
Math Oracles: A New Way of Designing
Efficient Self-adaptive Algorithms

Gabriel Luque
E.T.S.I. Informática, University of Málaga,

29071 Málaga (España)
gabriel@lcc.uma.es

Enrique Alba
E.T.S.I. Informática, University of Málaga,

29071 Málaga (España)
eat@lcc.uma.es

ABSTRACT
In this paper we present a new general methodology to de-
velop self-adaptive methods at a low computational cost. In-
stead of going purely ad-hoc we define several simple steps
to include theoretical models as additional information in
our algorithm. Our idea is to incorporate the predictive in-
formation (future behavior) provided by well-known math-
ematical models or other prediction systems (the oracle) to
build enhanced methods. We show the main steps which
should be considered to include this new kind of informa-
tion into any algorithm. In addition, we actually test the
idea on a specific algorithm, a genetic algorithm (GA). Ex-
periments show that our proposal is able to obtain similar,
or even better results when it is compared to the traditional
algorithm. We also show the benefits in terms of saving time
and a lower complexity of parameter settings.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies;
F.2 [Theory of Computation]: Analysis of Algorithms

General Terms
Algorithms

Keywords
methodology, mathematical oracles, self-adaptive techniques

1. METHODOLOGY
The development of self-* algorithms which adapt their

behavior to the specific characteristics of the problem is cur-
rently a very hot topic in Computer Science. Most of the
proposed techniques in this domain change their dynamics
using the current status of the method and some histori-
cal data. But there exists a number of mathematical studies
which could provide us some information about the expected
future behavior of the method which can be used to modify
its dynamics. We define a mathematical oracle as a math-
ematical description of the behavior of a search technique
that allows a prediction on the near future steps of the tech-
nique. We assume that this prediction is done in the oracle
in an approximate, imperfect way, and that it can be used
in a black-box form.

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

The main goal of this work is then to propose a method-
ology to use the information provided by a mathematical
tool allowing to predict the behavior of algorithms, what
will allow us to build enhanced versions of them. The main
decisions and steps which should be considered by the de-
veloper are:

1) Offering to the oracle. First, we have to gather the
input data latter offered to fed the oracle. This information
depends on the mathematical oracle which we are using.
Generally, it is related to the evolution of the search, such
as improvement speed, number of steps performed, . . . , or
in the case of population-based techniques some statistical
indicator of the population (such as diversity, entropy, stan-
dard deviation, . . . ).

2) Praying the oracle. Now, since we have the data needed
by the mathematical oracle (got in the previous phase), we
could apply it to obtain the new predictive information. The
next decision is when the mathematical oracle is to be ap-
plied, e.g. we could apply it in every step of the algorithm.
However, the decision should be an elaborated one since
some algorithmic steps are usually needed to see if the last
change is positive or not.

3) Oracle’s response. When we use the mathematical or-
acle, we get some prediction about the expected behavior
(with some inaccuracy) of the technique in the next steps
(convergence, diversity, movement in search space, . . . ).

4) Pray and work. The final phase is how to use this in-
formation to change our algorithms. Usually we will have
arbitrary potential oracles which provide information only
about the convergence time, the improvement speed, or sim-
ilar. We have to decide if this trend is the adequate one for
the future run of our algorithm and, otherwise, take some
actions (change parameters or operators of the method sys-
tematically) to approach this prediction to the expected one.

2. CASE STUDY
This section shows how this general methodology can be

instantiated for a concrete algorithm and a specific mathe-
matical oracle. We design a family of self-adaptive genetic
algorithms using some predictive information coming from
a mathematical model of takeover time [1] . We are going
to propose several alternatives to each step of this method-
ology to illustrate the many interesting future research lines
that opens from our idea.

1) Offering to the oracle. Our theoretical oracle can esti-
mate some values related to the convergence of the GA. To
calculate these values it needs the proportion of the optimal
solution in the populations of the last steps of the algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62897717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Here, we face the first challenge, since this value is always 0
(a real method has got no copies of the optimal value until
maybe its last steps). We propose three alternative defini-
tions of this concept: (a) proportion of individual close to
the optimal one (αOpt model), (b) proportion of individuals
close to the current best found solution (αbestFS model),
and (c) use the standard deviation (stdDev model). The two
last models can be used on any arbitrary problem, while the
first one needs to know the optimal solution.

2) Praying the oracle. In this case the oracle only needs in-
formation on the previous 10-15 generations to gather enough
information to get an accurate prediction. Since the execu-
tion of the GA to find the optimal solution in the tested
benchmark is much larger than this value, applying the
mathematical oracle every 15 generations seems to be rea-
sonable. But for a more comprehensive study, we will test
the next values: 1, 15, 30, 45, and 100.

3) Oracle’s response. In the previous section we stated
that the oracle can facilitate two types of information: the
takeover time and the expected convergence speed. In this
case study, since we know that these values are not fully
accurate, we have decided to use only the convergence speed.
According to some preliminary results we have defined three
possible states for this value: the convergence is too fast, it
is too slow, and the convergence is the expected one. Of
course, a more fine-grained classification could be used, but
this is a good first approach, very intuitive and general.

4) Pray and work. In this step we have to decide if some
change should be applied to the search method according
to the information provided by the oracle. Also, we have
to indicate what actual actions should be performed. To
maintain the algorithm as simple as possible, we perform
some actions only if the predicted convergence speed is too
fast or to slow. In our proposed self-adaptive technique,
when the predicted convergence speed is too slow, we will
decrease the intensity of the mutation, while if the predicted
convergence value is too fast, we will increase the intensity
of the mutation. Please notice that this is done not in a pre-
programmed form or in an ad-hoc manner directed by the
researched, but controlled automatically by a math oracle.

3. EMPIRICAL VALIDATION
In this section we discuss the design of a set of experiments

in order to observe the performance of the self-* models
proposed in the previous section and compare them against
themselves and also against a canonical GA. Our goal is not
only to show that this idea works and requires a low cost, but
also that the resulting techniques are actually accurate and
able of solving actual problems. To test the different models
we chose two well-known problems: the MAX-SAT problem
(nine instances) and the TSP problem (five instances).

Table 1 shows the results of applying the statistical Wilcoxon
test confronting each of the models against a traditional GA.
The column tagged with %> contains the percentage of in-
dependent runs in which our self-* algorithm is statistically
better than the canonical GA. The column %≥ has a similar
meaning, but it also includes the cases in which there are no
statistical difference among the techniques.

Several conclusions can be obtained from Table 1. The
first one is that almost any of the proposed alternatives to
design a self-* GA by using a (simple) oracle is embarrass-
ingly better than a traditional GA in most of the instances.
We observe that using the αOpt obtains the best results

Table 1: Advantage of using oracles (Wilcoxon test)
self-adaptive GA MAXSAT + TSP

Approx. scheme period %> %≥

αOpt

1 14% 36%
15 64% 78%
30 78% 100%
45 71% 100%
100 14% 14%

αbestFS

1 21% 21%
15 64% 71%
30 71% 86%
45 78% 93%
100 21% 28%

stdDev

1 7% 21%
15 21% 36%
30 28% 43%
45 28% 36%
100 14% 21%

Table 2: Overhead provoked by the different periods
1 15 30 45 100

58% 11% 6% 2% 1%

while the αbestFS also offers quite good results and it has
the advantage that it does not require any additional infor-
mation of the problem. On the contrary, the model based
on the standard deviation obtains quite poor results.

The period is a very important factor. The results show
that it is not beneficial to ask the oracle at every algorithmic
step (the mathematical oracle needs several generations to
observe the effects of the changes performed). However, a
large value (100) is neither good for the search, since the or-
acle services are ignored for too long. The best value usually
is around 30 generations for these two problems.

We will also analyze the overhead provoked by each stud-
ied model. The use of self-tuning techniques means an in-
crease in the computation time of the algorithm (due to
the additional steps) that it is too often neglected in self-*
articles. In Table 2 we only show the average overhead pro-
voked by the period, since we observed that it is main factor
in the increasing of the runtime (it controls how many peti-
tions are performed to the oracle). We show the percentage
in which the run time of an average generation measured
without/with the oracle. We can observe that the overhead
decreases when the period value is larger. This is an ex-
pected result since when the period is increased the number
of additional operations needed by the algorithm is smaller.
We can also notice that the overhead is quite low in all cases
(with the exception of period one), and as we saw before the
self-adaptive models outperform the traditional GA, requir-
ing just a few generations to find the optimum. These two
factors (small overhead and a lower number of generations)
yield a global execution time of self-adaptive models similar
to the traditional GA (or even smaller, in some cases).

Acknowledgments
Authors acknowledge funds from the Spanish Ministry of
Sciences under contract TIN2011-28194.

4. REFERENCES
[1] G. Luque and E. Alba. Analyzing the behaviour of

population-based algorithms using Rayleigh
distribution. In PPSN XII, pages 417–427, 2012.


