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Abstract. This work evaluates two different approaches for multicriteria graph
search problems using compromise preferences. This approach focuses search on
a single solution that represents a balanced tradeoff between objectives, rather
than on the whole set of Pareto optimal solutions. We review the main concepts
underlying compromise preferences, and two main approaches proposed for their
solution in heuristic graph problems: naive Pareto search (NAMOA∗), and a k-
shortest-path approach (kA∗). The performance of both approaches is evaluated
on sets of standard bicriterion road map problems. The experiments reveal that
the k-shortest-path approach looses effectiveness in favor of naive Pareto search
as graph size increases. The reasons for this behavior are analyzed and discussed.

1 Introduction
Multicriteria optimization problems involve the consideration of different objectives
that need to be optimized simultaneously. These problems seldom have a single optimal
solution, and in general, many optimal trade-offs between the different objectives can
be considered. The set of rational decisions to the problem is defined by the set of non-
dominated (Pareto-optimal) solutions. A nondominated solution cannot be improved by
other solution in one objective without worsening in at least another one.

However, choosing one among the set of nondominated solutions is a subjective
decision particular to each decision maker. Several approaches have been proposed
to tackle this question. These include goal satisfaction, multiattribute utility theory, or
compromise programming [1]. One of the most popular approaches in multicriteria de-
cision making is based on the use of achievement scalarizing functions. These functions
evaluate a solution according to its distance to a reference point in the objective space
[12]. The most preferred solution is then the closest one to the reference point. Such a
solution is called hereafter a best compromise solution. The reference point can be spec-
ified by the decision maker as her aspiration level on each objective [10]. Otherwise,
the reference point can be the ideal point, defined as the cost of an ideal (but generally
unreachable) solution that would achieve the scalar optimal value for all objectives [14].

In this paper, we consider the problem of determining a best compromise path from
an initial node to a goal node in a graph where the arcs are valued by several objective
functions. In this setting, the value of a path is the componentwise sum of the value of
its arcs. Since a best compromise solution is Pareto optimal (for any rational decision
maker), a simple approach could be a two-step procedure: 1) generate the set of Pareto
optimal paths, and 2) select the best compromise path among them. Efficient algorithms
have been proposed to generate the whole set of Pareto optimal paths [7]. Contrary to
the single objective case, several distinct paths can be (Pareto) optimal on a node. The
number of Pareto optimal paths can even be exponential in the size of the instance [4].
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Pareto dominance tests have to be performed to compare subpaths reaching each
node, requiring significant computation times. More specific approaches have been pro-
posed to directly focus the search on a preferred path with respect to a specific pref-
erence model without generating the whole set of Pareto optimal solutions ([8,2,3]).
Among these, kA∗ relies on an ordered enumeration of the paths (k-shortest-path al-
gorithm) according to a linear scalarizing function, until one obtains the guarantee that
the best compromise path has been found (i.e. already enumerated). Thanks to the use
of a linear scalarization, this approach does not require costly Pareto dominance tests.

In this paper, we compare two different heuristic algorithmic strategies for best com-
promise search in multiobjective graphs. The first one is a two-step procedure based on
standard Pareto search algorithms, like NAMOA∗ [7]. The second one explores the use
of k-shortest-path algorithms to avoid evaluating all Pareto optimal paths in the graph,
as well as performing computationally costly Pareto dominance tests. Preliminary re-
sults [2] showed an advantage in performance for kA∗ against the naive Pareto search
(NAMOA∗) on random graphs with an artificially calculated heuristic. This paper per-
forms a more systematic evaluation of both approaches on sets of standard bicriterion
route planning problems [9,6,5]. The algorithms are provided with the precalculated
Tung-Chew heuristics [11]. The experiments reveal that the k-shortest-path approach
looses effectiveness in favor of naive Pareto search as graph size increases.

Section 2 reviews relevant concepts and previous work that are used in this paper.
After the presentation of the instances in Section 3, the results obtained are shown
in Section 4. Then they are analyzed in Section 5 to exhibit the advantages and the
drawbacks of the two approaches. Finally, some conclusions are summarized in Section
6, leading us to further research perspectives.

2 Related work
2.1 Preliminaries

Let us consider a decision problem where X denotes the set of feasible alternatives and
each feasible alternative x ∈ X is evaluated according to a set of q objective functions
to be minimized fi : X → R, i ∈ {1..q}. Each alternative x is represented in the
objective space by an evaluation vector (vector cost) f(x) = (f1(x), . . . , fq(x)). Let
Y = f(X) denote the set of images of the feasible alternatives of X in the objective
space. The comparison of the elements of X boils down to the comparison of their
vector costs in Y . Let us define the dominance relation (≺) between vectors as follows,

∀y,y′ ∈ Rq y ≺ y′ ⇔ ∀i yi ≤ y′i ∧ y ̸= y′ (1)

where yi denotes the i-th element of vector y.
Given a set of vectors Y , we shall define N (Y ) the set of non-dominated (Pareto-

optimal) vectors in set Y in the following way,

N (Y ) = {y ∈ Y | @y′ ∈ Y y′ ≺ y} (2)

The set N (Y ) is bounded by the ideal point α = (α1 . . . αq) and the nadir point
β = (β1 . . . βq), where αi = miny∈N (Y ){yi} and βi = maxy∈N (Y ){yi} 3.

3 For q = 2 these points are easily obtained by the heuristic precalculation procedure [11]



2.2 Scalarizing functions

Resorting to scalarizing functions amounts to modifying the multiobjective optimiza-
tion problem into a single objective one. Preferential information is taken into account
through parameters used in the scalarizing functions (e.g. weights to define the im-
portance of the objectives). An adequate scalarizing function s is required to have the
following properties: (1) any non-dominated solution can be optimal with respect to s
(with an appropriate choice of parameters); and (2) any optimal solution with respect
to s has to be non-dominated. These requirements ensure that, for any rational decision
maker, the preferred solution can be reached optimizing some scalarizing function.

One of the simplest multicriteria approaches is to define the scalarizing function as
a linear weighted combination of the evaluation vector. Given a set of weights wi, the
goodness or utility of a solution is given by,

u(y) =
∑
i

wi yi (3)

Any solution minimizing u(y) will be non-dominated (second requirement). How-
ever, in general only a subset of all non-dominated solutions can be obtained (the so-
called supported solutions). Some non-dominated solutions cannot be obtained regard-
less of the chosen weights. The first requirement is thus not satisfied.

Achievement scalarizing functions are widely used in multicriteria decision mak-
ing. They estimate the distance of a solution to a reference point using Minkowski’s
distance, or ℓp-norm, defined by:

ℓp(y) = ∥y∥p = (
∑
i

|yi|p)1/p (p ≥ 1) (4)

Different norms are obtained for different values of p. The case for p = 1 is called
Manhattan distance, p = 2 is the Euclidean distance, and p = ∞ is the Chebyshev
distance, which measures the maximum component.

In the absence of further preferential information, and without loss of generality,
we may consider that the preferred solution is the one that minimizes distance to the
ideal point. For example, the Manhattan and Chebyshev distances from a vector y to
the ideal point α are defined respectively as,

∥y −α∥1 =
∑
i

|yi − αi| (5)

∥y −α∥∞ = max
i

|yi − αi| (6)

Notice that any solution that minimizes ℓp distance to the ideal point for some p is
a non-dominated solution (second requirement), except for the case p = ∞ [13]. In the
latter case, there is at least one ℓ∞-optimal solution that is non-dominated, but this may
dominate other ℓ∞-optimal ones. However when p = ∞, any non-dominated solution
can minimize ℓp distance. The first requirement is then satisfied. Actually, there does
not exist any scalarizing function satisfying simultaneously the two requirements [13].
Chebyshev distance appears thus as an adequate achievement function which enables



to reach any potentially preferred solution. We define therefore in the following a best
compromise solution as a solution that minimizes Chebyshev distance to the ideal point.
We use the following scalarizing functions for Manhattan and Chebyshev norms4,

s1(y) =
∑
i

wi(yi − αi) =
∑
i

wiyi −
∑
i

wiαi (7)

s∞(y) = max
i

wi(yi − αi) (8)

where for all i, wi =
δi

βi−αi
and δi is the relative importance of objective i.

2.3 Compromise search with Chebyshev norm

We consider the problem of determining a best compromise path from an initial node to
a goal node in a multiobjective graph with respect to the Chebyshev norm. Notice that
partial solutions evaluated according to the Chebyshev norm do not satisfy Bellman’s
optimality principle [2]. We compare two main general approaches. The first (naive)
approach consists in calculating the set of all nondominated solution costs using a label
setting algorithm like NAMOA∗ [7], and then identifying the optimal solution among
them. This approach is simple, but: (a) requires the calculation of the full Pareto set,
(b) costly Pareto dominance tests must be performed during the search to compare the
current subpaths and keep only the optimal ones. The second approach is an alternative
algorithm based on single-objective k-shortest paths search [2]. The major insight is
that it is possible to devise a weighted linear function that minorates the Chebyshev
distance [2]. For any vector cost y ∈ Rq, it can indeed be easily shown that,

s1(y)

q
≤ s∞(y) (9)

The linearity of the scalarizing function s1 makes it possible to determine the op-
timal path with respect to s1 from optimal (w.r.t. s1) subpaths (exploiting Bellman’s
principle). However, the optimal path with respect to s1 is not necessarily a path which
minimizes the Chebyshev norm. The principle of this approach is then to enumerate the
k best paths with respect to s1 until we are sure to have found the optimal path with
respect to s∞. The procedure can be summarized as follows,

1. Use a k-shortest paths algorithm to generate a sequence of solutions according to
s1. Let us denote by yn the vector cost of the n-th solution found.

2. For each new solution found, calculate its value according to the Chebyshev norm
s∞, keeping the best value found so far, i.e p∗ = minns

∞(yn).
3. Stop searching as soon as a newly found solution ym satisfies s1(ym)

q > p∗.
4. Return the solution that achieved the optimal value of p∗. Path p∗ is optimal since

for any r > m, s1(yr)
q ≥ s1(ym)

q > p∗ and by (9) we have s∞(yr) ≥ s1(yr)
q .

Since the k-best search is performed on a single objective version of the problem, no
Pareto dominance tests are performed during the search. In the following, we evaluate
this approach using kA∗, a variant of A∗ that calculates k-shortest paths [2]. More
precisely, we improve kA∗ to avoid cyclic paths, which can obviously never lead to
non-dominated solutions. Otherwise, performance would be quite poor in our test sets.

4 Note that if we are evaluating solutions (not partial solutions), then by definition we have
∀i 0 ≤ αi ≤ yi.



3 Experiments
The algorithms have been tested on different classes of problem sets taken from the mul-
tiobjective search literature: bidimensional grids with random costs, and random route
planning problems on road maps. In all cases, the algorithms were provided with pre-
calculated heuristic functions as described by Tung and Chew [11]. These are obtained
from ideal optimal values for both objectives calculated with reverse scalar searches,
which are computationally much less costly than subsequent multicriteria searches [6].

The first test set involves square grids, like those described in [6]. A vicinity of four
neighbours is used. Bidimensional costs are random integers in the range [1, 10]. Start
node is placed at the center of the grid. For a grid of size d × d, the goal is placed at
depth d. Depth varies from 10 to 100 in steps of 10 with 10 problems for each size,
i.e., there are 100 problem instances. Thus, the total number of nodes and arcs for the
largest-sized grids (200× 200) is 40000 and 159200 respectively. The average number
of Pareto-optimal solution paths for the ten largest problems (200× 200) is 124.8.

The second test set is taken from the work of Raith and Ehrgott [9]. This consists of
three modified road maps from the ‘9th DIMACS Challenge on Shortest Paths’: Wash-
ington DC (DC), Rhode Island (RI), and New Jersey (NJ). These include integer cost
values for two different objectives: time and distance. The maps include a Hamiltonian
cycle that guarantees all nodes are connected. Nine random problems are defined for
each map. The size of the maps and the average number of distinct Pareto-optimal costs
are displayed in table 1.

The final test set consists of fifty random problems over the unmodified New York
City (NY) map from the DIMACS Challenge presented at [5]. The hardest road map
problems tested for the algorithms appear in this problem set, as reflected in the average
number of distinct Pareto (see table 1).

In all cases, problem instances were solved with a 1h time limit. The algorithms
were implemented in ANSI Common Lisp using LispWorks 6.0 Enterprise 64 bits. The
first and third test sets were run on a Sun Fire X4140 server with 2 six-core AMD
Opteron 2435 @ 2.60GHz processors and 64 Gb of RAM, under Windows Server 2008
R2 Enterprise (64-bits). In the second test set, the algorithms were run on a Windows 7
64-bit platform, with an Intel Core2 Quad Q9550 at 2.8Ghz, and 4Gb of RAM.

4 Results

Regarding the grid test set, figure 1 shows average execution times as a function of solu-
tion depth (averaged for the ten random problems available for each depth). NAMOA∗

displays a steady growth of time requirements. In general kA∗ provides better results
except for the hardest problems. Table 2 details the execution times for each of the ten
problems at depth 200. Most of the problems are solved rather quickly. However, two of
them have very large time requirements referred to their actual nondominated solutions.

Regarding the modified road map test sets (DC, RI, and NJ) maps, each problem
was solved in ten different runs. Figure 2 shows average execution times in logarithmic
scale. Problem instances in the abscissa axis are ordered by increasing value of ordi-
nate for NAMOA∗. Values not displayed exceeded 1h time limit. In the NY City map,
NAMOA∗ was able to solve all 50 instances, against only 15 of them by kA∗ under the
time constraints. Algorithm kA∗ was faster than NAMOA∗only in 3 of them (Fig. 4).



Name Location Nodes Arcs Avg. nondom. costs
DC Washington D.C. 9,559 39,377 3.33
RI Rhode Island 53,658 192,084 9.44
NJ New Jersey 330,386 1,202,458 10.66
NY New York City 264,346 730,100 198.62

Table 1. Size of road maps used in the test sets, and average number of nondominated solution
costs (DC, RI, and NJ as taken from [9], NY as taken from [5]) .
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Fig. 1. Average execution times for the square grid problem set, as a function of goal depth.

5 Discussion
The execution time of kA∗ is much less predictable than that of NAMOA∗. This is
quite evident from the grid data set, where solution depth can be easily controlled for
experimental purposes. In the ten 200×200 grid instances, differences of three orders of
magnitude in execution time can be observed for different problems. Table 2 provides
valuable information regarding the performance of kA∗. For example, in the hardest
instances (#3 and #8), the number k of solution paths examined grows to 3280 and
2992 respectively. The number of distinct solution vector costs found was 164 and 154.
Therefore, the average number of solution paths for each distinct vector cost raises to
20, which makes the algorithm much less competitive in these instances. The table also
shows the number of nondominated solution vector costs among those explored by kA∗.

Problem Time (sec.) k Sol. vector costs Avg. paths per sol. cost Nondom sol. vector costs
1 0.1560 164 81 2.02 23
2 1.0140 382 101 3.78 41
3 57.6270 3280 168 19.52 44
4 0.0940 40 24 1.66 16
5 0.5460 101 36 2.80 16
6 0.8890 530 141 3.75 37
7 0.7800 160 51 3.13 37
8 43.0090 2992 160 18.70 33
9 0.1720 75 35 2.14 17
10 6.8320 808 65 12.43 27

Table 2. Data of kA∗for each problem instance of the grid test set (200× 200 grids).
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Fig. 2. Time results on modified DIMACS road map problems (DC - top, RI - center, NJ - bottom).
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Fig. 3. Analysis of 200× 200 grid instance #8: (top) Solution vector costs in cost space; (center)
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The number of labels explored by kA∗ at each node can increase sharply. This can be
attributed to the exponential worst case behavior of the algorithm, i.e. in some problem
instances there can be a combinatorially large number of paths with the same vector
cost. All of them are explicitly explored by the k-shortest-path approach. In contrast,
NAMOA∗ can be guaranteed to explore the same label for each node only once [7].

Let us analyze instance #8 in more detail. Figure 3(top) displays a portion of cost
space with the distinct solution vector costs explored by kA∗. Figures 3(center) and
3(bottom) show the number of label expansions for each node in the bidimensional grid
for NAMOA∗and kA∗. NAMOA∗ explores a larger portion of the grid. The number
of nondominated vector costs grows polynomially with depth and, since NAMOA∗

explores each one only once, the overall number of label expansions is much lower.
On the other hand, kA∗ explicitly explores many different paths with the same vector
costs or the same value with respect to s1 (some of them dominated). The explored
portion of the grid is much smaller, and the number of dominated solution vector costs
is marginally larger. However, the overall search effort is much higher. This indicates
that kA∗ could be improved if only a single label were explored at each node for each
different vector cost, as happens in NAMOA∗.

The inability of kA∗ to solve instance 9 in the NJ map in the given time is also an
example of this unpredictability. Results on the NY City map provide further confir-
mation. Finally, results on road map problems indicate that the performance of kA∗ is
worse than that of NAMOA∗ in the hardest instances.

6 Conclusions and future work
This paper compares two approaches described in the literature for the calculation of a
best compromise path in a multiobjective graph. The first one uses NAMOA∗, a mul-
tiobjective generalization of A∗, to calculate the Pareto set and then determine the best
compromise solution. The second one relies on kA∗, a k-shortest-paths variant of A∗,
improved here to avoid cycles. This approach needs to consider dominated paths, but
avoids Pareto dominance checks. Earlier tests on small sized problems showed and ad-
vantage for the second approach [2]. We perform a more systematic evaluation on a va-
riety of standard problem sets taken from the literature. These comprise random grids
as well as realistic route planning problems in road maps. An analysis of the results
shows that kA∗ can indeed be faster in the simpler instances, but looses effectiveness in
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Fig. 4. Time results (in seconds) on the NY City map.



favor of the full Pareto approach as graph size (and hence, problem difficulty) increases.
The data also show that the time performance of kA∗can be quite unpredictable. This is
attributed to the combinatorial nature of the problem, since in some problems there can
be a large number of paths with the same vector cost.

Another linear function different to s1/q could be used to lower bound s∞. Indeed
1/q is not the only weight that could be used. Actually we have

∑
i λiwi(yi − αi) ≤

s∞(y) for any nonnegative λ such that
∑

i λi = 1. The number of enumerated solutions
depends on the choice of λ. A further study should take this issue into account.

A better understanding on performance of the two very different approaches (kA∗and
NAMOA∗) would make it possible to design a more efficient and more robust algorithm.
In particular, cycle avoidance allows effective pruning of some dominated paths on grids
and road maps. Other new enhancements of the k-shortest-paths approach should be
further investigated. In particular, a variant that only explores the k shortest paths with
different vector costs is an interesting avenue of future reseach. Our results suggest that
a k-shortest-path approach where each label is explored only once for each node, as
happens in standard Pareto search, could yield a much more effective algorithm.
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