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Abstract—We propose a floating–point representation to deal
efficiently with arithmetic operations in codes with a balanced
number of additions and multiplications for FPGA devices. The
variable shift operation is very slow in these devices. We propose
a format that reduces the variable shifter penalty. It is based on
a radix–64 representation such that the number of the possible
shifts is considerably reduced. Thus, the execution time of the
floating–point addition is highly optimized when it is performed
in an FPGA device, which compensates for the multiplication
penalty when a high radix is used, as experimental results have
shown. Consequently, the main problem of previous specific high-
radix FPGA designs (no speedup for codes with a balanced
number of multiplications and additions) is overcome with our
proposal. The inherent architecture supporting the new format
works with greater bit precision than the corresponding single
precision (SP) IEEE–754 standard.

Keywords—Floating Point representation; FPGA devices; vari-
able shifts; high radix arithmetic;

I. INTRODUCTION

The use of FPGAs to accelerate high-performance comput-
ing applications has been increasing rapidly in recent years.
These applications are generally implemented utilizing stan-
dard floating-point number representation, specifically IEEE–
754 standard [1][2]. Consequently, research is currently under-
way to develop functional units and libraries which provide an
efficient implementation of IEEE-754-compliant operations on
FPGAs [3][4][5].

The IEEE–754 standard was defined in relation to a general
purpose processor implemented using ASIC technologies. A
broad overview of various implementations and their optimiza-
tions is given in reference [6]. Thus, some requirements of this
standard may not match the typical characteristics of FPGA
devices. A more efficient implementation of floating-point
arithmetic for FPGAs could be achieved if the architecture was
defined taking into account the resources available in FPGA
devices [7], [8], [9], [10], [11], [12].

In this study, we attempted to a find a floating-point format
which fits some of the characteristics of FPGA devices and
provides better results for actual implementations for codes
with balanced number of multiplications and additions. Given
the importance of having a standard, our aim was not to
replace it but to complement it when an FPGA is used as an
accelerator. In these kinds of applications, data being processed
is more likely to stay on chip until the application has finished
processing it [13].

The aim of our proposal is to define a format which allows
us to convert the IEEE–754 floating-point input numbers to
the new internal format, operate with this new representation
inside the FPGA accelerator (which has more precision bits

than IEEE) and return the output numbers in IEEE–754 format,
while keeping accuracy (note that the IEEE specification
does not require identical output from all IEEE compliant
operators).

Floating-point addition involves two variable shifters and a
leading zero detector (for alignment and normalization), which
are very slow when they are implemented in FPGAs. If the
maximum number of digits to be shifted is reduced, the penalty
due to this operation also decreases. This idea was used in [7]
which investigated high radix floating–point representations
for FPGA-specific devices. The authors found that the best
performance was achieved by the radix–16 implementation
for FPGA devices, obtaining an improvement in execution
time of about 7% for additions and a loss of about 6% for
multiplications. Thus, in codes with a balanced number of
additions and multiplications (i.e. digital filters) the gain is
negligible. This is a serious handicap since the most frequent
operation in digital signal processing (DSP) is filtering.

We overcome the problem of having balanced code, ob-
taining a clear net gain. To achieve this, we design an efficient
format conversion modules (IEEE to/from internal represen-
tation) which allows us to use a carefully selected higher
radix (64 versus 16) which fits the hardware and considerably
improves on previous results (68% for additions and 23% for
balanced codes). The global behavior presents clear advantages
in execution time, unlike the previous specific FPGA designs.
We provide a detailed study and proof of the accuracy of the
proposed format, which fulfills the requirements of IEEE-754
single precision standard.

Thus, the main contribution of our paper is that the problem
of the lack of speedup of balanced codes in previous specific
high-radix FPGA designs has been overcome. This is due to the
design of an efficient format conversion circuit which allows us
to deal with a higher radix, unlike previous implementations.

II. FLOATING-POINT FORMAT PROPOSED

Without any loss of generality, we focus on an initial
format similar to the IEEE–754 single-precision floating-point
representation. The representation of an IEEE–754 floating-
point number x is

x = (−1)SxMx2
Ex (1)

where Sx ∈ {0, 1} is the sign, Mx is the magnitude of the
significand (24 significant bits, also called mantissa) and Ex is
the exponent (8 bits). The significand is a radix–2 normalized
number with one integer bit Mx = 1.F (F is the fraction).

We propose using a radix–64 for the representation of a
floating-point number instead of radix–2.
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Let us define the representation of a floating-point number
x as follows:

x = (−1)S
′
xM ′x64

E′x (2)

where S′x is the sign bit, M ′x is the magnitude of the significand
and E′x is the exponent (6-bit width, base 2), which has a
bias of 32. The significand is a radix–64 normalized number
composed of five 6-bit digits with one integer digit and four
fractionals such that 1 ≤ M ′x < 64. Thus,

M ′x = D0.D1D2D3D4 (3)

where D0 through D5 are digits of 6 bits (Di repre-
sents the digit of relative weight 64−i). Basically, this
means that the integer part of the significand is the MSD
whereas the fractional part is composed of the remaining dig-
its. For example, the mantissa 110.110011010010011010111
has five digits: the MSD (D0) is 000110 and the rest
are 110011(D1), 010010(D2), 011010(D3) and 111000 (D4,
LSD) (6 bits per digit). The dynamic range is [1 ·2−192, (64−
2−24) · 2186], which is wider than that of the IEEE-754.

The five digits used and the proposed normalization ensure
that the minimum number of significant bits is 25, which
corresponds to an integer part equal to one (1 ≤ ⌊M ′⌋ < 64).
In fact, the number of significant bits ranges from 25 to 30,
depending on the magnitude of the integer part of M’. Thus,
the proposed format always has a number of bits of precision
greater than that of IEEE 754.

A. Format conversion

In this subsection we analyze the conversion of a nor-
malized single precision IEEE–754 number (equation (1)) to
the new format indictaed by equation (2). Three parameters
have to be obtained (S′x,M

′
x, E

′
x) from those of the IEEE–754

representation of a number (Sx,Mx, Ex). The sign is trivial
(S′x = Sx). The exponent is obtained as

E′x =

⌊
Ex − 127

6

⌋
− sign(Ex − 127) + 32 (4)

where sign is the sign function (sign(a) = 0 if a ≥ 0 and
sign(a) = 1 if a < 0). To obtain the new mantissa M ′x
from Mx we need to align it. The new mantissa requires the
following operation:

M ′x = Mx2
(Ex−127) mod∗ 6 (5)

where mod* is an operator such as
A mod ∗ B =

{
A mod B if A ≥ 0
−(|A| mod B) +B if A < 0

(6)

Figure 1 shows a possible architecture to convert a single-
precision IEEE-744 floating-point number to the proposed
format. Due to the fact that our final device is an FPGA, the
conversion is aided by means of a small look–up table. The
input is the exponent of the IEEE–754 number Ex (8 bits, 256
inputs) and the outputs are the new exponent E′x (6-bits width)
and the number of bits to be right shifted for the mantissa
(the exponent of equation (5), 3-bits width). A binary variable
shifter is required for this operation.

On the other hand, figure 2 shows the block diagram to
convert a number from our internal format to the IEEE–754
format. The sign has a direct conversion.
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Fig. 1. Format conversion

To obtain the significand, the module ”Leading One Detec-
tor” in figure 2 is in charge of obtaining the number of leading
zeros of the MSD (we call this number k). A right shift of 5-k
bits is required for the significand of 30 bits, which results in a
number with 24 bits. This is done by the shifter called ”25−k”
in figure 2.

Rounding is required since there may be some shifted–
out bits in the LSD. The module ”Rounding” is in charge of
obtaining the value 1 or 0 to be added to the shifted significand.
This requires analyzing the LSD as well as the value 5 − k
(given by the Leading One Detector module).

The exponent is obtained by

Ex = 6(E′x − 32) + 127 + 5− k (7)

We can use a small 6-input bits (64 words) look-up table,
which gives the value 6(E′x − 32) + 127, as shown in figure
2. If Ex > 255 or Ex < 0, we have a special value (+∞ and
−∞, respectively). Special cases are not shown in the figure
for simplicity (but are actually implemented, see section V).

Finally, if an overflow is produced due to rounding, the
significand would be of the form 10.000...0. The exponent is
updated by connecting the overflow signal, as shown in figure
2.
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III. ADDITION WITH THE NEW FORMAT

The addition (subtraction) of two standard IEEE floating-
point numbers x and y, which are represented by (Sx, Ex,Mx)
and (Sy, Ey,My), respectively, is done by means of the
following six steps:

1) Subtraction of exponents. Let x and y be two floating-
point numbers according to the format of expression (2). We
analyze all the possible cases:
- |E′x−E′y| > 4. The sticky bit of the second operand (y′) has
to be computed for rounding operations as well as a borrow
in the subtraction. This is shown in figure 3.c.
- 0 < |Ex − Ey| ≤ 4. The addition is carried out in the next
step by aligning the significand. The sticky bit of the shifted–
out digits is required for further operations (see figure 3.b).
- |Ex − Ey| = 0. The significands are aligned and the sticky
bit is required only in case of an overflow (see figure 3.a).
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Fig. 3. Addition of two numbers

2) Align significands: we have to shift right d = |Ex−Ey|
positions (digits) the significand of the operand with the small-
est exponent and select the largest exponent as the exponent of
the result. Note that |Ex−Ey| = {0, 1, 2, 3, 4} is a reduced set
of shifts compared to the standard case ({0, 1, ..., 23}). Figure
3 shows all the possible shifts. The sticky bit of the shifted–out
digit has to be calculated.

3) Add (subtract) significands. The sign of the result
depends on the sign of the operands and the relative magnitude
of the operands. Five digits are involved in each operation.

4) Normalization of the result. Due to the characteristics of
the proposed format, a non-normalized result is only possible
under overflow of the significand (addition) or if the integer
part of the result is zero (substraction). Thus,
- A leading-one detector is not needed, but an overflow and

leading digit zero detector is needed.
- If the result of the addition of the significands is greater
than or equal to 64 there is an overflow. The normalization is
carried out by setting the MSD to 1 and performing a right
shift of one digit (D0.D1D2D3D4 ovf → 1.D0D1D2D3 plus
sticky bit).

Similarly, if the result of a subtraction of the significands
is less than 1, the MSD of the result is 0 (integer part). The
normalization requires a left shift of up to four digits depending
on the number of leading zero digits. For example, if there
are two leading zero digits we perform a left shift of two
digits (0̂.0̂D2D3D4 → D2.D3D40̂0̂, where 0̂ means an all-
zero digit).
- The exponent of the result is updated by adding 1 if there
is an overflow in the addition. Regarding substraction, it is
updated by subtracting as many units as the number of leading
zero digits of the result.

5) Rounding. The aim of our proposal is to maintain preci-
sion greater than or equal to that of IEEE–754 (24 significant
bits) for all internal FPGA operations. Thus, after any rounding
we must have a numerical value with a precision greater than
or equal to the precision obtained after a IEEE–754 rounding.
We consider rounding to nearest, to even when tie since it is
the default mode for the IEEE and its implementation is the
most complex.

Let us decompose the final significand of the result of one
operation considering all the digits M ′ involved:

M ′ = M ′(24) +M ′(d)2−24 (8)

where M ′(24) is composed of the integer part of M ′ plus the 24
most significant fractional bits, and 0 ≤ M ′(d) < 1. Namely,
M ′(24) has the precision of the significand in our floating-point
system and M ′(d) represents the rest. For example, if we use
the symbol ”∧” to indicate a 6-bit digit and we obtain the result
of an operation like 1̂.2̂3̂4̂5̂6̂7̂, the value of M ′(24) = 1̂.2̂3̂4̂5̂
and M ′(d) = 6̂7̂.

Let G denote the bit with weight 2−24 (that is, the LSB of
the LSD). We define the rounding to nearest of the significand
r(M ′) as follows:

r(M ′) =

{
M ′(24) +G · 2−24 if M ′(d) ̸= 0
M ′(24) if M ′(d) = 0

(9)

In comparison with the corresponding IEEE 754 round to
nearest, the final rounded value of our approach always has
a precision greater than or equal to that of IEEE since IEEE
defines a significand of 23 fractional bits, whereas we have 24
fractional bits. In other words, the round to nearest mode (not
tie) is quite similar to that of the IEEE, but uses 24 fractional
bits instead of 23.

In case of a tie, the IEEE propose the tie to even solution.
In our case, since we have at least 25 significant bits instead
of 24 fixed significant bits, the middle value M ′(d) = 0 can
be covered by the bit G. For example, for IEEE 754, the value
1.100 1000 1110 1001 1001 100x 10000000 is rounded to even
so that if bit x=0 the rounded value is 1.100 1000 1110 1001
1001 1000 (24 bits, error=-0.0...010000000=−2−24) and if x=1
the rounded value is 1.100 1000 1110 1001 1001 1010 (24
bits, error=+0.0...010000000=+2−24). Nevertheless, according



to equation (9), our rounded value is 1.100 1000 1110 1001
1001 100x 1 (25 bits, error=0), which is the exact value. Thus,
like IEEE 754, the proposed solution is unbiased (recall that
our aim is to maintain precision greater than or equal to that
of the rounded IEEE 754).

Let us address the subtraction operation. Since our format
has 5 digits (30 bits), in most cases the result of a subtraction
has more than 24 significant bits and rounding can be carried
out using the G bit, as proposed in equation (9).

Nevertheless, there are some extreme cases requiring some
extra guard bits. Having analyzed all these cases, we conclude
that two extra bits are required for rounding: a guard bit and
the sticky bit (see [14] for details). This conclusion is in line
with that of the IEEE in which three guard bits are required:
in our case, since our minimum size for the significand is 25
bits, one of these three bits belongs to the significand (the
G bit). Thus, the path for the actual implementation of the
addition/subtraction operation is not 30 bits but 32 bits and
rounding is carried out based on the final result by applying
equation 9.

6) Determine exception flags and special values. We con-
sider the same cases as the IEEE (implementation details are
presented in section V).

A. Comparison of rounding

In this subsection we analyze the rounding for our format
and compare it with the corresponding case of the IEEE.

In general, since our format has a precision of between 25
and 30 bits (due to normalization) and the single precision
IEEE has 24 bits, our rounding is performed using more
significant bits and has a greater precision.

We now analyze the worst case in our proposal, which
takes place when the result of an operation has 25 significant
bits. Taking into account that we add two extra bits in the path
for rounding purposes, the result of any addition/subtraction is
32-bits wide (five 6-bit digits plus two guard bits). Consider
that the result of an operation is

D0 . D1 D2 D3 D4
000001.xxxxxx xxxxxx xxxxxx xxxxLG RT

where L and G corresponds to the two LSBs of the digit
D4, R is a guard bit and T is the sticky bit. Note that the
weights of the bits L,G,R and T are 2−23, 2−24, 2−25 and 2−26,
respectively. The final rounded value for the IEEE reaches the
bit of weight 2−23, whereas the final rounded value in our
format has a weight of 2−24.

Table I presents a detailed comparison of the 16 different
cases of the bits L,G,R,T and the corresponding rounded
values. The LSB of the rounded value for the IEEE has a
weight of 2−23 (24 bits, second column), whereas the weight
of the LSB of our result is 2−24 (25 bits, one more precision
bit, fourth column). Thus, the bits of weight 2−24 through 2−26

are discarded after rounding for the IEEE format whereas the
bits 2−25 and 2−26 are discarded in our case.

The third column shows the difference between the IEEE
rounded value (24 bits) and the pre-rounded value (32 bits).

Similarly, the fifth column gives the difference between our
rounded value (25 bits) and the pre-rounded value (32 bits).
We can see that the difference is exactly the same for both
roundings except for the case NGRT=0100 and NGRT=1100
(boldface in table I). These cases correspond to the tie cases
for IEEE in such a way that a round to even is carried out.
It generates a bias which is compensated in the IEEE case
(difference +4 and -4). Nevertheless, in our case we do not
need to round to even since we have one more precision bit
and we take the exact value with no bias (difference = 0).
In other words, the tie case of the IEEE does not need any
rounding in our case since we use the exact value due to fact
that we have one more precision bit.

We also present the error regarding the actual value (which
is given by the bits LGRT)

LSBs IEEE rounding Our rounding
(32 bits) (24 bits) diff. (25 bits) diff.
LGRT 2−232−24 (×2−26) 2−232−24 (×2−26)
0000 0 - 0 0 0 0
0001 0 - -1 0 0 -1
0010 0 - -2 0 0 -2
0011 0 - -3 0 0 -3
0100 0 - -4 0 1 0
0101 1 - +3 1 0 +3
0110 1 - +2 1 0 +2
0111 1 - +1 1 0 +1
1000 1 - 0 1 0 0
1001 1 - -1 1 0 -1
1010 1 - -2 1 0 -2
1011 1 - -3 1 0 -3
1100 ←0 - +4 1 1 0
1101 ←0 - +3 ←0 0 +3
1110 ←0 - +2 ←0 0 +2
1111 ←0 - +1 ←0 0 +1

← Carry propagation
TABLE I. ROUNDING FROM THE FOUR LSBS OF THE RESULT (NGRT)

Since we can perform intermediate calculations with more
precision bits, the output to be returned might have a numerical
value different from that obtained if all the intermediate
calculations were carried out with 24-bit precision. This is
not a problem since the IEEE specification does not require
identical output from all IEEE-compliant operators [1], [2].

We developed a C simulation program to check our algo-
rithm. We used a random pattern of about 3 ·1011 calculations,
81% with exactly the same precision as the IEEE 754 and 19%
with enhanced precision.

B. Architecture

Figure 4 shows the architecture proposed for a single–
path implementation (the results can be extended to other
alternative architectures like double-path). First, the exponents
are compared to place the largest number on the left operand
and the smallest one on the right (module ”swap”).

The difference of exponents (d) is used to shift the operand
y’ (module 64−d). In a substraction the module ”sticky1” is
in charge of obtaining the two extra guard bits required in a
substraction (bit R and the sticky bit T). Thus, the first adder
has inputs of 32 bits.

On the other hand, after the first adder, a right shift of
one digit is required in case of overflow (only for the addition
operation, module called ”64−1” in figure 4). The extra bits



required (due to the shift-out of the LSD) are obtained by the
module ”sticky2” and generates the bits R and T. In case of
subtraction, the bits R and T do not need to be re-computed.
The module ”sticky2” controls the final value of R and T
depending on the operation.

The ”rounding calculus” module performs the computation
of a 0 or 1 according to equation (9). In this equation the value
of M ′(d) corresponds to the bits R and T (a logic OR). The
adder carries out the final rounding. If an overflow is produced
after rounding the result is 1000000.000...000. This requires
updating the exponent and forces the value 1̂.0̂0̂0̂0̂ as the final
result.

After a substraction it is possible to have several leading
zero digits. The module ”Digit leading zero detector” is in
charge of this operation and the corresponding digit left shift
is performed in the module ”64−lzd” (ldz is the number of
digits to be shifted). If all the digits of the result are zero, it is
thus a special value (the corresponding hardware is not shown
in the figure for clarity).

Finally, the exponent has to be updated. The module
entitled ”Update Exp.” is in charge of adding 1 if an overflow
is produced or subtracting the value ”lzd” in case of having a
left shift.
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Fig. 4. Architecture for addition/subtraction

IV. MULTIPLICATION

This work focuses on the addition operation, and the
proposed architectures are tailored to optimize the execution
time in an FPGA device. Floating point multiplication does
not involve shift operations. The improvement achieved for
addition (due to the improvement in the shift operation) does
not speed up multiplication; in fact it slows it down, as shown
in [7]. This is due to larger word length, the larger multiplier,
and longer execution time.

On the other hand, the most extended operation in DSP
is filtering, which involves multiplications and additions. In
[15] the authors propose a high radix double-precision format
based on two 53-bit digits, in such a way that the size of the
significand is 106 bits instead of 53. In this way, the shifts
are reduced to only one position (to left and to right), which
improves the speed of the addition considerably. Nevertheless,
there are important implications for the multiplication due
to having such large digits since the size of the multiplier
increases by a factor 4, which increases the area and time of
this operation, and it becomes impractical for digital filtering.

Due to the fact that many applications use multiplication
and addition, we consider multiplication with the new format.
In our case, the significand has 30 bits instead of 24.

Let x′ and y′ be the operands of two floating-point numbers
using our format, which are represented by (S′x, E

′
x,M

′
x) and

(S′y, E
′
y,M

′
y), respectively. The result z′ = x′ × y′ is repre-

sented by (S′z, E
′
z,M

′
z). The resulting sign is S′z = s′x ⊕ s′y ,

the exponent is E′z = E′x + E′y and the new significand is
M ′z = M ′x × M ′y , where a 30 × 30 unsigned multiplier is
required (five digits each operand).

Let us address the normalization. The result of the mul-
tiplication has 10 digits and we have to select the five most
significant non-zero digits. Let us call the ten digits of the
result D0, D1, ..., D9 (D0 is the most significant). Since M ′x
and M ′y are both greater than or equal to one (that is, the
MSD of both operands is greater than or equal to one), the
normalized significand of the result is

M ′z =

{
(D0.D1D2D3D4) if D0 ̸= 0
(D1.D2D3D4D5) if D0 = 0

(10)

If D0 ̸= 0 the exponent has to be updated E′z = E′z − 1.

Regarding the rounding, the same solution as the addition
operation is used since the normalized result has at least 25
significant bits (see equation (9)). In this case, the value of
M ′(d) (the sticky bit) has to be computed from either D5
through D9 or D6 through D9 (see equation 10).

V. IMPLEMENTATION RESULTS AND COMPARISON

To measure the effectiveness of the new floating-point
format presented in this paper, we have developed some VHDL
modules implementing the proposed architectures to perform
the main operations related to it for single precision. These
are addition/subtraction, multiplication and conversions. For
comparison purposes, the corresponding modules generated by
the open source library FloPoCo [5] have been used as repre-
sentative of the floating-point standard core for FPGAs. Since
these circuits are easily pipelined, for the sake of simplicity



all the designs are compared using the fully combinational
version. All these modules were simulated using Modelsim
SE 6.3f and they were synthesized using Xilinx ISE 13.4,
targeting a Virtex6 device (xc6vlx240t-1). TableII summarizes
the results obtained for area and delay.

TABLE II. IMPLEMENTATION RESULTS

Delay (ns) Area (LUTs/mult)
FloPoco radix-2 Adder 21.234 344/-

Our radix-64 Adder 12.659 282/-
FloPoCo radix-2 Multiplier 9.989 60/2

Our radix-64 Multiplier 12.613 55/4
IEEE→Ours 2.355 98/-
Ours→IEEE 5.750 104/-

According to [7], a high radix speeds up addition and
slows down multiplication. Thus, a trade–off solution has to be
found since the faster the adder, the slower the multiplier. The
trade–off solution proposed in this paper is a radix-64 since
it provides considerably speed-ups in balanced codes (codes
with a similar number of multiplications and additions). We
now present the implementation results and compare them to
the standard radix–2 implementation and with the radix–16
implementation presented in [7].

i) Comparison with radix–2 implementation. In our case,
as expected, there is a strong improvement in the adder unit
(68% faster with 18% less area), whereas there is a degradation
in the multiplier (20% slower and doubling the embedded
multipliers; for applications involving multiplications and ad-
ditions, the slowdown of the multiplication is satisfactorily
compensated by the high speedup of the addition, as shown
later). The cost of format conversion is not excessive, since
they use about a third of the area utilized by an adder and the
delay is a little less than the improvement achieved using the
proposed adder. In fact, the proposed adders including both
conversions has roughly the same performance as a radix–2
one.

Thus, the benefits of using the proposed format depend
on the target application. Specifically, it mainly depends on
the ratio between the number of additions and the number of
multiplications and to a certain extent on the total number of
internal floating-point operations involved in the algorithm (if
the number of internal operations is large, the conversion time
is negligible). Thus, many applications can take advantage of
the proposed representation. Some important basic algorithms
in DSP applications, such as summation and digital filters, can
take advantage of our representation. In the case of summation,
the improvement is close to 68% and for the case of digital
filters (in which the number of additions and multiplications is
similar) the improvement is close to 23%, as can be calculated
using the data shown in Table II.

Due to the importance and widespread use of digital filters
in DSP applications, we provide a simple example of a pipeline
design, as shown in figure 5.

The multiplier and adder proposed in our implementation
have a very similar delay (12.659 ns. and 12.613 ns.). This
facilitates the design of pipeline architectures (like figure 5),
where the stages are well-balanced. Nevertheless, the corre-
sponding counterpart radix–2 units are not well-balanced (see
table II). Since the clock cycle is imposed by the slowest
unit (adder), the throughput of our pipelined implementation
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Fig. 5. Example of application: simple pipelined architecture for digital
filtering

is about 79.0 MHz, whereas the counterpart radix-2 pipeline
implementation is 47.1 MHz, which improves throughput by
about 67%.

ii) Comparison with radix-16. In [7] the authors implement
a radix-16 adder and multiplier using a Xilinx Virtex-II 6000
(4-LUT-based). Since we use a different technology (6-LUT-
based), a direct comparison would not be appropriate. There-
fore, we compare the improvements obtained for each design
regarding the radix–2 implementation. Taking into account that
there is a net gain in the addition operation and a net loss in the
multiplication operation for both implementations, the global
gain/loss depends on the ratio of additions/multiplications of
each application. In figure 6 we present the speedup of both de-
signs as a function of the percentage of addition/multiplications
in the code:
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Fig. 6. Speedup as a function of % additions-multiplications

This figure shows that the speedup decreases as the pro-
portion of multiplications increase for both designs. We can
see that in applications where additions are dominant, both
designs have net gains. For applications with a balanced
number of additions/multiplications, our design maintains large
speedups (23%), whereas no significant speedup is obtained
for [7]. Finally, in applications where multiplication is highly
dominant, neither of the solutions is valid. We can see a
positive speedup if the percentage of additions is greater than
50% for [7] and negative speedup beyond 50%. In our case, we
achieve moving this critical point to only 25%. The speedup
interval is (7%,-6%) for [7] and (68%,-20%) for our case. The
high speedup obtained for the addition is in line with with the
fact that the set of possible shifts of our design is less than
that of [7].

We can see that the high speedup of the addition in our case
compensates the negative speedup of the multiplication, such
that in a code with a mixture of multiplication and addition
(which is the most usual case) we have a net gain. This is



exactly the main handicap of [7]: if the code has a balanced
number of multiplications and additions, the gain is only about
1%, whereas our proposal has a net gain of 23%. Table III
show the scores obtained by both implementations for some
basic and extended algorithms such as summation and digital
filtering:

TABLE III. SPEEDUP FOR COMMON ALGORITHMS

Summation Digital filter
Radix 16 [7] 7% 1%
Our radix 64 68% 23%

The area of the conversion format circuit is about 30%
of that required for the adder (see Table II). In [7] this ratio
is about 9%. This is due to the fact that they propose and
implement radixes which are a power of a power of 2 (that
is 22

k

) which facilitates exponent conversion. The results of
implementing a radix 4 (k=1) and 16 (k=2) are presented in [7]
but not 256 (k=3), since it yields worse results than radix-16
and the multiplier was extremely costly.

Thank to the conversion format circuits proposed in this
paper, it is possible to design circuits with a radix beyond
radix–16. The efficient format conversion circuits proposed
in section II can be easily adapted to for any radix. In our
approach, these format converters allows us to use a radix-64,
which is not a power of power of 2 (22

k

). Our implementation
results show that the use of an intermediate radix like 64
achieves a clear speedup in the addition time (1.68) compared
to radix–16 (1.07). Above all, the balanced codes achieve a
clear speedup (1.23 versus 1.01)), which justifies the increase
in the area of the converters. On the other hand, as in the case
of [7], there are applications involving many inputs/outputs
and little computation in which the high radix approach is not
suitable since it carries out many conversions.

In conclusion, our design leads to a huge speed–up (68%)
in additions with a similar reduction in the area compared to
that presented in [7]. This high speed compensates for the mul-
tiplication penalty when a radix-64 is used in balanced codes,
as experimental results have shown. Thus, we have clearly
overcome the main problem involved in previous designs (that
is, a negligible speedup in the case of codes with a similar
number of additions and multiplications).

VI. CONCLUSION AND FUTURE WORK

We have proposed a floating–point format based on radix–
64 representation to speed up the arithmetical computations for
FPGA–based applications. We have focused on the addition
operation in such a way that the penalty of variable shifters
is considerably reduced due to the proposed high radix. The
architectures proposed in this work allow us to convert the
IEEE–754 floating-point input numbers to the new format, op-
erate with this new representation inside the FPGA accelerator
(at high speed), and return the output numbers in IEEE–754
format, while maintaining at least the same accuracy as the
IEEE–754 standard.

Thank to the conversion format circuits proposed in this
paper, it is possible to design circuits with a radix beyond
radix–16. The trade–off solution proposed in this paper (radix-
64) overcomes the main problem of previous high radix
designs (no speedup for codes with a balanced number of

multiplications and additions). In our proposal, a speedup of
23% is achieved. This widens the range of applications for
which our approach is valid, in such a way that some important
DSP algorithms, such as digital filters, can benefit from the
proposed proposal, unlike previous high radix designs.

Based on the results of these experiments, future work
could include studying higher precisions (binary 64 and 128)
and decimal arithmetic, as well as other operations such as
division and transcendental functions. Optimization of the
multiplier (by a lower level design) is also considered in the
future to reduce the area. We also consider other different
FPGA families to study their behavior with the proposed
format.
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