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Abstract

We investigate some operations where essentially, from a given word w, the word
ww′ is constructed where w′ is a modified copy of w or a modified mirror image
of w. We study whether ww′ is a primitive word provided that w is primitive. For
instance, we determine all cases with an edit distance of w and w′ at most 2 such
that the primitivity of w implies the primitivity of ww′. The operations are chosen
in such a way that in the case of a two-letter alphabet, all primitive words of length
≤ 11 can be obtained from single letters.

1 Introduction

A word w over an alphabet V is said to be a primitive word if and only if
there is no word u ∈ Σ+ with w = un for some natural number n > 1. The
set of all primitive words over V is denoted by QV . There are a lot of papers
on relations of QV to other language families as the families of the Chomsky
hierarchy (e.g. in [4] and [17], it has been shown that QV is neither a deter-
ministic nor an unambiguous context-free language, in [8] relations to regular
languages are given), Marcus contextual grammars (see [6]), to (poly-)slender
languages (see [5]) and some languages and language families related to codes
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(see e.g. [19]). Moreover, there are papers on combinatorial properties of prim-
itive words and of the sets QV ; we refer to [2], [1], [9].

However, there is only a small number of results concerning the closure of QV

under operations. There are some papers where it was investigated whether
the application of homomorphisms to primitive words leads to primitive words
in all cases or leads to primitive words with a finite number of exceptions or
to non-primitive words in all cases; we refer to [13], [14], [15], [10]. In [18] ho-
momorphisms are studied which preserve the property to be a Lyndon word
or to be border-free (a word w is a Lyndon word if and only if any non-empty
proper suffix of w is greater than w with respect to the lexicographic order;
it is border-free if there is no non-empty word which is a proper prefix as
well as a proper suffix of w); it is shown that such homomorphisms preserve
primitivity, too. Substitutions form another operation which was investigated
with respect to preservation of primitivity. There were substitutions of very
short subwords in the focus, especially point mutations (deletions, insertions
and substitutions of one letter) were studied. We refer to [16] for details. A
further study in this direction concerns insertions (see [11]).

Obviously, there is a large variety of operations from which one can expect
that QV is closed under them (since the portion of primitive words is very
high). In this paper we consider some operations where essentially, from a
given word w, the word ww′ is constructed where w′ is a modified copy of w
or a modified mirror image of w. The modifications are of such a form that
the edit distance of w and w′ is very small or very large (i.e., it is very near
to the length of w).

We have two reasons for this investigation. The first one is of combinatorial
nature. Obviously, ww is not primitive for all w. We are interested in condi-
tions for changes of the second copy w to w′ such that ww′ is primitive for
all w. Especially, how many changes or deletions or insertions of letters are
necessary and how many such operations are possible. For example, we shall
determine all possible transformation where the edit distance of w and w′ is
at most two and primitivity is preserved.
The second reason comes from the theory of dynamical systems. In the pa-
per [7] a dynamical system based on regular languages has been proposed.
The regular languages are essentially described by primitive words. Since in
dynamical systems one needs mutations in order to develop the system, one
is interested in devices which describe primitive words and allow mutations.
Here the use of operations which preserve primitivity is of interest. Then a
primitive word can be given as a sequence of operations; and a mutation is
the replacement of one operation by another one or a deletion or insertion of
an operation in the sequence. This ensures primitivity of the word obtained
from the mutated sequence of operations. Obviously, it is not necessary to
generate all primitive words, however, the set of generated primitive words
should contain a good approximation of any primitive word where the quality
of approximations is determined by the dynamic system (especially its fitness
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function). We have chosen the operations under which QV is closed in such a
way that, if the underlying alphabet V consists of two letters, then by the op-
erations we can generate all primitive words of length ≤ 11 (as can be shown
by computer calculations) and a sufficient large amount of primitive words of
the length up to twenty.
Thus this paper can also be considered as a continuation of the investigations
of devices generating only primitive words (see e.g. [3]).

The paper is organized as follows. In Section 2, we present and recall some
notations and some results on primitive words which are used in the sequel.
In Section 3, we introduce some operations where we first construct ww and
perform then some small modifications of the second copy yielding ww′. We
prove that all operations where the edit distance of w and w′ is 1 preserve
primitivity. An analogous result is shown for the edit distance 2 if at least one
change of a letter is used. In Section 4, we consider analogous operations as
in Section 2, but start from wwR and modify wR. In Section 5 we consider
ww′ where w′ is obtained from w or wR by a drastic change, i.e., the Ham-
ming distance of w′ and w or wR is almost the length of w. Moreover, we give
some further operations where the length is almost doubled and primitivity is
preserved.

2 Some Notation and Facts

By #(A) we denote the cardinality of a set A.
For a given alphabet V , we denote by V ∗ and V + the set of all and all non-
empty words over V , respectively. The empty word is designated by λ. Given
a word w ∈ V ∗ and x ∈ V , we denote its length by |w| and the number of
occurrences of x in w by #x(w). For a word w = x1x2 . . . xn ∈ V + with xi ∈ V
for 1 ≤ i ≤ n, we define the mirror image wR by wR = xnxn−1 . . . x1. Given
two words w = x1x2 . . . xn ∈ V + and w′ = y1y2 . . . yn ∈ V + with xi, yi ∈ V
for 1 ≤ i ≤ n, the Hamming distance d(w,w′) is defined by d(w,w′) = #({i |
xi 6= yi}) and the edit distance ed(w,w′) of w and w′ is the minimal number
of changes, deletions and insertions of letters in order to transform w into w′.
Throughout the paper we assume that V has at least two elements.

A word w ∈ V + is said to be a primitive word if and only if there is no word
u ∈ V + such that w = un for some natural number n > 1. By QV we denote
the set of all primitive words over V . If V is understood from the context we
omit the index V and write simply Q.

We recall three facts (see [12], [19], [1]) which will be used in the sequel.

Lemma 1 For any words v, v′ ∈ V ∗, vv′ ∈ Q if and only if v′v ∈ Q.

Lemma 2 For two non-empty words u and v, uv = vu if and only if there is
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a word z such that u = zn and v = zm for some natural numbers n and m. 2

Lemma 3 In a free monoid V ∗, the equation ambn = cp, where a, b, c ∈ V ∗
and m,n, p ≥ 2, has only trivial solutions, where a, b and c are powers of some
word in V ∗. 2

Lemma 4 (Fine-Wilf Theorem) Let u, v ∈ V + and n,m ≥ 2. If un and vm

have a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then u and v
are powers of the same primitive word. 2

The following statement holds trivially.

Lemma 5 If w ∈ Q, then also wR ∈ Q. 2

Lemmas 1 and 5 can be interpreted as follows: If we apply a cyclic shift or
the mirror image to a primitive word, then we obtain a primitive word, again.
Thus cyclic shifts and reversal are operations which preserve primitivity.

Lemma 6 For any x ∈ V , y ∈ V and z ∈ V ∗, if xz = zy, then x = y.

Proof. If z = λ, then x = y immediately. If z = a1a2 . . . an with ai ∈ V for
1 ≤ i ≤ n, then x = a1, a1 = a2, a2 = a3, . . . an−1 = an, an = y and conse-
quently x = y. 2

In the sequel we shall use the following notation. If w = w1w2 . . . wr =
z1z2 . . . zs for some words w1, . . . wr, z1, . . . , zs ∈ V ∗ such that |w1w2 . . . wi| =
|z1z2 . . . zj| for some i and j, we write

w1w2 . . . wi|wi+1wi+2 . . . wr = z1z2 . . . zj|zj+1zj+2 . . . zs,

i.e., by the symbol | we mark a certain position in the word. (Some authors
write (w,w′) = (z, z′) instead of w|w′ = z|z′.) Mostly, | will mark the middle
of a word of even length, or it will be put after the m-th letter if the word has
odd length 2m− 1.

3 Operations with an Almost Duplication

Obviously, the word ww obtained from w by a duplication leads from any
word w to a non-primitive word. In order to obtain primitive words from a
primitive word w one has to perform some changes in the second occurrence
of w, i.e., one has to consider words of the form ww′ where w′ differs only
slightly from w. In most cases the edit distance of w and w′ will be at most
2, and thus ww′ can be considered as an almost duplication of w.
We start with the case where we only change some letters to obtain w′ from
w.
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Theorem 7 i) Let w be a primitive word of some length n and w′ an arbitrary
word of length n such that the Hamming distance d(w,w′) is a power of 2, then
ww′ is primitive, too.
ii) If d is not a power of 2, then there are a primitive word w and a word w′

with d(w,w′) = d such that ww′ is not a primitive word.

Proof. i) Obviously, |ww′| is even. Let us suppose ww′ /∈ Q, that is, there
exists p ∈ N and v ∈ V + of length at least 2 such that ww′ = vp.
If p is even, then w = w′ = v

p
2 since |w| = |w′|. Thus d(w,w′) = 0 which

contradicts the assumption on the Hamming distance of w and w′.
If p is odd, i.e., p = 2m+ 1 for some m ≥ 1, then |v| is even (since otherwise

|v|p = |ww′| would be odd). Thus there are words v′ and v′′ of length |v|
2

such
that v = v′v′′. Then we get w = vmv′ = (v′v′′)mv′ and w′ = v′′vm = v′′(v′v′′)m.
Then d(w,w′) = (2m + 1)d(v′, v′′). Since 2m + 1 is an odd number, d(w,w′)
is not a power of 2 in contrast to our supposition.
ii) Let d be not a power of 2. Then there is an odd number q > 1 and a number
p such that d = qp. Let q = 2m+ 1 for some m ≥ 1. We now set

v′ = 10p, v′′ = 11p, w = (v′v′′)mv′, and w′ = (v′′v′)mv′′.

Obviously, w is primitive, d(w,w′) = (2m+ 1)d(v′, v′′) = (2m+ 1)p = qp = d
and ww′ = (v′v′′)2m+1 /∈ Q. 2

By part ii) of the preceding theorem, if w is a primitive word and d(w,w′) is
not a power of 2, in general, ww′ is not a primitive word. However, if we require
that the changes occur in special positions it is possible to obtain preservation
of primitivity. As an example we give the following operation.

Definition 8 For any odd natural numbers n ≥ 3, any alphabet V , and any
mapping h : V → V with h(a) 6= a for all a ∈ V , we define the operation
On,h : V n → V 2n by

On,h(x1x2 . . . xn) = x1x2 . . . xnh(x1)x2 . . . xi−1h(xi)xi+1 . . . xn−1h(xn)

where i = n+1
2

.

Theorem 9 For any odd natural number n 6= 5, any primitive word q of
length n, and any mapping h : V → V with h(a) 6= a for all a ∈ V , On,h(q) is
a primitive word.

Proof. Let w = x1x2 . . . xn with xj ∈ V for 1 ≤ j ≤ n and i = n+1
2

. Then
On,h(x1x2 . . . xn) has an even length.
Let us suppose that On,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such
that On,h = vp.
If p is even then

v
p
2 = x1x2 . . . xn−1xn = h(x1)x2x3 . . . xi−1h(xi)xi+1xi+2 . . . xn−1h(xn).
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Thus xi = h(xi), which is a contradiction.
Thus p is odd, say p = 2m + 1 for some m ≥ 1. As above there are words v,
v1 and v2 such that v = v1v2 and |v1| = |v2| and

x1 . . . xn−1xn|h(x1)x2 . . . xi−1h(xi)xi+1 . . . xn−1h(xn) = (v1v2)
mv1|v2(v1v2)m.

Since v1 starts with x1 (first occurrence) and ends with xn (last occurrence in
the first part), v1 = x1v

′
1xn and analogously, v2 = h(x1)v

′
2h(xn). Therefore we

have that On,h(w) has the form

(x1v
′
1xnh(x1)v

′
2h(xn))mx1v

′
1xn|h(x1)v

′
2h(xn)(x1v

′
1xnh(x1)v

′
2h(xn))m.

Since the letters xi and xn do not occur in the first occurrence of v, by the
definition of On,h, the last letter of the first occurrence of v1 (in the first part
of the word) and last letter of the first occurrence of v2 in the second part
coincide, i.e., xn = h(xn) which is a contradiction. 2

The supposition n ≥ 5 in Theorem 9 is necessary since the statement does not
hold for n = 3 as can be seen from the following example. Let q = aba ∈ Q.
Then O3,h(q) = ababab = (ab)3 /∈ Q.

We now discuss some operations where the edit distance of w to w′ is at most
2 and at least one deletion or one insertion is performed to obtain w′; more
precisely, we consider
(a) the deletion of an arbitrary letter,
(b) the deletion of an arbitrary letter and the change of an arbitrary remaining
letter,
(c) the insertion of an arbitrary letter,
(d) the insertion of an arbitrary letter and the change of an arbitrary letter
of w.
We now give the formal definition of these operations.

Definition 10 For any natural numbers n, i, j, i′ with 1 ≤ i ≤ n, 0 ≤ i′ ≤ n,
1 ≤ j ≤ n and i 6= j, letters x, y, z ∈ V with x 6= y, and a word w =
x1x2 . . . xn, xi ∈ V , of length n, we define the following operations

Dn,i, Dn,i,j,x,y : V n → V 2n−1 and In,i′,z, In,i′,z,j,x,y : V n → V 2n+1

by
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Dn,i(x1x2 . . . xn) =x1x2 . . . xnx1x2 . . . xi−1xi+1xi+2 . . . xn,

Dn,i,j,x,y(x1 . . . xn) =


x1 . . . xnx1 . . . xi−1xi+1 . . . xj−1yxj+1 . . . xn xj = x, i < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1xi+1 . . . xn xj = x, i > j

undefined otherwise

,

In,i′,z(x1x2 . . . xn) =x1x2 . . . xnx1x2 . . . xi′zxi′+1xi′+2 . . . xn,

In,i′,z,j,x,y(x1 . . . xn) =


x1 . . . xnx1 . . . xi′zxi′+1 . . . xj−1yxj+1 . . . xn xj = x, i′ < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi′zxi′+1 . . . xn xj = x, i′ > j

undefined otherwise

.

Theorem 11 If n ≥ 2, 1 ≤ i ≤ n, and q is a primitive word of length n, then
Dn,i(q) ∈ Q also holds.

Proof. Let q = uav for some u, v ∈ V ∗ and a ∈ V . If |q| = 1, i.e., q = a, then
Dn,i(q) = a ∈ Q.
If |q| ≥ 2, then D|q|,|u|+1(q) = uavuv. Let us suppose that uavuv /∈ Q. Then
(vu)2a /∈ Q by Lemma 1. Let (vu)2a = zm for some z ∈ V + and some m ≥ 2.
Thus (vu)2 is a common prefix of (vu)2 and zm. Since

|uv|+ |z| = |uv|+ 2|uv|+ 1

m
≤ |vu|+ 2|uv|+ 1

2
< 2|vu|+ 1,

we have

|vu|+ |z| − gcd(|vu|, |z|) < (2|vu|+ 1)− 1 = 2|vu| = |(vu)2|.

By Lemma 4, we obtain (vu)2 = wk and (vu)2a = zm = wl for some w ∈ V +

and some numbers k and l. Obviously, w = a. Hence u and v are powers of a
and thus q is a power of a. This contradicts the primitivity of q. 2

Theorem 12 If w ∈ V + and Dn,i,j,x,y(w) is defined, then Dn,i,j,x,y(w) ∈ Q
holds.

Proof. We first discuss Dn,n,j,x,y. Let w = x1x2 . . . xn. Then

Dn,n,j,x,y(w) = x1x2 . . . xj−1xxj+1xj+2 . . . xnx1x2 . . . xj−1yxj+1xj+2 . . . xn−1.

Let us assume that Dn,n,j,x,y(w) /∈ Q. Then there is a word v ∈ V + such that
Dn,n,j,x,y(w) = vp for some p ≥ 2. Since Dn,n,j,x,y(w) has odd length, p and the
length of v are odd numbers. Let p = 2m+ 1 for some m ≥ 1. Thus there are
words v1 ∈ V + and v2 ∈ V + such that v = x1v1v2, k − 1 = |v1| = |v2| and

x1x2 . . . xj−1xxj+1xj+2 . . . xn|x1x2 . . . xj−1yxj+1xj+2 . . . xn−1 = vmx1v1|v2vm.
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Then |v| = 2k − 1. We set s = 2k − 1. We distinguish some cases.

Case 1. Let 1 ≤ j ≤ k − 1. Then by definition of Dn,n,j,x,y,

x1v1 = x1x2 . . . xj−1xxj+1 . . . xk−1xk = z1xz2xk

and

v2 = x1x2 . . . xj−1yxj+1 . . . xk−1 = z1yz2.

Thus, we get,

v = z1xz2xkz1yz2.

If m ≥ 2, the first part of the word is

z1xz2xkz1yz2z1xz2xkz1yz2v
m−2z1xz2xk (1)

and that of the second part is

z1yz2z1xz2xkz1yz2z1xz2xkz1yz2v
m−2 (2)

and these two words differ in the (|z1xz2xkz1yz2z1| + 1)-st letter, which con-
tradicts the definition of Dn,n,j,x,y. If m = 1, the first and second part are

z1xz2xkz1yz2z1xz2xk and z1yz2z1xz2xkz1yz2,

respectively, and we get a contradiction as above.

Case 2. Let j = k. Then the k-th letter in the second part is y. On the other
hand, it is x1 since there starts the word v. Thus x1 = y. This gives

x1v1 = x1x2 . . . xk−1xk = yzx, v2 = x1x2 . . . xk−1 = yz and v = yzxyz

with z = x2x3 . . . xk−1. Then the first and second part are

yzxyzyzxyzvm−2yzx and yzyzxyzyzxyzvm−2,

respectively. We obtain zx = yz by looking on the words starting in the
position |z| + 3. Thus by Lemma 6, x = y in contrast to the definition of
Dn,n,j,x,y.

Case 3. Let k+1 ≤ j ≤ 2k−1. Then v = x1v1v
′
2xv

′′
2 . Moreover, |v′2| = j−k−1.

Furthermore, y stands in the j-th position of v′2xv
′′
2x1v1, i.e., x1v1 = x1v

′
1yv

′′
1

with |v′1| = j−k−1. Therefore v = x1v
′
1yv

′′
1v
′
2xv

′′
1 and |v′1| = |v′2| and |v′′1 | = |v′′2 |.

Then we get for the second part

x1v
′
1yv

′′
1v
′
2yv

′′
2x1v

′
1yv

′′
1v
′
2xv

′′
2x2s−1x2s . . . xn

by the definition of Dn,n,j,x,y and from the form

v′2xv
′′
2x1v

′
1yv

′′
1v
′
2xv

′′
2v

m−1
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given by our assumption. Considering the words which start in the position
(|x1v′1yv′′1 |+ 1) and in the position (|x1v′1yv′′1v′2y|+ 1), respectively, we see that
v′1 = v′2 = z and v′′1 = v′′2 = z′. Looking on the subwords starting in the first
position and in the position |v′1| + 2, we get x1z = zx and yz′ = xx1. By
Lemma 6, x1 = x and y = x1, which contradicts x 6= y.

Case 4. Let j = hs+ q for some h ≥ 1 and 1 ≤ q ≤ k − 1. Then xj = x is the
q-th letter of v. Thus v = v′1xv

′′
1v2 with |v′1| = q − 1.

We now compute the position of y in v. Since the second part starts with v2 of
length k−1 and hs+q = k−1+(h−1)s+s+q−(k−1) = k1+(h−1)s+k+q, y is
the (k+ q)-th letter of v. Therefore v = v′1xv

′′
1v
′
2yv

′′
2 with |v′1| = |v′2|. Moreover,

|v′′1 | = |v′′2 |+ 1. Now we get easily the same situation as in Case 1; thus we get
(1) and (2) and a difference in the (|z1|+ 1)-st position.

Case 5. Let j = hs + k for some h ≥ 1. Then x is the k-th letter of v. We
compute the position of y in v. Since the second part starts with v2 of length
k− 1 and hs+ k = k− 1 +hs+ k− (k− 1), y is the first letter of v. Therefore
we get v = yzxyz as in Case 2, which leads to a contradiction.

Case 6. Let j = hs + q for some h ≥ 1 and k + 1 ≤ q ≤ 2k − 1. Then
xj = x is the q-th letter of v. Thus v = x1v1v

′
2xv

′′
2 with |x1v1v′2| = q − 1 ≥ k.

Furthermore, |v′′2 | = 2k − 1− q.
We now compute the position of y in v. Since the second part starts with v2
of length k − 1 and hs+ q = k − 1 + hs+ q − (k − 1), y is the (q − k + 1)-st
letter of v. Therefore

v = x1v
′
1yv

′′
1v
′
2xv

′′
2 with |x1v′1| = q − k.

Therefore |v′′1 | = k−(q−k+1) = 2k−1−q. Hence |v′′1 | = |v′′2 | and consequently
|v′1| = |v′2|. Therefore we have exactly the situation of Case 3, which leads to
contradiction.

Let us now consider i = 1, i.e., the operation Dn,1,j,x,y. By the first part of this
proof

Dn,n,n−j+1,x,y(w
R) = xnxn−1 . . . x1xnxn−1 . . . xj+1yxj−1xj−2 . . . x2 ∈ Q,

by Lemma 5,

x2x3 . . . xj−1yxj+1xj+2 . . . xnx1x2 . . . xn ∈ Q,

and by Lemma 1

x1x2 . . . xnx2x3 . . . xj−1yxj+1xj+2 . . . xn = Dn,1,j,x,y(w) ∈ Q.

We now consider the case j < i. We set

w = xi+1xi+2 . . . xnx1x2 . . . xi.

9



Moreover, let xj = x. By the first part of this proof we get

Dn,n,n−i+j,x,y(w) = xi+1 . . . xnx1 . . . xixi+1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1 ∈ Q.

Hence, by Lemma 1

x1 . . . xixi+1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1xi+1 . . . xn = Dn,i,j,x,y(w) ∈ Q.

If i < j we can prove that Dn,i,j,x,y(w) ∈ Q analogously to the case j < i using
Dn,1,j,x,y instead of Dn,n,j,x,y. 2

Theorem 13 If q is a primitive word of length n, 0 ≤ i ≤ n and z ∈ V , then
In,i,z(q) ∈ Q.

Proof. Let q be a primitive word of length n and a ∈ V . Let u be the prefix
of q of length i and q = uv. Then In,i,a(w) = uvuav. If uvuav /∈ Q, we can
derive a contradiction as in the proof of Theorem 11. 2

Theorem 14 If q ∈ Q and In,i,z,j,x,y(q) is defined, then In,i,z,j,x,y(q) ∈ Q.

Proof. Let w = x1x2 . . . xj−1xxj+1xj+2 . . . xn. Then

In,n,a,j,x,y = x1x2 . . . xnx1x2 . . . xj−1yxj+1xj+2 . . . xna.

If we assume that In,n,a,j,x,y is not in Q, then

x1 . . . xj−1yxj+1 . . . xnax1 . . . xn = Dn+1,n+1,j,y,x(x1 . . . xj−1yxj+1 . . . xna) /∈ Q,

which is a contradiction to Theorem 12. The general case can be obtained
using Lemmas 1 and 5. 2

Let ww′ be given with ed(w,w′) = 1. Then w′ is obtained by a change (i.e.,
d(w,w′) = 1 = 20), either by a deletion or by an insertion. By the Theorems
7, 11 and 13, ww′ is in Q provided that w ∈ Q. If ed(w,w′) = 2 we have
again ww′ ∈ Q if two changes, or a deletion and a change, or a change and
an insertion are performed (by Theorems 7, 12 and 14). In the remaining
cases, in general, primitivity is not preserved. Performing two deletions we
can get a non-primitive word, as can be seen from w = 110p1 which results
in 110p1110p1 and gives 110p110p = (110p)2 /∈ Q if we delete the first and
last letters of the second copy (note that the statement holds for any length
n ≥ 4 since it holds for any p ≥ 1). The same holds for two insertions; e.g. the
duplication 10p10p of w = 10p ∈ Q yields 10p110p1 = (10p1)2 by inserting a
1 before and after the second copy of 10p. Furthermore, if we cancel the first
letter and insert a 1 before the last 0 in the duplication 110110 of 110 ∈ Q,
we get 110110 = (110)2 /∈ Q, again.
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Therefore we have a complete picture for the case that the edit distance is at
most 2.

4 Concatenation of an Almost Mirror Image

In this section, again, we consider words of the form ww′. However, instead of
an almost copy w′ of w we choose w′ in such a way that the Hamming/edit
distance of w′ and the mirror image wR is small.
We start with the remark that, in general, for a primitive word w, wwR is not
a primitive word. For example, if we concatenate 100110 and its mirror image,
we obtain 100110011001 = (1001)3 /∈ Q. Moreover, if we delete one letter in
wR, the obtained operation is not primitivity preserving as can be seen from
the following counterexample. Let w = 01001. Since wR = 10010, wwR =
0100110010. If we delete the first letter of wR, then we obtain 010010010 =
(010)3 /∈ Q.
We define formally three operations which are analogous to some with a small
Hamming distance d(w,w′) considered in the preceding section.

Definition 15 For any natural numbers n, i, j with 1 ≤ i ≤ n and 2 ≤ j ≤ n,
all letters x, y ∈ V with x 6= y, and a word w = x1x2 . . . xn, xi ∈ V , of length
n, we define the following operations

Mn,i,x,y : V n → V 2n, and M ′
n,j,x,y : V n → V 2n−1

by

Mn,i,x,y(x1x2 . . . xn) =

x1x2 . . . xnxnxn−1 . . . xi+1yxi−1xi−2 . . . x1 xi = x

undefined otherwise
,

M ′
n,j,x,y(x1x2 . . . xn) =

x1x2 . . . xnxnxn−1 . . . xj+1yxj−1xj−2 . . . x2 xj = x

undefined otherwise
.

For all odd natural numbers n, all mappings h : V → V with h(a) 6= a for
all a ∈ V , and all words w = x1x2 . . . xn, xi ∈ V , of length n, we define the
operation O′n,h : V n → V 2n by

O′n,h(x1x2 . . . xn) = x1x2 . . . xnh(xn)xn−1 . . . xi+1h(xi)xi−1xi−2 . . . x2h(x1)

where i = n+1
2

.

Theorem 16 If w ∈ Q such that Mn,i,x,y(w) is defined, then Mn,i,x,y(w) ∈ Q
also holds.
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Proof. Let w = x1x2 . . . xn. Then

w′ = Mn,i,x,y(w) = x1x2 . . . xi−1xxi+1xi+2xnxnxn−1 . . . xi+1yxi−1xi−2 . . . x1.

Let u1 = x1 . . . xi−1 and u2 = xi+1 . . . xn. Then

w = u1xu2 and w′ = u1xu2u
R
2 yu

R
1 .

Let us assume that w′ /∈ Q. Then w′ = vp for some p ≥ 2 and some word
v ∈ V +.
If p is even, then

v
p
2 = u1xu2 = uR2 yu

R
1 . (3)

We now count the number of occurrences of x and get

#x(u1xu2) = #x(u1) + 1 + #x(u2)

and

#x(uR2 yu
R
1 ) = #x(uR2 ) + #x(uR1 ) = #x(u2) + #x(u1).

Thus

#x(u1xu2) 6= #x(uR2 yu
R
1 )

which contradicts (3).
If p is odd, say p = 2m + 1 for some m ≥ 1, then w′ = vmv1v2v

m where
v = v1v2 and |v1| = |v2|. If i > |v|, then by the construction of w′ we get
w′ = vzvR with z = vm−1v1v2v

m−1 and by our assumption (w′ = v2m+1) we
have w′ = vzv. Therefore v = vR. Now let i ≤ |v|. Then v1 and v2 and v
satisfy the following conditions:

• v2 = vR1 (by construction),
• vR2 = ((v1)

R)R = v1,
• vR = (v1v2)

R = vR2 v
R
1 = v1v2 = v.

Hence in both cases we have v = vR. This implies

(w′)R = (vp)R = (vR)p = vp = w′.

Thus x = y in contrast to our supposition. 2

Theorem 17 If w ∈ Q such that M ′
n,j,x,y(w) is defined, then M ′

n,i,x,y(w) ∈ Q
also holds.
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Proof. Let w = x1x2 . . . xn. Then

M ′
n,j,x,y(w) = x1x2 . . . xnxnxn−1 . . . xj+1yxj−1xj−2 . . . x2.

Obviously, |M ′
n,j,x,y(w)| = 2n− 1, i.e., the length of M ′

n,j,x,y(w) is odd.
If M ′

n,j,x,y(w) is not a primitive word, then M ′
n,j,x,y(w) = vp for some primitive

word v of odd length and some odd number p with p ≥ 3, say p = 2m + 1
with m ≥ 1. As in the preceding proofs we get v = v1xnv2 with

M ′
n,j,x,y(w) = vmv1xn|v2vm = (v1xnv2)

mv1xn|v2(v1xnv2)m

and |v1| = |v2|. Let |v1| = q, i.e., |v| = 2q + 1.
Let 2 ≤ j ≤ 2q + 1. Then considering the (m + 1)-st factor v of M ′

n,j,x,y(w),
we obtain v = v1xn|v2 = x1x2 . . . xqxn|xnxq . . . x2. Let z = x2x3 . . . xqxn. Then
v = x1zz

R. On the other hand, for 2 ≤ j ≤ 2q+ 1, by definition of M ′
n,j,x,y(w),

M ′
n,j,x,y(w) does not end with (zzR)R = zzR. Thus we have a contradiction to

the fact that M ′
n,j,x,y(w) ends with v and therefore with zzR.

Let j = 2q+2. Then the (2q+2)-nd letter of w is x. Moreover, the (2q+2)-nd
letter of w is the first letter of the second factor v of M ′

n,j,x,y(w) which is x1.
Hence x = x1. On the other hand, by the definition of M ′

n,j,x,y(w), counting
from the end, y is the (2q + 1)-st letter of M ′

n,j,x,y(w), which means that y is
the first letter of the last factor v of Mn,j,x,y(w). Thus y = x1. Hence we get
x = y in contradiction to the definition of M ′

n,j,x,y.
Let 2q+3 ≤ j ≤ n. Then we can derive a contradiction by analogous argument
(if m(2q + 1) < j ≤ n, then we get v = v1xnv2 = x1zz

R by considering the
first factor v1 and the last factor v2 in M ′

n,j,x,y(w)). 2

Finally in this section, we give a result which is the counterpart of Theorem 9.
We omit the proof which can be given in analogy to the proof of Theorem 9.

Theorem 18 For any odd natural number n ≥ 5, any primitive word q of
length n, and any mapping h : V → V with h(a) 6= a for all a ∈ V , O′n,h(q) is
a primitive word. 2

5 Further Operations with an Almost Duplication of Length

First in this section, we discuss the situation where w′ in ww′ is obtained from
w or wR by large changes.
If we change all letters in the second part, primitivity is not preserved in
general. For instance, if we take the primitive word w = 100110, then by
changing all letters of w we obtain 100110011001 = (1001)3 /∈ Q; and starting
with the primitive word w = 10010110 and changing all letters of wR we get
1001011010010110 = w2 /∈ Q.
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Theorem 19 Let w and w′ be two words of length n such that n − d(w,w′)
is a power of 2, then ww′ is a primitive word.

Proof. The proof can be given in a way analogous to the proof of Theorem 7.
2

The following definition and result are analogies to Dn,n and Theorem 11.

Definition 20 For any natural numbers n, any natural number i with 1 ≤
i ≤ n, and any homomorphism h : V ∗ → V ∗ with h(a) 6= a and h(h(a)) = a
for all a ∈ V , we define the operation Dn,h : V n → V 2n−1 by

Dn,h(x1x2 . . . xn) = x1x2 . . . xnh(x1x2 . . . . . . xn−1).

Theorem 21 For any natural numbers n, any natural number i with 1 ≤ i ≤
n, any homomorphism h : V ∗ → V ∗ with h(a) 6= a and h(h(a)) = a for all
a ∈ V , and any w ∈ Q, Dn,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn with xj ∈ V for 1 ≤ j ≤ n. Then

Dn,h(x1x2 . . . xn) = x1x2 . . . xnh(x1 . . . xn−1)

has an odd length.
Let us suppose that Dn,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such
that Dn,h(w) = vp.
Thus p is odd, say p = 2m + 1 for some m ≥ 1. As above there are words v,
v1 and v2 such that v = v1xnv2 and

x1x2 . . . xn|h(x1 . . . xn−1) = (v1xnv2)
mv1xn|v2(v1xnv2)m.

Since |(v1xnv2)mv1| = |v2(v1xnv2)m|, |v1| = |v2|.
Furthermore v2 = h(v1) by definition of Dn,h. Therefore we get

x1x2 . . . xn|h(x1 . . . xn−1) = (v1xnh(v1))
mv1xn|h(v1)(v1xnh(v1))

m.

Thus (h(v1)h(xn)v1)
mh(v1) = h(v1)(v1xnh(v1))

m, that is,

(h(v1)h(xn)v1)
mh(v1) = (h(v1)v1xn)mh(v1).

Hence h(xn)v1 = v1xn. Therefore, by Lemma 6, h(xn) = xn in contrast to the
supposition concerning h. 2

By Theorem 19, from a word w ∈ Q we obtain a primitive word ww′ where
w′ is constructed from w by changing all letters except one letter. This result
does not hold for the mirror image, i.e., if one concatenates w with its mirror
image and changes all letters of the mirror image besides one letter, in general,
one does not obtain a primitive word. For example, if w = 11100 ∈ Q and
i = 3, then we obtain 1110011100 = (11100)2 /∈ Q. However, if we restrict to
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special positions, then the corresponding statement is true, as shown by the
following two theorems.

Definition 22 For any natural numbers n and i with 1 ≤ i ≤ n and any
homomorphism h : V ∗ → V ∗ with h(a) 6= a for all a ∈ V , we define the
operations

Mn,1,h, Mn,n,h : V n → V 2n

by

Mn,1,h(x1x2 . . . xn) =x1x2 . . . xnxnh(xn−1xn−2 . . . x1),

Mn,n,h(x1x2 . . . xn) =x1x2 . . . xnh(xnxn−1 . . . x2)x1.

Theorem 23 For any n ≥ 2, any homomorphism h : V ∗ → V ∗ with h(a) 6= a
for all a ∈ V and any w ∈ Q, Mn,1,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn, where xi ∈ V . Then

Mn,1,h(w) = x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1)

has an even length.
Let us suppose that Mn,1,h(w) /∈ Q, that is, there exists a p ∈ N and v ∈ Q
such that x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1) = vp.
If p is even and p > 2, then v

p
2 = w and p

2
≥ 2, which contradicts w ∈

Q. If p = 2, then x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1) = v2, that is, v =
x1x2 . . . xn−1xn = xnh(xn−1xn−2 . . . x1). Then xn = x1 and xn = h(x1), which
is a contradiction.
If p is odd, then p = 2m+1 for some m ≥ 1 and v = x1v

′xnv
′′ with v′, v′′ ∈ V ∗,

which can be shown as in the proof of Theorem 12. Since

x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1) = vmx1v
′|xnv′′vm, |v′| = |v′′|.

We distinguish the cases v′ 6= λ 6= v′′ and v′ = λ = v′′.
Supposing v′ 6= λ 6= v′′ and v′ = y1 . . . yr and v′′ = z1 . . . zr. Then

x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1)
= (x1y1 . . . yrxnz1 . . . zr)

mx1y1 . . . yr|xnz1 . . . zr(x1y1 . . . yrxnz1 . . . zr)m

and yr = xn. Since h(x1y1y2 . . . yr) = zrzr−1 . . . z1xn by construction, h(yr) =
xn, which contradicts yr = xn
Supposing v′ = λ = v′′, we get

x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1) = (x1xn)mx1|xn(x1xn)m,

which implies xn = x1 and xn = h(x1), so it is a contradiction.
Therefore Qn,1,h(w) ∈ Q. 2
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Theorem 24 For any n ≥ 2, any homomorphism h : V ∗ → V ∗ with h(a) 6= a
for all a ∈ V and any w ∈ Q, Mn,n,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn. Let us assume that Mn,n,h(w) /∈ Q. Then there is
a word v ∈ V +and a natural number p ≥ 2 such that Mn,n,h(w) = vp.
If p = 2, then v = x1x2 . . . xn = h(xnxn−1 . . . x2)x1. Hence x1 = h(xn) and
xn = x1, which is a contradiction. If p > 2 and even, then w = v

p
2 ∈ Q in

contrast to our supposition.
If p is odd, i.e., p = 2m + 1 for some m ≥ 1, then there are words v1 and v2
with v = v1v2, |v1| = |v2| and

x1x2 . . . xn|h(xnxn−1 . . . x2)x1 = vmv1|v2vm.

Let k = |v1|. Then

v1 = x1x2 . . . xk and v2 = h(xkxk−1 . . . x2)x1

by definition of Mn,n,h. Thus x2k+1 = x1 and h(x2k+1) = x1 in contrast to the
required property of h that h(a) 6= a for all a ∈ V . 2

We now define an operation where we duplicate the word, but the copy is
shifted some positions to the left. Hence, on one hand, no change is done
in the copy, but on the other hand, the position of the letters are changed
essentially. An analogous operation is performed where we shift an almost
completely changed version of the word.

Definition 25 For any natural numbers n and i with 1 ≤ i ≤ n−1, we define
the operation Sn,i : V n → V 2n by

Sn,i(x1x2 . . . xn) = x1x2 . . . xix1x2 . . . xnxi+1xi+2 . . . xn.

Theorem 26 For any natural numbers n ≥ 2 and i with 1 ≤ i ≤ n − 1 and
any word q ∈ Q of length n, Sn,i(q) ∈ Q also holds.

Proof. Let q = ww′ ∈ Q with w = x1x2 . . . xi−1 and w′ = xixi+1 . . . xn, where
xj ∈ V for 1 ≤ j ≤ n. Then Sn,i(q) = www′w′.
Assume www′w′ /∈ Q, that is, there exist a p ∈ N, p > 2 and v ∈ Q
such as www′w′ = vp, that is, w2(w′)2 = vp. It is known, by Lemma 3,
w = uk, w′ = ul, v = um. Since ww′ ∈ Q and ww′ = uk+l, we have a con-
tradiction.
Therefore www′w′ ∈ Q. 2

We mention that an analogous statement does not hold, if one uses the mirror
image instead of a copy. The following example shows that then primitivity is
not preserved. Let w = 01 and i = 1; using the mirror image and shifting it
by one position to the left we get 0101 /∈ Q.
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Finally in the following theorem we present some operations which, together
with the above operations, allow the generation of all primitive words of length
≤ 11 (as can be shown by computer calculations) and of a considerable amount
of primitive words of length up to twenty.

Theorem 27 Let w ∈ Q be a primitive word of length n ≥ 2 and x ∈ V and
y ∈ V two different letters of V .
i) Then wxn and wxn−1 and wxyn−2 are in Q, too.

ii) If n is even, then w(xy)(n−2)/2x and w(xy)(n−2)/2y are primitive words, too.

Proof. We omit the easy proofs for i).

ii) We only prove the statement for w(xy)(n−2)/2x; the other proof can be given
analogously.
Let us assume that w(xy)(n−2)/2x /∈ Q. Then there is a word v ∈ V + such that
w(xy)(n−2)/2x = vp for some p ≥ 2. Since w(xy)(n−2)/2x has odd length, p and
the length of v are odd numbers. Let p = 2m+ 1 for some m ≥ 1. Thus there
are v1, v2 ∈ V + such that

v = v1v2, |v1| = |v2|+ 1 and w|(xy)(n−2)/2x = vmv1|v2vm.

By w(xy)(n−2)/2x = v2m+1, v = (xy)kx for some k ≥ 1, and then v1 = (xy)r,
v2 = (xy)r−1x and

w|(xy)(n−2)/2x = ((xy)kx)m(xy)r|(xy)r−1x((xy)kx)m.

Since the (n+ 2(r − 1) + 2)-nd letters in both representations differ, we have
a contradiction. 2
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