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Abstract

This paper presents a procedural content generator method that have
been able to generate aesthetic maps for a real-time strategy game. The
maps has been characterized based on several of their properties in order
to define a similarity function between scenarios. This function has guided
a multi-objective evolution strategy during the process of generating and
evolving scenarios that are similar to other aesthetic maps while being
different to a set of non-aesthetic scenarios. The solutions have been
checked using a support-vector machine classifier and a self-organizing
map obtaining successful results (generated maps have been classified as
aesthetic maps).

1 Introduction

The video-game industry has become one of the most important component
in the entertainment business, with a total consumer spent of 24.75 billion US
dollars in 2011 [5]. The quality and appealing of video-games used to rely on
their graphical quality until the last decade, but now, their attractiveness has
fallen on additional features such as the music, the player immersion into the
game and interesting story-lines. It is hard to evaluate how much amusing a
game is because this evaluation depends on each player, nevertheless there is a
relationship between player satisfaction and fun.

Procedural Content Generation (PCG) [12] includes algorithms and tech-
niques dedicated to produce game content automatically, providing several ad-
vantages to game developers, such as reduced memory consumption, the pos-
sibility of create endless video-games (i.e. the game changes every time a new
game is started) and a reduction in the expense of creating the game content.
These benefits are well known by the industry as demonstrated by the use of
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PCG techniques during the development of commercial games such as Border-
lands, Borderlands 2, Minecraft and Spore.

Search-based procedural content generation [22] (SBPCG) techniques apply
a generate and test scheme, that is, the content is firstly generated and then
evaluated according to some criteria. This evaluation sets the quality level
of the generated content automatically. Then, new content is created based on
previous evaluations. This process, which should be automated, is repeated until
the content reach a certain quality level, hence making evolutionary algorithms
a perfect tool for this process. In this work we have used a SBPCG technique
to generate aesthetic maps for a real-time strategy (RTS) game. This method
is based on a multi-objective evolution strategy that generate maps which are
similar to other aesthetic maps and different from other non-aesthetic maps at
the same time.

2 Background

Real-time strategy games offer a large variety of fundamental AI research prob-
lems [1] such as adversarial real-time planning, decision making under uncer-
tainty, opponent modelling, spatial and temporal reasoning and resource man-
agement. This genre of game has been widely used as a test-bed for AI tech-
niques [14]. Planet Wars is a real-time strategy game based on Galcon and used
in the Google AI Challenge 2010. The objective is to conquer all the planets on
the map or eliminate all the opponents. Games take place on a map on which
several planets are scattered. These planets are able to host ships and they
can be controlled by any player or remain neutral if no player conquer them.
Moreover, planets have different sizes, a property that defines their growth rate
(i.e., the number of new ships created every time step, as long as the planet
belongs to some player). Players send fleets of ships from controlled planets to
other ones. If the player owns the target planet the number of fleet’s ships is
added to the number of ships on that planet, otherwise a battle takes place in
the target planet: ships of both sides destroy each other so the player with the
highest number of ships owns the planet (with a number of ships determined by
the difference between the initial number of ships). The distance between the
planets affects the required time for a fleet to arrive to her destination, which is
fixed during the flight (i.e., it is not possible to redirect a fleet while it is flying).

PCG for Planet Wars involves in this case generating the maps on which
the game takes place. The particular structure of these maps can lead to games
exhibiting specific features. In previous work [15, 16] we focused on achieving
balanced (i.e., games in which none of the players strongly dominates her op-
ponent) and dynamic (i.e., action-packed) games. PCG techniques are usually
employed to generate maps, as exhibited by the large number of papers on this
topic [12]. For example, Mahlmann et al. [18] presented a search-based map
generator for an simplified version of the RTS game Dune, which is based on
the transformation of low resolution matrices into higher resolution maps by
means of cellular automata. Frade et al. introduced the use of genetic pro-
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gramming to evolve maps for videogames (namely terrain programming), using
either subjective human-based feedback [9, 10] or automated quality measures
such as accessibility [8] or edge-length [11]. Togelius et al. [21] designed a PCG
system capable of generating tracks for a simple racing game from a parameter
vector using a deterministic genotype-to-phenotype mapping.

Maps are not the only content that is generated with these methods. For
example, Font et al. [6] presented initial research regarding a system capable
of generating novel card games. Collins [2] made an introduction to procedural
music in video games, examining different approaches to procedural composition
and the control logics that have been used in the past. The authors of [19]
have created a prototype of a tool that automatically produce design pattern
specications for missions and quest for the game Neverwinter Nights.

3 Materials and methods

As stated before, this work focuses on the design of aesthetic maps for the RTS
game Planet Wars. This section describes the mechanisms that helped us to
achieve our goal: firstly, there is a description about how the maps have been
represented and characterized in order to get better aesthetics; next, there is a
detailed explanation of the evolutionary algorithm used to generate the maps.

3.1 Representation and characterization

Game’s maps are sets with a certain number of planets np located on a 2D
plane. These planets are defined by their position on the plane (coordinates
(xi, yi)), their size si and a number of ships wi. The size si defines the rate
at which a planet will produce new ships every turn (as long as the planet
is controlled by any player) while the remaining parameter, wi, indicates the
number of ships that are defending that planet. Hence, we can denote a map as
a list [~ρ1, ~ρ2, · · · , ~ρnp ], where each ~ρi is a tuple 〈xi, yi, si, wi〉. A playable map
needs to specify the initial home planets of the players, which have been fixed
as the first two planets ~ρ1 and ~ρ2 because of simplicity. The number of planets
np is not fixed and should range between 15 and 30 as specified by the rules of
the Google AI Challenge 2010. This variable number of planets makes part of
the self-adaptive evolutionary approach described later on.

In order to evaluate the generated maps’ aesthetics , we have defined several
measurements that characterize them. These are indicators related to the spatial
distribution of the planets and their features, such as size and number of ships:

• Planet’s geometric distribution: Let ~pi = (xi, yi) be the coordinates of the
i-th planet and N the total number of planets, so we defined the average
distance between planets µd and the standard deviation of these distances
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σd as follows:

µd =
1

N2

N∑
i=1

N∑
j=1

‖~pi − ~pj‖ (1)

σd =

√√√√ 1

N2

N∑
i=1

N∑
j=1

(‖~pi − ~pj‖ − µd)2 (2)

• Planet’s features: Let si and wi be the size (i.e. growth rate) and number
of ships, respectively, of the i-th planet, then we specified the average
and standard deviation of these sizes (µs and σs respectively) and the
Pearson’s correlation between the planet’s size and the number of ships
on it ρ as follows:

µs =
1

N

N∑
i=1

si (3)

σs =

√√√√ 1

N

N∑
i=1

(si − µs)2 (4)

ρ =

∑N
i=1 siwi −Nµsµw

Nσsσw
(5)

where µw and σw are the average and standard deviation of ships, respec-
tively.

These measures has been applied to compare the likelihood between maps
in the following way: each map is characterized by a tuple 〈µd, σd, µs, σs, ρ〉,
then the euclidean distance between these tuples defined the similarity among
the planets they represented. Additionally, we specified two sets of maps, one
of them containing 10 maps with good aesthetics and the other one including 10
non-aesthetic maps. These sets made up a baseline to compare with in a way
that the goal of generating aesthetic maps turned into an optimization problem
about minimizing the distance between generated and aesthetics maps while
maximizing their distance to non-aesthetic maps. The latter was necessary to
insert diversity into the set of generated maps in order to avoid the generation
of maps that were very similar to the aesthetic ones.

3.2 Evolutionary map generation

This procedural map generator used a multi-objective self-adaptive (µ+λ) evo-
lution strategy (with µ = 10 and λ = 100) whose objectives were to reduce
the distance between the generated maps and those considered aesthetics and
to increase the distance to non-aesthetic maps, in order to obtain procedurally
generated aesthetic maps. Mixed real-integer vectors represented the solutions
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(i.e., planets): planet’s coordinates (xi, yi) are real-valued numbers but sizes si
and initial number of ships wi are positive integers.

Due to this situation we have considered a hybrid mutation operator that
performed different methods for parameters of either type: for real-valued pa-
rameters, it used a Gaussian mutation; as for integer variables, it considered a
method that generates suitable integer mutations [17, 20] – see also [16]. The
latter is similar to the mutation of real values but it uses the difference of two
geometrically distributed random variables to produce the perturbation instead
of the normal distributed random variables used by the former. In either case,
the parameters that ruled the mutation were also a part of the solutions, thus
providing the means for self-adapting them. More precisely, regarding real-
valued parameters 〈r1, ..., rn〉 they are extended with n step sizes, one for each
parameter, resulting in 〈r1, ..., rn, σ1, ..., σn〉. The mutation method is specified
as follows:

σ′i = σi · eτ
′·N(0,1)+τ ·Ni(0,1) (6)

r′i = ri + σi ·Ni(0, 1) (7)

where τ ′ ∝ 1/
√

2n, and τ ∝ 1/
√

2
√
n. A boundary rule is applied to step-sizes

to forbid standard deviations very close to zero: σ′i < ε0 ⇒ σ′i = ε0 (in this
algorithm, σ0 comprises a 1% of the parameter’s range). In the case of integer-
valued parameters 〈z1, ..., zm〉 they are extended in a similar way as are real-
valued parameters, resulting in 〈z1, ..., zm, ς1, ..., ςm〉. The following equations
define the mutation mechanism:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1)) (8)

ψi = 1− (ς ′i/m)

1 +

√
1 +

(
ς ′i
m

)2
−1 (9)

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−
⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
(10)

where τ = 1/
√

2m and τ ′ = 1/
√

2
√
m.

We considered a “cut and splice” recombination operator that recombines
two individuals by swapping cut pieces with different sizes. This operator se-
lects one cut point for each individual and then exchanges these pieces, getting
two new individuals with a different number of planets in relation to their par-
ents. This endows the algorithm with further self-adaptation capacities, hence
affecting the complexity of the maps, i.e., the number of planets in the solutions.

As described in section 3.1, we characterized every map as a vector of five
elements so the euclidean distance between these vectors measures the likelihood
between them, hence the fitness function used to evaluate the individuals is,
precisely, the median euclidean distance from the individual to every map from
the set of aesthetics (minimization objective) and non-aesthetics (maximization
objective) maps.
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Considering that we had a multi-objective optimization problem, we decided
to use the selection method of the Non-dominated Sorting Genetic Algorithm
II (NSGA-II ) [4].

4 Experimental Results

We have used the DEAP library [7] to implement the aforementioned algorithm.
We have run 20 executions of the algorithm during 100 generations each. We
have also computed the cumulative non-dominated set of solutions from every
execution – see figure 1. As we can see, there is a linear relationship between
both distances in the middle range of the front. This hints at the density of the
search space and the feasibility of linearly trading increasing distance to good
maps by increasing distance to bad maps.
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Figure 1: Cumulative set of non-dominated generated solutions (circle) and
maps from aesthetic (triangle) and non-aesthetic (square) baseline sets.

Figure 2 shows how are distributed the values of the different variables that
make up the characterization vector of a map. Note that there are some variables
that are similar in both aesthetics and non-aesthetic maps, such as σd and σs.
However, this variable is higher in the case of the non-dominated maps, which
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Figure 2: Characterization variables for both non-dominated and baseline maps

Figure 3: Map’s distribution over the SOM. Red for non-aesthetic, green for
aesthetic and blue for non-dominated.
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should explain the high distance between many solutions in the front and the
baseline maps, as seen in figure 1. Another interesting observation is the highly
distributed values of µd in the non-dominated maps, which probably means that
this variable has an uncertain effect over the fitness and hence the search space
for this variable is wider with respect to other variables.

In order to check the validity of the generated maps, we built a support
vector machine [3] (SVM) to classify maps (namely, characterization vectors) as
aesthetic and non-aesthetic. Support vector machines are supervised learning
models that recognize patterns and analyze data. They are able to perform
linear and non-linear classification. The SVM was trained using the same sets
of maps that the evolutionary algorithm has used to calculate the fitness. This
SVM classified as aesthetic every map out of the 4289 non-dominated maps,
which led us to think that the algorithm is capable of generating aesthetic
maps.

In addition to the aforementioned classifier, we created a self-organizing map
(SOM) [13] with 32×32 process units over a non-toroidal rectangular layout, us-
ing the same maps as the training set. Self-organizing maps are artificial neural
networks that are trained using unsupervised learning to generate a discretized
representation of the input space. As we can see in figure 3, this SOM estab-
lished a separation between non-aesthetic (red zones, upper-right) and aesthetic
maps (green zones, lower-left). Moreover, generated maps (blue zones) shared
the same region as aesthetic maps, hence they should be considered aesthetic
as well.

5 Conclusions

We have performed an initial approach towards the procedural aesthetic map
generation for the RTS game Planet Wars. We have defined a method of map
characterization based on several of its maps’ geometric and morphologic prop-
erties in order to evaluate how aesthetic a map is. We have used two sets of
maps (aesthetics and non-aesthetics) as a baseline to compare with, and an
evolution strategy whose objectives are minimize and maximize the distance of
the generated maps to the aesthetics and non-aesthetics maps of the baseline.
The solutions have been tested with a SVM and a SOM. The SVM has classified
each solution as aesthetic while the SOM was able to make a separation between
aesthetic and non-aesthetic maps (the generated maps shared the same region
as the aesthetic maps).

We have used a geometric characterization of the maps (namely planets’
coordinates), which means that this characterization is affected by rotation,
translation and scaling, thus suggesting the use of other kind of measurements,
such as topological variables, as a potential line of future research.
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Figure 4: Examples of generated maps
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