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Abstract. Multi-objective evolutionary algorithms rely on the use of
variation operators as their basic mechanism to carry out the evolution-
ary process. These operators are usually fixed and applied in the same
way during algorithm execution, e.g., the mutation probability in genetic
algorithms. This paper analyses whether a more dynamic approach com-
bining different operators with variable application rate along the search
process allows to improve the static classical behavior. This way, we ex-
plore the combined use of three different operators (simulated binary
crossover, differential evolution’s operator, and polynomial mutation) in
the NSGA-II algorithm. We have considered two strategies for selecting
the operators: random and adaptive. The resulting variants have been
tested on a set of 19 complex problems, and our results indicate that both
schemes significantly improve the performance of the original NSGA-II
algorithm, achieving the random and adaptive variants the best overall
results in the bi- and three-objective considered problems, respectively.

Keywords: Multiobjective Optimization, Evolutionary Algorithms,
Variation Operators, Adaptation.

1 Introduction

Evolutionary algorithms (EAs) are a family of stochastic search techniques within
metaheuristics [1] widely used on optimization. Genetic Algorithms (GAs), Evo-
lution Strategies (ES), Genetic Programming (GP), and Differential Evolution
(DE), among others, are examples of EAs. Specialized versions of EAs to solve
multi-objective optimization problems usually referred as to MOEAs.

Most of EAs and MOEAs operate under a common principle: one or several
individuals undergo the effect of some variation operators. Examples of these
operators are the crossover and mutation operators, in the context of GAs, or
the differential evolution operator in DE methods.
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Some researchers have shown that some operators are more suitable for some
types of problems than others. If we focus on multi-objective optimization, we
can find some examples. Deb et al. evaluated the behavior of a number of op-
erators for solving problems with variable linkages [3], and observed that the
SBX operator was unable to deal with these types of problems. Iorio and Li [7]
discussed the suitability of a number of operators for solving rotated problems
and those having epistatic interactions among decision variables.

To make things harder, there is no reason to think that a variation operator is
equally effective, in terms of its evolvability or ability to produce better solutions,
over the whole search space of a given problem. In fact, the search space of
real-world optimization problems may not be free of variable-linkage, epistasis,
rotation, or complex relationships among their decision variables. Under these
circumstances, the use of methods that keep their variation operators invariant
through the whole execution of the EA may not be the best alternative.

Our goal is to investigate, in the context of multi-objective optimization,
whether the combined use of different variation operators during the search
may improve the performance of classical MOEAs. Our hypothesis is that the
variation operators used in most of these algorithms can be effective in the ex-
ploration of certain regions of the search space of a given problem, but not
over the whole search space. We study this idea by endowing NSGA-II with the
ability to select its variation operators from a set containing different alterna-
tives. The resulting algorithms are evaluated by solving problems with difficult
Pareto sets; in particular, the LZ09 [9] benchmark and problems of the CEC
2009 competition [12]).

In this paper we propose two new versions of the NSGA-II algorithm which
are able to select from among different variation operators during the search. We
have considered a set composed of three operators commonly used in
multi-objective optimization metaheuristics: SBX crossover, polynomial-based
mutation, and the variation operator used in DE. The first proposed version
of NSGA-II, referred to as NSGA-IIr hereinafter, creates new solutions by ran-
domly selecting an operator from the set. The second version, named NSGA-IIa
from now on, uses a record of the contribution of each operator in the past for
selecting the operator to apply. This second scheme is based on the one proposed
in the AMALGAM algorithm [11], and the idea is to give to these operators a
higher probability of being chosen when they are capable of producing solutions
that survive from one generation to the next. Additionally, we include in the
study a version of NSGA-II using only the DE operator.

The rest of this paper is organized as follows. Next section reviews related
work. Section 3 details our proposals. The methodology used in this work is
described in Section 4 and the obtained results are analyzed in Section 5. Finally,
we present our main conclusions and some possible paths for future research.

2 Previous Related Work

In this section we review existing works related to ours. We focus only on multi-
objective optimization aproaches.
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In [10], Toscano and Coello dealt with the issue of selecting the best operator
for solving a given problem. These authors proposed a micro genetic algorithm,
called µGA2, which runs several simultaneous instances of µGA2 configured
with different variation operators. Periodically, the instance with the poorest
performance was replaced with the best performing one. Thus, after several
generations, all the parallel instances worked only with the best performing
operator. A disadvantage of this approach is that once an operator had been
discarded, it could not be used again in the execution of the algorithm.

MOSaDE [5] combines the use of four different versions of the DE operator.
This combination was made in an adaptive way: the version that contributes the
most to the search was given a higher probability of being used for creating new
solutions. This contribution was measured by considering the success, in terms
of the non-dominated solutions that it produced in the last n iterations of the
algorithm. An improved version of MOSaDE with object-wise learning strategies,
called OW-MOSaDE [6], participated in the CEC2009 MOEA competition [13],
obtaining an average rank of 9.39 among 13 algorithms.

Vrugt and Robinson proposed in [11] the AMALGAM algorithm, based on
the idea of using a number of multi-objective algorithms within a master algo-
rithm. By measuring the contribution of each method in the last iteration, each
algorithm was adaptively used favoring those techniques exhibiting the highest
reproductive success. The algorithms used were NSGA-II, a PSO approach, a
DE approach, and an adaptive metropolis search (AMS) approach.

Relate works propose therefore new algorithms or the combination of several
existing techniques using a master approach, like in AMALGAM. Additionally,
all of them use an scheme based on the contribution of the different operators
for considering their application. The main point of our work, however, is not to
propose a new algorithm but to analyze whether the combination of operators
can improve the performance of an existing algorithm such as NSGA-II, when
dealing with difficult multi-objective optimization problems.

3 NSGA-II with Combined Operators

This section aims at describing NSGA-IIa and NSGA-IIr. For the sake of clarity,
we first present the original technique and then our proposals.

3.1 NSGA-II

NSGA-II (Deb et al. [2]) is the most popular multi-objective metaheuristic by
far. It is a generational GA, so it is based on a population P of size n which,
at each iteration, is used to create another population of n new solutions as
follows. For every solution in P , two parents are selected and combined using
the recombination operator and the result is later altered by means of a mutation
operator. We use SBX crossover and polynomial mutation, as done in NSGA-II
when adopting real-numbers encoding. As a result of these two operations, a new
individual is created and inserted into a temporal population Q. Finally, P and
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Algorithm 1. Pseudocode of NSGA-IIr.
1: Input: n // the population size
2: P ← Random Population() // P = population
3: Q ← ∅ // Q = auxiliar population
4: while not Termination Condition() do
5: for i ← 1 to (n) do
6: randValue←rand();
7: if (randValue ≤ 1/3) then
8: parent←Selection1(P); // only one parent is selected
9: offspring←PolynomialMutation(parent);
10: else
11: if (randValue ≤ 2/3) then
12: parents←Selection2(P); // two parents are selected
13: offspring←SBX(parents);
14: else
15: parents←Selection3(P); // three parents are selected
16: offspring←DE(population[i], parents);
17: end if
18: end if
19: Evaluate Fitness(offspring);
20: Insert(offspring,Q);
21: end for
22: R ← P ∪ Q
23: Ranking And Crowding(R);
24: P ←Select Best Individuals(R)
25: end while
26: Return P;

Q are merged in a single population R. The n best individuals, after applying
the ranking and crowding procedures in R, will be selected to be the population
P in the next generation of the algorithm. See further details in [2].

3.2 NSGA-IIr

NSGA-IIr is an extension of NSGA-II that makes use of three different
variation operators: SBX crossover, polynomial mutation, and DE’s variation
operator. These operators are randomly selected whenever a new solution is to be
produced. The pseudocode of this version is detailed in Algorithm 1.

The main difference with respect to the original NSGA-II lies in the parents
selection mechanism and in the way in which offsprings are produced (lines 6-18).
NSGA-IIr proceeds as follows. For each individual in P , it produces a random
value in [0, 1] (line 6). Depending of this value, one out of the three variation
operators is selected, as shown in lines 7-18. Once the offspring is generated, the
algorithm behaves as the original NSGA-II.

3.3 NSGA-IIa

NSGA-IIa applies the same variation operators as NSGA-IIr, but in an adap-
tive way, by taking into account their contribution, i.e., each operator selection
probability is adjusted by considering that operator success in the last iteration.

The adaptive scheme considered for operator selection is based on the one used
in AMALGAM [11]. Algorithm 2 describes such scheme. Assuming a number of
NumOperators different operators, the method computes the contribution of
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Algorithm 2. Computing the contribution of each operator.
1: Input: P // population for the next iteration
2: totalcontribution ← 0
3: for 1 ≤ operator ≤ NumOperators do
4: contributionoperator ← solutionsInNextPopulation(operator,P ) ;
5: if contributionoperator ≤ threshold then
6: contributionoperator ← threshold;
7: end if
8: totalcontribution ← totalcontribution + contributionoperator;
9: end for
10: for 1 ≤ operator ≤ NumOperators do
11: probabilityoperator ← contributionoperator / totalcontribution ;
12: end for

all of them (loop between lines 3-9). The idea is to count how many solutions
generated by each operator are part of the population P of the next generation
(line 4). If an operator has contributed with less solutions than a minimum
threshold, its contribution is set to this minimum threshold (lines 5-7); by doing
so we avoid any operator to be discarded when producing no solutions in an
iteration. Our motivation is that this operator may be useful later in a different
phase of the search. In this work we have considered a threshold equal to 2, which
was the value used in AMALGAM. Once the contribution of the operators have
been computed, the probability of selecting them is updated (line 12). This way,
the operators have a probability of being selected in the next generation which
is proportional to their contribution.

3.4 NSGA-IIde

As we are using the DE operator in NSGA-IIr and NSGA-IIa, we consider inter-
esting to include in the study another NSGA-II variant, where the mutation and
crossover operators have been replaced by the DE operator. We have named this
version NSGA-IIde. This way, we will have more information to determine if the
performance improvements are not related to the use of a particular operator
but to the combination of some of them.

4 Experimentation

Here we present the benchmark problems adopted for our tests, together with
the parameter settings and the methodology followed in our experiments.

Benchmark Problems. We consider the LZ09 [9] benchmark and the problems
defined for the CEC2009 competition [12]. The former is composed by nine
problems (LZ09 F1 - LZ09 F9), all of which are bi-objective, except for LZ09 F6,
which has three objectives. The latter contains problems with two, three, and
five objectives, as well as constrained and unconstrained problems. We have
selected the seven UF1- UF7 bi-objective and the UF8 - UF10 three-objective
unconstrained problems.
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Parameters Settings. For NSGA-II and its three variants we have used the same
settings. The population size is 100, the SBX and polynomial mutation probabil-
ities are 0.9 and 1/L (L is the number of decision variables of the problem being
solved), respectively. Both operators share the same distribution index value,
which is set to 20. The DE operator variant is current/1/bin, and the values of
the CR and F control parameters are, respectively, 1.0 and 0.5. The stopping
condition is 150, 000 function evaluations in the case of the LZ09 problems, and
300, 000 for the CEC 2009 problems.

Quality Assessment. To assess the performance of the algorithms we adopt two
widely used indicators: additive epsilon [8]) and hypervolume [14].

Analysis of Results. For each combination of algorithm and problem we have
made 30 independent runs, and we report the median, x̃, and the interquartile
range, IQR, as measures of location (or central tendency) and statistical disper-
sion, respectively, for each considered indicator. When presenting the obtained
values in tables, we emphasize with a dark gray background the best result for
each problem, and a clear grey background is used to indicate the second best
result; this way, we can see at a glance the most salient algorithms.

When comparing the values yielded by two algorithms on a given problem, we
check if differences in the results are statistically significant. To cope with this
issue, we have applied the unpaired Wilcoxon rank-sum test, a non-parametric
statistical hypothesis test, which allows us to make pairwise comparisons between
algorithms to analyze the significance of the obtained data [4]. A confidence level
of 95% (i.e., significance level of 5% or p-value under 0.05) has been used in all
cases, meaning that the differences were unlikely occurred by chance with a
probability of 95%.

5 Comparison of Results

In this section, we analyze the obtained results when running the algorithms
under the aforementioned experimental methodology. We first analyze the values
yielded by the I+ε indicator, and then the ones obtained by the IHV one.

The values obtained by the I+ε are summarized in Table 1. We start by ana-
lyzing the values obtained in the LZ09 family. As we can observe, the algorithm
applying the adaptive combination of several operators, NSGAIIa, has led to an
improvement of the results of the original version of NSGA-II in all the prob-
lems that are part of this benchmark, but it was outperformed, in turn, by the
random variant, NSGA-IIr, in all the problems but two (LZ09 F4 and LZ09 F6).
The NSGA-II variant using DE only achieved the best result in the first problem.
Our wilcoxon analysis has relevealed that statistical significance has been found
when comparing the the two extensions of NSGA-II algorithm with the original.
Regarding to the comparison between our two proposals, there is no statistical
significance in problems LZ09 F1 and LZ09 F4, NSGA-IIa outperforms NSGA-
IIr in six problems, and NSGA-IIr improves NSGA-IIa in LZ09 F6, the only
three-objective problem of the benchmark.
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Table 1. LZ09 benchmark. Median and interquartile range of the I+ε indicator.

NSGA-II NSGAII-r NSGAII-a NSGAII-de

LZ09 F1 1.69e − 021.7e−03 1.52e − 022.4e−03 1.52e − 022.9e−03 1.46e − 023.9e−03
LZ09 F2 1.70e − 012.5e−02 7.43e − 021.7e−02 9.62e − 022.8e−02 1.49e − 013.6e−02
LZ09 F3 1.12e − 012.3e−02 4.78e − 022.1e−02 7.84e − 021.5e−02 1.20e − 012.6e−02
LZ09 F4 1.38e − 012.0e−02 5.44e − 021.7e−02 5.16e − 021.9e−02 1.13e − 012.3e−02
LZ09 F5 1.09e − 013.1e−02 6.54e − 023.7e−02 8.29e − 022.9e−02 1.21e − 011.8e−02
LZ09 F6 2.75e − 014.0e−02 2.69e − 011.3e−02 2.31e − 015.3e−02 6.38e − 012.4e−01
LZ09 F7 3.32e − 011.7e−01 3.48e − 022.1e−02 1.28e − 011.4e−01 1.00e + 000.0e+00
LZ09 F8 2.76e − 011.4e−01 2.22e − 016.7e−02 2.54e − 011.5e−01 9.10e − 012.1e−01
LZ09 F9 1.87e − 016.5e−02 7.98e − 023.7e−02 1.05e − 012.3e−02 1.49e − 013.2e−02

UF1 1.54e − 012.4e−02 1.82e − 022.7e−03 5.51e − 022.6e−02 1.30e − 012.8e−02
UF2 9.35e − 022.5e−02 5.53e − 022.4e−02 6.73e − 023.1e−02 1.13e − 012.8e−02
UF3 3.12e − 011.1e−01 4.63e − 026.0e−02 1.40e − 011.1e−01 2.35e − 014.7e−02
UF4 4.95e − 022.5e−03 4.62e − 021.8e−03 5.11e − 025.1e−03 8.27e − 029.8e−03
UF5 3.80e − 017.2e−02 4.25e − 012.0e−01 5.00e − 012.1e−01 1.05e + 003.5e−01
UF6 3.68e − 011.5e−01 4.62e − 013.9e−01 5.30e − 013.0e−01 4.11e − 011.9e−01
UF7 1.33e − 013.5e−01 5.68e − 021.8e−02 7.55e − 023.4e−02 9.68e − 022.7e−02
UF8 3.05e − 014.4e−01 7.13e − 014.5e−01 3.09e − 014.5e−01 8.56e − 011.7e−01
UF9 4.91e − 012.8e−01 5.57e − 014.0e−01 4.58e − 012.1e−01 8.65e − 012.7e−01
UF10 9.31e − 011.3e−01 9.44e − 011.6e−01 8.61e − 011.5e−01 1.97e + 006.4e−01

Table 2. LZ09 benchmark. Median and interquartile range of the IHV indicator.

NSGA-II NSGA-IIr NSGA-IIa NSGA-IIde

LZ09 F1 6.53e − 011.1e−03 6.55e − 016.9e−04 6.55e − 017.2e−04 6.56e − 017.6e−04
LZ09 F2 5.53e − 011.3e−02 6.35e − 019.6e−03 6.25e − 012.1e−02 5.66e − 013.6e−02
LZ09 F3 6.24e − 018.1e−03 6.46e − 013.5e−03 6.41e − 016.5e−03 5.85e − 011.6e−02
LZ09 F4 6.34e − 014.7e−03 6.44e − 012.8e−03 6.48e − 013.8e−03 5.89e − 011.4e−02
LZ09 F5 6.28e − 011.1e−02 6.43e − 011.0e−02 6.41e − 018.5e−03 5.96e − 011.2e−02
LZ09 F6 2.08e − 013.4e−02 2.51e − 012.7e−02 2.89e − 012.9e−02 4.35e − 024.7e−02
LZ09 F7 4.80e − 014.3e−02 6.50e − 014.5e−03 6.37e − 012.9e−02 0.00e + 000.0e+00
LZ09 F8 4.62e − 014.8e−02 5.33e − 013.8e−02 5.00e − 014.4e−02 0.00e + 000.0e+00
LZ09 F9 2.25e − 014.1e−02 2.99e − 011.7e−02 2.88e − 011.8e−02 2.31e − 012.9e−02

UF1 5.73e − 011.9e−02 6.53e − 018.9e−04 6.47e − 017.7e−03 5.78e − 012.9e−02
UF2 6.34e − 018.9e−03 6.47e − 014.4e−03 6.46e − 016.0e−03 5.99e − 011.3e−02
UF3 4.74e − 014.8e−02 6.38e − 012.1e−02 6.00e − 015.7e−02 3.43e − 015.4e−02
UF4 2.64e − 011.4e−03 2.68e − 016.5e−04 2.66e − 012.1e−03 2.34e − 011.4e−02
UF5 1.87e − 018.1e−02 2.39e − 012.1e−01 1.98e − 011.5e−01 0.00e + 000.0e+00
UF6 2.43e − 016.7e−02 2.34e − 011.6e−01 2.39e − 011.6e−01 5.42e − 026.2e−02
UF7 4.41e − 018.8e−02 4.81e − 017.1e−03 4.77e − 014.7e−03 4.51e − 011.9e−02
UF8 1.96e − 019.6e−02 1.08e − 011.4e−01 1.87e − 011.6e−01 0.00e + 003.9e−04
UF9 3.21e − 011.6e−01 1.78e − 013.7e−01 3.94e − 012.0e−01 3.53e − 026.9e−02
UF10 1.73e − 022.3e−02 0.00e + 002.7e−02 3.63e − 026.3e−02 0.00e + 000.0e+00

Regarding the problems of the CEC 2009 competition we can see that the
random NSGA-II variant achieved the best values in five out the seven bi-
objective problems and no best results in the tree-objective instances. The
applied Wilcoxon Rank-sum test showed, however, that the differences with
NSGA-II in problems UF5, UF6, and UF8 were not statistically significant.
NSGA-IIa performed better that NSGA-II in problems UF4, UF5, and UF6,
and it outperformed NSGA-IIr in UF9 and UF10 with confidence in all these
instances.

The values for the IHV are included in Table 2. A simple comparison with the
convergence indicator results (Table 1) shows almost an identical performance of
the algorithms for the LZ09 benchmark; however, the Wilcoxon ranks-sum test
values showed some differences. According to the IHV , NSGA-IIa obtained a bet-
ter value in LZ09 F4 with statistical confidence and the differences in LZ09 F5
are non significant. Some values in Table 2 are 0; this means that the approxima-
tion front produced by the algorithm was beyond the limits of the Pareto front
used to calculate the IHV indicator, so none of the solutions contribute to the
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Fig. 1. Computed approximations for problems LZ09 F2, LZ09 F9, and UF3 with
NSGA-II (left), NSGA-IIr (center), and NSGA-IIa (right)

hypervolume. In the case of the second evaluated benchmark, NSGA-IIr got again
the best figures in most of the bi-objective problems, but it was outperformed by
NSGA-II in the three-objectiveUF8, UF9, andUF10 instances by NSGA-II, being
the differences significant according to the applied statistical methodoly. NSGA-
IIa also yielded best results than NSGA-IIr in the same problems, although the dif-
ferences are not significant in the UF8 problem. Compared with NSGA-II, NSGA-
IIa obtained better values in six out the ten studied problems with confidence, be-
ing the differences in the rest of problems non significant.

To illustrate the performance of our proposals, we include the best Pareto
front approximations found by the NSGA-II and its two variants according to
the IHV in Fig. 1 for problems LZ09 F2, LZ09 F9, and UF3. We can observe
these problems posed a lot of difficulties to NSGA-II, which produced very poor
approximation sets. The extensions of NSGA-II have generated better results in
terms of the quality of the computed fronts, which can be visually stated.
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6 Discussion

From the previous study we can infer some facts. First, it is clear that the com-
bined used of the three chosen operators, in an adaptive or in a random way,
lead to algorithms outperforming NSGA-II in most of the considered problems.
Given that NSGA-IIde does not achieve better results compared with the orig-
inal algorithm (with the exception of the LZ09 F1 problem) we conclude that
the combination of the three operators is the reason of the performance improve-
ments that are obtained by both the NSGA-IIr and NSGA-IIa variants.

The 19 evaluated problems have complex Pareto sets and most of state-of-the-
art Pareto dominance-based MOEAs experiment troubles when solving them, so
the enhancements illustrated by Fig. 1 are remarkable. Consequently, we infer
that the combination of operators has a positive influence in the performance of
the resulting algorithms, allowing a better exploration of the search space, thus
supporting our initial hyphotesis of that the variation operators used in many
MOEAs can be effective in the exploration of certain regions of the search space
of a given problem but not over the whole search space.

Our analysis revealed that the random selection of operators provides overall
better results than the adaptive version in bi-objective problems, while the latter
outperforms the former in three-objective problems. This issue deserves further
research.

7 Conclusions

We have studied two schemes for using variation operators in a combined way
in the NSGA-II algorithm. The first one selects the operators at random, while
the second one takes them in an adaptive way. The considered operators have
been SBX crossover, polynomial mutation, and the DE operator. To assess the
performance of the two combined strategies we have taken 19 multiobjective
problems, two quality indicators, and we have statistically ensured the confidence
of the obtained results. A version of NSGA-II using only the differential evolution
operator has been included for completeness.

The experiments carried out revealed that the combinator of operators en-
hances the performance over the original NSGA-II algorithm. The random
scheme was the most salient variant when solving the bi-objective problems,
while the adaptive algorithm yielded the best results in the three-objective in-
stances. The improvements achieved in many problems are remarkable; therefore,
we conclude that the combined use of variation operators can improve classical
MOEAs, as shown in the context of the experimentation carried out. It is worth
noting that the modifications of the NSGA-II algorithm are kept in a minimum.

As future work, we plan the inclusion of a broader set of operators. The appli-
cation of the analyzed variation schemes to other multi-objective evolutionary
algorithms (e.g., MOEA/D), the study of potential benefits when applying it for
solving scalable problems in the number of variables or objectives, and the in-
vestigation of why the random and adaptive schemes yield, respectively, the best
Pareto front approximations in the bi- and three-objective selected problems are
also a matter of future work.
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4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

5. Huang, V.L., Qin, A.K., Suganthan, P.N., Tasgetiren, M.F.: Multi-objective opti-
mization based on self-adaptive differential evolution algorithm. In: Proceedings of
the 2007 IEEE CEC, pp. 3601–3608 (2007)

6. Huang, V.L., Zhao, S.Z., Mallipeddi, R., Suganthan, P.N.: Multi-objective opti-
mization using self-adaptive differential evolution algorithm. In: Proceedings of
the 2009 IEEE CEC, pp. 190–194 (2009)

7. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using dif-
ferential evolution. In: Australian Conference on Artificial Intelligence, pp. 861–872
(2004)

8. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engineer-
ing and Networks Laboratory (TIK), ETH Zurich (2006)

9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE TEVC 2(12), 284–302 (2009)

10. Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: Towards
online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 252–266. Springer, Heidelberg (2003)

11. Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically
adaptive multimethod search. Proceedings of the National Academy of Sciences of
the United States of America 104(3), 708–711 (2007)

12. Zhang, Q., Suganthan, P.N.: Special session on performance assessment of multi-
objective optimization algorithms/cec 09 moea competition (May 2009)

13. Zhang, Q., Zou, A., Zhao, S., Suganthan, P.N., Liu, W., Tivari, S.: Multiobjec-
tive optimization test instances for the cec 2009 special session and competition.
Technical Report CES-491, School of CS & EE, University of Essex (April 2009)

14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE TEVC 3(4), 257–271 (1999)


	A Study of the Combination of VariationOperators in the NSGA-II Algorithm
	1 Introduction
	2 Previous Related Work
	3 NSGA-II with Combined Operators
	3.1 NSGA-II
	3.2 NSGA-IIr
	3.3 NSGA-IIa
	3.4 NSGA-IIde

	4 Experimentation
	5 Comparison of Results
	6 Discussion
	7 Conclusions
	References




