bearing com-
ponents (called bars or struts) tied
together into a structure by stretching-
bearing components, called cables. The
whole structure is in a stable equilibrium.

achieve locomotion with minimal control [166], and designing ballistic structures able
to withstand landing impacts while minimizing the impact shock [121].

In these applications, the tensegrity structures are either selected beforehand or
designed for the task to be solved. In both cases, the design of stable tensegrity
structures is an extremely difficult task: if the potential energy of the structure
(considered as the energy stored as compression and stress forces in the elements of
the tensegrity, the self-stress) is considered as a function of the relative positions of
the vertices (geometric configurations), the structure will be stable in some geometric
configuration only if the potential energy function has a local minimum for that
geometric configuration [32].

Several methods have been proposed to find new designs for tensegrity structures
(see [195] and [96] for a review), but the problem of automating the discovery of new
and complex tensegrity structures remains open, in spite of several new methods based
in evolutionary algorithms, using either direct encoding schemes [155], L-systems [165]
or developmental processes [120]. As explained in the following sections, the approach
used here is more unusual, in that the topology of the structure is given beforehand,
and new geometric configurations emerge through dynamical developmental processes.
However, a systematic framework to analyze tensegrity structures and synthesize new
designs is still lacking. Towards this end, Appendix A provides a mathematical analysis
of tensegrity structures, based on a new way to decompose tensegrity structures into a
set of constitutive atoms [78].

Getting back to the applications of tensegrity, for the purposes of this work it
is interesting to note that it has also been used in Biology, being applied from
the nanostructure (for example in the capsid of viruses [176]) to whole organisms
(the musculoskeletal system can be considered as a tensegrity structure [181]). A
subdiscipline in cellular microbiology and biophysics has been developed, working on

Ingber’s hypothesis that the cellular cytoskeleton is a dynamic tensegrity structure [89].
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In this view, many properties of cells and tissues are hypothesized to arise from their

nature as tensegrity structures:

e The extraordinary resilience and ability to bear high loads of the cytoskeleton [21],
because in tensegrity structures, loads tend to be more or less uniformly

distributed over a large portion of the structure.

e The mechanical properties of the cell [34, 89|, that is to say, the mechanical
response to cell deformation and substrate-dependent shape change. Since
tensegrity structures store a considerable amount of potential energy in the self-
stresses of their constitutive elements (compressive and stretching forces), they

have potential for dynamically changing their shapes between metastable states.

e The conversion of mechanical signals into biochemical responses, or signal
mechanotransduction, relying on force distribution throughout the cytoskele-
ton [90]. For example, cell fate, including mitosis, differentiation and apoptosis
is governed in some cases by mechanical cues which are sensed through the

cytoskeleton [28].

Interestingly, all of these properties are also significant from the point of view of
developmental processes: as sheets of cells grow and cells assemble in specific locations,
they are subject to forces that provide mechanical cues which in turn eventually affect
the timing of the different steps of the developmental process. The tensegrity properties
of the cytoskeleton are critical in supporting this whole process [126]. For example, in
a recursive branching process, the growth of new branches is guided by local changes
in the tension of the extracellular matrix [91], and in invagination processes, cells in a
localized patch in an embryonic sheet undergo the contraction of their apical surfaces,

inducing the invagination, just by mechanical cues [139].

2.1.5 Development with minimal genomic control

In this section, building upon the previously laid down concepts, the model and the
main thesis of this chapter is proposed. The first concept to consider is that of
developmental steps: as previously said, the developmental process of an organism
consists of a series of complex developmental steps which have to happen in a

very specific spatio-temporal pattern in order to build the organism without any
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malformation. FEvo-devo advocates have advanced the view that the morphology of
the organism is that of a series of physical processes running during development,
while the role of the genome is that of a regulatory network modulating cascades of
morphogenetic processes at multiple levels [140].

The following hypothesis is the result of extending this view back in evolutionary
time: in the beginning of multicellular life, the morphologies of organisms were
generated through developmental processes guided by physical processes and their
environmental conditions to a large extent, and only later genetic regulatory networks
stepped in the role of stabilizing and canalizing the developmental process [144],
making morphology subject to natural selection, though in an indirect way. Put in
simple terms, morphologies emerged purely as the contingent but deterministic result
of physicochemical constraints (not subject to genetic variation and natural selection in
a direct way) of morphogenetic processes, and, later in phylogenetic history, new layers
of genetic regulatory mechanisms helped to stabilize the pre-existing developmental
process and expose it to natural selection. This hypothesis applies just to the very
beginning of multicellular life, at a time older than the oldest reliable paleontological
record of modern multicellular organisms.

In this context, it is interesting to note that the elements of a tensegrity structure
store potential energy, and the structure can be unstable, meaning that if the balance
of forces is perturbed beyond a certain point (be it by deformation of the shape or
changing the characteristics or the stress of the constitutive elements), it will snap
and settle into a possibly very different shape to accommodate a new balance of forces,
releasing potential energy in the process. The work presented in this chapter is inspired
on a model of developmental process which is based on this property of tensegrity
structures. It is inspired by a simple 2D model of invagination [139, 148], where
a circular sheet of cells is modeled as a closed chain of cellular cytoskeletons. The
cytoskeleton of each cell is modeled as six overdamped elastic links: four external ones
arranged as a quadrilateral and two more ones as the two diagonals of the quadrilateral.
The quadrilaterals are attached together in a mass-spring model of a closed, circular
sheet of cells (Figure 2.2). The whole sheet is a self-stressed tensegrity structure, with
several possible configurations of compressed and stretched elements. To induce an
invagination process in a region of the cell sheet, it is enough to shorten the natural

length of the outer elastic links in that region. Thus, an invagination process can be
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Figure 2.2: A model of invagination. A 2D tensegrity structure modeling a sheet
of cells (before perturbation). Each cell is modeled with six elastic links representing
its cytoskeleton, chained together in a circular, closed sheet. Red elastic links are
compressed, blue ones are stretched. The morphogenetic process of invagination can
be triggered by just shortening the lengths of the exterior elastic links of a group of
neighboring cells (¢ = 0), simulating a local contraction in their cytoskeletons [148]. As
a result, the structure relaxes to a new equilibrium position, and the curvature of the
resulting invagination depends on the parameters of the tensegrity structure (intensity of
the self-stress, stiffness of the elastic elements). Three snapshots of the relaxation process
are shown: one just as the simulation starts (¢ = 0), other after the invagination has started
(t = 2), and other when equilibrium is reached (¢t = 350). A plot of the energy (potential
energy plus kinetic energy) of the structure as a function of time during the relaxation
process has been included. The structure dissipates energy to reach a new equilibrium
state, and the resulting energy profile follows an (approximately) exponential decay law,
typical of most perturbed tensegrity systems as they reach a new equilibrium.

specified by a very simple and localized genetic signal controlling the length of some of
the cytoskeletal elements in a region of the sheet of cells.

In this chapter, we adopt a similar 2D structure (see Figure 2.3.a) and drop its
typical, direct interpretation as the dynamics of a physical sheet of cells. Instead, it is
considered as an abstract model for morphogenetic processes, where the shape of the
structure undergoes a complex and well-ordered set of morphological transformations,
even if these are not topologically possible in an actual 3D structure. Tensegrity mass-
spring structures are shown to be able to arrange a complex and well timed set of
morphological transformations, with minimal genetic control, resulting in a diverse
set of final shapes, thus exploring their potential as a physical substrate for complex

developmental processes.



22 Chapter 2. Diversity by complex developmental process

H2
V1 V2

(b)

Figure 2.3: Initial tensegrity structure for morphogenetic processes. (a) Circular tensegrity
structure of 26 connected cells used as the common initial state of all morphogenetic
processes. Red elastic links are compressed, blue ones are stretched. (b) The six elastic
links composing each quadrilateral cell, named H:, H2, Vi, V2o, D1, and D2, as shown in
the figure. Each elastic link has a current length d, a natural length n, and a stiffness k.
See Figure 2.4 for the numerical values of the parameters of the structure. The natural
length of H; is smaller than its length in the circle (it is stretched), while for H, it is
longer (it is compressed). Note also that for each pair of consecutive cells, the elastic
link V1 of one cell is superposed with the elastic link V2 of the next one.

2.2 A model with minimal genetic control

To explore the space of morphogenetic processes, an evolutionary algorithm has been
used. In the algorithm, the individuals are sets of local and global perturbations
which change the balance of forces and/or add potential energy to an initial tensegrity
structure which is common for all individuals. To evaluate an individual, the initial
structure is perturbed as specified by the individual, and the structure is simulated,
undergoing a physical relaxation process until it stabilizes into a new shape. Then,
the quality of each individual’s morphogenetic process is measured. In the following

subsections, the details of these methods are specified.

2.2.1 Individuals

As previously said, an individual is a set of local and global perturbations to an initial
tensegrity structure (see Figure 2.3.a), which is the same for all individuals: a closed

sheet of 26 quadrilateral cells. We denote by Hi, Hs, V1, Vo, D1, and D5 the six types
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’ link type d n ‘ k ‘
H; 14.8285948251829 13.975 20
Hy 17.3933707403416 20.15 20

D1, Dy | 19.2641442449179 | 18.1264008079376 | 20
Vi, Va 10.6389852023717 | 11.0406139435269 | 20

Figure 2.4: Numerical parameters of the initial tensegrity structure. The initial tensegrity
structure (Figure 2.3.a) is composed of two concentric rings of 26 equally spaced vertices
of mass m = 1. The radius of the inner ring is 61.5107152186897, and the outer ring
72.1497004210614. For each type of elastic link, all links have the same parameters d
(current length), n (natural length) and k (stiffness), as specified in the table.

of elastic links of a single quadrilateral cell (see Figure 2.3.b), and by [;; an instance of
(undirected) link between two vertices i and j. At any time, the force exerted by I;;
on vertex ¢ is defined by the equation Ff; = —k(n — d)u;j, where k;; is the stiffness
constant of the elastic link, n;; is its natural length (the length at which no force is
exerted), d;; is its current length (absolute values), and u;; is a unit vector oriented
from ¢ to j. The initial structure is in equilibrium, i.e., the sum of the forces exerted
by the incident links in each vertex is null: Ff = 3, Fi; = 0 for all 7. See Figure 2.4
for the geometric specifications of the structure.

Each cell in the sheet is indexed by an integer ¢ € [1,26] number from 1 to 26. As
an individual (a genome) is a list of perturbations, each perturbation can be deemed

as a gene. A gene is specified as a quintuple (¢4, ¢, S, t, x, ), where:

e ¢, and ¢, are integer indices in the range [—5...30] such that the perturbation is

applied only to the cells that verify ¢ € [min(cq, ¢p) ... max(cq, cp)] N [1, 26].

e S is a subset of {H1, Ha, V1, Va2, D1, D2} (the types of links in a cell, 2.3.b), such
that, inside each cell ¢, the perturbation is applied only to the categories of links

listed in S (, right).

e t is a symbol from the set {K,R,Kf, Rs}, and z is a real-valued coefficient
[0.5...2].

— If t = K, the link’s stiffness k is multiplied by .
— If t = R, its natural length n is multiplied byz.

—If t = Ky, same effect as K; in addition, n is adjusted such that the

magnitude of the force exerted by the elastic link F°* = —k(n — d) remains
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the same, under the link’s current length d. If the adjusted value of n is

negative, the changes are undone, to prevent unphysical parameters.

— If t = Ry, same effect as R using coefficient 2’ instead of x such that: if
x > 1 then 2/ = z for a compressed link (n > d) and 2’ = 1/z for a stretched
link (n < d), and conversely for x < 1; in addition, k& is adjusted such that
F° remains unchanged. This rule is designed to avoid negative values in
the adjusted value of k, because if the link is compressed, it becomes more

compressed, and if is stretched, it becomes more stretched.

All perturbations coded in the genome are applied to the initial circular sheet of
cells in the order they appear in the list, then the structure is left free to rearrange
itself. Note that, while perturbations of types Ky and Ry leave the balance of forces
seemingly unchanged, they potentially alter the mechanical response of affected links to
subsequent perturbations, thus greatly influencing the developmental process. Finally,
after all perturbations have been applied, links of stiffness k lower than a given threshold
are discarded because they play no significant role in the dynamics. Likewise, the values
of k and n are limited to given maximum values to prevent the system from becoming

unstable.

2.2.2 Evaluation

Denoting the position of vertex i by P;, we can write d;; = ||P; — P;|| and u;; =
(P; — P;)/di;.  All vertices have unit mass (m; = 1 for all ¢), and the stiffness is
kij = 20 for every link /;;. The equation of motion of ¢ then reads P; = F¢ + F?,

where F¥ is the sum of elastic forces:

e S P;—P;
Fi = —miZ:Aij “kij - (nij — [P — Pif]) - P, — P,
j=1 J
A;; = 1 or 0 depending on the existence or absence of [;;) and FY = — P, is a linear
( J g J I3 IU’

damping force on vertex ¢, with a damping constant p = 0.1.
After perturbing the circular sheet according to the genome of an individual, the
resulting structure is generally dynamically unstable, and it is simulated applying a

standard method to integrate the equations of motion®, and recording the simulation

39pecifically, ode45, the standard implementation in MATLAB® of the Dormand-Prince method (a
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with a fixed time step At = 0.01. The total energy of the system is F = Ej + E,,

.2
where Fj, = %m > i |IPi|| is the kinetic energy of the vertices and

1
Ep =5 ZZAM ki - (nij — |Pj — Pg])?
i

is the potential energy stored in the elastic links. In energetic terms, the simulations are
fueled by the conversion of E), into Ej. In typical simulations, because of the damping
force FY, most of the kinetic energy Ej, is rapidly dissipated (especially after the initial
steps of the relaxation, when the elastic links operate in the overdamped regime), hence
FE monotonically decreases over time. In rough quantitative terms, Fj is of the order
of 10% of E in the very first steps of relaxation, then at best a fraction of 1% of E on
the long run (see Figures 2.5, 2.6 and 2.7). The simulation is performed in chunks of
10 time units (1000 recorded steps at time steps of At = 0.01). When the difference in
E between the beginning and the end of the chunk is lower than 107>, the simulation
is stopped, because a low rate of energy loss suggests (heuristically) that the structure
is close to its final stable configuration.

In a simple metastable system such as the invagination process of Figure 2.2, the
relaxation from the initial to the final state follows an exponential-looking energy curve,
characterized by a sharp drop before a slow decrease (see energy profile in Figure 2.2).
Figuratively speaking, the potential energy is spent in just one shot. However,
tensegrity structures have the potential to undergo much longer and more complex
transformations, consisting of a sequence of developmental stages and qualitative
transitions (Figure 2.5). We propose to heuristically detect the transitions through the
conspicuous accelerations that they produce in the energy loss rate. Then, the number
of steps of the energy function (and their size and distribution) can be measured, as
an heuristic to measure the quality (fitness) of the developmental process.

Staircase steps in the energy curve E(t) appear as peaks and valleys in ‘E(t)‘T Let
aq be the time of peak ¢, by—1 and b, the times of the valley flats before and after a,, and
dq = E(bg—1) — E(by) the energy drop corresponding to peak g. Non-significant peaks,

defined as having a value lower than double the value of any of their corresponding

Runge-Kutta integrator with variable step).

TAnd also in Ej(t), because energy is lost exclusively by friction, so the shapes of F(t) and ‘E(t)‘
approximately match. However, in very strong oscillations of the vertices (especially, in the initial steps
of the simulation), significant fractions of energy can be repeatedly converted back and forth between
kinetic and potential, distorting the role of Ej(t) as a signal of the staircase steps in E(t).
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valley flats: ’E(aq)‘ < 2-max (‘E(bq_l)
the neighboring highest peak (so, if the peak a, is merged into the peak a1, the valley

, ‘E (bq)’), are discarded, merging them with

before aq41 becomes b,_; instead of by).

The initial steps of the relaxation are typically characterized by a very sharp drop
in F(t) at very high but often irregular loss rates. This shows in the curve of ‘E(t)‘
as an initial, short and crowded sequence of very high peaks and also high valleys. To

discard this region from the analysis, we consider the first valley b’ whose corresponding

value of energy loss rate ‘E(b’ )

b = min {bq | ‘E(bq)‘ < 50}. Then, we define the sequence D of all the energy drops

is below a given threshold, heuristically set to 50:

whose peaks are after that valley: D = (dy,...d, |Vdg : a > V'). Finally, we rescale
the values di in D with respect to its maximum value and define the fitness f as the

sum of these values:
=N "k
kZ::l max (D)
Therefore, by attempting to maximize this function, the goal is to favor processes
characterized by an energy profile made of multiple steps of similar size, under the

supposition that this is an heuristic signature for long and complex developmental

processes.

2.2.3 Evolutionary algorithm

Randomly generated individuals are unlikely to produce complex developmental
processes and diverse final morphologies. For this reason, the following evolutionary

algorithm is used:

1. First, 100 individuals are randomly generated and evaluated. This set constitutes

the initial population.

2. Then, the following steps are repeated 500 times:

2.1 Individuals from the current population are selected through a size-4
tournament, with elitism, to generate a new population (i.e., the best
individual is automatically copied, while the other individuals compete in

randomly chosen groups of 4).

2.2 Some individuals of the new population are mutated and re-evaluated.
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As an individual is a list of genes, each gene specifying a perturbation (cq, ¢y, S, t, ,)

to the initial structure. Several types of mutation are possible:
e Delete a randomly chosen gene.
e Change the value of a randomly chosen component of a randomly chosen gene.

e Insert a randomly created gene at a randomly chosen location in the gene

sequence.
e Duplicate a randomly chosen gene.

Each mutation is applied to each individual with a probability of 0.05. The initial 100
individuals contain exactly two randomly created genes, in such a way that the first
perturbation gene is always global (i.e., the interval defined by ¢, and ¢; includes [1, 26]
completely), while the second perturbation gene is always localized to 5 cells or less

(0. [ca — cpl < 5).

2.3 Experimental results

Through several runs of the above evolutionary algorithm, many examples of long
processes containing multiple developmental steps were found. However, a sizable frac-
tion of these were discarded: because the heuristics only relies on an indirect criterion
(maximizing f, which is related to the number and relative size of developmental steps),
in many instances the processes did not resemble a sequence of developmental steps, for
various reasons. For example, in many cases, the structure collapsed into a small area,
making it difficult to visualize a shape, and no meaningful diversity of morphologies
could be inferred from these cases.

In other examples, however, the structure did not collapse upon itself and even
exhibited interesting bilateral symmetry. In symmetric structures, shape creation could
be followed visually as different segments of the cell sheet folded in various ways and
gave rise to a wide variety of transient and final morphologies. Three examples are
shown: the developmental processes in Figures 2.5, 2.6 and 2.7, whose genomes are in
Figure 2.8. While these developmental processes are difficult to depict in static figures
(because of their essentially dynamic nature), the figures are illustrative of two typical

properties of a successful developmental process:
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(1,26, {H1}, R,2.14494510765828) (1,26, {H1}, R,2.14494510765828) (1,26, {H1}, R, 2.14494510765828)
(1,1,{Hz, D1}, K, 0) (2,5,{V1, D1, D2}, K,0) (1,1,{Vi}, Ky, 0.81430031678588111)
(2,2,{H2, D2}, K,0) (1,1,{Va, D1, D2}, K,0) (2,26, {Va}, K,0.81430031678588111)

(1,1,{H2, W1}, K, 0.77561275506577265)
(2,2, {Hz, Va}, K,0.77561275506577265)

(a) (b) (c)
See also Figure 2.5 See also Figure 2.6 See also Figure 2.7
and Figure 2.9.a and Figure 2.9.b and Figure 2.9.c

Figure 2.8: Genomes of the developmental processes. Genomes are lists of perturbations
(each perturbation defined as a gene) to the initial tensegrity structure. Each
perturbation is a quintuple (cq,cp, S,t,z,), such that the perturbation of type ¢t and value
z is applied to the links specified in S in the cells in the range [cq,c]. See Section 2.2.1
for details on the meaning of the genes. Each genome corresponds to one of the three
examples of the developmental processes examined in Section 2.3. For simplicity, these
genomes have been simplified, combining consecutive sequences of genes applied to
equivalent sets of links into equivalent single genes.

e Developmental steps are characterized by periods of smooth changes separated
by sudden transformations, during which potential energy is rapidly converted
to kinetic energy, then dissipated, causing a drop in total energy. In most cases,
these transitions correspond to sudden reversals in the positions of the vertices
of one or several elastic links. The three figures show the typical staircase profile
of total energy over time (blue line), E(t), and the ratio of kinetic energy (green
line), Ey(t)/E(t) (drops in the former coinciding with peaks in the latter). While
’E(t)‘ is not shown, its shape is approximately similar to Ey(t)/E(t). In each
figure, the small orange line marks the time of the first valley flat below 50 of

’E(t)’ (see Section 2.2.2 for details).

e The structure undergoes dramatic rearrangements. In each figure, several
snapshots of the different stages of the corresponding developmental process
are shown. The zigzagging gray path indicates their chronological order. Each
snapshot is taken just before or after one of the transition steps characterized
by a sudden energy drop. The time of each snapshot is indicated above it, and
the corresponding locations are indicated on the blue plot of E(t), indicating the
position of the corresponding snapshot in time, and the energy of the structure

at the snapshot..

In all three cases, the overall shape of E(t) superficially resembles an exponential
decay function. Accordingly, two regimes in the dynamics of E(t) can be clearly

distinguished:
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Figure 2.9: Exzamples of final morphologies. Several examples of final morphologies
resulting from different developmental processes, exhibiting more or less symmetry. All
these diverse morphologies, are generated from the same initial structure (shown in
Figure 2.3.a) by modulating the developmental process, which is entirely driven by the
perturbations introduced at the beginning of the simulation (see text for details). The
examples (a), (b) and (c) correspond to the developmental processes shown in Figures 2.5,
2.6 and 2.7, respectively. Relaxed links (bearing no compressive or stretching force) are
not shown.

e An initial phase where most of the energy is dissipated in a fraction of time. This
first and intense snap corresponds to the setup of the developmental process,
modulated by the local and global genomic perturbations that were stored in the

structure.
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e A much longer regime during which a fraction of the remaining energy is
dissipated in much smaller quantities at well-delimited steps. In all three figures,
the vertical axis for E(t) (blue line) is a logarithmic scale to show these steps
better. This slow regime corresponds to the developmental process proper, as
previously explained in Section 2.2.2 (see also Figure 2.2 for an example of a

simpler process with no steps).

The genomes of the three developmental processes (see Figure 2.8) are composed of a
set of global as well as local perturbations (see Section 2.2.1). Global perturbations
have the effect of introducing a significant amount of potential energy and destabilizing
the initial structure (common to all developmental processes, see Figure 2.3). The local
perturbations have the effect of canalizing the destabilized structure into an specific
developmental path: in each case, the specific local perturbations modulate the location
and dynamics of the initial catastrophic events (the reversals of elastic links). In turn,
these initial events configure the subsequent developmental path of the structure. The
final morphologies after the developmental process has finished (that is to say, when
the structure finds a stable configuration) are diverse and strikingly different from each
other; several examples are shown in Figure 2.9. Each example can be considered as a
different sets of convoluted foldings of the initial structure, where different segments of
the initial sheet of cells (Figure 2.3) are folded into various configurations with different

curvatures.

2.4 Discussion

In this chapter, a model of development is proposed, able to give rise to a diversity
of morphologies under minimal genetic control. While it is common to consider that,
in most cases, a complex genetic control is necessary to guide an equally complex
developmental process, essentially by stabilizing it and intervening at bifurcation points
to switch on and off distinct, heterogeneous phases (see, e.g., [42]), the model presented
here represents an extreme example of self-controlled physical structure. No genetic
regulatory network is needed to guide the unfolding of its dynamics (the developmental
path), since the properties of metastable tensegrity modulate themselves the sequence of
transformation steps. Perturbed in some specific ways, the structure follows a complex

sequence of morphological rearrangements and state transitions before settling down
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into a final configuration.

This whole process is enabled by the self-stress of the circular sheet used as the initial
state of the model. This tensegrity structure is stable in geometric configurations that
correspond to local minima of the energy function (see Section 2.1.4), and the role of
the perturbations specified by an individual’s genome is precisely to radically alter the
shape of this energy function. This drives the structure into a developmental path (a
trajectory in phase space, in the terminology of dynamical systems), where each step is
a consequence of the geometric changes created in previous steps, until a new balance of
forces (i.e., a local minimum of the new potential energy function) is attained. Although
the primary goal was to study development as such, this method can also be seen as a

new way to generate novel tensegrity structures (see Section 2.1.4 for other methods).

2.4.1 Relevance to Biological Modeling

With respect to evo-devo, the significance of the model presented here is to cast a new
light on the question still little addressed in today’s predominant gene-centric view of
Biology, but mostly investigated through the structuralist tradition: can organisms also
be the product of complex physicochemical developmental processes not (necessarily
or always) controlled by complex underlying genetics?

Each element of the described tensegrity structures influences the stress state of
the other elements in highly convoluted, nonlinear ways, creating the conditions for
enhanced developmental effects, while only a small amount of genetic information
is sufficient to encode structural perturbations. This can also be seen in unicellular
organisms whose complex cytostructure develops from an undifferentiated stage. A
classical example is Goodwin’s model of Acetabularia [70], a genus of green algae in
which the genome does not explicitly code for the branching bracts (rings of little leaf-
like elements) of a growing cell. These bracts are only the indirect result of a set of
physical initial conditions, which can be modulated by the genome to produce different
morphologies in different species. This represents a real-life example of developmental
process primarily based on the physical properties of the developing structure, as in
our model.

As seen in Figures 2.5, 2.6 and 2.7, the developmental processes studied here
are characterized by their typical sequence of steps in the amount of energy over

time. These steps are catastrophic geometric events, in the sense of René Thom’s
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theory [193], frequently involving reversals of the elastic links. These reversals cause
radical changes in the balance of forces of the structure, enabling further modifications
in its geometry. In Kauffman’s interpretation of Waddington’s epigenetic landscapes,
cell types are metastable states of the cell’s genetic regulatory network [98]. The
morphodynamics described in this chapter could thus be considered a purely physical
analog of Kauffman’s metaphor, at an abstract level of self-organization. A metastable
morphology represents a transient attractor in the physical dynamics of the structure,
as it visits these attractors before arriving in its final state.

Although the model presented here is not related to any real-world biological system,
it represents a proof of concept that complex developmental processes do no always
need to be controlled by genetics in a direct and thorough way, but can largely self-
regulate by relying on the physical properties of growing tissues [143]. In this respect, it
lends support to the hypothesis that, in the beginnings of multicellular life, organismal
development was under little to no genetic regulation [144], instead being guided by

structural constraints and morphological and material properties.

2.4.2 Relevance to Bio-inspired Engineering

From the point of view of evolutionary computation and systems design, the aims
of artificial development are to discover and improve algorithms by leveraging self-
organizational processes to code complex solutions with small genomes [47]. Yet, even
in this field especially suited to the design of embodied agents, a common assumption is
that generating architectures complex enough to be capable of spontaneous innovation
requires direction from a complex GRN or GRN-like mechanisms distinct from the
physical model proper. As mentioned in Section 2.1.3, many AD models choose to
support complexity in the development by a relative complexity in its recipe [42, 47,
85, 102, 120].

The developmental model proposed here is purely ballistic in the sense that genetic
control is limited to providing perturbations to an initial metastable structure. In
this respect, it represents a proof of concept that evolutionary algorithms based on
artificial development [183] can encode solutions to form-finding problems in extremely
concise ways. Earlier explorations of this concept [47] have used more complex genetic
machinery, which were avoided here by using tensegrity structures.

Naturally, starting from this minimal base, it would be also perfectly possible to
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extend the model and reintroduce more genetic information. For example, one could
allow perturbations to be triggered not only at the beginning of development but at later
times, too, through various physical parameters, like the level of pressure in a vertex,
the amount of compression or stress in an elastic link, or some geometric condition, like
the folding of a specific segment of cells. This would certainly allow for an even more
complex and more reactive growth dynamics, where the development process is still
mainly determined by the physics of the model, but the genome steers and modulates

it along the way, better resembling real-world biological development.



Chapter 3

Diversity by coevolution of the

body and the control system

In this chapter, agents are modeled in a detailed way and evolved using a conventional
evolutionary algorithm, without direct interaction between the members of the
population or a complex developmental process as in Chapter 4. Diversity emerges
instead from the complex modeling of agent physics, enabling the coevolution of
morphologies and the behaviors (gait patterns) associated to them. This is similar
to the approach used in Chapter 2, though there is not developmental process (at least
not in the same sense), but the complexity is in the interaction of the agent with the
environment.

Specifically, a framework is formulated to evolve computational analogues of
biological molecular motors, which are nanoscale devices capable of transforming
chemical energy into mechanical work. Results from elastic network analysis and
behavior-finding methods are applied to explore a subset of the configuration space of
template molecular structures that are able to transform chemical energy into directed
movement. The results show that molecular motion can be attained from a variety of
structural configurations, each one inducing a distinct gait pattern.

This chapter is organized as follows. In Section 3.1, a comprehensive review
is provided from the points of view of artificial life and molecular computational

biology, introducing previous work in similar agent-based models, and the theoretical

The results presented in this chapter have been published in [54], except for
Section 3.3.2.

37
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underpinnings in molecular biology. Then, in Section 3.2, the framework is presented,
thoroughly specifying all the relevant details. Section 3.3 introduces the results of a
full set of computational experiments, elaborating on some practical applications of
the framework. Finally, in Section 3.4 the conclusions derived from the results are

discussed.

3.1 Introduction and related work

Briefly stated, the intent of this chapter is to explore agent-based models of protein-like
structures to study the emergence of diverse morphologies and behaviors in the line
of artificial life, while at the same time providing a formal model to study molecular
proteins. Because of this double intent, the related work will be reviewed in two parts:
first from the scope of artificial life, and then in the context of computational molecular

modeling.

3.1.1 Evolution of morphological and behavioral diversity

In the last 15 years, one of the main research lines in evolutionary computation and
artificial life has been the study of the emergence of complexity and diversity using
agent-based models. To implement these models, researchers usually follow one of
two strategies. The first one, less computationally intensive, uses a relatively high-
level modeling of agents, endowing them with hard-wired biological characteristics in
a rather ad-hoc manner (for example, a position which is shifted according to the
agent’s control system, an energy counter which is increased when the agent eats some
virtual food). While these models are useful to study the emergent dynamics of agent
behavior and interaction between agents at a high level [151, 164], hard-wiring the
agent’s characteristics into the model limits their scope.

The second strategy models the agents in a more detailed way, often with a more
or less rigorous simulation of physical dynamics. This enables the agents to display
emergent properties in a more natural way. Early studies explored the parameter
space of the models by manual tweaking of the parameters [20, 162], but as computer
power has increased over the years, evolutionary methods have been increasingly
employed. The work of Sims provides an early and classical example: a rich and

complex simulation of agents, embedded in a physically realistic environment, enables
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a stunning diversity of morphologies and behaviors/strategies to evolve by using fitness
functions to reward the best agents in locomotion [178] and competition tasks [177].
This diversity emerges not because of complex ecological interactions between the
agents, but because the model is rich enough to enable many different solutions to
the same problem. In this sense, while a physically realistic and detailed simulation is
not absolutely required, it constitutes a common way to enrich the model.

In a similar line to Sims’, many models have been devised in the last 15 years
(including recreations of his work [27]), with many differences in their intent, scope
and simulation techniques, but a similar overall goal to study complex models of
embodied agents, able to generate diverse morphologies and behaviors (for example,
walking, swimming, block pushing, etc.). Some models strive to create more or
less complete ecologies of embodied agents, like PolyWorld [220], Framsticks [103]
and Virtual Blocks [182] (also inspired in Sims’ work). Others start from an even
more bottom-up approach akin to Artificial Chemistry while also employing physical
simulation, as JohnnyVon [48]. Even amateur online communities focused on evolution
but also manual design of walking agents, like Sodarace [132] and Darwin@Home [39],
have generated a diversity of walking strategies.

This research line also connects with computer graphics animation, where agents
are meshes whose motion has to be automated, and the goal is to design sets of control
systems to drive the mesh movement and/or behavior. Specifically crafted optimization
methods are often employed to design the control systems, as in the design of artificial
fish [189, 192]. However, evolutionary search techniques have been also employed
to generate gait patterns for arbitrary rigid-body agents [204, 207]. The traditional
formulation of evolutionary robotics is very similar: to evolve control systems for
simulated (but realistic) robots [58] with a wide range of preset morphologies [88, 101].

A relatively recent trend in evolutionary robotics is the coevolution of body and
control system in computational models of robotic agents, adapting to each other
during evolution. In general, as in this coevolution there are much more variables to
optimize, the search space becomes very high-dimensional, so indirect encoding [183]
(development of both body and control system from a compact genetic specification)
is used. This is the case of the work on the subject of Bongard [13] and Hornby, Lipson
and Pollack [85, 158], to cite the more noted examples. However, this coevolution is

also present in other studies outside evolutionary robotics proper, from already cited
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examples like PolyWorld [220], Framsticks [103] and Virtual Blocks [182], to computer
animation [175] and other comprehensive studies on the power of indirect encoding and
body-control system coevolution, as Lobo’s path followers [120]. In all cases, diverse
morphologies and/or behaviors emerge through coevolution.

In almost all these models, the control system is fairly complex (often, some kind
of recurrent neural network). However, it has been shown that in many cases this
is unnecessarily overcomplicated. In a seminal work, Paul demonstrated that the
whole body-control system is able to perform more complex computations than the
control system alone [154]. This observation spawned the concept of morphological
computation: a design methodology for robotic agents, exploiting the dynamics of
interaction between the body and the control system of the agent, in order to keep the
control system as simple as possible. The applications range from semi-passive bipedal
robots with minimal control systems [128] to tensegrity robots whose complex, coupled
non-linear dynamics are harnessed to generate a gait pattern with minimal control [154],
and robots with open-loop control systems and minimal numbers of degrees of freedom,
which self-stabilize fast gait patterns and generate diverse sets of behaviors through the
interaction between the body and the control system [157].

Lobo’s path followers [120] represent an extreme example of morphological computa-
tion, since the control is purely mechanical, with no attached abstract model of control
system. However, it still relies on a complex developmental process (indirect encoding)
to generate a diversity of morphologies which in turn induce diverse behaviors. It is at
this point where the work presented in this chapter can be categorized: it represents,
like Lobo’s path followers, an extreme example of morphological computation, but the
agents will not undergo a developmental process, demonstrating that a rich and complex
modeling of the environment and the agents is sufficient to induce the coevolution of a

diversity of morphologies and gait patterns.

3.1.2 Biological molecular motors

In the previous section, a comprehensive review has been performed to situate this
work in its corresponding place within evolutionary computation and morphological
computation. However, this work equally aims to be rigorously founded in biological
molecular modeling, so a review in this area is also mandatory.

Cells can be deemed as complex, highly organized molecular assemblies. To achieve
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such a degree of complexity and organization, cells use a wide array of means. Molecular
motors, being able to transform chemical energy into (harnessable) mechanical work,
are one of such means. These devices underpin most vital functions related to motion
and cellular rearrangement at all scales, in all domains of life [173]. Molecular biology
is the natural domain of scientific inquiry for these devices, but interest in them spans
most of life sciences, from medicine [69] to cladistics [202], to cite just two disparate
examples, and also nanotechnology [205].

There are many kinds of biological molecular motors. Here, the focus is put on
motors able to push or walk along cytoskeletal filaments. There are three classes of
such motors: myosins, kinesins and dyneins. These molecular motors perform many
tasks: moving cargo around the cell and changing its shape, inducing cilia and flagella
beatings, and muscle cells contractions [173, 202, 203]. As they are so crucial for most
cell functions, they elicit a great deal of scientific interest. They have been extensively
studied in order to understand their biochemical and structural features [203], and
their processivity, i.e., the way some of them are able to walk along filaments taking
many steps in a row [68, 209, 225]. There are also other instances of biological
molecular motors which travel along other cellular filaments, as DNA helicases and
RNA polymerases, though mechanical work is not their primary function.

As computers have grown more and more powerful, they have become able to tackle
ever more computationally heavy and complex tasks, and computational methods
have come to a paramount position in molecular biology research. Specifically,
many computational studies based on simulations of kinesin and myosin molecules
have been performed. The most detailed models require minute molecular dynamics
simulations with explicit solvent [99, 104, 119], but the large amount of computations
needed to simulate reasonable time spans, even in the nanosecond scale, renders this
method impractical for performing many consecutive simulations. More lightweight
approaches have been devised, such as rule-based models [77, 215], classical coarse-
grained models [19, 35, 152, 191], and even very simple models based on reaction
kinetics [172] and ratchet potentials [30, 97]. These lightweight approaches vary over

their degree of detail, explanatory power, and rigorous foundation.
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3.1.3 Molecular motor templates

The concept of molecular motor template, introduced in this work, is defined as an
elastic network model of an abstract molecular structure, with one or more catalytic
cores and docking sites, which is able to undergo a cycle of conformational changes
(a working cycle). This cycle permits the structure, when it is suited to the task, to
processively move through a filament. Although the evolution of the working cycle is
a very interesting research question, it is not the subject of this work. The chemical
realization or realizability of a given molecular motor template is not addressed here,
either. Instead, this work focuses on gaining insights into evolutionary and structural
features (that is to say, features related to shape) of actual molecular motors by
studying molecular motor templates as simplified abstract models.

In this chapter, the design of processive molecular motor templates has been
considered as a behavior-finding problem [120]. In this framework, structures are
selected when their behavior (resulting from the interaction of its morphology with
the environment) verifies a set of restrictions. Usually, the evaluation of the behavior
involves the physical simulation of some task [166]. Here, the task consists in traveling
along a filament, and evolutionary computation is used to explore a search space of
candidate structures. Although the task is very simple and the model is very canalized
(in the sense of using common heuristics to determine the configuration of all the
molecular motor templates), diverse morphologies and behaviors (gait patterns) have
evolved, as explained in Section 3.3.

Some other questions about proteins have been also addressed by evolutionary
search techniques, as protein folding [135, 150, 190, 218, 219] and protein evolutionary
dynamics [141, 219]. Another study [197], which has been a source of inspiration for
this work, has applied simulated annealing to study structural properties of peptides.
A related work whose approach is similar to the one presented here has been published
recently [57]. However, this is the first study targeting questions about molecular

motors through evolutionary search techniques.

3.1.3.1 Elastic network models

X-ray crystallography, NMR and related techniques have improved as computer

machinery has become more and more powerful. The elucidation of the 3D structure
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Figure 3.1: Elastic network model of myosin. In this picture, an elastic network model
of a single molecule of myosin is represented (right), where each aminoacid is replaced
by a vertex (with a diameter of 3.8 A), and vertices are connected if they are within a
given cutoff distance (10 A in this example). For comparison, the ribbon diagram of the
protein is also shown (left).

of proteins and other macromolecules has changed from an extremely slow, time-
consuming process to a largely automated one, enabling a rapid growth of repositories
of 3D structure data of proteins. However, the raw data provided by these techniques is
still difficult to interpret, and complementary mathematical tools are needed to extract
useful knowledge from the data.

In this regard, normal modal analysis (NMA) has long been used to understand
the dynamics of protein structures. In NMA, a structure is modeled as a collection of
objects (atoms or groups of atoms) subject to a number of energy potentials modeling
their interactions. Then, the normal modes of motion of the model are analyzed to
understand its dynamics. At first, very detailed NMA models were developed, explicitly
modeling individual atoms and detailed quantum potentials [25]. However, researchers
gradually realized that normal mode analysis was able to yield useful results and
insights even using simpler and more coarse-grained NMA models [196]. Eventually,
a consensus developed: for many proteins, their dynamics are largely dictated by
their overall structure rather than by the specific shape and intensity of the energy

potentials [41, 82, 122, 188, 227]. Thus, while complex and detailed models retained
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their utility and are still being developed [81, 137], simpler and more elegant NMA
models were soon formulated, as the Gaussian Network Model (GNM) [9, 79] and the
Anisotropic Network Model (ANM) [7, 50].

Figure 3.1 shows how an elastic network model is obtained from the 3D structure of
a protein. In the GNM, proteins are modeled as elastic networks, each residue (i.e., each
aminoacid in the peptide chain) represented by a vertex placed at the position of its
C® atom, where vertices are connected if they are within a given cutoff distance. Two
conditions are also required: (a) the vertices are assumed to fluctuate around their
default positions with random isotropic Gaussian distributions, and (b) the network
potential depends on the magnitude of the displacement of the vertices around their
default positions (e.g., isotropically). If these conditions are met, the fluctuations of
the vertices depend just on the topology of the network, up to a factor [161].

Despite its simplicity, this model consistently yields good estimates of the empiri-
cally measured fluctuations for a wide range of proteins. The normal vibrational modes
predicted by GNM are computed from the Kirchhoff matrix of the underlying graph.
The Kirchhoff matrix T',«, (also known as the Laplacian matrix) for a graph with

vertices vy ... v, is defined as:

deg(v;) ifi=y
Iij=4 -1 if v; and v; are adjacent

0 otherwise

Where deg (v;) represents the number of connections of the i*" vertex. The normal
modes of vibration are given by the spectral decomposition of I': each eigenvector
X, represents a vibrational mode, its components representing the amplitude of the
movement for each vertex, and the associated eigenvalue \; is proportional to the
square of the frequency of the mode. In this way, the slowest vibrational modes of many
proteins are fairly well predicted by GNM, a fact which has been exploited to explain
with reasonable accuracy many structural features of proteins, as their unfolding
pathways [187], their domain decomposition [110], their conformational changes and
the position of their catalytic cores [222].

However, GNM has a drawback that becomes problematic for some applications:
it tells nothing about the directionality of the fluctuations, because of the isotropic

assumption (displacements from the default position affect the potential function in
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the same way, regardless of direction).

The Anisotropic Network Model (ANM) is one of the simplest models dropping
this assumption, and, after linearization of the equations of motion, the potential of
the elastic network becomes dependent on the directions of the connections between
the vertices, just like in a mass-spring system. For this reason, the ANM is able to
predict the directionality of the fluctuations of the vertices, as well as the geometry of
the conformational changes. However, this presents a downside: the level of agreement
between experimental data and ANM predictions is lower than for the GNM, as the
predicted fluctuations are higher than in the GNM, because the motion constraints are
weaker [161]. This can be overcome by lengthening the cutoff distance (up to 10 A,
and sometimes even higher), at the price of a lower level of realism.

Despite these drawbacks, ANM and related models can be successfully applied to
a number of problems: interpolation methods to decompose proteins in structural do-
mains [229], describing conformational transitions [100, 156, 226], describing structural
differences between related proteins [46, 114], analyzing the deformation of proteins
under mechanical stress [49], and protein vibrational dynamics [133, 134, 223].

However, it is worth mentioning that normal mode analysis based on elastic network

models fail for some proteins, remarkably for the motor protein kinesin [198, 228].

3.2 A formal framework for molecular motor templates

The evolutionary search method presented here evaluates, selects and mutates elastic
networks. However, these elastic networks are not themselves the molecular motor
templates: rather, each elastic network deterministically encodes for a template. The

details will be presented in the following subsections.

3.2.1 Definition and generation of elastic networks

Elastic networks representing raw structures are created as randomly folded chains of
N vertices, roughly modeling a folded peptide. Each vertex has a diameter D. The
vertices are laid down in sequence: after setting the first one in place, the successive
vertices are placed at random, one after the other, such that each vertex is at a distance
L (Lyin > L > Lpg,) from the preceding vertex. They also must be placed at a
distance M (Mpin < M < Mpas) from at least K vertices, out of the C' preceding
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Figure 3.2: A mutation ezample. A structure is to be mutated (above) by perturbing the
natural length of an elastic link (dark gray). In this case, the link is lengthened. The
resulting structure after relaxation is shown (below) along with the original structure,
in dark gray. The vertices have been displaced, and arrows point towards the main
direction of displacement in each part of the structure. The configuration of elastic links
is recalculated (some links may disappear, and new ones may appear, if the distances
have changed beyond the cutoff value), although in this case no great changes have been
done; only natural lengths are changed. After the mutation, the catalytic cores and
docking sites of the corresponding molecular motor template are also recalculated (see
Figure 3.3).

vertices in the chain (K < C). After all the vertices have been placed, elastic links are
instantiated between every pair of vertices at a distance lower than M,,,,. The natural
length of each elastic link is set to the distance between its corresponding vertices.

In this work these parameters have been set to N =50, K =3, C =10, D = 3.8,
Lpin = 09D = 342, Ly = 1.1 - D = 418, Mpin = Lpmin and M., = 10.
This parametrization is very similar to the one used in [197], but, by setting K = 3
and C' = 10, it is ensured that (almost always) no point has any rotational degree of
freedom. Once these parameters are fixed, a generated elastic network can be specified
by a sequence [P, ..., Py], where each P; is the position of the vertex i of the structure.

The value chosen for D is reminiscent of other studies, where each vertex represents
an aminoacid, and the distance between the locations of two consecutive aminoacids
in a peptide chain is supposed to be 3.8 A. However, this work is not concerned with
the exact scale of the elastic network models. In fact, the direct interpretation (i.e.,
a correspondence between vertices and aminoacids) is not possible due to the small
number of vertices. Instead, the structures generated with this method should be

regarded as rough templates of plausible proteins.
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3.2.2 Mutation operator

As evolutionary search methods are to be applied to optimize the structural templates,
at least a mutation operator must be defined. A mutation operator must take one
elastic network and transform it in some way to produce a new one.

The most simple way to mutate a network is to add a small and random
displacement to one or more vertices [197], but this straightforward choice makes the
fitness landscape too difficult to explore, since to get from some given individual to a
better one, many correlated mutations might be required. For example, if an individual
might become more efficient by translating or rotating some part of its structure relative
to other part, this change would require many precisely coordinated mutations (perhaps
tens of them) to happen in sequence, preferably in a short amount of evolutionary time.

Therefore, a new kind of mutation is needed, one able to make many small,
coordinated changes to several vertices in the elastic network (from a few ones to all
of them). To fulfill these requirements, a physics-based mutation has been developed
(Figure 3.2). As each network is a spatial configuration of vertices connected by relaxed
elastic links, a mutation consists of changing the natural length of one or several elastic
links, each one by an independent, random amount. The perturbation of the natural
lengths introduce potential energy in the elastic network. If it is allowed to relax, the
relative positions of many vertices will change coordinately (just as originally intended)
to relieve the stress. After the relaxation process, the network is validated in order to
ensure that all restrictions described in Section 3.2.1 still apply to the chain of vertices.
If it is so, new elastic links are calculated for the new spatial configuration (that is
to say, the distance between each pair of vertices is calculated for the new spatial

configuration, and elastic links are instantiated if the vertices are near enough.

3.2.3 Evaluation of molecular motor templates

In this section, the deterministic mapping from elastic networks to molecular motor
templates, and the evaluation of these templates, are described.

3.2.3.1 From elastic networks to templates

As the elastic networks are intended to represent molecular motors, it is necessary to

define their catalytic cores and docking sites.
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Figure 3.3: From structure to molecular motor template. A structure (above) is processed
to determine its proposed catalytic cores and docking sites. The normal mode associated
to the third eigenvector X3 of its Kirchhoff matrix is shown (middle). Each vertex v; is
associated to a component z; of X3, whose magnitude (size) and sign (white positive, gray
negative) conveys information about the vibration of the vertex v; in that normal mode.
This normal mode splits the structure into three clusters, characterized as connected
substructures whose vertices have components of the same sign. The resulting molecular
motor template (below) has two motor heads, each one composed of a catalytic core
(ATP and binding links shown in black) placed between a distal cluster and the central
one, and a docking site (white) composed of the vertices in the distal cluster. The exact
location of the catalytic core is heuristically determined to maximize the effectiveness of
the conformational changes brought about by ATP ligands.

The catalytic core (or cores) comprises the parts of an enzyme carrying out
the chemical reaction mediated by it. More specifically, it is the place where the
substrate (ligand) of the enzyme adheres by intermolecular forces and steric effects,
and subsequently undergoes a chemical reaction. Molecular motors traveling along
filaments also have well defined docking sites, the places where they attach to the
filament. Each catalytic core, together with its associated docking site (consisting of a
set of labeled vertices) is termed a motor head.

Catalytic cores are characterized by a precise spatial arrangement of residues,
cooperating to stabilize the ligand and to catalyze the chemical reaction. The chemical
reaction is often preceded, accompanied and/or followed by conformational changes,
which in many cases can be described in terms of deformations, rotations and/or

translations of some subunits of the enzyme, relative to other subunits.
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The catalytic core is often located in or near hinge sites, i.e., the sites experiencing
minimal translation, rotation or distortion during a conformational change. For many
enzymes, GNM can explain most of their conformational changes as combinations
of a few slow normal modes. Also, the hinge sites (and so the probable location of
catalytic cores) can often be explained by GNM as co-located with the local minima
(in vibrational amplitude) of a slow normal mode [222].

For motor proteins, the catalytic core is the pocket (or pockets) where an ATP
molecule binds to the protein. The binding and/or the hydrolysis of the ATP molecule,
possibly in conjunction with other circumstances, triggers a conformational change in
the protein. This conformational change, in turn, performs mechanical work.

The scope of this work is restricted to the structural level: it is not concerned with
the larger (and far more difficult) question of designing or modeling catalytic cores ab
initio, but just with the geometry of the molecule. Thus, in this work, a catalytic core
is just a site where ATP is placed, plus the connections (elastic links) between the
bound ATP and some of the nearby residues, just like in [197].

This method is inspired by GNM-based protein domain decomposition [110]: given
that elastic networks are used, it is quite natural to use GNM theory to predict the
location of the core or cores. Specifically, the third eigenvector X3 of the Kirchhoff
matrix is used. Each component z; of X3 is associated with a vertex v; in the structure.
For most elastic networks with an elongated shape, the normal mode associated with X3
splits them in three clusters. Each cluster is characterized as a connected subnetwork
whose vertices v; have associated components x; of the same sign, while the magnitude
of the component x; correlates with the vibrational amplitude of the vertex v; in that
normal mode (see Figure 3.3, middle). There are two interfaces (hinges) between the
clusters, such that two of the clusters are distal (they share just one interface) while
the other one is central (it shares two interfaces, each one with one distal cluster).

As predicted by GNM models of actual proteins, the sites where ATP is placed in
the artificial elastic networks are near hinge sites, as in [222], which can be identified
as the interface between two clusters. In this way, two catalytic cores are defined for
each elastic network.

Each catalytic core is defined as a pair of vertices (v;,v;) at the interface, each one
from a different cluster. When an ATP molecule binds to the core, it is placed exactly

in the middle of the two vertices, connected by an elastic link to each vertex in the pair.
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These links are stretched to model the change in potential energy brought by the ATP
molecule. If P; and P; are the positions of the vertices v; and v;, P; — P; is the vector
from P; to P;, and the ATP molecule is placed at a distance ¢;; = 0.5 - ||P; — P;|| of
each one of the two vertices of the catalytic core (see Section 3.2.3.2 for further use of
the value ¢;;).

However, in each interface there are many possible pairs, in general. In each
interface, the pair of vertices (v;,v;) selected as catalytic core is determined by the

following heuristics:

e The vertices should not be too close (to avoid pairs of vertices already connected
by an elastic link) nor too distant (to avoid unrealistically large elastic links with
the catalytic core). The allowed range is M4, = 10 < ||P; —P;|| <11.4=3-D.
If no pair fulfills these requisites, no motor template can be defined from the

elastic network.

e The power stroke (as described in Section 3.2.3.2) of the motor head should
maximize the movement along the direction defined by the filament. Heuristically,
this criterion can be expressed as finding a pair whose vector P; — P; is both,
perpendicular to, and coplanar with the direction of the filament. Additionally,
for the motor head to be efficient, the pair should not be too close to the filament.

These three heuristics are elaborated in the following points.

e The centers of mass (C; and Cj) of each distal cluster is calculated. The line
defined by the vector Co—C;1 is taken as the approximate direction of the filament
(see Section 3.2.3.3). To measure the orthogonality of Co — C; and P; — P;, the
absolute cosine of the angle between them is calculated:

s = [P = Pi) - (C3 — Cy)
Y P =Pyl - [|Ca — Cy|

e Let v; be the closest vertex in the pair (v;,v;) to the line defined by the vector
Cy — Cq, and let C3 be a point in the line defined by Cs — C1, such that the
vector P; — Cg is perpendicular to Co — Cq. Let Z be a vector defined as Z =
(P; — C3) x (P; — P;). Then, the more coplanar C; — C; and P; — P; are, the

more perpendicular Co — C; and Z are. To measure the orthogonality of these
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vectors, the absolute cosine of the angle between them is calculated:

v = 14 (C2 = Gy
Y IZ] - IC - G

e Also, if the length of the vector P; — Cg is too short, the motor head will probably
be inefficient, as the catalytic core will be too near the filament to produce an
efficient power stroke. Heuristically, the value D - 0.05 = 3.8 - 0.05 = 0.19 is
defined as a too short distance. A sigmoid function (whose value will be near 1

if the distance is not short enough) is used as the heuristic for this issue:

[P;—Csl
—500-( Zi=Csll_q 05
wij:1_<1+€ ( 3-8 )>

-1

e The selected pair (v;,v;) will be the one with minimal w;; + vi; + w;;.

For each interface, a pair of vertices is selected as catalytic core, and the associated
docking site is defined as the vertices of the nearest distal cluster (see Figure 3.3).

Thus, two motor heads are defined for each elastic network.

3.2.3.2 Working cycle and interaction with the filament

The walking behavior of all known instances of molecular motors using filaments can be
described as a periodic sequence of steps, comprising some combination of: attachment
and detachment from the filament, switching between two or more well-defined shapes,
one or more phases of advancement over the filament, binding of an ATP molecule,
hydrolyzation of ATP to ADP and a P; group, and release of the ADP and the P; group.
This is usually called the working cycle of the molecular motor. From a computational
point of view, a working cycle can be modeled as a state machine, that is to say,
a description of the different states of the motor. In fact, kinesin motion has been
simulated in this way [215, 216]. As the details of the working cycles vary a great
deal between different molecular motors (for example, between myosin and kinesin),
different state machines are needed for each one.

In this model, since the evolution of the working cycle is not discussed, a fixed,
already functional state machine will be used for all the molecular motor templates.

The details of this state machine are loosely based on the working cycles of myosin
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Figure 3.4: Working cycle of a molecular motor template. To show it clearly, the motor
has just one motor head: a catalytic core (ATP and binding links in black) and the
corresponding docking site (white). The filament is in shiny dark gray. In subfigure
(A), the motor head is in the sticky state: there is no ligand and the vertices of the
docking site are almost touching the filament (shiny gray spheres). In (B), as the docking
site is contacting the filament, the motor head transitions to the bound state: an ATP
molecule attaches to the catalytic core, the docking site gets fixed to the filament, and the
conformational change begins. In (C), after a fixed amount of time T3, the conformational
change is assumed to be done, ATP is hydrolyzed to ADP, and the motor head transitions
to the nonsticky state. In this state, the vertices of the docking site are no longer fixed to
the filament. In (D), the docking site has drifted so no vertex touches the filament; this
event induces the catalytic core to have low affinity for ADP, severing its elastic links,
and triggering a transition to the relaxing state (E). In (F), after a fixed amount of time
T, (see Section 3.2.3.3 for the values of T; and T), the conformational change is assumed
to be finished, and the motor head transitions to the sticky state, returning to (4).

and kinesin, as this work is not concerned with the accurate simulation of any concrete
instance of molecular motor. The proposed state machine describes how the catalytic
core is coordinated with the docking site. For any motor template, each motor head (a
catalytic core with its associated docking site) has a separated state machine. For each
state in the machine, the characteristics of the catalytic core, the docking site and the

transition to the next state are described (see also Figure 3.5 for a summary):

1. Sticky state: The docking site is detached from the filament, and the catalytic
core is without ligand (Figure 3.4.a). This state ends when any vertex of the
docking site touches the filament: then, the vertex is fixed to the filament. After
this event, the catalytic core presents high affinity for ATP. In all the simulations,

ATP is assumed to be present in saturated concentration, so a molecule of ATP,
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represented as a vertex, gets immediately placed in the catalytic core, in the
middle of the two vertices of the core, bound to them with elastic links (see
Section 3.2.3.1 and Figure 3.4.b). To model the change in potential energy
brought by the binding, the links are stretched by giving them a natural length
of 0.5 - gi;, where g;; is the ideal distance from the ATP molecule to each vertex
of the catalytic core, as calculated in Section 3.2.3.1). Then, the motor head

transitions to the next state.

2. Bound state: The stretched links introduced in the transition to this state induce
a conformational change (Figure 3.4.c), while the docking site remains firmly
attached to the filament. The result is the power stroke of the motor head.
Meanwhile, if any new vertex of the docking site touches the filament, it gets also
fixed to it. After a fixed amount of time T} passes (see Section 3.2.3.3), the ATP
is hydrolyzed to ADP, and the motor head transitions to the next state.

3. Nonsticky state: The change from ATP to ADP induces a change in the docking
site. Some of the vertices of the docking site were fixed to the filament in
the previous state, but all of them lose the ability to be fixed in this state (in
biochemical terms, the docking site now presents low affinity for the filament).
However, the unfixed vertices remain in touch with the filament, as long as no
force pushes them away from it. The needed force might come, for example, from
the activity of the other motor head, or from residual elastic forces in the motor
head. When no vertex from the docking site remains in touch with the filament
(Figure 3.4.d), this information changes the state of the catalytic core: the ADP
is unbound from the core (in biochemical terms, the core losses affinity for ADP).
The elastic links binding the ADP to the catalytic core are severed (Figure 3.4.e).

Then, the motor head transitions to the next state.

4. Relaxing state: After ADP unbinds, the absence of the severed elastic links
triggers another conformational change. In this state, the docking site still
presents low affinity for the filament, that is to say, its vertices do not get fixed to
the filament even if they become in touch. After a fixed amount of time 7. passes
(see Section 3.2.3.3), the vertices of the docking site regain the ability to get fixed
to the filament, and the motor head transitions to the initial state (Figure 3.4.f),

completing the cycle.



54 Chapter 3. Diversity by coevolution of the body and the control system
State Description Vertices in the Transition trigger Transttion actions Next state
docking site get
fized to the filament
if they touch it
sticky Ready to attach to yes Any vertex from ATP with stretched bound
the filament. the docking site elastic links is bound to
touches the the catalytic core,
filament. prompting a
conformational change.
bound Power stroke yes A fixed amount of Vertices in the docking nonsticky
(conformational time T} passes. site are unfixed from the
change). filament, though they
still may touch it. ATP
is hydrolyzed to ADP.
nonsticky Lose contact with no No vertex from the ADP is unbound from relaxing
the filament. docking site the catalytic core,
touches the prompting a
filament. conformational change.
relaxing Recovery no A fixed amount of sticky
(conformational time T passes.
change).

Figure 3.5: States of the working cycle of a motor head (a catalytic core and the associated
docking site). In each row, a state is described. The first two columns display its name
and description. the third says, for each state, if vertices from the docking site get fixed
to the filament upon touching it. The remaining columns describe the transition to the
next state: the condition that triggers it, the actions executed at the transition, and the
next state.

It is worth mentioning that, while actual ligands like ATP and ADP have been
named in the description, this working cycle represents a simplification not relying
on the actual chemical interaction between phosphorylated nucleotides and actual
molecular motors, while still being a reasonable abstraction of a process similar to
actual working cycles (for example, nucleotide binding and phosphorylation are known
to change affinity for the filament in kinesins and myosins, respectively [169]). It can
be replaced by any other cycle adequate to enable processivity in the motor templates.

Conformational changes are induced by the attachment and detachment of vertices
with stretched links, as in [197]. Although this mechanism to induce conformational
change can be argued to lack justification in biochemical considerations, it fits neatly
in the used model, i.e. representing proteins as elastic networks. Besides, this proposal
does not pursue an accurate simulation of actual macromolecules, but an abstract and
computationally tractable model of molecular motor. Furthermore, evolutionary search
techniques are expected to perform well at finding good molecular motor templates even

if different mechanisms for conformational changes are implemented.

3.2.3.3 Simulation

Sections 3.2.3.1 and 3.2.3.2 present the way to define a molecular motor template out
of an elastic network. To evaluate this motor template, it is simulated in the following

setting:
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e A straight filament is defined, composed of consecutive, touching spherical beads,

each one with a diameter D = 3.8 (the same as the vertices of the motor template).

e The motor template is placed over the filament, such that the line defined by the
centers of mass of its two docking sites is parallel to the filament, and at least

one vertex from each docking site touches the filament.

e One motor head is set to state sticky, while the other is set to state relaxing (see
Section 3.2.3.2). The election of which head is set to which state is arbitrary but

deterministic.

Then, the function of the motor template is physically simulated. For each vertex v;

in the elastic network, the equation of motion is
B, =F+F! +F/ + F?

where:

e F¢ is the sum of elastic forces on the vertex v;:

N
P, - P,
F{ = —;Az’j e (nij — P — Pil])

where A;; = 1 if there is an elastic link between vertices v; and v;, and A;; =0

otherwise; and n;; is the natural length of the elastic link.

e F! is a linear damp force on the vertex v;:

° F{ is a sum of elastic forces to avoid the crossing of the vertex v; through the

filament:

Z,,G i (D=6, = Pi)

where the G are the positions of the beads in the filament that are too close to
the vertex:

IG; — P <D =38

(of course, this force is 0 if the vertex is not too close to any bead of the filament).
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o If the vertex v; is fixed to the filament (see Section 3.2.3.2), both P; and P; are

set to 0, overruling the integration of the equations of motion.

As implied by the equations of motion, the mass of each vertex and the stiffness constant
of each elastic link are set to 1, while the linear damping constant is set to pu = 0.1.
The state machine of each motor head is also simulated. The constants T, and T,
(defined in Section 3.2.3.2) are set to T, = 500 and T} = 200 time units, and the whole
system is simulated using a classical fourth-order Runge-Kutta integrator with a time
step of 0.1. The simulation runs for 10000 time units, which is enough for the motor
template to make 10-15 steps over the filament in optimal conditions. While it might
seem that the simulation of just one step is needed to measure the effectiveness of the
motor template, this is not enough, since it may malfunction after this initial step (for
example, by permanently losing contact with the filament).

The value of Ty is much larger than T;., following the hypothesis that processivity in
some molecular motors like myosin V is favored by spending most of its working cycle
bound to the filament [174]. The actual magnitude of the time unit is not relevant
here, since this work is not concerned with the exact scale of the motor templates, as

stated in Section 3.2.1.

3.2.4 Evolutionary algorithm

Randomly generated elastic networks induce motor templates that usually do no walk
at all. Because of this, molecular templates able to walk are generated using the

following evolutionary algorithm:

1. An initial set of K randomly generated elastic networks is created, and evaluated,
and the fitness of each one is calculated. This is the initial population, and each

elastic network is an individual of the population.

2. For T times:

2.1 Individuals from the previous population are selected, according to their
fitness, to generate a new population of K individuals. Generally, in the
ith time that this loop is executed, the previous population is named the

(i — l)th generation, and the new population the i*" generation.

2.2 Mutate some of them.



8.2. A formal framework for molecular motor templates 57

2.3 Each mutated individual is evaluated and its fitness calculated.

In all the executed instances of the evolutionary algorithm (each one named an
evolutionary run), K = 100, while T ranges from 100 to 200. The evaluation method
for elastic networks consists of creating its associated motor template and simulating
it. However, for some elastic networks, the definition of the motor template from the

elastic network fails at some point (see Section 3.2.3.1):

e For some networks, the third eigenvector X3 does not split the vertices in three

sequential and clearly delimited clusters.

e For other networks, no suitable pair of vertices can be found to represent a

catalytic core.

In any of these cases, the elastic networks cannot be evaluated: they are discarded from
the evolutionary process. They are classified as nonevaluable.

The most straightforward way to measure the fitness of an evaluated motor template
is to measure the displacement d of its center of mass along the direction of the filament
during the simulation. However, motor templates from randomly generated elastic
networks present very low to low displacements almost always (see Figure 3.6), so
this measure does not discriminate for templates that potentially might become good
walkers after some mutations. This can be solved by taking into account the number
of working cycles completed by each motor head of the template, measuring it as the
number of times n; that the motor head 4 transitions to the bound state. In this way,
templates whose geometrical configuration is good for processivity have an advantage.
Finally, the fitness is measured as: f = d + ny + nos.

The procedure to select individuals from an existing population A to generate a

new population B is the following:
e Let A’ be the population A without the nonevaluable elastic networks.

e Let m and M be the minimal and maximal fitness in A’, and f; the fitness for
the individual A]. Each A/ is given a rank r; =14 p (]{}[%;”1 — 1), where p is the
selective pressure. Effectively, fitness values f; in the range [m ... M] are mapped

to ranks 7; in the range [1 —p...1].



58 Chapter 3. Diversity by coevolution of the body and the control system

- — e — 40
120 — - -y
—— —— 30
sy e e
T — L - -
100+ —— s 20
i e 2
s o ! S
80 n - 10 2
. =
- e
% 60r = S g
g - i 4
= "R - 5 ©
= = . . ) 5
407 <= R ] = . - N, _g
- - . - )
i - N By =
20— - —_
e i )
Og:'h:t—":‘ = e e
non-
evaluable L . , , . .
0 20 40 60 80 100
generation

Figure 3.6: Evolution of fitness in one evolutionary run. This is a bidimensional histogram
showing the fitness for each individual evaluated in an evolutionary run (one instance
of the evolutionary algorithm described in Section 3.2.4). The X axis represents
evolutionary time (generations), while the Y axis represents the fitness. The color at each
point with coordinates (i, f) represents the number of individuals at the " generation
which have a fitness f (see Section 3.2.4 for details). As f cannot be calculated for
nonevaluable individuals (see Sections 3.2.3.1 and 3.2.3.3 for an explanation), they are
binned separately. A quick fitness improvement can be observed in the first generations,
followed by a gradual refinement as the evolution progresses.

e For each individual B; to be in population B, a random number d;; € [0...1]
is generated for each individual A} in A’. Then, Bj; is defined as the A} with

maximal d;;r;: Bj = Az | k = argmax (dgzj7s).
X

Therefore, the competitive advantage of an individual with good fitness over other with
a bad one is modulated by the selective pressure. A relatively high selective pressure
p = 0.01 is used.

After being selected, individuals from a population B may be mutated. For each
individual B;, a sample s; is drawn from a Poisson distribution with A = 0.5. If s; =0,
the individual is not mutated. Otherwise, the individual is mutated by the procedure
described in Section 3.2.2, and s; is the number of elastic links e; whose natural lengths

n; will be perturbed. The elastic links to be perturbed are selected at random, and
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their perturbed natural lengths are n; = njc;, where each factor ¢; is a random number

drawn from an uniform distribution with interval [0.5...1.5].

3.3 Generation of molecular motor templates by evolu-

tionary methods

To measure the effectiveness of the evolutionary algorithm, it was performed 30 times;
each one of these times is named an evolutionary run. For each run, 100 random
elastic networks have been generated for the corresponding initial population, 3000
in total. Almost all of them are able to walk no farther than a distance d = 20 or
are nonevaluable (see Section 3.2.4 for a definition). However, taking as the result of
each evolutionary run the distance walked by the best individual from it, significantly
improved individuals (when compared to the randomly generated ones, see Figure 3.7)
can evolve. The profile of one of the evolutionary runs is shown in Figure 3.6.

In many cases, relatively minor modifications to the elastic networks trigger
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Figure 3.8: Six molecular motor templates. This figure spans several pages. See
continuation in page 61.



3.3.  Generation of molecular motor templates by evolutionary methods 61

Figure 3.8: (Cont. from page 60) Sir molecular motor templates. Six examples of the
evolved templates. Each subfigure shows the gait pattern of a template with six sequential
snapshots, a vertex in the filament being marked in red to provide a point of reference.
The first and second ones (a, b) work using just one motor head (initially both heads are
touching the filament, but after one step the template settles in a configuration with just
one working motor head, the other not being able to touch the filament). The third and
fourth ones (c, d) use both motor heads, but only the leading head moves the template
forward, while the rear head is auxiliary: it secures the template to the filament and
induces a coordinated conformational change in the template to adequately reorient it
for the next power stroke of the leading motor head. The fifth and sixth ones (e, f) also
use both motor heads, but the rear head does not induce any relevant conformational
change; it is used just for attachment to the filament.

significant increases in the distance covered by the corresponding motor templates,
hinting that good templates need to be precisely tuned to the working cycle and to the
details of the simulation.

Several walking strategies have evolved, associated to a diverse collection of shapes.
Several examples are provided (see Figure 3.8). In some instances, the evolutionary
algorithm has yielded templates using just one catalytic core and one docking site to
move, as some forms of myosin [118], dynein [83] and kinesin [149]. It is worth pointing

out that templates that use both motor heads do not use them symmetrically, i.e., in



62 Chapter 3. Diversity by coevolution of the body and the control system

most instances, one motor head is responsible for the motion, and the other is used
to secure the template to the filament and/or to maintain a correct orientation. Some
of the evolved molecular motor templates present varying degrees of rotation around
the filament as they traveled along it, mainly because they are asymmetric. However,
it should be noted that some studies have also reported rotation in actual molecular

motors [2]. Several examples are presented:

e two examples of templates using just the leading motor head (Figure 3.8.a and b):
after a first power stroke, the rear motor head loses contact with the filament,
effectively becoming useless. The first one (a) presents a marked rotation around
the filament as it walks over it, while the second one (b) uses a comparatively
small functional limb, while the rest of its body is a wide blob which can be

deemed as cargo.

e two examples of templates using both motor heads for conformational changes
(Figure 3.8.c and d). In both cases, the leading motor head does the power stroke
which moves forward the template, while the rear motor head attaches itself to

the filament inducing a conformational change in the template.

e two examples of templates using both motor heads, but only one of them induces
a conformational change (Figure 3.8.e and f). These templates are almost
functionally equivalent to the ones which use just one motor head, but the leading
motor head pushes the template against the filament, inducing the rear motor
head to remain attached to the filament, even if no effective conformational change

is generated by it because of the geometry of the template.

Several instances of motor templates walking a relatively large distance have
emerged, whose motor heads complete their working cycles in a coordinated fashion.
However, it must be noted that in all these cases, they move in an inchworm mode
(i.e., one head was always ahead of the other one). As most instances of actual motor
proteins with two motor heads have been shown (or are strongly suspected) to move in
a hand-over-hand fashion [68, 209, 225], this discrepancy must be taken into account

when analyzing the results.
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Figure 3.9: Spectral gaps. Spectra for two elastic networks, myosin as shown in Figure 3.1
(row a), and the elastic network shown in Figure 3.3 (row b). The n'"-spectral gap is the
normalized distance in logarithmic scale between the first (\;) and the (n 4+ 1) (Auy1)
normal modes of the structure in ANM. The third spectral gap for myosin (1.224) and
the other structure (1.033) are highlighted. Actual molecular motors and most molecular
motor templates generated for this work usually have wide spectral gaps.

3.3.1 Computational testing of the spectral gap hypothesis

The methods presented here enable a new computational way to test hypotheses
about molecular motors. To provide an example, the spectral gap question raised
by Togashi and Mikhailov [197] can be considered. In that work, two motor proteins
were studied: myosin and Fi-ATPase. Taking the ANM models of these proteins,
the nonzero eigenvalues (squared frequencies) A1, ..., A, of their normal modes were
studied in normalized logarithmic scale (the numerical cutoff to consider an eigenvalue
as 0 was set to 10712). They were found to feature what was called a spectral gap:
the slowest normal modes (from A\; to A3z) were much slower than all the other modes,
thus producing a noticeable gap in the spectral signatures of the elastic networks (see
Figure 3.9). This gap was argued by Togashi et al to significantly influence their
structural properties, rendering them robust against external perturbations. Asrandom
elastic networks were generated and their spectral signature and structural properties
examined, most of them were found to lack both a wide spectral gap and the same
robustness as myosin and F1-ATPase. Therefore, a wide spectral gap was hypothesized
to be a salient feature of motor proteins.

Here, this hypothesis has been checked by examining the presence or absence of a
wide spectral gap in molecular motor templates. To be rigorous, the n spectral gap is
defined as the distance between the first and the (n 4 1) normal modes in normalized
logarithmic scale. Both myosin and F1-ATPase present a wide third spectral gap (~ 0.5
and ~ 1.2, respectively), so it will be used here.

In Figure 3.10, data from the 30 evolutionary runs are lumped together in two

curves, measuring the distribution of the third spectral gaps of elastic networks: one



64 Chapter 3. Diversity by coevolution of the body and the control system

Figure 3.10: Spectral gap distributions for
random and evolved individuals. Distri-
butions of the third spectral gap (see
Figure 3.9) for randomly created and for
evolved individuals in the 30 evolution-
ary runs from Figure 3.7. The third
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eigenvalues (squared frequencies) A\; and
Ay of the first and the fourth normal
modes of the structure in ANM. It is a
good implementation of the concept of
spectral gap to be used with molecular
motor templates, as the first three
normal modes have usually frequencies in % 05 \ s 5
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distribution for randomly created ones, the other for the best individuals from each
evolutionary run. From both histograms it is apparent that neither very small nor very
large spectral gaps are frequent, neither in randomly generated examples nor in the
result of evolutionary processes. This represents an inherent bias for moderately large
gaps in randomly generated elastic networks. On the other hand, the distribution for
evolved elastic networks seems to be biased towards larger gaps than the distribution
for random elastic networks, though the data must be interpreted with care, as the
sample size of the former is very small in comparison with the latter.

Additional evolutionary runs have been performed, with the elastic networks
constrained to have either short or large spectral gaps. Runs with very large spectral
gaps have evolved molecular motor templates as easily as unconstrained runs. The
required large spectral gap usually means that structures have a hinge in a nearly

degenerate configuration (i.e., a joint almost having a degree of freedom), thus being
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Figure 3.11: Performance of evolved
individuals with very low spectral gaps.
8 20 evolutionary runs were performed,
with the templates restricted to have
6 an eighth spectral gap lower than 0.5.
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was able to cover a distance d longer
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able to bend easily in some direction, but that does not affect their performance as
molecular motor templates.

However, evolutionary runs requiring elastic networks to have extremely low
spectral gaps (an eighth spectral gap lower than 0.5, hence an even lower third
spectral gap) have performed noticeably worse (see Figure 3.11), because networks
with this constraint are extremely hard to evolve: most of the elastic networks are
nonevaluable (see Sections 3.2.4 and 3.2.3.1), because networks with low spectral gap
tend to have globular shapes which are not well partitioned by the algorithm presented
in Section 3.2.3.1. Although one of these constrained motor templates is able to move
a distance comparable to some results from unconstrained evolutionary runs (see the
best evolved example in Figure 3.12), it moves in a strange way.

In conclusion, these results shed new light over previous studies [197], confirming
that a wide spectral gap is a very important (and very probably necessary) feature
of molecular motors. However, elastic networks representing randomly folded peptides
present an inherent bias for relatively wide spectral gaps, and this fact might constitute

a substantial contribution to explaining wide spectral gaps in actual molecular motors.

3.3.2 Bipedal templates

Many molecular motors function as dimers, that is to say, they are composed of two
identical proteins, joined at a specific point, each one having one motor head in the
opposite end. This suggests that bipedal templates can also be evolved. In this
configuration, the generation of a molecular motor template from an elastic network
is slightly different: two instances of the elastic network (one of them mirrored, to

facilitate the pairing) are joined by the first vertex in the chain of vertices, and a motor
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Figure 3.12: A molecular motor template with a very small spectral gap. The figure shows
the gait pattern of this template with six sequential snapshots. A vertex in the filament
is marked in red to provide a point of reference. This structure is the best molecular
motor evolved under the conditions described in Figure 3.11, able to cover a distance
d = 53. It moves in a strange, jerky way, reminiscent of a ratchet.

head is defined in each one of the instances (since there might be two motor heads
in each instance, the one which is farthest from the joining vertex is selected). In
this way, bipedal templates can be evolved. It is important to highlight that these
bipedal templates are not proper models of dimer protein motors, since the dimers
are composed of identical units, while the two components in the bipedal templates
are specular images, like the limbs of a bilateral organism. Still, they represent an
interesting experiment in the evolution of different bipedal gaits.

32 evolutionary runs were performed in bipedal configuration. In general, the
evolved bipedal templates (see several examples in Figure 3.13) are not as fast as the
non-bipedal evolved ones (see Figure 3.14), but they still manage to cover significant
distances. It must be noted that, though many different walking strategies were readily
evolved, all strategies used an inchworm movement, where one motor head was always
ahead of the other one. Because of this, hand-over-hand strategies (which are thought
to be the predominant mode of locomotion for dimer protein motors [68, 209, 225] can
be deemed as extremely difficult to evolve in this experimental setup.

Notably, the evolved bipedal templates feature a range of shapes and gaits:
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Figure 3.13: Four bipedal templates. This figure spans several pages. See continuation in
page 68.
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Figure 3.13: (Cont. from page 67) Four bipedal templates. Four examples of the evolved
bipedal templates. Each subfigure shows the gait pattern of a template with six sequential
snapshots, a vertex in the filament being marked in red to provide a point of reference.
The first one (a) resembles two humanlike legs, while the second and third ones (b, c)
are more reminiscent of molecular motors with attached cargo. The last one (d) is the
fastest.
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walking pseudo-legs (Figure 3.13.a), taking short but secure alternative steps.
The example shown here presents the peculiarity that the legs get attached to
the filament in different angles, yet they still produce a steady gait.

slow but well-secured pullers (Figure 3.13.b), with a firm grip over the filament:
observe that the limbs grip the filament from below, while they join above it.

This example rotates around the filament as it moves through it.

hopping templates (as in Figure 3.13.c), whose gait consist in thrusting itself
with both motor heads in an alternate way, only occasionally having both legs
attached to the filament. In the example provided here, most of the length of
both limbs are entangled in a single mass, effectively acting as cargo, moved by

comparatively small actuating limbs.

short but fast pulling pseudo-limbs (Figure 3.13.d), which are the fastest bipedal
templates evolved in these experiments. This example has the peculiarity that

the phase difference between both legs shifts as time passes.

Conclusions and discussion

As stated in the introduction to this chapter, a diversity of shapes and gait patterns has

been generated by a classical (in the sense of evolutionary computation) evolutionary

optimization: the individuals do not directly compete against each other but have to

perform individually a simple task as best as possible: to move as far as possible. The

resulting structures are interpreted as molecular motor templates; however, they can

also be interpreted as models of robotic agents suspended in a viscous fluid.

Many aspects of the model are specifically designed to be as simple as possible:

the genomic model is extremely simple (just a fixed-width sequence of 3D points),
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and the evolutionary algorithm is also very simple, with no crossover and just one
mutation operator, which is also fairly simple (in the sense of not using any heuristics
or analytical tools to optimize the elastic networks in any way). The model finds viable

gait patterns because individuals are canalized in two ways:

e the working cycle (a very simple reactive model) and the specification of the

motor heads are hard-wired.

e the mutation operator is based on physical relaxation after the application of
perturbations to the structure, so it induces a fitness landscape more correlated to
the physical properties of the structure, which play a key role in the configuration

of gait patterns.

However, these represent relatively low level features of the model, as they do not
constrain in any precise way the gait patterns of the templates. Thus, the diversity
of shapes and gait patterns is enabled by these characteristics, and the fact that the
individuals compete in a 3D virtual world, making decisive the fine details of their
shapes, as subtle differences can enable significant differences in fitness.

The model represents an extreme example on morphological computation [157]: the
gait pattern emerges from the interaction between the properties of the motor heads and
the physics and geometry of the both the templates and the filament, with no typical
control subsystem. While this concept is similar to Lobo’s path followers [120], there is
an important difference: no indirect encoding (developmental process) has been used,
because the problem of the high dimensionality of the parameter space has been solved
in other way: the configuration of the motor heads (which can be loosely considered
as the control system) is induced by the geometry of the elastic network (the body of
the agent), so a coevolution of body and control system emerges from the evolutionary
algorithm. Thus, diversity arises from a detailed modeling of the interaction between
the individuals and the world were they act, enabling many different solutions to the
problem of motion through a filament to appear through the (implicit) coevolution of
the body (morphology of the structure) and the control system (the configuration of
the motor heads), instead of relying on indirect encoding.

The mutation operator can also be considered as a mode of morphological
computation: instead of using heuristics based of the analysis of the characteristics

of the structures, they are mutated by perturbing some elastic links and performing a
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physical simulation of the resulting relaxation process, which naturally induces many

coordinated changes into the structure.

3.4.1 Discussion on molecular modeling

From the point of view of computational molecular modeling, a set of methods to
simulate and evolve structural templates of motor proteins have been developed. By
using them, research questions about motor proteins can be tackled from a new angle,
providing new insights. An example in this regard has been provided: while it is
apparent that the shape of an actual molecular motor is exquisitely adapted to the
way it moves through the filament, the evolutionary processes driving this adaptation
cannot be directly examined, and researchers must instead rely on comparative studies
of related motors [109]. However, analyzing the results of the evolutionary runs, some
insights can be made about this evolutionary process. Specifically, the results suggest
that, while the shape of a molecular motor must be exquisitely tuned to its working
cycle, the characteristics of the filament and the interaction with it, the most difficult
aspect of the evolution of motor proteins is not dominated by this tuning process, which
seems to be relatively straightforward in the evolutionary runs, but by the evolution of
a functional working cycle, which has been taken for granted here.

It should be further stressed that in the model presented here structures evolve,
but the working cycle (described in Section 3.2.3.2) is fixed, thus restricting the results
to searching structures able to walk using this working cycle. However, it is clear
that structure and working cycle have coevolved in actual motor proteins. While this
observation obviously limits the scope of the results, they are still valuable, because in
the coevolution of structure and working cycle, the results suggest that the former one
evolves easily, while the latter one is the most important issue. It can be expected that
if the working cycle is not hard-wired into the model but emerges from a lower-level
simple model of chemistry, the coevolution of the working cycle together with the shape
of the template will enable even more diversity of shapes and gait patterns.

The methods presented here are based on several results from elastic network
analysis, a mature and well-proved collection of tools to understand biological
macromolecules, as it has been stated in the introduction. The definition of the
structures studied here is based on ANM, so the presented method shares some

characteristics with it, particularly, the long cutoff distance relative to the separation
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between vertices in the chain. For practical considerations, the size of the structures
has been kept small, with few vertices, so they can be regarded as very rough and
coarse-grained models of hypothetical motor proteins. The GNM model provides
theoretical justification to the way catalytic cores and docking sites are placed within
the structures. The basic outline of the model of interaction between the protein
structures and ATP molecules has been inspired by previous studies on conformational
changes of elastic models of peptides by Togashi and Mikhailov [197]. A very similar
approach by Flechsig and Mikhailov [57] has been developed independently, but it
concentrates on modeling just one protein: HCV helicase, an enzyme which moves
trough DNA strands unzipping them. In a way, the methods presented here can be
regarded as reverse-engineering applications of structural research based on GNM. In
this regard, only structural considerations have guided the method, avoiding to tackle
extremely complex issues, like the shape, arrangement, coordination and working cycles
of catalytic cores and docking sites based on actual biochemical considerations.

From the point of view of molecular modeling, it can be argued that elastic
network models, and more precisely NMA techniques, are not valid universal models
of molecular structures. They are not valid for some proteins [156], and, specifically,
for the motor protein kinesin [198, 228]. The conformational changes of the working
cycle of kinesin cannot be accounted for by models of interaction (between ATP and a
catalytic core) as simple as the one proposed here, but need to be modeled using other
approaches [208]. It is apparent that somewhat important portions of the configuration
space of possible molecular motors are unreachable by the method presented here.
However, this issue is not as troublesome as it might appear, as the dynamics of many
other proteins (among them other molecular machines as myosin [228, 229] and DNA
helicase [56]) can be described to varying degrees of accuracy by elastic network models
and NMA techniques. Besides, any model taking into account the complex dynamics
of kinesin would probably not be as computationally lightweight as the one presented
here. And, as evolutionary algorithms require many structures to be evaluated, these
performance considerations become very important.

There is another point of possible concern: the structures are not immersed in a
thermal bath (simulation of solvent with Brownian fluctuations), which is not negligible
at the scale of molecular motors. The justification can be provided by examining

the work presented in [36]. In that work, the simulation of the working cycle of a
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molecular machine [197] was coupled to a multiparticle collision method [123, 124], a
computationally costly hydrodynamic model of thermal bath. The resulting simulations
were fairly similar to simulations without the solvent. These results can be interpreted
as supporting the view that the dynamics of the working cycle can be described (up
to a given level of realism) without taking into account the solvent. Furthermore,
when the hydrodynamic solvent model was substituted by a less costly (but also less
realistic) simulation of thermal bath, the working cycle became very erratic, as several
conservation laws were violated.

Therefore, the lack of a (necessarily very costly) model of thermal bath stems
from performance considerations. Of course, a thermal bath simulation might be
important for some walking strategies; specifically, it has been argued that the hand-
over-hand movement of myosin and kinesin includes biased diffusive steps greatly aided
by the random component added by the thermal bath [86, 97|, i.e., a Brownian ratchet
mechanism. On the other hand, in [57], the molecular motor HCV helicase is simulated
with methods very similar to the ones presented here, and also without taking into

account Brownian fluctuations.
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Chapter 4

Diversity by emergent

evolutionary dynamics

In this chapter, it is presented a novel method to generate morphological diversity
through an agent-based, simple ecological framework with evolutionary dynamics.
The complexity of the modeling of agents is significantly lower than in Chapters 2
and 3; diversity emerges instead by evolutionary interaction between the agents, which
compete in an open-ended world instead of just optimizing some pre-arranged fitness
function. The framework is analyzed not only from the point of view of morphological
diversity; other interesting emerging evolutionary properties are also studied.

In the framework proposed in this chapter, the agents are virtual plants which are
characterized by very simple abstractions of genetic, developmental and physiological
processes. On the population scale, the heterogeneous spatial structure of the plant
community emerges from the evolution of its component plants. As the virtual
plants compete for shared resources, the ensuing evolutionary dynamics generate a
variety of biological emergent phenomena, from the diversification and complexification
of the forms of the plants to the auto-adjustment of the mutational robustness to
environmental factors. The results demonstrate that diversity can spontaneously
emerge in a community of mutually interacting individuals under the influence of
specific environmental conditions.

This chapter is organized as follows. In Section 4.1 the related work for the proposed

The results presented in this chapter have been published in [55], except for the data
and the discussion about Figures 4.5, 4.6, 4.7 and 4.8.
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model is reviewed. In Section 4.2 the evolutionary model of virtual population is
introduced, specifying mechanisms at the genetic level, the laws of interaction with the
environment, and the mutation/selection rules. Section 4.3 presents the detailed results
of a full set of numerical experiments. Finally, Section 4.4 presents the conclusion and

a summary of the properties that emerge from the evolutionary dynamics of the model.

4.1 Introduction and related work

This chapter focuses on analyzing diversification under evolutionary conditions. A
virtual community of plants is simulated to study the emergence and dynamics of
genomic and phenotypic variation during evolution. Rewriting systems, a family of
formal methods widely investigated in theoretical computer science and capable of
encoding and generating complex structures, are used to model plants. In this formal
framework, parts of an initial object, generally strings of symbols, are iteratively
replaced by other parts, generally longer string segments, following a given set of
rewriting rules. One of the most popular and best studied rewriting systems are L-
systems. First proposed by Lindenmayer [117] (hence its name), L-systems are a class of
formal grammars that proceed by parallel application of the rewrite rules to the current
string. Parallel transformation (context-free or context-sensitive) makes L-systems
especially suitable for the computational modeling of the development of unicellular
colonies and multicellular organisms [92]. In particular, they have been extensively
used in plant simulation [160] due to the ease of converting generated strings into 2D
or 3D tree-like structures by means of turtle geometry, e.g., such as the Logo computer
language [131, 159]. With the years, L-systems have found many applications in plant
anatomy, physiology and morphogenesis [3, 31, 66, 168]. Remarkably few of these
cases, however, have examined plant generation on the evolutionary scale, nor do they
use evolutionary algorithms. Yet, L-systems provide a rather straightforward model
suitable for evolutionary exploration: just as in biological development, where complex
organisms can be considered as emerging from the interpretation of one-dimensional
strings (genomes), L-systems can encode complex structures through fairly simple
sets of rules. Encoding large phenotypes with small genotypes via an intermediate
developmental stage has been termed indirect or implicit encoding in the evolutionary

computation community [183].



4.1. Introduction and related work 77

A first attempt at evolving L-systems was proposed by Koza [108]: it used genetic
programming and represented the rewrite rules as labeled tree graphs. The goal of
the search was to find specific rules that could generate a structure identical to a
predefined one. Since then, other works based on evolutionary complex structures
encoded by L-systems have been proposed. Jacob [92, 93] presented a variant of genetic
programming to evolve context-free and context-sensitive L-systems that could generate
plants similar to real ones. The fitness of individuals was based on the volume and
number of blooms and leaves of the virtual plant during each iteration of the system.
He also experimented with an ecosystem of different coevolving plant species [94].
Ochoa [147] designed a model for generating 2D plant morphologies from DOL-systems
(the simplest class of L-systems, where 'D’ stands for deterministic and ’0’ for context-
free). It resembles the one which is proposed here (see below), although her work
was more focused on exploring the model itself rather than using it to investigate
evolutionary dynamics. Another similar, albeit only briefly sketched framework, was
proposed by Mock [136]. Ebner et al. [43, 45] presented a light seeking 3D plant model
based on L-systems. They also observed [44] the Red Queen Effect under competitive
simulations, i.e., the fitness either remained constant or decreased while evolutionary
progress was still going on. However, their simulation evolved to a dominant stable
strategy with no further progress. Toussaint [200] defined a very similar model to study
the role of neutral mutations in the evolvability of genetic representations, although
his model had additional layers of complexity in the genetic representation. Finally,
Bornhofen and Lattaud [15, 16] evolved generic virtual plants including their full
life cycle. Their simulations ended in ecosystems of tall plants with no phenotypic
diversification. In [17], they concluded that the genetic search space of the DOL-system
was too limited, constraining evolutionary dynamics too severely and preventing it from
evolving a wide variety of plant morphologies.

Here, in contrast to Bornhofen and Lattaud’s conclusions, a morphological model
based on a DOL-system is analyzed, showing a wide range of concurrent diversification in
an open-ended evolutionary process (i.e., evolution without a definite maximum fitness,
hence no optimal goal or solution to reach). Regarding the issue of genetic search space,
an important aspect when designing evolutionary models of complex structures (and
especially so when using an indirect encoding) concerns the proper choice of genetic

operators. For its part, this work largely relies on gene duplication. In biology, gene
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duplication (leading to the creation of paralogous genes) is a form of silent mutation in
the sense that it is generally neutral with respect to selective pressure. Although in most
cases copied genes could be considered junk DNA (non-coding DNA with no direct effect
over the phenotype), since they simply seem to increment redundancy, they provide in
fact a fertile coding substrate for the advent of new proteins and new functions. In some
models, gene duplication has been combined with traditional evolutionary operators, as
in [210], which concluded that creating copies of key portions of the genome was useful
because it could both retain their function and leave the copies open to incremental
improvement. In the same spirit, the model presented here shows the performance
of various gene duplication operators combined with usual point mutation operators
(alteration, deletion, insertion), and how this can create initially non-disruptive, but

later highly productive genetic modifications.

4.2 An evolutionary model of virtual plant population

Following standard practice in evolutionary computation studies, the model is presented
in four sections: the genome and development of plant phenotypes (Section 4.2.1),
the genetic operators (Section 4.2.2), the environment and associated fitness function
(Section 4.2.3), and the evolutionary scheme (Section 4.2.4). The term individual will

be used sometimes to refer to a virtual plant.

4.2.1 Genome and development

Like other works in virtual botany, a grammar-based indirect encoding has been chosen,
defining plant growth as a rewriting process. More precisely, a plant develops according
to a deterministic, context-free L-system also called bracketed DOL-system. In this
type of abstract framework, gene regulation is greatly simplified since all symbols are
rewritten in parallel and the only remaining control parameter is the length of the
derivation process, i.e., the number of global rewriting stages, denoted n. Since this
work is mainly concerned with the structural evolution of genomes, this parameter will

be constant for all practical purposes and set to n = 3 in all individuals.
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G—T G—T G—T

G = T = [+GG]G = [+[+GGlG[+G = D(T) = [+[+[+GG]G[+GG]G] [+GG]
G]G] [+GG]G G[+[+GG]G[+GG]G] [+GG]G
1 [+[+GG]G[+GG]G] [+GG]G

| \I"'J P(D(T)) =

Figure 4.1: Genotype-phenotype mapping. Going from a string genotype 7T to a graphical
phenotype P(D(T)) via the developed string D(T). (Top) Genotype T, here [+GG]G, is
interpreted as the right-hand side of the unique rule of a DOL-system. Starting from axiom
G, the rule G — T is applied three times to produce a string version of the phenotype,
D(T). (Bottom) To obtain the final graphical phenotype P(D(T)), this string is then
interpreted by a Logo-style turtle routine, where each symbol corresponds to a command:
+ and - change the turtle’s direction (on the trigonometric circle, counterclockwise for
positive angles), G moves forward by 10 units (drawing a branch over the pixels it covers)
and brackets [ and ] respectively push and pop the turtle’s stacked state (position and
direction). Note the repetitive nature of D(T). In this figure, a graphical equivalent
is shown for each string in the rewriting process from G to D(T), but only the last one
corresponds to the phenotype of the plant, P(D(T)).

4.2.1.1 Genotype representation

The DOL-systems used in this work are defined as a triplet ({G,+,-,[,1}, G, {G = T'}),
where there is only one non-terminal symbol, denoted G. Accordingly, there is a single
production rule G — T', whose right-hand side is a string T representing the genome of
the plant, since it is the only part of the DOL-system that changes from plant to plant.
Genome T is composed of symbols from the alphabet {G,+,-, [,]1} and includes at least
one instance of the symbol G, with the additional syntactic restriction that brackets
must be balanced. Genetic expression and organism development in the proposed
model consist of rewriting the axiom G by applying the rule G — T exactly n = 3
times, using the production rule encoded by the genome. In this way, the encoding
method is rather straightforward, as first remarked in [147]: since only one rewrite rule
applies, its right-hand side codes fully, albeit indirectly, for the plant’s structure.

The final string generated after 3 applications of the rule G — T is referred to as
the developed string, and it is denoted D(T') to highlight the deterministic nature of
the system. The top row of Figure 4.1 illustrates this derivation process. Despite its
simplicity compared to most works in L-system evolution, this encoding allows for the

definition of robust genetic mutation operators (see Section 4.2.2 below).
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Figure 4.2: Simulation cycle of a plant population. (A) Plants’ phenotypes grow in the
environment from stolons (stem bases) spawned by the previous generation. Branches
pixels are colored in black, leaves pixels in red. (B) Once plants are fully grown, they
compete for ambient light in the form of vertical beams (here in blue) falling from above
on the leaves. (C) The number of descendants of each plant in the next generation is a
function of its fitness, calculated according to the amount of light it could capture and its
number of branches. Taller plants overshadowing smaller plants are able to absorb light
first, hence get a competitive advantage. The genotypes of the simple plants displayed
here are, from left to right: G[--GG] [G], G[G] [--G] [++G], and G[G] [--G]++.
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4.2.1.2 Phenotype development

The phenotype of an individual, denoted P(D(T)), is the complete matrix of pixels
(bottom of Figure 4.1; see also a close-up view in Figure 4.2) produced from the
developed string D(T'), also in deterministic fashion. To create the phenotype, the
developed string is interpreted graphically through a Logo-style geometrical routine [1].
Initially, a graphic turtle pen points upwards and its memory stack is empty, then each

symbol of D(T) is executed as follows:

e + / —: the turtle changes its current direction by adding/subtracting an angle of

22°.
e [: the turtle pushes (saves) onto the stack its current position and direction.
e ]: the turtle pops (restores) from the stack the last saved position and direction.

e G: the turtle advances 10 units in its current direction, marking the pixels on the
way in black (part of the plant) and the last pixel in red (representing a leaf, see

Figure 4.2 and an explanation of its role in Section 4.2.3).

The 22° value of the angle parameter was chosen for its ability to generate a great
variety of natural-looking plant forms (see, e.g., Figure 4.10). It belongs to an interval
of angles that present a good compromise between too linear, broom-like shapes (at
smaller angles) and too irregular, contorted shapes (at larger angles; Figure 4.3).
Three examples of relatively simple phenotypes are displayed in Figure 4.2. Their
genotypes are (from left to right): G[--GG] [G], G[G] [--G] [++G], and G[G] [--G]++.
The corresponding developed strings are not shown, as they are rather long and

repetitive (which is often the case, even when the initial genotype is not).

4.2.1.3 Genotype-phenotype mapping

At this point, it is important to remark that closely similar genotypes can map to
very different phenotypes (divergence) and, conversely, the exact same phenotype can
be produced by very different genotypes (convergence). Divergence is illustrated in
Figure 4.4, where genotypes G[G+[G] [-G]] and G[G+[G] [--G]] differ only by one
symbol, yet they produce widely dissimilar graphical forms. Convergence is mostly

due (but not exclusively) to redundancy in genotypes and consequently in developed
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Figure 4.3: Choice of growth angle. When constructing a graphical phenotype P(D(T))
from a developed string structure D(T'), the + and - symbols are interpreted as adding
and subtracting a given angle to the turtle’s direction. While this parameter was set
to 22°, other values were tried in the evolutionary experiments but not retained. (Top)
Specimens obtained with an angle of 5°: here, plants present a mostly linear, broom-
like structure, which can be more or less bent into an arch. (Bottom, scaled up)
Specimens obtained with an angle of 41°: these plants tend to contain less material,
and generally present a highly irregular, contorted structure. The value was set to 22°
as an interesting compromise able to generate a greater variety of natural-looking plant
forms (see Figure 4.10).

strings: for example, the sequence [G] [G]G has the effect of drawing the same branch
three times, as every closed bracket followed by an open bracket takes the graphical
turtle back to its previous bifurcation point. This also means that the total number of
branches of the graphical phenotype P(D(T')) is not equal to the number of instances
of G in D(T) (which is the cube of the number of instances of G in 7'). For example,
for T'= G[--GG] [G] (left individual in Figure 4.2), the corresponding developed string
D(T) contains 4% = 64 instances of G, whereas the corresponding phenotype P(D(T))
only has 33 distinct branches. This issue of relative uncorrelation between genomic

similarity and phenotypic similarity when defining distance measures is discussed again
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T, = GIG+[G] [-G]] Ty = G[G+[G] [--GI]

P, Py

Figure 4.4: Phenotypic divergence. Very similar genotypes can map to very dissimilar
phenotypes. In this example, the genotypes 7, and T} of two individuals (top row) differ
by a single - symbol in the eighth position, yet their respective phenotypes P, and P, are
strikingly different (bottom row).

in Section 4.3.2.3. The specific case of genotypic redundancy is addressed in the next

section.

4.2.1.4 Reduction of genotypes

The mapping from genotypes T' to phenotypes P(D(T)) is many-to-one: there exist
different genotypes that can be graphically translated into the exact same phenotype.
Without loss of generality, since the mapping from T to D(T) is one-to-one, let us
consider only the transformation of D(T') into P(D(T)).

For example, the string D(T') = G creates the simplest phenotype of all, consisting
of only one vertical branch. This would also be the case of strings D(T') = [[G]] (the
additional brackets have no effect), D(T") = [G] [G]G (the same branch is drawn three
times by the turtle), and D(7T) = [1 [+-G++] (no effect is produced by empty brackets,
+- pairs, or any combination of +/- symbols at the end of a bracket). This raises
interesting questions, in particular: given a phenotype P(D(T)), what is the minimal
developed string D(T'), hence minimal genotype T' that can generate it?

While this question cannot be easily solved for every case, simple heuristics can
be applied to a genotype T to remove the most blatant redundancies in order to
substantially reduce the computational cost of the simulations, producing then what
can be called the reduced genotype R(T'). It is important to note, however, that the
reduced genotype is not part of the biological model, but only a tool to analyze this
model (see Section 4.3.2). The phenotype is invariant by reduction of the genotype:
P(D(T)) = P(D(R(T))), while T’s length increases at a significantly higher rate than
R(T)’s length, as it will be later explained in Section 4.3.2.

The algorithmic reduction used here simply applies the following four transforma-
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tion rules iteratively until no further change is made to the genotype:

1. Review all bracketed segments and remove any trailing +/- symbols inside them.
Also remove all +- and -+ pairs wherever they appear. For example: G+—+ [G+-+]

becomes G+[G].

2. Remove empty brackets and extra layers of nested brackets, except the last pair.

For example: [[[G[]][1]] becomes [G].

3. Reduce expressions of the form [X]X to X and [X] [X] to [X], where X does not
contain any brackets (to accomplish this, regular pattern matching are used for

performance reasons).

4. Un-nest expressions of the form [[X7][Xs]...[X,]] to produce [X7][X32]
... [X,], and expressions of the form [[X;][X5]...[X,]1X,11] to produce
[X11[Xo]...[X,]1[X,4+1], unless the outer pair of brackets encloses the whole
genotype 7. In the last case, removing it would dramatically change the
phenotype, since the rule G — T is repeated three times to generate D(T)

(whereas it would not change anything if removed from around D(T)).

Other, more sophisticated reduction schemes could be used, e.g., ones that would
take into account semantic constraints in addition to the syntactic structure, but they
were ruled out in favor of simplicity and speed, because they would come at a higher

computational cost.

4.2.2 Mutation operators

While clonal reproduction ideally creates perfect copies of successful genomes, other
genetic mechanisms alter the genomic information passed on to descendants, ultimately
causing evolution. A mutation operator transforming one genotype into another is
denoted as M: T’ = M(T). In the present model, mutations are constrained to
preserve well-balanced brackets in the symbolic expressions. Two types of mutations
are modeled here: point mutations and duplications. Point mutation operators affect
the genome at the level of a single symbol or a bracketed expression in three different

ways:

e My: alteration, replacing a symbol (other than brackets) by another symbol
(other than brackets);
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e Mp: deletion, removing a symbol (other than brackets) or a whole bracketed
expression of the genotype (under the constraint that the resulting genotype still

includes at least one G symbol);

e Mj: insertion, adding a symbol or an empty bracketed expression [] (itself

susceptible to be filled later on) at a random position in the genome.

Duplication mutation operators, on the other hand, only apply to bracketed expressions
and provide the genome with an additional copy of that expression in three possible

ways:

e Mpg: random duplication, inserting the copy of the bracketed expression at any

position in the genome (including possibly inside itself);

o My: level duplication, inserting the copy of the bracketed expression at any
position in the genome that is located at the same bracket-nesting level than the
original (where the nesting level of a position can be computed as the number of

open brackets minus the number of closed brackets leading to that position);

o Myp: tandem duplication, inserting the copy of the bracketed expression immedi-
ately after the original (note that this kind of mutation is always silent according
to the genotype-to-phenotype mapping, e.g., P(D([G])) = P(D([G][G])), until

further mutations change either the original or the copy).

A full mutation function is calculated by composing the above six elementary operators,
where each type of operator is given in turn an independent probability of occurrence
of 0.05. If more than one mutation is activated, then these are applied in a sequence
(i.e., each operator transforms the string just produced by the previous operator).
Point mutation operators are applied if they meet the following restriction: after the
mutations, the first symbol outside brackets (that is, at nesting level 0) must be G,
not + / -, in order to minimize the occurrence of an otherwise common evolutionary
scenario (favored by the unbiased application of the mutation operators), where some
individuals evolve into giant, slanted (in some cases even diagonal) forms with few
branches, swiftly replicating into huge populations and exterminating smaller plants

under their shadows (see Figure 4.7).
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4.2.3 Environment and fitness function

The plants’ environment is simply the discretized 2D plane containing the pixel-matrix
occupied by the plant phenotypes. Accordingly, a pixel of the environment can be either
empty or occupied by one or several overlapping plant bits (branches or leaves). This
2D world is bounded only downwards by the horizontal ground. It extends without
bounds left, right and up. Plants are modeled solely by their aerial part, ignoring the
roots, and can grow in width or height without restriction. This means that a plant can
cover an unlimited number of pixels, and the length of occupied ground can increase
as far as plants can reach.

Plants do not interfere with one another during growth; they develop independently
as if in isolation. When immersed in the environment, the base of each plant’s stem (i.e.,
where the turtle starts drawing) is assigned a horizontal coordinate on the ground, then
the plant’s branches and leaves freely expand in the open environment. As explained
above, the exact phenotype P(D(T)) is a deterministic product of the turtle-graphic
interpretation of the thrice rewritten string D(T'). If any branch of the plant hits the
ground, i.e., if any pixel is going to be drawn below ground level, then the plant is
marked as unfit and removed from the environment and the evolving population.

The environment offers a single source of energy: light, distributed homogeneously
and uniformly over space and constantly over time. Light projects from the top,
vertically, one beam per pixel column, and is captured exclusively by the plants’ leaves
(the red terminal pixels), not by their branches. In other terms, only leaves are opaque:
a unit of light hitting a leaf is fully absorbed and contributes to the energy captured
by the plant. It does not propagate further down, nor is it reflected in any direction.
The only two other events involving light can be: falling through a branch or vanishing
into the ground. If a unit of light hits a pixel that is occupied by several overlapping
leaves from different plants, then the energy contribution will be captured by only one
of these, chosen at random.

Based on this virtual energy source, each individual a in the environment has a
replicating potential or fitness, determined in part by the total amount of light, denoted
lq, that it is able to capture. The other part contributing to the fitness, but in an
inverse way, is the size of the foliage f,, measured in number of branches. This number
corresponds to the subset of those instances of G in D(T") that caused the turtle to

switch a white pixel to black (i.e., it excludes other instances of G that only caused
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the turtle to redraw an existing branch; see previous discussion in Section 4.2.1.3). In
summary, the fitness Fj of each individual is based on the ratio of gained energy [,
over spent energy f,, thus represents the ease of building its structure (the higher F,

the better):

_ b
fe

in which « € [0, 1] is a constant exponent. Parameter « tunes the environmental cost of

F,

growing and branching, and for this reason « can be described as the harshness of the
environment: the higher «, the more difficult it is for the plant to increase its surface
exposure to light without compromising its overall fitness. Typical values of a will be
chosen in the [0.5, 1] interval (see Section 4.3), which corresponds to fitness values F,

roughly of the order of 1.

4.2.4 Evolutionary schedule

Numerical simulations of plant populations are organized in synchronous cycles or
generations. At each time step, the previous generation of plants is entirely removed
from the environment and a new generation is calculated by applying the following four

transformations (Figure 4.2):

(A) Development: Each plant of the i*" generation (offspring of another plant from
the (i — 1) generation) is fully developed from the ground up by calculating its
phenotype P(D(T)) from its genotype T. Phenotypes with branches projecting

below the ground are discarded from the population.

(B) Competition: Each plant captures the light arriving to its leaves and calculates
its fitness value F'. This is done by positioning the phenotype’s stem in the
environment at a location that was randomly chosen when the (i —1)!* generation
was spawned. As explained in the previous section, F' can be affected by the

overlap with neighboring plants.

(C) Reproduction: Each plant then spawns a certain number of descendants, function of
its fitness, and each descendant is assigned a random position in the environment

near its parent (see details below).
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(D) Mutation: Finally, each descendant is subject to the mutation operators explained
in Section 4.2.2, potentially modifying its genotype. After mutation, the set of all
resulting genotypes make the (i + 1) generation, which is ready to be processed

in the same way as the previous generation, starting again from step (A).

In stage (C) the number of descendants of an individual is calculated by rounding to
the nearest integer (up or down) the sum of its fitness plus a random value uniformly
drawn from the interval [0, 0.6]. The rationale behind 0.6 is twofold: giving individuals
with zero fitness a chance of staying in the game by maintaining one descendant, and
giving individuals with fitness approximately equal to 1 a chance to have more than
one descendant. Subsequently, offspring is positioned in the vicinity of the parent
in a way that resembles the strategy of stolons in vegetative reproduction by clonal
growth [12]: positions along the horizontal axis of the ground are uniformly drawn in
a 100-pixel range centered around the stem of the parent. The width of the range
influences evolutionary pressure, as it modulates the ease of colonizing empty space.

The initial population is composed of a single plant, whose genome codes for
the simplest L-system able to reproduce: the single-character string G. This single-
individual/single-symbol initialization scenario is at the core of the main motivation in
this work, which is to study the evolution of diversity in purely emergent communities.
It is thus best to start from the simplest forms of organization, both at the organism
and the population levels. If the simulation were started from a population of already
developed plant shapes, this would bias the results of the study.

The (A)...(D) loop is run for a preset amount of generations, 500 in this work. It
can also be stopped earlier if it becomes too computationally costly due to occasional

explosions in size of T, hence D(T') and P(D(T)).

4.3 Experimental evolution of virtual plant communities

Here, the results of a number of experiments are presented in detail. The main
observation is that evolution drives a single individual containing the simplest possible
genome 17" = G toward an increasingly large and complex population that expands
along the horizontal ground in both directions and grows vertically. The simulations of
virtual plant communities illustrate how organisms proliferate, diversify and eventually

colonize their world. With each individual able to grow, absorb energy, replicate and
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Figure 4.5: Several examples of simulations in mild environments. Five examples of final
populations of simulations in mild environment (with « = 0.5). The plants are not shown
at the same scale, as the proportions of the images vary greatly. The common motif is
the evolution of very large and branchy plants that drive smaller ones to extinction. In
all cases, the simulation had to be stopped well before the 500" generation.

mutate, experiments show that the size of the population first increases, then starts
to diversify. It can then take different evolutionary paths. Final distributions of
phenotypes range from a spread-out collection of simple individuals to winner-take-
all situations where a few individuals have developed dramatically large and complex
morphologies, extinguishing all simpler types — after which they start a Red-Queen
race among each other toward even greater heights and widths.

The evolutionary dynamics of the model are modulated by the exponent « (see
definition above in Section 4.2.3). Three classes of environment can be recognized,

corresponding to different values of a:

e mild environment, corresponding to low « values (see Figures 4.5 and 4.9): the
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Figure 4.6: Several examples of simulations in harsh environments. The 300" generation
of five simulations in harsh environment. The first three have a = 0.7, while the last two
have o = 0.75. The simulations were ran up to the 500" generation, but the resulting
images are too long to be adequately shown in this page. The simulations are not to
the same scale, as the proportions of the images vary greatly. The common motif is the
evolution of complex, large shapes (though far smaller than in Figure 4.5) while smaller
ones continue to thrive at the edges of the populations.

cost of growing is negligible, yet the population collapses rapidly in most cases,
because a handful of individuals manage to evolve toward very tall and/or branchy
forms, blocking most of the light and swiftly eliminating (either all or almost all)
smaller competitors. The time to collapse is highly variable. As the required
memory and computation time increase exponentially, mild environments cannot

be simulated for many generations.

e harsh environment, corresponding to medium « values (see Figures 4.6 and 4.10):
the cost of growing is higher than in the previous case, thus simple individuals
can proliferate while more complex individuals develop, compete and eventually
become extinct, resulting in a fluctuating and/or slowly declining population size.

In some cases, the population size collapses as in mild environments.

e very harsh environment, corresponding to high a values (see Figure 4.11): the
cost of growing is so high that all individuals remain simple and proliferate near

the ground.
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Figure 4.7: Tall and slanted plant popula-
tion. 100" generation of one evolutionary
simulation under o = 0.5. The plants have
evolved toward very tall, slanted shapes (the
world represented in this image is 41262-
pixel wide by 46519-pixel high) with very
few branches, enabling them to be tightly
packed without significantly competing for
light, so high population sizes can be
attained. This evolutionary outcome is rare
(just 8 instances out of 131 in the sample
shown in Figure 4.8) unless point mutation
operators are unbiased (see Section 4.2.2).

Generally, the type of environment is reflected in the evolution of two global variables:

the population size, equal to the number of plants, and the global biomass, defined
here as the total number of branches of all plants. Even at an early simulation time,
simulations of different environments can be roughly characterized by these variables
(Figure 4.8). Roughly speaking, the harsher the environment, the higher the population
size but the lower the biomass. For mild and very harsh environments, these correlations
tend to become increasingly marked as the simulation time (number of generations)
advances, while the parameters of harsh environments tend to fluctuate. As « increases,
the transition from mild to harsh environment is stochastic. For example, at o = 0.65,
some simulations exhibit typical characteristics of mild environment, while others are
more typical of harsh environment. In contrast, the transition from harsh to very harsh
environment is smoother, without a clear transition at some value of a: plants simply
become smaller and less branchy as « increases.

In some simulations with low/medium « values, very tall, slanted plants with very
few branches evolve (see an example in Figure 4.7). These plants can be packed tightly
without significantly competing for light, so they can attain high population sizes and
biomass at the same time, and significantly deviate from typical evolutionary dynamics
(for example, in cases with low «, the population size and the biomass become very
high at the same time). This is the case in eight instances of the sample shown in

Figure 4.8.
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Figure 4.8: FEwvolutionary dynamics are modulated by the environment. 131 simulations
with several different a values (from 0.5 to 1 in steps of size 0.05) are shown as points
whose coordinates are their corresponding population size (number of individuals) and
biomass (total amount of branches of all plants) at the 100" (left) and the 500" (right)
generations of the corresponding simulation. In the right side, simulations which were
stopped before the 500" generation (because of considerations about the computational
cost) are shown as squares instead of points. The color of each point represents the «a
value of the simulation (the higher « value, the harsher is the environment, as branches
are more penalized). Mild, harsh and very harsh environments approximately correspond
to bluish, greenish and reddish colors. Roughly speaking, the harsher the environment,
the higher the population size but the lower the biomass.

Three simulations (one with o = 0.5, other with o = 0.75, and other with
a = 1) from the sample in Figure 4.8, representing typical examples for each type
of environment (respectively mild, harsh and very harsh), will be analyzed through
the remainder of this section from several points of view, highlighting similarities
and differences between the corresponding environments. Distance measures are also
presented in Section 4.3.2 for a more rigorous quantitative assessment of the visible

qualitative differences between the plants from these three dynamical regimes.

4.3.1 Overview of the population dynamics

Figures 4.9, 4.10 and 4.11 display a full example of one simulated population for each
type of environment. Individuals are colored randomly for visualization purposes. The
first population (Figure 4.9) is typical of a mild environment where plants grow to
a great magnitude, both in height and breadth, and are intensely competing with
neighboring individuals. The second population (Figure 4.10) shows a moderately
harsh environment filled with a higher diversity of individuals presenting a more limited

growth area and interfering less with other individuals. Simpler plants grow at the
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Figure 4.9: Typical plant world in a mild environment. 100"" generation of one evolutionary
simulation under o = 0.5, which has been analyzed in detail in this chapter (see
Figures 4.12, 4.13, 4.14, 4.16 and 4.18). The world covered by this plant population
is 3333-pixel wide by 2602-pixel high. Already in the early stages, extreme competitive
pressure is driving a group of plants toward a runaway Red Queen effect, in which they
try to overshadow each other, while smaller individuals are at a disadvantage under the
taller ones and become progressively extinct. Due to an exponential increase in CPU
time and memory, simulations under these conditions have to be stopped earlier than the
other conditions, here at the 150*" generation. A sequence of snapshots of the simulation
corresponding to this image is provided in Section B.1.

two ends of the population’s domain. Finally, the last population (Figure 4.11) is
characteristic of a very harsh environment, where plant forms remain simple and short
and colonize the ground efficiently. A series of images depicting the evolution of each
one of these three simulations can be found in Appendix B. In the remainder of the
chapter, these three simulations will be analyzed from several points of view.

The dynamics of the population size and the biomass characterize the environments
(Figure 4.12). In a mild environment (black line), a fast spike in the number of plants

is followed by a great extinction event, as tall individuals eliminate smaller ones by
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Figure 4.10: Typical plant world in a harsh environment. 340" generation of one
evolutionary simulation under a = 0.75, which has been analyzed in detail in this chapter
(see Figures 4.12, 4.13, 4.14, 4.16 and 4.17). The world covered by this plant population is
12627-pixel wide by 2199-pixel high and, for clarity, has been divided into four consecutive
segments, all of them at the same scale. Individuals in the central region have become
more and more complex as they compete for light. Large and complex individuals
sometimes cause the appearance of desolate areas, as they decimate smaller neighbors
and occasionally disappear themselves due to an overload of branches, thereby opening
the way for simpler and faster-expanding organisms to colonize new regions. A sequence
of snapshots of the simulation corresponding to this image is provided in Section B.2.
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Figure 4.11: Typical plant world in a very harsh environment. 340'" generation of one
evolutionary simulation under a = 1, which has been analyzed in detail in this chapter
(see Figures 4.12, 4.13, 4.14, 4.16 and 4.18). The world covered by this plant population is
7220-pixel wide by 92-pixel high and, for clarity, it has been divided into eight consecutive
segments. Individuals remain simple and efficient, as biomass acquisition is severely
penalized. A sequence of snapshots of the simulation corresponding to this image is
provided in Section B.3.
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overshadowing their canopies. Even in this scenario of dwindling population size,
however, the few remaining plants evolve toward such gigantic forms, and do this so fast,
that total biomass increases exponentially. By contrast, in a harsh environment (dark
gray), the population size fluctuates as colonization of new territories is punctuated by
local extinctions due to tall plants. Biomass also fluctuates, but tends to grow over
larger time periods, as competition triggers the evolution of larger plants. Finally, in a
very harsh environment (light gray), the population usually increases faster than in the
previous case, but fluctuations remain present, since a limited degree of complexification

still takes place while plants compete for light. Biomass grows very slowly, however,
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Figure 4.12: Ewvolution of population size and biomass. (Top) Population size is the total
number of individuals. (Bottom) Biomass is the total quantity of branches across all
plants. In mild simulations (a = 0.5, black curves, see also Figure 4.9), population size
spikes briefly before tall plants start exterminating shorter ones, as they compete to
become ever taller and larger at a fast pace. Meanwhile, however, biomass continues its
exponential increase (reaching about 840,000 after the 150'" generation), mostly sustained
by these few gigantic specimens. In harsh simulations (o« = 0.75, dark gray curves, see
also Figure 4.10), the population size grows fast at first, but soon starts to fluctuate,
as episodic and local extinction events take place. Sudden large drops in biomass are
associated with the extinction of large individuals. In very harsh simulations (o = 1,
light gray curves, see also Figure 4.11), the population size increases faster, while plant
morphologies remain very simple, and, consequently, biomass grows very slowly compared
to the other conditions. Plants are still subject to a complexification process, albeit at a
smaller scale, and population size also fluctuates a little as they compete.
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mostly as a consequence of the small size of the plants.

Mean fitness values (F) in each kind of environment are also revealing (Figure 4.13).
In very harsh simulations, where o = 1, F is always less than or equal to 1 because by
definition the number of light beams [, captured by an individual a cannot be higher
than its number of leaves, hence branches f,. In milder simulations, where a < 1, some
individuals can reach fitness values much larger than 1. However, results show that
the milder the environment, the lower the mean fitness level. This is due to the fact
that milder environments are more crowded because plants are more prolific than in
harsher environments and offspring’s positions are statistically closer to their parents.
Crowded conditions then create more intense competition, resulting in a significant
decrease of the mean fitness. In fact, Figure 4.13 clearly shows that the mean fitness
never rises above 1 in any environment, which indicates that high-fitness individuals
constitute a minority whose sum never outweighs the rest of the low-fitness population
(with respect to reference level 1). Note also an interesting phenomenon of episodic
collapse of the fitness distribution during the early generations in all environments:
the mean reaches exactly 1, while the standard deviation drops to 0. These particular
generations correspond to populations composed exclusively of elementary stick plants
of length 1, whose fitness is exactly 1 by definition (1 unit of light divided by 1 branch,
for any exponent «). In these moments, more complex individuals have all died out,
albeit temporarily.

It is also interesting to analyze the growth of genomic length and reduced genomic
length as the simulation time advances. Interestingly, the growth depends on the type
of environment. In Figure 4.14, the mean genomic length and mean reduced genomic
length are plotted for three simulations, one of each type. The X axis represents
simulation time. In all three simulations, but especially in the very harsh and harsh
ones, the growth is approximately linear, both for reduced and nonreduced mean
genomic length, the latter being dramatically shorter then the former: while the size
of the genome increases continuously, the portion of it that is actually coding for the
structure is kept more or less constant. Reduced genomic length grows at a slightly
faster rate for the harsh simulation than for the very harsh one. However, the picture
is very different in the mild simulation: as the population is driven to become ever
more taller and more branchy by a very strong evolutionary pressure, this is reflected

on the mean genomic length, growing at a much faster (although still linear) rate. In
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Figure 4.13: Ewvolution of mean fitness. At each time step, the mean fitness (black curves)
is defined as the sum of all fitness values divided by the population size. Standard
deviation bars are also shown (gray areas). (Top) Very harsh condition (a = 1, see
also Figure 4.11). (Middle) Harsh condition (o = 0.75, see also Figure 4.10). (Bottom)
Mild condition (a = 0.5, see also Figure 4.9). In all simulations, the initial value is 1,
corresponding to the fitness of a single individual of genotype G (receiving one unit of light
divided by one branch) in the absence of competition. Later, the mean fitness drops below
1 as plants become larger and more complex and compete for light, but the few individuals
with fitness higher than 1 (when « < 1) never outweigh the low-fitness majority. Note also
episodic collapses of the fitness distribution to populations composed exclusively of 1-stick
plants (fitness 1, deviation 0), during the early generations. The milder the environment,
the faster the mean fitness drops, and the higher the standard deviation becomes, since
more plants tend to die out under the shadow of larger individuals. In the harsh and
very harsh environments, the mean fitness seems to converge to slightly different values,
close to 0.7.
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contrast with the other two cases, the mean reduced genomic length is much higher,
and represents a significant part of the raw genomic length, again evidencing the strong
evolutionary drive to produce taller and more branchy plants. The sudden drop on
mean genomic length just at the end of the simulation is due to an extinction event.
Note that the mild environmental condition o = 0.5 is also characterized by an
exploding growth in computational cost, both in memory and time. This is why it was
decided to stop the simulation after 151 generations, while the time to generate the
phenotypes and evaluate the fitness of the individuals was still within reasonable limits.
In order to estimate the computational cost of pursuing the simulation toward later
generations, an exponential curve was fitted to a 2D cloud of experimental (i, ¢;) points,
where i is the generation number and ¢; the CPU time required to calculate the plants
up to generation i¢. Extrapolating from this curve, the CPU time to reach generation
200 increased 100-fold, while for generation 300 it was 70000-fold. The computational
cost of harsh and very harsh simulations does not grow so quickly, but they still can
become difficult to be simulated after several hundreds of simulations. In this work,

they were up to 500 generations, when computational costs begin to be too high.

4.3.2 A distance-based measure of diversity

To quantitatively assess the amount of diversity of the plant population in each
environment, a measure of distance between individuals is needed. Two definitions of
distance are proposed here: a genetic distance and a phenotypic distance, then they are

analyzed to study their abilities to differentiate among the three types of environment.

4.3.2.1 Definition of a genetic distance

The edit distance E(Ty, Tp) between two strings of symbols T, and T}, (the genomes of
two individuals a and b) is defined as the minimal number of insertions, deletions and
alterations of symbols in T needed to transform it into Tp, or vice versa (it is indeed
symmetrical, as every insertion can be reverted by a deletion and every alteration
by the opposite alteration). In real-world genomics, the genetic distance between
nucleotide sequences is measured in many cases by a weighted edit distance [11],
using one of several possible weighting schemes [4] specifically fitted for each specific
task. In many cases, however, genomic metrics take into account some statistical

model of mutation [63]. Here, genetic diversity is measured using a raw edit distance
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Figure 4.14: Evolution of mean genomic length and mean reduced genomic length for the
three simulations, one of each type: mild (a = 0.5, see also Figure 4.9), harsh (a = 0.75,
see also Figure 4.10) and very harsh (o« = 1, Figure 4.11). For very harsh and harsh
simulations, genetic material is gained at a more or less linear rate over evolutionary time,
but most of it is useless. For mild simulations, the rate of growth is dramatically higher
for both reduced and non-reduced genomic lengths, indicating the strong evolutionary
pressure for the individuals to become ever more complex, in a runaway Red Queen
effect. The sudden drop in mean genomic length that can be seen at the end of the
mild simulation is due to an extinction event of a subpopulation with particularly large
genomes.

(without weighting). For example, if T, = G+[G[-G]G]+ and T}, = G[G[--G]G]G, then
E(T,, Ty) = 3, as T, can be transformed into T} by removing the second symbol from

T,, adding a symbol - before the third G, and replacing the last symbol + by G.

4.3.2.2 Definition of a phenotypic distance

For a measure of the degree of dissimilarity between morphological phenotypes, the
Jaccard distance (denoted J) is used. This distance calculates the ratio of overlapping
pixels with respect to the total number of pixels occupied by both plants, which are

aligned and superimposed to make their stem bases match. Thus if P, and P, are the
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Figure 4.15: Illustration of the Jaccard distance. Graphical basis of the measure of
similarity between individual phenotypes. (Left) One same individual a, top and bottom.
(Center) Two different individuals b (top) and ¢ (bottom). (Right) Superimposition of
a and b (top), and a and c¢ (bottom) by alignment of their stem bases. Black pixels
represent the portion of phenotype shared by the two individuals, while green and red
pixels show their symmetric difference. The Jaccard distance between two phenotypes is
then calculated by dividing the number of common pixels (in black) by the total number
of pixels (union of the three colored areas) and subtracting the result from 1, which gives
here: J(P,, P,) =0.31 (top) and J(P,, P.) =0.92 (bottom).

pixel sets of two aligned individuals a and b, the Jaccard distance reads:

‘PaﬂPb|

P, P)=1— 9o -t
J( b) P, U Py

(4.1)

Figure 4.15 shows three distinct phenotypes P,, P, and F,, illustrating the Jaccard
distance between two similar ones (J(P,, P,) = 0.31) and two dissimilar ones

(T (Py, P.) = 0.92).

4.3.2.3 Comparing genetic and phenotypic diversity

For a given distance D, whether £ or 7, the diversity dp of the population is defined

as the mean over all the values of the distance matrix [Dgp) o n:

| NN
op = WZZDM’ (4.2)

a=1b=1
where N is the size of the population, and Dy, = E(R(T,), R(Tp)) or Dyp = T (Pa, Py)
(similar definitions, such as discrepancy, have been used elsewhere [186]). Figure 4.16
shows the evolution of d¢ and 07 over time, using each of the two distances above. Note

that the edit distance £ was applied to reduced genotypes R(T') only; interestingly,
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Figure 4.16: Evolution of diversity. (Left) Phenotypic diversity d; is defined as the
mean of the Jaccard distance matrix Dy, = J(P., P») over all pairs of individuals (a, b).
(Right) Genotypic diversity d¢ is defined as the mean of the edit distance matrix Dy, =
E(R(Tw), R(Ty)) applied to reduced genomes. (Top) Comparing diversity values in the three
different kinds of environments, mild (o = 0.5, black curves, see also Figure 4.9), harsh
(o =0.75, dark gray curves, see also Figure 4.10) and very harsh (a = 1, light gray curves,
see also Figure 4.11). (Bottom three rows) Same diversity curves, separately for each
environment, adding standard deviation bars (gray areas). The initial high-amplitude
fluctuations in the phenotypic diversity are an artifact of the small population size, in
which the emergence and extinction of a few mutated individuals appear large. The drop
in diversity at the end of the mild simulation is due to the extinction of a large number of
relatively small individuals. The sudden reduction of variance in the genotypic distance
of the harsh environment, around generation 210, is due to the extinction of one plant
with a large genome.
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Figure 4.17: Biomass vs. genome length. Snapshot of a few specimens from the 500"
generation of a harsh-environment simulation (a = 0.75, see also Figure 4.10). The biomass
of a plant is defined as its total number of branches. (Left) Biomass does not seem to
be correlated with raw genotype length T in any meaningful way. (Right) Showing the
same individuals, dependency of biomass on the reduced genotype length R(T'), however,
appears more correlated. Here, three trends of increasing biomass vs. increasing R(T)
can be identified: one for individuals a-e (scaled 4x), other for individuals f-i (scaled
2x), and other for individuals j-p (scaled 1x). Smaller individuals are represented at a
magnified scale, otherwise they would appear too small.

results obtained with original genotypes T turned out to be very similar, essentially
differing in scale, so they were omitted for clarity.

In milder environments, diversity d; based on the Jaccard distance increases faster
toward its highest value 1 (in particular, the growth is considerably slower for the
very harsh simulation). The evolution of diversity d¢) based on the edit distance
between reduced genomes, for its part, is rather similar in the harsh and very harsh
environments, while the mild conditions clearly stick out through high values. This
process of accelerated diversification is driven by a high growth rate in the length of
the reduced genotypes.

The observed differences between the genetically based and phenotypically based
notions of diversity and their evolution over generations can be ascribed to the
decorrelation introduced by the indirect developmental mapping. As discussed in
Section 4.2.1.3, a consequence of this mapping is that changes in the genotype may
have wildly different consequences on the phenotype: some mutations may cause only

slight modifications in the phenotype, or none at all, while others can cause major
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transformations. This is famously the case of homeobox genes, which play a critical
role in the establishment of the overall body plan of metazoan organisms [146], and
whose mutation can give rise to ectopic structures, such as the development of legs
in the place of antennae in Drosophila. Conversely, the phenomenon of convergent
evolution also hints at the possibility of very different genomes associated with very
similar phenotypes. Thus genetic diversity and phenotypic diversity are not necessarily
correlated. Figure 4.4 shows a case where similar genotypes give rise to clearly different
phenotypes, while, on the contrary, related phenotypes encoded by very different

genotypes can be seen in Figure 4.17.

4.3.3 Robustness to mutations

Evolutionary search relies on the application of genetic operators to the individuals
of a population (i.e., in this work, to their genomic strings 7', not their developed
strings D(T')) in order to create variability. Since reproduction is asexual here, these
operators intervene only in the form of mutations. By mutating, individuals explore
the fitness landscape in search of solutions adapted to the problem imposed by the
environment via the fitness function. Mutation operators introduce alterations in the
genome, which provoke changes in the phenotype through a developmental process.
One could say that biology makes use of indirect strategies to encode organisms, in
the sense that the genotype-to-phenotype mapping is generally highly complex. In
real-world multicellular organisms, it is the result of a gigantic self-generating and self-
assembling process involving between thousands and trillions of cells. In this abstract
virtual model, it is produced by the linear expansion of a string that can typically
contain between a dozen and a few thousand characters, giving rise to a geometric
morphology covering hundreds to millions of pixels.

In this section, the Jaccard distance J (see definition above, Section 4.3.2.2)
is used to study the extent of the disruption provoked by the different types of
mutation operators in morphological phenotypes (only single mutations this time, not
in sequence). The first five types of mutation operators described in Section 4.2.2
are considered: alteration (M), deletion (Mp), insertion (My), random duplication
(MR), and level duplication (Mp), leaving out tandem duplication. The notation
M € {My,Mp, M7, Mr, M1} is used to refer to any one of these mutation operators.

The main motivation is to test the hypothesis that evolution encourages the
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Figure 4.18: Robustness to mutation. Mean disruption caused by five different types
of mutation operators in pools E,, E,, of evolved genomes (horizontal axis) vs.
corresponding pools R,,, R,, of random genomes with the same statistical properties
in each case (vertical axis). The disruption value for each genome in each pool is simply
defined as the mean Jaccard distance between its phenotype and the phenotypes of 100
mutated versions of that genome. The coordinates of each point represent a pair of mean
disruption values of a given mutation over an evolved pool and the corresponding random
pool (see Section 4.3.3) in two different environments (squares: mild, a = 0.5, see also
Figure 4.9; circles: very harsh, a = 1, see also Figure 4.11). It is important to note that
the sizes of the pools are not identical: |E,.| = |Rn| = 64, while |E,n| = |Rux| = 593. To
show that the results are statistically robust, 1000 random subsamples of size 64 have
been drawn from the pools R,;, and F,,, plotting the mean disruption values for each
subsample as blue dots. It can be seen that the points cluster neatly around global mean
values without far outliers. Mutations are labeled A for alteration, D for deletion, I for
insertion, R for random duplication and L for level duplication. Point mutations (A, D, I)
are generally more disruptive than duplication mutations (R, L) while, in the very harsh
condition, they are significantly less disruptive in evolved genomes than in random ones.
Plants evolved in a very harsh environment are also more resilient to mutation-induced
phenotypic changes than plants evolved in a mild environment.

selection of genomes that are more tolerant to mutation-induced disruption [214]. The
concept of mutational robustness has been correlated with the evolutionary advantage
of lower-than-optimal fitness plateaus under high mutation rates [212], the existence of
large networks of neutral mutations [213] and the variability of the environment [170].
In the model, an evolved genome might show a more robust underlying structure than
a random genome, in the sense that it would be able to minimize the effects of various

mutations, especially if the environmental conditions remain stable during evolution.
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Thus, for each mutation operator M, we are interested in measuring its effect on the
phenotype of an individual a. To this aim, if b is the mutated individual such that
Ty, = M(Ty), the quantity of disruption is defined as the Jaccard distance between a
and b, J(P,, P).

Then, the mean quantities of disruption caused by various mutation operators are

calculated on six different pools of genomes:

e Three pools E,,, En, E,, of evolved genotypes, one for each kind of environment,
respectively mild, harsh, and very harsh, composed of all the distinct genotypes
produced by the last generation of the corresponding simulation (for E,, the
150" generation, due to the high computational cost discussed at the end of
Section 4.3.1; for Ej, and E,;, the 500" generation). These pools contain 64, 245
and 593 genotypes, respectively.

e Three other pools R,,, Ry, R,, of randomly generated genotypes. Each pool
R, matches the corresponding evolved pool E, as follows: it contains the same
number of genotypes and its random strings were generated in such a way that
they have the same statistical properties as the strings of F, (average length and
probability of appearance of each symbol, under the constraint of well-balanced

brackets).

For each string Tj, in each pool, 100 different mutated strings 7, = M(T,) were
generated per mutation operator M (thus totaling 500 mutated strings per T;) and the
corresponding disruption values J(P,, P,) were evaluated. Finally, for each mutation
operator M and each pool E € {E,,, Ey, Eyp}, 55\7/[’E was defined as the mean of all the
values J(P,, P) between each string P, in the pool E and the corresponding strings

P, generated through mutation operator M:

B 1 [|1E|l 1 loo
5 ’ e —— AN PGUP
J I1E]| (100 sz( ”)>

a=1 =1
Mutatis mutandis, the corresponding 6943 are also defined for pools R € { Ry, Ry, Ryn }-
Thus, 6%’15 and 5%’R are referred as the mean disruption from the original to the
mutated phenotypes for each pool and operator. Therefore, since 5 mutation operators
and 6 pools were considered, a total of 5x6 = 30 mean disruption values were generated.

These values can also be considered as a special type of diversity measure, applied
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here between two different worlds (based on before-mutation/after-mutation pairs of
individuals) instead of the same world (based on all possible pairs of individuals).
The final results are displayed in Figure 4.18. As the results for harsh and very
harsh environments were nearly identical, only the results for the mild and very harsh
environments are presented here (20 values). The 2D coordinates of each one of the 10
points represent the pairs of mean disruption quantities of a given mutation type over
the evolved and random pools, i.e. (6‘]}47]5, 594’R). The main observations suggested by

this chart can be summarized as follows:

e In all cases, point mutations (My, Mp, M) are far more disruptive than

duplication mutations (Mpg,Mp,).

e In the very harsh condition, point mutations are significantly less disruptive in
evolved genomes than in random ones, while duplication mutations are about the

same (at a low level).

e In the mild condition, disruption caused by point mutations, while still lower for
evolved genomes, is shifted toward significantly higher values compared to the

harsh condition.

In light of these results, the starting hypothesis that evolution selects for genomes that
are robust against mutations is confirmed in the very harsh and harsh environments.
This is to be expected, since in these environments the plants are constrained to grow
to small or moderate sizes, and the overall environmental conditions do not change
significantly over the course of the simulation (at least on a global scale). At the
same time, the resulting genotypes have been subject to a relatively high mutation
rate for several hundreds of generations, and the risk of obliteration (by becoming
too heavy in biomass or developing underground branches after a mutation) is always
present, thus selective pressure encouraging robustness against mutations seems to be
a logical effect. This would support the idea that selection in this model sculpts the
structure of genomes in a direction that makes them more robust to the disruptive
effects of mutations. For mild environments, however, the competitive pressure among
individuals (in contrast to the pressure from the environment) is so high that the
environmental conditions created by the neighbors change rapidly (as new individuals

reach taller and taller sizes), and evolution selects for genomes that are more sensitive



108 Chapter 4. Diversity by emergent evolutionary dynamics

to all types of mutations, especially point mutations, in order to keep an edge over
the ever larger competitors. In summary, these results reinforce the view that the
environmental conditions must remain relatively constant for mutational robustness to

emerge [170].

4.4 Conclusions and discussion

This chapter combines advanced (yet minimal) models based on L-systems, genetic
expression, biologically inspired mutations, and open-ended evolution in a population
of interacting individuals to create a framework of evolving virtual plants. In order
to characterize and understand the dynamics of diversification, data produced by the
simulations was processed by simple statistical analysis based on measures of distance.
While the overall model has been kept as simple as possible (through a reduced number
of rules and parameters), results show the evolution of plant-like organisms capable of
increasing their degree of complexity and diversification at the same time that they are
competing for common resources.

The biological value and relevance of the model is twofold. On the one hand,
experiments can be fully recorded at the genomic level, since organisms are represented
by one-dimensional chains of symbols, which deterministically develop into plant-like
structures. Because mutations act upon genotypes, the genomic dynamics can be
characterized by a statistical analysis of the pool of character strings. On the other
hand, this simple genotypic model maps to a highly complex phenotypic space [24]
allowing the study of rich evolutionary processes oriented toward greater organism
complexity and population diversity.

It is important to stress the simplicity of the model. Other models of evolving
plant communities based on L-systems are generally more complicated, making use of
a great number of rules and symbols to encode the various parts of the plants. In some
of these works, the conclusion was that the genetic search space of DOL-systems was too
limited [17]. However, this might be precisely a consequence of an overly complicated
framework, since the high-dimensional parameter space that these models generate
can be particularly difficult to explore and analyze. In contrast, the minimal system
presented here facilitates the identification of relevant biological phenomena during the

simulations, in which the great volume of generated data helps, rather than hinders,
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the understanding of finer causality links among interacting individuals.

It is also important to note that the present model is not based on data or
parameters derived from real-world ecosystems, such as densities of species or rates
of interactions between individuals. It is an abstract, artificial-life model that is not
committed to any particular plant community found in nature. Yet, general parallels
with biological ecology can still be drawn. More specifically, the model shows the
emergence of at least two different evolutionary strategies: (1) developing a simple
morphology while yielding large offspring to escape competition and colonize new
areas; (2) developing a large and branchy morphology to better compete in overcrowded
environments, but at the cost of reduced offspring. These two dynamics closely resemble
the ecological transition from newly colonized areas to old-growth forest. In fact,
the results presented here show that very harsh environments are characterized by
the first strategy and mild environments by the second, reflecting their differences in
developmental costs.

In summary, the biological implications of the experimental results are the following:

1. Population diversity and individuals’ complexity strongly depend on environmen-

tal conditions, confirming experimental [167] and theoretical results [95].

2. Population dynamics can be extremely varied, ranging from low-diversity popu-
lations that tend to increase in size, to very small and competitive communities

of highly complex individuals.

3. Environmental conditions must remain relatively constant for mutational robust-

ness to emerge.

4. The evolution of phenotypic complexity is based upon the dynamics of genetic
mutations. As these are quick to produce larger genomes, the evolutionary

exploration is biased toward more complicated structures.

5. Eventually, one individual undergoes a fast excursion toward significantly more
complex morphologies, extinguishing the intermediate individuals from which it
evolved. These complex structures then dominate during a certain period of time,
eventually themselves disappearing due to the combined effect of high internal

competition and excessive enlargement.
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It is remarkable that such a simple model as the presented here induces such a
variety of biological phenomena and diversity of plant shapes. Plants compete against
their neighbors directly (instead of evaluating their fitness separately, like in more
conventional evolutionary algorithms), and in an natural and emergent way, without the
need to explicitly and arbitrarily pitch the individuals in battle, as in Sims’ work [177].
Multiple levels of selection emerge: competition between organisms, adaptation to the
environment, and adaptation against deleterious mutations (mutational robustness).
Particularly, repeated simulations of mild environments produce a wide diversity of
very elaborated forms (see Figure 4.5). In general, this model has demonstrated that
diversity can emerge through evolutionary dynamics without the need of a complex

and detailed modeling of the agents.



Chapter 5

Conclusions

This final chapter presents a global summary of each one of the parts of the dissertation
in Section 5.1. Then, the main contributions are summarized in Section 5.2, and finally

the conclusions are presented in 5.3.

5.1 Summary

In Chapter 1, the main themes of this dissertation are presented, relating them to
the models presented in subsequent chapters and the global objective of studying the
evolution of diversity. Biological and engineering perspectives are present in these
themes. From the biological perspective, three main themes are introduced: the rising
interest in agent-based computational models, the use of models of molecular motors
to understand the evolution of diversity under very specific and constrained conditions,
and evolutionary developmental biology (evo-devo) as a framework to understand the
role of development in the evolution of diversity. From the engineering perspective,
a brief introduction to evolutionary computation, highlighting the recent subfield of
artificial embryogeny as an application of evo-devo to evolutionary algorithms; also,
the concept of morphological computation, born in Robotics, is presented and put
in context, also presenting the concept of tensegrity as enabler of morphological
computation.

Chapter 2 presents a discussion on the evolutionary origin of novelty in the context
of evo-devo, as the modulation at an evolutionary scale of the interplay in developmental

processes between genomes and developing phenotypes. Tensegrity structures are also
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introduced, explaining their properties and their roles in Biology (in this context,
Appendix A provides a novel mathematical methodology to analyze some properties
of tensegrity structures). A novel model of developmental process is presented and
described, in which the genome plays a very minimal role, just specifying some initial
conditions. The subsequent developmental process is largely self-regulated by the
physical properties of the constituent parts of a tensegrity structure. The use of
tensegrity structures as the substrate for the phenotype represents the key innovation,
enabling the model to minimize the role of the genome during the developmental
processes, as the non-linear dynamics of tensegrity structures substitute the genome as
the control system of the development, in an example of morphological computation.
An evolutionary algorithm is used to evolve long developmental processes with many
and complex well-timed steps; as a side effect, a diversity of final morphologies (i.e.,
final forms produced as the final stage of developmental processes) is produced.

In Chapter 3, the molecular biology of protein motors is described. Mathematical
tools from elastic network theory (applied to protein structures) are used as a formal
background to build a framework to find artificial models (templates) of molecular
protein motors through evolutionary algorithms. These templates are useful as
computational models to assess hypotheses about biological molecular motors, as
exemplified in Section 3.3.1. The framework follows a long-standing tradition in
computational biology and artificial life to enrich agent-based models with physical
dynamics in order to produce an emergent diversity of morphologies and behaviors.
From this point of view, the framework can be characterized as specifying a very precise
optimization task (advance as fast as possible along a straight filament), and a very
precise set of rules to interact with the environment (the heuristic rules to specify the
motor heads and the events in the working cycle are rigidly prespecified). Yet, in spite of
this rigid setting, the coevolution of morphology and function in this framework yields a
diversity of shapes and gait patterns, because the underlying model is relatively detailed
and fine-grained, enabling the evolutionary algorithm to find innovative solutions to
the problem of walking over a filament.

Chapter 4 presents a study of the evolutionary dynamics induced by the ecological
interactions between very simple models of plants characterized by very simple
abstractions of genetic, developmental and physiological processes. Plant genomes are

character strings interpreted as very simplified Lindenmayer systems, and phenotypes
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are generated by the classical interpretation in terms of turtle geometry. Ecological
interactions between individuals within a population are driven by the locality of
reproduction (immediate descendants grow close to the site of their ancestors), and
are limited to the competition for light in discrete rounds of competition. The amount
of collected light determines the reproductive success of the individual for the next
round (thus using a biological interpretation of fitness, instead of a proper evolutionary
algorithm). The reproduction is asexual, with occasional mutations. In spite of
these simple premises, evolutionary dynamics emerge at the genomic, phenotypic and
populational levels; in particular, a wide diversity of plant shapes evolve as they

compete for light under different environments.

5.2 Contributions

This dissertation represents an interdisciplinary work, presenting a wide range of
contributions, tied together under the common theme of the evolution of diversity,
though there are also contributions beyond this specific subject. This section provides
a summarized account of all these contributions.

In the field of evolutionary computation, a new kind of mutational operator for
discrete elastic objects has been introduced in Chapter 3. This mutational operator is
based of elastic perturbations to the objects, and enables a more efficient structuring
of the fitness landscape for these objects, as it is able to generate coordinated and
mechanically relevant changes to the whole of the structure. More broadly, from
the point of view of engineering design optimization, that chapter presents a novel
methodology for the design of elastic structures able to advance through a line in
viscous fluids.

Additionally, also in evolutionary computation, but more specifically in the subfield
of artificial embryogeny, a new indirect encoding for the evolutionary search of
tensegrity structures has been introduced in Chapter 2. This indirect encoding is
notable for using an extremely concise form of genotype; the morphology of the
phenotype is almost entirely determined by an artificial developmental process.

The previous contribution can also be interpreted in the context of evolutionary
developmental biology, related to the nature of genetic control in developmental

processes. Specifically, it represents a novel model for developmental processes with
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minimal genetic control, providing a conceptual example of complex and convoluted
developmental processes which are mostly self-regulated by the properties of the
structures under development, instead of being tightly regulated by genetic control.
Since these morphologies emerge by evolution while selecting for complex developmental
processes, this example demonstrates that the evolution of a diversity of morphologies
can be a side-effect of the complexification of developmental processes, regardless of
the complexification of the genetic regulation of the process.

To enable the self-regulation of developmental processes, the previously mentioned
developing structures must have a substrate with rich, non-linear dynamical properties.
The concept of tensegrity provides this substrate. However, precisely because these
properties, tensegrity structures are notoriously difficult to design and analyze. The
studied developmental process suggest a new way to generate new engineering designs
of tensegrity structures. Also, while not directly related to the theme of evolution of
diversity, mathematical tools for the analysis of tensegrity structures represent also a
contribution of this thesis; specifically, to analyze the self-stress of tensegrity structures
(Appendix A), which in turn critically influences the dynamical properties of these
structures.

In the domain of molecular biology, the main contribution is the framework for
the evolution of molecular motor templates; which are simplified agent-based models
of protein motors walking over filaments (Chapter 3). Apart from the shape, which
is more or less freely adaptable, this framework specifies a very restrictive way to
determine the characteristics of the molecular motor templates; and a very restricted
environment to test them. The results show that diverse morphologies and gait patterns
can be evolved in spite of these severe constraints, because of the detailed simulation of
the molecular motors, enabling the coevolution of the structure and its control system.

Finally, regarding the analysis of the evolutionary dynamics of diversity, a novel
agent-based model of evolution is presented in Chapter 4, whose main defining
characteristic is the emergence of open-ended evolutionary dynamics (in the sense
that the agents have no explicit fitness function beyond surviving) in an extremely
simplified model, without a careful fine-tuning of the ecological parameters. This
example demonstrates that, even under extremely simplified models of ecological
interaction, evolutionary dynamics can emerge, driving the evolution of complex and

diverse communities of agents with rich and interesting dynamics at the population
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level. In the framework of this simple model, a series of techniques are provided to

measure diversity and other interesting parameters of the simulated populations.

5.3 Conclusions and discussion

The main purpose of this dissertation has been to study the evolution of diversity of
form (morphology and structure) and function (behavior and development) in three
agent-based models of biological systems from a biological perspective, but also with a
strong focus on evolutionary computation. These models have been discussed from
several different of points of view: evolutionary developmental biology, molecular
biology and evolutionary dynamics in the context of Biology, and indirect encoding
in evolutionary computation and engineering design; all of them complementing the
unifying theme of the evolution of diversity. Consequently, this dissertation can
be unequivocally considered as interdisciplinary. This final section will review the
conclusions derived from the findings presented in this dissertation.

In a typical dissertation, a research question is posed, and then just one model (or at
most a family of more or less closely related models) is introduced, described, simulated,
analyzed and the results put in context, throughout several chapters. In contrast,
the structure of this dissertation represents a significant departure from that usual
structure: each one of the previous three chapters have presented a model (significantly
different from the others) in a mostly self-contained format.

The reason for this unusual structure is the following: the main purpose or research
question of this dissertation is to study from a computational perspective the origin of
diversity of morphology and function in biological systems. However, this purpose is
exceedingly vast in scope; a compromise must be reached; in fact, this dissertation is
not, and cannot provide, an exhaustive account of all the possible ramifications related
to this broad research question. The usual way to solve this issue is to formulate just one
model to address a very precise and restricted version of the originally broad research
question (giving rise to the usual dissertation structure discussed in the previous
paragraph). However, as a side effect, this means a considerable restriction in the
scope of the results. An alternative may be to define a model with multiple layers, to
study the origin of diversity at multiple levels within a single model. However, this

hypothetical model would be difficult to manage and analyze. Instead, the strategy
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chosen in this dissertation is to use several simple models, each one suited to study a
different aspect of the origin of diversity; in this way, a wider range of relevant topics
can be analyzed and discussed.

Specifically, each model is related to an aspect of the original research question

about the evolution of diversity:

The role of developmental processes.

In the context of evo-devo, developmental processes are postulated to play a key role
in the evolution of diversity. This role is often interpreted in terms of the genetic
control of this process: a complex genetic regulatory network orchestrates a complex
process of development from zygote to adult phenotype, and thus the evolution of
diverse morphologies is the result of the evolution of complexity in genetic regulatory
networks [14]. In this setting, we pose the following question: is the evolution of
complex genetic regulatory networks a requirement to induce diverse morphologies
through developmental processes? However, in Chapter 2, it is presented an abstract
model of self-regulated development with no genetic regulation, but just genetic
modulation of the initial conditions of the process. Yet, diverse morphologies evolve
by running several times a simple evolutionary algorithm, set to heuristically find
instances of long and complex developmental processes. In this setting, the regulatory
character of the genome is taken over by the dynamical properties of tensegrity
structures; therefore, the evolution of diverse morphologies is directly the result of the
complexification of the developmental processes, disregarding the need for a complex

genetic regulatory network.

The interplay between the body and its control system.

In the context of computational biology, evolutionary robotics and artificial life, the
coevolution of the body and the control system of the agents can produce diverse
and coadapted morphologies and behaviors [58]. Previous work in this area has
traditionally used complex control systems and, in some cases, developmental processes
as complex genotype-to-phenotype mappings [103, 158, 178]. However, the concept
of morphological computation [154] suggests that this coevolution can be effective
even if the control system is extremely simple and mostly implicit in the morphology
and structure of the agent, as in the case of Lobo’s path followers [120]. Chapter 4

presents an example in this vein, but simpler: no developmental process but a direct
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(albeit highly heuristic) genotype-to-phenotype mapping, a simple control system (the
reactive working cycle) and a very simple task (advance as fast as possible) in a
simple environment (a straight filament in an empty 3D space). In spite of this
simplicity, diverse morphologies and behaviors (gait patterns) evolve. Globally, this
model constitutes a fairly minimal example of body-control system coevolution through

morphological computation.

The role of evolutionary dynamics.

The scientific literature on the evolution of diversity is rich and spans many scientific
disciplines. In the context of agent-based simulation, many different models have been
proposed over the years. Many of them feature complex agents in a rich and complex
environment, with a detailed modeling of their characteristics, as Sims’ [178]. Others
try to model many relevant details to build complex ecological communities [182, 220].
In these cases, the resulting diversity in the simulations can be attributed to many
different features of the models. Other agent-based models feature very simple agents,
in order to enable an exhaustive mathematical analysis of the model [26, 221], at the
cost of a very high-level modeling of the characteristics of the agents. Our contribution
in this area is the model presented in Chapter 4, whose defining characteristics are a
bottom-up approach and the simplicity of the modeling at all levels: in the genotype,
the phenotype and its mapping with the genotype, in the determination of biological
fitness and the asexual reproductive model, and in the ecological interactions; however,
on the whole, the approach is not too abstract. Because of this simplicity at all levels,
the resulting evolution of diverse morphologies can be attributed to the evolutionary
dynamics induced by the ecological interactions between the agents, rather than to any

other aspect of the model.
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Appendix A

Atom-based analysis of tensegrity

structures

In Chapter 2, tensegrity structures have been used to produce complex developmental
processes, giving rise to a diversity of morphologies. This appendix provides a
supplementary contribution on the mathematical analysis of tensegrity structures.

Up to date, formal analysis and design of tensegrity structures has been conducted
using mathematical tools like potential energy functions [32], and a variety of form-
finding methods [138, 195]. However, in [78] a new approach was developed: tensegrity
structures were shown to be decomposable into a sum of elemental tensegrity units,
called atoms (see Figure A.3). That result was applied to develop a new form-finding
method, finding tensegrity configurations for a given abstract graph, provided that
some conditions hold (see [78] for the complete definition). This works the other way,
too: it is possible to assemble new tensegrity structures by summing tensegrity atoms.

In general, tensegrity structures can be decomposed in many possible ways, and
there is currently no way to define a canonical decomposition. However, for any
tensegrity structure, there is at least a class of distinguished decompositions, whose
characteristic is to use a minimal amount of atoms. This appendix presents a
mathematical analysis on the length of decompositions of tensegrity structures. This
study represents the initial phase of a research line on a new way to analyze and

generate tensegrity structures based on atomic decomposition.

The mathematical results presented in this appendix have been published in [52].
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Figure A.1: Basic concepts. (a) A framework is an embedding of an abstract graph (in
this case K,) with straight edges in some space R (in this case, R?). (b) A self-stress is
an assignment of real values (stresses) to the edges of a framework such that the sum of
incident vectors scaled by their values is zero in every edge. Here, the convention is to
use blue to denote a negative stress and red to denote a positive stress. (c) A tensegrity
structure is a framework with a self-stress.

A.1 Theoretical definitions

Before starting the discussion, some concepts and results (formulated in [78]) will be

briefly presented, since they are needed to understand the rest of the section:

e A finite point configuration P := {p1,...,p,} in R? is in general position if no
d + 1 points lie on the same hyperplane. More restrictively, if the points are

algebraically independent, the position is generic.

e A framework G(P) in R? is an embedding of the abstract graph G = (V, E) on
a finite point configuration P in R in general position, with straight edges. See

Figure A.l.a.

o A self-stress w on a framework is an assignment of scalars w;; (called tensions)
to its edges, such that for each vertex 4, the scaled sum of incident vectors p; — p;

is zero (see Figure A.1.b):
Vi, > wi(pi—pj) =0
ijelE

Observe that self-stresses form a vector space. In relation to Chapter 2, the stress

is equivalent to the force exerted by the elastic link, divided by the length of the

P2

p3
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link (force density in the literature [138, 195]).

o If a framework G(P) has n vertices and e edges, its associated rigidity matriz

R(P) has e rows and nd columns, such that:

— There is a row per edge ij of the framework, with ¢ < j and in lexicographic

order.

— Each block of d columns is associated to a vertex p;, and it contains zeros
except for each row corresponding to an incident edge ij, where it contains

the d coordinates p; — p;.

Observe that if w is a self-stress on G(P), then w - R(P) = 0.

e A framework with a self-stress non-null on every edge is called a tensegrity

structure, denoted as G(P,w). See Figure A.1.c.

e An atom A in dimension d is a complete graph Ky o embedded in RY. If
the embedding is in general position, its space of self-stresses has dimension 1.
Otherwise, it only admits a null stress, that is to say, w;; = 0, Vi,j. See

Figure A.2.

e An atomic decomposition of a tensegrity structure G(P, w) is a finite set of atoms
(each atom corresponding to a set of d+2 points in P) such that the sum of their
self-stresses is w. Note that the atoms in the decomposition may have edges ij
not present in G, which cancel out to w;; = 0 when the atom stresses are added
up. In general, decompositions are not unique. The length of the decomposition

is the cardinality of the set of atoms. See Figure A.3.

One of the main results in [78] is the development of an algorithm to generate
atomic decompositions for tensegrity structures. The algorithm can be applied
to a tensegrity structure G(P,w) (Theorem 3.2 in [78]), or to an abstract graph
G = (V,E) (Algorithm 3.4 in [78]). These variants will be referred as the geometric
and combinatorial algorithms, respectively. Below, the combinatorial version of the

algorithm is reproduced (see Figure A.4 for a graphical example):
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Algorithm A.1. (Adapted from Algorithm 3.4 in [78]) Atomic combinatorial decom-
position

INPUT: abstract graph G = (V, E) and dimension d.

OUTPUT: (L, M, F), where L is a list of “atoms” (subsets of (d + 2) elements
of V'), M is a list containing the number of edges added for each atom in L, and F is

a list of intermediate graphs.
1. Initialize L = @, M = @, F = [G].
2. While FE is not empty, choose a vertex a € V and:

2.1 If a has degree d + 1, let ag, ..., ag be its neighbors. Remove the edges aa;
from E. Let E’ be the set of all the edges a;a; between the neighbors that

were not in F.

2.2 If a has degree at least d+2, choose d+ 1 neighbors ag, ..., ag of a. Remove
the edge aap from E. Let E’ be the set of all the edges a;a; between the

neighbors that were not in F.

2.3 If a has degree < d, remove its incident edges from FE.
In cases 2.1 and 2.2, also add the edges from E’ to E, insert the atom
{a, ag, ..., ag} to the list L, and |E’| to the list M. In any case, also update
the graph with the new set of edges and removing unconnected vertices, and

add it to the list F'.
3. Return (L, M, F).

It is important to note that both the geometric and the combinatorial algorithms are
non-deterministic: different decompositions can be obtained by making different sets of
choices at several points in the algorithms. In the combinatorial algorithm, the resulting
decomposition of a graph G represents a set of constraints between the positions of
vertices and/or self-stresses of edges of tensegrity structures with underlying graph G
(more details in [78]).

The acronym SAL will be used to refer to the smallest atomic length, i.e., the
smallest size of the list L over all the possible outputs of Algorithm A.1. Studying the
SAL is interesting because it can be seen as a tool to analyze a tensegrity structure:
it represents the minimal way to interlock a set of one-dimensional atoms to generate

the structure.
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(a) (b)

Figure A.2: Atoms in R? and R3. (a) All atoms in R? share the geometric configuration
(either a triangle with an interior point or a quadrilateral) and self-stress scheme (pattern
of stress signs) of one of these two atoms (or can be obtained by flipping the stress signs
in any of these two examples, that is to say, switching colors from blue to red and vice
versa). (b) The same applies in R® for these other two atoms.

Remark A.2. While the combinatorial algorithm formally operates in the domain of
abstract graphs, it implicitly assumes that the graph is embedded in some unspecified
tensegrity structure. In this context, it is significant to note that some valid tensegrity
structures G(P,w) might have a SAL shorter than the combinatorial SAL for G.
Consider the decomposition shown in Figure A.5: if a general point configuration P
is set and a self-stress w which is the sum of atoms 1,...,4 is defined, a tensegrity
structure G(P,w) can be obtained, whose underlying graph G is the same as the
one depicted in the figure. Therefore, while the geometric SAL of this specifically
constructed G(P,w) is 4, the combinatorial SAL for G is 6, because the combinatorial
algorithm tacitly assumes that G is implicitly embedded in a tensegrity structure
G(P,w) as generic as possible, both in terms of the position P and of the self-stress
w. In spite of these considerations, the combinatorial problem can be reduced to the

geometric one, as it will be seen in Section A.2.1.

Remark A.3. In the geometric case, it is important to note that tensegrity structures
in non-general position can still be decomposed into sums of atoms, under the
condition that each one of the atoms in the decomposition is in general position.
This might lead in some cases to minimal geometric decompositions longer than the
minimal combinatorial decompositions for the underlying abstract graph, since the
combinatorial decomposition may use atoms which in the geometric case are not in
general position, thus not usable. On the other hand, in the geometric case, the step 2.3
may sometimes remove more than one edge, rendering the combinatorial analysis of

these cases more difficult.
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Figure A.3: Atomic decomposition/assembly. All tensegrity structures can be decomposed
into a sum of tensegrity atoms [78], such that the self-stress of the overall structure is
the sum of the self-stresses of the atoms. The atoms may have edges not present in the
tensegrity structure, such that the sum of stresses over all atoms for those edges is zero
(this does not happen in the simple example depicted in this figure). Equivalently, a sum
of atoms with shared edges results in the assembly of a tensegrity structure.

From rigidity theory [74], it is known that the set W of all possible self-stresses of a
framework G(P) is, in fact, the left kernel of the matrix R(P). Similarly, the space of
infinitesimal motions is the right kernel of R(P), whose dimension (or number of degrees
of freedom) is 0 if G(P) is rigid. The following proposition relates the dimensions of

both spaces:

Proposition A.4. (Theorem 2.4.1 in [74]) Let G(P) be a framework in general position
P in dimension d with G = (V, E) , Wg(P)‘ the dimension of the self-stress space and
df(G(P)) the number of degrees of freedom of G(P). Then:

d+1

W) - , | T vi=IEL vz

df(G(P)) = (A1)
V
‘2’ —|E], if V| <d+1

A.2 The structure of the space of self-stresses

For all practical purposes, only generically rigid graphs will be considered, that is to
say, graphs which are rigid in any generic position. Non-generically rigid graphs can
be embedded in tensegrity structures only in very degenerated positions. The notation
|[We| will be used to denote the dimension of Wg(py if P is a generic position, since it
is constant for every generic position.

For generically rigid graphs, the space of self-stresses of the intermediate graphs (list
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F) in the decomposition algorithm changes according to the number of intermediate
edges inserted along the decomposition (list M), and these numbers are directly related
to the dimension of the space of self-stresses. To show this, we start with the following

proposition:

Proposition A.5. If a graph G = (V,E) is generically rigid in RY, then every

intermediate graph in any decomposition in R% will be generically rigid.

Proof. Suppose that, for a given decomposition, the list of intermediate graphs is F' =
[...,Gi,Git1...,]. The proposition can be proven by showing that if an intermediate

graph G; is generically rigid, then G;11 also is. Doing it by cases:

e If the transition is done by step 2.1, let E’ be the set of the added edges from
G; to Giy1. If Gj is generically rigid, consider the rigidity of the graph Gj,,

/
7

induced from Gjy1 by removing the edges in E'. If G, is not generically rigid,
then the edges incident to a in G; must remove all degrees of freedom from Gj |,
which allows the movement of some of its neighbors relative to others. In G;y1,
all distances between these neighbors are fixed by the edges added in E’, so G;11

is also generically rigid.

e [f the transition is done by step 2.2, let aa; be the only edge removed from G;
to Giy1. In G;y1, the subgraph induced by the vertices a,ay,...,aq is a clique
K442 minus an edge. A clique K49 is a generic rigidity circuit in dimension
d (Theorem 3.11.9.a in [74]). If an edge is removed from a rigidity circuit, the
resulting subgraph is still generically rigid (in chapter 3 in [74]). Therefore, the
relative positions of a and a; are fixed in G;11, and hence this is also generically

rigid.

e [f the transition is done by step 2.3, at most d edges have been removed from G;

to G;4+1. Reasoning by the number of vertices in Gj:

— if |Vi| > d, the vertex a must have exactly d incident edges for G; to be
rigid, and any self-stress must be always zero in these edges. Therefore,
the equilibrium at other vertices in G; is independent from these edges,
and |Wg| remains the same in G; and G;41. By applying the first case of
Equation A.1, df(G;4+1) = 0, so Gj4+1 is also generically rigid.



126 Appendiz A. Atom-based analysis of tensegrity structures

— if |V;| < d, G; must be a complete graph in order to be generically rigid
by the second case of Equation A.1, so G;41 will also be a complete graph,

hence also generically rigid.

O

Therefore, generic rigidity is a property conserved through all intermediate graphs
in the decomposition algorithm. To take advantage of this, the Laman bound is defined

as the dimension of the self-stress space in generic position:

Definition A.6. The Laman bound of a generically rigid graph G = (V,FE) in
dimension d is defined as:

d+1
=" |-ami+iE

The Laman bound is modified by the decomposition algorithm in a very specific

way:

Proposition A.7. Let G;, Giy1 be two successive intermediate graphs in a combina-
torial atomic decomposition in dimension d, with every verter in G; having degree at
least d. Let B; and B;11 be their Laman bounds, respectively, and let e; be the number

of edges added from G; to Giy1. Then, Biy+1 = B; +¢; — 1.

Proof. By the definition of Laman bound, it is easy to see that the equality holds in
any case (steps 2.1, 2.2 and 2.3). O

Remark A.8. Note, as explained in Remark A.3, that in the geometric case, the
step 2.2 in Algorithm A.1 sometimes removes more than one edge. Proposition
Proposition A.7 (and consequently Proposition A.9) does not hold in these cases.
However, the propositions still hold in the geometric cases induced as general instances

of combinatorial cases (see Remark A.11).

If a graph is generically rigid and has at least d vertices, then B = |Wg| by
Proposition A.4. Hence, by Proposition A.5, each atom considered in the decomposition
algorithm changes the dimension of the space of self-stresses of the intermediate graph,
according to the number of edges added to the graph. Atoms adding no edges represent

an independent dimension in W¢, atoms adding one edge must be tuned to cancel out
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Figure A.4: Atomic decomposition algorithm. A graphical example of the Algorithm A.1,
used to decompose an abstract graph into a sum of symbolic atoms, which can be used to
find a suitable geometry to define a tensegrity structure using the abstract graph, under
some circumstances (see [78]). Roughly speaking, the algorithm works by symbolically
subtracting atoms from the abstract graph. In each substraction, some edges are added
and some others are removed. After several steps, all edges are substracted, and the
decomposition ends.

the stress in that edge, so they do not affect the dimension of W, and atoms adding two
or more edges represent an interlock between several other atoms. These considerations

are summarized in the following result:

Proposition A.9. Let G be a generically rigid graph and B its Laman bound, and
consider the lists L (of atoms) and M = [617 cel, ew} (of amounts of added edges)
produced by an atomic decomposition of G. Then, the number of atoms in the
decomposition is the Laman bound plus the total amount of (possibly repeated) edges
added during the decomposition:

||
|L| = B+Zei (A.2)

Proof. As G is generically rigid, Proposition A.7 can be applied to every intermediate
graph generated by the algorithm, so an atom introducing e edges changes B by e — 1.
Equation A.2 is implied by combining Proposition A.7 with the fact that the Laman
bound must change from By = B to B = 0. O

The previous proposition provides a characterization of the SAL: it corresponds to
the decompositions introducing the fewest edges in the intermediate steps. This holds

even if the graph is not generically rigid.
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Definition A.10. A decomposition is defined as atomistic it no edges are added in
any intermediate step. By extension, a graph is atomistic if it admits an atomistic

decomposition.

It is clear that, in an atomistic decomposition, the self-stresses of the atoms form
a basis for Wg. It is also evident that if a graph G = (V, E) is decomposed and E’ is
the set of all edges added in the intermediate steps, then the graph G’ = (V, E U E’)
is atomistic. Also, chordal graphs that are generically rigid are also atomistic, and so

are cliques K, whose minimal decomposition length is (";%).

A.2.1 An algebraic characterization

Given a tensegrity structure G(P,w), the geometric decomposition algorithm (check
the combinatorial version in Algorithm A.1 or the geometric version in [78] admits an

algebraic reformulation.

Remark A.11. Note that in this section the domain is being shifted from combinatorics
to geometry. As described in Remark A.2, some valid tensegrity structures might
have a SAL shorter than the combinatorial SAL for G. If a generically rigid graph
G = (V, E) can be embedded in a tensegrity structure G(P,w), the way to find P and

w to construct a tensegrity structure G(P,w) depends on the value of |Wg|:

e If W] > 0, and no edge in E' must have a null self-stress for a generic position P,
any generic P will be suited to construct a G(P,w). Given a generic P (uniformly
random configurations are almost certainly generic), a suitable self-stress can be
generated almost certainly by taking a basis {w1, ..., wx} for Wg(p), and finding
a linear combination w = Y a;w; where coefficients a; are drawn from a uniform

distribution U(0, 1).

o If Wg| = 0 and a tensegrity structure G(P,w), can be defined, then the
configuration P must be non-generic. In some cases, it can be found relatively

easily (for example, for graphs with edge-inserting decompositions, as described

in [78]).

Definition A.12. Let P be a point configuration in dimension d. @Q,, is defined as the
collection of all sets with exactly m vertices from P. Also, S is defined as the atomic

self-stresses matriz as follows:
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Figure A.5: An abstract graph with one example of a combinatorial atomic decomposition
with six atoms. Tensegrity structures with the same underlying abstract graph but only
four atoms (from 1 to 4) can be formulated, showing that the minimal combinatorial
decomposition is an upper bound for geometric instances of the problem.

e There is a row for each possible set {p;, p;} € Q2. The rows are ordered by the

indices 7, j, with ¢ < j and in lexicographic order.

e There is a column for each possible set {pi,...,par2} € Qgi2. As these d + 2
points represent an atom A, let w4 be an unitary, non-null self-stress of A. Then,
the column associated to A contains, for each row corresponding to a pair of
points p;, p; of A, the self-stress assigned by w4 to the edge p;p;. In every other
row, the value is 0. As with the rows, the columns are ordered in lexicographic

order by the indices of the points.

Definition A.13. For a given tensegrity structure G(P,w), the self-stress w can be
represented as a column vector w of length (4Ys), where there is a position for each
possible pair p;, p; of vertices of the framework, with ¢ < j and in lexicographic order,
and the value in w for the position corresponding to the pair p;, p; is w;; if there is an

edge between them, and 0 otherwise. See Figure A.6.

It is easy to see that if w is a valid self-stress of G(P), then every solution x to the
underdetermined system of linear equations S - x = W represents a linear combination
of atoms which can be used to construct a tensegrity structure G(P,w). Furthermore,
let |||, be number of non-zero elements in z. The problem of finding the SAL can
be recast as finding a sparsest solution (with minimal ||z[|,) to S -2z = w. Since by
Remark A.11 the combinatorial algorithm can be restated in these terms for most

graphs, this leads to some interesting properties for S:

Corollary A.14. If a configuration P in n vertices is in general position, the rank of

. . . . 7d
the corresponding atomic self-stresses matriz S is ("2 ).

Proof. K, is an atomistic graph, so any minimal decomposition corresponds to a basis
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Figure A.6: Atomic self-stresses matriz (see Definition A.12). For a given framework G(P)
in dimension d (left), the atomic self-stresses matrix S (right) has one row for each possible
pair of points in the framework (not only edges, but any all pairs), and one column for
each possible set of d + 2 points (representing all possible atoms in the framework). For
example, in d = 2, each column represents the self-stress of the corresponding atom: for
column ijkl, there are non-zero values on rows corresponding to the pairs of points for
that column: ij, ik, il, jk, jl, kl (even if these pairs are not edges in G(P)), and zeroes in all
other rows. These non-zero values are the normalized values of self-stress of a framework
with underlying graph K,i2 and the points ijkl corresponding to that column. In this
way, the self-stresses matrix S compiles all possible atomic self-stresses for G(P).

for Wk, . As the columns of the matrix S are the self-stresses for all possible atoms in

K., its rank must be exactly the size of this basis, i.e., ("5%). O

It is interesting to comsider how Proposition A.9 translates into this algebraic

setting. First, some definitions are needed:

Definition A.15. Let G(P) be a framework, and (2, Qg+2 as in Definition A.12.
Given a set of pairs D C @9, its collection of associated atoms Ap C Qg+2 is defined

as the collection of all sets of d + 2 points including some member of D, ie., Ap =
e Do P} € Quya| {pinpi} € D).

Definition A.16. Let G(P,w) be a tensegrity structure, with G = (V,E) its
underlying graph, S its atomic self-stresses matrix and w the column vector associated
to w, as in Definition A.12. Let E' C Q2 be a set of edges containing E. Let G’ = (V, E’)
be a graph formed by adding the edges in E' — E to G. Let Ags C Qq12 be the set of
atoms associated to E’. The rows (resp. columns) of S correspond one-to-one to sets in
Q2 (resp. Qg42). The core of S (resp. w) with respect to E’, denoted Sgr (resp. W),
is defined as a the submatrix of S (resp. w) induced by E’, whose rows correspond to

E’ and whose columns correspond to Agr. See Figure A.7.

Now, it is worth to note that any solution x g to Sg - g = Wgr induces a solution

x (generated by padding z g with zeros for the rows in S but not in Sg/) to S-x =w
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Figure A.7: Core of a system of linear equations (see Definition A.16). For a given
tensegrity G(P,w), any atomic decomposition can be characterized as a solution z to
the linear system of equations S -z = w, where S is the atomic self-stresses matrix (see
Figure A.6). Any set of pairs of points E' O F (a superset of the set of edges of the
framework) induces a set of atoms Ag/ such that all atoms in Ap/ have at least an edge
in E’. Then, the restricted matrix Sp; can be defined as the submatrix of S with the
rows corresponding to £’ and the columns corresponding to Ap:. The restricted vectors
rzp and wgs are subvectors of x and w defined in a similar way. Then, the subsystem
Sgr-rp = wgr, called the core of S-x = w, is solvable if and only if Ag/ is a superset of the
atoms of a decomposition (see Proposition A.17).

(in fact, ||zg|l; = ||lz|ly). Without loss of generality, all pairs in E’ can be supposed
to be included in some element of R’ C Q4.2, as pairs not fulfilling this requirement
are associated to rows whose elements are all zero in [Sg/ |wWg]. The following insight
relates the structure of a combinatorial decomposition to the solution to the linear

system of equations S - x = w:

Proposition A.17. Let G(P,w) be a tensegrity structure with graph G = (V, E),
such that Proposition A.9 holds (as in Remark A.11). Then, the SAL corresponds
to a minimal set of edges E, such that, for E' = E U E,, it holds that rank(Sg/) =

rank ([Sgr | Wg]), where Sgr and W are the cores of S and w. See Figure A.7.

Proof. Let L be any geometric decomposition of G(P,w), let E, be the set of edges
added during decomposition L, and let £/ = EUE,. L can be recast as a solution z g to
Spgr-xp = Wgr. Then, Proposition A.9 means that ||z ||, is the sum of the dimension of
the space of self-stresses of G(P) and the number of rows in Sg/ corresponding to edges
in E,. Therefore, a SAL will correspond to a minimal set of edges F, such that the
system Sgr-xp = W is solvable. The solvability condition can be restated in terms of

the ranks of the matrix and the augmented matrix, rank(Sg/) = rank ([Sg: |wg/]). O
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As a result, atomistic graphs can be characterized in algebraic terms: if a suitable
tensegrity structure G(P,w) is defined on a graph G = (V| F) (as in Remark A.11),

then it is atomistic if and only if rank(Sg) = rank ([Sg | Wg)).

A.2.2 Computational complexity

The problem of computing the SAL seems to be NP-complete, but the question remains
open. As the combinatorial atomic decomposition is defined through an algorithm with
some non-deterministic steps, a choice (selected atom) taken in a step affects in highly
convoluted ways to the choices available in all subsequent steps. Because of this, it
is very difficult to reason directly about the computational complexity of finding the
SAL. While several NP-complete problems seem to be very related to it, no obvious
ways to reduce them to it have been devised:

The NP-complete fixed clique covering problem (FCC) [33, 105] is (for any
given n) the problem of finding the minimal amount of copies of K, needed to cover all
the edges of a graph GG, where these copies are not required to be induced subgraphs of
G. FCC can be deemed as a non-trivial lower bound on the SAL in dimension d, but,
unfortunately, the FCC tends to grossly underestimate the SAL.

The NP-complete minimum fill-in (MFI) [224] of a graph G is the minimal amount
of edges whose addition makes the graph chordal. If a graph can be instantiated as
a tensegrity structure in dimension d, its MFI plus its Laman bound can be regarded
as an upper bound on its SAL, as the resulting chordal supergraph will necessarily
have at least as many edges as a minimal atomistic supergraph of G (in fact the
chordal supergraph will induce an atomic decomposition of G, although not necessarily
minimal). As chordal graphs are also atomistic, the MFI induces a SAL in many cases.
These facts hint that, even if the problem is not NP-complete, it must be relatively
hard to solve.

By Definition A.12, finding the SAL is equivalent to finding a sparsest solution
to S - x = w. While this algebraic formulation of the problem may seem more
tractable than the combinatorial one, the highly structured nature of the matrix S
implies severe restrictions on the ways to reduce any known NP-complete problem
to this one. Interestingly, the superproblem of finding a sparsest solution to a
general linear system of equations A -z = b (over the real numbers) has been

thoroughly studied [6, 22, 23, 40, 61, 64, 75, 111, 116, 125, 201], as it is relevant in many
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Figure A.8: Ratio of atomistic graphs
in each sample (n,p) of random and
generically rigid graphs with a given
number of vertices n and a given density
p, for dimension d = 2. Pitch black
rectangles represent empty samples (too
sparse to be rigid). A phase transition
can be appreciated.
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engineering applications. While this problem is widely reported to be very hard, no
rigorous proof of NP-completeness has been found after a fairly exhaustive literature
review (a superproblem, the sparsest approximation to the solution, is known to be
NP-complete [142]). However, many theoretical results have been developed, defining
conditions on the matrix A for the sparsest solution to be calculable in polynomial
time [29], provided that A is full-rank or at least has a large spark. Unfortunately, the
matrix S has always low rank (Corollary A.14) and the spark is always extremely low
(at most seven for dimension d = 2, since six vertices induce seven linearly dependent
atoms). As a result, these methods yield very sub-optimal solutions to the SAL in most

cases.

A.2.3 Heuristics

Because no practical method to find the SAL has been found, heuristics are the natural
choice. While many heuristics were tried (notably, heuristics adapted from methods to
find the sparsest solution to a linear system of equations, as described in Section A.2.2),
only the two best ones will be defined here, alongside the original decomposition
algorithm:

RAW is the original decomposition algorithm, where at each step, the vertex with
minimal degree is selected to ensure that the algorithm always halts.

MINDEG is an heuristic which greedily prunes the decision tree of the decom-
position algorithm: in general, when considering an intermediate graph G; in the
combinatorial algorithm, there are many possible next graphs G;11. For each possible
Gi+1, consider the sorted list vertex degrees, D. Select as the next graph the one with

minimal D in the lexicographic sense. Therefore, these vertices will be more likely to
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Figure A.9: Performance in dimension d = 2 of the heuristics MINDEG and K4-WISE
compared to the RAW method. For each sample (n,p), all decompositions for all graphs
are considered, and the mean of the number of added edges |F,| is calculated for each
different method. There is a subgraph for each different number of vertices n. For all
subgraphs, the X axis represents graph density p, and the Y axis represents the mean
of the number of added edges for the corresponding sample (n,p). See Section A.2.3 for
details.

be selected in subsequent steps: the net effect is a strategy tending to remove as many
edges as possible in clusters of vertices with small degree. This way, these clusters tend
to be removed as soon as possible.

K4-WISE is an heuristic based on the algebraic characterization of the problem,
which greedily adds edges to a set E, until rank(Sg/) = rank ([Sg |vgr]), with B/ =
EUE, (Proposition A.17). In dimension d = 2, to decide which edges to add to E,, the
heuristic considers all the the induced subgraphs of four vertices having between 3 and
5 edges (modulo all the induced subgraphs formed by a triangle and an unconnected
vertex). Then, in each step, it selects them randomly one by one, adding to the graph
the set of edges in the complement of the corresponding subgraph, and testing if it
has become atomistic after each addition. When the condition is fulfilled, the added
sets of edges are considered in some other random order, removing the ones that leave
the graph as still atomistic. Note that, while finding the rank of a single matrix is
computationally expensive, better methods may be possible if the rank is calculated

over a series of gradually changing matrices [62].



A.3. A proposal to analyze self-stresses 135

Samples of relatively large graphs have been generated for several combinations of
numbers of vertices n € [10, 15, 20, 25, 30, 35] and graph densities p € [0.2,0.3,...,0.9],
to study the heuristics as the number of vertices and the density grow. For each
combination (n,p), a sample of 50 random and generically rigid graphs has been
generated (except for combinations (10,0.2), (10,0.3), and (15,0.2), which cannot
yield rigid graphs). 50 trials of each method (RAW, MINDEG and K4-WISE) were
performed for each graph. From this sample of random graphs, a phase transition has
been detected: at a certain density depending on n, the ratio of random atomistic
graphs switches from nearly 0 to nearly 1 (Figure A.8).

The results (Figure A.9) show that MINDEG is always significantly better than
RAW, while K4-WISE is significantly worse (even than RAW in some cases) for small
and sparse graphs, but it gets better and better for larger and larger graphs, and
surpasses the performance of MINDEG for dense graphs of any size. This is not
surprising, since K4-WISE is able to detect atomistic graphs (which predominate at
high densities), while MINDEG still tends to add unnecessary edges to them. The point
at which it is better to switch from MINDEG to K4-WISE shifts to lower densities as
the number of vertices increases, and is always at slightly lower densities than the phase
transition.

As the number of vertices increases, minimal decompositions are expected to
become an exponentially smaller and smaller fraction of all possible combinatorial
decompositions for sparse graphs. For these graphs, no heuristic seems to perform very
much better than the raw method. This makes sense, as sparse graphs will have an
associated generic self-stress space of very low dimensionality, requiring many precisely

added edges to become atomistic.

A.3 A proposal to analyze self-stresses

The atomic decomposition of a tensegrity structure shows how to build its self-stress
from elemental units (atoms). Thus, if the self-stress w of a tensegrity structure G(P, w)
is analyzed from a purely static point of view, it makes sense to use the length of its
minimal decomposition (the SAL) to measure its complexity C(w), since it represents
the smallest number of elemental units (atoms) needed to build the structure: C(w) =

SAL. Note that this applies to the self-stress of the structure, not to the structure in
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itself.

However, under this definition, the self-stresses of cliques would be maximally
complex. In general, very dense graphs tend to have a relatively long SAL, mainly
because of having a self-stress space of relatively high dimension. However, we
can use the relationship between atomic decompositions and the structure of the
self-stress space Wg(py of tensegrity structure G(P,w), in order to get a more
descriptive definition. Since in most tensegrity structures each edge added during
the decomposition represents an interlock between the self-stresses of several atoms
(Section A.2), the more edges, the more complex must be the interlock between the
self-stresses of the atoms in the decomposition, in order to form the desired self-stress
of the tensegrity structure being analyzed. Thus, a more meaningful way to define
the complexity of the self-stress of a tensegrity structure G(P,w) is to substract the
dimension of the self-stress space from the SAL: C(w) = SAL— ’W(;( P) ’ This definition
will be used in future research on the generation of new tensegrity structures by addition

of atoms.



Appendix B

Virtual plant simulations

In Section 4.3, three simulations of virtual plants were thoroughly analyzed. Here,
we include complementary data: a series of images for each simulation, showing the
populations at intervals of 10 generations. Section B.1 corresponds to the simulation
in Figure 4.9, Section B.2 to Figure 4.10 and Section B.3 to Figure 4.11, respectively.
For each simulation, the set of the images corresponding to that simulation are shown
to scale, to appreciate how the population and the individuals grow in size. However,
the sets are not all to the same scale, as their proportions vary too greatly.

The images for mild and harsh simulations have been scaled down before inclusion
in this document, as they are too big, so the images for the initial generations are too
small, almost invisible, and show no detail. However, the images of the very harsh
simulation retain all the original details, which can be seen in the electronic version of
this document with full resolution, if it is appropriately zoomed in.

The colors of the plants are completely random, and they are used just to visualize

the plants which are superposed; they do not convey any information.
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B.1 Mild simulation (Figure 4.9)
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B.2 Harsh simulation (Figure 4.10) R
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B.3 Very harsh simulation (Figure 4.11)
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Appendix C

Implementation details

This appendix presents a summarized account of the implementation details of the

hardware (Section C.1) and software (Section C.2) employed in this dissertation.

C.1 Hardware configuration and system software

Since the simulations and evolutionary algorithms presented in this dissertation have
a relatively high computational cost, a Beowulf computer cluster, named terclus, was
used. This cluster was built and administered by the members of the research group of
Francisco Vico, and it was entirely at our disposal. terclus was built with the following

hardware configuration:

e A master node with 2 AMD Opteron Quad-Core processors at a clock speed of
2.2 Gigahertz (a total of 8 CPUs), 8 Gigabytes of main memory, and a hard drive

with a capacity of one Terabyte as the main store unit in the cluster.

e 12 slave nodes with 2 AMD Opteron Dual-Core processors at a clock speed of
1.9 Gigahertz (4 CPUs per slave, a total of 48 CPUs), 4 Gigabytes of main
memory, and a very small hard-drive (just 80 Gigabytes) as local storage for the

operating system and temporary files.

e A data network to communicate the nodes for computational purposes and to
make accessible the main store unit in the master node to all the slave nodes

(therefore, the store unit could be used to share data between the nodes). This
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data network was implemented as two Gigabit Ethernet networks configured as

a channel bonding on the nodes.

e An administrative network for configuring purposes and command-line access
to any slave node from the master node. This administrative network was

implemented using a Fast Ethernet Network.

The master node also had another network link connected to the intranet of the
university, in order to be used remotely. In total, terclus had 56 CPUs and 56 Gigabytes
of main memory, so one Gigabyte of main memory was available per CPU, roughly
speaking. Memory swapping was disabled in all nodes by default, since in most
cases available memory was enough, and whenever swapping started to happen, severe
thrashing almost always ensued, leading to an almost unrecoverable state, with all the
activity of the node virtually halted.

All the nodes in terclus ran a Debian GNU/Linux operating system!. Job scheduling
was implemented through the TORQUE Resource Manager? and the MAUI Cluster
Scheduler® (Adaptive Computing, Inc.), in order to balance the computing load of
the cluster. TORQUE was configured to manage a pool of 52 computational units (48
CPUs from the slave nodes, and 4 more CPUs from the master node). The 4 remaining
CPUs in the master node were left to power controlling processes in the master node
and various administrative tasks.

In summary, the terclus cluster was configured to be used in the following manner:
login remotely to the master node through SSH, and run controlling processes in it,
which in turn would spawn concurrent computing processes in the slave nodes, using
TORQUE/MAUI. Additionally, computing processes could be directly run in the slave
nodes, accessing to them from the master node by SSH. The screen* GNU application
was available in all nodes as a means of keeping sessions running while the user was not
logged in, and Ganglia® was used to monitor the computational load of the nodes of the
cluster (in terms of memory usage, used network bandwidth and CPU usage). While
command-line access was the most common way to operate software on the cluster,

X11 GUI applications were also remotely executable in the master node.

"http://www.debian.org/

2http ://www.adaptivecomputing.com/products/torque.php
3http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
‘http://www.gnu.org/software/screen/

"http://ganglia.info/
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Additionally, another computer cluster (Picasso-cluster) operated by the Super-
computing Center® of the Universidad de Mélaga was also used. This cluster had
10 nodes, each one with 8 CPUs (Intel Xeon) and 16 Gigabytes of main memory (in
total, 80 CPUs Intel Xeon and 160 Gigabytes of main memory). Picasso-cluster also
could be accessed by SSH (though no X11 GUI applications could be launched) and also
used TORQUE to schedule batches of computing processes. However, the conditions of
use were very restrictive, as this cluster was shared by the entire scientific community
of the university. In order to cope with these limitations, the algorithms to be executed

in this cluster had to be partially reimplemented (see next Section).

C.2 Algorithms and simulations

The models exposed in Chapters 2, 3 and 4, from the respective evolutionary algorithms
to the agent simulations were prototyped in the MATLAB® scripting language” (The
MathWorks, Inc.). Then, in the computer cluster, they were compiled into standalone
executable files using the MATLAB® CompilerTM tool®, and executed. The same
procedure was used for the statistical testing of the heuristic algorithms presented
in Appendix A.

In the evolutionary algorithms in Chapters 2 and 3, the cost of selecting and
specifying the mutations to the individuals in the evolving population were negligible,
while, at the same time, the task of evaluating the individuals of the population was
embarrassingly parallel. Therefore, these evolutionary algorithms were designed to be
executed as controlling processes in the master node of terclus. In each generation of the
algorithm, the individuals of the population had to be evaluated, so TORQUE was used to
dispatch a batch of processes to the slave nodes to evaluate each one of the individuals.
In each case, the evaluation consisted of the physical simulation of the model (with
a relatively high computational cost), and the calculation of the fitness based on the
simulation. The physical simulation itself was fairly simple, at the core being a function
calculating the velocities and accelerations of the nodes in the tensegrity structures and
elastic networks in each simulation step. In the case of the evolutionary algorithm in

Chapter 3, the mutation was specified by the main evolutionary algorithm, but the

Shttp://www.scbi.uma.es/
"http://www.mathworks.com/products/matlab/
8http://www.mathworks.com/products/compiler/
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mutation itself was the result of a physical simulation, which was performed just before
evaluating the mutated individual, also in the processes executed in the slave nodes.
The necessary network bandwidth in the computer cluster was fairly low, since the
controlling processes just had to send the genome of the individuals to the slave nodes
to evaluate them, and only the numerical fitness and a few statistical parameters from
each individual where sent back from the slave nodes to the controlling processes.

For the simulations in Chapter 3, Picasso-cluster was also used. This cluster had

restrictive conditions of use:

e No controlling process could be executed in the cluster for more than five minutes

of CPU time.

e Processes scheduled through TORQUE were required to spend a significative amount
of CPU time (above an hour); in contrast, each evaluation of a molecular motor

took a few minutes.

In order to cope with these limitations, the evolutionary algorithm was modified to
be executed from a personal computer. As in the terclus implementation, it consisted
of a cycle of selection - mutation - evaluation of individuals, where all parts of the
process had a small computational cost, except for the physical simulations of the
mutations and the evaluations of the individuals. In each cycle (or generation), these
physical simulations were evaluated remotely in the cluster: the evolutionary algorithm
automatically logged by SSH to Picasso-cluster, sending the necessary data to dispatch
a small batch of processes, each one evaluating several individuals. After dispatching
the processes, the evolutionary algorithm periodically logged by SSH in the cluster to
ask if all processes were finished, in order to retrieve the results all at once. Once all
the individuals were evaluated and the results retrieved, the evolutionary algorithm
moved to the next cycle of selection - mutation - evaluation.

For Chapter 2, about 20 instances of the evolutionary algorithm were run, using in
total about 8 years of CPU time (entirely executed in terclus). For Chapter 3, about
250 instances of the evolutionary algorithm were run (mostly preliminary tests to refine

the model), using in total about 12 years of CPU time®. From the figures in the previous

9The computational cost per simulation was lower in the latter case because the duration of the
simulation was strictly defined and bounded, while in the former case the simulation was run until a
stable configuration was reached, a very long time in many cases.
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sentence, 86 instances of the evolutionary algorithm were run in Picasso-cluster (see
previous Section), amounting to about 2 years and 4 months of CPU time.

In the case of the evolutionary simulation in Chapter 4, while it was indeed
parallelizable, the calculation procedure of the fitness was not as embarrassingly parallel
as in the other cases, since the fitness was the result of the interaction between
the individuals in a common environment. As a consequence, the simulation was
not parallelized, in order to cut programming time. Instead, multiple instances of
the evolutionary simulation were run concurrently in different nodes of the computer
cluster. Every ten generations, the environment with all the trees in the population
was saved as a PNG snapshot image file. About 1000 instances of the evolutionary
simulation were run (mostly preliminary tests to refine the model), using in total about
one year of CPU time (entirely executed in terclus). Most of the computational cost
went into simulations with mild environments, the gigantic trees emerging in these
simulations being extremely costly to evaluate (some snapshots of these populations
were so big that their PNG files were over one hundred Megabytes).

The statistical tests of the heuristic algorithms in Appendix A were also run in the
computer cluster, though the computational cost was negligible in comparison to the
costs previously described for Chapters 2, 3 and 4.

In all cases, the results collected from the numerical simulations and experiments
were analyzed using the MATLAB® language. Also, all the figures in all chapters and
appendices presenting tables, plots and histograms have been generated using MATLAB®,
as well as the depictions of 2D tensegrity structures (Chapter 2), 3D elastic networks
(Chapter 3), and 2D virtual plants (Chapter 4 and Appendix B). Especially in the
model in Chapter 4, some analytical procedures (as the calculation of the mean Jaccard
distance in evolving populations, Figure 4.16) were very computationally demanding.

As a consequence, they were also computed in terclus in a distributed way.
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Appendix D

Spanish summary and

conclusions

In this Appendix, a summary and the conclusions of the dissertation are translated to
Spanish, as per the rules of the Universidad de Mélaga'.

Declaracion de financiacién: durante la realizacién de esta tesis doctoral yo, Jose
David Ferndndez Rodriguez, he recibido una beca FPU (AP2007-03704) del Gobierno
de Espana. Ademds, he recibido financiacion de dos proyectos de investigacion:
BioEmergences (codigo 28892) del Sexto Programa Marco de la Unién Europea, y
el projecto GENEX (P09-TIC-5123) de la Junta de Andalucia.

D.1 Resumen

En las ultimas décadas, la linea divisoria entre la Biologia y la Informatica se ha hecho
cada vez mas difusa. Por un lado, una gran cantidad de métodos computacionales
de todo tipo han tomado como inspiracién otros tantos sistemas y procesos biolégicos
(por lo que apropiadamente reciben el nombre colectivo de Computacién Bioinspirada).
Por otro lado, la mayoria de los campos de investigacién en Biologia se han vuelto
(0 estdn en proceso de volverse) totalmente dependientes de muchos tipos de métodos
computacionales, conforme el creciente flujo de datos ha hecho que los investigadores los
incluyan en sus métodos habituales de trabajo. De la misma forma, se encuentra fuera

de toda duda la prevalencia en muchos campos del uso de modelos computacionales

"ttp://www.uma.es/
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para comprender sistemas y procesos biolégicos. Dentro de este contexto, esta tesis
doctoral constituye un trabajo interdisciplinar, situado precisamente en la frontera
entre Informatica y Biologia.

Puede decirse que la teoria de la evolucién es la disciplina méas permeable en este
intercambio de ideas entre Biologia e Informatica. Considerando el flujo de ideas de la
primera a la segunda, en las tultimas décadas se ha visto cémo los procesos y dindmicas
evolutivas pueden abstraerse ficilmente en esquemas algoritmicos, inspirando a muchos
ingenieros informdticos a crear técnicas de optimizaciéon metaheuristicas basadas en
la evoluciéon, llamadas Computacion Evolutiva en su conjunto. En lo que se refiere
al flujo de ideas en sentido contrario, no solamente se han incorporado métodos
computacionales a la investigacién de la teoria de la evolucién, sino que también se usan
cada vez mas modelos computacionales puramente sintéticos para investigar cuestiones
de dinamica evolutiva.

Un fascinante aspecto de la teoria de la evolucién es la evolucién de la diversidad:
en los ultimos cientos de millones de anos, nuestro planeta ha sido el escenario de la
evolucién de una increible variedad en tamafo, morfologia, funcién, organizaciéon y
comportamiento de seres vivos. Se puede decir que, actualmente, la cuestiéon de por
qué estos organismos presentan tanta diversidad en tantos aspectos no ha podido ser
respondida satisfactoriamente, y sigue siendo un fascinante campo de investigacion.
Como tantas otras relacionadas, esta cuestion tiene también su reflejo en Computacién
Evolutiva, en la cual se investiga activamente la generacién y mantenimiento de la
diversidad de soluciones en algoritmos evolutivos.

Frecuentemente, la ciencia se enfrenta a cuestiones y problemas muy dificiles, que
podrian parecer intratables si se abordan directamente. En muchos casos, las respuestas
y soluciones se encuentran analizando modelos mateméaticos y simplificados de la
realidad. Sin embargo, en relacion a la cuestion previamente formulada de los origenes
evolutivos de la diversidad, es razonable esperar que ningtin marco conceptual pueda
contener por si solo la respuesta a tan formidable cuestién, sino que una gama més o
menos amplia de éstos contribuyan a explicar la evolucién de la diversidad a distintos
niveles. En este marco, esta tesis doctoral presenta tres modelos computacionales
simples, cada uno de ellos profundamente diferente de los otros dos. De esta manera,
cada modelo sirve para estudiar diferentes aspectos y causas de la evolucién de

diversidad. Especificamente, los modelos exploran los roles en la evolucién de la
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diversidad de los procesos de desarrollo (Capitulo 2), la coevolucién de la morfologia y
el sistema de control de estructuras bioldgicas (Capitulo 3) y las dindmicas y procesos
evolutivos (Capitulo 4).

El resto de esta seccion presenta una pequenia introduccién a las principales lineas
tratadas en esta tesis doctoral (Secciones D.1.1 a D.1.5) y un resumen separado para

cada uno de los capitulos mencionados en el parrafo anterior (Secciones D.1.6 a D.1.8).

D.1.1 Modelos basados en agentes en Biologia Computacional

La investigacion en la teoria de la evolucién se ocupa de esclarecer los detalles de los
procesos evolutivos que han configurado todos los organismos vivos que han poblado la
Tierra a los largo de su historia. De especial interés es el estudio del cambio evolutivo al
nivel de especies o incluso superior, conocido popularmente como macroevolucion. Este
cambio macroevolutivo se ha estudiado tradicionalmente solamente de forma indirecta,
al principio con herramientas de Taxonomia, Sistematica y Paleontologia, después con
Genética de Poblaciones, y con nuevas herramientas cada vez més sofisticadas como la
Filogenia Molecular. Sin embargo, es dificil estudiar los procesos evolutivos en detalle,
debido a que la evidencia es escasa e incompleta, y debe de componerse a partir de
fuentes muy diversas como la estructura de los organismos actualmente existentes (a
todas las escalas, de la anatémica a la genética) y de los registros fésiles.

Por lo tanto, se usan muchas vias alternativas para estudiar los procesos evolutivos,
en particular, en lo que concierne a este trabajo, modelos computacionales basados
en agentes. HEstos modelos describen comunidades de individuos en un esquema de
abajo hacia arriba, a través de las propiedades de sus miembros individuales, las reglas
que siguen a distintos niveles, y las interacciones entre ellos y con el entorno [76].
Se ha propuesto un gran numero de modelos computacionales basados en agentes,
desde un nivel abstracto de grandes poblaciones de individuos que interaccionan
entre si de forma muy esquematizada [26, 221] a un nivel mucho més detallado,
como por ejemplo el crecimiento pluricelular [51]. Los agentes se pueden modelar de
muchas maneras distintas mas alld de como abstracciones simplificadas de organismos
biolégicos, como por ejemplos programas informaticos [163], estructuradas derivadas
de sistemas de Lindenmayer [17] o incluso autématas en el contexto de la teorfa de
lenguajes formales [127].

Potencialmente, los modelos basados en agentes pueden usarse para producir
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experimentos computacionales a gran escala que condensen largos periodos evolutivos
en tiempos de computo relativamente cortos, a la vez que se registran vastas colecciones
de datos para su andlisis exhaustivo (de una manera imposible de igualar en trabajos
puramente bioldgicos) y se extraen sus propiedades més relevantes [115, 121]. De
esta manera, conforme se incrementa la potencia de cémputo y la capacidad de
almacenamiento disponible para los investigadores, se hace factible la simulaciéon de
modelos de procesos evolutivos con un poder explicativo cada vez mayor.

Los tres modelos presentados en esta tesis doctoral estdn basados en agentes,
aunque cada uno es profundamente diferente de los otros dos. El Capitulo 4 presenta
un modelo sintético de poblaciones de plantas basado en agentes para el estudio de
dinamicas evolutivas de diversificacion, mientras que en los Capitulos 2 y 3 se usan
algoritmos evolutivos para optimizar poblaciones de agentes con un criterio distinto
en cada capitulo; la diversidad de forma y funcién emerge de los distintos aspectos de

ambos modelos antes que de dindmicas evolutivas propiamente dichas.

D.1.2 La Biologia Evolutiva del Desarrollo

La principal corriente de pensamiento evolutivo actualmente en vigor es ain la
Sintesis Evolutiva Moderna [130], usada por muchos bidlogos evolutivos como el marco
conceptual de referencia para la teoria de la evolucion, con la genética de poblaciones
como la principal herramienta para entender el hecho evolutivo. Bajo este punto de
vista, la diversidad de forma y funcién es una consecuencia secundaria de las dindmicas
evolutivas a nivel de poblacién, incrementdndose gradual y pasivamente conforme
diversos conjuntos de alelos se originan y compiten en diferentes subpoblaciones de
individuos, y estos alelos se expresan en consecuentemente diversos conjuntos de
fenotipos, adaptandose a nuevos entornos. Esto lleva a la tradicional visién de los
fenotipos como versiones decodificadas de los correspondientes genotipos [129]. Sin
embargo, este punto de vista hace bastante dificil la investigacion de las causas de la
evolucion de la diversidad a un nivel mas directo, menos abstracto [112].

Un punto de vista alternativo se origina en la siguiente observacion: el fenotipo de
un individuo se genera mediante un proceso de desarrollo, que transforma un cigoto en
un organismo plenamente funcional. Este proceso se puede describir, en esencia, como
una complejisima coreografia de eventos exquisitamente cronometrados, conforme las

células del organismo en desarrollo se dividen, cambias sus propiedades fisicoquimicas,
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y se disponen en capas y otras configuraciones celulares, plegandose en formas cada vez
méas complejas [60].

Por lo tanto, la evolucién de los fenotipos se puede entender en gran medida como la
evolucién de sus correspondientes procesos de desarrollo. En este contexto, la disciplina
de la Biologia Evolutiva del Desarrollo ha emergido como el estudio de los procesos de
desarrollo desde una perspectiva evolutiva. De hecho, los procesos de desarrollo parecen
ser un factor clave para entender la evolucién de la diversidad [14].

Desde un punto de vista funcional, los procesos de desarrollo se pueden interpretar
como una interaccién extremadamente intrincada entre el genoma y las propiedades
geométricas y fisicoquimicas del organismo en desarrollo [60], donde el genoma se
expresa funcionalmente como una red reguladora genética que guia y modula el proceso
de desarrollo. Bajo esta interpretacion, las reglas geométricas y fisicoquimicas del
proceso de desarrollo adquieren un papel al menos tan importante como el del propio
genoma, ya que estos aspectos de los procesos de desarrollo pueden imponer sesgos
inherentes a las dindmicas evolutivas [5].

Incluso, desde un punto de vista mas radical, es opinable que el genoma tenga que
ser la principal fuente de control regulador en los procesos de desarrollo: caracteristicas
no genéticas de naturaleza geométrica y/o fisicoquimica podrian ser incluso mas
determinantes en algunos contextos, especialmente en las fases iniciales de la evolucién
de los organismos pluricelulares [144] y en algunos organismos unicelulares [71]. En
el Capitulo 2 se presenta un modelo donde la diversidad de forma emerge como una
consecuencia cuando los procesos de desarrollo se hacen gradualmente mas complejos,
incluso bajo un control genético minimo, mientras que en los otros capitulos no hay un

componente tan fuerte de procesos de desarrollo.

D.1.3 Motores moleculares

Los motores moleculares son méquinas bioldgicas a escala nanométrica capaces de
transformar energia quimica en trabajo mecdnico. Estos motores estdn asociados a
muchas funciones vitales a todas las escalas, desde la subcelular a la anatémica [173].
Aunque los motores moleculares se estudian primordialmente desde la perspectiva de
la Biologia Molecular, suscitan gran interés en muchas otras disciplinas biolégicas,
desde la Medicina [69] a la Sistematica [202], e incluso en otras &reas como la

Nanotecnologia [205].
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Desde un punto de vista de simulacién y modelado computacional, las caracteris-
ticas y dindmica de estos motores se estudian a multiples escalas temporales, con
muchos tipos de modelos, que van desde simulaciones de dindmica molecular muy
detalladas y precisas con rangos temporales extremadamente cortos [99, 104, 119], a
modelos extremadamente simples y aproximados de sus ciclos de trabajo [77, 215]. Los
motores moleculares se han estudiado extensivamente para entender sus caracteristicas
bioquimicas y estructurales [203], y su procesividad, es decir, la manera en que muchos
de ellos son capaces de caminar a lo largo de filamentos dando una cierta cantidad de
pasos seguidos sin despegarse completamente [68, 209, 225].

Sin embargo, estos estudios se han hecho hasta ahora en las relativamente pocas
instancias conocidas en Biologia Molecular. En el Capitulo 3, se usan resultados
de andlisis de redes elasticas [161] y métodos de configuracién de funcién (behavior-
finding methods) [120] para explorar un subconjunto de espacio de configuraciones de
las plantillas de estructuras moleculares capaces de transformar energia quimica en
movimiento direccional. De esta manera este dominio particular y muy especifico (el
estudio de los motores moleculares) se toma como plataforma de experimentaciéon para
el estudio de la evolucién de la diversidad bajo condiciones muy especificas y limitadas,
con el interesante resultado de que, de hecho, el movimiento de los motores moleculares
se puede conseguir desde una gran diversidad de configuraciones estructurales, con una

consecuente diversidad de patrones de funcionamiento, ambos en coevolucién.

D.1.4 Computacién Evolutiva

La Naturaleza siempre ha sido una gran fuente de inspiracién para muchos cientificos
e ingenieros. En este aspecto, los ingenieros informéticos no son una excepcion:
muchas técnicas algoritmicas encuentran el origen de su inspiracién en la naturaleza;
nombrando s6lo de algunas de las més relevantes y/o actuales, podemos hablar de
las redes neuronales artificiales, los sistemas inmunes artificiales, la optimizacién por
colonia de hormigas, y los algoritmos evolutivos [67].

Los algoritmos evolutivos son técnicas metaheuristicas que se usan para encontrar
soluciones aceptables a problemas de optimizacién. La mayoria de los algoritmos
evolutivos siguen un patrén comin: un conjunto cambiante de soluciones candidatas
(la poblacion) sufre un ciclo (repetido multiples veces) de evaluacion, seleccion y

reproducciéon con variacién. El primer paso en el algoritmo consiste en generar las



D.1. Resumen 155

soluciones candidatas del conjunto inicial, cominmente de forma mas o menos aleatoria.
Cada candidata se evaltia mediante una funcion de fitness, es decir, una regla heuristica
para medir su calidad como solucién al problema?. Después de la fase de evaluacion,
se efectiia la seleccién: un nuevo conjunto de soluciones candidatas se genera a partir
del conjunto anterior; cada candidata se copia un niimero de veces que es proporcional
(aunque aleatorio en cierta medida) a su nivel de fitness. Este paso disminuye la
diversidad de la poblacién, que es hasta cierto punto restaurada aplicando a una fracciéon
de las soluciones candidatas algin operador diseniado para incrementar la variaciéon (por
ejemplo, operadores de cruce o mutacién). Estos pasos (los previamente mencionados
de evaluacién, seleccién y reproduccién con variacion) se aplican multiples veces. FEl
efecto acumulativo es un cambio méas o menos lento en la media (y la mejor instancia)
del valor de fitness en las soluciones candidatas, conforme las mejores soluciones son
promovidas a través de la seleccién y nuevas variantes van siendo creadas.

Aunque este patrén algoritmico es comun a todos los algoritmos evolutivos, cada
uno de ellos usa diferentes conjuntos de reglas de seleccion, operadores de variacién
y codificaciones de las soluciones. Las variedades mas relevantes son los algoritmos
genéticos [84], las estrategias evolutivas [8], la programacion evolutiva [59] y la
programacion genética [107]. Entre estas variantes, los algoritmos genéticos, definidos
por primera vez por Holland, son los mas populares.

En un algoritmo genético, cada solucién candidata tiene un genotipo y un fenotipo,
que son respectivamente la forma codificada que es manipulada por el algoritmo, y la
solucién en si misma, que es evaluada por la funcién de fitness. La formulacién original
de Holland esté fuertemente asociada con una codificacién muy sencilla y directa de los
genotipos como cadenas de bits, aunque éste es no es necesariamente el caso en todas las
instancias de algoritmos genéticos. De hecho, los modelos presentados en los Capitulos 2
y 3 usan lo que se puede describir perfectamente como algoritmos genéticos (aunque
con codificaciones considerablemente mds elaboradas) para disenar evolutivamente
diversas estructuras. No obstante, para evitar cual malentendido potencial, éstos seran

denominados, més genéricamente, como algoritmos evolutivos.

2éste es el significado de fitness en Computacién Evolutiva, y es el significado usado més cominmente
en esta tesis doctoral. Esté inspirado en (pero no se deberia confundir con) el concepto de fitness en
Biologia Evolutiva: una medida de la habilidad de un individuo para propagar sus genes (frecuente
pero incorrectamente asumido como restringido al éxito reproductivo inmediato). En general, en esta
tesis doctoral, la palabra fitness se usa con el significado de Computacién Evolutiva en los Capitulos 2
y 3, mientras que el significado puramente biolégico se usa en el Capitulo 4.
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Una subdisciplina de la Computacién Evolutiva, de reciente formulacién, es la
Embriogénesis Artificial, que consiste en el uso de procesos de desarrollo artificiales
como codificaciones indirectas para las soluciones candidatas [183]. Es decir, en vez
de codificar las soluciones de un modo mas o menos directo, se codifican como algtin
tipo de especificacion para dirigir o modular algtin tipo de proceso de desarrollo méas o
menos abstracto. El objetivo es acometer problemas mas grandes y complejos mediante
algoritmos evolutivos, ya que si la codificacién indirecta se disena correctamente,
permite reducir (a veces dramaticamente) el tamano, dimensionalidad y complejidad
de los espacios genéticos en los que se lleva a cabo la bisqueda evolutiva [47]. El
Capitulo 2 proporciona un ejemplo extremo de codificacién indirecta a través de
procesos de desarrollo, mientras que en el Capitulo 4 los individuos también se codifican
indirectamente, aunque de un modo menos intrincado, usando un proceso de desarrollo
muy simple basado en reglas de reescritura en el contexto de la teoria de lenguajes

formales.

D.1.5 Computaciéon morfolégica y tensegridad

El concepto de computacion morfoldgica ha surgido en los tltimos afios en el campo
de la Robética, para nombrar la idea de que el comportamiento de un robot no sélo
depende de la naturaleza de sus sistema de control y la manera en que éste se ajusta
al cuerpo del robot, sino también de la morfologia del cuerpo mismo [154, 157]. Esto
significa que, si la morfologia del robot se toma en cuenta en el disefio, el sistema de
control puede ser mas simple de lo que podria esperarse, aprovechando la dinamica de
interaccion entre el cuerpo y el sistema de control. Paul [154] proporcioné una prueba
de concepto para esta idea al disenar un robot con un comportamiento de tipo XOR,
aunque su sistema de control esta basado en simples perceptrones monocapa (incapaces
de generar la funcién XOR). El comportamiento de tipo XOR era el resultado de la
interaccion entre el sistema de control y la estructura del robot.

Este concepto se ha aplicado al diseno de robots bipedos con sistemas de control
minimo [128] y robots con sistemas de control sin retroalimentacién y minima cantidad
de grados de libertad, que son capaces de generar patrones de movimiento rapidos
y estables y generar amplios conjuntos de comportamientos, todo ello a través de la
interaccién entre el cuerpo y el sistema de control de los robots [157]. La clave es

el modo de construir los robots, no solo su morfologia, sino las caracteristicas de los
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materiales constituyentes, que pueden modular de forma no lineal la actividad de los
sistemas de control.

Aunque este concepto se ha usado primordialmente en el campo de la Robética,
representa un paradigma til en otros campos. Un ejemplo de computacién morfoldgica
en modelos basados en agentes es el modelo de path-followers de Lobo [120]: agentes
relativamente simples evolucionados para seguir caminos curvados, cuyos sistemas de
control estan implicitos en sus propias estructuras. Como ejemplo en el contexto de
la Biologia, los motores moleculares [173] pueden considerarse como dispositivos a
escala nanométrica con un grado significativo de computacién morfolégica, debido a su
inherente naturaleza como enzimas capaces de caminar sobre filamentos citoesqueléticos
dentro de las células. Su locomocién se puede considerar como el resultado auto-
organizado de la interaccién entre su morfologia y los detalles bioquimicos (que se
pueden considerar colectivamente como su sistema de control) del ciclo de interaccién
con el filamento. En el Capitulo 3, se usa un algoritmo evolutivo para generar una
diversidad de estructuras inspiradas en los motores moleculares. Sus (igualmente
diversos) patrones de funcionamiento emergen de la compleja interaccién entre sus
estructuras y sus ciclos de operacién, por computacién morfologica.

Por otro lado, las estructuras de tensegridad también tienen potencial para permitir
otros tipos de computacién morfoldgica. Se trata de estructuras estables compuestas de
elementos rigidos que soportan fuerzas de compresion, sostenidos en equilibrio por una
red de cables que soportan fuerzas de tensién, de tal manera que se produce un equilibrio
de fuerzas global [138]. Debido a que unos elementos soportan compresion y otros
tension (el asi llamado auto-estrés de la estructura, que se analiza desde una perspectiva
matemadtica en el Apéndice A), las estructuras de tensegridad poseen una cierta
cantidad de energia potencial elastica; como efecto colateral, su dindmica es altamente
no lineal. Estos hechos han sido aprovechados para disefiar robots ambulantes
basados en tensegridad [153]; cuyos patrones de movimientos son modulados por las
interacciones no lineales entre el sistema de control y las caracteristicas de la estructura.
En los procesos de desarrollo, el genoma puede ser considerado como el sistema de
control. En el Capitulo 2 se presenta un algoritmo evolutivo usando un modelo basado
en estructuras de tensegridad para generar diversos procesos de desarrollo (que a su
vez inducen diversas morfologias finales). El rol primario como sistema de control no

es proporcionado por el genoma, como es usual, en la forma de una red reguladora
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genética, sino por la dindmica no lineal de las propias estructuras de tensegridad.

D.1.6 Capitulo 2: Diversidad mediante procesos de desarrollo com-

plejos

En el Capitulo 2 se presenta una discusién sobre los origenes evolutivos de la
diversidad en el contexto de la Biologia Evolutiva del Desarrollo (evo-devo), mediante
la modulacién a escala evolutiva de la interaccién entre los genomas y los fenotipos
durante los procesos de desarrollo. Se introduce el concepto de tensegridad, explicando
sus propiedades y los roles de las estructuras con tensegridad en Biologia (en este
contexto, el Apéndice A proporciona una nueva metodologia matemaética para analizar
algunas propiedades de las estructuras con tensegridad).

A continuacién, se presenta un nuevo modelo abstracto de proceso de desarrollo,
en el que el genoma juega un papel minimo, simplemente especificando un conjunto
de condiciones iniciales. El subsiguiente proceso de desarrollo se encuentra auto-
regulado principalmente por las propiedades dindmicas de las partes constituyentes
de una estructura de tensegridad. El uso de estas estructuras como sustrato fisico del
proceso de desarrollo representa la innovacién crucial aportada, que permite al modelo
minimizar el papel regulador del genoma durante el proceso de desarrollo, ya que las
propiedades dinamicas de las estructuras de tensegridad sustituyen al genoma como
sistema de control del proceso de desarrollo, en lo que podria considerarse un caso de
computaciéon morfolégica.

Buscando disenar de instancias abstractas de procesos de desarrollo que sean largos
y complejos, con muchos pasos intermedios, se usa un algoritmo evolutivo pensado
para encontrar heuristicamente estos rasgos en los procesos de desarrollo. Como efecto
colateral de la btusqueda de ejemplos de procesos de desarrollo complejos, evoluciona

una diversidad de morfologias finales (resultados finales de los procesos de desarrollo).

D.1.7 Capitulo 3: Diversidad mediante la coevolucién de la mor-

fologia y su sistema de control

En el Capitulo 3 se describen los motores moleculares biologicos desde las perspectiva de
la Biologia Molecular, a la vez que se da una vista complementaria desde la perspectiva
de la Computacién Evolutiva y la Vida Artificial. Se presentan varias herramientas

matematicas de la teoria de redes elasticas aplicadas al estudio de la estructura de las
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proteinas (especialmente el Gaussian Network Model y el Anisotropic Network Model),
que a continuacién se usan como respaldo formal para un marco de trabajo para disenar
ejemplos artificiales (plantillas) de posibles configuraciones estructurales para motores
moleculares. Desde el punto de vista de la Biologia Molecular, estas plantillas son
utiles como medio de evaluacion computacional de hipdtesis sobre la estructura de los
motores moleculares, como en el ejemplo estudiado en la Seccién 3.3.1.

El marco de trabajo propuesto en este capitulo sigue una larga tradicién en Biologia
Computacional, que consiste en anadir aspectos fisicos a las simulaciones basadas en
agentes, de modo que emerja una diversidad de morfologias y formas de funcionamiento.
Desde este punto de vista, el marco de trabajo puede caracterizarse de la siguiente
manera: una tarea de optimizacién muy precisa (avanzar tan lejos como sea posible
sobre un filamento rectilineo), junto con un conjunto de reglas igualmente muy preciso
para especificar la forma en que las plantillas de motores moleculares interaccionan con
el filamento (el ciclo de trabajo).

Sin embargo, a pesar de esta rigida especificacion, la coevolucién de la morfologia
de las estructuras y el los detalles que la acoplan a su patrén de funcionamiento (su
sistema de control) hace que emerja una amplia diversidad de plantillas con distintas
morfologias y formas de funcionamiento. Esto se debe a que el modelo subyacente
es relativamente detallado y suficientemente realista, permitiendo que el algoritmo

evolutivo encuentre soluciones innovadoras al problema de caminar sobre un filamento.

D.1.8 Capitulo 4: Diversidad mediante procesos evolutivos emer-

gentes

En el Capitulo 4 se presenta un estudio de las dindmicas evolutivas inducidas por las
interacciones ecologicas entre modelos de plantas muy simples basados en agentes. Los
agentes (plantas) se caracterizan por abstracciones extremadamente simples de varios
procesos en los niveles genético, de desarrollo y fisiolégico. Los genomas son cadenas
de caracteres interpretadas como sistemas de Lindenmayer muy simples (DOL-systems
con una tunica regla), y los fenotipos se generan mediante la cldsica interpretacién de
los L-systems en términos de geometria de tortuga.

Las interacciones ecoldgicas entre individuos (plantas) dentro de una poblacién son
motivadas por la localidad de la reproduccién (es decir, los descendientes inmediatos

crecen en las inmediaciones de sus ancestros en generaciones anteriores), y se limitan a
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rondas discretas de competiciéon (una por generacién) por la luz que cae verticalmente
en el entorno. En cada ronda o generacién, la cantidad de luz recogida determina el
éxito reproductivo del individuo, es decir, la cantidad de descendientes en la siguiente
generacién (usando, de esta manera, el concepto biolégico de fitness, en oposicion al
concepto relacionado pero distinto usado en trabajos mas comunes de Computacién
Evolutiva).

La reproduccién es asexual, con mutaciones ocasionales. A pesar de este marco
de funcionamiento tan simple, surgen dindmicas evolutivas en los niveles genético,
fenotipico y de poblacién. En particular, una gran diversidad de morfologias evoluciona

conforme las plantas compiten por la luz bajo diversas condiciones ambientales.

D.2 Conclusiones

El propésito principal de esta tesis doctoral has sido estudiar la diversidad de
forma (morfologia, estructura) y funcién (comportamiento, desarrollo) en tres modelos
basados en agentes de sistemas biolégicos, desde una perspectiva bioldgica, pero
también con un fuerte enfoque en Computacién Evolutiva. Estos tres modelos
han sido considerados desde un amplio rango de puntos de vista, desde la Biologia
Evolutiva del Desarrollo, la Biologia Molecular y las dindmicas evolutivas hasta
la codificacién indirecta en Computacién Evolutiva y el diseio de estructuras,
todo ello complementando el tema unificador de la evoluciéon de la diversidad.
Consecuentemente, esta tesis doctoral puede considerarse inequivocamente como
interdisciplinar. Esta ultima seccién revisard las principales conclusiones derivadas
de los estudios presentados en esta tesis doctoral.

Especificamente, cada uno de los tres modelos estd relacionado con un aspecto de

la evolucién de la diversidad:

El papel de los procesos de desarrollo.

En el contexto de la Biologia Evolutiva del Desarrollo, los procesos de desarrollo
juegan un papel clave en la evolucién de la diversidad. FEste papel se interpreta
frecuentemente en términos de la regulacién genética del desarrollo: una compleja red
reguladora genética orquesta un complejo proceso de desarrollo que lleva del cigoto
al fenotipo adulto, por lo que la evoluciéon de diversas morfologias es el resultado

de la evolucién de la complejidad en las redes reguladoras genéticas [14]. En este
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contexto, formulamos la siguiente cuestion: ;la evolucion de redes reguladoras genéticas
complejas es un requisito necesario para inducir diversas morfologias a través de
procesos de desarrollo? Sin embargo, en el Capitulo 2, se presenta un modelo abstracto
de procesos de desarrollo auto-regulados, sin regulacion genética, solamente modulacién
genética de las condiciones iniciales del proceso. Aun asi, evoluciona una diversidad
de morfologias finales usando un simple algoritmo evolutivo, con una heuristica que
se limita a encontrar instancias de procesos de desarrollo largos y complejos. En
este modelo, las propiedades dindmicas de las tensegridades se apropian del caracter
regulador del genoma. Por lo tanto, la evolucién de morfologias diversas se puede
considerar el resultado directo del incremento evolutivo de complejidad en los procesos
de desarrollo, sin necesidad de invocar un papel absolutamente necesario para las redes

reguladoras genéticas complejas.

La interaccion entre la estructura y su sistema de control.

En el contexto de la Biologia Computacional, la Robdtica Evolutiva y la Vida
Artificial, la coevolucién del cuerpo y su sistema de control puede producir diversas
morfologias y comportamientos coadaptados [58]. En este drea, el trabajo previo ha
usado tradicionalmente complejos sistemas de control y, en algunos casos, igualmente
complejas codificaciones indirectas mediante procesos de desarrollo u otros esquemas
de traduccién de genotipo a fenotipo [103, 158, 178]. Sin embargo, el concepto de
computaciéon morfolégica [154] sugiere que esta coevolucién puede hacerse efectiva
incluso si el sistema de control es extremadamente simple y estd en su mayor parte
implicito en la morfologia y estructura de los agentes, como en los path-followers de
Lobo [120]. En el Capitulo 4 se presenta un ejemplo en esta linea, pero més simple:
sin proceso de desarrollo sino una traduccién directa (aunque altamente heuristica), y
una tarea por resolver también muy simple (avanzar tan rapido como sea posible) en
un entorno igualmente sencillo (un filamento rectilineo). A pesar de esta simplicidad,
coevolucionan diversas morfologias y patrones de funcionamiento. Globalmente, este
modelo constituye un ejemplo bastante minimo de coevolucién de la estructura y de su

sistema de control a través de computacién morfoldgica.

El papel de las dinamicas y procesos evolutivos.
La literatura cientifica sobre la evolucion de la diversidad es muy rica y se distribuye

a través de varias disciplinas cientificas. En el contexto, de las simulaciones basadas
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en agentes, se han propuesto muchos modelos diferentes a lo largo de los ultimos anos.
Muchos de ellos proponen agentes complejos en entornos ricos e igualmente complejos,
con un detallado modelado de sus caracteristicas, como en los famosos organismos
artificiales de Sims [178]. Otros intentan modelar muchos de los detalles relevantes
a la hora de construir comunidades ecoldgicas complejas [182, 220]. En estos casos,
la diversidad resultante en los agentes que evolucionan en las simulaciones se puede
atribuir en mayor o menor grado a las diferentes caracteristicas y complejidades de los
propios modelos. Aun en otros casos, se formulan modelos con agentes extremadamente
simples, para permitir un analisis matematico exhaustivo de las propiedades de los
modelos [26, 221], con el coste de modelar las caracteristicas de los agentes a un
nivel muy abstracto. Nuestra contribuciéon en este area es el modelo presentado
en el Capitulo 4, cuya caracteristicas definitorias son un enfoque de abajo a arriba
(los detalles de la simulacién ecolégica emergen de los detalles de los agentes) y la
simplicidad del modelado a todos los niveles: en el genético, el fenotipico y el proceso de
traduccién entre ambos, el modelo reproductivo asexual y las interacciones ecoldgicas;
pero todo ello sin llegar a un nivel excesivamente abstracto. A causa de esta simplicidad
a todos los niveles, la evolucion resultante de diversas morfologias puede atribuirse a las
dinamicas evolutivas inducidas por las interacciones ecoldgicas entre los agentes, antes
que a cualquier otro aspecto del modelo, como podria ocurrir en otros casos segin ya

se ha mencionado.
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