

Book of Abstracts

EMSLIBS 2013 Bari (Italy) September 16-20, 2013

7th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy

O_12 Laser-Induced Plasma Spectroscopy Of Organic Compounds: Understanding Fragmentation Processes Using Ion-Photon Coincidence Measurements

T. Delgado, José M. Vadillo, J. Javier Laserna*

Department of Analytical Chemistry, University of Málaga, 29071 Málaga, Spain *laserna@uma.es, Ph. +34 952131881, Fax: +34 952132000

Coincident detection is of interest to get as much information as possible about transient events occurring in laser induced plasmas. The present work is focused on coincident ion-photon detection of laser plasmas of high-energy organic compounds (TNT and DNT) in condensed phase irradiated with UV laser pulses using an advanced instrument for simultaneous monitoring of both type of chemical species generated. These compounds presented a similar fragmentation pattern in time-of-flight mass spectra in the low-mass region and analogous features in emission LIBS spectra. The optical emission spectrum is acquired from atoms, atomic ions and diatomic molecules, whereas the mass spectrum derives from fragment ions of the molecule. These fragments result from direct ionization or may be formed through indirect pathways. Fluence-resolved experiments showed the evolution of the main optical-mass signals in the acquired spectra for a limited energetic range, showing the different stages of lifetime of plasma: the rising thresholds and extinction of the different atomic and molecular studied species, besides the breakage of the aromatic ring and the later excitation of ionic species at higher fluence level. A good agreement between the trends of the emission and mass atomic species (H, C, N and O) was found out, indicating a high correlation between both processes in the time and energetic scales. As for molecular species, the observed trends were different for diatomic ion signals $({}^{24}C_2^{+})$ and ${}^{26}CN^+/C_2H_2^+)$ and emission of molecular bands C₂ and CN mainly due to differences in the energetic regime of excitation and ionization processes.

Toschi F.	P_073
Toshimitsu M.	P_081
Trautner S.	P_037
Tunarosa F.	P_064
Tuttafesta M.	O_66
Vadillo J.M.	O_12
Vadillo J.M.	P_052
Vadillo J.M.	P_053
Vadillo J.M.	P_054
Vadillo J.M.	P_055
van Maarschalkerweerd M.	O_56
Veis P.	P_032
Veis P.	P_038
Veis P.	P_093
Vinic M.	P_042
Vitesnikova A.	P_039
Vitkova G.	P_039
Vítková G.	P_069
Vogel A.	O_18
Wagatsuma K.	P_045
Wakaida I.	O_52
Wakaida I.	P_071
Wakaida I.	P_081
Wang Z.Z.	O_62
Wang Z.Z.	P_094
Wattieaux G.	O_35
Weiss J.	P_095
Wendelen W.	O_65
Wiens R.	O_46
Wiens R.C.	O_42
Wiens R.C.	O_47
Wiens R.C.	O_48
Wilkie-Chancellier N.	O_38
Wilsch G.	O_57
Wilsch G.	P_096
Wolfmeir H.	O_61
Wolfmeir H.	P_037
Xiu J.S.	O_27
Xiu J.S.	O_44
Xiu J.S.	P_100
Yahiaoui K.	P_066
Yalçın Ş.	P_097
Yan J.J.	O_62
Yan J.J.	P_094
Yan J.J. Yan J.J.	O_62 P_094

V-	wate Chan V	0.02
	ivels-Cheff I.	U_02
Ye	eşiller S.U.	P_097
Y1	n W.	P_104
Y	oh J.J.	0_43
Y	bh J.J.	O_74
Y	oh J.J.	P_098
Y	ю J.	O_01
Y	bo J.	P_059
Yι	ı H.	O_45
Yι	ı J.	O_13
Yι	ı J.	O_27
Yι	ı J.	O 40
Yı	ı J.	0 44
Yı	ı J.	0 77
Yı	ian Y	P 102
Y	le Cai B	P 017
Y ₁	ulmetov R N	P 103
	urdenur-Tesel F	P 000
	roughib V I	D 102
		F_103
		P_009
Za	iccone C.	P_083
Za	yarniy D.A.	P_103
Za	lytsev S.M.	P_050
Za	ytsev S.M.	P_051
Za	ytsev S.M.	P_078
Za	ytsev S.M.	P_099
Ze	kri A.R.	P_105
Zh	ang B.	O_45
Zh	ang L.	P_104
Zh	e W.	O_11
Zh	eng R.E.	P_100
Zh	leng R.E.	P_101
Zh	leng R.E.	P_102
Zh	iou Z.	P 107
Zi	kmund T.	0 71
Zi	kmund T.	P 044
Zi	zak G.	0 32
Zo	orba V	0 01
	rov N	P 099
	rov N R	P 050
	$\frac{1}{100} N R$	P 050
	$\frac{100 \text{ IV.D.}}{100 \text{ IV.D.}}$	D 079
	10v IN. D .	1_0/0
1		