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ABSTRACT
In order to understand the structure of a problem we need
to measure some features of the problem. Some examples
of measures suggested in the past are autocorrelation and
fitness-distance correlation. Landscape theory, developed in
the last years in the field of combinatorial optimization, pro-
vides mathematical expressions to efficiently compute statis-
tics on optimization problems. In this paper we discuss how
can we use landscape theory in the context of problem un-
derstanding and present two software tools that can be used
to efficiently compute the mentioned measures.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Fitness Landscapes, Elementary Landscapes, Problem Un-
derstanding, Quadratic Assignment Problem, Unconstrained
Quadratic Optimization

1. INTRODUCTION
Landscape theory is a set of definitions and theorems that

allows one to analyze optimization problems in connection
with a neighborhood structure defined over the search space.
We are interested in the applications of the theory to Com-
binatorial Optimization. However, this theory has appli-
cations in Chemistry [19], Biology [24] and Physics [12].
One of the main goals of the theory is to better understand
the structure of the optimization problems. Thanks to this
deeper understanding we are supposed to be able to define
new search operators, search strategies or even determine
the optimal values for the parameters of the algorithms used
to solve a given problem.
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There is a special kind of landscapes, called elementary
landscapes, with nice properties. In particular, they are
characterized by Grover’s wave equation [14]:

avg{f(y)}
y∈N(x)

= f(x) +
k

d

(

f̄ − f(x)
)

, (1)

where d is the neighborhood size, |N(x)|, which we assume
the same for all the solutions in the search space, f̄ is the
average value of the objective function in the whole search
space and k is a constant. Either k or f̄ can usually be
efficiently and accurately computed from the problem data
or by a random sampling of the search space.

The advantage of an expression like (1) is that it allows
one to compute a statistics (the average in the neighbor-
hood) from the value of a function in x. We must highlight
here that if (1) were not true, we would need to evaluate ev-
ery solution in N(x) in order to compute the average in the
neighborhood. Thus, landscape theory gives us results that
allow us to compute in an efficient way some non trivial
statistics related to the distribution of the objective func-
tion. This property is present in most of the results of land-
scape theory, as we will see along the next sections.

In this paper we will focus mainly on three measures
that can be efficiently computed using landscape theory.
They are the autocorrelation, the fitness-distance correlation
and the expected fitness after bit-flip mutation. The first
two statistics have been considered as measures for problem
hardness. None of them is a perfect measure of the hardness
of a problem and both have been criticized in the past. How-
ever, they are used even in some recent works. In this paper
we will see how they can be efficiently computed using land-
scape theory under some conditions and we provide software
tools to do it. Regarding the expected fitness after bit-flip
mutation, it has some links to runtime analysis, which is a
direct measure of problem hardness. But, more interesting
is the fact that the elementary decomposition of a combi-
natorial optimization problem has a one-to-one relationship
with the expectation curves (depending on the probability
of mutation) of bit-flip.

Some of the results provided by landscape theory can be
implemented in a computer. Although the implementation
of these algorithms requires a deep knowledge of the theory,
they can be used with a minimum knowledge. That is, it
is possible to enclose the knowledge provided by landscape
theory in a code snippet. Some of these code snippets can be
applied to any optimization problem but most of them are
specific to a given problem. For example, the algorithms for
efficiently and accurately computing the statistics mentioned
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above can only be applied to concrete problems. During the
last three years we have frequently implemented code snip-
pets and algorithms to check empirically the results provided
by the theory. We think the resulting software could be use-
ful for researchers interested in problem understanding. For
this reason, we present, as the main contribution of this pa-
per, two of the implemented applications and provide links
to them. In one case we provide a web application that ev-
eryone can use without installing anything and in the other
case we provide a GUI-based application.

The organization of the paper is as follows. In Section 2 we
provide some background on landscape theory. Sections 3,
4 and 5 discusses how landscape theory can be used to effi-
ciently compute the autocorrelation, fitness-distance corre-
lation and expected fitness after bit-flip mutation in a com-
binatorial optimization problem. Section 6 presents the soft-
ware tools developed in the last years that implement the al-
gorithms to efficiently compute the measures described and
other parameters related to landscape theory. Finally, Sec-
tion 7 concludes the work and describes future work.

2. BACKGROUND
In this section we present some fundamental results of

landscape theory. We will only give a soft introduction to
general concepts of landscape theory. We refer the reader
interested in a deeper exposition of this topic to the survey
in [17].

A landscape for a combinatorial optimization problem is
a triple (X,N, f), where X is the solution set, f : X 7→ R

defines the objective function and N is the neighborhood
function, which maps any solution x ∈ X to the set N(x) of
points reachable from x. If y ∈ N(x) then we say that y is
a neighbor of x.

The pair (X,N) is called configuration space and can be
represented using a graph G(X,E) in which X is the set of
vertices and a directed edge (x, y) exists in E if y ∈ N(x)
[5]. We can represent the neighborhood operator by its ad-
jacency matrix

Ax,y =

{

1 if y ∈ N(x),
0 otherwise.

(2)

Any discrete function, f , defined over the set of candidate
solutions can be characterized as a vector in R

|X|. Any
|X| × |X| matrix can be interpreted as a linear map that

acts on vectors in R
|X|. For example, the adjacency matrix

A acts on function f as follows

A f =













∑

y∈N(x1)
f(y)

∑

y∈N(x2)
f(y)

...
∑

y∈N(x|X|)
f(y)













. (3)

The component x of this matrix-vector product can thus
be written as:

(A f)(x) =
∑

y∈N(x)

f(y), (4)

which is the sum of the function value of all the neighbors of
x. When a neighborhood is regular the so-called Laplacian
matrix is defined as ∆ = A − dI. Stadler defines the class
of elementary landscapes where the function f is an eigen-
vector (or eigenfunction) of the Laplacian up to an additive
constant [18]. Formally, we have the following:

Definition 1. Let (X,N, f) be a landscape and ∆ the
Laplacian matrix of the configuration space. The landscape
is said to be elementary if there exists a constant b, which we
call offset, and an eigenvalue λ of −∆ such that (−∆)(f −
b) = λ(f − b).

We use eigenvalues of −∆ instead of ∆ to have positive
eigenvalues [5]. In connected neighborhoods (the ones we
consider here) the offset b is the average value of the function
over the whole search space: b = f̄ [11]. In elementary
landscapes, the average value f̄ can be usually computed in
a very efficient way using the problem data. That is, it is
not required to do a complete enumeration over the search
space.

Taking into account basic results of linear algebra, it is
not difficult to prove that if f is elementary with eigenvalue
λ, af + b is also elementary with this same eigenvalue λ.
Furthermore, in regular neighborhoods, if g is an eigenfunc-
tion of −∆ with eigenvalue λ then g is also an eigenvalue
of A, the adjacency matrix, with eigenvalue d− λ. The av-
erage value of the fitness function in the neighborhood of a
solution can be computed using the expression:

avg{f(y)}
y∈N(x)

=
1

d
(A f)(x). (5)

If f is an elementary function with eigenvalue λ, then the
average is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y)− f̄}+ f̄

=
1

d
(A (f − f̄))(x) + f̄ =

d− λ

d
(f(x)− f̄) + f̄

= f(x) +
λ

d
(f̄ − f(x)), (6)

and we get Grover’s wave equation [14]. In the previous
expression we used the fact that f − f̄ is an eigenfunction of
A with eigenvalue d− λ.

The wave equation makes it possible to compute the av-
erage value of the fitness function f evaluated over all of the
neighbors of x using only the value f(x), that is, it provides
a way of computing non-trivial statistics with a low com-
putational cost. The previous average can be interpreted
as the expected value of the objective function when a ran-
dom neighbor of x is selected using a uniform distribution.
This is exactly the behaviour of the so-called 1-bit-flip mu-
tation [13]. It could seem that the restriction imposed by
Grover’s wave equation cannot be frequently found in op-
timization problems. However, there are some well-known
NP-hard problems using common neighborhoods that are el-
ementary landscapes. This is the case of the Not All Equals
SAT problem, the Travelling Salesman Problem, the Graph
Coloring problem, etc. The interested reader can find ex-
amples of elementary landscapes in [25, 26].

Certainly, a landscape (X,N, f) is not always elementary,
but even in this case it is possible to characterize the function
f as the sum of elementary landscapes, called elementary
components of the landscape. When the neighborhood N of
the landscape is symmetric there exists an orthogonal basis
of the space of functions composed of elementary landscapes.
Let us denote this basis with θλ,i where λ is the eigenvalue
of the vector (function) and i is an index to distinguish the



different vectors with the same eigenvalue. Then a Fourier
expansion of f is

f =
∑

λ

∑

i

aλ,iθλ,i,

where the values aλ,i = 〈θλ,i, f〉 are the Fourier coefficients.
Using this Fourier expansion it is possible to compute the
landscape decomposition by summing the terms with the
same eigenvalue. Each elementary component can be com-
puted as

fλ =
∑

i

aλ,iθλ,i. (7)

A special case is that of f0, the elementary landscape with
λ = 0. If we assume that the neighborhood is connected
then f0 is the constant value f̄ . Finding the elementary
components of a given optimization problem is not a trivial
task. In the last years we can find some works devoted to
the task of finding this decomposition for some well-known
problems. Along the paper we will cite the corresponding
works when needed. The reader interested in finding such
a decomposition for her/his favourite optimization problem
can find a methodology to do it in [11].

3. AUTOCORRELATION
The autocorrelation coefficient ξ of a problem is a param-

eter proposed by Angel and Zissimopoulos [1] that gives a
measure of its ruggedness. The same authors showed later
in an empirical study that ξ seems to be related with the
performance of Simulated Annealing [2]. Another measure
of ruggedness defined by Garćıa-Pelayo and Stadler is the
autocorrelation length [12], denoted with ℓ. The autocorre-
lation length is specially important in optimization because
of the autocorrelation length conjecture, which claims that
in many landscapes the number of local optima M can be
estimated by the expression [20]:

M ≈ |X|
|X(x0, ℓ)|

, (8)

where X(x0, ℓ) is the set of solutions reachable from x0 in
ℓ or less local movements. The previous expression is not
exact, but an approximation. It can be useful to compare
the estimated number of local optima in two instances of the
same problem. In effect, for a given problem in which (8) is
valid, the higher the value of ℓ the lower the number of local
optima. In a landscape with a low number of local optima,
a local search strategy can a priori find the global optimum
using less steps.

In many problems, ξ and ℓ are directly related. That is,
when one of them increases the other does the same. As
an example we consider the Unconstrained Quadratic Op-
timization (UQO). We can observe in Figure 1 that both
autocorrelation measures, ξ and ℓ, increase with W2 (spec-
tral coefficient, see below) and their values are between n/4
when W2 = 0 and n/2 when W2 = 1. However, the curve of
ℓ is linear while the one of ξ is non-linear.

In the context of the autocorrelation length conjecture,
this could explain why Angel and Zissimopoulos observed a
better performance of SA when the problem instances had
a higher value for ξ. Instances with higher ξ most probably
would have higher ℓ and this most probably would mean a
lower number of local optima in the instance, so it is easier
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Figure 1: Value of ξ/n and ℓ/n against W2.

for a local search algorithm like SA to solve the problem
instance. A recent work based also in QAP supports this
idea [9].

Let us discuss now how can we efficiently compute ξ and
ℓ if we know the elementary landscape decomposition of a
problem. Let us consider a random walk {x0, x1, . . .} on
the solution space such that xi+1 ∈ N(xi). The Weinberger
autocorrelation function r is defined as:

r(s) =
avg{f(xt)f(xt+s)}x0,t

− avg{f(xt)}2x0,t

avg{f(xt)2}x0,t
− avg{f(xt)}2x0,t

, (9)

where the averages are computed over all the starting solu-
tions x0 and all the solutions in the sequence [24]. Based
on this function the autocorrelation coefficient and the au-
tocorrelation length are defined as:

ξ =
1

1− r(1)
, (10)

ℓ =
∞
∑

s=0

r(s). (11)

Stadler [18] proved that if f =
∑

i
aiφi is a Fourier expan-

sion of f in a landscape, then the autocorrelation function
of f is given by

r(s) =
∑

i6=0

a2
i

∑

j 6=0 a
2
j

(

1− λi

d

)s

, (12)

where λi is the eigenvalue associated to the elementary func-
tion φi. As a consequence, the value r(1) is:

r(1) =

∑

i6=0 a
2
i

(

1− λi

d

)

∑

j 6=0 a
2
j

= 1−
∑

i6=0 a
2
i
λi

d
∑

j 6=0 a
2
j

,

and the autocorrelation coefficient can be computed as

ξ =
d
∑

j 6=0 a
2
j

∑

i6=0 a
2
iλi

. (13)

The sum of the squared Fourier coefficients a2
j associated

to the same eigenvalue λi is |X|(f2
i − fi

2
), where fi is the

sum of all the elementary components aiφi with the same
eigenvalue λi and the overline represents the average over
the entire search space X. The sum of the squared Fourier



coefficients a2
j with j 6= 0 is |X|(f2 − f

2
). Introducing these

two expressions in (13) we can write:

ξ =

(
∑

i6=0(f
2
i − fi

2
)λi

d(f2 − f
2
)

)−1

=





∑

i6=0

Wi

λi

d





−1

,

where the values Wi are called spectral coefficients and are
defined as

Wi =
f2
i − fi

2

f2 − f
2
. (14)

The autocorrelation length ℓ can also be expressed with
the help of (12) as:

ℓ =

∞
∑

s=0

r(s) = d
∑

i6=0

Wi

λi

. (15)

Thus, the problem of computing the autocorrelation coef-
ficient and length is reduced to the problem of finding the
spectral coefficients Wi. These coefficients have been com-
puted for some NP-hard combinatorial optimization prob-
lems. Chicano et al. [10] provide expressions for the au-
tocorrelation measures in the case of QAP. They do not
provide any algorithm to do it in the paper but they imple-
mented an O(n2) algorithm to compute the autocorrelation
measures which is available on-line(see Section 6). For il-
lustration purposes we show here the values for autocorrela-
tion measures and spectral coefficient of the Unconstrained
Quadratic Optimization (UQO). The details can be found
in [6]. The autocorrelation coefficient and length is given by
the following expressions:

ξ =
n

2(2−W2)
, (16)

ℓ =
n(1 +W2)

4
, (17)

where n is the size of the problem (length of the binary
solutions) and W2 is given by:

W2 =
f2
2

f2 − f
2 . (18)

The expressions for f2
2 , f

2 and f
2
are:

f
2
=

1

16

(

n
∑

i,j=1

qij +

n
∑

i=1

qii

)2

, (19)

f2
2 =

1

16

n
∑

i=1

v2i , (20)

f2 =

n
∑

i,j=1

n
∑

i′,j′=1

qijqi′j′

2|{i,j,i′,j′}|
. (21)

The previous expressions can be computed at most in
O(n4). Sutton et al. [22] showed how the autocorrelation
function r(s) can be computed for all the pseudo-Boolean
functions using the one-flip neighborhood. The previous ex-
pression is just a particular case of the Sutton’s expression.
In their work they provided expressions for the MAX-3-SAT
problem.

4. FITNESS-DISTANCE CORRELATION
The Fitness-Distance Correlation (FDC) is a measure in-

troduced by Jones and Forrest [15] to measure problem dif-
ficulty. Given all the solutions in the search space, it com-
putes the correlation coefficient between the fitness values of
these solutions and the Hamming distances of the solutions
to their nearest global optimum. In the case of an optimiza-
tion problem defined over a binary solution space we can
define FDC as follows.

Definition 2. Given a function f : Bn 7→ R the fitness-
distance correlation for f is defined as

r =
Covfd
σfσd

, (22)

where Covfd is the covariance of the fitness values and the
distances of the solutions to their nearest global optimum, σf

is the standard deviation of the fitness values in the search
space and σd is the standard deviation of the distances to the
nearest global optimum in the search space. Formally:

Covfd =
1

2n

∑

x∈Bn

(f(x)− f)(d(x)− d),

f =
1

2n

∑

x∈Bn

f(x), σf =

√

1

2n

∑

x∈Bn

(f(x)− f)2,

d =
1

2n

∑

x∈Bn

d(x), σd =

√

1

2n

∑

x∈Bn

(d(x)− d)2, (23)

where the function d(x) is the Hamming distance between x
and its nearest global optimum.

The FDC r is a value between −1 and 1. The lower the
absolute value of r, the more difficult the optimization prob-
lem is supposed to be. The exact computation of the FDC
using the previous definition requires the evaluation of the
complete search space. It is required to determine the global
optima to define d(x) and compute the statistics for d and f .
If the objective function f is a constant function, then the
FDC is not well-defined, since σf = 0. The next theorem,
extracted from [8], provides an exact expression for FDC in
the case in which there exists one only global optimum x∗

and we know the elementary landscape decomposition of f .

Theorem 1. Let f be an objective function whose ele-
mentary landscape decomposition is f =

∑n

p=0 f2p, where f0

is the constant function f0(x) = f and each f2p with p > 0
is an order-p elementary function with zero offset. If there
exists only one global optimum in the search space x∗, the
FDC can be exactly computed as:

r =
−f2(x

∗)

σf

√
n

. (24)

The previous theorem shows that the only thing we need
to know on the global optimum is the value of the first ele-
mentary component. With this information we can exactly
compute the FDC. Some problems for which we know the
elementary landscape decomposition based on the numer-
ical data defining a problem instance are MAX-SAT, 0-1
Unconstrained Quadratic Optimization (UQO), the Subset
Sum problem (SS), the NK-landscapes, etc. For all of them
we could provide expressions for their FDC.



The result of the previous theorem starts an interesting
discussion. In Section 3 we mentioned that some works on
landscape analysis claim that the ruggedness of a landscape
is related to its hardness [3]. In particular, the autocor-
relation coefficient ξ and the autocorrelation length ℓ of a
problem are two measures proposed to characterize an ob-
jective function in a way that allows one to estimate the
performance of a local search method. Also a relationship
has been noticed between the autocorrelation length and
the expected number of local optima of a problem [12], in
agreement with the autocorrelation length conjecture. In
summary, empirical and theoretical results support the hy-
pothesis that a rugged landscape is more difficult than a
problem with a smooth landscape.

In the case of the elementary functions defined over binary
strings, the functions with higher order are more rugged
than the ones with lower order. The order-1 elementary
landscapes are the smoothest landscapes and, in fact, they
can always be solved in polynomial time. Following this
chain of reasoning, in a general landscape, the elementary
components with order p > 1 are the ones that make the
problem difficult. However, from Theorem 1 we observe that
only the order-1 elementary component of a function f is
taken into account in the computation of the FDC. This fact
poses some doubts on the value of the FDC as a measure of
difficulty of a problem, since FDC is shown to neglect the
rest of information captured in the higher order components.
This is true under the assumption that one single global
optimum exists in the search space. The doubts on FDC
as being a difficulty indicator have also been raised by other
authors. Two examples are the work by Tomassini et al. [23]
focused on genetic programming and the one by Bierwirth
et al. [4] based on the Job Shop Scheduling.

If the objective function is elementary, then the expression
of the exact FDC is specially simple:

r =

{

f−f(x∗)

σf

√
n

if p = 1,

0 if p > 1.
(25)

The previous equation states that only elementary land-
scapes with order p = 1 have a nonzero FDC. Furthermore,
the FDC does depend on the value of the objective function
in the global optimum f(x∗) and the average value f , but
not on the solution x∗ itself. We can also observe that if
we are maximizing, then f(x∗) > f and the FDC is neg-
ative, while if we are minimizing f(x∗) < f and the FDC
is positive. The order-1 elementary landscapes can always
be written as linear functions and they can be optimized
in polynomial time. That is, if f is an order-1 elementary
function then it can be written in the following way:

f(x) =

n
∑

i=1

aixi + b. (26)

where ai and b are real values. If such a linear function has
only one global optimum (that is, ai 6= 0 for all i). The FDC
can be computed using the expression:

r =
−∑n

i=1 |ai|
√

n
∑n

i=1 a
2
i

, (27)

which is always in the interval −1 ≤ r < 0. When all the
values of ai are the same, the FDC computed with (27) is
−1. This happens in particular for the Onemax problem.
But if there exist different values for ai, then we can reach

any arbitrary value in [−1, 0) for r. The next result provides
a way to design a linear function with the value of r we want.

Theorem 2. Let ρ be an arbitrary real value in the in-
terval [−1, 0), then any linear function f(x) given by (26)
where n > 1/ρ2, a2 = a3 = . . . = an = 1 and a1 is

a1 =
(n− 1) + n|ρ|

√

(1− ρ2)(n− 1)

nρ2 − 1
, (28)

has exactly FDC r = ρ.

Theorem 2, also extracted from [8] provides a solid argu-
ment against the use of FDC as a measure of the difficulty
of a problem. In effect, we can always build an optimization
problem based on a linear function, which can be solved in
polynomial time, with an FDC as near as desired to 0 (but
not zero), that is, as “difficult” as desired according to the
FDC. However, we have to highlight here that for a given
FDC value ρ we need at least n > 1/ρ2 variables. Thus, an
FDC nearer to 0 requires more variables.

Let us discuss now how can we use (24) in order to com-
pute FDC for a given problem. Observe that we need the
global optimum but most probably we don’t know that global
optimum (that’s the reason we are interested in solving that
problem). This is a drawback not only of our expression, but
of any other procedure to compute FDC. In all the cases we
need the global optima. Thus, we cannot compute the ex-
act FDC in general, but an approximation. One empirical
procedure to compute FDC would consist in sampling the
search space, evaluating the fitness in all these solutions,
computing the distances between any pair of solutions and,
finally, computing FDC using (22). This procedure requires
to store all the sampled points in memory until we decide
which one is the optimum and we compute all the distances
between them. In this case our expression (24) have some
advantages to simplify the procedure. First, we don’t need
to store all the points in memory, just the optimal one. Thus,
the sampling can be just a trajectory-based strategy (guided
or not) that tries to find the global optimum. Second, once
we have a solution x∗ that will be used in the computation
of FDC, we have just to evaluate f2 on it and apply (24)
to get r. Third, the FDC value computed in this way takes
into account not only the sampled points, but all the points
in the search space, that is, it is a statistic that considers the
entire search space. Thus, we would expect it to be more
accurate than the empirical FDC computed using only the
sampled values. We have, however, to clarify that we need
to compute σf , which in most of the cases is easy to do it
from the problem data (UQO or QAP for example), but in
some other problems it could be difficult or even intractable.

5. EXPECTED FITNESS IN MUTATION
In the previous sections we have seen how landscape the-

ory can be used to efficiently compute autocorrelation mea-
sures or the FDC of a problem. All these measures have
been considered in the past, not without criticisms, as in-
dicators of problem hardness. In this section we show that
in the case of optimization problems with a binary solution
space, the elementary landscape decomposition can also be
used to compute the expected fitness value of a solution
when it is mutated using bit-flip mutation. Furthermore,
we will see that there is a correspondence between the ex-
pectation curves (expectation against probability of flipping



a bit) and the number of components and the exact values
of the elementary landscape decomposition.

First of all, let us define the bit-flip mutation operator.
Given a solution x of size n (binary string), the bit-flip mu-
tation operator changes the value of each bit with proba-
bility p, the only parameter of the mutation. If 0 < p < 1
the mutation operator can yield any solution of the search
space with a different probability. In particular, if we apply
the operator to solution x with probability p of flipping a
bit, then the solution y will be obtained with probability
Prob{y = Mp(x)} = p|x⊕y|(1− p)n−|x⊕y|, where ⊕ denotes
the exclusive OR and | · | is the function that counts the
number ones in a string.

Sutton et al. [21] and Chicano et al. [7] discovered that the
expected value of the fitness of a solution x after a bit-flip
can be easily computed using the elementary landscape de-
composition. The result is the following (extracted from [7]):

Theorem 3. Let f be an arbitrary function whose ele-
mentary decomposition in the one-change binary configura-
tion space is:

f =
n
∑

j=1

f2j , (29)

where f2j denotes the order-j elementary component (with
eigenvalue 2j). Then the expected fitness value of a solution
after the application of the bit-flip mutation operator to x is:

E[f(Mp(x))] = f +

n
∑

j=1

(1− 2p)j(f2j(x)− f2j), (30)

where f2j denotes the average value of function f2j(x) in the
entire search space.

With this expression we can efficiently compute the ex-
pected value after the application of the bit-flip mutation
operator to solution x for an arbitrary function f . The com-
plexity of this operation is the sum of the complexities of
the evaluation of the elementary components. The average
value f2j is a constant that depends on the parameters of the
particular instance we are solving and can be precomputed
before the search process.

It is our experience that usually we can find an algorithm
for computing the component f2j and the value f2j that has
the same complexity as the original function f . If this is true
for a problem the complexity of computing E[f(Mp(x))] is
at most n times the complexity of computing a particular
component f2j . One interesting observation is that in many
problems the number of elementary components is a fixed
number lower than n, independently of the instance. For ex-
ample, in the MAX-k-SAT problem the objective function
can be written as a sum of k elementary landscapes [16].
In these cases the computation of E[f(Mp(x))] will have the
same complexity as the computation of the hardest elemen-
tary component f2j .

The curves of E[f(Mp(x))] (depending on p) for general
functions f can be almost arbitrary. The only limitations
are that they must be a polynomial of degree at most n
and at p = 1/2 the value of E[f(Mp(x))] is always f̄ . We
can state that an elementary component with order j (and
eigenvalue 2j) is related to a polynomial of degree j in the
expectation curve. As an example we show in Figure 2 the
curve E[f(Mp(x))] for a function which can be decomposed

into three elementary landscapes. We show in the figure
the expectation (solid line) and the contribution of each
elementary component (dashed lines). We can observe in
this case that the function value f(x) is f̄ (see the value
for p = 0). However, in spite of this, the expectation does
depend on p because we are not dealing with an elemen-
tary landscape. Furthermore, it has the maximum value at
p = (4 −

√
7)/6 ≈ 0.226. We can observe that for p = 1/2

the expectation crosses f̄ again.

Figure 2: Expectation E[f(Mp(x))] for a function with

three elementary components.

From a theoretical point of view the results presented in
this section shed some light on the behaviour of the bit-
flip mutation operator. This knowledge could be used, for
example, in the theoretical analysis of the runtime of search
algorithms in which this operator is used.

At this point we can observe that, given a solution x, the
curve providing the expected fitness after mutating x as a
function of p is completely determined by the values of the
elementary components of f in x. This means, that we can
determine the number and the values of the elementary com-
ponents in x just analyzing the bit-flip mutation operator.
In this sense, there is a one-to-one correspondence between
the behaviour of the bit-flip mutation in x and the elemen-
tary components in x. If we consider all the solutions in the
search space, we conclude that it is not only the case that
we can determine the behaviour of the bit-flip mutation op-
erator using the elementary landscape decomposition of the
problem, but we can extract the elementary landscape de-
composition of the problem analyzing the bit-flip mutation.

Previous work has considered using the expectation curves
to compute the probability value p∗ optimizing the expected
behaviour. It was argued in [7], for example, that this could
be the base for a new operator that could escape faster from
non-optimal regions. However, using the probability p∗ for
which the expected fitness is optimal does not mean that
the algorithm will find the global optimum faster, we should
consider the whole search process. Studies still under de-
velopment prove that landscape theory is also useful when
we want to compute the expected number of evaluations (or
generations) required to find the global optimum in (1 + λ)
EAs. This opens an encouraging line of research focused on
the link between the elementary landscape decomposition of
combinatorial optimization problems and an objective mea-



Instance ξ ℓ Avgsd time (ms)
sko100a 27.7997 29.9852 492285
sko100b 28.1060 30.4703 530290
sko100c 27.5476 29.5778 519294
sko100d 27.5351 29.5573 531283
sko100e 27.6002 29.6634 513297
sko100f 27.3459 29.2465 521293
tai100a 25.1950 25.3830 523286
tai100b 35.4719 39.6132 512290
wil100 28.3622 30.8679 539282
esc128 32.0000 32.0000 505308
tho150 41.1901 44.1743 517289
tai150b 40.4581 42.9472 521282
tai256c 64.0000 64.0000 602287

Table 1: Autocorrelation coefficient ξ and length ℓ of
the larger instances of QAPLIB. We also show the

average and standard deviation of the time required

to compute the measures.

sure of problem hardness such as the time required to solve
it using a concrete algorithm.

6. SOFTWARE TOOLS
Researchers working with landscape theory frequently im-

plement some small code snippets and algorithms to support
their research. Among the software implemented we can find
applications to compute the autocorrelation measures of op-
timization problems, assist the researcher in the task of find-
ing the elementary landscape decomposition of a problem,
empirically check if a landscape is elementary, apply some
of the ideas in landscape theory in order to improve a search
strategy and so on. In most of the cases these algorithms
are not published by the researcher, since it is considered a
tool for supporting the research, but not a product. These
algorithms are usually far from trivial to implement because
they require a deep knowledge of the mathematical details
of landscape theory.

However, researchers interested in problem understanding
would like sometimes to have such software tools as the base
for further increasing their knowledge on a problem without
having to worry about the implementation details of the
algorithms. In this section we describe two of such software
tools that are available for the researchers.

The first one is a small Web application that computes
the autocorrelation measures for QAP instances. The user
can select an instance of the QAPLIB or can upload her/his
own QAP instance in a file with the same format as the
instances in QAPLIB. As a result the application computes
the spectral coefficients, the autocorrelation coefficient and
the autocorrelation length of the instance. The algorithm
used to compute these values is a sophisticated algorithm
of order O(n2). This Web application is available at URL
http://neo.lcc.uma.es/software/qap.php. In Table 6 we
show the autocorrelation coefficient and length of the larger
instances of QAPLIB computed with the tool. The average
and standard deviation of the time required was computed
over 100 independent runs.

The second tool we will describe is a desktop tool with a
GUI that was designed to be a software lab for landscape
theory research. Its name is Landscape Explorer, available
at http://neo.lcc.uma.es/software/landexplorer (Fig-
ure 3). The two main requirements we took into account in
the design of the tool were the extensibility and the multi-

platform support. For this reason we decided to base our
tool on the Rich Client Platform (RCP) of Eclipse, using
Java as programming language. We can think in Landscape
Explorer as a collection of plug-ins with dependencies among
them. In order to extend the application with a new feature
we just need to build a plug-in implementing that feature.
This tool can be extended to include new landscapes or pro-
cedures for landscape analysis. In order to add a new land-
scape the developer has just to provide an implementation
of the neighborhood and the objective function.

Figure 3: Screen capture of Landscape Explorer.

At this moment Landscape Explorer can work with the fol-
lowing landscapes: Quadratic Assignment Problem (QAP),
Traveling Salesman Problem (TSP), Unconstrained Quadratic
Optimization (UQO), Subset Sum (SS), Frequency Assign-
ment Problem (FAP), DNA Fragment Assembly (DFA), lin-
ear combinations of Walsh Functions. The last landscape
is not a combinatorial optimization problem, but any op-
timization problem defined over binary strings can be ex-
pressed as a linear combination of Walsh functions. Thus,
it is a convenient landscape to model any problem in binary
strings.

Regarding the procedures implemented in Landscape Ex-
plorer we find the following ones:

• Empirical Autocorrelation Computation. This
method performs a random walk over the search space
jumping from one solution x to one of its neighbors
y ∈ N(x). At the same time it computes the auto-
correlation of the fitness values and finally shows the
Weinberger autocorrelation function, the autocorrela-
tion length and the autocorrelation coefficient.

• Elementary Landscape Check. This procedure
samples the search space and their neighbors in order
to check whether the landscape is elementary or not.
This method is not exhaustive: if the answer is “yes”
the user cannot be sure that the landscape is elemen-
tary. On the other hand, if we a priori know that the
landscape is elementary, this procedure can be used to
obtain the eigenvalue and the offset.

• Mathematica program. Given a landscape this pro-
cedure generates a Mathematica script to find the el-
ementary landscape decomposition. This procedure is
a key part of the methodology to find the elementary
landscape decomposition of a problem [11].

• Estimation of the number of elementary com-

ponents. Given a landscape defined over binary strings,
this procedure empirically determines the number of
elementary components of the objective function.



All the previous procedures can be applied to any land-
scape implemented in the application. In addition to these
procedures, Landscape Explorer includes some algorithms to
exactly compute autocorrelation measures for some specific
problems: QAP, TSP, UQO and SS.

7. CONCLUSIONS AND FUTURE WORK
Landscape theory is a convenient framework to under-

stand optimization problems. We have shown through the
paper how can we use landscape theory to efficiently com-
pute statistics and measures of optimization problems. In
particular, we showed that autocorrelation measures, fitness-
distance correlation and the expected fitness after a bit-flip
mutation can be efficiently computed from problem data. In
the context of problem understanding these and other mea-
sures are useful to get a deep knowledge on the optimization
problems. We also described some software tools implement-
ing algorithms that can compute the measures and statistics.

We think landscape theory can be used to find new statis-
tics of the problems. In particular, we have some prelim-
inary results that suggest a link between runtime analysis
and landscape theory. We plan to exploit this link in order
to predict the behaviour of the algorithms without executing
them. Such predictions would allow one to select the optimal
parameters to run an algorithm before it is executed.
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