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Abstract—Mobile applications run in environments where the
context is continuously changing. Therefore, it is necessary to
provide support for the run-time adaptation of these applications.
This support is usually achieved by middleware platforms that
offer a context-aware dynamic reconfiguration service. However,
the main shortcoming of existing approaches is that both the list
of possible configurations and the plans to adapt the application
to a new configuration are usually specified at design-time. In
this paper we present an approach that allows the automatic
generation at run-time of application configurations and of
reconfiguration plans. Moreover, the generated configurations
are optimal regarding the provided functionality and, more
importantly, without exceeding the available resources (e.g. bat-
tery). This is performed by: (1) having the information about
the application variability available at runtime using feature
models, and (2) using a genetic algorithm that allows generating
an optimal configuration at runtime. We have specified a case
study and evaluated our approach, and the results show that
it is efficient enough as to be used on mobile devices without
introducing an excessive overhead.

Index Terms—Dynamic Reconfiguration, Context, Middleware,
Feature Models, Genetic Algorithms, Autonomic Computing

I. INTRODUCTION

Modern mobile applications demand services that support
runtime reconfiguration, in order to adapt their behaviour to
the continuous contextual changes that occur in their run-
time environment. Although there can be several reasons to
reconfigure an application, in the case of mobile applications,
what normally drives their runtime adaptation is the necessity
of optimizing their functionality to the availability of certain
resources (e.g. battery, memory, CPU, etc.). Ideally, mobile
applications should be able to manage such optimization
autonomously, that is, they should be self-managed or self-
adapted. In this sense, the main goal of the Autonomic
Computing (AC) paradigm [1] is to endow distributed systems
with self-management capacities.

According to the principals of AC, runtime reconfiguration
of mobile applications involves (1) monitoring the runtime
environment; (2) analysing the monitored information; (3)
generating the reconfiguration Plan and (4) executing the plan.

All of these stages are driven by a Knowledge base, and
all together are known as the MAPE-K loop. However, how
to implement each of the MAPE-K loop functions is an open
issue. In our proposal, we define a Context Monitoring Service
(CMS), which is in charge of monitoring the environment
and providing this information to a Dynamic Reconfiguration
Service (DRS), which covers the analysis of the monitored

information and the generation and execution of the recon-
figuration plans. Both services are designed to be integrated
in a middleware for adaptive applications development [2], al-
though in this paper we mainly focus on presenting the details
of how the DRS accomplishes the runtime reconfiguration of
mobile applications.

Typically, after monitoring the contextual information, the
analysis phase in the MAPE-K loop consists on deciding
if the detected changes are significant enough as to initiate
a reconfiguration of the application. If yes, a plan has to
be selected/generated to switch from the running application
configuration to a new one that fits the current available
resources. Although there are other approaches that provide
dynamic reconfiguration of applications at runtime, many of
these approaches specify both the list of possible configu-
rations and the reconfiguration plans at design-time [3], [4],
[5], [6], [7], [8], [9]. This shortcoming limits the number of
possible configurations and avoid generating the optimal ones.

Contrarily to these approaches, the DRS presented in this
paper generates the application configurations and the re-
configuration plans automatically at runtime. Moreover, the
generated configurations are optimal regarding the provided
functionality and, more importantly, without exceeding the
available resources (e.g. battery).

On the one hand, our DRS follows a Dynamic Software
Product Line (DSPL) approach. DSLPs produce software
capable of adapting to changes in user needs and resource
constraints [10]. Concretely, the variation points of the ap-
plication are specified using a Feature Model (FM) [11],
which in our approach is available at runtime as part of the
knowledge used by the DRS to perform the reconfiguration.
Since the reconfiguration is defined in terms of variations
on the application software architecture, our approach defines
a special kind of FM that we name Architectural Feature
Models (AFM). An AFM is a FM where features represent
architectural elements – i.e. components and connectors that
specify the interconnections among them.

On the other hand, when the availability of certain resources
decreases or increases significantly, the DRS has to decide
which architectural configuration provides the best function-
ality, while not exceeding the available resources. Since this
can be formulated as an optimization problem, our approach
proposes the use of a genetic algorithm (GA) to optimize the
selection of architectural elements that will conform to the
new configuration. In [12] the same kind of GA is used to
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optimize the selection of features of a SPL at design time. We
use a similar GA, but executing it at runtime as part of our
DSPL approach.

Finally, since our DRS is installed inside a mobile phone, we
present some evaluation results showing that our approach is
feasible and efficient for being executed with the fairly limited
resources of a mobile phone, resulting in good response times
and nearly-optimal architectural configurations. The DRS have
been implemented in Android and tested on a Nexus 7 device.

The rest of the paper is organized as follows. The motivation
of our approach, an overview of the main contributions and
the case study used throughout the paper are presented in
Section II. Then, the approach is further described in Sec-
tions III and IV. The results of our evaluation are presented
in Section V, the related work discussed in Section VI and
finally our conclusions and on-going work are described in
Section VII.

II. MOTIVATION AND APPROACH OVERVIEW

In this section we show the motivation for our work by
discussing a list of challenges that have to be taken into
account for specifying the reconfiguration service. The basics
of feature modelling, an overview of our approach and a case
study are also presented.

A. Feature Modelling

A very popular technique for managing variability in SPLs
is feature modelling. Although they are typically used to model
the variability in the requirements specification phase, some
authors [13], [14] have shown that feature models (FMs)
can be successfully applied to manage variability in any
phase of the software development life cycle, including the
specification of the software architecture. FMs are organised
in a hierarchical structure (Figure 1), where each feature is
decomposed into children features, which can be connected to
their parent individually using optional/mandatory connectors
(if the children feature is optional/mandatory) or in groups (an
OR group if some children features can be selected or a XOR
group if only one children feature can be selected). Selecting
a feature means that its parent is automatically selected too.

For instance, in Figure 1 FeatureA is decomposed in FeatureB

and FeatureC. While FeatureB is mandatory and thus has to be
present in all the generated configurations, FeatureC is optional
– i.e. it is a variation point. Also, FeatureD and FeatureE are
part of an OR group meaning that one or more features can
be selected simultaneosly, while features FeatureF, FeatureG and
FeatureH forms a XOR group and thus only one of them can
be part of a particular configuration.

Finally, it is also possible to specify cross-tree constraints
between features, which allows the definition of constraints
which span the feature tree independently of the parent-child
relationships. These constraints are difficult to manage visually
and are usually specified using a textual notation. For instance,
the FM in Figure 1 contains 2 cross-tree constraints. The first
one means that, in case FeatureD is selected in a configuration,
FeatureF should be selected too. On the other hand, the second

FeatureD implies FeatureF

FeatureG excludes FeatureE

Mandatory Optional XOR-Group OR-Group

FeatureA

FeatureB

FeatureD FeatureE FeatureF FeatureG

FeatureC

FeatureH

Fig. 1. Feature Model Example

one states that if FeatureG is selected, the feature FeatureE can
not be included in the same configuration.

The use of FMs allows us to take advantage of their
wide support ([15], [16], [17], [18]) and the existing tools
(FAMA [19], Hydra [20], S.P.L.O.T. [21] or FeatureIDE [22]).
Moreover, FMs are specified using formal languages, as for
instance CSP (Communicating Sequential Process) [23]. This
means that the visual representations are only for the purpose
of facilitating the writing and understanding of the FMs, but
then the tools automatically map this graphical representation
into a CSP specification. This allows reasoning about variabil-
ity, as well as other capacities of FMs such as the generation of
valid product configurations, the quantification of the number
of possible configurations, etc.

B. Challenges

In order to achieve our goal of building a DRS that reacts
to the runtime contextual changes by optimizing the configu-
rations according to the availability of certain resources (e.g.
battery, memory, CPU), we have identified a list of challenges
that must be taken into account:

Challenge 1: Modelling the system variability. In order to
generate different configurations of a system it is necessary
to model its dynamic variability at the appropriate abstraction
level. Concretely, in the case of runtime reconfigurations we
need to manage architectural configurations. In other words, a
reconfiguration is normally specified in terms of changes on
the application software architecture – i.e. on their components
and connections. So, the challenge we address is to model vari-
ability at the architectural level, expressing the commonalities
and variabilities of the application as part of the specification
of its software architecture (see Section III).

Challenge 2: Reasoning about variability at runtime. Mod-
elling the variability at the architectural level, as discussed in
Challenge 1, implies a new challenge. As far as we know,
the existing approaches to incorporate variability in software
architectures, such as [24], [25], [26], or [27], lack the support
provided by FMs to reason about the correctness of the
variability and to generate a particular product configuration.
In our approach we avoid this shortcoming by using an
Architectural FM (AFM). In our proposal, an AFM contains
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features that refer to components and connections of the soft-
ware architecture, being able to ensure that any architectural
configuration generated from the AFM is correct, in terms
of the set of components and their connections. Furthermore,
this AFM is generated off-line, which avoids introducing ad-
ditional overhead. The way the AFM is generated (manual or
automatic) is out of the scope of this paper and is not relevant
for understanding our dynamic reconfiguration approach.

Challenge 3: Optimizing the architectural configuration.
Mobile applications have scarce resources, so the challenge
is to generate optimal configurations at runtime. We use an
optimization algorithm that is able to find a nearly-optimal
configuration taking into account the resource usage of the
valid architectural configurations 1. Concretely, the algorithm
optimizes a utility function that quantify the architectural vari-
ation points according to a criterion specified by the Software
Architecture (SA). This utility function typically refers to the
general user satisfaction, although our approach is independent
of the chosen utility function. For instance, the criterion can
be the precision in the case of a component that is focused
on providing location information, or the quality in the case
of a component for video streaming. Because of its ability to
fit well with optimization problems based on variability, the
concept of utility function has been applied before in other
proposals, such as MUSIC [7] and [6].

Challenge 4: Generating the reconfiguration plan at run-
time. In our approach this challenge is straightforwardly sat-
isfied. Since a configuration is specified as an array of bits
(the output of the optimization algorithm), the reconfiguration
plan to go from the running configuration to a new optimized
one can be generated at runtime just by applying an XOR
operation between the arrays of bits representing the source
and target configurations (see Section IV).

Challenge 5: Executing the service in mobile environments.
An important challenge of any service executing on a mobile
environment is to minimize the resources (time, memory,
CPU, battery) consumed by the service itself. In particular,
for a reconfiguration service, the time is critical since, in
order to be useful, applications must be reconfigured without
appreciating the extra time employed for the reconfiguration
process. Regarding this, in Section V we demonstrate that our
DRS is fast enough to avoid harming the user response time
or the performance of the system.

C. Our Approach

All the above challenges have been addressed in our ap-
proach, which is summarized in Figure 2. We propose a
middleware in which the CMS and the DRS provide support
for deploying adaptive applications by covering all the steps
of the MAPE-K loop.

Knowledge. As shown in Figure 2, in our approach the
knowledge is represented by (1) the AFM; (2) the current AFM
configuration; (3) the software architecture; (4) the resource

1An exact algorithm cannot be used because the problem to be solved is
NP-hard (non-deterministic polynomial-time hard)
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and utility information, and (5) the reconfiguration policy. The
SA specifies the architectural variation points (Challenge 1)
using an AFM (Challenge 2), as well as an estimation of the
resource usage and the utility provided by the components
of the architecture. This information provides an optimization
criterion for run-time reconfiguration and, therefore, using it
we can generate different configurations at run-time which
maximize the utility of the application without exceeding the
availability of a concrete resource, addressing the Challenge
3. The AFM can be generated manually or using automatic
methods such as mapping algorithms or model transformations
(see Section VII).

Monitor. The CMS provides the DRS with information
about the evolution of the availability of a certain resource,
such as the battery level or the memory. When a change is
detected, the DRS is notified.

Analyse. When a Context Change event is received, the
DRS analyses if the change is significant enough to trigger
the adaptation process –i.e. if the reconfiguration criteria is
satisfied. There can be several criteria for measuring the
significance of a context change. For instance, a change in
the battery level can be significant if it has changed more than
a 5% since the last measurement or more than 10% per hour.
Therefore, several reconfiguration policies can be defined, and
the policy applied is part of the Knowledge base.

Plan. In case the analyser decides that the application needs
to be adapted, the GA is executed in order to find a nearly-
optimal configuration according to the current context. Then,
the differences between the current AFM configuration and
the new one are calculated, generating a plan for switching
between them (Challenge 4). As it has been explained in
Section II-B, calculating the difference between two config-
urations is quite straightforward since it is directly obtained
by performing an XOR operation between both configurations.

Execute. Finally, the plan is executed in order to adapt the
running architecture of the application.
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D. Case Study

In the following sections we use a case study that con-
sists of an application that assists attendees of international
congresses, keeping them up to date with the latest news and
providing several social facilities. The application provides the
following variable set of services:

1) Information about events, stands, and the latest news
about the congress.

2) Receive a video stream of keynotes or conferences in
the mobile phone. The quality of the received video is
variable (high, medium, low).

3) Check-in in the stands/events to track your activity. The
technology used is variable and either NFC or Bluetooth
may be used.

4) Information about your friends: location, visited events
and stands, agenda. The location is obtained using GPS
or WLAN, and the measuring rate is variable (high, low).

5) Exchange public messages or with your friends using a
message board.

This application can be adapted according to user prefer-
ences (e.g. high quality of video is preferred), to the availabil-
ity of the resources (e.g. WLAN is used because GPS is not
available) or to the amount of consumed resources (e.g. use
low quality of video because the mobile battery is low). In
this paper we focus on this last kind of reconfiguration.

Figure 3 shows a component-and-connector view of the
software architecture of our case study – i.e. components
model the basic behaviour of the application and communicate
with each other using connectors. All the connectors, except
AuthorizationConn have been omitted from the figure for
legibility reasons. For modelling the variability information
we use the variability taxonomy of the Common Variability
Language (CVL) [28], a domain-independent language for
specifying and resolving variability, submitted to the Object
Management Group, Inc. (OMG) for being considered as a
standard language by IBM, Thales, Fraunhofer FOKUS and
TCS. CVL allows the specification of variability over any
model which has been defined using a MOF-based metamodel
by means of variation points, which are bound to the elements
of the base model. Basically, in CVL, a variability model
and a realization model are defined. The variability model
allows the specification of the variability related to the base
model, while the realization model contains the information
that is necessary to decide how the variability is resolved,
resulting in a fully specified product without variability when
it is executed. However, in our approach we only use the
variability model, since the deployed configurations are chosen
by our DRS using the genetic algorithm. The different kinds
of variation points used in our case study are described in
Table I. For instance, using CVL we define optional compo-
nents (ObjectExistence variation point), different variants for a
component (ObjectSubstitution variation point), parametrizable
components (SlotValueAssignment variation point) and op-
tional links between elements (LinkExistence variation point).

The main component of the architectural model is the
CongressAssistant. On the one hand, it communicates with the
DataAggregator component for accessing information about
events, stands, news or for receiving a video stream of a
conference. On the other hand, it communicates with the
SocialManager component in order to take advantage of the
social facilities of the application. The Location component
is responsible for providing the location of the owner of the
mobile device for tracking his/her position, and can be realized
either by the Location GPS or the Location WLAN variants.
The GPS variant measurements are more precise but it is
also much more expensive regarding battery consumption. On
the other hand, the CheckIn component can also be realized
by CheckIn NFC and CheckIn Bluetooth components. As we
can see in the figure, this is specified in the architectural
model by applying the ObjectSubstitution variation points to
the components and realizations.

On the other hand, the components Location GPS and
Location WLAN have a configurable parameter, frequency,
which defines the measuring rate. Another parameterizable
component is VideoReceiver, in which the quality of the video
stream can be set to different values which allows to find a
balance between quality and resource consumption. To this
end, the SlotValueAssignment variation point has been applied
to the parameters of the components.

The architectural elements with an ObjectExistence varia-
tion point associated can be removed from the configuration.
For instance, if the battery level is low, the Location component
could be removed from the configuration. Then, the links
between the SocialManager and Location components, which
are not shown in detail in the figure, should be removed too.
Our DRS detects when a connector or a component is not
necessary and removes it automatically in order to ensure
that the resulting configuration is always consistent. This is
also the case of the Authorization component, which is not
mandatory. Therefore, an ObjectExistence variation point is
associated to the component. Furthermore, we can see that
the LinkExistence stereotype has been associated to the links
which connect the Authorization and the SocialRemoteAccess
components because they are removed in case the connector
is deleted from the architectural model.

As previously described, our approach is based on the
optimization of an AFM. To this end, the SA can either
manually specify the AFM, or map the information that is
contained in the specification of the software architecture with
variability into an AFM. The validity of our approach is
independent from the way in which the AFM is generated.

III. KNOWLEDGE BASE FOR DYNAMIC RECONFIGURATION

As described in Section I, all the stages of the MAPE-K
loop are driven by a knowledge base. The knowledge that
is managed in our approach is shown in Figure 2, and was
discussed in Section 2. In this section, we focus on the AFM,
which is one of the differences of our approach in comparison
with other similar approaches.
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Fig. 3. Architectural Model of the case study

TABLE I
CVL VARIATION POINTS TAXONOMY SUMMARY

Variation point Description
ObjectExistence When it is applied to an element from the base model,

indicates whether the element is included (positive ap-
plication) or deleted (negative application). Therefore, it
is used to define optional model elements.

ObjectSubstitution Allows the substitution of an element of the base model
for another element. It can be used for specifying
alternative realizations of components of the base model.

SlotValueAssignment Inserts a value into a slot of a base model element.
LinkExistence Similar to ObjectExistence variation point, but applied

to links among elements of the base model.

Our approach uses an AFM that contains a formal repre-
sentation of the software architecture and its variation points.
This AFM is one of the inputs of our GA. As discussed
in Section VII, we are working on designing a mapping
algorithm to go from the software architecture with variability
specified in Figure 3 to the AFM. However, this AFM may also
be manually specified. Since the reconfigurability approach
presented in this paper is independent from the mechanism
used to generate the AFM we omit these details in the paper.

Figure 4 shows an excerpt of the AFM that formalizes the
variability of the case study presented in Section II-D. All the
components are modelled as optional or mandatory children
of the Component feature, and all the interconnections among
them are modelled as children of the Connector feature. The
variants of a component are also modelled as children of the
component they realize, and grouped under an OR group or
an XOR group (e.g. V Location GPS and V Location WLAN
features). Finally, the variability of the component’s param-

eters is also specified as part of the AFM. We can see, for
instance, that it is mandatory to select the feature related
to the quality parameter of the VideoReceiver component
(P VideoReceiver quality) because, in other case, that parame-
ter’s value would be undefined. Furthermore, exactly one value
for this parameter can be selected simultaneously, since the
features are in an XOR group.

Moreover, there are constraints between features of the
AFM whose relationship is not parent-child. Therefore, several
cross-tree constraints are introduced in order to ensure that
each valid configuration of the AFM corresponds to a valid and
consistent system architecture. These constraints also allow
the detection of some architectural inconsistencies that can be
refined by the SA. For instance, Constraints 1-3 ensure that if
the source or target components of the respective connectors
are not selected, then the connector has to be excluded.

The information about the resource usage and utility is
provided as a table in which each entry specifies the resource
usage and utility of different features of the AFM. These
features can be related to components, component variants
or different values of parameters related to these components
or variants. This information, together with the AFM, are the
input for the GA which is executed by the DRS in order to find
a configuration of the application that fits the current context.
In this case, the resource we are restricting is the battery usage.
Some of these values are shown in Table II.

IV. DYNAMIC RECONFIGURATION SERVICE

As previously described, the DRS is responsible for adapt-
ing the applications at runtime according to the current context,
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Fig. 4. Excerpt of the AFM, including cross-tree constraints

TABLE II
RESOURCE USAGE AND UTILITY INFORMATION TABLE

Element Battery Utility

Location GPS 60 35

Location WLAN 30 15

Checkin Bluetooth 50 50

CheckinLog 15 30

Location WLAN.frequency.High 10 7

Location WLAN.frequency.Low 5 4

while the CMS provides the DRS with context information.
In this section we mainly focus on the plan stage of the

MAPE-K loop (Plan Generator), which is part of the DRS
and uses the AFM, the context information and the utility
and resources information. As Brataas et al. show in [29],
the reconfiguration time is divided in three different tasks: (1)
analyse the context data; (2) plan (decide) the new configu-
ration and (3) execute the plan in order to deploy the new
configuration. They prove that the cost of the first and third
tasks can be considered fixed, while it is critical to make the
plan task as efficient as possible because it depends on the
number of configuration variants. Therefore, the challenge is
finding the set of features that defines the optimal configuration
(the one that provides the highest utility while not exceeding
the resources limitations) in a very efficient way. However,
optimizing an FM with resource constraints is an NP-hard
problem [17] and, therefore, it is impossible to use exact
techniques to solve this optimization problem for our purpose.
Concretely, as shown in [12], exact techniques can only be
applied to small FMs at the cost of a very high execution time.
Nevertheless, artificial intelligence algorithms can find nearly-
optimal solutions in an efficient and scalable way. In this paper,
we use the genetic algorithm of Guo et al. [12], which focus
on optimizing FM configurations, for optimizing the AFM,
since it has been proven to be efficient and produces nearly-

optimal results. Concretely, this algorithm is able to generate
FM configurations with about 90% of optimality, which means
that the utility of the solutions obtained using this algorithm
is approximately the 90% of the utility of the optimal con-
figuration that would be obtained using an exact algorithm.
Although the algorithm by Guo et al. is not focused on a
DSPL approach, we show in this paper that their algorithm
is applicable to the DSPL domain. Furthermore, thanks to the
great improvement in the processing and memory capacities of
smartphones, using artificial intelligence algorithms in mobile
devices is feasible and efficient, as it is proven in this paper.

Therefore, the plan generator of the DRS relies on a
genetic algorithm to decide which configuration should be
deployed according to the current context. In genetic algo-
rithms, solutions are modelled as chromosomes. In our case, a
chromosome consists of a sequence of genes where each gene
is a boolean value that indicates whether a concrete feature is
selected or unselected. The steps taken during the execution
of the algorithm are as follows:

1. Population initialization. A set of initial chromosomes
(configurations) is randomly generated. Therefore, it is nec-
essary to transform each one to get a valid solution from
each randomly-generated one. The transformation process
performs the necessary additions and exclusions of features
from the randomly generated one, returning a chromosome
which represents a valid configuration as a result which, in
addition, does not exceed the available resources.

2. Evolution through generations. Once an initial population
of valid configurations has been generated, the next step is
evolving the population through generations in order to find
better configurations, which provide a higher utility. In each
generation, two chromosomes randomly chosen from the pop-
ulation are crossed. The resulting chromosome is transformed
to get a a valid solution, and the worst chromosome of the
population is replaced with the new one. This process is
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Fig. 5. Applying the genetic algorithm in the Dynamic Reconfiguration
Service

repeated until a stopping condition is reached. For instance,
the evolution can be stopped once a maximum number of
generations is reached or when the population has not evolved
after a certain number of consecutive generations. In our case,
we use both conditions, stopping the evolution when the first
one is reached.

3. Return the best chromosome. The best chromosome,
which represents the configuration which provides the highest
utility, is returned as the solution to the optimization problem.

In the rest of this section, this approach is applied to our case
study, as illustrated by Figure 5. First, before the application is
started, it is necessary to deploy the initial AFM configuration.
An initial population of chromosomes that represent valid
configurations and fit the resource constraints is generated.
Since our AFM is composed of 81 features, each chromosome
contains 81 genes but, due to the lack of space, we only show
a reduced set (StandsManager, StandsConn, DataAggregator,
NewsManager, VideoReceiver, CongressAssistant in Figure 5).
Then, in every generation, two chromosomes are randomly
selected for performing a crossover. A crossover between
the two selected parents (111001 and 001011) is performed
taking genes randomly from both parents, and the resulting
offspring (101001) is mutated by changing the value of one
of its genes (101101). However, the offspring will probably be
an invalid chromosome because it does not fit the constraints
of the AFM. For instance, in our example, the offspring has the
StandsManager component selected (i.e. the first bit is 1) while
its connector, StandsConn, is not selected (i.e. the second bit
is 0). Therefore, it is necessary to apply a transformation to the
offspring, which adds the missing features. The transformation
mechanism adds the missing features, and its output is a
valid configuration where the StandsConn feature is also
selected (111101). Then, this new chromosome replaces the
chromosome with lowest value of the population, and this
process is repeated until the stopping condition is reached.

Once the solution has been found, the DRS generates the
reconfiguration plan from the differences between the previous
configuration and the new one. Since each configuration is
represented as a sequence of bits, the reconfiguration plan is
obtained with a XOR operation between both configurations.
In this way, the components that are no longer available
in the new configuration are removed, the new components
are instantiated and the parameters of the component are
reconfigured. An important issue to highlight here is that
the reconfiguration plans in our approach are generated in

such a straightforward way because of the use of our AFM,
where the features of the FM directly represent elements
of the application software architecture. Otherwise, if our
approach would use traditional FMs instead of AFM, there
would be a gap between the output of the GA, where features
would represent high-level concerns, and the elements in the
software architecture that need to be added/removed. In other
approaches this gap needs to be solved by defining a mapping
between the elements of the FM and the elements of the
software architecture. Moreover, since the mapping needs to
be done at runtime the reconfiguration time will be penalized.
In our approach there is also a mapping between the software
architecture and the AFM, but it is done only once and, more
importantly, off-line.

V. EVALUATION

In this section we evaluate the ability of the optimization
algorithm to find nearly-optimal configurations according to
the available resources. Furthermore, since the resources of
mobile devices are very limited, it is very important to verify
the efficiency of the algorithm. Concretely, the time elapsed
by the algorithm during the optimization process has been
measured. To this end, the optimization algorithm has been
applied to our case study using an ASUS Nexus 7 device
running Android 4.2.1.

The case study has been previously mapped to an AFM
which consists of 81 features (an excerpt can be seen in
Figure 4), resulting in 281 possible combinations, of which
only 2400 represent valid configurations that satisfy all the
constraints. This small ratio makes it more difficult to reach
valid solutions using artificial intelligence algorithms, which
makes it even more important to evaluate the effectiveness
of the genetic algorithm applied in our approach. Figure 6
shows how these configurations are distributed according to
their resource usage. Concretely, we can see that there is
a peak in the distribution of configurations at around 500
units of resource usage. Therefore, we can expect a significant
decrease in the execution time of the algorithm as the available
resources increase and get closer to 500 units because it
is increasingly easier to find a valid configuration. On the
other hand, once the peak is exceeded, the number of new
valid configurations decreases fast. Therefore, we can expect
a nearly-constant execution time despite the increase in the
available resources.

All the experiments have been repeated 100 times and the
mean value and standard deviation (both for utility and time)
has been calculated. The size of the population is 30, while
the maximum number of generations for each repetition of the
experiment is 20, stopping the algorithm if no better solutions
are found after 3 consecutive generations. The algorithm
execution is stopped after 60 unsuccesful retries for generating
the initial population, although this point was not reached
during the evaluation of our case study. These settings have
been proven to provide good results, although an exhaustive
optimization of them, which will be addressed in future work,
has not been performed.
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Fig. 6. Case Study AFM configurations distribution

For the evaluation of the effectiveness of the algorithm
we have compared the solutions obtained using the genetic
algorithm with the optimal solutions. In order to find the
optimal solutions we have obtained a list of all the valid
configurations of the AFM using FAMA Tool Suite [19],
calculating then the resource usage and the utility of each one
of them. This step (obtaining the optimal solutions) have been
executed in a desktop computer since it is too expensive to be
run in a mobile device.

The results are shown in Figure 7 and summarized in
Table III. If we use the concept of optimality presented in [12],
defined as the ratio between the utility of the solution obtained
using the genetic algorithm and the one obtained using the
exact method, the results show that the degree of optimality
of the solutions obtained is always over 87%. The optimality
slightly decreases as the available resources increase because
there are much more valid configurations whose utility is much
lower than the optimal one. However, even in the worst case
the degree of optimality is very high, specially taking into
account that the optimization problem is NP-hard.

On the other hand, we have evaluated the time elapsed in
the execution of the algorithm. We distinguish between the
initialization time, which is the time needed to generate the
initial population, and the analysis time, elapsed iterating over
the successive generations. The results for the initialization
time are shown in Figure 8, and some of the measurements are
detailed in Table III. As it is expected, when the restrictions
are harder (less resources are available) it is more difficult
to obtain valid solutions. Therefore, the time elapsed in the
generation of the initial population is higher. In the worst
case, the initialization time is 334.584 ms. However, as the
available resources are higher, it becomes much easier to find
valid solutions and the initialization time drops significantly,
falling below 100 ms when the available resources are higher
than 380 units. Further optimizations can be introduced in
the algorithm in order to minimize the initialization time. For
instance, those elements of the population that remain valid
can be reused along different executions of the optimization
algorithm. However, it has not been still evaluated and will be
addressed in future work. Regarding the analysis time, we can
see that it is very low compared with the initialization time.

Fig. 7. Optimality Evaluation

Fig. 8. Initialization Time Evaluation

Although its value does not vary significantly with respect to
the available resources, we can see that it increases slightly as
the number of available resources increase. This behaviour can
be explained because, when there are less available resources,
the algorithm usually stops before reaching 20 generations
because no better solutions are found.

Taking into account the results obtained, we consider that
our approach is suitable for providing support for dynamic
reconfiguration on mobiles devices, generating nearly-optimal
configurations without introducing an excessive overhead.

VI. RELATED WORK

In this section we discuss those approaches that are com-
parable to the work presented in this paper. On the one hand,
our approach is driven by the MAPE-K loop on which AC
rely, providing the applications for mobile devices with the
ability to reconfigure their architecture in an autonomic and
optimal way according to the available resources. We can
find several approaches in the literature which also rely on
the same principals. For instance, Gamez et al. [8] propose a
reconfiguration mechanism that switches among different ar-
chitectural configurations at run-time. The valid configurations
are manually specified and represented using feature models,
while the reconfiguration plans are automatically generated
from the differences among them. Therefore, both are specified
at design-time, which leads to the deployment of sub-optimal
configurations at run-time. Trumler et al. [30] also propose
an autonomic middleware, which is focused exclusively on
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TABLE III
EVALUATION RESULTS SUMMARY

Resource limit Optimal Utility Obtained utility Optimality Initialization time Analysis time

205 425 425 (σ = 0) 100% 334.584 ms (σ = 55.207 ms) 2.416 ms (σ = 0.995 ms)

255 475 474.62 (σ = 1.886) 99.92% 177.312 ms (σ = 29.056 ms) 3.224 ms (σ = 2.697 ms)

300 542 524.59 (σ = 10.755) 96.79% 147.137 ms (σ = 22 ms) 4.055 ms (σ = 2.169 ms)

350 614 580.9 (σ = 17.514) 94.61% 115.03 ms (σ = 17.483 ms) 4.321 ms (σ = 2.419 ms)

400 667 614.52 (σ = 19.865) 92.13% 96.291 ms (σ = 11.877 ms) 5.03 ms (σ = 2.195 ms)

450 717 641.635 (σ = 20.333) 89.49% 81.319 ms (σ = 8.577 ms) 6.055 ms (σ = 3.738 ms)

500 734 665.075 (σ = 23.652) 90.24% 76.067 ms (σ = 7.128 ms) 7.128 ms (σ = 4.577 ms)

550 774 680.445 (σ = 27.414) 87.91% 74.043 ms (σ = 6.316 ms) 8.013 ms (σ = 5.52 ms)

600 790 692.66 (σ = 32.322) 87.68% 75.165 ms (σ = 9.921 ms) 9.484 ms (σ = 6.762 ms)

655 795 691.904 (σ = 32.656) 87.03% 73.682 ms (σ = 6.091 ms) 8.83 ms (σ = 6.381 ms)

the Smart Doorplate Project and do not provide details about
which different kinds of reconfigurations they support and how
they are performed.

There are also many work that do not exactly follow the
principals of AC but provide support for reconfiguration at the
application level [3], [9], or also at the middleware layer [4],
[5], [6], [7]. However, they are not usually available for
evaluation or they are not runnable on resource-constrained de-
vices. MUSIC [7] is a OSGi-based middleware for developing
context-aware reconfigurable applications. It is a component
based and service oriented approach which mainly consists
of two different parts: the context and the adaptation middle-
wares. The adaptation middleware is responsible for adapting
the applications, deploying the configuration that best fits the
current context. This middleware is equivalent to our DRS and
uses a model of the application, in which each configuration
(known as a plan) consists of a set of component types and
the connections between them. When context changes, a utility
function is evaluated for each configuration, and the one with
the highest utility is deployed. The main difference between
MUSIC (as well as the other existing approaches) and our
approach is that they require having available at runtime all
the valid application configurations, while in our approach they
are generated on demand using the optimization algorithm.

On the other hand, we use FMs to derive correct architec-
tural configurations. We have found other work in which FMs
are used beyond their usual purpose. For instance, in [31] FMs
are introduced as an additional step in a system’s architectural
recovery process, by providing a mapping between source
code and features. This approach differs from ours in that
the origin of their mapping process is the source code, while
in our case is a specification of the SA. In [13] FMs are
used to reverse engineer the variability of an existing system
by recovering an FM from the actual architecture, but with
important differences to our work. Mainly, variability is not
explicitly represented in their software architectures, and thus
their main motivation is to define a process to be able to
“capture” and model that variability using an FM.

Finally, we use an optimization algorithm to select a nearly-
optimal configuration that satisfies the resource constraints and
maximizes a utility function. In this sense, there are algorithms
for feature selection optimization that take a FM as input and

generate a product configuration by selecting a highly optimal
set of features that adheres to a set of resource constraints.
In [17], an FM is transformed into a Multi-dimensional
Multiple-choice Knapsack Problem that allows nearly-optimal
FM configurations in polynomial-time to be found. This is also
the objective of [12], but using genetic algorithms, being even
faster than the previous one. On the other hand, the proposal
of Benavides et al. [32] always finds the optimal configuration
using Constraint Satisfaction Problems with exponential-time
complexity, making it unsuitable for runtime optimization.

The main difference with our approach is that all these
algorithms have been used in static SPLs, while we use it in
DSPLs. In a static SPL a product configuration is generated
during the design time in order to deploy one particular
product from the family of products. This means that the
algorithm is applied only once at design time. We use the
algorithm to implement a DSPL, meaning that the optimization
algorithm is used at runtime by the DRS in order to adapt
the product. The most similar approach to ours is the work
presented in [33], where an optimization algorithm is also
used to improve user interface adaptation at runtime. An
important difference is that their work is specific to a user
interface architectural model, while our approach is more
general because it can be applied to the architectural model
of any kind of applications They use a different optimization
algorithm although, as in our case, their approach does not
depend on a particular optimization algorithm and is designed
to work with other algorithms. Finally, the average adaptation
time of our approach is considerable lower than the one
reported in [33].

VII. CONCLUSIONS AND ON-GOING WORK

In this paper we have presented a novel approach that
provides support for the dynamic reconfiguration of mobile
applications, optimizing the configuration of the system at
runtime according to the available resources. In order to do
that we model the variability of the application architectural
model into an AFM, which is a variant of a FM where features
are architectural elements. In this way, we take advantage
of the tools and algorithms that are available for FMs in
order to analyse architectural variability. Concretely, the use
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of a genetic algorithm has been proposed that allows nearly-
optimal configurations at runtime to be obtained using the
AFM, the context information and the resource and utility
information as input. In order to describe and evaluate our
approach we have applied our approach to a case study. A set
of experiments have been defined to evaluate the efficiency of
the optimization algorithm applied to our case study in order
to verify that it is suitable for resource-constrained devices.
The results obtained show that it is efficient and can be used
to provide dynamic reconfiguration in mobile devices without
introducing an excessive overhead.

As part of our on-going work we are designing and imple-
menting a mapping algorithm that will be able to generate the
AFM directly from the models of the software architecture
with variability. The use of this mapping algorithm will im-
prove our proposal specially on two aspects: (1) SAs will focus
on modelling the software architecture using architectural
models, which are closer to their discipline. This means that
they will never have to work directly with the AFM, and (2)
It will be easier to have a complete and correct AFM. This is
especially important for effectively representing all the cross-
tree constraints between features, which is not a trivial task.
Using our mapping algorithm most of the cross-tree constraints
that need to be considered will be automatically generated.
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