View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repositorio Institucional Universidad de Malaga

Embryomorphic Engineering:
Emergent Innovation Through
Evolutionary Development

René Doursat, Carlos A. Sdnchez, Razvan Dordea, David Fourquet and
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Abstract Embryomorphic Engineering, a particular instance of Morpho-
genetic Engineering, takes its inspiration directly from biological development
to create new hardware, software or network architectures by decentralized
self-assembly of elementary agents. At its core, it combines three key prin-
ciples of multicellular embryogenesis: chemical gradient diffusion (providing
positional information to the agents), gene regulatory networks (triggering
their differentiation into types, thus patterning), and cell division (creating
structural constraints, thus reshaping). This chapter illustrates the potential
of Embryomorphic Engineering in different spaces: 2D /3D physical swarms,
which can find applications in collective robotics, synthetic biology or nan-
otechnology; and nD graph topologies, which can find applications in dis-
tributed software and peer-to-peer techno-social networks. In all cases, the
specific genotype shared by all the agents makes the phenotype’s complex
architecture and function modular, programmable and reproducible.

1 Evolutionary Development

Morphogenetic Engineering (ME), the topic of this book, concerns the de-
sign, or rather “meta-design”, of the self-organizing abilities of the elements
of complex systems toward functional architectures. This meta-design, how-
ever, should not exclusively rely on human inventiveness as in traditional
engineering disciplines but may also involve an important automation part,
essentially via an evolutionary search. In that sense, by combining not only
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self-organization and architecture but also evolution, ME is very close to the
tenets of evolutionary development, a recent and rapidly expanding field of
biology nicknamed “evo-devo” [30, 68, 10, 8, 48, 11, 58, 6, 40].

1.1 Evo-Devo in Biology

In the variation/selection couple of evolutionary biology, “selection” has re-
ceived most of the honors while “variation” remained the neglected child.
Darwin discovered the evolution of species, based on random mutations and
nonrandom natural selection, and established it as a central fact of biology.
During the same period, Mendel brought to light the laws of inheritance of
traits. In the twentieth century, his work was rediscovered and became the
foundation of the science of genetics, which culminated with the revelation
of DNA’s role in heredity by Avery and its double-helix structure by Wat-
son and Crick. Integrating evolution and genetics, the “Modern Synthesis” of
biology has successfully demonstrated the existence of a fundamental correla-
tion between genotype and phenotype and between their respective changes:
mutation in the first is causally related to variation in the second. Yet, 150
years after Darwin’s and Mendel’s era, the nature of the link from genes to
organismal forms, i.e., the actual molecular and cellular basis of the mecha-
nisms of development, are still unclear. How does a one-dimensional genome
specify a three-dimensional animal? [24]. How does a static, linear DNA un-
fold in time (regulation dynamics) and space (cellular self-assembly)? What
is the part also played by epigenetics? These questions constitute the missing
link of the Modern Synthesis and the main challenge of evo-devo.

While the attention was focused on selection, it is only during the past
decade that analyzing and understanding variation (as the generation of
phenotypic innovation) by comparing the developmental processes of differ-
ent species, at both the embryonic and the genomic levels, became a major
concern of biology. Researchers realized that the genotype-phenotype pair-
ing could not forever remain an abstraction if they wanted to understand
the unique power of evolution to produce countless innovative structures—
and, concerning Artificial Life and bio-inspired engineering, ultimately trans-
fer this understanding to self-organized technological systems. To quote
Kirschner and Gerhart [40], p. ix:

“When Charles Darwin proposed his theory of evolution by variation and selection,
explaining selection was his great achievement. He could not explain variation. That
was Darwin’s dilemma. . . . To understand novelty in evolution, we need to un-
derstand organisms down to their individual building blocks, down to their deepest
components, for these are what undergo change.”

Evo-devo casts a new light on the question still little addressed by today’s
predominant gene-centric view of biology: To what extent are organisms also
the product of complex physicochemical developmental processes not neces-
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sarily or always controlled by complex underlying genetics? Before and during
the advent of genetics, the study of developmental structures had been pi-
oneered by the “structuralist” school of theoretical biology, which can be
traced back to Goethe, D’Arcy Thompson, and Waddington. Later, it was
most actively pursued and defended by Kauffman [38, 39] and Goodwin [30]
under the banner of self-organization, argued to be an even greater force than
natural selection in the production of viable diversity.

Recent dramatic advances in the genetics and evolution of biological
development have paved the way toward explaining morphological self-
organization and sketching an encompassing “generativist” theory of embryo-
genesis. The objective is to unify organisms beyond their seemingly “endless
forms most beautiful” (in the words of Darwin [7]) by unraveling the generic
mechanisms that make them variations around a common theme [68]. The
variations are the specifics of the genetic and epigenetic information; the
theme is the developmental dynamics that this information steers. It com-
prises the elementary laws by which the genome produces the very proteins
that can further interpret it, controlling cell division, differentiation, adhe-
sion and death, and ultimately producing an anatomy. On this keyboard,
evolution is the ultimate player.

1.2 Evo-Devo in Artificial Life

Looking at the full evolutionary and developmental picture should also be
a primary concern of systems engineering and computer science when ven-
turing into the new arena of autonomous, distributed architectures. Evolu-
tionary Computation (EC) techniques such as genetic algorithms or genetic
programming, which were inspired by evolutionary biology in its traditional
modern-synthesis form, have just like their natural model principally focused
on selection through virtual “genomic operators”, “fitness functions” and “re-
production rates”. As a consequence, the great majority of these approaches
rely on more or less direct and abstract mappings from artificial genomes to
artificial individuals, while including only little or no morphogenesis.
Therefore, one important goal of a new field of “Alife evo-devo” is to
provide the computational foundation for a virtual re-engineering of the
“strongly morphogenetic” complex systems spontaneously produced by na-
ture, such as biological development. To this aim, one must design a pro-
grammable and reproducible two-way indirect mapping between the local
rules of self-assembly followed by the elementary agents at the microscopic
level (the genotype I'), and the collective structure and function of the system
at the macroscopic level (the phenotype @). Calculating the transformation
from I" to @ corresponds to developing an organism—while solving the inverse
problem of finding an appropriate I" given a desired @ (or family of similar
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@’s), would be the challenge of an evolutionary search, whether goal-oriented,
open-ended, or a mix of the two.

Mirroring the evo-devo paradigm in biological systems, new EC avenues
need to stress the importance of fundamental laws of developmental varia-
tions as a prerequisite to selection on the evolutionary time scale of artifi-
cial systems [62]. From the EC viewpoint, it means an implicit or indirect
mapping from genotype to phenotype. Fine-grained, hyperdistributed archi-
tectures similar to multicellular organisms (i.e., many light-weight agents, as
opposed to a few heavy-weight agents) might be in a unique position to pro-
vide the “solution-rich” space needed for successful selection and spontaneous
innovation through developmental modularity and composition.

1.3 From Embryogenesis to Embryomorphic
Engineering

This chapter offers an overview of a recent framework called Embryomorphic
Engineering, which was founded in 2006 by René Doursat [16, 17] (who coined
the term after “Neuromorphic Engineering”) to explore the causal and pro-
grammable link from genotype to phenotype that is needed in many emerging
computational disciplines, such as artificial embryogeny [62, 5, 46], and put
it to innovative uses. Its endeavors as a bio-inspired computing technology
follow those of biological evo-devo, and for this reason it could be equivalently
referred to as “Evo-Devo Engineering”. Embryomorphic Engineering works
on two levels in parallel: it consists of simultaneous genetic engineering (I”)
and functional shape engineering (@), based on a common playground made
of a multitude of small agents capable of self-assembling into a particular
organism. These agents are guided by the genetic instructions they carry,
which parametrize and modulate the fundamental laws of biomechanical-like
assembly and biochemical-like signaling that they obey, creating appropriate
context-sensitive rules.

The remainder of the text illustrates the potential of Embryomorphic En-
gineering in different spaces: 2D /3D physical swarms, which can find appli-
cations in collective robotics, synthetic biology or nanotechnology; and nD
graph topologies, which can find applications in distributed software and
peer-to-peer techno-social networks. In all cases, the specific genotype shared
by the agents makes the phenotype’s complex architecture and function mod-
ular, programmable and reproducible:

e Section 2 describes MapDevo (Modular Architecture by Programmable
Development), the original and foundational 2D model of embryonic devel-
opment based on self-assembly, pattern formation, and genetic regulation.
Section 3 examines hand-made mutations of the genotypes of MapDevo
organisms and their corresponding phenotypes, paving the way toward an
evolutionary version of programmable development. It is followed in Sec-
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tion 4 by a study of functional—mot merely morphological-—architectures,
called fMapDevo, through a model of animated embryomorphic organisms
immersed in a 3D physical environment.

e After those 2D/3D models, which remained close to their biological in-
spiration based on multicellular development, Section 5 presents ProgNet
(Programmable Network Growth), an extension of MapDevo to nD graph
topologies via a model of autonomous network construction. There, nodes
execute the same program in parallel, communicate and differentiate, while
links are dynamically created and removed based on “ports” and “gradi-
ents” that guide nodes to specific attachment locations. As the network
grows, nodes switch different rules on and off, creating chains, lattices,
and other composite topologies. Finally, Section 6 introduces ProgLim
(Program-Limited Aggregation), a particular implementation of ProgNet
in cellular automata, and Section 7 briefly concludes the chapter.

2 MapDevo: Modular Architecture by Programmable
Development

The spontaneous making of an entire organism from a single cell is the epit-
ome of a self-organizing and programmable complex system. Through a pre-
cise spatiotemporal interplay of genetic switches and chemical gradients, an
elaborate form is created without explicit architectural plan or engineering
intervention. Embryomorphic agent-based modeling and simulation attempt
to understand and exploit these fundamental morphogenetic mechanisms.
On the one hand, research
in self-assembling (SA) systems,
whether natural or artificial,
has traditionally focused on pre-
existing components endowed
with fixed shapes [69]. Biolog-
ical development, by contrast,
dynamically creates new cells
that acquire selective adhesion
properties and forms through
differentiation induced by their
neighborhood [72]. On the other
hand, biological pattern forma-
tion (PF) phenomena [63, 28,
73, 50, 42, 45] are generally con-
strued as orderly states of activity on top of a quasi-continuous and fixed 2D
or 3D background of cellular substrate. Yet again, the spontaneous patterning
of an organism into regions of gene expression arises within a multicellular

Fig. 1 A three-stage MapDevo cycle.
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medium in perpetual expansion and reshaping. Finally, both phenomena (SA
and PF) are often thought of in terms of stochastic events—whether mixed
components that randomly collide during SA, or spots and stripes that crop
up unpredictably from instabilities during PF. Here too, these notions need
significant revision if they are to be extended and applied to embryogenesis.
Cells are not randomly mixed but pre-positioned where cell division occurs.
Genetic identity regions are not randomly distributed but highly regulated in
number and position.

This section describes MapDevo (Modular Architecture by Programmable
Development), the original and foundational 2D model of Embryomorphic
Engineering first published in [16, 17, 18]. It is a spatial computational sim-
ulation of programmable and reproducible morphogenesis that combines SA
and PF under the control of a nonrandom gene regulatory network (GRN)
stored inside each cell of a swarm. The differential properties of cells (divi-
sion, adhesion, migration) are determined by the regions of gene expression
to which they belong, while at the same time these regions further expand
and segment into subregions due to the self-assembly of differentiating cells.
To follow an artistic metaphor [10], SA is similar to “self-sculpting” and PF
to “self-painting”. The model can be construed from two different vantage
points: either pattern formation on mowving cellular automata, in which cells
divide and spatially rearrange under the influence of their own activity pat-
tern; or collective motion in a heterogeneous swarm, in which cells gradually
differentiate and modify their interactions according to their positions and
the regions they form.

In the next subsections, the motion of a homogeneous swarm of cells (pure
SA) and the patterning by gradient propagation on a static swarm (pure PF)
are introduced separately. Then, these two components are combined to form
reproducible growing patterns (SA 4+ PF). The genetic control inside every
cell guiding these arrangements is also explained. Finally, this combination
is repeated in modules (SAk + PFk) inside a larger, heterogeneous system to
create complex morphologies by recursive refinement of details.

Self-assembly by Division and Adhesion (SA) The original MapDevo
model consists of a 2D swarm of cells with dynamically changing neighbor
interactions calculated by a Delaunay-Voronoi tessellation (Fig. 2). Each cell
follows two major laws of cellular biomechanics in a simplified format: (i) cell
division, coded by a uniform probability p for any cell to split into two,
and (ii) cell adhesion, represented by elastic forces derived from a quadratic
potential V' with resting length r., hard-core radius r., and scope of visibil-
ity ro, similar to collective motion models [66, 31] but with zero velocity (no
self-propulsion). These parameters are grouped into a genotype Gsa. Laws of
motion are derived from a spring-damper system with negligible mass/inertia
effects. Under potential V', starting from a compressed swarm, cells quickly
relax to a resting state in which they form a quasi-regular hexagonal mesh.



Embryomorphic Engineering 7

Fig. 2 Deployment of a homogeneous swarm (SA). (a) Cell-to-cell interaction potential V'
similar to elastic springs. (b) Relaxation of a 400-cell swarm from an initially compressed
layout. (c) Same swarm viewed from its underlying mesh of pairwise interactions, obtained
by Delaunay triangulation and pruning of links longer than rg. (d) Genetic SA parameters
inside every cell (from [18]).

Propagation of Positional Information by Gradients (PF-I) Pieces of
a jigsaw puzzle are defined not only by their position and shape but also by
the “image” that they carry. In our self-organized swarm, this translates into
state variables that determine the PF activity inside each cell. The model
distinguishes between two kinds of PF-specific state variables (i.e., signals
that cells continuously exchange and process): gradient variables (PF-I) and
pattern variables (PF-II).

Gradient values (PF-I) propagate from cell to cell to establish positional
information across the swarm [71]. For example, each cell contains a counter
variable gy. The source cell of this gradient, denoted W, is characterized
by gw = 0. It passes value 1 to neighboring cells, which in turn tell their

Fig. 3 Propagation of positional information (PF-I). (a) Circular gradient of counter
values originating from source cell W (end points circled in blue). (b) Same gradient values
viewed by a cyclic color map. (c) Opposite gradient coming from antipode cell E. (d) Set of
midline cells Y = WEL whose W and E counters are equal 1. (¢) Quasi-planar gradient
gx = gw — gg- (f-g) Full coordinate compass with axis X = NS+ ~ WE (from [18]).
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neighbors to set gy to 2, and so on (Fig. 3). To give this isotropic propaga-
tion a specific direction, another local rule instructs each cell to retain only
the smallest of the current counter value and the received values. The re-
sult is a roughly circular wave pattern of increasing gy, counters centered on
source W. Together with W, three other gradients, £, N and S, contribute
to form a 2D coordinate system via equatorial (midline) axes X = NS+ and
Y = WE*, which contain the cells where counter values cross, respectively:
lgy = gn —gs| <1 and |gx = gw — gr| < 1. Note that the four sources W,
E, N, S position themselves, too, by “hopping” away from each other (i.e.,
passing a flag representing source N to any neighbor with a higher S-gradient
value, etc.). First defined by Lewis Wolpert [71], “positional information” is
a fundamental concept of morphogenesis, and its natural chemical version is
often translated into discrete counters in artificial systems like this one, such
as in Amorphous Computing [12, 49] and Spatial Computing [3, 4].

Programmed Patterning by Gene Expression Levels (PF-II) Pattern
values (PF-II) correspond to gene expression levels that are calculated on top
of the (gx,gy) gradient values to create different cell types (which in turn
affect the SA behavior; see SA + PF integration below). This calculation
relies on a gene regulatory network (GRN), whose weights constitute the
genetic parameters of the PF process and are denoted by Gpr (Fig. 4). Thus
the core architecture of the virtual organism is a network of networks, i.e.,
an irregular 2D lattice of identical GRNs locally connected to each other via
“chemical signaling” nodes [47, 53, 13].

The patterning process represents the emergence of heterogeneity, i.e., the
segmentation of the swarm into “identity regions” corresponding to high ex-

Fig. 4 Programmed patterning (PF-II). (a) Same swarm viewed under different color maps
revealing the regions where cells’ internal variables gx, gy, B; and Ij are highest (virtual
equivalent of in situ hybridization in biology). (b) Consolidated view of all identity regions
Iy, for k =1...9. (c) The GRN, denoted Gpr, used by each cell to calculate its expression
levels, here: By = o0(1/3 — X), B3 =0(2/3—-Y), I4 = B1B3(1 — By), etc. (from [18]).
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pression levels of particular genes Iy of the GRN. A well-known example is
the early striping of Drosophila [8] controlled by a 5-layer hierarchy of seg-
mentation genes along the anteroposterior axis (maternal genes, gap genes,
primary /secondary pair-rule genes, and segment polarity genes). The present
model relies on a 3-layer caricature of the same principle along the two inter-
secting axes X and Y: (1) the bottom (input) layer of the GRN contains the
two positional variables gx and gy; (2) the middle layer contains “boundary”
genes B;, which segment the embryo into roughly horizontal and vertical half-
planes of strong and weak expression levels via 2D step functions o; (3) the
top (output) layer contains the identity nodes Iy derived from positive and
negative products of B;’s, i.e., various intersections of the B; half-planes.

Simultaneous Growth and Patterning (SA + PF) After describing the
self-assembly of a non-patterned swarm (SA) and the patterning of a fixed
swarm (PF), the embryomorphic SA and PF behaviors are combined to cre-
ate growing patterns at every stage (Fig. 5). Cells continually adjust their
positions according to the elastic SA constraints, while exchanging PF signals
over the same dynamic links. This dual dynamics is guided by the combined
genotype G = (Gsa, Gpr). Daughter cells inherit all the attributes of mother
cells, including G and the current internal PF variables (gradient counters
and gene levels). As for the SA variables (coordinates and adhesion/signaling
links of the lattice), they are recalculated from a position close to the origi-
nal cell. Both sets of variables are updated as the newborn cell immediately
starts contributing to the SA forces and the traffic of PF gradients, which
maintain the pattern’s consistency at all times in the swarm.

Fig. 5 Simultaneous growth and patterning (SA+PF). (a) Swarm growing from 4 to 400
cells by division. (b) Swarm mesh, highlighting gradient sources and midline axes. The
gradients and pattern are continually maintained by source migration, e.g., N moves away
from S and toward WE= (same with other 3). (c) Cell B created by A’s division quickly
contributes to SA forces and PF traffic. (d) Combined genomes inside each cell (from [18]).
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Fig. 6 Modular, recursive patterning (PFF). (a) A 9-region swarm, as in Fig. 4b. (b) Cells
at the border between two domains are highlighted with yellow circles. (¢) These border
cells become new gradient sources (red circles) inside certain identity regions at a lower
scale. (d) Missing border sources arise from the ends (blue circles) of other gradients.
(e-f) Subpatterning of the swarm inside I4 and Is. (g) Corresponding hierarchical GRN:
Gpr = {Go, Gy, GS1} (from [18)).

Modular, Recursive Patterning (PFk) Natural embryological patterns,
however, do not develop in one shot but in numerous incremental stages [10].
An adult organism is produced through modular, recursive growth and pat-
terning. In Drosophila, regions of the embryo that acquire leg, wing or antenna
identity (called “imaginal discs”) start developing local coordinate systems
of morphogen gradients to support the prepatterning and construction of the
planned organ [8]. Correspondingly, the present embryomorphic model in-
cludes a pyramidal hierarchy of network modules able to generate patterns in
a recursive fashion (Fig. 6). First, the base network G%p. establishes the main
identity regions as above, then subnetworks G’f)F triggered by the identity
nodes Ij, of G% further partition these regions into smaller, specialized com-
partments at a finer scale. This type of (non-self-similar) fractal patterning
has also been explored in generative algorithms such as “L-systems” [61, 52].
These systems, however, are most often self-similar and rely on symbolic rules
and explicit geometry, by contrast with our dynamical system of physico-
chemical interactions among a multitude of units (a distinction also made in
cognitive science between Artificial Intelligence and Neural Networks).

Modular, Anisotropic Growth (SA’“) So far missing from the model is
a true topological deformation dynamics, or “morphodynamics”, that can
confer non-trivial shapes to the organic system beyond simple blobs. To this
aim, cells must be able to diversify their SA characteristics, depending on
their PF type and spatial position—thus closing the feedback loop between
genetics and geometry [11]. In particular, they have to exhibit nonuniform,
anisotropic cell division (varying p) and differential adhesion (varying V).
For example, in our artificial model, the growth of limb-like structures can
be achieved by a coarse imitation of meristematic plant offshoots (Fig. 7).
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Fig. 7 Modular, anisotropic growth (SA*). (a) Genetic SA parameters are augmented
with repelling V' values r, and r{ used between the growing region (green) and the rest
of the swarm (gray). (b) Daughter cells are positioned away from the neighbors’ center
of mass. (¢) Offshoot growth proceeds from an “apical meristem” made of gradient ends
(blue circles). (d) Cyclic coloring of the gradient underlying this growth (from [18]).

In this process, only the tip or “apical meristem” of the organ is actively
dividing at any time (whereby cells forming the tip self-identify as being the
local maxima of the gradient generated by the base of the limb). Moreover,
potential V' is attractive only among cells within the limb region, while it
becomes repelling (i.e., 79 < r., see Fig. 2a) between the limb and other
areas. Just like inhomogeneous division, differential adhesion is an essential
ingredient of complex shape formation [34, 44].

Modular Growth and Patterning (SAk + PFk) Putting everything to-
gether, full morphologies can develop and self-organize from a few cells
(Fig. 8). These morphologies are complex, programmable and reproducible:
they are architecturally complex because they can be made of any variety of
modules and parts that are not necessarily repeated in any periodic or self-
similar way; they represent programmable phenotypes because they emerge
from a same given genotype carried by every cell of the swarm; they are re-

Fig. 8 Modular growth and patterning (SA* + PF¥). (a) Example of a three-tier modular
genotype giving rise to the artificial organism on the right. (b) Three iterations detailing
the simultaneous limb-like growth process (Fig. 7) and patterning of these limbs during
execution of tier 2 (modules 4 and 6). (c¢) Main stages of the complex morphogenesis
process, showing full patterns after execution of tiers 1, 2 and 3 (from [18]).
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producible, as their structure and shape are not left to chance but tightly
controlled by the genotype.

Naturally, the exact positions of the cells at the microscopic level are still
random, but not the positions of the mesoscopic and macroscopic regions that
they form. Moreover, the modularity of the phenotype is a direct reflection
of the modularity of the genotype. The hierarchical SA and PF dynamics
recursively unfolds inside the different regions and subregions that it creates.
Each module G* = (G&,, GEy) can be reused by exact duplication, but can
also diverge from other blocks through different internal genetic SA and PF
parameters, potentially giving each region a different morphodynamic be-
havior and a different gene activity landscape. Duplication of gene modules
followed by divergence of these copies is the basis of serial homology, a major
evolutionary mechanism in nature exemplified by vertebrae, teeth, or dig-
its [8]. Here, the integration between SA and PF is controlled by the identity
nodes Ij: these nodes switch on the execution of subordinate modules G¥,
i.e., their gene expression activity (parametrized by G{%F) to create new lo-
cal segmentation patterns, and their mechanical behavior (parametrized by
G’§ A) to create new morphodynamical processes.

3 Toward an Evolutionary MapDevo Through Variation

This section presents experiments involving hand-made mutations of the
genotypes of MapDevo systems and their corresponding phenotypes (first
published in [19]). For now, these systems are purely developmental and
do not serve a specific purpose. There is no organism fitness or selection-
based evolutionary search. These important aspects are included in ongoing
projects, which will be previewed in Sections 4 and 6. For now, we exclusively
focus on variation to illustrate the link between genotype and phenotype, and
the programmable and predictable effect that changes in the former can have
on the latter via self-organization—in which modularity is an essential con-
dition of future evolvability [58, 6, 67].

The figures of this section show several examples of modular embryogene-
sis and how certain mutations in the genotype correlate with quantitative or
qualitative changes in the phenotype. The organism of Fig. 9a is taken as the
reference or “wild type”. Its genotype is composed of two modules: a base
module establishing the body plan (lower module) and a specialized module
in charge of growing a simple limb-like appendage (upper module). The latter
is executed twice, in the left and right regions of the body, switched on by
identity genes I and I (as in Fig. 6a). As described in Section 2, each mod-
ule consists of two types of genomes: a self-assembly genome Ggp, encoding
how cells divide and spread spatially, and a pattern formation genome Gpr,
encoding how cells acquire their types. To simplify the figures, the GRN that
constitutes Gpp is not shown in its entirety; instead, only the type of check-
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ered pattern that it produces (explained below) and the module-switching
identity genes are displayed.

Quantitative Variation of Limb Thickness by GRN Weights (PF) In
Fig. 9b, the wild-type organism has been affected by a “thin-limb” mutation
of the body plan. Although not shown, some weights of the base Gpr have
been modified in such a way that they now create a checkered pattern with a
narrower central row (displacing the B; gene domains of Fig. 4a). This gives
less space for the limb buds to grow, hence making them thinner. The reverse,
“thick-limb” mutation is shown in Fig. 9c¢, with coefficient 2. This is a good
example of the compactness of the developmental genotype [26, 62] and its
large-scale effect on the phenotype: only varying the sensitivity of a couple
of genes can already result in significant morphological changes.

Quantitative Variation of Limb Length by Division Signals (SA) By
modifying the division rate and/or the stop conditions of proliferation, the
size of various parts of the embryo can also be modulated. For example, in
Figs. 9d and 9e, cell proliferation is regulated in the limbs. Here, it is achieved
by stopping division when the gradient values of the tip cells (blue circles in
Fig. 7) reach a specific value ¢, respectively sooner (¢ = 10) and later
(¢" = 40) than the wild type (g = 15). In Fig. 9f, both body plan and limbs
stop growing beyond gradient value ¢’ = 8, producing a phenotypic shape
that is proportionally smaller than the wild type. Note that similar effects
can also be achieved by decreasing or increasing the probability of division
p, while keeping the stop gradient values constant (see Fig. 10c).

Fig. 9 Simulation trials from the agent-based model showing quantitative variations.
(a~c) Varying limb thickness by modifying the GRN weights (see text). (d-f) Varying
length and size by stopping cell division earlier or later (see text) (from [19]).
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Fig. 10 Simulation trials showing structural variations. (a-c) Changing limb configuration
by switching the limb-triggering genes and/or duplicating the limb module (see text).
(d-e) Adding limbs by body plan expansion (from [19]).

Structural Change of Limb

Position by Module Switch-

ing In Fig. 10, the modularity

of the limb component is demon-

strated through various muta-

tions reminiscent of experiments

on biological organisms such as

Drosophila. The identity genes

marking the regions (“imaginal

discs”) responsible for the growth

of a specific appendage [10, 8] can

be literally turned on or off in

new regions with respect to the

wild type of Fig. 9a. For exam-

ple, in Fig. 10a, a virtual case of

“antennapedia”, i.e., the ectopic growth of a leg where there should be an
antenna, is obtained by connecting a new identity region to the limb module,
here region I instead of region Ig. This means rewiring the GRN of Gpp
to reflect the fact that the regulatory sites of the limb genes on the DNA
have mutated and now accept gene I5’s proteins as promoters instead of gene
Ig’s proteins. In the three-limb mutation of Fig. 10b, these regulatory sites
have been duplicated before mutating, accepting gene I in addition to gene
Is (not just in replacement), so that the limb module is now executed three
times instead of twice.
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Structural Duplication and Divergence, or “Serial Homology” Later
in the course of evolution, similar copies of the same organ can diverge and
acquire specialized characteristics, as Fig. 10c illustrates. In this scenario,
three copies of the entire limb module were produced by duplication as in
Fig. 10b. Afterwards, these copies mutated independently from each other,
e.g., by adopting different cell division rates p’, which created shorter or
longer limbs. Serial homology is the name given to this major evolutionary
process resulting from duplication followed by divergence [7, 40]. Biological
organisms often contain numerous repeated parts in their body plan. This
is most striking in the segments of arthropods (several hundreds in milli-
pedes; see the simulated “biomorphs” of [14]) or the vertebrae, teeth and
digits of vertebrates. After duplication, these parts tend to diversify and
evolve more specialized structures (lumbar vs. cervical vertebrae, canines vs.
molars, etc.). Homology exists not only within individuals but also between
different species, as classically shown by comparing the forelimbs of various
tetrapods from the bat to the whale. Homology could also be explored as an
important principle of artificial self-developing systems.

Structural Addition of Limbs by Body Plan Expansion In the sce-
nario of Fig. 10d-e, new limbs are generated not by reusing the same body
plan differently (Fig. 10a-b) or by duplicating the limb module (Fig. 10c),
but rather by expanding the GRN of the base Gpp in order to create new
regions of gene identity that can host additional limb growth. Here, the em-
bryo’s geography expanded from a 3 x 3 = 9-type checkered pattern to a
5 x 3 = 15-type (Fig. 10d) and a 9 x 3 = 27-type pattern (Fig. 10e). The
SA part of the body plan is also slightly modified to accommodate these new
regions. It assumes an oval shape resulting from a nonuniform distribution
of the division rate p that elongates the body along the Y axis (see Fig. 3),
i.e., greater toward the N and S poles and lower in the middle.

Structural Addition of Digits by Modular Hierarchy Finally, along
the same principles, Fig. 11 shows a few simulation trials of three-tier organ-
isms. Fig. 11a is the new wild type. After the usual development of two limbs
from the 3 x 3 body plan, extra “digits” grow from these limbs, guided by
the top module of the hierarchical genotype. To make room for these digits,
limbs have expanded their internal pattern from 1 x 1 to 2 x 4 (see previous
section). Fig. 11a presents a double bilateral symmetry, with respect to both
horizontal and vertical axes. Fig. 11c is a further mutation of Fig. 11b, in
which region Ig’s limb has accelerated its growth and expanded its checkered
pattern to support the development of two new digits, whereas, on the con-
trary, region I;’s limb has continued to regress back to a primitive stump.
Fig. 11d paints a possible phylogenetic tree that includes the species of this
section (dashed branches suggest “convergent” speciation pathways).
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Fig. 11 (a-c) Adding digits via a third tier in the modular hierarchy of the developmental
genotype (see text). (d) A possible phylogenetic tree (from [19]).

Naturally, beyond these proof-of-concept
simulation trials, a more systematic explo-
ration is needed. Further work needs to
be done on how an embryomorphic system
can spontaneously evolve, i.e., how it can
be randomly varied and non-randomly se-
lected based on its success in performing
certain tasks. Different selection strategies
are possible, whether focusing on prespeci-
fied forms, prespecified functions, or allow-
ing unspecified outcomes.

When selecting for form, a hard reverse
engineering problem must be addressed:
given a desired phenotype, what is the geno-
type that can produce it? While determin-
istic reverse compilation is possible in lim-
ited cases [49], parameter search is gener-
ally difficult. With a fitness criterion rewarding only a specific target shape,
solutions in genomic space are likely to be few and far between, if not re-
duced to a unique spot. In this situation, a classical approach is to define
a “shape distance” as an increasing function of favorable, stepwise muta-
tions. It is conjectured here that this kind of gradual search might actually
benefit, not suffer, from the high genotype dimensionality of an embryomor-
phic model, compared to the direct genotype-phenotype mappings of most
genetic algorithms. Hierarchical GRNs might be better at providing the fine-
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grained mutations required by the “gentle slope” search toward increasingly
sophisticated innovation [14, 51]. Complex systems inherently have greater
variational power, as they allow combinatorial tinkering on highly redundant
parts.

However, beside gaining self-repair properties, why constrain a
self-assembling system to produce a predefined shape? More benefits might
come from such systems by selecting for function while leaving complete
freedom of form. Gradual optimization could rely on a distance of perfor-
mance to predefined goals, instead of shapes, allowing the most successful
candidates to reproduce faster and mutate. Functional selection under free
form has been often used in evolutionary robotic systems [43, 41], but based
on non-developmental, direct genotype-phenotype encodings. Again, it is hy-
pothesized here that a larger number of microscopic agents, such as in mul-
ticellular embryogenesis, would be more favorable to a successful functional
search due to their collective combinatorial abilities.

Finally, in a third scenario, specifications can be diversified and relaxed
to the point of being open to surprise and harvesting unexpected but use-
ful organisms from a “free-range menagerie” (see for example “evolutionary
swarm chemistry” [57]). Ultimately, reconciling the antagonistic objectives of
spontaneity and purpose will probably hinge on two complementary aspects:
(a) finer-grained variation-by-mutation mechanisms yielding a larger number
of search paths and (b) looser selection criteria yielding a larger number of
fitness maxima. With more search paths covering more fit regions, evolution
is more likely to find good matches.

4 Functional MapDevo by Animation in 3D

While the task of “meta-designing” laws of artificial development inspired
from biology is already challenging, it only constitutes the first part of the
Embryomorphic Engineering effort. Once a self-developing infrastructure is
mature, what other computing and behavioral capabilities can it support?
What do its “cells” (agents) and “organs” (regions) actually represent and
achieve in practice? In biological organisms, although cell physiology often
partakes in development (e.g., electrical signals of neurons guiding synapto-
genesis), there seems to be a broad distinction between developmental genes
and the rest of the genome. In computing systems, these two modes could
also be decoupled into two different sets of state variables. After reaching de-
velopmental maturation, and while still fulfilling maintenance and self-repair
tasks, morphogenetic SA and PF activity (i.e., division, position information
and patterning signals) would give way to another type of activity subserving
functional computation. Obviously, the type of computation entirely depends
on the nature of the agents: processor-carrying nano-units, software agents,
robot parts, mini-robots, synthetic bacteria, and so on.
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In fact, the problem is reverse in many computing domains: there is a
demand for precise self-formation capabilities in distributed systems made of
existing functional agents. A variety of morphogenetic-like approaches have
been proposed for such applications. For example, Amorphous Computing has
set the stage for a myriad of micro-processors containing the same instruc-
tions to self-organize without an exact blueprint map or functional reliability,
unlike traditional VLSI [1, 12, 49]. Self-assembling components can also rep-
resent mobile sensors and actuators in complex self-managing networks [3, 4].
In software applications (servers, security), a society of small-footprint soft-
ware agents could diversify and self-deploy to achieve a desired level of appli-
cation functionality and service (e.g., “immune” security [33]). It is also an
important challenge in complex “techno-social networks” made of myriads
of devices, software agents, and/or human users, which use only local rules
and peer-to-peer communication to achieve a collective function [23] (see Sec-
tion 5). In collective robotics, too, whether articulated parts of reconfigurable
devices [43, 41, 35, 29], or mobile formations of mini-robots [32, 9, 70], there
is a need for complex but controllable morphologies.

This section describes preliminary work toward such a goal through a
model of animated MapDevo organisms immersed in a 3D physical environ-
ment, called fMapDevo [21]. The developmental process follows the exact
same principles as the 2D model of Section 2 (SA by elastic forces, PF-I
by gradient propagation, PF-II by gene expression). In addition, after devel-
opment, resulting organisms are able to generate movement by contracting
adhesion links between “muscle” cells, while other cells have differentiated
into “bones” and “joints” to support and articulate the body’s structure. Fi-
nally, by interacting with a virtual physical world, made of a rigid ground and
simple objects in a gravitational field, the organisms can exhibit locomotion
and primitive behavior. This project constitutes an original demonstration
of a genuinely evo-devo Alife system, in which self-organization is not only
programmable but functional and evolvable. We summarize below the main
features and novelties of this project compared to MapDevo.

Body Growth in 3D Space We use the Open Dynamics Engine (ODE)
to implement the embryomorphic development and behavioral dynamics of
the organisms in 3D. Like the 2D version, cells are modeled as point-like
elements (here represented by small spheres, Fig. 12) and neighborhood re-
lationships are calculated by a Delaunay triangulation (Fig. 12e) from which
longer links are removed above a cutoff distance. As before, mechanical SA
forces are elastic links between neighboring cells, and in the first stage—the
growth of the body—-cell division is characterized by a uniform probability
and random orientation (visualized with vectors, Fig. 12f). Gradient propa-
gation PF-I (Fig. 12g) is triggered by three pairs of source cells, North-South,
West-East, and Top-Bottom (Fig. 12a), which place themselves as usual by
hopping away from each other, i.e., navigating the opposite gradients uphill.
Regional differentiation PF-II (Fig. 12b-d) results from the execution of a
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Fig. 12 Body growth in 3D space. (a) The 6 source cells after a few divisions at iteration
t = 25. (b-d) Successive growth states at iterations ¢ = 150, 400 and 700: 27 cell-type
regions have formed through a 3 x 3 x 3 checkered gene expression pattern. (e) Detail of
the mesh of neighborhood links calculated by Delaunay triangulation. (f) Detail of the
division vectors in each cell: norms represent probabilities, orientations are perpendicular
to cleavage planes. (g) East gradient gg, displayed in red near the E source and white
farther away. (h) A thick equatorial plane corresponding to |gw — gg| < 3.

genetic program, whose output depends on the input gradients in each cell.
In this model, however, the program is not necessarily GRN but can assume
a symbolic format, such as logic rules (e.g., “if |gw — gr| < 3 then switch on
the red gene”, Fig. 12h).

Modular Limb Growth, Homology and Divergence In a second stage,
limb growth (Fig. 13a-d) proceeds in the same way as the 2D version, by
relying on a heterogeneous field of cell division probability and orientation
(Fig. 13a’-¢’), which is calculated as a function of the local gradients inside
the limb. In the example below, cell division is zero everywhere except at the
North tip, where its orientation is South—North (Fig. 13e-f). As in the 2D
model, the same “homologous” limb module of the genotype can be reused to
develop several limbs from different “imaginal” regions of the body (Fig. 14).
Then, evolutionarily “divergent” versions of that structure can be created by
varying, for example, the link cutoff distance: a high value makes cells more
likely to remain linked as neighbors, hence cluster together due to the elastic
attraction and create more compact, shorter limbs. Conversely, a lower cut-
off value tends to detach more cells from each other, hence let them spread
out and make longer limbs. In Fig. 14b, the developed organism possesses
one pair of short limbs and one pair of long limbs. In sum, each module of
the organism (body, limbs, etc.) represents an autonomous domain of space
in which local gradients are mapped to various fields of developmental and
structural parameters, such as division vectors, cell types, link cutoff value
(and stiffness coefficient: see next), via a local genetic program (Fig. 14c).
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Fig. 13 Single limb development in 3D. (a~-d) Successive states. (a’-c’) Corresponding
division field: the body has halted its growth (effectively nullifying all the division vectors
inside), while in the limb the division probability is zero everywhere except at the local
North tip (gn < 3), where its orientation is South—North. (e) Detail of the division field
at the tip. (f) The three pairs of self-positioned sources inside the limb (showing virtual
axes, not actual links), with South at its root and North at its tip.

Bones, Joints, Muscles: Structural Differentiation and Dynamics
In the embryomorphic paradigm, the genotype-guided development of an or-
ganism not only provides a reproducible overall shape, but can also equip
this shape with built-in structural features that confer it specific mechanical
properties. In Figs. 14 and 15, for example, a few cells at the base of the
limbs have differentiated into “muscles”, while others have become “bones”
inside the limbs, and “joints” at the junction between the limbs and the body.
Computationally, this amounts to adding various Boolean fields—functions of
the local gradients, like the division and type fields—to each genetic module
(Fig. 14c). Here, the muscle field corresponds to the base cylindrical section
of a limb, e.g., where gg < 5 (pink regions in Fig. 14a,d to be contrasted with

Fig. 14 Fully developed 4-legged organism. (a) Standard sphere-based multicellular view
from underneath. (b) Corresponding division vector field, null in the limbs except at their
tips. (¢) Genetic program G executed by all cells, comprising three modules: a body module
(uniform field of division probability, 27 cell types), a short-limb module (tip-like division
field, 2 subtypes, high link cutoff), and a long-limb module (small link cutoff). Each limb
module is triggered in two different regions of the body, creating a total of four legs.
(d) Profile view of the creature when positioned on the floor.
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Fig. 15 Structural differentiation and dynamics. (a) The grown organism contains a skele-
ton made of differentiated “bone” cells and rigid links connecting them (displayed in white).
(b) Experiment where all other links (the “flesh” in red) have been dissolved, showing the
stability of the naked bone structure under gravitational pull. (¢) Opposite experiment
where bone differentiation was turned off: the organism spreads on the floor like a starfish.
(d-g) Locomotion and ball-kicking behavior, achieved by stimulating and contracting the
“muscle” regions (pink bases of the limbs) in specific subregions at specific time intervals—
a coordination and control program that is typically the task of a central nervous system.

the purple tips), while the bone field is 1 only along some thin South-North
path on each limb and inside a small cluster at the center of the body. Link
types are then simply deduced by connecting neighboring cells of identical
types: for example, the bone links are formed exclusively between bone cells
(white edges in Fig. 15a-b). In this case, for a link to turn into “bone” means
becoming rigid, i.e., acquiring a virtually infinite spring coefficient, so that
it maintains a fixed spatial relationship between its two extremities. The net
effect is that a connected bone structure forms a “skeleton” that can support
the whole organism and keep it standing on the floor under gravitational pull.
The skeleton’s stability can be revealed by “dissolving the flesh” around it
as in Fig. 15b. Its usefulness can also be demonstrated by turning off bone
differentiation, upon which the softened organism collapses on the floor in a
spread-out posture resembling a starfish (Fig. 15c¢).

Behavioral Performance and Evolution Finally and most importantly,
once the mechanical features of cells and links have been established by de-
velopment, the organism is immersed in a physical environment where it can
exhibit locomotion and other types of behavior. In Fig. 15d-g, it is shown
walking on the floor and kicking a ball. Without going into details here,
this is essentially achieved by contracting the muscle regions (pink bases of
the limbs) periodically and nonuniformly through “stimulus” fields applied
to specific subregions at specific time intervals—a coordination and control



22 R. Doursat, C. A. Sanchez, R. Dordea, D. Fourquet and T. Kowaliw

program that is typically the task of a central nervous system, itself subject
to evolutionary changes. For more information on this model, the reader is
referred to upcoming publications such as [21].

In sum, the fMapDevo model offers a complete morphogenetic machine
that can transform by development a genotype G (Fig. 14¢) into a functional
phenotype (Fig. 14d). Metaphorically, G is the music roll of this mechanical
organ, through which evolution can play different original tunes, i.e., produce
different innovative architectures.

5 ProgNet: Programmable Network Growth

After the foundational 2D/3D embryomorphic models of the MapDevo fam-
ily (Sections 2-4), which remained close to their biological inspiration based
on multicellular development, this part presents an extension to “nD” graph
topologies. In this original project of programmable network self-construction
and dynamics, called ProgNet (first published in [22]), neighborhood rela-
tionships between nodes are no longer necessarily a consequence of their
proximity in Euclidean space. Yet, the overall challenge remains the same:
design or evolve a ruleset that the individual agents of a multi-agent system
can follow to independently create connections with each other, such that the
end result is an intended functional architecture.

With information and communication technologies (ICT) pervading every-
day objects and infrastructures, today’s Internet, so far playing the role of a
communication highway, is envisioned to become in the near future an “Inter-
net of Things”, i.e., a vast and hybrid complex network that will seamlessly
integrate the physical and the virtual worlds. It will enable the spontaneous
creation of collaborative societies of otherwise separate systems, both mobile
and static, referred to as “cyber-physical ecosystems” (CPE) [64]. Examples
will include self-reconfiguring manufacturing plants, self-stabilizing energy
grids, self-deploying emergency taskforces [65], and self-growing autonomic
applications [15]. What they will all have in common is a myriad of devices,
software agents, and human users, dynamically building and reconfiguring
their own network structures on the sole basis of local rules and peer-to-peer
communication [23].

In this context, the ability to form specific connections by “programmed
attachment” (as opposed to random connections by “preferential attach-
ment” [2]) in a decentralized, self-organized way, will greatly benefit a number
of real-world situations where networking accuracy and reliability is impor-
tant. Here, agents are called “nodes” and represent, for example, human users
equipped with wireless devices such as personal digital assistants (PDAs), or
software agents acting as proxies for physical machines and other resources
that need to function together.
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The basic mechanisms of self-constructing networks in ProgNet are ex-
plained in the following subsections from an abstract viewpoint. We start
with elementary chains and continue with more complicated, composite ar-
chitectures, including branching and stochastic redundancy. Nodes come in
one by one and attach to the growing structure toward the goal of building
a particular topology. They communicate with each other and execute the
same program in parallel, but also gradually differentiate according to local
and limited positional information in the form of discrete “gradients”, sim-
ilar to MapDevo. The self-assembly program carried by each node includes
routines for the exchange of messages, the opening and closing of attach-
ment ports and the dynamical creation or removal of links. Ports, gradients
and other state variables guide new nodes to specific locations in the devel-
oping network. As the network expands and node positions change, nodes
adapt by switching different sub-rulesets on or off—analogous to gene pro-
motion/repression in DNA—thus triggering the growth of specific structures.

Constructing Simple Chains Chains are the simplest self-assembling
structures. In this first scenario, nodes possess two ports, X and X', and
two corresponding gradient values x and a’ (Fig. 16). Ports can be “occu-
pied” (linked to other node ports) or “free” (not linked), while free ports can
be “open” (available for a link) or “closed” (disabled). New nodes that just
arrived in the system’s space, or nodes that are not yet connected, have both
ports open and gradients set to 0. A new node j can create a link with an
existing node i only through a pair of complementary open ports, here X and
X', with one link per port. Thus the only two possible links between ¢ and j
are X ]’ < X; or X] <+ X;. Upon attachment, gradient values are immediately

Fig. 16 Self-assembly of a simple chain. (a) The five main steps leading to a 5-node chain.
Through the link creation routine L, incoming nodes attach to either open ports, X or X’
(in dark blue), of the forming chain. When a link is created, its ports become “occupied”
(in light blue) and gradient values are updated in all nodes (see b). When the chain length
is 5, all open ports are closed (in gray; see c). (b) Detailed substeps of the value-passing
gradient update routine Gr. (c) Port management routine P, the core and only evolvable
component of genotype G in each agent: here, ports close when = + 2’ = 4, i.e., length is 5
(adapted from [22]).
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updated according to the following rules: (a) a free port always maintains its
value at 0 (gradient source), and (b) assuming that link X/ <> X; was cre-
ated, value x is sent out in the direction X, — X; with an increment of +1
so that z; = x; + 1, while conversely 2’ is sent out in the opposite direction
X + Xj so that ; = 2% + 1 (swap i and j if the other link was created
instead). This is similar to the gradient rule of the embryomorphic model
presented in Section 2.

Fig. 16 shows the self-assembly of a short chain. A new node can connect
to any available open and complementary port at random, including the most
recent and oldest nodes of the chain: all potentially valid links (here, two at
any time) have an equal probability of being formed. The gradient counters
keep track of the nodes’ positions in the chain. This allows, for example, to
build chains of a fixed length n by closing any remaining open ports as soon as
x+x' = n—1. Again, as mentioned in Section 2, discrete counter increments
are also the method of choice for spreading positional information in other
spatially extended systems [12, 49, 3, 4]. In the present model, the role of the
gradient source can be transferred to another node, thereby shifting gradient
chains in successive corrective waves, as nodes continually communicate with
each other to adjust their counters. Fig. 16b shows an example of a step-by-
step decomposition of a gradient update after a new node has connected to
the chain (dashed circle to the left).

In sum, all nodes carry the same program, their genotype G, which com-
prises three main routines: gradient update (Gr), port management (P), and
link creation (L):

e The gradient update routine, denoted Gr (to distinguish it from G) was
explained above: it consists of generic code that provides nodes with the
positional information that they need to make further decisions, and is
used in all network structures (see next sections).

e The port management routine P (Fig. 16¢) contains the heart of the logic
specific to the topology of a target architecture—chain, lattice, or any
complicated composite graph. For example, in the case of a 5-node chain,
P simply commands a node to shut its ports whenever = + 2’ = 4 (the
“open” and “close” commands apply only to free ports, and are ignored
by occupied ports).

e Finally, the link creation routine L (Fig. 16a) is also generic logic that
prompts new nodes to pick one of the open ports of the network at random
to make a new connection.

Routines Gr and P are executed only by the nodes that are already involved
in the network, paving the way for newcomer nodes to execute routine L.
In the remainder of the text, we focus on P, as it is the only variable and
evolvable part of the genotype G (while Gr and L are stereotyped and fixed).
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Fig. 17 Sketch of a programmed branching scenario (see text). (a-b) Beginning of chain a.
(c¢) Branch b starts. (d) Two alternative next steps. (e) Chain b stops at length 3. (f) Final
outcome, including a 4-node branch c. (g) This exact structure is prescribed by the port
management program P carried by each node (from [22]).

Branching and Modular Structures by Local Gradients More compli-
cated structures can then develop by composing multiple chains and lattices.
To allow the creation of modules with their own identities and local positional
information, one can find again inspiration from biology, in particular the
concepts of modularity and homology that are central in evo-devo [8, 48, 40]
(see Section 3). Modules are similar to “limbs” that have distinct morpholo-
gies and geographies. They are implemented here by distinguishing chain
segments and branches through independent coordinate systems based on
different “tags” a, b, ¢, etc. To start with a simple example, a new chain can
branch off from the middle of another chain (Fig. 17). The gradient ports in
the initial chain of the system are denoted by (X, X/ ), while the ports of the
branches will be (X,, X7), (X, X}), etc. Accordingly, routine L is modified
so that links cannot be created between ports with different tags.

In the elementary scenario of Fig. 17, when the third node has attached
(i.e., when x, = 2), the P routine commands that a new pair of ports (X;, X})
be created on that node and only port X] be opened (Fig. 17¢). Afterwards,
new nodes can attach to either open port, X/ (lengthening the initial chain)
or X; (starting the new branch; Fig. 17d). Under the right set of constraints,
generally imposing unidirectional attachment (e.g., always to X'), the order
of node attachment does not influence the final structure. Actual simulation
trials of self-organized branching structures are shown in Fig. 18, including a
composite structure in which nodes are “thickened” into clusters by adding
a C port, as explained below (Fig. 19).

Robustness by Cluster Redundancy The previous examples involved
exact structures of connections that were programmed at node-level by a
(quasi) deterministic algorithm. Despite minimal randomness in the choice
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of locations for new attachments, there was a unique possible final outcome:
a chain or a lattice planned in advance. While we want to preserve this
essential property of programmability (the focus of this work and of Mor-
phogenetic Engineering in general), it is also important to reintroduce an
element of wvariability and redundancy in the system—albeit at a smaller
scale. In biological development, the position and number of individual cells
is very imprecise, while the tissues and organs they form are reliably placed.
Similarly, programmed network self-assembly can also afford to be irregular
at the microscopic level of the nodes, while retaining an orderly arrangement
at the higher, mesoscopic levels of groups of nodes.

One way to implement this idea is to simply “thicken” chains and lat-
tices (Fig. 19) by replacing single nodes with clusters of nodes. This can
be done through one additional port, C' (as in “cluster” or “clique”) that
allows multiple nodes with identical gradient coordinates to form random
connections with each other. In chains, the C' port represents an extra “non-
linear” dimension on top of the (X, X’) pairs of ports. Another new feature is

Fig. 18 Simulation trials of programmed branching structures. (a) A main chain (hori-
zontal, here) branches off into two smaller chains at points where the x gradient values
respectively reach 2 and 4. Nodes contain a unique ID number, while ports (represented
by small rectangles attached to the nodes) contain the gradient values. Every node carries
three pairs of ports (blue, orange, green) but only uses 1, 2 or 3 ports. (b) Another example
of chain (in blue) branching off into a red chain at = 3 and a green chain at = 5. Here,
the layout follows a force-based algorithm and integer gradient values are visualized by
color shading (from [20]). (c) Example of a complex programmed network integrating a
branching chain structure with cluster formations (from [22]).
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Fig. 19 Chain of node clusters. (a) Detailed 3-cluster chain: internal (orange) links connect
the C ports of nodes with same (z, z’) values, while (blue) links between clusters form the
chain. A new node (gray) connecting through C' adopts the cluster’s values. (b) Simulation
with 5 clusters and about 20 nodes per cluster (from [22]).

that nodes are now allowed to make multiple connections per port, whether
X, X" or C (Fig. 19a). As a result, nodes cluster into families according
to their gradient values. Thus a new node generally faces two types of at-
tachment possibilities: it can either thicken or lengthen the chain. Similar to
cellular proliferation in morphogenetic tissues and organs, this proliferation
of nodes within a structured network introduces redundancy and “failover”
safety. Overall, it remains a deterministic structure (guided by the genotype
of attachment rules P) but with fine-grained stochasticity.

Adaptive Growth In sum, ProgNet proposes abstract principles of self-
made networks capable of forming precise topologies in a purely endogenous
manner. It establishes generic rules for the emergence of non-random (ex-
cept for possible redundancies at the microscopic level), programmable graph
structures that are neither repetitive nor imposed by external conditions.
Beyond the engineering of stereotypical genotype-phenotype mappings, how-
ever, network growth must also be adaptive. It is critical to be able to rely on
dynamic structures that can co-develop with a rapidly changing situation by
remaining open to influences and modifications coming from the environment
in which they are expected to function (Fig. 20). This can occur on multiple
taxonomic levels: on the long time scale through speciation reflecting “new”
genotypes (Fig. 20d), on the shorter time scale through polymorphism of a
“single” species (Fig. 20c), or even on one individual’s time scale through
developmental polyphenism (Fig. 20b):

e Evolutionary Polymorphism: Varying the Genotype A genotype
may provide internal parameters controlling different “traits” of the final
structure: slight variants of the former produce slight variants of the latter
(Fig. 20c). This is similar to the classical laws of population genetics within
the same species, schematically corresponding to the concepts of “alleles”
or single-nucleotide polymorphisms (SNPs) in DNA. Varying and combin-
ing genotypic parameters gives rise to a family of different “breeds”—like
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Fig. 20 Illustration of phenotypic adaptation in a programmable network growth model.
(a) Stereotyped development: a certain genotype (port routine P) gives nodes a strong bias
toward self-assembling into a certain shape, here a spider-like formation made of one ring
and six legs. (b) Developmental “polyphenism”: similar to a plant, the same P could give
rise to variants of the above shape modified by external conditions from the environment,
such as obstacles or attractors. (¢) “Polymorphism”: slight parametric variants of P may
produce other structural variants, such as size of ring, number of legs, or ring location.
(d) “Speciation”: drastically different genomes create drastically different structures.

Mendel’s peas or Darwin’s pigeons. Note, however, that the distinction be-
tween polymorphism and speciation (Fig. 20d) is not clear cut: it is only
a matter of degree and time, as the same evolutionary mechanisms are at
work in both cases.

e Developmental Polyphenism: Varying the Phenotype Under an
invariant genotype, however, development can also be modified by envi-
ronmental conditions (Fig. 20b). External cues surrounding one individual
during its growth can also play an important role in its final structure. This
is the level of the phenotype, for which natural analogies can be found more
readily in the vegetal kingdom: plants and trees can be pruned, bent, ar-
ranged, or sculpted, whether by human intervention (bonsais, espaliers,
topiaries, etc.) or by natural conditions (wind, rocks, soil, light, etc.).
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6 ProgLim: Program-Limited Aggregation

A number of real-world networks combine non-spatial graph topologies (e.g.,
connecting software agents or organizations) with Euclidean graph topologies
(e.g., connecting people and equipment on the field) at different degrees. For
example, many cyber-physical systems inherently have a dual spatial/non-
spatial nature, as they often include a physical infrastructure at a lower
communication level, together with a virtual overlay network at a higher
application level [65]. The abstract mechanisms of programmed attachment
in the above ProgNet framework create purely non-spatial graphs, which can
be viewed in 2D by using a force-based layout algorithm [27]. But if nodes
represent agents and devices interacting in real space, the dynamics, not just
the visualization, should also be modified to take into account the effects of
metric distance on node aggregation.

In the particular embodiment of ProgNet presented here, called ProgLim
(for “Program-Limited Aggregation”), we revert to the 2D plane and restrict
nodes to discrete positions on a grid. By simplifying the network’s space,
we can gain better control and understanding of its embryomorphic dynam-
ics. Here, each node can have at most four neighbors, and create up to two
horizontal links, left and right, and two vertical links, up and down. They
are the equivalent of square pixels in a 2D cellular automaton (displayed in
yellow on a black background in the figures below), whose four ports X, X',
Y and Y’ are located at the centers of their four edges (Fig. 21a). As before,
incoming nodes aggregate to the structure one at a time by choosing any
currently free edge at random. The next subsections give a brief overview of
ProgLim, which includes preliminary experiments combining evolution and
polyphenism (for more details, see upcoming publications such as [20]).

Acquiring Polyphenism by Evolution In ProgNet, node attachment was
only based on port availability driven by positional gradient values: a network
grew in vacuum, whereas environment-induced polyphenism remained theo-
retical (Fig. 20b). In ProgLim, we can more easily experiment with the ability
of the growth dynamics to be perturbed and diverted by obstacles—here, tak-
ing the form of “rocks” randomly scattered on the grid (Fig. 22). In practice,
this is achieved by inserting pixel-state conditions in the port-opening rules,
in addition to gradient-state conditions. Generally, in an empty (fully black)
environment, the same genotype (port routine P) reliably creates the same
network. In a cluttered environment, however, rocks (gray pixels) can block
ports and impede growth. This is why variants of the genotype that are able
to literally “work around” those obstacles and create networks similar to a
desired wild type can be very useful. Contrary to an inflexible ruleset P, an
adaptive ruleset @ can continue development in restrictive environments by
providing bifurcations based on pizel states in the port-opening logic. As ex-
plained below, “rock sensing” is purely local, i.e., pixel-based conditions only
include the states of the four nearest neighbors.
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Port Routine
P1 : Line
open X, X'’
close Y, Y’

Port Routine P2 : Row of
Rectangles
h=10,w =5n=4
if (z' = 0) then open X’
if (z % w = 0) then open Y’
if (y > 0) then close X'
if (y = h) then open X’
if (
if (

z > nw) then close X’
y > h) then close Y’/

Fig. 21 Two simple stereotyped network examples on a 2D grid. All structures are made
of yellow square nodes. (a) Open-ended line: the corresponding genotype (port routine
Py) simply consists of two unconditional port-opening actions, left and right, keeping the
bottom and top ports closed. (b) Row of adjacent rectangles, growing toward the right and
the top (with two intermediate stages shown in inset): in this case, genotype P> is more
complicated, as it involves opening and closing the right and top ports (X’ and Y’) under
certain conditions based on the gradient states and three parameters: w for the width
(number of pixels) of each rectangle, h for their height, and n for their total number.

With the goal of finding adaptive genotypes @, we apply an evolutionary
algorithm to P. For this, we need to define a target structure that the network
should ideally realize while at the same time dealing with obstacles. Precisely
because of the environmental perturbations, it will not reproduce the exact
same configuration (especially on a discrete 2D grid). Yet, certain criteria can
be designed to come as close as possible to the initially intended network. We
demonstrate this principle below on two simple structures: an open-ended
line formation (Fig. 21a) and a row of adjacent rectangles (Fig. 21b). These
two examples are especially interesting because they illustrate two different
goals: a line can be construed as a tool to discover the environment in a
particular direction, while a row of rectangles can be construed as a case of
modular self-organization.

Rulesets and Mutations To let structures evolve and find good solutions,
rulesets P are represented in standardized format using a grammar, and a
list of possible mutation operators are defined. In short, each rule is written
“if (clausel [and|or] clause2) then action”, where clausel is based on gradi-
ent states only, clause2 is based on neighboring pixel states only (i.e., whether
specific ports of the central pixel are blocked or not), and action manages one
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of the four ports as follows: “[open|close] [X|X'|Y|Y”]”. Each clause can be
replaced by Boolean constants “true” or “false”. Five types of mutations are
considered: (i) inserting a random rule (possibly with a new constant value),
(ii) deleting a rule, (iii) modifying a component of a rule (clausel, clause2,
[and|or], action), (iv) reordering a rule (switching its rank in the priority list),
and (v) changing a constant (in the rectangle example: w, h, or n).

Fitness and Evolutionary Algorithm The goal function or “fitness” re-

flects the overall structure that we want to achieve:

e In the example of the open-ended line, the fitness is equal to L?/N, where
L is the horizontal extension of the chain (which might be less than the
number of nodes if the line is diagonal, see below) and N is the total
number of nodes. The intention is that the chain should stretch out as
much as possible in one preferential direction without twisting and turning.

e In the row of rectangles, the fitness is the number of completed compart-
ments, i.e., for which a closed border (possibly irregular) can be detected.

For a start, we use a primitive “(141)” evolutionary algorithm, i.e., not based

on a population but on a single individual. At every time step ¢, one of the

five mutation operators (i)-(v) is applied at random to the current ruleset

P;, generating a new ruleset P’. If the fitness of the new structure developed

from P’ is higher than the fitness of the structure developed from P, then

P11 = P’; otherwise, P,y = P with probability 1—p, or P/ with probability

p, where p is a probability of accepting a lesser fitness and varies as 1/log(t)

(a classical stochastic scheme akin to the “Monte Carlo” or “simulated an-

nealing” methods, which can avoid being stuck in local optima).

Different numbers of trials per mutation and numbers of time steps neces-
sary to find a good ruleset have been tested (discussed below). Many mutated
rulesets led to potentially infinitely growing networks, however, therefore we
also imposed a global maximal number of nodes Np,,x upon which develop-
ment stopped. This corresponds to a situation of “limited resources” keeping
swarms small in practice. This change has important consequences when
Npax 18 lower than the total number of nodes IV necessary to build a com-
plete structure. In that case, the network ends in a random intermediate stage
that depends on the order of node aggregation—although the final structure
is often deterministic and, ultimately, should not depend on that order.

Results As expected, the (1+1) evolutionary algorithm does not easily pro-
duce better solutions: the majority of mutations are deleterious or neutral,
bringing the structure in a domain of genomic space where most “neighbor-
ing” genomes (one mutation away) have a low fitness. This happens usually
because an action critical to the successful growth of the structure (e.g., “open
X" in Fig. 21) was deleted from the ruleset, making it especially difficult to
recover that specific action by chance. Regardless, evolution is still very much
possible, and even in this simple evolutionary framework, a number of decisive
breakthroughs were observed:
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e After a few dozen mutations, the fixed line’s ruleset of Fig. 22a (the same
as Fig. 21a in a cluttered space) has transformed into the three rules of
Fig. 22b, which give the chain formation the necessary flexibility to by-
pass obstacles. In this case, it grows only toward the left by aggregating
pixels to port X (first rule) but also to the top port Y, which is opened
whenever a rock is encountered on its path (second rule, where r(X) =1
means “left pixel is gray”). Interestingly, the third rule is useless because,
due to the direction of growth, there will never be a rock on the right-port
side X’. Yet, that rule was resistant to further mutation or deletion for
over 200 time steps, eventually staying neutral.

e Concerning the row of rectangles, just as with the line, every rock blocks
the initial ruleset’s growth and the structure cannot be completed (Fig. 23a).
After hundreds of selected mutations, however, the algorithm manages to
grow past some obstacles and form new compartments (Fig. 23b). Inter-
estingly, its interaction with the environment is not very complex (only the
last two rules contain pixel-state conditions, plus a new constant) while
the environment-independent part has been reduced to four rules, which
are very different from the original. The constants did not evolve much,
as in a random environment like this one there are no regularities that
could be exploited to grow faster. After another hundred mutations, the
algorithm is able to surmount almost every obstacle (Fig. 23c). The ruleset
has become even simpler, in particular the two previous terminating rules
(third and fourth) have disappeared. The evolved structure is now relying
on the rocks themselves and the limited total number of nodes to stop its
own extension.

Port Routine P3 :
Fixed Line (like P;)

open X, X’
close Y, Y’

Port Routine P4 :
Polyphenic Line

open X
if (r(X) =1) open Y’
if (r(X’) =1) close Y’

Fig. 22 Evolution of the fixed line into a polyphenic line. (a) The same ruleset as Pi,
this time in an environment littered with “rocks” (gray pixels), produces a straight line
whose growth is rapidly blocked at both extremities. (b) After a few dozen mutations and
selection steps, one of the evolved rulesets, Py, is able to unblock the line growth (toward
the left) by opening the top port Y’ whenever a rock is encountered by the left port X.
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Port Routine P5 : Rectangles (b) Port Routine P6 : Rectangles (c)

h=8w=5n=4,c=9 h=8w=5

if (y % h = 0) then open X’ if (y % h = 0) then open X’
if (z % w = 0) then open Y’ if (z % w = 0) then open Y’
if (y = h) then close Y’ if (r(X) = 1) then open Y’
if (z = nw) then close X’ if (r(X’) =1) then open X

if (
if (r(Y’) = 1) then open X
if (y' > c & r(X’) = 1) then open X

Fig. 23 Evolution of the row of rectangles. (a) The development of the original ruleset P» is
blocked by every rock on its way. (b) After a few hundred selected mutations, the structure
can bypass the obstacles in certain directions and reform irregular compartments. The
evolved ruleset Ps is also relatively simplified compared to Pa. (¢) Another 100 mutations
later, the structure is able to grow farther out under an even more reduced ruleset Ps.

These preliminary experiments demonstrate that effective mutated geno-
types can be rather short, even shorter than the original wild-type ones. We
also noted that among the first rules to disappear during evolution were the
ones closing ports and limiting growth in certain directions. In a cluttered
environment, indeed, such rules are no longer needed as the rocks themselves
can provide the necessary spatial frame. Moreover, the best rulesets usually
contain rules that depend either on the gradients or on the environment but
not both conditions at the same time. In fact, when new rules (brought by the
insertion operator) were restricted to be exclusively environment-dependent,
the fitness increased faster. Rules can also become “neutral” (as the third
rule of P;) in the sense that they never apply to any node in practice, thus
do not interfere with the structure’s growth. However, as it is generally well
known in evolutionary computation methods, neutral elements also consti-
tute an important reservoir of future useful mutations. Finally, the above
evolutionary algorithm can obviously be improved in many ways (screening
mutations, including a full-fledged population dynamics and crossover be-
tween individuals, etc.) to refine the search and obtain optimal rules while
staying closer to the originally intended shape.

In summary, by reframing ProgNet within a regular 2D grid, the ProgLim
project makes it easier to highlight the evolutionary potential of self-organizing
programmable networks. In particular, it shows that stereotyped and brit-
tle embryomorphic processes (Fig. 20a) can evolve to become more robust,
polyphenic ones (Fig. 20b) under environmental pressure.
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7 Conclusion

Embryomorphic Engineering is inherently interdisciplinary, as it closely fol-
lows biological principles at an abstract level, but does not attempt to model
detailed data from real genomes or organisms. Thus, it sits at crossroads
between different domains, from developmental and systems biology to ar-
tificial life, in particular spatial computing, evolutionary programming and
swarm robotics. Following the tenets of Morphogenetic Engineering described
in this book, it constitutes an original attempt to “endow a physical system
with information” or, from the opposite viewpoint, “embed an informational
system in physics” (see Introduction chapter) by combining: 1. mechanical
self-assembly (SA) and 2. computational pattern formation (PF), 3. under

the control of a genomic program (G):

e In MapDevo, these principles are modeled by dynamical processes, respec-
tively: 1. cell adhesion (through elastic forces), 2. morphogen diffusion
(through integer counters), and 3. gene expression (through a GRN).

e In ProgNet and ProgLim, they take the form of logical instructions, re-
spectively: 1. the link attachment routine L, 2. the gradient propagation
routine Gr and 3. the port-opening routine P.

Only few previous theoretical models of biological development or bio-

inspired artificial life systems have combined these principles in various

ways. The evo-devo works of [25, 34, 54], or with lesser morphogenetic abil-
ities [60, 49], are among these early notable achievements. Other interesting
studies have explored the combination of two out of three:

e SA and PF, no G: self-assembly by cell adhesion and signal-based pat-
tern formation, but using predefined cell types without internal genetic
variables [44]

e PF and G, no SA: non-trivial pattern formation by information-driven
signaling, but on a fixed lattice without self-assembling motion [13, 12]

e SA and G, no PF: heterogeneous swarms of genetically programmed, self-
assembling agents, but in empty space without mutual exchange of differ-
entiation signals [55, 56].

More recently, new models of gene-controlled animats based on body-brain

co-evolution and co-development have also shown a promising path toward

an integrated artificial evo-devo approach [37, 59, 36].

Ultimately, abstracting farther from biological development, an important
goal of Embryomorphic Engineering is to contribute to the design of new
self-organizing systems able to replace omniscient architects with large-scale
decentralized collectivities of agents—the whole topic of this book. Many
research works have investigated the possibility of obtaining self-formation
properties from a variety of complex computing components: nano-units, bac-
teria, software agents, robot parts, mini-robots, and so on (see the other chap-
ters). Since functionality is distributed over a great number of components,
it would be an insurmountable task to assemble and instruct each of them
individually. Rather, in a way similar to biological cells, these components
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should be easily mass-produced, initially as identical copies of each other, and
only acquire their specialized positions and functions by themselves within
the system, once mixed together.
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