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Abstract

In this study, a complexity measure for graphs and tensegrities is proposed, based on the concept of
atomic decomposition.We state several results on the relationship between atomic decompositions
and spaces of self-stresses for generically rigid graphs, and study the computational complexity of
finding atomic decompositions of minimal length.

1 Introduction

The concept of tensegrity is nowadays widely used in many disciplines, from biomechanics to structural
engineering. Loosely speaking, a tensegrity is a structure whose elements are bound together in a stressed
state, while the whole is in equilibrium. Over the years, each discipline has tailored the meaning of the
word tensegrity to its own needs. Consequently, there are many definitions of tensegrity, each one subtly
different from the others. We will stick to one of the simplest, broadest and more tractable definitions.

Up to date, it is usual to discuss about the complexity of tensegrity structures without trying to
measure it, among other reasons because finding an agreeable complexity measure is problematic. Fur-
thermore, existing complexity measures are usually too general to be useful in a specific context. In this
work we propose a method to measure the complexity of tensegrity structures, taking into account their
tensegrity nature.

Before starting our discussion, let us present here briefly the concepts and results (mostly) formulated
in [11] that we need to present our work:

• A finite point configuration P := {p1, ..., pn} in Rd is in general position if no d +1 points lie on
the same hyperplane. More restrictively, if the points are algebraically independent, the position is
generic.

• A framework G(P) in Rd is an embedding of the abstract graph G = (V, E) on a finite point
configuration P in Rd in general position, with straight edges.

• A self-stress w on a framework is an assignment of scalars wi j (called tensions) to its edges, such
that for each vertex i, the scaled sum of incident vectors pi− p j is zero:

∀i, ∑
i j∈E

wi j (pi− p j) = 0

Observe that self-stresses form a vector space.

• If a framework G(P) has n vertices and e edges, its associated rigidity matrix R(P) has e rows and
nd columns, such that:

– There is a row per edge i j of the framework, with i < j and in lexicographic order.

– Each block of d columns is associated to a vertex pi, and it contains zeros except for each
row corresponding to an incident edge i j, where it contains the d coordinates pi− p j.
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Observe that if w is a self-stress on G(P), then w ·R(P) = 0.

• A framework with a self-stress non-null on every edge is called a tensegrity, denoted as G(P,w).

• An atom A in dimension d is a complete graph Kd+2 embedded in Rd . If the embedding is in
general position, its space of self-stresses has dimension 1. Otherwise, it only admits a null stress,
that is to say, wi j = 0, ∀i, j.

• An atomic decomposition of a tensegrity G(P,w) is a finite set of atoms (each atom corresponding
to a set of d + 2 points in P) such that the sum of their self-stresses is w. Note that the atoms in
the decomposition may have edges i j not present in G, which cancel out to wi j = 0 when the atom
stresses are added up. In general, decompositions are not unique. The length of the decomposition
is the cardinality of the set of atoms.

One of the main results in [11] is the development of an algorithm to generate atomic decompositions for
tensegrity structures. The algorithm can be applied to a tensegrity G(P,w) (Theorem 3.2 in [11]), or to
an abstract graph G = (V,E) (Algorithm 3.4 in [11]). In this work, we will refer to these variants as the
geometric and combinatorial algorithms, respectively. Below, the combinatorial version of the algorithm
is reproduced:

Algorithm 1.1. (Adapted from Algorithm 3.4 in [11]) Atomic combinatorial decomposition
INPUT: abstract graph G = (V,E) and dimension d.
OUTPUT: (L, M, F), where L is a list of “atoms” (subsets of (d + 2) elements of V ), M is a list
containing the number of edges added for each atom in L, and F is a list of intermediate graphs.

1. Initialize L =∅, M =∅, F = [G].

2. While E is not empty, choose a vertex a ∈V and:

2.1 If a has degree d+1, let a0, . . . , ad be its neighbors. Remove the edges aai from E. Let E ′ be
the set of all the edges aia j between the neighbours that were not in E.

2.2 If a has degree at least d +2, choose d +1 neighbors a0, . . . , ad of a. Remove the edge aa0
from E. Let E ′ be the set of all the edges aia j between the neighbours that were not in E.

2.3 If a has degree ≤ d, remove its incident edges from E.

In cases 2.1 and 2.2, also add the edges from E ′ to E, insert the atom {a, a0, . . . , ad} to the list L,
and |E ′| to the list M. In any case, also update the graph with the new set of edges and removing
unconnected vertices, and add it to the list F.

3. Return (L, M, F).

It is important to note that both the geometric and the combinatorial algorithms are non-deterministic:
different decompositions can be obtained by making different sets of choices at several points in the
algorithms. In the combinatorial algorithm, the resulting decomposition of a graph G represents a set of
constraints between the positions of vertices and/or self-stresses of edges of tensegrities with underlying
graph G. More details in [11].

We will use the acronym SAL to refer to the smallest atomic length, i.e., the smallest size of the list L
over all the possible outputs of Algorithm 1.1. We are interested in studying the SAL because it can be
seen as a tool to understand the complexity of a tensegrity structure: it represents the minimal way to
interlock a set of one-dimensional atoms to generate the structure. However, as we will see, the SAL
itself is not a completely satisfying tool for measuring complexity and we will develop a related concept.
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Figure 1: An abstract graph with one example of a combinatorial atomic decomposition.

Remark 1.2. While the combinatorial algorithm formally operates in the domain of abstract graphs,
it implicitly assumes that the graph is embedded in some unspecified tensegrity. In this context, it is
significant to note that some valid tensegrities G(P,w) might have a SAL shorter than the combinatorial
SAL for G. Consider the decomposition shown in Figure 1: if we set a general point configuration P
and define a self-stress w which is the sum of atoms 1, . . . ,4, we can obtain a tensegrity G(P,w) whose
underlying graph G is the same as the one depicted in the figure. Therefore, while the geometric SAL of
this specifically constructed G(P,w) is 4, the combinatorial SAL for G is 6, because the combinatorial
algorithm tacitly assumes that G is implicitly embedded in a tensegrity G(P,w) as generic as possible,
both in terms of the position P and of the self-stress w. However, as we will see in Section 2.2, the
combinatorial problem can be reduced to the geometric one.

From rigidity theory [9], we know that the set W of all possible self-stresses of a framework G(P)
is, in fact, the left kernel of the matrix R(P). Similarly, the space of infinitesimal motions is the right
kernel of R(P), whose dimension (or number of degrees of freedom) is 0 if G(P) is rigid. The following
proposition relates the dimensions of both spaces:

Proposition 1.3. (Theorem 2.4.1 in [9]) Let G(P) be a framework in general position P in dimension d
with G = (V,E) ,

∣∣WG(P)
∣∣ the dimension of the self-stress space and df(G(P)) the number of degrees of

freedom of G(P). Then:

df(G(P)) =


∣∣WG(P)

∣∣−( d +1
2

)
+d · |V |− |E| , if |V | ≥ d(

|V |
2

)
−|E| , if |V | ≤ d +1

(1)

2 The structure of the space of self-stresses

For all practical purposes, we will be interested in graphs which are generically rigid, that is to say,
rigid in any generic position. Non-generically rigid graphs can be tensegrities only in very degenerated
positions. We will use |WG| to mean the dimension of WG(P) if P is a generic position, since it is constant
for every generic position.

For generically rigid graphs, the space of self-stresses of the intermediate graphs (list F) in the
decomposition algorithm changes according to the number of intermediate edges inserted along the de-
composition (list M), and these numbers are directly related to the dimension of the space of self-stresses.
To show this, we start with the following proposition:

Proposition 2.1. If a graph G = (V,E) is generically rigid in Rd , then every intermediate graph in any
decomposition in Rd will be generically rigid.

VII EAMD, Carmona (Sevilla), Noviembre 2011 3



Minimal atomic decomposition Fernández Rodríguez, Orden Martín

Proof. Suppose that, for a given decomposition, the list of intermediate graphs is F = [. . . ,Gi,Gi+1 . . . , ].
We can prove the proposition by showing that if an intermediate graph Gi is generically rigid, then Gi+1
also is. We do it by cases:

• If the transition is done by step 2.1, let E ′ be the set of the added edges from Gi to Gi+1. If Gi

is generically rigid, consider the rigidity of the graph G′i+1, induced from Gi+1 by removing the
edges in E ′. If G′i+1 is not generically rigid, then the edges incident to a in Gi must remove all
degrees of freedom from G′i+1, which allows the movement of some of its neighbours relative to
others. In Gi+1, all distances between these neighbours are fixed by the edges added in E ′, so Gi+1
is also generically rigid.

• If the transition is done by step 2.2, let aa1 be the only edge removed from Gi to Gi+1. In Gi+1,
the subgraph induced by the vertices a,a1, . . . ,ad is a clique Kd+2 minus an edge. A clique Kd+2
is a generic rigidity circuit in dimension d (Theorem 3.11.9.a in [9]). If an edge is removed from a
rigidity circuit, the resulting subgraph is still generically rigid (in chapter 3 in [9]). Therefore, the
relative positions of a and a1 are fixed in Gi+1, and hence this is also generically rigid.

• If the transition is done by step 2.3, at most d edges have been removed from Gi to Gi+1. Reasoning
by the number of vertices in Gi:

– if |Vi| > d, the vertex a must have exactly d incident edges for Gi to be rigid, and any self-
stress must be always zero in these edges. Therefore, the equilibrium at other vertices in Gi

is independent from these edges, and |WG| remains the same in Gi and Gi+1. By applying the
first case of Equation 1, we get that df(Gi+1) = 0, so Gi+1 is also generically rigid.

– if |Vi| ≤ d, Gi must be a complete graph in order to be generically rigid by the second case of
Equation 1, so Gi+1 will also be a complete graph, hence also generically rigid.

Therefore, generic rigidity is a property conserved through all intermediate graphs in the decompo-
sition algorithm. To take advantage of this, we define the Laman bound:

Definition 2.2. The Laman bound of a generically rigid graph G = (V,E) in dimension d is defined as:

B =

(
d +1

2

)
−d · |V |+ |E|

The Laman bound is modified by the decomposition algorithm in a very specific way:

Proposition 2.3. Let Gi, Gi+1 be two successive intermediate graphs in a combinatorial atomic decom-
position in dimension d, with every vertex in Gi having degree at least d. Let Bi and Bi+1 be their Laman
bounds, respectively, and let ei be the number of edges added from Gi to Gi+1. Then, Bi+1 = Bi + ei−1.

Proof. By the definition of Laman bound, it is easy to see that the equality holds in any case (steps 2.1,
2.2 and 2.3).

If a graph is generically rigid and has at least d vertices, then B = |WG| by Proposition 1.3. Hence,
by Proposition 2.1, each atom considered in the decomposition algorithm changes the dimension of the
space of self-stresses of the intermediate graph, according to the number of edges added to the graph.
Atoms adding no edges represent an independent dimension in WG, atoms adding one edge must be tuned
to cancel out the stress in that edge, so they do not affect the dimension of WG, and atoms adding two or
more edges represent an interlock between several other atoms. These considerations are summarized in
the following result:
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Proposition 2.4. Let G be a generically rigid graph and B its Laman bound, and consider the lists L (of
atoms) and M =

[
e1, . . . , e|L|

]
(of amounts of added edges) produced by an atomic decomposition of G.

Then, the number of atoms in the decomposition is the Laman bound plus the total amount of (possibly
repeated) edges added during the decomposition:

|L|= B+
|L|

∑
i=1

ei (2)

Proof. As G is generically rigid, Proposition 2.3 can be applied to every intermediate graph generated
by the algorithm, so an atom introducing e edges changes B by e−1. Equality 2 is implied by combining
Proposition 2.3 with the fact that the Laman bound must change from B0 = B to B|L| = 0.

The previous proposition provides a characterization of the SAL: it corresponds to the decomposi-
tions introducing the fewest edges in the intermediate steps. This holds even if the graph is not generically
rigid.

Definition 2.5. A decomposition is defined as atomistic it no edges are added in any intermediate step.
By extension, a graph is atomistic if it admits an atomistic decomposition.

It is clear that, in an atomistic decomposition, the self-stresses of the atoms form a basis for WG.
It is also evident that if a graph G = (V,E) is decomposed and E ′ is the set of all edges added in the
intermediate steps, then the graph G′ = (V,E∪E ′) is atomistic. Also, chordal graphs that are generically
rigid are also atomistic, and so are cliques Kn, whose minimal decomposition length is

(
n−d

2

)
.

2.1 Tensegrity complexity revisited

At first glance, it seems natural to define the complexity of a tensegrity as the smallest |L| over all the
possible outputs of Algorithm 1.1. Then, cliques would be maximally complex under this definition
and, in general, very dense graphs would tend to have relatively large SALs. However, we can use the
relationship between atomic decompositions and the structure of the generic self-stress space WG of a
graph G, in order to get a more descriptive definition. Since each edge added during the decomposition
represents an interlock between the self-stresses of several atoms, the more edges, the more complex
must be the interlock between the self-stresses of the atoms in the decomposition, in order to form the
desired tensegrity. Thus, the number of edges added during the decomposition seems to be a better
measure of the complexity of a tensegrity, bearing in mind that it should be used to compare graphs with
the same or nearly similar number of vertices.

2.2 An algebraic characterization

Given a tensegrity G(P,w), the geometric decomposition algorithm (check the combinatorial version in
Algorithm 1.1 or the geometric version in [11]) admits an algebraic reformulation.

Remark 2.6. Note that we are moving from combinatorics to geometry now. Most of the (combinato-
rial) graphs we are interested in can be realized as a (geometric) tensegrity although, as described in
Remark 1.2, some valid tensegrities G(P,w) might have a SAL shorter than the combinatorial SAL for
G. If a generically rigid graph G = (V,E) can be a tensegrity, the way to find P and w to construct a
tensegrity G(P,w) depends on the value of |WG|:

• If |WG| > 0, and no edge in E must have a null self-stress for a generic position P, any generic
P will be suited to construct a tensegrity G(P,w). Given a generic P (uniformly random configu-
rations are almost certainly generic), a suitable self-stress can be generated almost certainly by
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taking a basis {w1, . . . ,wk} for WG(P), and finding a linear combination w = ∑aiwi where coeffi-
cients ai are drawn from a uniform distribution U(0,1).

• If |WG|= 0 and a tensegrity G(P,w), can be defined, then the configuration P must be non-generic.
In some cases, it can be found relatively easily (for example, for graphs with edge-inserting de-
compositions, as described in [11]).

Definition 2.7. Let P be a point configuration in dimension d. We define Qm as the collection of all sets
with exactly m vertices from P. We also define the atomic self-stresses matrix, named S, as follows:

• There is a row for each possible set
{

pi, p j
}
∈ Q2. The rows are ordered by the indices i, j, with

i < j and in lexicographic order.

• There is a column for each possible set {p1, . . . , pd+2} ∈ Qd+2. As these d +2 points represent an
atom A, let wA be an unitary, non-null self-stress of A. Then, the column associated to A contains,
for each row corresponding to a pair of points pi, p j of A, the self-stress assigned by wA to the edge
pi p j. In every other row, the value is 0. As with the rows, the columns are ordered in lexicographic
order by the indices of the points.

For a given tensegrity G(P,w), the self-stress w can be represented as a column vector w of length( n
d+2
)
, where there is a position for each possible pair pi, p j of vertices of the framework, with i < j and

in lexicographic order, and the value in w for the position corresponding to the pair pi, p j is wi j if there
is an edge between them, and 0 otherwise.

It is easy to see that if w is a valid self-stress of G(P), then every solution x to the underdetermined
system of linear equations S · x = w represents a linear combination of atoms which can be used to
construct a tensegrity G(P,w). Furthermore, let ‖x‖0 be number of non-zero elements in x. The problem
of finding the SAL can be recast as finding a sparsest solution (with minimal ‖x‖0) to S · x = w. Since
by Remark 2.6 the combinatorial algorithm can be restated in these terms for most graphs, this leads to
some interesting properties for S:

Corollary 2.8. If a configuration P in n vertices is in general position, the rank of the corresponding
atomic self-stresses matrix S is

(
n−d

2

)
.

Proof. Kn is an atomistic graph, so any SAL minimal decomposition corresponds to a basis for WKn . As
the columns of the matrix S are the self-stresses for all possible atoms in Kn, its rank must be exactly the
size of this basis, i.e.,

(
n−d

2

)
.

It is interesting to consider how Proposition 2.4 translates into this algebraic setting. First, we need
some definitions:

Definition 2.9. Let G(P) be a framework, and Q2, Qd+2 as in Definition 2.7. Given a set of pairs
D ⊆ Q2, we define its collection of associated atoms AD ⊆ Qd+2 as the collection of all sets of d + 2
points including some member of D, i.e., AD =

{{
. . . , pi, . . . , p j, . . .

}
∈ Qd+2 |

{
pi, p j

}
∈ D

}
.

Definition 2.10. Let G(P,w) be a tensegrity, with G = (V,E) its underlying graph, S its atomic self-
stresses matrix and w the column vector associated to w, as in Definition 2.7. Let E ′ ⊆ Q2 be a set
of edges containing E. Let G′ = (V,E ′) be a graph formed by adding the edges in E ′−E to G. Let
AE ′ ⊆Qd+2 be the set of atoms associated to E ′. The rows (resp. columns) of S correspond one-to-one to
sets in Q2 (resp. Qd+2). We define the core of S (resp. w) with respect to E ′, denoted SE ′ (resp. wE ′), as a
the submatrix of S (resp. w) induced by E ′, whose rows correspond to E ′ and whose columns correspond
to AE ′ .
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Now, it is worth to note that any solution xE ′ to SE ′ · xE ′ = wE ′ induces a solution x (generated by
padding xE ′ with zeros for the rows in S but not in SE ′) to S · x = w (in fact, ‖xE ′‖0 = ‖x‖0). The
following insight relates the structure of a combinatorial decomposition to the solution to the linear
system of equations S · x = w:

Proposition 2.11. Let G(P,w) be a tensegrity with graph G = (V,E), such that Proposition 2.4 holds (as
in Remark 2.6). Then, the SAL corresponds to a minimal set of edges Ea such that, for E ′ = E ∪Ea, it
holds that rank(SE ′) = rank([SE ′ |wE ′ ]), where SE ′ and wE ′ are the cores of S and w.

Proof. Let L be any geometric decomposition of G(P,w), let Ea be the set of edges added during decom-
position L, and let E ′ = E ∪Ea. L can be recast as a solution xE ′ to SE ′ · xE ′ = wE ′ . Then, Proposition 2.4
means that ‖xE ′‖0 is the sum of the dimension of the space of self-stresses of G(P) and the number of
rows in SE ′ corresponding to edges in Ea. Therefore, a SAL will correspond to a minimal set of edges Ea

such that the system SE ′ · xE ′ = wE ′ is solvable. The solvability condition can be restated in terms of the
ranks of the matrix and the augmented matrix, rank(SE ′) = rank([SE ′ |wE ′ ]).

As a result, atomistic graphs can be characterized in algebraic terms: if a suitable tensegrity G(P,w)
is defined on a graph G = (V,E) (as in Remark 2.6), then it is atomistic if and only if rank(SE) =
rank([SE |wE ]).

3 Computational complexity

The problem of computing the SAL seems to be NP-complete, but the question remains open. As the
combinatorial atomic decomposition is defined through an algorithm with some non-deterministic steps,
a choice (selected atom) taken in a step affects in highly convoluted ways to the choices available in
all subsequent steps. Because of this, it is very difficult to reason directly about the computational
complexity of finding the SAL. While several NP-complete problems seem to be very related to it, no
obvious ways to reduce them to it have been devised:

The NP-complete fixed clique covering problem (FCC) [12, 5] is (for any given n) the problem of
finding the minimal amount of copies of Kn needed to cover all the edges of a graph G, where these
copies are not required to be induced subgraphs of G. FCC can be deemed as a non-trivial lower bound
on the SAL in dimension d, but, unfortunately, the FCC tends to grossly underestimate the SAL.

The NP-complete minimum fill-in (MFI) [18] of a graph G is the minimal amount of edges whose
addition makes the graph chordal. If a graph can be instantiated as a tensegrity in dimension d, its MFI
plus its Laman bound can be regarded as an upper bound on its SAL, as the resulting chordal supergraph
will necessarily have at least as many edges as a minimal atomistic supergraph of G (in fact the chordal
supergraph will induce an atomic decomposition of G, although not necessarily minimal). As chordal
graphs are also atomistic, the MFI induces a SAL in many cases. These facts hint that, even if the
problem is not NP-complete, it must be relatively hard to solve.

By Definition 2.7, finding the SAL is equivalent to finding a sparsest solution to S · x = w. While
this algebraic formulation of the problem may seem more tractable than the combinatorial one, the
highly structured nature of the matrix S implies severe restrictions on the ways to reduce any known
NP-complete problem to this one. Interestingly, the superproblem of finding a sparsest solution to
a general linear system of equations A · x = b (over the real numbers) has been thoroughly stud-
ied [1, 2, 6, 7, 8, 10, 13, 14, 15, 17, 3], as it is relevant in many engineering applications, and is NP-
complete [16]. However, many theoretical results have been developed, defining conditions on the ma-
trix A for the sparsest solution to be calculable in polynomial time [4], provided that A is full-rank or at
least has a large spark. Unfortunately, the matrix S has always low rank (Corollary 2.8), and the spark
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is always extremely low (at most seven for dimension d = 2, since six vertices induce seven linearly
dependent atoms). As a result, these methods yield very sub-optimal solutions to the SAL in most cases.
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