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Riemann and Lorentz manifolds
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Let M be a differentiable n-manifold and g a nondegenerate symmetric
(0, 2)-tensor of constant index ν on M. (semi-Riemannian manifold)

If ν = 0, then (M, g) is called a Riemann manifold.

At every point p ∈ M, TpM is endowed with an inner product as the
Euclidean n-dimensional space (En) has.

If ν = 1, then (M, g) is called a Lorentzian manifold.

...TpM is endowed with a scalar product as the Lorentz-Minkowski
n-dimensional space (Ln) has.

Ln = (Rn, 〈 , 〉), 〈x , y〉 = −x1y1 + x2y2 + ...+ xnyn.
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Spheres in TpM (Riemann)

g(v , v) = r2 > 0

”Spheres ”in TpM (Lorentz)

lightlike... spacelike... and timelike tangent vectors

g(v , v) = 0, v 6= 0 g(v , v) = r2 > 0 or v = 0 g(v , v) = −r2 < 0
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The ”miracle” of semi-Riemannian Geometry

...there is a unique affine connection ∇ with no torsion and compatible
with the metric tensor g . ∇ is called the Levi-Civita connection.

Tullio Levi-Civita (1873-1941)

A curve γ is said to be a geodesic whenever ∇γ′γ′ = 0.
Riemann and Ricci curvature tensors

R(X ,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z
Ric(v ,w) = trace{R( , v)w}

Scalar curvature

S(p) =
∑n

i=1 εiRic(ei , ei ), p ∈ M
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Sectional curvature
If Π = Span{x , y} ⊂ TpM is a two dimensional linear space such that g |Π
is nondegenerate,

K (Π) =
g(R(x , y)y , x)

g(x , x)g(y , y)− g(x , y)2

Lightlike sectional curvature (only for Lorentzian manifolds)
Fix a timelike vector field T , that is g(T , T ) < 0. Let us consider
Π ⊂ TpM a two dimensional linear space such that g |Π is degenerate1 ,

KT (Π) =
g(R(x , v)v , x)

g(x , x)
,

where Π = Span{v , x} with g(v , v) = 0 and g(v , Tp) = 1.

1S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ.
Math. J., 31(1982), 289–308.
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Riemannian manifolds
1 Every M admits a Riemannian metric.

2 For M connected, geodesically complete ⇔ complete as metric space.
(Hopf-Rinow)

d(p, q) = Inf
{

L(α) =
∫ d
a g(α

′
, α

′
)1/2dt : α ∈ Ω(p, q)

}
.

M compact ⇒ complete and Iso(M) compact.

3 M connected and geodesically complete ⇒ geodesically connected.

Bernhard Riemann (1826-1866)
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There is no Hopf-Rinow type theorem in Lorentzian geometry!!

Lorentzian manifolds
1 M admits a Lorentzian metric if and only if M is not compact or
χ(M) = 0.

2 There are compact Lorentzian manifolds which are not (geodesically)
complete and Iso(M) may be non compact.

3 ...and complete does not imply geodesically connected.

4 If M is homogeneous and compact, then M is complete.

Hendrik Antoon Lorentz (1853-1928)
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Two remarkable results in Lorentzian geometry...

T ∈ X(M) is said to be conformal when LT g = 2σ g and Killing if σ = 0.

Every compact Lorentzian manifold (M, g) which admits a timelike
conformal vector field T is geodesically complete.2

Every compact Lorentzian manifold (M, g) with constant sectional
curvature K = c is geodesically complete. 3

2A. Romero and M. Sánchez, Completeness of compact Lorentz manifolds admiting a
timelike conformal-Killing vector field, Proc. Amer. Math. Soc., 123 (1995),
2831–2833.

3B. Klinger, Completude des varietes lorentziennes á courbure constante, Math.
Ann., 306(1996), 353–370.
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...and two amazing results.

There is no compact Lorentzian manifold (M, g) with constant
sectional curvature K = c > 0.

For n = 2 is a direct consequence of the Lorentzian ”Gauss-Bonnet
formula”.
For n ≥ 3 we have π1(M) = Γ is finite4 ⇒ M ≈ Sn

1/Γ.

Let (M, g) an n(≥ 3)-dimensional Lorentz manifold. Assume the
sectional curvature K is bounded from below or from above. Then K
is a constant.5

4E. Calabi and L. Markus, Relativistic space forms, Ann. of Math., 75(1962), 63–76.
5R. Kulkarni, The values of sectional curvature in indefinite metrics, Comment.

Math. Helv., 54(1979), 173–176.
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Lorentzian Geometry is the mathematical theory of General Relativity.

” A gravitational field may be effectively modelled by some Lorentzian
metric g defined on a suitable Lorentzian manifold ”

Ric− 1
2
S g + Λ g = 8πT

The viewpoint of Global Differential Geometry began around 1970.

Singularity Theory.

Causality Theory.

Nowadays, the study of geometrical problems arisen in Lorentzian
Geometry have become a proper branch of Differential Geometry.
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Section 2
Conjugate points along

lightlike geodesics
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Let (M, g) be a semi-Riemannian manifold with Levi-Civita connection ∇
and curvature tensor R. Fix γ a geodesic (∇γ′γ

′
= 0).

J ∈ X(γ) is said to be a Jacobi vector field when

∇2J

dt2
+ R(J, γ′)γ′ = 0.

γ(a) and γ(b), (a 6= b), are conjugate points along γ if there is a
Jacobi vector field J 6= 0 such that

J(a) = 0, J(b) = 0.

When γ(a) and γ(b) are conjugate points, there is a variation
x : [a, b]× (−δ, δ)→ M of γ such that every longitudinal curve is a
geodesic and the transversal curves xa(t) = x(a, t) and
xb(t) = x(b, t) satisfy

x
′
a(0) = x

′
b(0) = 0.
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Conjugate points in Riemannian geometry

Let (M, g) be a connected Riemannian manifold.

1 If γ(0) = p and γ(a) are conjugate points and γ is arc length
parametrized, then

d(p, γ(a + ε)) < a + ε = L(γ |[0,a+ε]).

2 A = {s > 0 : d(p, γ(s)) = s} ⊂ R ⇒ A = (0, r ] or A = (0,+∞).

γ(r) is called a cut point of p along γ.

”The first cut point arrives before than the first conjugate point”
(Klingenberg, 1959) Assume q is a cut point of p and
d(q, p) = d(q,C (p)). If q is not conjugate along a minimizing
geodesic connecting p to q, then q is the midpoint of a geodesic loop,
starting and ending at p.

Francisco José Palomo Ruiz Conjugate points along lightlike geodesics...15/40



Riemann and Lorentz manifolds
Conjugate points along lightlike geodesics

Integral inequality
Lorentzian odd dimensional spheres

Conjugate points in Lorentzian geometry...

Let (M, g) be a connected Lorentzian manifold.
Conjugate points are classified into spacelike, timelike and lightlike.

A causality Theorem

Let γ be a lightilke geodesic starting at γ(0) = p. Assume there is a
conjugate point along γ strictly before to γ(b) = q. Then there is a
timelike curve from p to q.

1 If γ(0) and γ(a) are conjugate points along a lightlike geodesic γ,
then there is variation x of γ with longitudinal curves lightlike
geodesics too.

2 Every Lorentz surface has no conjugate points on its lightlike
geodesics.

3 A Lorentz manifold of constant sectional curvature has no conjugate
point on lightlike geodesics. The converse is not true.
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...and conformal changes of the metric.

For a Lorentzian metric g consider g f = e2f g ...

∇f
XY = ∇XY + Xf Y + Yf X − g(X ,Y )∇f , X ,Y ∈ X(M).

...and let γ be a lightlike geodesic...

∇f
γ′γ
′ = 2γ′(f )γ′ ⇒ γ is a g f − pregeodesic.

Assume γ ◦ τ is a g f -geodesic.

p = γ(0) = γ ◦ τ(s0), q = γ(a) = γ ◦ τ(s1)

p and q are conjugate along γ if and only if are conjugate along γ ◦ τ .

The lightlike conjugate locus is a conformal invariant
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Physical interpretation... gravitational lensing
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Two fiber bundles over Lorentzain manifolds
The main result

Section 3
Integral Inequality
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Two fiber bundles over Lorentzain manifolds
The main result

Lightlike congruence associated to a timelike vector field T

CTM = {v ∈ TM : g(v , v) = 0 and g(v , T ) = 1}

(CTM)p = TpM ∩ CTM

CTM can be seen as the bundle of lightlike directions of M.
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Two fiber bundles over Lorentzain manifolds
The main result

π : CTM → M is a fiber bundle with fiber (CTM)p ∼ Sn−2.

A key result...

CTM can be endowed with a Lorentzian metric ĝ in a such way that
π : CTM → M is a Lorentzian submersion with spacelike fibers.

1 (CTM)p inherits a Riemannian metric and

2 π∗ :
[
(CTM)p

]⊥
→ TpM is an isometry for every p ∈ M.

T conformal, LT g = 2σ g

⇓

CTM is invariant by the geodesic flow Zg (v) = dγ′v
dt |0 , v ∈ CTM.

divbgZg = 0 .
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Two fiber bundles over Lorentzain manifolds
The main result

Fiber bundle of two dimensional degenerate linear tangent spaces

D+(M) =
{

Π : Π is an oriented two dimensional

degenerate linear space in TpM, p ∈ M
}
.

We have two natural fiber bundes,

p : D+(M)→ CT (M), p(Π) = Π ∩ CTM (fiber Sn−3).

π ◦ p : D+(M)→ M (fiber USn−2).
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Two fiber bundles over Lorentzain manifolds
The main result

Assume n ≥ 4,
D+(M)

KT−→ R
p ↓ w ↗ ↑ f

CKM
π−→ M

KT = 0 if and only if (M, g) has constant sectional curvature.6

There exists w if and only if the Weyl tensor W vanishes.7

There exists f if and only if W = 0 and K⊥ is integrable, its integral
submanifolds are totally umbilical and with constant sectional curvature.8

6S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ.
Math. J., 31(1982), 289–308.

7E. Garćıa-Ŕıo, D. Kupeli, Null and infinitesimal isotropy in semi-Riemannian
geometry, J. Geom. Phys., 13(1994), 207–222. .

8H. Karcher, Infinitesimale Charakterisierung von Friedmann-Universen, Arch. Math.,
38(1982), 58–64.
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Two fiber bundles over Lorentzain manifolds
The main result

How can we define the length of a lightlike geodesic?
...a moment in Riemann geometry...
For a Riemannian manifold (M, g) a geodesic γ is arc length parametrized
when

g(γ
′
, γ

′
) = 1⇔ γ

′
(0) ∈ UM.

(
L(γ|[a,b]) = b − a

)
...come back to Lorentzian geometry...
T is timelike and conformal ⇔ g(∇XT ,Y ) + g(X ,∇Y T ) = 2σ g(X ,Y )

⇓

γ
′
(0) ∈ CTM ⇔ γ

′
(t) ∈ CTM for all t !!

Fix a timelike conformal vector field T . A lightlike geodesic γ is said to be
T -parametrized whenever γ

′
(t) ∈ CTM
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Two fiber bundles over Lorentzain manifolds
The main result

Theorem. Let (M , g) be an (n ≥ 3)-dimensional compact Lorentzian
manifold and T a timelike conformal vector field.

Assume there is a ∈ (0,+∞) such that γ : [0, a]→ M , with
γ
′
(0) ∈ CK M , has no conjugate point to γ(0) in [0, a).

Then,

Vol(CTM) ≥ a2

π2(n − 2)

∫
CT M

R̂ic dµbg .
The equality holds if and only if (U = h T , h = (−g(T , T ))1/2).

KU =
−π2

a2g(T , T )
⇒ there exists f in the above diagram !!.

∫
M

hn−2 dµg ≥ a2

π2(n−1)(n−2)

∫
M

[
n Ric(U ,U) + S

]
hn dµg .
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Two fiber bundles over Lorentzain manifolds
The main result

Under the stronger assumption T is Killing...

Theorem. ∫
M

hn−2 dµg ≥
a2

π2(n − 1)(n − 2)

∫
M

Shn dµg .

The equality holds if and only if g(T , T ) is constant and the universal
cover of (M, g) is (globally) isometric to(

R× Sn−1
(ah

π

)
,−g0 + gR

)
.
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Section 4
Lorentzian odd dimensional

spheres
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Even dimensional spheres has no Lorentz metric!! (χ(S2n) = 2 !!)

How can we endowed an odd dimensional sphere S2n+1 with a Lorentz
metric?

First method...

R2n+2 ≈ Cn+1 ⇔ (x1, ..., xn+1, y1, ..., yn+1) ≈ (z1 = x1+iy1, ..., xn+1+iyn+1)

S2n+1 =
{

(z1, ..., zn+1) ∈ Cn+1 :
n+1∑
j=1

zj · zj = 1
}

Consider the vector field ξ ∈ X(S2n+1) given by ξ(p) = i p.

gR(ξ, ξ) = 1.

ξ is Killing for gR Φt(p) = e it p

gξ(X ,Y ) = gR(X ,Y )− 2gR(X , ξ)gR(Y , ξ), X ,Y ∈ X(S2n+1).
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...second method

Let us consider the Hopf bundle

τ : (S2n+1, gR)→ (CPn, gFS), τ(z1, ..., zn+1) = [z1, ..., zn+1].

The vertical distribution is given by

V(p) = {v ∈ TpS2n+1 : τ∗(v) = 0} = Span(ξ(p)).

V = ξ⊥ defines a connection on the principal S1-bundle τ : S2n+1 → CPn.
The corresponding 1-form satisfies

ω : TS2n+1 −→ s1 = iR, X ∈ TpS2n+1 7−→ ω(X ) = igR(X , ξp).

gω(X ,Y ) = gFS(τ∗(X ), τ∗(Y )) + ω(X ) · ω(Y ).
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Two ways provide the same Lorentzian metric on S2n+1

Properties of g = gξ = gω

1 τ : (S2n+1, g)→ (CPn, gFS) is a semi-Riemannian submersion with
timelike fibers.

2 ξ is Killing and timelike with g(ξ, ξ) = −1 ⇒ ∇̃ξξ = 0.

3 The Levi-Civita connection of g is given by

∇̃XY = ∇XY − 2gR(X , ξ)∇Y ξ − 2gR(Y , ξ)∇X ξ,

where ∇ is the Levi-Civita connection of gR .

4 For every n ≥ m the natural inclusion S2n+1 → S2m+1 is totally
geodesic.
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....by a kind permission: algebraical properties...
Consider the special unitary group,

SU(n + 1) =
{

A ∈Mn+1(C) : AA
T

= I , det(A) = 1
}

SU(n + 1)× S2n+1 → S2n+1 acts transitively by isometries of gR and ξ is
invariant (A(ξ(p)) = ξ(A(p)))

For g we have...

1 SU(n + 1)× S2n+1 → S2n+1 acts transitively by isometries of the
Lorentzian metric g

2 The isotropy group at (0, ..., 0, 1) ∈ S2n+1 ⊂ Cn+1 is

SU(n) =
{

A ∈ SU(n + 1) : A(en+1) = en+1

}
3 S2n+1 = SU(n + 1)/SU(n) as a Lorentzian manifold!!!
4 ... what is the isometry group of (S2n+1, g)?
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...more properties of homogeneity...

For every p ∈ S2n+1 and u, v ∈ (CξS2n+1)p, there exists
A ∈ SU(n + 1) such that

1 A(p) = p.
2 A(ξp) = ξp.
3 A(u) = v .

S2n+1 is said to be spatially isotropic with respect to ξ.

Notre Dame (Paris)
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Riemann versus Lorentz odd dimensional spheres

Every (2n + 1)-dimensional sphere S2n+1 is a Riemannian symmetric space
endowed with gR . The global symmetry at every point p ∈ S2n+1 is given
by

sp(x) = −x + 2gR(p, x)p

sp is not an isometry for g !!

Still a bit more

... Lorentzian odd dimensional spheres are not symmetric spaces.
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Lightlike geodesics of S2n+1

The homogeneity properties reduces our computations to a single point.

Fix p0 = (1, 0, ..., 0) ∈ S2n+1 ⊂ Cn+1,

(CξS2n+1)p0 =
{

v = (−i, z2, ..., zn+1) ∈ Cn+1 :
n+1∑
j=2

zjzj = 1
}
.

Let us write γv = (Θv
1 , ...,Θ

v
n+1) with Θv

k : R→ C, (1 ≤ k ≤ n + 1). We
get,

Θv
1(t) =

2−
√

2

4
e(−2−

√
2)it +

2 +
√

2

4
e(−2+

√
2)it ,

Θv
k(t) =

√
2izj

4

[
e(−2−

√
2)it − e(−2+

√
2)it
]

(2 ≤ k ≤ n + 1).
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Θv
1(t) = 2−

√
2

4 e(−2−
√

2)it + 2+
√

2
4 e(−2+

√
2)it ,

Θv
k(t) =

√
2izj

4

[
e(−2−

√
2)it − e(−2+

√
2)it
]

(2 ≤ k ≤ n + 1).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Two properties of lightlike geodesics

1 Every γv is injective!!
Assume v ∈ (CξS2n+1)p0 and t 6= 0 with γv (t) = p0.

Θv
1(t) = 1 ⇔ t = 0.

2 Let us consider u, v ∈ (CξS2n+1)p0 with u 6= v .

u = (−i,w2, ...,wn+1), v = (−i, z2, ..., zn+1) ∈ (CξS2n+1)p0 ,

with wj 6= zj .

γu(t) = γv (t) ⇔ e(−2−
√

2)it = e(−2+
√

2)it ⇔ t =
m π√

2
, m ∈ Z.

All the lightlike geodesics starting at p0 will meet at t = π/
√

2.
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A Morse-Schönberg type result for lightlike sectional curvature

Let γ : [0, a]→ M be a lightlike geodesic such that KT (Π) ≤ δ, for all
Π ∈ D+(M) with γ′(t) ∈ Π.

Assume γ(0) and γ(a) are conjugate points along γ.

Then,
a ≥ π√

δ
.
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Theorem. Let γv be a lightlike geodesic of S2n+1 with v ∈ (CξS2n+1)p.

1 The first conjugate point to γv (0) = p is γv ( π
2
√

2
).

2 The lightlike conjugate locus of every point p ∈ S2n+1 is a topological
(2n − 1)-dimensional sphere.

Sketch of the proof.
We have,

Ric(ξ, ξ) = 2n and S = 2n(2n + 3)

⇓ (Integral inequality and homogeneity properties)

There exists a ∈ (0,+∞) such that every lightlike geodesic γv

reaches its first conjugate point at γv (a) and

a2 ≤ (2n − 1)π2

4(n + 1)
.
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Let us consider Π ∈ D+(S2n+1) and v ∈ Π
⋂

(CξS2n+1)p.
If Π = Span{v , x} and v = −ξp + y then

Kξ(Π) = 2KFS(τ∗(x), τ∗(y)) ⇒ 2 ≤ Kv (Π) ≤ 8.

Therefore, from the Morse-Schönberg type result,

π2

8
≤ a2 ≤ (2n − 1)π2

4(n + 1)
.

For S3, we have a = π
2
√

2
.

Taking into account that S3 is totally geodesic in all S2n+1, we get
the first affirmation.

Finally, take u, v ∈ (CξS2n+1)p with u 6= v .

γu(t) = γv (t)⇔ t =
kπ√

2
, k ∈ Z

The second part is obtained from a < π√
2

.
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Thank you very much
for your kind attention

Francisco José Palomo Ruiz Conjugate points along lightlike geodesics...40/40


