Conjugate points along lightlike geodesics of Lorentzian manifolds

Francisco José Palomo Ruiz Department of Applied Mathematics

UNIVERSIDAD DE MÁLAGA

Lecce, June 12th, 2013 University of Salento

イロト イポト イヨト イヨト

Outline

2 Conjugate points along lightlike geodesics

Integral inequality

- 4 回 2 - 4 □ 2 - 4 □

Section 1 Riemann and Lorentz manifolds

Francisco José Palomo Ruiz Conjugate points along lightlike geodesics...3/40

イロト イヨト イヨト イヨト

Let M be a differentiable *n*-manifold and g a nondegenerate symmetric (0, 2)-tensor of constant index ν on M. (semi-Riemannian manifold)

• If $\nu = 0$, then (M, g) is called a Riemann manifold.

At every point $p \in M$, T_pM is endowed with an inner product as the Euclidean *n*-dimensional space (\mathbb{E}^n) has.

• If $\nu = 1$, then (M, g) is called a Lorentzian manifold.

 $...T_pM$ is endowed with a scalar product as the Lorentz-Minkowski *n*-dimensional space (\mathbb{L}^n) has.

$$\mathbb{L}^n = (\mathbb{R}^n, \langle , \rangle), \quad \langle x, y \rangle = -x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

(ロ) (同) (E) (E) (E)

Spheres in $T_p M$ (Riemann)

$$g(v,v)=r^2>0$$

"Spheres "in $T_p M$ (Lorentz)

The "miracle" of semi-Riemannian Geometry

...there is a unique affine connection ∇ with no torsion and compatible with the metric tensor g. ∇ is called the Levi-Civita connection.

Tullio Levi-Civita (1873-1941)

A curve γ is said to be a geodesic whenever $\nabla_{\gamma'}\gamma' = 0$. Riemann and Ricci curvature tensors

•
$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

•
$$\operatorname{Ric}(v, w) = \operatorname{trace}\{R(v, v)w\}$$

Scalar curvature

•
$$S(p) = \sum_{i=1}^{n} \epsilon_i \operatorname{Ric}(e_i, e_i), \quad p \in M$$

· < @ > < 문 > < 문 > · · 문

Sectional curvature

If $\Pi = \text{Span}\{x, y\} \subset T_p M$ is a two dimensional linear space such that $g \mid_{\Pi}$ is nondegenerate,

$$K(\Pi) = \frac{g(R(x,y)y,x)}{g(x,x)g(y,y) - g(x,y)^2}$$

Lightlike sectional curvature (only for Lorentzian manifolds) Fix a timelike vector field \mathcal{T} , that is $g(\mathcal{T}, \mathcal{T}) < 0$. Let us consider $\Pi \subset \mathcal{T}_p M$ a two dimensional linear space such that $g \mid_{\Pi}$ is degenerate¹,

$$\mathcal{K}_{\mathcal{T}}(\Pi) = rac{g(R(x,v)v,x)}{g(x,x)},$$

where $\Pi = \text{Span}\{v, x\}$ with g(v, v) = 0 and $g(v, T_p) = 1$.

¹S. G. Harris, A triangle comparison theorem for Lorentz manifolds, *Indiana Univ. Math. J.*, **31**(1982), 289–308.

Riemannian manifolds

- **1** Every *M* admits a Riemannian metric.
- Por M connected, geodesically complete ⇔ complete as metric space. (Hopf-Rinow)
 d(p,q) = Inf {L(α) = ∫_a^d g(α', α')^{1/2}dt : α ∈ Ω(p,q)}.
 M compact ⇒ complete and Iso(M) compact.
- **(3)** *M* connected and geodesically complete \Rightarrow geodesically connected.

Bernhard Riemann (1826-1866)

ロト (日) (日) (日)

There is no Hopf-Rinow type theorem in Lorentzian geometry!!

Lorentzian manifolds

- *M* admits a Lorentzian metric if and only if *M* is not compact or $\chi(M) = 0$.
- O There are compact Lorentzian manifolds which are not (geodesically) complete and Iso(M) may be non compact.
- **1**...and complete does not imply geodesically connected.
- If M is homogeneous and compact, then M is complete.

Hendrik Antoon Lorentz (1853-1928)

Francisco José Palomo Ruiz

Conjugate points along lightlike geodesics...9/40

Two remarkable results in Lorentzian geometry...

 $\mathcal{T} \in \mathfrak{X}(M)$ is said to be conformal when $\mathcal{L}_{\mathcal{T}}g = 2\sigma g$ and Killing if $\sigma = 0$.

- Every compact Lorentzian manifold (*M*, *g*) which admits a timelike conformal vector field *T* is geodesically complete.²
- Every compact Lorentzian manifold (M,g) with constant sectional curvature K = c is geodesically complete. ³

³B. Klinger, Completude des varietes lorentziennes á courbure constante, *Math. Ann.*, **306**(1996), 353–370.

²A. Romero and M. Sánchez, Completeness of compact Lorentz manifolds admiting a timelike conformal-Killing vector field, *Proc. Amer. Math. Soc.*, **123** (1995), 2831–2833.

...and two amazing results.

- There is no compact Lorentzian manifold (M, g) with constant sectional curvature K = c > 0.
 - For *n* = 2 is a direct consequence of the Lorentzian "Gauss-Bonnet formula".
 - For $n \geq 3$ we have $\pi_1(M) = \Gamma$ is finite⁴ $\Rightarrow M \approx \mathbb{S}_1^n / \Gamma$.
- Let (M, g) an n(≥ 3)-dimensional Lorentz manifold. Assume the sectional curvature K is bounded from below or from above. Then K is a constant.⁵

⁴E. Calabi and L. Markus, Relativistic space forms, *Ann. of Math.*, **75**(1962), 63–76. ⁵R. Kulkarni, The values of sectional curvature in indefinite metrics, *Comment. Math. Helv.*, **54**(1979), 173–176. Lorentzian Geometry is the mathematical theory of General Relativity.

" A gravitational field may be effectively modelled by some Lorentzian metric g defined on a suitable Lorentzian manifold "

$$\operatorname{Ric}-\tfrac{1}{2}S\,g+\Lambda\,g=8\pi\,T$$

The viewpoint of Global Differential Geometry began around 1970.

• Singularity Theory.

• Causality Theory.

Nowadays, the study of geometrical problems arisen in Lorentzian Geometry have become a proper branch of Differential Geometry.

イロト イポト イヨト イヨト

Section 2 Conjugate points along lightlike geodesics

(ロ) (同) (E) (E) (E)

Let (M, g) be a semi-Riemannian manifold with Levi-Civita connection ∇ and curvature tensor R. Fix γ a geodesic $(\nabla_{\gamma'} \gamma' = 0)$.

• $J \in \mathfrak{X}(\gamma)$ is said to be a Jacobi vector field when

$$\frac{\nabla^2 J}{dt^2} + R(J,\gamma')\gamma' = 0.$$

γ(a) and γ(b), (a ≠ b), are conjugate points along γ if there is a Jacobi vector field J ≠ 0 such that

$$J(a)=0, \quad J(b)=0.$$

• When $\gamma(a)$ and $\gamma(b)$ are conjugate points, there is a variation $x : [a, b] \times (-\delta, \delta) \to M$ of γ such that every longitudinal curve is a geodesic and the transversal curves $x_a(t) = x(a, t)$ and $x_b(t) = x(b, t)$ satisfy

$$x_{a}^{'}(0) = x_{b}^{'}(0) = 0.$$

(ロ) (同) (E) (E) (E)

Conjugate points in Riemannian geometry

Let (M, g) be a connected Riemannian manifold.

• If $\gamma(0) = p$ and $\gamma(a)$ are conjugate points and γ is arc length parametrized, then

$$d(p, \gamma(a + \epsilon)) < a + \epsilon = L(\gamma \mid_{[0,a+\epsilon]}).$$

2 $A = \{s > 0 : d(p, \gamma(s)) = s\} \subset \mathbb{R} \Rightarrow A = (0, r] \text{ or } A = (0, +\infty).$ $\gamma(r) \text{ is called a cut point of } p \text{ along } \gamma.$

- "The first cut point arrives before than the first conjugate point"
- (Klingenberg, 1959) Assume q is a cut point of p and d(q, p) = d(q, C(p)). If q is not conjugate along a minimizing geodesic connecting p to q, then q is the midpoint of a geodesic loop, starting and ending at p.

Conjugate points in Lorentzian geometry...

Let (M, g) be a connected Lorentzian manifold. Conjugate points are classified into spacelike, timelike and lightlike.

A causality Theorem

Let γ be a lightilke geodesic starting at $\gamma(0) = p$. Assume there is a conjugate point along γ strictly before to $\gamma(b) = q$. Then there is a timelike curve from p to q.

- If γ(0) and γ(a) are conjugate points along a lightlike geodesic γ, then there is variation x of γ with longitudinal curves lightlike geodesics too.
- Every Lorentz surface has no conjugate points on its lightlike geodesics.
- A Lorentz manifold of constant sectional curvature has no conjugate point on lightlike geodesics. The converse is not true.

...and conformal changes of the metric.

For a Lorentzian metric g consider $g^f = e^{2f} g_{\cdots}$

$$abla^f_X Y =
abla_X Y + Xf Y + Yf X - g(X,Y)
abla f, \quad X,Y \in \mathfrak{X}(M).$$

...and let γ be a lightlike geodesic...

$$\nabla^f_{\gamma'}\gamma' = 2\gamma'(f)\gamma' \Rightarrow \gamma \text{ is a } g^f - \text{pregeodesic.}$$

Assume $\gamma \circ \tau$ is a g^{f} -geodesic.

$$p = \gamma(0) = \gamma \circ \tau(s_0), \quad q = \gamma(a) = \gamma \circ \tau(s_1)$$

p and q are conjugate along γ if and only if are conjugate along $\gamma \circ \tau$.

The lightlike conjugate locus is a conformal invariant

Physical interpretation... gravitational lensing

イロン イヨン イヨン イヨン

Э

Two fiber bundles over Lorentzain manifolds The main result

Section 3 Integral Inequality

(ロ) (同) (E) (E) (E)

Two fiber bundles over Lorentzain manifolds The main result

Lightlike congruence associated to a timelike vector field \mathcal{T}

$$C_T M = \{ v \in TM : g(v, v) = 0 \text{ and } g(v, T) = 1 \}$$

$$(C_T M)_p = T_p M \cap C_T M$$

• $C_T M$ can be seen as the bundle of lightlike directions of M.

・ロト ・回ト ・ヨト ・ヨト

æ

Two fiber bundles over Lorentzain manifolds The main result

•
$$\pi: C_T M \to M$$
 is a fiber bundle with fiber $(C_T M)_p \sim \mathbb{S}^{n-2}$.

A key result...

 $C_T M$ can be endowed with a Lorentzian metric \hat{g} in a such way that $\pi: C_T M \to M$ is a Lorentzian submersion with spacelike fibers.

•
$$(C_T M)_p$$
 inherits a Riemannian metric and
• $\pi_* : [(C_T M)_p]^{\perp} \to T_p M$ is an isometry for every $p \in M$.

$${\mathcal T}$$
 conformal, $\ \mathfrak{L}_{{\mathcal T}}g=2\sigma\,g$

C_T M is invariant by the geodesic flow Z_g(v) = dγ'_v/dt |₀, v ∈ C_T M.
div_gZ_g = 0.

Two fiber bundles over Lorentzain manifolds The main result

Fiber bundle of two dimensional degenerate linear tangent spaces

$$\mathcal{D}^+(M) = \Big\{ \Pi : \Pi \text{ is an oriented two dimensional} \\$$
 degenerate linear space in $T_pM, \ p \in M \Big\}.$

We have two natural fiber bundes,

$$\mathfrak{p}:\mathcal{D}^+(M) o \mathcal{C}_\mathcal{T}(M), \quad \mathfrak{p}(\Pi)=\Pi\cap \mathcal{C}_\mathcal{T}M \quad ext{(fiber \mathbb{S}^{n-3})}.$$

$$\pi \circ \mathfrak{p} : \mathcal{D}^+(M) \to M \quad \text{(fiber} \quad U \mathbb{S}^{n-2}\text{)}.$$

(ロ) (同) (E) (E) (E)

Two fiber bundles over Lorentzain manifolds The main result

Assume $n \ge 4$,

$$\begin{array}{cccc} \mathcal{D}^+(M) & \stackrel{\mathcal{K}_T}{\longrightarrow} & \mathbb{R} \\ \mathfrak{p} \downarrow & \mathbf{w} \nearrow & \uparrow f \\ \mathcal{C}_K M & \stackrel{\pi}{\longrightarrow} & M \end{array}$$

 $\mathcal{K}_{\mathcal{T}} = 0$ if and only if (M,g) has constant sectional curvature.⁶

I

There exists w if and only if the Weyl tensor W vanishes.⁷

There exists f if and only if W = 0 and \mathcal{K}^{\perp} is integrable, its integral submanifolds are totally umbilical and with constant sectional curvature.⁸

⁶S. G. Harris, A triangle comparison theorem for Lorentz manifolds, *Indiana Univ. Math. J.*, **31**(1982), 289–308.

⁷E. García-Río, D. Kupeli, Null and infinitesimal isotropy in semi-Riemannian geometry, *J. Geom. Phys.*, **13**(1994), 207–222.

⁸H. Karcher, Infinitesimale Charakterisierung von Friedmann-Universen, *Arch. Math.*, **38**(1982), 58–64. <□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > <

How can we define the length of a lightlike geodesic?

...a moment in Riemann geometry...

For a Riemannian manifold (M, g) a geodesic γ is arc length parametrized when

$$g(\gamma^{'},\gamma^{'})=1 \Leftrightarrow \gamma^{'}(0)\in \mathit{UM}. \ \ \left(\mathit{L}(\gamma_{\mid [a,b]})=b-a
ight)$$

...come back to Lorentzian geometry...

 \mathcal{T} is timelike and conformal $\Leftrightarrow g(
abla_X\mathcal{T},Y) + g(X,
abla_Y\mathcal{T}) = 2\sigma \, g(X,Y)$

$\gamma^{'}(0) \in C_{\mathcal{T}}M \Leftrightarrow \gamma^{'}(t) \in C_{\mathcal{T}}M ext{ for all } t ext{ !!}$

JL

Fix a timelike conformal vector field \mathcal{T} . A lightlike geodesic γ is said to be \mathcal{T} -parametrized whenever $\gamma'(t) \in C_{\mathcal{T}}M$

イロト イポト イヨト イヨト

Theorem. Let (M, g) be an $(n \ge 3)$ -dimensional compact Lorentzian manifold and \mathcal{T} a timelike conformal vector field.

• Assume there is $a \in (0, +\infty)$ such that $\gamma : [0, a] \to M$, with $\gamma'(0) \in C_{\kappa}M$, has no conjugate point to $\gamma(0)$ in [0, a).

Then,

$$\operatorname{Vol}(\mathcal{C}_{\mathcal{T}}\mathcal{M}) \geq \frac{a^2}{\pi^2(n-2)} \int_{\mathcal{C}_{\mathcal{T}}\mathcal{M}} \widehat{\operatorname{Ric}} d\mu_{\widehat{g}}.$$

The equality holds if and only if $(\mathcal{U} = h \mathcal{T}, h = (-g(\mathcal{T}, \mathcal{T}))^{1/2}).$

 $\mathcal{K}_{\mathcal{U}} = rac{-\pi^2}{a^2 g(\mathcal{T}, \mathcal{T})} \quad \Rightarrow \text{ there exists } f \text{ in the above diagram !!.}$

$$\int_{\mathcal{M}} h^{n-2} d\mu_g \geq \frac{a^2}{\pi^2(n-1)(n-2)} \int_{\mathcal{M}} \left[n \operatorname{Ric}(\mathcal{U},\mathcal{U}) + S \right] h^n d\mu_g.$$

Under the stronger assumption ${\mathcal T}$ is Killing...

Theorem.

$$\int_M h^{n-2} d\mu_g \geq \frac{a^2}{\pi^2(n-1)(n-2)} \int_M Sh^n d\mu_g.$$

The equality holds if and only if $g(\mathcal{T}, \mathcal{T})$ is constant and the universal cover of (M, g) is (globally) isometric to

$$\Big(\mathbb{R}\times\mathbb{S}^{n-1}\Big(rac{ah}{\pi}\Big),-g_0+g_R\Big).$$

(ロ) (同) (E) (E) (E)

Section 4 Lorentzian odd dimensional spheres

Francisco José Palomo Ruiz Conjugate points along lightlike geodesics...27/40

イロン イヨン イヨン イヨン

æ

Even dimensional spheres has no Lorentz metric!! $(\chi(\mathbb{S}^{2n}) = 2 !!)$ How can we endowed an odd dimensional sphere \mathbb{S}^{2n+1} with a Lorentz metric?

First method...

$$\mathbb{R}^{2n+2} \approx \mathbb{C}^{n+1} \Leftrightarrow (x_1, ..., x_{n+1}, y_1, ..., y_{n+1}) \approx (z_1 = x_1 + iy_1, ..., x_{n+1} + iy_{n+1})$$

$$\mathbb{S}^{2n+1}=\left\{(z_1,...,z_{n+1})\in\mathbb{C}^{n+1}:\sum_{j=1}^{n+1}z_j\cdot\overline{z_j}=1
ight\}$$

Consider the vector field $\xi \in \mathfrak{X}(\mathbb{S}^{2n+1})$ given by $\xi(p) = \mathbf{i} p$.

• $g_R(\xi,\xi) = 1.$ • ξ is Killing for $g_R \quad \Phi_t(p) = e^{it} p$

 $g_{\xi}(X,Y)=g_R(X,Y)-2g_R(X,\xi)g_R(Y,\xi), \quad X,Y\in\mathfrak{X}(\mathbb{S}^{2n+1}).$

イロト イポト イヨト イヨト 二日

...second method

Let us consider the Hopf bundle

$$au: (\mathbb{S}^{2n+1}, g_R) \to (\mathbb{C}P^n, g_{FS}), \ au(z_1, ..., z_{n+1}) = [z_1, ..., z_{n+1}].$$

The vertical distribution is given by

$$\mathcal{V}(p) = \{ v \in T_p \mathbb{S}^{2n+1} : \tau_*(v) = 0 \} = \operatorname{Span}(\xi(p)).$$

 $\mathcal{V} = \xi^{\perp}$ defines a connection on the principal \mathbb{S}^1 -bundle $\tau : \mathbb{S}^{2n+1} \to \mathbb{C}P^n$. The corresponding 1-form satisfies

$$\omega: T\mathbb{S}^{2n+1} \longrightarrow \mathfrak{s}^1 = \mathbf{i}\mathbb{R}, \quad X \in T_p\mathbb{S}^{2n+1} \longmapsto \omega(X) = \mathbf{i}g_R(X,\xi_p).$$

$$g_{\omega}(X,Y) = g_{FS}(\tau_*(X),\tau_*(Y)) + \omega(X) \cdot \omega(Y).$$

Two ways provide the same Lorentzian metric on \mathbb{S}^{2n+1}

Properties of $g = g_{\xi} = g_{\omega}$

- $\tau : (\mathbb{S}^{2n+1}, g) \to (\mathbb{C}P^n, g_{FS})$ is a semi-Riemannian submersion with timelike fibers.
- **2** ξ is Killing and timelike with $g(\xi,\xi) = -1 \Rightarrow \widetilde{\nabla}_{\xi}\xi = 0$.
- The Levi-Civita connection of g is given by

$$\widetilde{
abla}_X Y =
abla_X Y - 2g_R(X,\xi)
abla_Y \xi - 2g_R(Y,\xi)
abla_X \xi,$$

where ∇ is the Levi-Civita connection of g_R .

• For every $n \ge m$ the natural inclusion $\mathbb{S}^{2n+1} \to \mathbb{S}^{2m+1}$ is totally geodesic.

....by a kind permission: algebraical properties... Consider the special unitary group,

$$SU(n+1) = \left\{ A \in \mathcal{M}_{n+1}(\mathbb{C}) : A\overline{A}^T = I, \ \det(A) = 1 \right\}$$

 $SU(n+1) \times \mathbb{S}^{2n+1} \to \mathbb{S}^{2n+1}$ acts transitively by isometries of g_R and ξ is invariant $(A(\xi(p)) = \xi(A(p)))$

For g we have...

- $\hbox{ I } SU(n+1)\times \mathbb{S}^{2n+1}\to \mathbb{S}^{2n+1} \text{ acts transitively by isometries of the Lorentzian metric } g$
- 2 The isotropy group at $(0,...,0,1)\in\mathbb{S}^{2n+1}\subset\mathbb{C}^{n+1}$ is

$$SU(n) = \left\{ A \in SU(n+1) : A(e_{n+1}) = e_{n+1} \right\}$$

• $\mathbb{S}^{2n+1} = SU(n+1)/SU(n)$ as a Lorentzian manifold!!!

• ... what is the isometry group of (\mathbb{S}^{2n+1}, g) ?

...more properties of homogeneity...

For every p ∈ S²ⁿ⁺¹ and u, v ∈ (C_ξS²ⁿ⁺¹)_p, there exists A ∈ SU(n + 1) such that
 A(p) = p.
 A(ξ_p) = ξ_p.
 A(u) = v.

 \mathbb{S}^{2n+1} is said to be spatially isotropic with respect to ξ .

Notre Dame (Paris)

イロン イ部ン イヨン イヨン 三日

Riemann versus Lorentz odd dimensional spheres

Every (2n + 1)-dimensional sphere \mathbb{S}^{2n+1} is a Riemannian symmetric space endowed with g_R . The global symmetry at every point $p \in \mathbb{S}^{2n+1}$ is given by

$$s_p(x) = -x + 2g_R(p, x)p$$

 s_p is not an isometry for g!!

Still a bit more

• ... Lorentzian odd dimensional spheres are not symmetric spaces.

Lightlike geodesics of \mathbb{S}^{2n+1}

(

The homogeneity properties reduces our computations to a single point.

Fix
$$p_0=(1,0,...,0)\in\mathbb{S}^{2n+1}\subset\mathbb{C}^{n+1}$$
,

$$(C_{\xi}\mathbb{S}^{2n+1})_{p_0}=\Big\{\mathsf{v}=(-\mathsf{i},z_2,...,z_{n+1})\in\mathbb{C}^{n+1}:\sum_{j=2}^{n+1}z_j\overline{z_j}=1\Big\}.$$

Let us write $\gamma_{\mathbf{v}} = (\Theta_1^{\mathbf{v}}, ..., \Theta_{n+1}^{\mathbf{v}})$ with $\Theta_k^{\mathbf{v}} : \mathbb{R} \to \mathbb{C}$, $(1 \le k \le n+1)$. We get,

$$\Theta_1^{\nu}(t) = \frac{2 - \sqrt{2}}{4} e^{(-2 - \sqrt{2})\mathbf{i}t} + \frac{2 + \sqrt{2}}{4} e^{(-2 + \sqrt{2})\mathbf{i}t},$$
$$\Theta_k^{\nu}(t) = \frac{\sqrt{2}\mathbf{i}z_j}{4} \left[e^{(-2 - \sqrt{2})\mathbf{i}t} - e^{(-2 + \sqrt{2})\mathbf{i}t} \right] \quad (2 \le k \le n + 1).$$

$$\Theta_1^{\nu}(t) = \frac{2-\sqrt{2}}{4}e^{(-2-\sqrt{2})\mathbf{i}t} + \frac{2+\sqrt{2}}{4}e^{(-2+\sqrt{2})\mathbf{i}t},$$

$$\Theta_k^{\nu}(t) = \frac{\sqrt{2}iz_j}{4} \left[e^{(-2-\sqrt{2})it} - e^{(-2+\sqrt{2})it} \right] \quad (2 \le k \le n+1).$$

(ロ) (四) (E) (E) (E)

Two properties of lightlike geodesics

• Every γ_{v} is injective!! Assume $v \in (C_{\xi} \mathbb{S}^{2n+1})_{p_{0}}$ and $t \neq 0$ with $\gamma_{v}(t) = p_{0}$.

$$\Theta_1^v(t) = 1 \iff t = 0.$$

2 Let us consider $u, v \in (C_{\xi} \mathbb{S}^{2n+1})_{p_0}$ with $u \neq v$.

$$u = (-\mathbf{i}, w_2, ..., w_{n+1}), \ v = (-\mathbf{i}, z_2, ..., z_{n+1}) \in (C_{\xi} \mathbb{S}^{2n+1})_{\rho_0},$$

with $w_j \neq z_j$.

$$\gamma_u(t) = \gamma_v(t) \Leftrightarrow e^{(-2-\sqrt{2})\mathbf{i}t} = e^{(-2+\sqrt{2})\mathbf{i}t} \Leftrightarrow t = \frac{m\pi}{\sqrt{2}}, \ m \in \mathbb{Z}.$$

All the lightlike geodesics starting at p_0 will meet at $t = \pi/\sqrt{2}$.

A Morse-Schönberg type result for lightlike sectional curvature

Let $\gamma : [0, a] \to M$ be a lightlike geodesic such that $\mathcal{K}_{\mathcal{T}}(\Pi) \leq \delta$, for all $\Pi \in \mathcal{D}^+(M)$ with $\gamma'(t) \in \Pi$.

• Assume $\gamma(0)$ and $\gamma(a)$ are conjugate points along γ .

Then,

$$a \geq \frac{\pi}{\sqrt{\delta}}.$$

(ロ) (同) (E) (E) (E)

Theorem. Let γ_v be a lightlike geodesic of \mathbb{S}^{2n+1} with $v \in (C_{\xi} \mathbb{S}^{2n+1})_p$.

- The first conjugate point to $\gamma_{\nu}(0) = p$ is $\gamma_{\nu}(\frac{\pi}{2\sqrt{2}})$.
- ② The lightlike conjugate locus of every point p ∈ S²ⁿ⁺¹ is a topological (2n − 1)-dimensional sphere.

Sketch of the proof.

We have,

$$\operatorname{Ric}(\xi,\xi) = 2n \text{ and } S = 2n(2n+3)$$

 $\Downarrow \text{ (Integral inequality and homogeneity properties)}$

There exists a ∈ (0, +∞) such that every lightlike geodesic γ_ν reaches its first conjugate point at γ_ν(a) and

$$a^2 \leq rac{(2n-1)\pi^2}{4(n+1)}.$$

イロン イボン イヨン イヨン 三日

• Let us consider $\Pi \in \mathcal{D}^+(\mathbb{S}^{2n+1})$ and $v \in \Pi \bigcap (C_{\xi} \mathbb{S}^{2n+1})_p$. If $\Pi = \operatorname{Span}\{v, x\}$ and $v = -\xi_p + y$ then

$$\mathcal{K}_{\xi}(\Pi) = 2\mathcal{K}_{FS}(\tau_*(x), \tau_*(y)) \Rightarrow 2 \leq \mathcal{K}_{\nu}(\Pi) \leq 8.$$

Therefore, from the Morse-Schönberg type result,

$$\frac{\pi^2}{8} \le a^2 \le \frac{(2n-1)\pi^2}{4(n+1)}.$$

- For \mathbb{S}^3 , we have $a = \frac{\pi}{2\sqrt{2}}$.
- Taking into account that \mathbb{S}^3 is totally geodesic in all $\mathbb{S}^{2n+1},$ we get the first affirmation.
- Finally, take $u, v \in (C_{\xi} \mathbb{S}^{2n+1})_p$ with $u \neq v$.

$$\gamma_{u}(t)=\gamma_{v}(t)\Leftrightarrow t=rac{k\pi}{\sqrt{2}},\;k\in\mathbb{Z}$$

The second part is obtained from $a < \frac{\pi}{\sqrt{2}}$.

Thank you very much for your kind attention

- 4 同 6 4 日 6 4 日 6