
A Generic, Collaborative Framework for

Interval Constraint Solving

PhD Thesis
Departamento de Lenguajes y Ciencias de la Computación

University of Málaga, Spain

By

Antonio J. Fernández Leiva

Director: Dr. Patricia M. Hill
School of Computing

University of Leeds, England

Tutor: Dr. José M. Troya
Departamento de Lenguajes y Ciencias de la Computación

University of Málaga, Spain

January, 25th 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62893519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acronyms

Acronym Meaning

AI Artificial Intelligence

ATOAM yet Another matching Tree Oriented Abstract Machine

CCL Concurrent Constraint Logic

CCP Concurrent Constraint Programming

CHR Constraint Handling Rule

CLP Constraint Logic Programming

CLP(B) Constraint Logic Programming on the Boolean domain

CLP(FD) Constraint Logic Programming on the finite domain

CLP(<) Constraint Logic Programming on the real domain

CP Constraint Programming

CSP Constraint Satisfaction Problem

FD Finite Domain

LP Logic Programming

OR Operational Research

RC Reified Constraint

SRQ Self Referential Quiz

WAM Warren Abstract Machine

2D 2-Dimensional

iii

iv

Abstract

This thesis deals with a generic and cooperative schema for CLP(Interval(X)) where
X is any computation domain with lattice structure. This schema, based on interval
lattices, is a general framework for interval constraint satisfaction and interval solver
cooperation on domains with lattice structure independently of its cardinality. Our
proposal assures a complete glass box setting on which both constraints and domains
as well as the intended propagation and cooperation mechanisms among constrained
variables can be easily defined from the user level. The main body of the thesis presents
a formal specification of this schema.

This thesis presents the following main results:

• A comprehensive comparison of both the efficiency and certain aspects of the
expressiveness of a number of constraint systems. This comparison, done over
the Boolean and the finite domains, illustrates main differences between existing
constraint systems.

• We propose a constraint satisfaction framework for CLP(Interval(X)) by describ-
ing the whole process of interval constraint solving on any domain with lattice
structure, detailing separately the processes of interval propagation and interval
branching. One of the advantage of our proposal is that monotonicity of con-
straints is implicitly defined in the theory. Also, we present a statement of a
number of interesting properties that, subject to certain conditions, are satisfied
by any instances of the schema. Moreover, we show that many constraint systems
satisfy these conditions and point out other non trivial and interesting instances
of our framework.

• Our schema for CLP(Interval(X)) enables solver cooperation by allowing the in-
formation flow between distinct computation domains. This gives rises to the
possibility of a mix of different instances of the schema e.g., well known in-
stances such as CLP(Interval(<)), CLP(Interval(Integer)), CLP(Interval(Set)),
CLP(Interval(Bool)) and new instances resulting from user defined domains or
even from the combination of existing domains in the way CLP(Interval(X1×. . .×
Xn)). Therefore X may be instantiated to a set of lattice structure computation
domains and the corresponding CLP(Interval(X)) allows multiple flexibility in
the definition of (probably user-defined) domains in X and interaction between
them.

v

vi

• By means of a prototype implementation we show that a single system based
on our CLP(Interval(X)) schema may provide support for classical interval con-
straint satisfaction and optimisation as well as for interval solver cooperation
over a multiple set of computations domains. Moreover the system is a glass box
approach from a double perspective since the user can define not only new con-
straints and the intended propagation mechanism but also new domains on which
constraints can be solved and the intended cooperation mechanism between all
the (user or system defined) computation domains.

In our opinion, this opens up new potential directions to research inside the
interval constraint community.

To reach the aims, this thesis has followed the following steps (1) the election of
an adequate approach to support the generic schema (2) the construction of a generic
theoretical framework (called the basic framework) to propagate interval constraints on
any domain with lattice structure, (3) the integration in the basic framework of a novel
technique of solver cooperation by means of constraint operators and (4) the extension
of the resulting setting to solve and optimise interval constraints.

(1) There are two key reasons for adopting CLP technology for solving a problem.
The first is its expressiveness enabling a declarative solution with readable code
which is vital for maintenance and the second is the provision of an efficient
implementation for the computationally expensive procedures. However, CLP
systems differ significantly both in how solutions may be expressed and the ef-
ficiency of their execution and it is important that both these factors are taken
into account when choosing the best CLP system for a particular application.
Also among the domains of CLP, the FD is one of the most studied since a lot
of problems involve variables ranging in discrete domains.

Currently, there are several techniques to support constraint solving on FD in
the CLP systems. We have developed a comparison on the efficiency of a number
of CLP systems in the setting of finite domains as well as a specific aspect of
their expressiveness (that concerning reification and meta-constraints). We have
compared eight systems that, strictly speaking, are glass boxes since they allow
user defined constraints in a more or less clear way. This comparison illustrates
differences between the systems, indicating their particular strengths and weak-
nesses and helps in the choice of the best technique for building our generalised
framework for interval constraint solving.

(2) From the comparison done previously, we choose the transparent approach called
indexical due to its flexibility, its simplicity and its performance. We generalise
the indexical approach on FD for interval constraint propagation to domains with
lattice structure. We provide the theoretical foundations for this framework,
a schematic procedure for the operational semantics, and numerous examples
illustrating how it can be used both over classical and new domains. We also
show how lattice combinators can be used to generate new domains and hence

vii

new constraint solvers for these domains from existing domains. As most of the
existing domains are lattices, our framework provides support for them.

(3) In our CLP(Interval(X)) schema for constraint propagation devised previously,
the interval constraint solvers are each based on the same generic solver so that
they are completely independent from each other and there is no provision for
any cooperation between them. Therefore, we extend the theoretical basic generic
framework to enable solver cooperation and allow information to flow between
different computation domains. This is done by means of a novel technique al-
lowing constraint operators to be defined over multiple domains enabling thus a
one-way communication channel between different domains. To allow for a two
way channel we define the generic concept of high level constraint. As conse-
quence the different solvers can communicate and hence, cooperate in solving the
problem.

Steps (2) and (3) have been integrated in this thesis.

(4) Often, constraint propagation is not enough to solve completely a CSP and some
additional strategy must be applied for it. Therefore, we have completed the
cooperative CLP(Interval(X)) schema for constraint propagation by proposing
a parameterised CLP(Interval(X)) schema for constraint branching that (with
suitable instantiations of the parameters) can solve completely CSPs defined via
interval constraints on any set of domains X with lattice structure.

Finally we introduce clp(L), an interval constraint logic programming language that
allows constraint solving on any set L of lattices that is based on our proposal. We also
give an outline of a prototype implementation and some examples of use. This proto-
type implementation demonstrates that a single system based on our CLP(Interval(X))
schema is enough to provide support for multiple domains, solver cooperation, solver
satisfaction and solver optimisation in a glass box setting on both constraints and
domains.

viii

Resumen (in spanish)

Esta tesis propone un esquema genérico y cooperativo para CLP(Interval(X)) donde
X es cualquier dominio de computación con estructura de ret́ıculo. El esquema, que
está basado en la teoŕıa de ret́ıculos, es un enfoque general para la satisfacción y op-
timización de restricciones de intervalo aśı como para la cooperación de resolutores de
intervalo definidos sobre dominios de computación con estructura de ret́ıculos, inde-
pendientemente de la cardinalidad de éstos. Nuestra propuesta asegura un enfoque
transparente sobre el cual las restricciones, los dominios de computación y los mecan-
ismos de propagación y cooperación, definidos entre las variables restringidas, pueden
ser fácilmente especificados a nivel del usuario. La parte principal de la tesis presenta
una especificación formal de este esquema.

Los principales resultados conseguidos en esta tesis son los siguientes:

• Una comparativa global de la eficiencia y algunos aspectos de la expresividad
de ocho sistemas de restricciones. Esta comparativa, realizada sobre el dominio
finito y el dominio Booleano, muestra diferencias principales entre los sistemas
de restricciones existentes.

• Para formalizar el marco de satisfacción de restricciones para CLP(Interval(X))
hemos descrito el proceso global de resolución de restricciones de intervalo so-
bre cualquier ret́ıculo, separando claramente los procesos de propagación y di-
visión (ramificación) de intervalos. Una de las ventajas de nuestra propuesta es
que la monotońıa de las restricciones está impĺıcitamente definida en la teoŕıa.
Además, declaramos un conjunto de propiedades interesantes que, bajo ciertas
condiciones, son satisfechas por cualquier instancia del esquema genérico. Más
aún, mostramos que muchos sistemas de restricciones actualmente existentes sat-
isfacen estas condiciones y, además, proporcionamos indicaciones sobre cómo ex-
tender el sistema mediante la especificación de otras instancias interesantes y
novedosas.

• Nuestro esquema para CLP(Interval(X)) permite la cooperación de resolutores de
manera que la información puede fluir entre diferentes dominios de computación.
Además, es posible combinar distintas instancias del esquema: por ejemplo, in-
stancias bien conocidas tales como CLP(Interval(<)), CLP(Interval(Integer)),
CLP(Interval(Set)), CLP(Interval(Bool)), y otras novedosas que son el resultado
de la generación de nuevos dominios de computación definidos por el usuario, o

ix

x

incluso que surgen de la combinación de dominios ya existentes como puede ser
CLP(Interval(X1 × . . .×Xn)). Por lo tanto, X puede ser instanciado a cualquier
conjunto de dominios de computación con estructura de ret́ıculo de forma que su
correspondiente instancia CLP(Interval(X)) permite una amplia flexibilidad en
la definición de dominios en X (probablemente definidos por el usuario) y en la
interacción entre estos dominios.

• Mediante la implementación de un prototipo, demostramos que un único sistema,
que esté basado en nuestro esquema para CLP(Interval(X)), puede proporcionar
soporte para la satisfacción y la optimización de restricciones aśı como para la
cooperación de resolutores sobre un conjunto conteniendo múltiples dominios de
computación. Además, el sistema sigue un novedoso enfoque transparente sujeto
a una doble perspectiva ya que el usuario puede definir no sólo nuevas restricciones
y su mecanismo de propagación, sino también nuevos dominios sobre los cuales
nuevas restricciones pueden ser resueltas aśı como el mecanismo de cooperación
entre todos los dominios de computación (ya sean definidos por el usuario o
predefinidos por el sistema).

En nuestra opinión, esta tesis apunta nuevas ĺıneas de investigación dentro de la
comunidad de las restricciones de intervalo.

Para alcanzar los resultados expuestos, hemos seguido los siguientes pasos (1) la
elección de un enfoque adecuado sobre el cual construir los fundamentos teóricos de nue-
stro esquema genérico; (2) la construcción de un marco teórico genérico (que llamare-
mos el marco básico) para la propagación de restricciones de intervalo sobre cualquier
ret́ıculo; (3) la integración, en el marco básico, de una técnica novedosa que facilita la
cooperación de resolutores y que surge de la definición, sobre múltiples dominios, de
operadores de restricciones y (4) la extensión del marco resultante para la resolución
y optimización completa de las restricciones de intervalo.

Finalmente presentamos clp(L), un lenguaje de programación lógica de restric-
ciones de intervalo que posibilita la resolución de restricciones sobre cualquier conjunto
de ret́ıculos y que está implementado a partir de las ideas formalizadas en el marco
teórico. Describimos una primera implementación de este lenguaje y desarrollamos
algunos ejemplos de cómo usarla. Este prototipo demuestra que nuestro esquema para
CLP(Interval(X)) puede ser implementado en un sistema único que, como consecuen-
cia, proporciona, bajo un enfoque transparente sobre dominios y restricciones, coop-
eración de resolutores aśı como satisfacción y optimización completa de restricciones
sobre diferentes dominios de computación.

Nota del autor. Existe una versión simplificada de la tesis en español. En esta
versión, todas las demostraciones de teoremas, lemas y proposiciones han sido omitidas,
puesto que el objetivo de la misma es aportar un resumen (extendido) de la tesis
completa. La versión en español está disponible en la siguiente dirección:

http://www.lcc.uma.es/~afdez/Papers/phdspa3nish.pdf

Acknowledgements

Overall, I thank Pat (my director) for the improvement of the ideas applied in this the-
sis, making them coherent and presentable at the same time. And the most important
of all: in spite of being a very busy person, she always was there when I really needed
it. For all this, my major thanks and my eternal friendship.

I am grateful to José Maŕıa Troya for providing me with the opportunity to become
a post-graduate research fellow. Probably, without this fellowship, I would not be
working here at the University of Málaga. I also thank him for his trust in me and his
encouragement for me to visit Leeds and work with Pat.

Thanks to Ernesto Pimentel and Juan Miguel Molina for a general look at the
contents of this thesis and for reading and commenting on some of its chapters. They
helped improve the presentation of this document. Also Ernesto helped me in the
administrative steps to present this thesis. I thank him for his time.

I want to mention the many wonderful friends I made in Leeds that contributed to
the happy times there. Among them I want to thank especially Fausto Spoto, Karim
Kjemame, Javier Nuñez and again Pat.

I would also like to mention specially a colleague and friend of my department,
Pablo López. The daily conversations with him, usually more concerned with life
research than with science research, have contributed to marvelous hours spent in my
University (particularly when enjoying lunch together).

During the first years of my research, I was supported by a FPI grant of the MEC
(Ministerio de Educación y Ciencia de España). During the last two years I have been
supported by CICYT grant TIC98-0445-C03-03. My thanks to MEC and CICYT for
this.

As well, I thank my family (wife, parents and brothers) for their continuing support.
I know they are proud of me. I am also proud of them.

I am dedicating this thesis to my beloved son Angel. He has shown me what infinite
love means.

xi

xii

Preface

This thesis is composed of 4 parts that we try to make relatively independent.

Part I is composed of two chapters. Chapter 1 motivates the generic, cooperative
and transparent system for interval constraint solving described in this thesis. This is
done by discussing the limitations of the current instances of CLP and by showing how
these are solved in our proposal. Chapters 2 provides a general overview of the basics
over which CLP is founded.

Part II describes a comprehensive comparison over the Boolean and FD of differ-
ent constraint systems subjected to different approaches and distinct mechanisms of
constraint solving. The comparison is done not only from the performance point of
view but also from specific aspects of the expressiveness. This part is developed in
Chapter 3.

Part III is dedicated to the formalisation of the generic theoretical framework that
we propose for interval constraint solving as well as interval solver cooperation on
any set of computation domains with lattice structure. This part begins by proposing
a generic schema for interval constraint propagation on lattices that is developed in
Chapter 4. Then, Chapter 5 extends this framework to enable solver cooperation.
Finally in Chapter 6 we complete the theoretical framework by describing a generic
schema for branching of interval constraints. We show that this schema allows classical
constraint solving as well as constraint optimisation. This part is also dedicated to
study a number of interested properties of the schema, to develop numerous examples to
show the declarativity of the generic setting and to treat other issues such as constraint
monotonicity, high level constraints and combination of domains.

Part IV is devoted to describe a prototype implementation of our theoretical frame-
work inside a logic programming language. A number of non-standard examples are
described to show the declarativity and flexibility of the resulting system. This part is
developed in Chapter 7.

The thesis terminates with a chapter that briefly summarises the results and gives
major directions for future works and improvements.

Presentations

The original motivations of our work described in Chapter 1 of Part I were initially
presented in (Fernández, 1997).

Part II was almost integrally published in the Constraints journal (Fernández and

xiii

xiv

Hill, 2000a). Previously, the Sections about SRQs (i.e., Sections 3.3, 3.4 and 3.5.2) were
presented in (Fernández and Hill, 1997a) and (Fernández and Hill, 1997b). A summary
of Sections 3.5.3 and 3.5.4 were also published in (Fernández and Hill, 1998c).

With respect to Part III, a preliminary version of Chapter 4 was published
in (Fernández and Hill, 1999c). Previous versions of this work were presented in
(Fernández and Hill, 1998b; Fernández and Hill, 1998a) and (Fernández and Hill,
1999a). Chapters 5 and 6 were presented in (Fernández and Hill, 2000b) and (Fernández
and Hill, 2001a) respectively. Also a journal version of Chapters 4 and 5 is now being
revised (Fernández and Hill, 2001b).

Part IV is available, as user manual, in (Fernández, 2000).

Contents

Acronyms iii

Abstract v

Resumen (in spanish) ix

Acknowledgements xi

Preface xiii

I Introduction and Background 1

1 Introduction and Motivation 3

1.1 Introduction and Motivation . 3

1.2 Chapter Summaries . 9

2 Basics of Constraint Logic Programming 11

2.1 Introduction . 11

2.1.1 Chapter Structure . 11

2.2 Constraint Programming . 12

2.2.1 Motivation . 12

2.2.2 Constraint Satisfaction Problem (CSP) 13

2.2.3 Branching Techniques . 17

2.2.4 Some Review References . 18

2.3 Constraint Logic Programming . 18

2.3.1 A Brief History of LP Systems 18

2.3.2 The CLP Schema . 19

2.3.3 Motivations for CLP . 20

2.3.4 C(L)P Applications . 21

2.3.5 Some Review References . 22

2.3.6 Black box vs. Glass box . 22

2.4 Main Glass Box Approaches . 24

2.4.1 The Indexical Approach . 24

xv

xvi CONTENTS

2.4.2 Constraint Handling Rules . 28

2.5 Some Black box Languages. 30

2.6 CLP Instances: Dependent-Domain Reasoning 31

2.6.1 The Finite Domain . 31

2.6.2 The Continuous Domain . 33

2.6.3 Sets . 35

2.6.4 (Pseudo-)Booleans . 36

2.6.5 Interval Constraint Arithmetic: CLP(Intervals) 38

2.6.6 CLP(Trees) . 40

2.7 Specialised Constraints . 41

2.8 Other CLP Languages . 43

2.9 Constraints on Other Paradigms . 44

2.10 Concluding Remarks . 46

II Comparative Framework 47

3 A Comparison of Glass Box Systems 49

3.1 Introduction and Motivations . 49

3.1.1 Chapter Structure . 51

3.2 The Constraint Systems Tested . 51

3.2.1 Classification of the Systems . 51

3.2.2 Glass Box Languages . 51

3.2.3 Black Box Languages. 52

3.2.4 Ease of Learning . 52

3.3 The Self Referential Quiz (SRQ) and Two Solutions 52

3.3.1 Why Self Referential Puzzles and Why These Solutions? 53

3.3.2 The Original Idea . 54

3.3.3 An Alternative Approach . 55

3.4 Reification and Meta-constraints . 56

3.4.1 Expressing Reification and Meta-constraints 57

3.4.2 CHR: a Special Mention . 59

3.5 An Efficiency Comparison . 60

3.5.1 Labeling . 60

3.5.2 Efficiency Compared on the SRQ 61

3.5.3 A More Comprehensive Comparison 65

3.5.4 The Results Analysed . 69

3.6 Related Work . 71

3.7 Concluding Remarks . 73

3.8 Contributions . 74

CONTENTS xvii

III Theoretical Framework 77

4 Interval Constraint Propagation on Lattice (Interval) Domains 79

4.1 Motivations . 79

4.1.1 An Overview of Our Proposal . 81

4.1.2 Chapter Structure . 82

4.2 Preliminaries and Notation . 82

4.3 The Computation and Interval Domains 84

4.3.1 Bounded Computation Domains 85

4.3.2 Constraint Operators . 88

4.3.3 Indexicals . 91

4.3.4 Interval Domains . 92

4.4 The Constraint Domains . 96

4.4.1 Interval Constraints . 96

4.4.2 Constraint Narrowing . 99

4.4.3 Constraint Propagation . 100

4.4.4 Equivalence in the Discrete Domain 102

4.4.5 A Solution for a Constraint Store 103

4.4.6 Monotonicity of Constraints . 104

4.5 Operational Semantics . 108

4.5.1 Operational Schema for Constraint Propagation 108

4.5.2 Termination . 110

4.6 Instances of Our Framework . 116

4.6.1 Classical Domains . 116

4.6.2 Computation Domains: More Examples 117

4.6.3 Combinations of Domains . 118

4.7 Related Work . 119

4.7.1 Interval Reasoning . 119

4.7.2 Generic Frameworks . 120

4.8 Concluding Remarks . 122

4.9 Contributions . 123

5 Interval Solver Cooperation 125

5.1 Introduction and Motivation . 125

5.1.1 Chapter Structure . 126

5.2 High Level Constraints . 127

5.3 Non-Trivial Examples . 128

5.3.1 Reified Constraints . 129

5.3.2 Propagation on Direct Combinations 131

5.3.3 A More Motivating Example on Linear Combinations 133

5.4 Even More Expressivity! . 135

5.5 An Application (in Biomedicine) with Uncertainty 136

5.5.1 Representing a Margin of Error 136

5.5.2 The Problem of Diagnosing the Heart Functionality 137

xviii CONTENTS

5.6 Related Work . 141

5.7 Concluding Remarks . 145

5.8 Contributions . 145

6 Interval Constraint Branching 147

6.1 Introduction . 147

6.1.1 Chapter Structure . 148

6.2 Key Concepts . 148

6.3 The Branching Process . 151

6.3.1 The Precision Map as a Normalisation Rule 153

6.4 Branching in Interval Constraint Solving 153

6.5 Solving Optimisation Problems . 160

6.5.1 Different Ways to Solve the Instances 163

6.6 A Simple Example . 164

6.7 Related Work . 167

6.8 Concluding Remarks . 168

6.9 Contributions . 169

IV Practical Framework 171

7 A 2D Glass Box, Collaborative, Generic CLP Language 173

7.1 Motivation . 173

7.1.1 Chapter Structure . 174

7.2 The clp(L) language . 174

7.2.1 Domain Declarations . 174

7.2.2 Declarations of Constraint Operators. 175

7.2.3 Interval Constraints . 177

7.2.4 High Level Constraints . 178

7.3 The Execution Procedure . 180

7.4 The Current clp(L) Implementation . 181

7.4.1 Interval Constraints . 182

7.4.2 Current Resources of the Prototype Implementation 183

7.5 Programming with clp(L) . 184

7.5.1 A Generic Scheduling Problem 184

7.5.2 A Geometry Problem Solved by Solver Collaboration 187

7.5.3 The Heart Diagnosis Problem . 189

7.6 Related and Further Work . 194

7.6.1 WAM Based Implementations . 195

7.6.2 An Alternative Approach: the ATOAM Model 195

7.7 Concluding Remarks . 197

7.8 Contributions . 198

CONTENTS xix

8 Concluding Remarks 199
8.1 Summary of the Results . 199
8.2 Summary of Main Contributions . 201
8.3 Further Work . 201

Bibliography 204

A Computation Domains in clp(L) 227

B Constraint Operators in clp(L) 233

C High Level Constraints in clp(L) 239

D clp(L) Programs 243

xx CONTENTS

List of Figures

1.1 Specific reasoning for distinct domains 4
1.2 A generic solver approach . 6
1.3 A two dimensional glass box approach: over constraints and over domains 7

3.1 The SRQ puzzle . 53
3.2 SRQ as a satisfiability problem using 50 variables 54
3.3 SRQ as a satisfiability problem using 10 variables 55
3.4 Solutions to SRQ using 50 and 10 variables 56
3.5 The Oz Explorer on (50 variable formulation) SRQ solving using first

fail labeling for first solution search . 61
3.6 The Oz Explorer on (10 variable formulation) SRQ solving using first

fail labeling for first solution search . 62

4.1 Relationship between any two ranges s1, t1 and s2, t2 in RsL for some L ∈ L 94
4.2 Structure of the simple interval domain RsL where a, b, c ∈ L and a ≺L

c ≺L b . 97
4.3 solve/2: a generic schema for interval constraint propagation 109

5.1 The reified constraint b ≡ x ≤ y: an example of transparent cooperation 130
5.2 The problem of non-intersecting rectangles 132
5.3 Linear combinations of the sum of domains 134

6.1 branchα/3: a generic schema for interval constraint solving 156
6.2 The final state of the global stack P in the different solvings of the CSP 167

7.1 Solving a scheduling problem . 187
7.2 Information flow between different computation domains 188

xxi

xxii LIST OF FIGURES

List of Tables

2.1 Basic syntax of the constraint X in R in clp(FD) 26

3.1 Performance results of the 50 variables formulations for the SRQ on
Sparc 40 Mhz . 63

3.2 Performance results of the 50 variables formulations for the SRQ on PC
(Linux) . 63

3.3 Result normalisation for 50 variables formulations on the ECLiPSe column 64
3.4 Comparable results of the 10 variables formulation for the SRQ on Sparc

40 Mhz . 64
3.5 Comparable results of the 10 variables formulation for the SRQ on

PC(Linux) . 64
3.6 Result normalisation for 10 variables formulation on the column ECLiPSe 65
3.7 Performance results on Sparc (25 MHz) for first solution search. 66
3.8 Performance results on Sparc (25 MHz) for all solutions search. 67
3.9 Performance results on PC (Linux) for first solution search. 68
3.10 Performance results on PC (Linux) for all solutions search. 69
3.11 Normalisation table for first solution search. 70
3.12 Normalisation table for all solutions search 71
3.13 Performance results on Sparc (25 MHz) for first solution search and

naive labeling. 72
3.14 Performance results on PC (Linux) for first solution search and naive

labeling. 73
3.15 Normalisation table for first solution search and naive labeling. 74
3.16 Number of FD variables managed in the magic sequences problem (1) 74
3.17 Number of FD variables managed in the magic sequences problem (2) 74

5.1 Ranges for heart function . 138
5.2 Solving sequence in the problem of heart functionality diagnosis 140

6.1 CSP type depends on parameters instantiation 163
6.2 Different solvings of the CSP . 166
6.3 Evaluation of the solutions to the problems 166

7.1 Basic syntax of the constraint X in R in clp(L) 178

xxiii

xxiv LIST OF TABLES

Part I

Introduction and Background

1

Chapter 1

Introduction and Motivation

It isn’t that they can’t see the solution.

It is that they can’t see the problem.

The Scandal of Father Brown (1935)

G.K. Chesterton, 1874-1936

1.1 Introduction and Motivation

Constraint Logic Programming (CLP) (Jaffar and Maher, 1994) was born from a desire
to solve problems that could not be solved by logic programming (LP) alone. Its success
lies in that it combines the declarativity of LP with the efficiency of the constraint
programming (CP) paradigm. However, although there has been considerable research
in the area, CLP is a relatively new field in which current systems still have many
evident limitations.

In this chapter, we discuss some of these limitations and outline possible solutions
for each of them. To provide a suitable framework for these solutions in a single setting
is the main objective of this thesis which, in summary, is to find a generic, cooperative,
transparent and efficient CLP system.

A generic schema for CLP. The essential component of the CLP schema is that
it can be parameterised by a computation domain in such a way that different types of
the domain determine different instances of the schema; for instance, we have CLP(FD)
(CLP on finite ranges of integers), CLP(<) (CLP on real domain), CLP(Sets) (CLP on
finite sets of elements) and CLP(Bool) (CLP on the Boolean domain). CLP systems
have been applied to many different domains and each CLP instance may be identified
by the mechanism used for constraint solving and by its algebraic structure. It is
well known that the expressive power and efficiency of CLP systems is reduced by
the strong partitioning of the structures (i.e., the objects -values in the computation

3

4 CHAPTER 1. Introduction and Motivation

Figure 1.1: Specific reasoning for distinct domains

domain- and the operations on them) in which the constraints may be expressed. This
means that constraints must be defined on a specific CLP domain and solved by the
reasoning method and associated solver associated with that domain (see Figure 1.1).
In particular, with existing CLP systems, the cardinality of a domain determines the
form of the constraint solving procedure and there are quite distinct approaches to
constraint solving for the finite and the infinite domains.

The advantage of a domain-specific solver is that it can be optimised for the par-
ticular characteristics of the algebraic structure of the domain, leading to a better
performance of the solver. However, a domain-specific solver has obvious disadvan-
tages.

• First, as already pointed out, a domain-specific solver is not able to solve con-

1.1. Introduction and Motivation 5

straints on other computation domains and its application context is merely re-
stricted to the domain for which was designed. This is an important limitation
since in practice, problems themselves are not specific to any particular domain
and thus the formulation of a problem has to be artificially adapted to fit a given
solver, probably losing, as a consequence, part of the declarativity of the solution.

• Secondly, despite the fact that its (declarative and operational) semantics may
be projected from the CLP schema, there remain a number of properties (e.g.,
termination, correctness and completeness) that have to be proved for each solver,
that is to say, the operational procedure specifically implemented for the solver
has to be explained in a particular way and cannot be deduced from or generalised
to another solvers. Moreover, it is not always easy to clarify which are the main
properties of specific aspects of the solver (e.g., key aspects of the heuristics used)
that are responsible for specific properties of the solver.

These drawbacks disappear when a generic approach is considered. For this rea-
son, in the recent years, there are a number of proposals for general principles under
which the main properties of the constraint solving algorithms can be explained and
the operational behaviour of the different instances of the schema can be predicted.
Moreover, with a generic solver a problem may be formulated in terms of constraints
over several domains. This means that the final code will have a closer resemblance to
the original formulation of the problem.

From this discussion it can be deduced that what is needed is a system with a
constraint solver that can perform constraint solving independently of the nature and
cardinality of the computation domain (as illustrated in Figure 1.2). Of course this
system has to provide a unified framework that includes the usual CLP domains such
as the integer, Boolean, sets and real domains.

A wider glass box schema. In current systems, many of the constraints have the
control fixed by the system. These black box constraints provide very efficient tools for
common constraint applications. However there are two practical problems with this
approach.

• The constraint solving process is usually “hard-wired” in a low-level language so
that it is difficult (sometimes, impossible) to build new solvers over new domains.

• A black box solver lacks adaptability when used for non-standard problems since
the problem has to be coded with the built-in constraints provided by the system,
that is to say, the degree of freedom the user has for coding a problem is bounded
by the built-in constructs of the system.

To overcome this lack of flexibility, some constraint systems now provide glass box
constraints. These allow new constraints to be defined by the user, although, in most
cases, these are still restricted to particular predefined domains such as the integers.
The advantage of a glass box system is that the user can define the constraints needed

6 CHAPTER 1. Introduction and Motivation

Figure 1.2: A generic solver approach

for coding the best formulation of a problem. Furthermore, a glass box system usually
allows the user to specify the constraint propagation schema itself often resulting in a
more efficient program.

However, in the current glass box approaches the solvers are often restricted to just
the built-in domains, usually the integers. This restricts the flexibility of this approach
since as already discussed, in practice, problems are heterogeneous and often have a
natural formulation which uses domains other than the built-in domains. Thus, current
constraint systems lack expressiveness and the final code often bears no similarity to
the initial problem statement.

Our solution to this problem consists in opening up the typical glass box approach to
constraints on any computation domain. With this wider glass box approach, the user
can define new domains, new constraints on these domains and, for each constraint, the

1.1. Introduction and Motivation 7

intended propagation behaviour of the domain values. We call this approach, the two-
dimensional glass box approach since, as shown in Figure 1.3, it grows in two different
directions (vertically, by defining planes which means the user defines new domains,
and/or horizontally on any plane, by defining new constraints on each domain).

Figure 1.3: A two dimensional glass box approach: over constraints and over domains

To resolve all the problems outlined so far, and, hence combine the requirements
for wider glass box systems and for generic solvers, we can see that what is needed is
a two dimensional glass box generic CLP system.

A collaborative schema. As already commented, most of the existing CLP lan-
guages only provide support for solving constraints on specified domains, even if the
system follows a glass box approach. This implies that the constraints, even if they
are user defined, are usually restricted to just values in the given computation domain.

8 CHAPTER 1. Introduction and Motivation

For example an arithmetic constraint such as x + y = z must be defined so that all
the elements x, y and z belong to the same domain (e.g., integer or real). However, as
already remarked, many problems are most naturally expressed using heterogeneous
constraints over more than one domain. Moreover, there exist constraints defined on
multiple domains that require the collaboration of distinct domains by sending and
receiving information to and from another different domain (e.g., w = x > y). This
means that, even in the case that a CLP system provides a two dimensional glass box
approach, again the formulation of real problems has to be artificially adapted to a
single domain (i.e., one of the supported by the system).

A solution to this problem is in the concept of solver collaboration that involves
both solver cooperation and solver combination. On one hand, solver cooperation al-
lows constraints to be propagated from one computation domain to another thereby
allowing information to flow between the different domains. On the other hand, solver
combination enables either a mix of solvers (probably defined on different domains) or
the generation of solvers defined on combined domains. In general, solver collabora-
tion aims at overcoming two problems: a lack of declarativity of the solutions and a
poor performance of the systems. However most of the existing work on this issue is
dedicated to precise built-in domains and is neither flexible nor adaptable. A solution
to this problem is in the concept of the glass box approach on the domains discussed
above.

Again by linking all these requirements for CLP already discussed we conclude
that what is needed is a generic system that allows the cooperation and combination of
solvers defined on (possibly user defined) domains in which the constraint propagation
schema can be specified at the user level.

An efficient schema. To our knowledge, most of the existing CLP systems do not
satisfy all the requirements discussed so far. The main exception is the CHR language
(Frühwirth, 1998) that allows users to define domains and constraints and interaction
between the domains. Unfortunately, this solver is inefficient (Fernández and Hill,
2000a) and compares badly with most domain-dedicated constraint systems.

The main criticism of a generic approach is, although that efficiency is one of the
main reasons for choosing CLP, the generic solvers rarely achieve the speed of the
domain-specific solvers. However, a generic system has also important advantages.
One is that any global improvement in the efficiency of the system can lead to a better
performance in each of its possible instances. Moreover, from the theoretical point of
view, a generic approach allows us to investigate general principles for constraint solving
and therefore to devise general properties that are satisfied by all of its instances.

It is known that although most of the solvers are based on extensions of the consis-
tency techniques in (Mackworth, 1977), the detailed reasoning differs for each domain.
There are two basic forms of reasoning: domain reasoning and interval reasoning.
Interval reasoning (which prunes just domain bounds) is more efficient than domain
reasoning (which prunes the values in the domain). As a consequence, if we are con-
cerned with efficiency, the interval reasoning appears to be the best basis for a generic

1.2. Chapter Summaries 9

system.

By adding the interval reasoning to the previous set of requirements for our CLP
system, we see that what is needed is a transparent, generic and collaborative interval-
based CLP system. This thesis deals with the formalisation of a CLP system with
these characteristics.

1.2 Chapter Summaries

This section presents the content of each of the remaining chapters.

Chapter 2: State of the Art of CLP

Previous work that is relevant to the present research is reviewed. After an introduction
to CP and its historical development, it describes the CLP schema, with a brief overview
of its theoretical framework and its applications. This is followed by a review of the
most important glass box approaches used in CLP and other key instances of the
CLP schema. The reader should realise that this chapter does not discuss all the
publications related to the work of this thesis but only gives a global overview of the
CLP foundations. We have preferred to discuss in each chapter the related work specific
to that chapter. This helps keep each part of the document relatively independent.

Chapter 3: The Comparative Framework

This contains a detailed comparison for the Boolean and finite domains of eight popular
but very different constraint systems under both the black box and glass box approaches.
The comparison focuses on the efficiency and on specific aspects of the expressivity
(concerning reified constraints and meta-constraints). This work has helped us choose
the most appropriate constraint solving schema on which we could build our generic
solver.

Chapter 4: A Constraint Propagation Schema

The theoretical foundations of our generic solver are defined. The chapter introduces
an interval-lattice based structure over which constraints will be generically propagated
and establishes the theoretical foundations for formalising the constraint propagation.
An operational semantics for constraint propagation is provided and a number of in-
teresting properties of the schematic procedure are studied. The chapter also shows
how new domains can be constructed from the scratch and how existing domains can
be combined.

This chapter constitutes the core of the thesis and establishes the basis for solver
collaboration.

10 CHAPTER 1. Introduction and Motivation

Chapter 5: A Solver Collaboration Schema

This chapter investigates how the framework for constraint propagation defined in
Chapter 4 can provide a reduced one-directional form of solver cooperation. This is
demonstrated by means of several non-standard examples. The theoretical framework
is then extended with the concept of high level constraints that allow a two-way channel
for the exchange of information between the domains and, hence, allowing complete
collaboration between the solvers.

Chapter 6: A Constraint Branching Schema

This chapter completes our framework for constraint propagation for constraint solving
by defining a schematic generic procedure for the branching of constraints. Important
properties of the branching procedure including completeness, correctness and termi-
nation are established.

Chapter 7: The Practical Framework

To demonstrate the feasibility of our generic framework, a new logical language based
on the theoretical work described in the previous chapters has been developed. In this
chapter, the language is described and an overview of the main characteristics of a
prototype implementation is given. A number of examples showing the potentialities
of the system are provided.

Chapter 8: Conclusions

This chapter concludes the thesis by summarising the main results and discussing the
major contributions. It also outlines some directions for further work.

Chapter 2

Basics of Constraint Logic
Programming

Knowledge is of two kinds:

we know a subject ourselves, or we know

where we can find information upon it.

Boswell Life, vol.2, page: 407 (1775)

Samuel Johnson, 1709-84

2.1 Introduction

Constraint Programming (CP) (Marriot and Stuckey, 1998; Smith, 1995) has emerged
as one of the most exciting paradigms of programming in recent decades. This chapter
describes the state of the art of CLP ranging from its historical origin to its theoretical
foundations. Since our objective is a generic glass box framework for solving con-
straints, the emphasis of this chapter is to provide a description of the most important
instances of the CLP schema (that are also instances of our framework) as well as a
presentation of the most important glass box approaches used in CLP. We include an
introduction of the main foundations of the CLP schema.

2.1.1 Chapter Structure

The structure of the chapter is as follows: Section 2.2 gives a brief overview about
what CP means and offers a quick guide to the different methods for solving constraint
satisfaction problems. In Section 2.3, CLP is introduced by detailing its historical
origins, the reasons for its appearance and the basic schema over which is founded.
Section 2.3.6 provides a (traditional) discussion about the adequacy of using a black
box or a glass box approach for solving constraints in the CLP schema. Sections 2.4

11

12 CHAPTER 2. Basics of Constraint Logic Programming

and 2.5 present a (non-exhaustive) summary of different languages that use differ-
ent viewpoints to solve constraints under both the glass and black box approaches.
Section 2.6 describes some important instances of the CLP schema. In Section 2.7,
we introduce specialised constraints. These are built-in constraints that have been
designed with the aim of providing either improved expressiveness or improved per-
formance. Section 2.8 describes briefly further CLP languages that have contributed
in some way to the development of CLP. Section 2.9 shows how the success of CLP
has motivated the integration of constraints into other paradigms so as to better serve
more other areas of application and briefly presents the foundations of the integration
of constraints in these paradigms. The chapter ends by enumerating the contributions
of the chapter.

2.2 Constraint Programming

2.2.1 Motivation

Constraint Programming has raised in recent years an increasing interest in the re-
search community and has become one of the most interesting programming language
paradigm ever invented. There are several reasons for this interest in CP. First,
the strong theoretical foundations (Tsang, 1993) makes CP a sound programming
paradigm. Secondly, CP is a heterogeneous field of research ranging from theoretical
topics in mathematical logic to practical applications in industry. As a consequence,
CP is attracting also widespread commercial interest since it is suitable for modelling a
wide variety of optimisations problems, particularly, problems involving heterogeneous
constraints and combinatorial search. Thirdly, CP is based on constraints which are
basically relations between objects (e.g., variables constrained in a problem). It is the
role of the programmer to define the constraints and the relations between the objects
and entities managed in a program. However, with the usual imperative languages,
not only does the programmer have to specify the relations or constraints between the
objects (probably declared by the user) but also the means for computing over these
relations.

EXAMPLE 2.1 For instance, consider the relation

x = y + z (2.1)

In a traditional language a programmer cannot use this relation directly and it has
to be coded depending on the known values for the involved variables x, y and z. For
instance, in an imperative setting, if y and x are known then this relation is usually
coded as follows

z ← x− y

Therefore, the programmer requires an additional effort since all the possible as-
signments derived from the relation (2.1) have to be maintained explicitly.

2.2. Constraint Programming 13

2.2.2 Constraint Satisfaction Problem (CSP)

CSP Modelling

A constraint is a relation maintained between the entities (e.g., objects or variables) of
a problem. Constraints are used to model the behaviour of systems in the real world by
capturing an idealised view of the interaction between the variables involved. The way
in which this interaction is defined depends on the ability and skill of the programmer.

A CSP is a set of constraints involving a number of variables restricted to have
values in a set of domains. In the CSP modelling, the CP paradigm has some analo-
gies with respect to the traditional operational research (OR) approach. The step of
modelling a problem usually consists of the following steps (Carro et al., 2000):

1. analysing the problem to be solved to understand which are its parts, that is to
say, identifying the variables constrained;

2. determining the relation between the parts -the variables- by determining the
conditions that hold among them and the domains involved in these relations,
that is to say, determining the values that the constrained variables can take;

3. stating these relations as constraints in form of equations, disequalities, symbolic
constraints or high level constraints (i.e. those involving primitive relations or
constraints).

CSP Solving

Solving a CSP means the finding of a possible assignment (of values in the computation
domains) for the constrained variables that satisfies all the constraints. Several cases
arise:

• The CSP has one solution.

• The CSP has multiple solutions.

EXAMPLE 2.2 Consider a CSP with only one constraint x < y where x and
y are initially constrained to have values in the discrete domain [0, 2]. This CSP
has three solutions:

x = 0, y = 1;

x = 0, y = 2;

x = 1, y = 2.

• The CSP has no solution. This can be due to to the impossibility to satisfy all
the constraints at the same time (i.e., an over-constrained problem).

Solving practical problems usually involves three stages (Williams, 1993a; Williams,
1993b; Barth and Bockmayr, 1996):

14 CHAPTER 2. Basics of Constraint Logic Programming

1. Building a model of the problem.

2. Solving the model.

3. Understanding and analysing the solution.

The two first stages are treated throughout this document whereas the third one
concerns more the area of program analysis.

CSP solving can be done by using different techniques ranging from traditional
techniques to modern ones. For example, some approaches to solve a problem are in
the area of OR, genetic algorithms, artificial intelligence (AI) techniques, rule-based
computations, conventional programs and constraint-based approaches. Usually, CSP
solving is understood as the task of searching for a single solution to the problem,
although sometimes it is required to find the set of all solutions. Also, in certain cases,
because of the cost of finding all solutions, the aim is just to find the best solution or an
approximate solution within fixed resource bounds (e.g., in a reasonable time). Such
kinds of CSPs are called partial CSPs. An example of a partial CSP is a constraint
optimisation problem that assigns a cost to each solution and tries to find an optimal
solution within a given time frame (Freuder and Wallace, 1992).

There exist different methods to solve a CSP. In general the methods to generate
a solution for a CSP fall into four categories1:

1. The first category includes the variants of the backtracking search (in its various
more or less intelligent versions) where one variable at a time, in a certain order,
gets instantiated over the domain and more or less intelligent backtracking occurs
when the current variable cannot be instantiated in any consistent way. This
method is mostly used to solve search problems like the CSP. In this category we
find the procedures generate-and-test and standard backtracking.

Generate-and-test consists of generating each possible combination of the vari-
ables and then check if this combination satisfies all the constraints. This method
only tests the constraint when an assignment to all the variables is done. Since
the number of combinations is equal to the size of the Cartesian product of all
the variables domains, this method is very inefficient as the size of the domains
increases.

Standard backtracking improves relatively the generate-and-test methods and con-
sists of combining depth first search with chronological backtracking. The order
in which variables and values are chosen is fixed and the variables are instanti-
ated sequentially. If a partial instantiation violates any of the constraints, the
latest instantiation is reconsidered. Of course this backtracking is able to elimi-
nate a subspace from the Cartesian product of all variable domains. Intelligent
backtracking improves standard backtracking by avoiding repeated fail due to the
same reason2. It consists of backtracking directly to the last assignment for the
variable that caused the fail.

1We have reformulated the three category set cited in (Ruttkay, 1998) to a four category set.
2This problem is usually called thrashing.

2.2. Constraint Programming 15

In general, these algorithms search systematically through the possible assign-
ments of values to variables and, despite the fact that there is a guarantee to find
a solution (if it exists) for the CSP or to prove its insolubility, they take a long
time to do so.

Also another drawback of the search methods is that they works very badly when
the given problem is highly redundant. However, in recent years new backtracking
algorithms to solve this problem has been proposed. An exhaustive route by these
algorithms is not an aim of this document and the interested reader is referred
to (Kondrak and Van Beek, 1997).

2. The basic idea of the methods included in a second category is to remove redun-
dancy before the search process. In general the process consists of removing, from
the domains associated to the constrained variables, inconsistent values (that are
those that can never be part of any solution) since an inconsistent value always
leads to violate a constraint. This process reduces significantly the search and
thus the amount of backtracking. These methods for solving CSPs are usually
called filtering algorithms, arc consistency algorithms or also propagation algo-
rithms. In general, the results are propagated through the whole constraint set
and the process is repeated until a stable set is obtained.

When all inconsistent values have been removed from the domains associated to
a constraint c, then we say that this constraint c is arc consistent. An algorithm
that deletes all inconsistent values for any domain of each constrained variable
in the CSP, until all constraints are arc consistent, is usually called a full arc
consistent algorithm. Unfortunately these algorithms are very costly. Therefore,
there are other kinds of algorithms, called partial arc consistent algorithms that
only delete some inconsistent values from the domains of the variables. Often, a
well designed partial arc consistent algorithm deletes most inconsistent values at
less cost than many full arc consistent algorithms.

The main drawback of constraint propagation algorithms is that they are, often,
incomplete in the sense that they are not adequate for solving a CSP, that is to
say, they do not eliminate all the non-solution elements from the domains and as
consequence, it is necessary to employ some additional strategy or another kind of
algorithm to solve it. One complementary method to the propagation algorithms
is that so called constraint branching that divides the variable domains and then
continues with the propagation on each branch independently (see Section 2.2.3).

In general CSPs may be very difficult to solve since they are NP-problems. For
this reason, often working on small subsets of the variables (and related con-
straints) and never globally in the whole problem, leads to a significant change
in the problem so that it is then, usually, much easier to solve. The algorithms
following this approach are called local consistency techniques or relaxation algo-
rithms (Montanari and Rossi, 1991; Mackworth, 1977). Often these algorithms
provide an approximation to the solution, but in certain class of problems, they
can also return the real solution. In this kind of problems the use of search it is

16 CHAPTER 2. Basics of Constraint Logic Programming

not necessary.

3. In a third category we include the forward checking and the look ahead algorithms
that are methods embedding a consistency algorithm inside a backtracking algo-
rithm.

Forward checking prevents future inconsistencies by removing the values of the
future variables (i.e., those variables not yet instantiated) which conflict with the
value assigned to the current variable, that is to say, it tries to assure that each
future variable has at least one consistent value with the current assigned variable
(in fact with the already assigned variables). Of course, if the domain of a future
variable is empty then a dead end is found since it is obvious that the current
partial solution is inconsistent and a backtrack to another value of the current
variable or to a previous variable is done. Trivially this means reduction of the
search space by executing an a priori pruning of the search tree before trying (by
backtracking) all the values for the future variables. Therefore, forward checking
allows branches of the search tree that will lead to a failure to be pruned earlier
than with simple backtracking.

(Full) looking ahead is an extension of forward checking by assuring that each
future variable has at least one consistent value with the other future variables.
In fact this is a form to assure the arc consistency of the remaining problem
to be solved. A variant is partial looking ahead that is in-between the forward
checking and the look ahead algorithms. Basically, it consists of assuring the arc
consistency for the remaining problem assuming a fixed ordering of the variables.

Observe that the standard backtracking algorithm could also be included in this
category since it can be seen as a mixture of pure generate-and-test and a frac-
tion of arc consistency (i.e., the algorithm checks the validity of the constraints
considering the partial instantiation of a number of variables).

4. The fourth category comprises the structure driven algorithms that exploit the
structure of the constraint graph of the problem3. In this category we can find
very different algorithms, even some that decompose the problem into subprob-
lems which can be solved by methods from the previous two categories (Freuder
and Hubbe, 1995). The decomposition of the original problem may be based on
the checking of some features of the graph of the CSP which can be done by well
known methods of graph theory (Sedgewick, 1984).

We are specially interested in the third category of algorithms to solve CSPs, in
particular, in those algorithms combining constraint propagation and backtracking by
means of branching techniques (that are described in the following).

3A CSP can be represented by different forms of graphs e.g., arcs may correspond to the constraints
and nodes to the variables (Ruttkay, 1998).

2.2. Constraint Programming 17

2.2.3 Branching Techniques

As already mentioned, propagation algorithms are in general not enough to solve a CSP
and, as consequence, it is very frequent that, when no more constraint propagation is
possible, an additional strategy is employed to solve the CSP. A usual strategy is that
called branching that is a (non-exclusive) technique of the CLP languages. Branching
consists of dividing the domain(s) of some variable(s) when no more constraint prop-
agation is possible and generating different computation branches in the search tree
to further continue with the propagation on each of the branches independently. In
general it is a controlled way of making choice to activate a new search in order to
search for a solution. Obviously, this technique is implicitly employed in the back-
tracking search algorithms. Traditionally branching has been used in association with
solvers over finite and discrete domains and, in this case, it is also called enumeration
or labeling.

A branching strategy involves two steps of choice: the election of a variable from
which the search is reactivated and the election of the value (or set of values) from
which the independent branches of the search tree are explored. Efficiency is affected
by the correct election of these processes. The first process is usually called variable
ordering and the second one value ordering. In the variable ordering step a variable is
decided to branch to next at a given node of the search tree. From the selection of a
variable, new successor nodes corresponding to the possible values of the variable are
generated. The value ordering step decides then which is the next node over which
propagation begins again.

It has been shown that certain choices reduce the search space more drastically than
others since the order in which variables and values are chosen has dramatic effects
in the size of the search space and, as consequence, it has a great influence on the
efficiency (specially if we are looking for the first solution; it has little effect when the
search is for all solutions). Different choices change the shape of the search tree and,
therefore, the order in which solutions are found. As consequence, the efficiency of a
program depends to a large degree on the heuristic used for branching. Thus, the user
is advised to consider good strategies that lead to find a (first) solution in a reasonable
time. For these reasons, there has been an intense study about heuristics to judge how
critical the variables and values to be chosen are. Most of these heuristics are based
on the cardinality of the current domains for the variable and the already satisfied and
remaining constraints.

EXAMPLE 2.3 The first fail labeling uses a principle (Haralick and Elliot, 1980)
which says that to succeed, try first where you are the most likely to fail. This principle
recommends the choice of the most constrained variable which (for the finite domain)
means choosing a variable with the smallest domain. This guarantees that inconsistent
values will appear early in the search space and thus will affect other values of other
variables faster than choosing another variable.

A further refinement commonly used in first fail labeling consists of choosing, in
the case when there is more than one such recommended variable, the one that appears

18 CHAPTER 2. Basics of Constraint Logic Programming

in the greatest number of constraints. This is called the most constrained heuristic
and guarantees that the value chosen will affect the maximum number of values of the
constrained variables related directly with the chosen variable.

In contrast to first fail, naive labeling is a very simple labeling which chooses the
left-most of a list of variables and then selects the smallest value in its domain.

It is important to comment that the best ordering heuristic usually differs between
the CSPs to be solved, and the same strategy can be more or less efficient dependent
of the nature of the problem.

2.2.4 Some Review References

There are a number of reports and papers that introduces the main concepts of CP. For
instance, (Smith, 1995) gives a basic account of CSPs and some of the algorithms used
to solve them, including techniques commonly used in CP tools. Also (Barták, 1999)
provides a survey of constraint programming technology and its application starting
from the historical context, going on to show the interdisciplinary nature of CP and
describing diverse aspects ranging from constraint satisfaction techniques to industrial
applications. To find out more about CSPs and the methods to solve them, the reader
is referred to (Kumar, 1992) and (Nadel, 1989) that present very complete surveys.
Also in (Bad́ıa, 2000) we have developed a theoretical and practical comparison of
search and arc consistency algorithms to solve CSPs.

2.3 Constraint Logic Programming

Initially, CLP (Benhamou and Colmerauer, 1993) was born as a mixture of two declar-
ative paradigms: CP and LP (Lloyd, 1987). CLP adds to the LP declarativity the
efficiency of constraint solving in such a way that CLP programs are both expressive
and, in some cases, more efficient than other (even non-logical) programs.

2.3.1 A Brief History of LP Systems

The origin of the first LP language is not clear and seems to be shrouded in mystery.
Back in the sixties, Alan Robinson established the foundations of the field of auto-
mated deduction by introducing the resolution principle, the notion of unification and
a unification algorithm (Robinson, 1965; Robinson, 1971). Using the resolution method
one can prove theorems of first-order logic. It seems that the first LP language, called
Prolog, was invented by Alain Colmerauer and Phillipe Roussel at the University of
Aix-Marseille in 1971 (Kowalski, 1988; Cohen, 1988) and was born of a project aimed
not at producing a programming language but at processing natural languages; in this
case, French (Colmerauer and Roussel, 1993). The project gave rise to a preliminary
version of Prolog at the end of 1971. Also, the same year, (Kowalski and Kuehner,
1971) described a very interesting method of resolution, the linear resolution, that
formed the basis of what we now call SLD-resolution. This form of resolution is more

2.3. Constraint Logic Programming 19

restricted than that proposed by Robinson in the sense that only clauses with a limited
syntax are allowed. Based on this issue, the preliminary version of Prolog used linear
resolution with unification only between the head of the clauses. Later on, this method
was proved to be complete when only Horn clauses were used (Kowalski, 1974). Prolog
was first implemented in 1972 using ALGOL-W (Wirth, 1966). Since then, several
characteristics were added to the system and the original version of Prolog was also
implemented in other languages such as Fortran. These earlier implementations of
Prolog ran slowly but they established the viability of Prolog.

In 1983, David H.D. Warren designed an abstract machine for the execution of
Prolog consisting of a memory architecture and an instruction set (Warren, 1983). This
meant a major breakthrough for the implementation of Prolog. Since then, this set of
instruction has been accepted as the standard basis for the implementation of Prolog.
This was the beginning of the future, modern and more efficient implementations of
Prolog.

Despite the fact that it was designed originally for natural-language processing, it
became one of the most widely used languages for artificial intelligence.

2.3.2 The CLP Schema

The CLP schema was introduced by Jaffar and Lassez in 1987 (Jaffar and Lassez, 1987).
This schema was a formal framework, based on constraints, for the basic operational,
logical and algebraic semantics of an extended class of logic programs. Although the
CLP programs depend on the domain of application, the CLP schema was devised to
create languages sharing the same evaluation mechanism.

The CLP schema comprises a family of languages. Given a particular domain
and a constraint solver, the schema defines a language for writing programs and a
mechanism for evaluating goals and programs written in this language. The constraint
domain details the primitive constraints in the language, while the solver is used in the
evaluation of goals.

As already claimed, CLP combines the declarativity of LP with the efficiency of CP.
In the following we present an global overview of the CLP schema. The operational
semantics and the declarative semantics of LP are simple and it is expected that the
reader is familiar with them.

The basic idea in CLP is to replace the classical LP unification by constraint solving
on a given computation domain. This idea gave rise to the CLP(X) schema that was
described in (Jaffar and Lassez, 1987). In this schema X is the computation domain
over which constraints are solved. Different instances of X (e.g., with reals, integers,
sets, Booleans, etc.) generate different instances of the CLP(X) schema.

In each of these instances the underlying logic programming language is extended
with a set of operations and structures to be used over the computation domain that
can be directly manipulated by the user. That is to say, the user can make use of
operations on the values of the computation domain (e.g., sums on the integers and
intersection on sets) and relations between them (e.g., equational expressions on reals).
These relations are called constraints and usually the CLP system groups them in a

20 CHAPTER 2. Basics of Constraint Logic Programming

structure called a constraint store.

The CLP(X) schema is also characterised by the introduction, in the logic language,
of a mechanism for the resolution of the constraints. This mechanism, called the
constraint solver, constitutes a decision procedure able to test whether a constraint or a
set of constraints is satisfiable. The constraint solver replaces standard LP unification
by an algorithm that allows to decide the satisfiability of constraints in the system
where the satisfiability check means to decide the consistency of the constraints. If the
constraint solver can decide the satisfiability of all the constraints then we say that it is
complete. However, most of the existing solvers are not complete and they encapsulate
some kind of constraint propagation algorithm (see Section 2.2.2). Observe that the
faster the underlying algorithm built-in inside the solver, the better the performance
of the constraint solver is. The efficiency of the constraint solver algorithm is clearly
conditioned by the nature of the computation domain.

One of the main features of the constraint solver of a CLP system is the incremen-
tality of constraints. This property consists of avoiding computing the satisfiability
of constraints whenever a new constraint is added. When executing CLP programs,
usually new constraints are added during the execution, for instance via the recursion.
After each addition of a constraint, the solver is invoked to check consistency. Incre-
mental solving means that the solver checks the consistency of the added constraints
with respect to the existing constraints in the main store without checking it again
for the constraints in the store. The incrementality must cooperate with backtrack-
ing. If a solver detects inconsistency after the addition of an incremental constraint,
all constraints added since the last choice point have to be removed. Then, computa-
tion is restarted and new constraints (and variables) can be added to the store. From
the incrementality property, another interesting feature of CLP is deduced: during
execution new variables and constraints can be created dynamically what means that
neither the number of variables nor the number of constraints is known before and
during computation.

In a general context we can say that CLP can be viewed as the incorporation
of constraints and constraint solving methods in a logic-based language. The main
difference between LP and CLP relies then in the operational interpretation of the
constraints rather than in their declarative interpretation.

The critical idea of the CLP schema is that a logic-based programming language, its
operational semantics, its declarative semantics and the relationship between these two
semantics can be parameterised by a computation domain X and its constraints. The
interested reader is referred to (Jaffar and Maher, 1994) for a more detailed description
of the semantics of CLP.

2.3.3 Motivations for CLP

The success of CLP programs is not only result of the improved performances with
respect to LP programs but it relies on the functionality of them. CLP is adequate to
solve problems that LP cannot solve.

2.3. Constraint Logic Programming 21

EXAMPLE 2.4 Consider the simple logic program

less_than_three(X):-X < 3.

A query such as

:-less_than_three(Y).

returns an instantiation error in standard LP since Y is not ground before the call.
However, when this goal is told in CLP then the answer Y < 3 is returned.

2.3.4 C(L)P Applications

A large variety of real applications involve relations and constraints among the entities
of a problem. For this reason, CP has shown a commercial interest since is oriented
mainly to the specification of constraints and relations among the objects and entities
involved in a problem (or program). The first CP languages were not totally successful
since techniques to solve the constraints were integrated in the traditional languages
in a ad hoc way. In definitive, CP languages did not show sufficient expressiveness and
were not powerful enough to solve constraints. However, in the last decades new CP
languages have emerged with new characteristics. Mainly, constraints are integrated
in the host language and the user is allowed to use constraints on a high level whereas
constraints are solved by means of powerful incremental constraint solvers. The whole
system, that is, the host language and the integrated solver, is a true programming
language that is adequate to solve a wide ranges of applications.

Currently CP is a powerful tool for modelling many real-worlds problems since,
because of its inter-disciplinary nature, it combines and exploits ideas from a number
of fields such as AI, discrete mathematics, OR, symbolic computations, programming
languages, robotics and genetics among others. The heterogeneous nature of CP is
adequate for a wide ranges of applications. Proof of it is the number of interesting
and diverse applications described in (PACT’96, 1996; PACT’97, 1997; PAPPACT’98,
1998; PACLP’99, 1999; PACLP’2000, 2000).

Specifically regarded to CLP, CLP offers facilities for problem modelling, constraint
propagation and search and has been proved to be useful in the solving of a wide range of
applications. For instance, CLP has been applied to applications traditionally solved by
OR techniques like combinatorial search (Dincbas et al., 1990), cutting stock (Dincbas
et al., 1988a) and scheduling problems (Curtis et al., 2000). Other examples of areas
where CLP has been proved to be useful are in fault diagnosis in circuits (Azevedo and
Barahona, 2000; Simonis and Dincbas, 1987), neural networks (Kok et al., 1996) and
other industrial applications (Carlsson and Brindal, 1993). Moreover, the propagation
in CLP is exploited in applications involving user feedback and graphical interfaces
such as in visualising relationships in biological data (Gilbert et al., 2000). More
exotic applications include control of handling robots (Sato and Aiba, 1993a) and
reconstruction of the original DNA sequence from the fragments of an enzyme partition
(Yap, 1993). For more information, (Wallace, 1996) and (Simonis, 1995) give a number
of examples of industrial applications of CLP.

22 CHAPTER 2. Basics of Constraint Logic Programming

2.3.5 Some Review References

We have introduced CLP in a global way. The interested reader in more specific CLP
issues is encouraged to read the texts cited below.

From an introductory point of view, (Lassez, 1987) and (Frühwirth et al., 1993)
provide an informal introduction to CLP.

From an historical view, (Cohen, 1990) gives a short introduction to CLP languages.

From the overall view, (Csontó and Paralič, 1997) and (Jaffar and Maher, 1994)
are a global survey about CLP by giving systematic descriptions of the major trends
in terms of common fundamental concepts (covering parts such as theory, implemen-
tations and applications among others).

From the teaching view, (Carro et al., 2000) serves as an introductory course to
CLP mainly directed to industrial programmers with little previous experience with
CP.

From the semantics view, (Jaffar et al., 1998) presents the semantics foundations
of CLP in a self contained paper.

2.3.6 Black box vs. Glass box

Since its appearance, CLP has raised a discussion about if the constraints in a CLP
system should be totally transparent (i.e., the glass box approach) or hidden (i.e., the
black box approach) to the user. This discussion gives rise to controversy since both
approaches have advantages and disadvantages. In this section we try to clarify this
point.

The Black Box Approach. In the beginning, CLP provided specific built-in con-
straints to solve specific applications. These constraints are black boxes from the user
point of view in the sense that the user can make use of them but does not need to
understand in full detail their execution behaviour.

There have been two main reasons for the provision of black box constraints. Firstly,
they are coded for specific applications so that they often allow a succinct way to model
a wide set of problems. The second reason is the efficiency that these constraints
provide to the standard solvers. The control of the black box constraints if fixed by the
system that enables very efficient implementations of them. The internal constraint
solver of the system uses specialised propagation mechanisms for these constraints
leading thus to a major efficiency in the solving of well known and complex problems.
Some examples of these specific-application and complex constraints are the cumulative
constraint (Aggoun and Beldiceanu, 1992), the all different constraint (Régin, 1994)
and the element constraint (Dincbas et al., 1988a) (see Section 2.7).

Black box constraints have also evident disadvantages. First, they are built-in in
the system and coded internally in very complex manners since they are based on
specialised built-in propagation rules. Thus, it is very difficult to understand their op-
erational behaviour. Even for larger applications, it can be impossible to understand
it. Despite this is part of the declarative nature of LP (i.e., the users know what to

2.3. Constraint Logic Programming 23

do but not how to do it), when speaking about CLP, there are many people in the
constraint community believing that the user does not need to know how a program is
executed, but at least should be able to understand the exact behaviour of the execu-
tion, for instance to debug and/or correct their programs. Another drawback is that
these complex constraints lack adaptability for being use in non-standard problems. As
told above, they are provided for specific modelling of problems so that they are not
useful for applications that do not follow an standard schema. Thus these constraints
do not provide flexibility to be used out from their area of application.

The Glass Box Approach. To overcome the lack of flexibility and applicability of
black box constraints, it was demanded that “constraint solvers must be completely
changeable by users” (p. 276 in (Aiba et al., 1988)). Since then, a new proposal
was made to allow for more flexibility and customisation of constraint systems. This
proposal is called glass-box or even no-box approaches. This approach allows the user
to define new constraints in terms of the primitive constraints provided by the system.
The advantages are clear. In practice, there are many constraints that are not specific
to standardised applications and the users can define their own glass box constraints
specialised for particular applications. Also, glass box constraints are useful in the
re-utilisation of code since they are easily adapted to solve similar problems to those
problems for which they were designed. Moreover, the user understands totally the
operational behaviour of their constraints so that is very easy to modify them in order
to find for the most adequate constraint solving for a problem or modify them to find a
correct behaviour of them. This global understanding of the process allows for general
optimisations, as opposed to the many local and particular optimisations hidden inside
the black box constraints.

Two main criticisms to the glass box approach can be done. First, as glass box
constraints are not specific to particular applications, their efficiency depends directly
on how the user defines them. For this reason, the user should use black box constraints
whenever possible and when the application allows them. Also, even in the cases that a
(careful) use of user-defined constraints can always be recommended, in order to enforce
more homogeneous grains of information and favour the main streams of propagation,
one has to be cautious about correctness and completeness of the definition of the glass
box constraints.

A fuzzy frontier. The distinction between a glass or a black box system for CLP is
not always clear. For instance, a black box system can provide primitive constraints to
allow the user to define new constraints. However, this does not mean that this system
is a glass box system. The gap between a glass or a black box system is in the level
on which a user is allowed to define constraints. Glass box languages (Van Hentenryck
et al., 1994) are considered those languages which provide very simple and primitive
constraints in which the propagation schema can be formally specified. These con-
straints can then be used to construct specialised high level constraints suitable for the
application. Alternatively, black box languages are those which provide a wide range of

24 CHAPTER 2. Basics of Constraint Logic Programming

high level constraints whose implementation is hidden from the user. These constraints
perform specific tasks very efficiently. In these languages, it is hard for a user to add
new constraints since such constraints have to be defined at a low level requiring a
detailed knowledge of the implementation.

Conclusion. It follows from this discussion that what is needed is more efficient glass
box systems. Of course, these systems can also provide specific-application constraints
allowing their use on standard problems. However, the main power of these systems
consists of the provision of efficient primitive constraints so that the user can com-
bine them and reuse them to solve non-standard CSPs. This combination of efficient
constraints should lead to efficient high level and complex constraints.

2.4 Main Glass Box Approaches

As already declared in Chapter 1, our interest is in the glass box systems. The primi-
tive constraints provided by such systems are seen as propagation rules, that is, rules
for describing arc consistency propagation. From this perspective, there have been
two main separate developments for the provision of glass box constraints. the first
was developed in the constraint system clp(FD) (Codognet and Diaz, 1996a) which
is designed for the finite domain of integers and based on a single constraint often
referred to as an indexical. This approach, which allows the user to define and control
the constraint propagation within the finite domain of integers via indexicals, is very
efficient since the implementation uses a simple interval narrowing technique which
can be smoothly integrated into the WAM (Aı̈t-kaci, 1999; Diaz and Codognet, 1993).
As a result, clp(FD) is now integrated into mainstream CLP systems such as SICStus
Prolog (Carlsson et al., 1997) or IF/Prolog (If/Prolog, 1994). The other development
is the CHR language (Frühwirth, 1998) which allows the user to define the constraint
propagation via constraint handling rules. These rules enable the user to create new
domains and define their solvers and any interaction between them.

In the following we describe these two glass box systems.

2.4.1 The Indexical Approach

The idea of indexical was originally designed for the framework of concurrent logic lan-
guages and taken from (Van Hentenryck et al., 1991). This paper broke the monopoly
of the black box approach originally presented in all the CLP systems. The idea con-
sisted of reducing a linear expression to a set of lower level constraints called indexicals.
Indexicals are primitive constraints, provided in the CLP model for FD, of the form
X in r where X (i.e., the constrained variable) is a FD variable and r is an expression
to be evaluated in the domain of the sets of integers.

Indexicals allow to specify the intended propagation mechanism and from them it is
possible to define new high level constraints. As the operational behaviour of indexicals
is simple, an indexical-based CLP system follows a glass box approach.

2.4. Main Glass Box Approaches 25

Although initially thought for the concurrent setting, the constraint X in r sup-
posed a good basis for an abstract machine for CLP on FD. A further step was to
integrate into the WAM architecture the constraint X in r (Diaz and Codognet, 1993).
This extension was specifically designed for the finite domain and showed how complex
constraints could be compiled in efficient X in r expressions. The result was the sys-
tem clp(FD) (Diaz, 1994; Diaz, 1995; Codognet and Diaz, 1996a) that allows to solve
constraints defined on FD (i.e., the integer and Boolean domains).

The clp(FD) system. In this system a range is a subset of

{−infinity , ...,−1, 0, 1, ..., infinity}

where infinity and −infinity are particular integers denoting the greatest value and the
lowest value that a variable can take (i.e., the top and bottom elements). The notation
a..b is used as a shorthand for the set

{x | a ≤ x ≤ b}

(that is, [a,b] in interval notation). In addition to some operations on ranges (e.g.,
union, intersection, etc.), other operations, called pointwise operations (i.e., +, -, *, /)
are defined between a range r and an integer i and return the set obtained by applying
the operator on each element of the range.

The clp(FD) system is based on domain constraints and indexicals. A domain
constraint is an expression of the form X in r that forces X (the constrained variable)
to have values in a range r. The constraint X = n where n is a natural number is
treated as a shorthand for the constraint X in n..n. In this case we say that n is the
ground value for X.

An indexical is an expression of the form X in I where X is a FD variable and
I is an expression, called indexical expression, to be evaluated in the domain of the
integer sets. An indexical expression usually contains one (or more) of the following
terms (called indexical terms): min(Y), max (Y), dom(Y) or val(Y) where Y (i.e.,
the indexed variable) is any FD variable distinct from X.

The clp(FD) system has one unique primitive constraint of the form

X in R

where R is a range or an indexical expression. To distinguish R from a range r, we will
say that R is an evaluated range. The (simplified) syntax of the primitive constraint is
shown in Table 2.1.

Constraint solving is based on the concept of constraint store and on the evaluation
of indexicals.

A constraint store is a set S of primitive constraints. For any FD variable X, we
write DS

X to express the domain of X in S that is defined as the intersection of all ranges
r associated to X in S, that is to say, all ranges r such that a domain constraint of the
form X in r exists in S. This intersection process is known as constraint narrowing.

26 CHAPTER 2. Basics of Constraint Logic Programming

Table 2.1: Basic syntax of the constraint X in R in clp(FD)

constraint ::= X in eRange (constraint)

eRange ::= term..term (evaluated range)
{t} (singleton)
eRange ∨ eRange (union)
eRange ∧ eRange (intersection
-eRange (complement)
eRange • ct (pointwise operation: • ∈ {+,−, ∗, /})

term::= ct (ct ∈ Integer)
infinity (top element)
-infinity (bottom element)
min(X) (minimum indexical)
max (X) (maximum indexical)
val(X) (ground indexical)
dom(X) (domain indexical)
term • term (• ∈ {+,−, ∗, /})

The store is inconsistent if the domain of some variable is empty; otherwise, it is
consistent.

If S is a constraint store and Y is a variable constrained in S by some domain
constraint, then the values in S of min(Y), max (Y) and dom(Y) are defined to return
the lower bound of DS

Y , the upper bound of DS
Y and DS

Y respectively. Indeed, if there
exists a ground value n for Y in S then the value in S of the indexical term val(Y)
returns n; otherwise the evaluation of this function is delayed. If I is an indexical
expression, evaluating I with respect to S means to return the expression IS that
results from replacing all occurrences of indexical terms in I by their value in S.

By simplifying the process, basically constraint solving in the clp(FD) system is
executed incrementally as follows: there exists one main constraint store S that initially
contains one domain constraint X in − infinity ..infinity for each constrained variable
X in the problem. The constraints are then added to S incrementally. Each time that
a new indexical X in I is added to S or constraint narrowing in S reduces DS

Y where Y
is any variable indexed by some indexical X in I belonging to S, the domain constraint
X in IS is added4 to S where IS is the evaluation of I in S. The process begins again
by executing constraint narrowing. The process generating new constraints is called
constraint propagation. The whole process terminates when S becomes inconsistent or
when no more constraint propagation is possible because either constraint narrowing
reduces no domain of the constrained variables or no indexical term is affected by

4Assuming that IS is evaluated to a range.

2.4. Main Glass Box Approaches 27

constraint narrowing.

EXAMPLE 2.5 Consider the following constraint store resulting from a previous
constraint narrowing step

S ≡
{
X in 4..10, Y in 3..20

}
,

and suppose that the indexical

Y in 0..max (X)− 1

is now added to S. Then, 0..max (X)−1 is evaluated to 0..9 since the value of max (X)
in S is 10. As consequence, the indexical Y in 0..max (X) − 1 is propagated (i.e.,
evaluated) to the constraint Y in 0..9 that is added to S. As consequence of further
constraint narrowing, S becomes

S ≡
{
X in 4..10, Y in 3..9, Y in 0..max (X)− 1

}
.

and the process terminates since max (X) is no more affected.

The primitive constraint X in R can be used to specify the declarative description
of the problem.

EXAMPLE 2.6 The program of Example 2.4 can be coded as

less_than_three(X) :- X in -infinity..2.

The constraint X in R embeds the propagation mechanism of the whole system. It
is used not only to specify the declarative description of the problem to solve, but also
to provide the propagation mechanism of the constraints i.e., the exact description of
how constraints should be propagated and the way the domains are pruned. Constraint
propagation is specified via the correct use of the indexical terms. Of course, by using
the primitive constraint X in R it is possible to build high level constraints on which
the propagation mechanism is completely specified.

EXAMPLE 2.7 Consider the constraints X = Y + C and X 6= Y where X,Y are
FD variables and C is an integer value. These constraints are user-defined in terms of
indexicals as

X = Y + C ⇔ X in min(Y) + C ..max (Y) + C ,

Y in max (X)− C ..max (X)− C .

X 6= Y ⇔ X in − val(Y),

Y in − val(X).

28 CHAPTER 2. Basics of Constraint Logic Programming

Different schemas of propagation are devised by using different indexicals terms.
For instance, in the constraint X 6= Y , the indexical X in − val(Y) is delayed until Y
is bound. This means propagation is executed in a forward checking manner. On the
other side, constraint X = Y + C is propagated via a partial look ahead schema, since
only changes in the minimum and maximum of X and Y are propagated. A (full) look
ahead schema would propagate the whole domain of variables by using the indexical
term dom as shown below. See (Van Hentenryck, 1989) for more information.

EXAMPLE 2.8

X = Y + C ⇔ X in dom(Y) + C ,

Y in dom(X)− C .

2.4.2 Constraint Handling Rules

Constraint handling rules (CHRs) (Frühwirth, 1994; Frühwirth, 1998; Frühwirth, 1999)
are a proposal to allow more flexibility and application-oriented customisation of con-
straint systems. CHRs are a declarative language extension especially designed for
writing user-defined constraints and constitute essentially a committed-choice language
consisting of multi-headed guarded rules that rewrite constraints into simpler ones until
they are solved. A CHR language allows “multiple heads”, i.e., conjunctions of con-
straints in the head of a rule, that are a feature that is essential in solving conjunctions
of constraints. With single-headed CHRs alone, unsatisfiability of constraints could
not always be detected (e.g., X < Y, Y < X) and global constraint satisfaction could
not be achieved.

As a special purpose language, CHRs extend a host language with (more) constraint
solving capabilities. Auxiliary computations in CHR programs are directly executed
as host language statements. To keep this section essential and self-contained, we will
not address host language issues here.

A constraint is considered to be a distinguished, special first-order predicate (atomic
formula). We use two disjoint sorts of predicate symbols for two different classes of
constraints: one sort for built-in (predefined) constraints and one sort for CHR (user-
defined) constraints. Built-in constraints are those handled by a predefined constraint
solver that already exists in the host language. CHR constraints are those defined by
a CHR program where a CHR program is a finite set of CHRs. Since host language
statements that appear in CHRs must be declarative, we can consider them as built-in
constraints in this section (with a rather incomplete solver, the host language).

In the following we give an overview of CHR syntax. For more information about
their semantics as well as soundness and completeness results see (Abdennadher et al.,
1999; Abdennadher, 1997). There are three kinds of CHRs:

• the simplification CHR which has the form

label @ H1, . . . ,Hi ⇔ G1, . . . , Gj | B1, . . . , Bk;

2.4. Main Glass Box Approaches 29

• the propagation CHR which has the form

label @ H1, . . . ,Hi ⇒ G1, . . . , Gj | B1, . . . , Bk;

• and the simpagation CHR which has the form

label @ H1, . . . ,Hl\Hl+1, . . . ,Hi ⇔ G1, . . . , Gj | B1, . . . , Bk

where i > 0, j ≥ 0, k ≥ 0, l > 0. The multi-head H1, . . . ,Hi is a non-empty sequence
of CHR constraints, the guard G1, . . . , Gj is a sequence of built-in constraints and the
body B1, . . . , Bk is a sequence of built-in and CHR constraints. label is simply an iden-
tifier for the rule. Simplification replaces constraints H1, . . . ,Hi by simpler constraints
B1, . . . , Bk, provided conjunction of guards G1, . . . , Gj can be proved. Propagation
adds to the store new constraints B1, . . . , Bk which are logically redundant with re-
spect to constraints H1, . . . ,Hi but may cause further simplification (again provided
the conjunction of guards G1, . . . , Gj can be proved). Simpagation is an abbreviation
of the simplification rule

label @ H1, . . . ,Hl, Hl+1, . . . ,Hi ⇔ G1, . . . , Gj | B1, . . . , Bk, H1, . . . ,Hl.

EXAMPLE 2.9 Consider the constraint X ≥ Y . Then, the following CHRs define a
partial order constraint ≥.

reflexivity @ X ≥ Y ⇔ X = Y | true.

antisymmetry @ X ≥ Y, Y ≥ X ⇔ X = Y.

transitivity @ X ≥ Y, Y ≥ Z ⇒ X ≥ Z.

‘true’ represents empty sequences of CHRs. These rules defined the propagation of
the constraint ≥/2. For instance, the reflexivity rule declares that if the store implies
X = Y then a constraint such as X ≥ Y can be simplified to true (and thus be removed
from the store). Antisymmetry rule declares that if two constraints X ≥ Y ,Y ≥ X
are implied by the store, then they can be replaced by the simpler constraint X = Y .
Last, transitivity rule adds the constraint X ≥ Z to the store whenever two constraints
X ≥ Y , Y ≥ Z belong to it.

Repeatedly applying CHRs incrementally simplifies and, possibly, solves the user-
defined constraints.

CHRs have been integrated in a number of CLP languages, providing them a glass
box approach and have been used to encode a wide range of constraint solvers, from
standard domains such as the finite and set domains to new domains such as fea-
ture trees and domains for the terminological and temporal reasoning (Frühwirth,
1998). Because of their flexibility, CHRs have also been used to model real appli-
cations (Frühwirth and Brisset, 1997; Frühwirth and Brisset, 1998; Frühwirth and
Abdennadher, 2001).

30 CHAPTER 2. Basics of Constraint Logic Programming

2.5 Some Black box Languages.

In this section, we described briefly the constraint solving mechanism of a number of
CLP black box systems. In fact, these are glass box systems from an strict definition
since they allow the user to define new constraints. However, all of them require
a (detailed) knowledge of their implementation in order to specify the propagation
mechanism of the new constraints. For this reason, in the following, we classify these
systems as black box systems.

Oz (Smolka, 1995) is a new language5 combining functions with relations so that it
has the potential for extra expressiveness in the constraint solver. It provides algo-
rithms to decide the satisfiability and implications for basic constraints which take the
form x = n, x = y or x :: D where x and y are variables, n is an non-negative integer
and D is a finite domain6. The basic constraints reside in the constraint store. Non-
basic constraints, such as x + y = z, are not contained in the store but are imposed
by propagators (Müller and Würtz, 1996). An Oz propagator is a computational agent
which is posted on the variables occurring in the corresponding domain. It reads the
constraint store and tries to narrow the domains posted there by amplifying the store
with basic constraints.

EXAMPLE 2.10 Suppose there is a constraint store containing the domain variables
X,Y with the domain {1, . . . , 10}. The propagator for X + Y = 5 narrows the domain
for both X and Y to {1, . . . , 4}. The propagator X + Y = 5 is said to constrain the
variables X and Y . Adding the constraint Y = 1 narrows the domain of Y to {1} and
the domain of X to {4}.

Propagators are provided by both glass and black box languages. However, in
glass box languages, the primitive constraints (e.g., indexicals and CHRs) are the basic
components and the propagators are constructed from them. On the other hand, in
black box languages, there is no means of specifying directly the constraint propagation
so that propagators such as + or − are themselves primitives and are determined solely
by their operational semantics.

ECLiPSe (Aggoun et al., 1995) includes the traditional finite domain constraints
that are now being incorporated in many logic programming systems. It also supports
writing further extensions such as new user-defined constraints or complete new con-
straint solvers such as CHR. These extensions are based on a mechanism of suspension
and waking of goals provided by ECLiPSe. To make such an extension, the user needs
a good knowledge of the underlying system and this is the reason why ECLiPSe is not
catalogued as a glass box language.

5Currently, there exists a distributed version called Mozart.
6The constraint x :: D restricts x to have values in the domain D.

2.6. CLP Instances: Dependent-Domain Reasoning 31

Ilog SOLVER (Ilog, 1995) is a C++ library for constraint programming so that the
underlying data and control structures must be defined in C++. Thus it is not strictly
a CLP system. However, as it uses the CLP approach and is a popular commercial
system for solving constraint satisfaction problems, we include it in this section.

In Ilog SOLVER, a constraint is either an object or a Boolean expression with values
false (IlcFalse) or true (IlcTrue). The actual value depends on the satisfiability of
the constraint: if the constraint cannot be violated, then the expression is bound to
IlcTrue and if the expression cannot be satisfied then it is bound to IlcFalse. These
expressions can themselves be constrained or combined with logical operators or, and
and not to create more complex constraints.

When a constraint is posted (by means of the function IlcPost), the constraint is
used immediately to reduce the domains of the constrained variables that it involves.
Backtracking is provided by combining non-deterministic elements.

B-Prolog (Zhou, 1997) is based on a new abstract machine called ATOAM (Zhou
et al., 1990; Zhou, 1994) (yet Another matching Tree Oriented Abstract Machine).
Since most of the existing Prolog systems are constructed from the basis of the WAM,
B-Prolog is a system that provides an alternative to the WAM approach. B-Prolog has
been proved to be often significantly faster than most WAM-emulator-based Prolog
systems (Zhou and Nagasawa, 1994). This system provides new facilities for constraint
solving and presents some clear differences with respect to other clp(FD) systems.

As with ECLiPSe, this system provides a set of traditional FD predicates such
as arithmetic or Boolean constraints and a set of primitives to process the domain
variables. Note that this set of built-in constraint predicates is smaller than that
provided by ECLiPSe.

It is also possible to define constraints by means of delay clauses (that are a special
kind of construct provided by this system) although the user needs some knowledge
about the underlying mechanism of the language (Section 7.6 describes in greater depth
the mechanism of delay clauses in B-Prolog).

2.6 CLP Instances: Dependent-Domain Reasoning

As declared in Section 2.3.2, the CLP schema is parameterised with respect to the
underlying computation domain over which constraints are solved. Constraint solvers
are specific to the computation domain so that different domains highlight different
reasoning mechanisms for constraint solving. In this section we described some of the
most important instances of the CLP schema, although the list is not exhaustive of
course.

2.6.1 The Finite Domain

Of the domains for CLP, the Finite Domain (FD) (Van Hentenryck, 1989) is one of the
most and best studied since it is a suitable framework for solving discrete constraint

32 CHAPTER 2. Basics of Constraint Logic Programming

satisfaction problems. The importance of the CLP languages based on the finite domain
is their impact in the industry since a lot of problems in the real life involves variables
ranging on discrete domains. This means that CLP languages for FD are appropriate
to solve many real-world industrial problems.

FD is particularly useful for modeling problems in areas like operation research,
hardware design or artificial intelligence. Problems such as scheduling, planning, pack-
ing, timetabling can be modelled by FD variables and, as a consequence, most of the
CLP systems provide substantial FD libraries.

The constraint propagation algorithms in CLP(FD) are usually called consistency
techniques or filtering algorithms and they were born as an alternative to the inefficiency
of the procedures generate-and-test and standard backtracking of LP (see Section 2.2.2).
Consistency techniques are based on the idea of a priori pruning i.e., constraints are
used to reduce the search space before a fail is found, and allows the reduction of the
number of backtrackings as well as constraint checks. These techniques originated from
Waltz’s filtering algorithm (Waltz, 1972) and the algorithm of the problem solver REF-
ARF (Fikes, 1968). Later on, these works were developed and extended in (Gaschnig,
1974; Mackworth, 1977; Freuder, 1978) among others. For an overview about the
pioneering constraint satisfaction algorithms see (Nadel, 1989; Prosser, 1993).

Consistency techniques of CLP systems for finite domains have been described
in an excellent way in (Van Hentenryck, 1989). Here it is proposed to embed the
consistency techniques inside a LP language without loosing the natural formulation
of logic programs. This embedding avoids to write logic programs using consistency
techniques which would lead to less natural formulation. By embedding the techniques
inside the system, the programmer does not need to care if the tree pruning is done a
priori (i.e., by using the consistency techniques) or a posteriori (i.e., by applying the
traditional backtracking).

The first CLP language for FD was the CHIP language (Dincbas et al., 1988b;
Van Hentenryck, 1988). The propose of the CHIP language was to solve, efficiently
and flexibility, a large class of combinatorial problems (Dincbas et al., 1990). In fact,
CHIP was not only focused on the finite domain but involved three different domains
of computations: the finite domain, Boolean terms and rational terms. Each of these
domains has its own resolution mechanism coded internally in the CHIP system. For
instance, in the rational domain, an Simplex-like algorithm was employed whereas
Boolean unification was used in the Boolean domain. Proof of the success of CHIP
is the fact that it was taken as the guide language to show the potentialities of the
consistency techniques in (Van Hentenryck, 1989).

Since CHIP, constraint propagation in FD have been widely studied and, certainly,
improved. The indexical approach (see Section 2.4.1) has been adopted by most of
the CLP languages on FD. In particular, the major successful CLP system on FD is
clp(FD) (also described in Section 2.4.1). Its particular glass box approach and the
efficiency shown in the solving of real problems have popularised this system. Moreover,
main existing CLP systems provide libraries for FD constraint solving based on the
syntax of the clp(FD) system (shown in Table 2.1). Most of the main results of the
clp(FD) system were published in (Diaz, 1995).

2.6. CLP Instances: Dependent-Domain Reasoning 33

Recently, an alternative approach to the indexical model is proposed and integrated
in the language B-Prolog (Zhou and Nagasawa, 1994; Zhou, 1996) that was briefly
described in Section 2.5. This system provides specific constructs for constraint solving
in FD and has shown to be acceptably efficient (Fernández and Hill, 2000a). However,
currently it is not widely popularised yet. Section 7.6 describes in greater depth the
special constructs for FD constraint solving in B-Prolog.

The interested reader is referred to (Henz and Müller, 2000) that gives an overview
of constraint programming over FD for solving combinatorial problems.

2.6.2 The Continuous Domain

Many applications involve numerical computations in non-discrete domains i.e., in the
real domain. The first CLP system that allows constraint solving on the real domain
was the CLP(<) system (Jaffar et al., 1992b). This system is an instance of the CLP
schema and thus its operational semantics are very similar to Prolog. As usual in
CLP, unification is replaced by constraint satisfaction and, in the particular case of
CLP(<), by constraint solving on the domain of uninterpreted functors over real arith-
metic terms. CLP(<) is a constraint logic programming language with real-arithmetic
constraints. The implementation contains a built-in constraint solver which deals with
linear arithmetic and contains a mechanism for delaying non-linear constraints until
they become linear (Jaffar and Michaylov, 1987). From the implementation point of
view, this delay mechanism is described in (Jaffar et al., 1991) whereas (Jaffar et al.,
1992a) describes an abstract machine for the system. The system is also usable as a
general-purpose logic programming language (since CLP(<) subsumes Prolog).

A clp(<) program is a collection of rules in the sense of Prolog but where the body
can contain constraints and the terms are defined more generally. Basically, constraints
are equations or inequalities in the form

Expression1 • Expression2, with • ∈ {=, >,≥, <,≤}

where the expressions to both sides of the constraint are built from real constants, vari-
ables, real terms constructed with unary negation and more complex terms constructed
from the usual arithmetic operators such as +,−, ∗ and /. For instance,

X + 3.0 ∗ Y ≤ Z and 3.451 +W = 24 ∗ Y

are examples of constraints in CLP(<).
This system was extended to allow for powerful facilities for meta programming

with constraints (Heintze et al., 1989). Moreover, CLP(<) has been proved to be very
useful on practical applications and have been published in diverse areas and much has
been written on them e.g., molecular biology (Yap, 1991), testing of protocols (Gorlick
et al., 1990), electrical engineering (Heintze et al., 1992), model-based diagnosis of
analog circuits (Biasizzo and Novak, 1995) and option trading (Huynh and Lassez,
1988) among others.

The success of the CLP(<) system lead to a number of CLP systems managing
arithmetic constraints in a similar form. For instance, clp(Q,R) (Holzbaur, 1995) is

34 CHAPTER 2. Basics of Constraint Logic Programming

another CLP language that allows the solving of linear equations over rational or real
valued variables, covers the lazy treatment of non-linear equations, features a decision
algorithm for linear inequalities that detects implied equations, removes redundan-
cies, performs projections (quantifier elimination), allows for linear dis-equations and
provides for linear optimisation. This system is nowadays part of the distribution of
the most important Prolog systems such as SICStus Prolog (Carlsson et al., 1997),
ECLiPSe (Aggoun et al., 1995) and CIAO Prolog (Hermenegildo et al., 2000).

Also CHIP, the pioneering CLP system on FD, allowed a kind of constraint solving
on rational terms. Basically a rational term is a term constructed from rational values
and variables and the operations + and *. CHIP solved linear equations, inequalities
and dis-equations through a symbolic Simplex-like algorithm. Therefore, applications
of the CHIP system in the rational term domain are problems involving linear pro-
gramming.

Solving non-linear constraints over real numbers is a complex problem that was not
really solved in CLP(<) and its resolution was delayed until these constraints became
linear. This efficient implementation method has the disadvantage that sometimes
computed answers are unsatisfiable or infinite loops occur due to the unsatisfiability
of delayed non-linear constraints. For this reason, from the original approach of the
CLP(<) system, other CLP approaches try to improve the resolution of non-linear
constraints.

(Hong, 1993) reported about their experience in combining CLP with two algebraic
methods, the method of partial cylindrical decomposition (Arnon et al., 1984) and
the method of Gröbner bases (Buchberger, 1997), for solving non-linear constraints
over real numbers. These methods were developed in computer algebra during last
four decades. The prototype implementation RISC-CLP(Real) demonstrated that non-
linear constraints deserved more attention.

Also, (Hanus, 1993) proposed to solve the delaying problem of non-linear constraints
by using a more powerful constraint solver which can deal with non-linear constraints
like it is done in the language RISC-CLP(Real). The proposal is to get a compromise
between these two extremes by characterizing a class of CLP(<) programs for which
all delayed non-linear constraints become linear at run time. Programs belonging to
this class can be safely executed with the efficient CLP(<) method while the remaining
programs need a more powerful constraint solver.

Afterwards, the system QUAD-CLP(<) (Pesant and Boyer, 1994) was built on
top of the CLP(<) system to provide a further treatment of non-linear arithmetic
constraints over the reals as opposed to delaying them unconditionally. It concentrates
on quadratic constraints, rewriting them in such a way they can actually be decided
upon either generating a conservative approximation of them (while still delaying them)
or potentially improving control over the computation. In both cases the idea is to fall
back on linear constraints, more easily handled. QUAD-CLP(<) is an incomplete
solver for non-linear constraints catering for problems of respectable size which require
a certain amount of reasoning on these constraints but cannot afford the prohibitive
cost of a complete treatment.

These works lead to present the solving of non-linear constraints like a very active

2.6. CLP Instances: Dependent-Domain Reasoning 35

field inside the CLP community.
Constraint solving on the real domain is becoming an important issue in the con-

text of functional logic languages. In (Arenas et al., 1996), a declarative language,
called CFLP(<), that integrates lazy functional programming, logic programming and
constraint solving over real numbers is proposed. The execution mechanism of the
language consists of a combination of lazy narrowing and constraint solving. The main
drawback of this language is in its implementation. The method for implementing the
language consists of the translation of CFLP(<) programs into a logic programming
language supporting real arithmetic constraint solving.

2.6.3 Sets

Finite set is other important domain employed traditionally in LP. Sets enable the
modelling of problems formulated on combinatorial solving and on natural language
processing. A lot of real problems involves sets or multisets, relations or graphs that
can be tackled by means of sets.

The first attempt to cover with sets in CLP was done in (Walinsky, 1989) that
proposed to define regular sets over words as a new domain in the CLP language
CLP(Σ∗). Regular sets are finite sets composed from finite strings and the constraints
in CLP(Σ∗) have the form

A in (X.“ab.”Y)

which associates the variable A to any string containing the substring “ab.”. Regular
sets cannot be viewed in the general concept of sets but CLP(Σ∗) was the first initiative
to tackle with sets in the CLP framework.

Afterwards, CLPS (Legeard and Legros, 1991) is another attempt founded in the
notion of sets of finite depth over Herbrand terms (e.g., a simple set {1, 2, 3, 4} is of
depth 1, a set {{1, 2}, 3, 4} is of depth 2, a set {{{1, 2}}, 3, 4} is of depth 3, and so
on). The satisfaction of constraints is performed by checking the consistency over set
elements as domain variables.

One of the most influential works on CLP(Sets) was described in (Gervet, 1994)
where a CLP language, called Conjunto, to manage set interval constraints is defined.
The motivation was a desire to combine the efficient constraint satisfaction techniques
with the declarativity of Prolog in order to solve combinatorial problems based on sets,
relations or graphs (e.g., set partitioning, set packing, maximum-minimum set cover,
etc.). On this line, (Gervet, 1997) proposed to have a deterministic set unification
procedure consisting of testing in polynomial time the equality between set variables
and ground sets. To cope with it, a set domain was approximated by a set interval
specified by its upper and lower bounds, thus guaranteeing that a partial order exists.
A set variable s is then associated to a set interval in the form

s ∈ [l, u] with l ⊆ u

and l and u are integer sets e.g., s ∈ [{1}, {1, 3, 5, 7}]. This approach enables an
important improvement with respect to previous works: it provides the possibility to
use consistency techniques to reason in terms of interval variations.

36 CHAPTER 2. Basics of Constraint Logic Programming

Recently, (Kozen., 1994; Kozen., 1998) has proposed the use of set constraints to
define a CLP language over sets of ground terms that generalizes ordinary LP over
an Herbrand domain. Also, (Dovier et al., 1996) develops the language {log} that
provides the basis to embed set constraints in the form {x}∪Set in a logical language.
The satisfiability of constraints is based on a non-deterministic selection of constraints
by taking into account all the possible substitutions between the elements of two sets.
Unfortunately, this leads to a hidden exponential growth in the search tree.

Currently, the set domain is included in a number of main CLP systems such as
ECLiPSe (Aggoun et al., 1995) or Oz (Müller and Müller, 1997). For an extended
overview of sets in (C)LP see (Gervet, 1997; Stolzenburg, 1996).

2.6.4 (Pseudo-)Booleans

Among the usual domains studied in CLP, Booleans are widely studied because of
its usefulness since many practical problems involve Boolean variables (also called 0-1
variables). The study of Boolean problems comes (Williams, 1993a) from the modelling
with Boolean variables of problems in automated theorem proving, circuit diagnosis
and verification, artificial intelligence, etc. Thus, it is not surprising that this domain
is included in existing CLP languages, sometimes with a dedicated solver and other
times by providing libraries to manage Boolean constraints.

A Boolean constraint solver usually provides support to solve, at least, the following
Boolean formulas

X ∨ Y ≡ Z,
X ∧ Y ≡ Z,
X = Y and

X ≡ ¬Y

where variables X,Y and Z are Boolean variables i.e., those variables taking values in
the Boolean domain. It is desirable that it also incorporates other Boolean formulas
such as the exclusive or, the not and, the not or, the equivalence or the implication.
However, with the first four formulas is possible to define the rest.

The basic processing of a set of Boolean constraints is to study the satisfiability of
the Boolean formulas.

It is worth clarifying the distinction between stand-alone Boolean solvers, that is,
those solvers dedicated exclusively to the solving of Boolean constraints, and those CLP
languages that provide either a constraint solver as a library module or the capacity
to use Boolean constraints and solve them. In this last category we can find the CHIP
language (Büttner and Simonis, 1997) and Prolog III (Benhamou, 1993) that offer
special purpose Boolean algorithms in which the processing of Boolean constraints
is done in the unification step. The only necessary constraint is the equality over
Boolean terms. In these languages, a Boolean term is constructed from constants,
Boolean values, Boolean variables and the logical operators and, or, not, xor, nand

2.6. CLP Instances: Dependent-Domain Reasoning 37

and nor. The algorithm for unification (i.e., to compute the most general unifier of two
Boolean terms) is based on variable elimination.

Other specialised algorithms for Boolean constraint solving should be mentioned.
For instance (Sato and Aiba, 1993b) proposes the Boolean solver algorithm for the
CAL language (Aiba et al., 1988; Aiba and Sakai, 1989) (in fact it is an application of
the Buchberger algorithm (Buchberger, 1987a) to Boolean rings). The CAL language
provides a Boolean algebra with symbolic values, where equality between Boolean for-
mulas expresses equivalence in the algebra (see Section 2.8 for more information about
the CAL language). Also other full languages such as GNU Prolog (Diaz and Codognet,
2000), Prolog IV (N’Dong, 1997), IF/Prolog (If/Prolog, 1994) SICStus (Sicstus man-
ual, 1994) and B-Prolog (Zhou, 1997) incorporate library modules to manage Boolean
constraints. The CHR language (see Section 2.4.2) deserves specific mention since, due
to its flexibility, the Boolean solver can be completely defined at the user level.

The idea of considering Booleans as the subset {0, 1} of integers, that is, as a
particular case of FD was first introduced in the CHIP language. This idea allows for
a generalisation of the Boolean formulas as for instance the idea of reified constraints
(see Section 2.7). This approach of CHIP was so successful that it became the standard
tool in the commercial version of CHIP whereas its specialised Boolean solver could be
chosen as an option. The primitive Boolean constraints of CHIP were coded internally
in a black box approach and, thus, wired inside the internal Boolean solver. Afterwards,
the idea was extended to the clp(FD/B) system (Codognet and Diaz, 1993). The
extension consisted of the integration of the Boolean solver in the specialised solver
for FD of the clp(FD) system. Boolean constraints such as and, or and not were
decomposed in simplifier X in r expressions for the finite domain {0, 1}. The schema
of propagation was very simple and supposed to open the black box approach of the
Boolean solver of CHIP to a glass box approach. Also, in (Codognet and Diaz, 1996a)
it was shown how the clp(FD/B) efficiency was on average an order of magnitude faster
than the CHIP Boolean solver. Moreover, this glass box approach was more efficient,
surprisingly, than some special-purpose Boolean solvers.

The clp(FD/B) was specialised exclusively for the Boolean domain in the system
clp(B) (Codognet and Diaz, 1994). This system introduces specific optimisations for
the Boolean domain and removes, from the clp(FD/B) system, data structures that
were only used in the FD and were useless for the Boolean domain. The resulting
system was a simple and compact Boolean solver, more efficient than the previous
system and based on the glass box approach of indexicals (see Section 2.4.1) but with
a specialised X in r constraint primitive for the Boolean domain.

Recently a generalisation of the Boolean constraints, called the pseudo-Boolean
constraints, is being studied. Pseudo-Boolean constraints are equations or inequalities
between multilinear integer polynomials in 0-1 variables (i.e., variables where 0 denotes
false and 1 denotes true) (Barth, 1996; Bockmayr, 1994). Pseudo-Boolean constraints
are thus a restricted form of the FD constraints.

EXAMPLE 2.11 To model the interaction of n objects ob1, . . . , obn, each of which
can be chosen or not, it is natural to use a quadratic pseudo-Boolean function of the

38 CHAPTER 2. Basics of Constraint Logic Programming

form

n∑
i=1

n∑
j=1

aijXiXj .

where aij measures the interaction between objects obi and obj and the 0-1 decision
variables Xi indicates whether obi is chosen or not (Barth and Bockmayr, 1996). As
most of the existing solvers cannot deal with non-linear pseudo-Boolean constraints,
the usual technique is to linearise them and then solve them in a linear 0-1 constraint
solver.

There have been several CLP languages developed for the pseudo-Boolean con-
straints. For instance, the CLP language clp(PB) allows to model and reason about
0-1 problems. It was introduced in (Bockmayr, 1993) and a prototype implementation
is available in (Barth, 1994). Given a set of 0-1 Boolean problems, the solver computes
an equivalent set of simplifier clauses that are provided to a 0-1 constraint solver for
their solving. Pseudo-Boolean constraints correspond to non-linear 0-1 programming
problems (Hansen et al., 1993) when they are used on operation research.

2.6.5 Interval Constraint Arithmetic: CLP(Intervals)

The real domain is a continuous domain and algorithms to solve constraints defined
on the real domain are studied in an idealised setting. However, in practice, these
algorithms are accepted to be no longer valid since real numbers are approximated by
floating point numbers and this finite representation of real numbers in a computer
prevents them from accurately solving real constraints. This means that there will be
some approximation errors. In fact, the methods of conventional numerical computa-
tion involve floating point approximations to a finite set of real values, that is to say,
basically find approximate solutions (inside a error bound) to a set of constraints.

An alternative approach are the methods using interval arithmetic that compute
a solution as a union of intervals such that the mathematical solution relies in one of
them. Only values not belonging to the solution are removed and thus it is possible
to guarantee that the real values of the solution are in the interval returned as the
solution. For interval methods one has to find the right abstraction of floating point
numbers in terms of real numbers.

The first publication about interval arithmetic is assigned to Moore (Moore, 1966).
Moore replaces any real constant by an interval containing it and extends real opera-
tions to intervals in such a way that the rounding error is bounded in each operation.
If the merit of interval arithmetic is attributed to Moore, the beginning of interval con-
straints can be associated to Waltz and his paper (Waltz, 1975) in which constraints
were propagated to reduce sets of possible values. The next development of constraint
interval arithmetic was its application to reals (Davis, 1987).

The merit of extending the LP paradigm to include interval arithmetic is due to
(Cleary, 1987) that extends the typical approach of interval arithmetic in the functional
setting to the relational theory. Independently (Hyvönen, 1989) also discovered interval

2.6. CLP Instances: Dependent-Domain Reasoning 39

constraints and the application of interval arithmetic to constraint solving. The ba-
sic interval constraint methods are then enhanced by incorporating Newton’s method
(Benhamou et al., 1994; Van Hentenryck et al., 1997). More recently Hickey (Hickey
et al., 1999; Hickey, 2000) continue the advance in the search of a unified framework
for interval constraints nd interval arithmetic.

In general, the basic idea under the CLP(Interval) schema is to evaluate every
numerical expression by using intervals instead of floating point numbers with the aim
of not loosing numerical accuracy. CLP(Interval) has been shown to be a very powerful
scheme for solving non-linear constraints.

From the implementation point of view, the CLP(Interval) approach is to build
into the language itself a general interval-based constraint solver that guarantees the
completeness of the solutions (i.e., all solutions in the input are retained). CHIP (Lee
and van Emden, 1993; Van Hentenryck, 1988) was the pioneering system to show that
the idea of the interval constraints was widely applicable. Afterwards, the system BNR-
Prolog (Older and Vellino, 1993) was built mixing the ideas of Davis and Cleary on top
of a logical language (i.e., Prolog). In general, it is possible to say that, historically,
there have been two approaches to implement interval arithmetic constraint solvers.
One approach, the hull consistency approach, is represented by the system CLP(BNR)
(CLP(BNR), 1988; Older and Benhamou, 1993; Older and Vellino, 1993; Benhamou
and Older, 1997) and the other approach, the box consistency approach, is represented
by the systems Newton (Benhamou et al., 1994; Van Hentenryck et al., 1988) and
Numerica (Van Hentenryck et al., 1997; Van Hentenryck, 1998).

• The Hull consistency approach.

This approach consists of translating complex arithmetic constraints in primitive
constraints and then performs a constraint contraction for each of the primitive
constraints. The mechanism of propagation is as usual, that is, constraints shared
variables so that contraction usually has to be performed multiple times on any
given constraint: every time another constraint causes the interval for a variable
to contract, all constraints containing that variable have to have their contraction
operators applied again. Often, the termination of this constraint propagation
is guaranteed in the fact that reals are floating point numbers and, thus, there
will be a finite number of contractions. That is, a finite number of contractions
suffices to reach a state where all constraints yield a null contraction. A constraint
propagation algorithm terminates when this case is found.

The main drawback of this approach is that the decomposition of complex vari-
ables introduces new variables that lead to unnecessary approximations.

CLP(BNR) is a Prolog-based language that incorporates an arc consistency algo-
rithm on interval-bounded constraints which handles general algebraic constraints
over continuous, integer and Boolean variables. This allows programmers to ex-
press systems of non-linear equations on real intervals that can be arbitrarily
mixed with integer and Boolean constraint equations. In CLP(BNR) each con-
straint is decomposed into primitive constraints, and then a general constraint

40 CHAPTER 2. Basics of Constraint Logic Programming

solving engine is invoked to repeatedly contract each primitive constraint until
some termination condition is satisfied.

• The Box consistency approach.

Systems based on this approach implement the constraint-solving algorithm as
a combination of traditional numerical methods such as interval and local meth-
ods and constraint satisfaction techniques. Box consistency allows to efficiently
process complex constraints without decomposition.

Two main exponents of this approach are the systems Newton and Numerica that
solve, using interval reasoning, systems of non-linear equations and inequalities
as well as problems of optimisation.

Recently there have appeared some languages that combine both approaches such
as DecLIC (Goualard et al., 1999).

The interested reader is referred to standard references in interval constraints such
as (Older, 1989; Benhamou and Older, 1997; Van Emdem, 1997). For an overview of
the applications of the interval arithmetic in a relational setting see (Majumdar, 1997).
Another standard references are (Alefeld and Herzberger, 1983) and (Hansen, 1992).

Non-Usual Interval Constraints in CLP

Traditionally, interval constraints have been applied to the real domain by approxima-
tion methods in which a real number is usually approximated by an interval containing
floating point numbers. The floating point number domain is effectively finite so that
constraint propagation is executed in a finite domain (which guarantees some proper-
ties as termination). However, as already shown in Sections 2.4.1 and 2.6.3, interval
constraints have also been used in other domains such as the finite domain and the set
domain.

2.6.6 CLP(Trees)

Trees allow the modelling of problems that other domains cannot model. They can
be traversed and processed in different ways and they show a high potentiality in the
constraint solving. Moreover, on order-trees, they can also be kept ordered so that
search is relatively cheap. For these reasons, CLP has been also applied to the Prolog-
like tree domain.

The Herbrand domain is the only domain for LP and thus it is present in all the CLP
languages. In fact, usual LP is often regarded as CLP over the Herbrand domain, where
Herbrand terms are a representation of finite trees and the constraints are restricted by
the equality. Some existing systems can deal specially with constraints over Herbrand’s
universe. For instance the system HAL (Demoen et al., 1999a; Demoen et al., 1999b)
is a new constraint logic programming language specifically designed to support the
construction of and experimentation with constraint solvers. HAL programs provide
tests for equality and construction and deconstruction of ground terms.

2.7. Specialised Constraints 41

The constraint system FT (Aı̈t-kaci et al., 1994) also provides a universal data
structure based on trees. It presents an alternative to the Herbrand constraints over
constructor trees. The constructors in FT are more general than those of Herbrand,
and the constraints of FT are of finer grain and of different expressiveness. The essential
novelty of FT is provided by functional attributes called features which allow repre-
senting data as extensible records, a more flexible way than that offered by Herbrand’s
fixed arity constructors.

LIFE (Aı̈t-kaci and Podelski, 1993) is an experimental language proposing to inte-
grate logic programming, functional programming and object-oriented programming.
This language enables the computation over an order-sorted domain of feature trees
by allowing the equality (i.e., unification) and entailment (i.e., matching) constraints
over order-sorted feature terms. It is the precursor of other languages such as LOGIN
(Aı̈t-kaci and Nasr, 1986) and Le Fun (Aı̈t-kaci et al., 1987).

A number of modern LP languages such as Prolog III (Colmerauer, 1990) and
SICStus (Sicstus manual, 1994) offer a computation domain based on rational trees.
The importance of this domain is demonstrated by the fact that Prolog III and SICStus
use rational tree unification as the default solver (King, 2000). A rational tree is a tree
with a possibly infinite number of nodes but where the number of branches emanating
from each node is finite. The use of such trees allows faster unification (due to the
omission of the occurs-check) and an increase of the declarativity. Unfortunately the
use of rational trees also involves a surprising number of problems (Bagnara et al.,
2001). For instance, many of the built-in and library predicates are ill-defined for such
trees and need to be supplemented by run-time checks whose cost may be significant.
Also observe that the domain of finite trees is the intended computation domain of most
LP languages and thus some widely-used program manipulation techniques assume this
computation domain. This means that a number of these techniques either are not
applicable to infinite trees or have not been proved to be correct in the rational tree
domain.

2.7 Specialised Constraints

Specialised constraints are a kind of constraints that are built into the system to provide
specific advantages. In general, they are black box constraints since the user knows
what these constraints do and how to use them, but the user is far from knowing the
details about how these constraints work operationally.

Specialised constraints can be grouped into two classes: the first class contains those
constraints whose aim is clearly to add expressiveness to the formulation of a CSP. The
constraints into this class can be used in different settings and their formulation depends
on the ability of the programmer. Into this class we find the reified constraints and the
meta-constraints.

Reified Constraints (RCs) reflect the validity of a constraint into a Boolean vari-
able. Constraints in reified form allow their fulfillment to be reflected back into an FD

42 CHAPTER 2. Basics of Constraint Logic Programming

variable. In general, a RC is an expression of the form

b ≡ c

where b is constrained to true as soon as c is known to be true and to false as soon as c
is known to be false. On the other hand, constraining b to true imposes the constraint
c, and constraining b to false imposes its negation.

EXAMPLE 2.12 The constraint

x ≡ (y + z > v)

constrains x to true as soon as the inequation is known to be true and to false as
soon as the inequation is known to be false. On the other hand, constraining x to true
imposes the inequation, and constraining x to false imposes its negation.

RCs are both useful and difficult to implement and normally provided as black
boxes. As written in (Marriot and Stuckey, 1998, Page 284): “RCs are somewhat
complex to implement since they require the solver to determine whether or not a
constraint is implied by the current constraint store and whether or not its negation is
implied. However because of the usefulness of reified constraints, some finite domain
constraints solvers provide them”.

Meta-Constraints provide a means of expressing constraints over constraints. A
form to do this is by using logical connectives that have to be applied directly to a
constraint or to an expression using these logical connectives.

EXAMPLE 2.13 The following logical formula

(x < 4) ≡ (y < 3) ∧ (z ≥ 8) ∨ (w ≤ 3) ∧ (w = y)

constrains x to be smaller than 4 when y < 3 and z ≥ 8 or when w ≤ 3 and w = y.
Also, as soon as x is known to be smaller than 4, the disjunction of constraints in the
right side of the formula is imposed.

The second class of complex constraints contains those constraints that are imple-
mented for specific applications with the objective of leading to a better performance.
In general these constraints allow a more concise modelling of a problem although their
main drawback is that their use is usually restricted to the setting of the application
for which they were implemented. These constraints give better propagation than that
provided by an equivalent conjunction of simpler primitive constraints and lead to a
more efficient program since they wrap very specialised algorithms for propagation.
For instance, some constraints falling into this class are the element constraint, the
cardinality constraint, the all different constraint and the cumulative constraint.

• The cardinality operator (Van Hentenryck and Deville, 1991) is used to express
any Boolean combination of constraints.

2.8. Other CLP Languages 43

• The all different constraint (van Hoeve, 2001) states that all variables in this
constraint must be pairwise.

• The element constraint (Dincbas et al., 1988a) checks if an element belongs to a
list and allows to define constraints on the element, the list or even on the index
of the element in the list.

• The cumulative constraint (Aggoun and Beldiceanu, 1992) that is a specialised
and useful constraint to solve scheduling and placements problems.

Complex constraints are generally built into the language and, in general, the con-
sistency methods for these constraints are very complicated since they have into account
numerous possibilities for the interaction of constraints depending on the state of the
variables as for example which of them are instantiated.

2.8 Other CLP Languages

In this section we cite some languages that have contributed in certain form to the
development of CLP and that were not cited previously. Of course the list is not
exhaustive.

CAL (Aiba et al., 1988; Aiba and Sakai, 1989) computes over real numbers and over
a Boolean algebra with symbolic values. In the first domain, constraints are equations
between polynomials and in the second one the equality between Boolean formulas
expresses equivalence in the algebra. CAL is able to handle non-linear polynomial
equations on complex numbers by employing the Buchberger algorithm (Buchberger,
1987b; Buchberger, 1987a) as one of its main solvers. This algorithm calculates a
canonical form of systems of equations called Gröbner bases and has been studied,
during years in computer algebra, and applied to different fields (e.g., handling robot
kinetics or computational geometry).

Gröbner bases have also been applied in other languages to solve non-linear con-
straints such as CoSAc (Monfroy et al., 1995) that is a CLP system for solving non-
linear constraints based on cooperating solvers. Its non-linear constraint solver is based
on GB (Faugere, 1994), the fastest known system for Gröbner bases. It is constructed
as a architecture of clients/servers in which each server is specialised for a particular
computation.

AKL (Carlson et al., 1994b) (previously Andorra Kernel Language (Janson and
Haridi, 1991), now Agent Kernel Language) is a concurrent constraint programming
language that supports both Prolog-style programming and committed choice program-
ming. Its control of don’t-know non-determinism is based on the Andorra model, which
has been generalised to also deal with non-determinism encapsulated in guards in a
concurrent setting.

TOY (Caballero et al., 1997) is a system for functional logic programming sup-
porting lazy narrowing, higher order (HO) features (including HO logic variables),
disequality constraints (for constructed data terms) and non-deterministic functions.

44 CHAPTER 2. Basics of Constraint Logic Programming

TOY supports term (strict) equality and disequality constraint solving. Toy also allows
the ability to handle linear constraints over real numbers although this is done via the
SICStus system.

Recently, (Van Hentenryck et al., 1999) describes the modeling language called
OPL (Optimization Programming Language) to combine high level algebraic and set
notations from modeling languages with a rich constraint language and the possibility
to specify procedures and search strategies. This language is described in detail in
(Van Hentenryck, 1999).

2.9 Constraints on Other Paradigms

The real success of CP languages motivated a movement of the constraint paradigm
to another paradigms. The early concepts of CLP were then adjusted to better serve
in different areas of applications. In this section we cite some areas, but of course, the
list is not exhaustive.

Concurrent constraint programming (CCP) is based on the asynchronous com-
munication between “agents” by using constraint entailment. A user-defined constraint
is viewed as a process and a state is regarded as a network of processes linked through
shared variables by means of the store. Processes communicate by adding constraints
to the store and synchronise by waiting for the store to enable a delay condition.

In (Maher, 1987), concurrent logic languages (Shapiro, 1989) were generalised to the
constraint setting by recognising that the synchronisation operator used in concurrent
logic languages can be thought as constraint entailment. Then, in 1989, (Saraswat,
1989) described an elegant theoretical model for concurrent constraint languages and
provided the term of “concurrent constraint programming”. Since then there has been
considerable progress on different aspects of CCP (Saraswat, 1993; Saraswat, 1992).

In particular, concurrent constraint logic (CCL) languages allows the interaction
of processes which may interact one with each other. The communication and syn-
chronisation are done by asserting and testing of constraints. The most important
CCL languages are mainly based on two delay conditions called ask and tell . These
conditions were defined in (Saraswat, 1988; Saraswat, 1989). An ask delay condition is
of the form ask(C) and is enabled when the constraint store implies the constraint C.
For instance emptylist(Y) is equivalent to ask(Y = []). Moreover, ask conditions can
involve local variables by means of existential quantifiers. For example, the condition
nonemptylist(Y) is equivalent to ask(∃X∃L.Y = [X | L]) since this is enabled wherever
there exists values for X and L such that the constraint store implies Y = [X | L].
Another delay condition is the tell condition that has the form tell(C) and is enabled
if constraint C is consistent with the constraint store.

The major difference between CCP and CLP languages is in how multiple rules
defining the same predicate are handled. In CLP languages, each rule is tried until an
answer is found i.e., they employed don’t know determinism. In CCP languages the
evaluation mechanism delays choosing which rule to use until at least one of the guards

2.9. Constraints on Other Paradigms 45

is enabled (a guard consists typically of a tell and ask condition). If there are more
than one rule to choose then one is arbitrarily chosen. Independent of what happens
in the future, backtracking is never done so that is responsibility of the programmer to
provide each rule with a guard that ensures once it is enabled. Thus CCP languages
provide don’t care non-determinism (i.e., if more that one guard is enabled we do not
care which of the corresponding rules are used since any will be correct).

(de Boer and Palamidessi, 1994) provides a complete survey that shows the moti-
vations to extend the concurrent setting to the (C)LP paradigm and analyses the CCP
paradigm and the main approaches to the semantics foundations.

Constraint functional programming raised from the integration of constraints in
the functional paradigm. One way to do it is to embed the CLP approach into the
functional setting. This is natural since the functional paradigm is not too far from
the logic paradigm since both are declarative in the sense that the programmer just
specifies what to do but not how to do it. From several years ago, there have been a
growing interest in the combination of these paradigms (FLOPS, 2001; JFLP, 2000)
and this has been an active area of research. One way to get this integration is by
viewing constraints as functions embedded in a functional language and returning a
list of answers. The cardinality of this list can be non-finite so that a lazy functional
language (Hughes, 1989) is required as the underlying language.

The dual approach means to embed functions into a CLP language. This seems
an ideal situation since n-ary functions can be viewed as predicates with an arity
of n+1 where an extra argument is added to get the result of the evaluation of the
function. However, several problems remain with respect to the evaluation mechanism
of constraint solving over user-defined functions.

Another approach consists of extending the lambda calculus (Barendregt, 1984;
Barendregt, 1990) (i.e., the rewrite system providing the evaluation mechanism for
functional languages) by including a global constraint store. Constraints are sent to
this store by function application. The problem now is how this store can have an
active role in the program evaluation. (Crossley et al., 1996) described a method
called constrained lambda calculus, in which only definite values can be communicated
from the store. The store is used to determine the value of the variables so that if the
value of a variable is determined then it replaces the variable by its value throughout
the lambda expression. The problem is that the store plays a very passive role in this
process (specially with respect to the search since it cannot guide it).

Recently a complementary approach has born from integrating constraints into the
so called functional logic languages that are programming languages that combines the
characteristics of the logical and functional paradigms. So far, real constraints have
been integrated, with major or minor success, in these languages (Lux, 2001; Arenas
et al., 1996). An active research is currently done in the integration of other constraints
in this kind of languages (Arenas et al., 1994; Arenas et al., 1999; Cazorla, 2001).

46 CHAPTER 2. Basics of Constraint Logic Programming

Imperative constraint programming embeds constraints into the imperative set-
ting. In particular, some object oriented languages allows the programmer to specify
constraints and thus to formulate, in a concise way, the relation they want among sev-
eral variables. This integration of constraints into the imperative setting guarantees
the efficiency of the program (Freeman-Benson and Borning, 1992). Also, other object
oriented languages provide incremental constraint satisfaction similar to that in the
CLP languages. This means that constraints are embedded into a host imperative
language by means of specific built-in solvers (Ilog, 1995). Instead of the existence of
imperative languages that provide constraint solving to the user, it remains yet a lot
of research to do in the integration of constraints with imperative languages.

Multiparadigm constraint programming means to combine CP with several
paradigms in one setting. This is the idea presented in (Smolka, 1995) and imple-
mented in the language Oz (i.e., Mozart). This language combines the characteristics
of CLP languages, functional languages and concurrent languages. Search is imple-
mented quite different from the CLP languages since search is programmable. Instead
of the typical LP approach of left-right first-depth, search strategies in Oz are en-
coded in search procedures to explore the search space. Moreover, computation can
be suspended in the choices until a search procedure is explicitly provided. Oz gener-
alises the CLP and CCP paradigms and provide a very flexible approach to constraint
programming.

2.10 Concluding Remarks

This chapter provides a general overview of the state of the art in current C(L)P
systems. The emphasis has been on the different solving mechanisms for each instance
of the CLP scheme. We have shown how the mechanisms may be divided into two main
categories: transparent (the glass box approach) and opaque (the black box approach).
Both categories have been discussed and their main advantages and disadvantages
presented.

We have tried to emphasize the multi-disciplinary character of the CP paradigm
that covers aspects as diverse fields in mathematics, computer science, AI, programming
languages, symbolic computing and computational logic among others.

In the rest of this thesis, we continue to present the state of the art in CLP by
discussing related work with specific issues described in this document (e.g., issues such
as frameworks for generic constraint propagation, techniques for constraint branching,
mechanisms of solver cooperation and different techniques for the implementation of
solvers).

Part II

Comparative Framework

47

Chapter 3

A Comparison of Glass Box
Systems

Your true value depends entirely on what you are compared with.

Bob Wells

3.1 Introduction and Motivations

Evidence of the success of the CLP paradigm (Csontó and Paralič, 1997; Jaffar and
Lassez, 1987) can be found in the increasing number of CLP systems now being used
for many real-life applications (PAPPACT’98, 1998). As declared in Part I, there are
two main reasons for this success: first, CLP extends the logic programming paradigm
enabling more declarative and readable solutions and, secondly, it supports the prop-
agation of constraints for specific domains, providing an efficient implementation for
the computationally expensive procedures. However, CLP systems differ significantly
both in how solutions may be expressed and the efficiency of their execution. It is
important that both these factors are taken into account when choosing the best CLP
system for a particular application. In fact, a wrong choice for an application may
be disastrous, not only relative to its efficient performance, but also with respect to
the code clarity of the solution, which is important for future modifications. In spite
of this, there appears to be no impartial set of guidelines for choosing an appropriate
constraint system for solving a specific constraint satisfaction problem.

Of the domains for CLP, the finite domain (FD) (Van Hentenryck, 1989) is one of
the best studied since it is a suitable framework for solving discrete constraint satis-
faction problems. FD is particularly useful for modeling problems such as scheduling,
planning, packing, timetabling and as a consequence most of the CLP systems provide
substantial FD libraries. Also, as already pointed out in Chapter 1, we are interested
in the glass box approach. (In Section 2.3.6 we show the advantages of this approach
with respect to the classical black box approach.) We find that most of the existing

49

50 CHAPTER 3. A Comparison of Glass Box Systems

glass box systems are defined for the Finite Domain. For this reason, we consider, in
our comparison of systems only the FD and the Boolean domain (which is sometimes
regarded as an instance of the FD -see Section 2.6.4). The main aim of our comparison
is to the choose an adequate glass box approach to implement our idea of generic solver.
The chosen approach has to allow certain flexibility in the formulation of problems as
well as to show an acceptable performance of the systems over which is implemented.

Our study also provides an impartial comparison of a number of FD solvers for
CLP. We contrast eight constraint systems; ECLiPSe (Aggoun et al., 1995), Oz
(Smolka, 1995), Ilog SOLVER (Ilog, 1995), clp(FD) (Codognet and Diaz, 1996a),
CHR (Frühwirth, 1998), SICStus (Sicstus manual, 1994), IF/Prolog (If/Prolog, 1994)
and B-Prolog (Zhou, 1997). We chose these particular systems since they cover the
main kinds of FD solvers and are all very popular within the CLP community. Because
of our limited resources, other interesting CLP systems such as CHIP (Van Hentenryck,
1988) and Prolog IV (N’Dong, 1997) are not included in this comparison.

Although the constraint systems have been tested on the solving of a number of
traditional benchmarks, most comparative work has been done by the language imple-
menters themselves (Carlsson et al., 1997; Codognet and Diaz, 1994; Codognet and
Diaz, 1996a; Cras, 1993; Müller and Würtz, 1996; Puget and Leconte, 1995; Sidebot-
tom, 1993). Furthermore, these benchmarks have been used in the development as
well as the assessment of the languages so that such tests are biased. Here we are not
a designer of any of the CLP languages studied here so that the comparison is more
impartial than previous ones.

We have chosen a particular kind of logical puzzle, called Self-Referential Quiz
(SRQ) as the original benchmark for the comparison. This is one of a new class of puz-
zles first described in (Henz, 1996) for demonstrating the meta-reasoning capabilities
of the Oz FD system. Because of the self referential nature of the problem, it is partic-
ularly suitable for examining the ease with which the different languages can be used
for applications requiring meta-reasoning. Thus, here we use the SRQ to illustrate how
each of the languages support reification in the Boolean domain and meta-constraints
in the FD. Also, we use the SRQ for the efficiency comparisons since this is a non-
standard benchmark not used in the development of any of the systems (apart from
Oz). Hence these particular comparisons are essentially fair and unaffected by any bias
the implementation may have to perform well on the standard benchmarks.

As it was shown in Section 2.2.3 and also is discussed in Section 3.5.1, constraint
solving can be viewed as a combination of two processes, constraint propagation and
labeling. Since constraint propagation is the main reason for choosing the CLP tech-
nology, we concentrate on comparing the constraint propagation methods. However,
to ensure fairness in the efficiency testing, we consider two distinct labelings, naive and
first fail.

It is well known that a single benchmark is not adequate for evaluating a pro-
gramming system. Moreover, SRQs can be solved quickly and, indeed, are not easily
scalable. Thus, to make the comparison fair and thus more objective, we extended our
study to other problems (two of which are scalable) comparing mainly the efficiency
of the solutions. We chose some well-known problems and used, wherever available,

3.2. The Constraint Systems Tested 51

solutions provided with the systems or, if not, directly from the implementers.

3.1.1 Chapter Structure

The rest of the chapter is organised as follows: Section 3.2 describes the essential
features of the FD constraint systems for the eight languages considered in this chapter.
In Section 3.3, the SRQ puzzle is defined and two different solutions to it are described.
Section 3.4 shows, in a tutorial way, how each language can be used to express reified
constraints and meta-constraints. Extracts from the SRQ formulations in each of the
languages are used to highlight the main differences between them. In Section 3.5,
a comprehensive efficiency comparison is reported and the results are discussed. The
chapter concludes with a discussion about related work, a summary of the main results
and a listing of the major contributions of the chapter.

3.2 The Constraint Systems Tested

In this section, we describe briefly the constraint systems considered in the chapter. All
of them are glass box systems but we classify them as glass box or black box depending
on the level of knowledge affecting to the user. So, first we explain what we mean by
these classification. Within each classification, we then describe the constraint systems
compared. We conclude the section with a short note discussing the ease with which
the languages could be learned.

3.2.1 Classification of the Systems

In Section 2.3.6, the glass box and black box approaches were discussed and it was
shown that the distinction between a glass or a black box language is not always clear.
All the systems studied in this chapter are glass box systems in a strict definition
since all of them allow the user to define new constraints. However, some of them
require a detailed knowledge of their implementation in order to specify the propagation
mechanism of the new constraints. For this reason, in the following, we classify these
systems as black box systems.

3.2.2 Glass Box Languages

In Section 2.4, we showed that there are two main different kinds of glass box languages.
These differ in the way that constraint propagation may be defined: either using a
single form of relational construct called an indexical (Codognet and Diaz, 1996b) or
by means of special Constraint Handling Rules (CHRs) (Frühwirth, 1998).

Indexical languages

The indexical approach was introduced and explained in Section 2.4.1. The three
languages examined here that support indexicals are clp(FD) 2.21, SICStus 3#5 and
IF/Prolog 5.0.

52 CHAPTER 3. A Comparison of Glass Box Systems

A Language with Constraint Handling Rules

CHRs were introduced and explained in Section 2.4.2. For a CHR language, we use
the library that is built on top of ECLiPSe 3.5.2, amalgamating the CHRs with the
underlying language.

3.2.3 Black Box Languages.

The four black box languages examined here were described in Section 2.5 and are:

• Oz 2.0.

• ECLiPSe 3.5.2.

• Ilog SOLVER 3.1

• B-Prolog 2.1

3.2.4 Ease of Learning

We now discuss the ease with which we could learn the different CLP languages based
on our experience of writing solutions to the SRQ problem described in Section 3.3.
The ease which a new language may be learned depends on many factors, including
the learners background, availability of helpful documentation and personal tuition.
From our perspective (used to both Prolog and functional programming languages),
we found clp(FD), SICStus and IF/Prolog the simplest to master since they are based
on one main constraint and this was in the form of a (declarative) Prolog predicate. We
found the black box constraints in ECLiPSe and B-Prolog straightforward to use since
they were built on Prolog and provided useful high level tools needed for the problem.
Oz had an unfair advantage in that we already had an Oz implementation of the SRQ
problem. However, compared to clp(FD), SICStus and IF/Prolog, we found that more
needed to be learnt before the language could be used effectively. Ilog SOLVER requires
a working knowledge of C++ but, since it does not impose any syntactic extension of
C++, no new language syntax needs to be learnt. For CHR, not only did we have
to learn a new language syntax but also we had to understand the novel constraint
propagation mechanism defined by this syntax so that this system took longest for us
to master.

3.3 The Self Referential Quiz (SRQ) and Two Solutions

It is well known that the choice of representation can have a dramatic effect on the
efficiency of the solution of a problem. Therefore in this section, we describe two alter-
native formulations for the SRQ puzzle defined in Figure 3.1. The first uses the Boolean
domain and represents each option for each question directly as a Boolean variable,
requiring fifty such variables. The second requires the finite domain {1, 2, 3, 4, 5} and
uses an approach similar to the usual representation for the n-queens problem. This

3.3. The Self Referential Quiz (SRQ) and Two Solutions 53

representation requires just ten variables to represent the solution. These two for-
mulations are useful, not only to demonstrate the differences in performance between
the Boolean and FD solutions for the different systems but also illustrate two aspects
of the meta-reasoning capabilities of the languages: reification and meta-constraints.
Note that this is the reason that we do not consider other, possibly more efficient,
solutions to the problem1. These two aspects are discussed in more detail in the next
subsections.

1. The first question whose answer is A is:
(A) 4 (B) 3 (C) 2 (D) 1 (E) none of the above

2. The only two consecutive questions with identical answers are:
(A) 3 and 4 (B) 4 and 5 (C) 5 and 6 (D) 6 and 7 (E) 7 and 8

3. The next question with answer A is:
(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

4. The first even numbered question with answer B is:
(A) 2 (B) 4 (C) 6 (D) 8 (E) 10

5. The only odd numbered question with answer C is:
(A) 1 (B) 3 (C) 5 (D) 7 (E) 9

6. A question with answer D:
(A) comes before this one, but not after this one (B) comes after
this one, but not before this one (C) comes before and after this one
(D) does not occur at all (E) none of the above

7. The last question whose answer is E is:
(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

8. The number of questions whose answers are consonants is:
(A) 7 (B) 6 (C) 5 (D) 4 (E) 3

9. The number of questions whose answers are vowels is:
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

10.The answer to this question is:
(A) A (B) B (C) C (D) D (E) E

Figure 3.1: The SRQ puzzle

3.3.1 Why Self Referential Puzzles and Why These Solutions?

Although there are other kinds of applications of constraint programming over FD,
SRQs are particularly appropriate since they incorporate a number of aspects that
challenge both the expressiveness and efficiency of the solvers. Our purpose is to
evaluate and compare a very wide set of FD and Boolean propagators incorporated
in each of the languages studied with the aim of choosing the more adequate to our
purposes of generating a generic framework. The two SRQ solutions shown in this
chapter require, in particular, a wide and significant set of different propagators over

1Such as that suggested by Mark Wallace (personal communication), available in (Fernández, 1998).

54 CHAPTER 3. A Comparison of Glass Box Systems

A1 ≡ A4 ∧ ¬A1 ∧ ¬A2 ∧ ¬A3, A5 ≡ C1 ∧ ¬C3 ∧ ¬C5 ∧ ¬C7 ∧ ¬C9,
B1 ≡ A3 ∧ ¬A1 ∧ ¬A2, B5 ≡ ¬C1 ∧ C3 ∧ ¬C5 ∧ ¬C7 ∧ ¬C9,
C1 ≡ A2 ∧ ¬A1, C5 ≡ ¬C1 ∧ ¬C3 ∧ C5 ∧ ¬C7 ∧ ¬C9,
D1 ≡ A1, D5 ≡ ¬C1 ∧ ¬C3 ∧ ¬C5 ∧ C7 ∧ ¬C9,
E1 ≡ ¬A1 ∧ ¬A2 ∧ ¬A3 ∧ ¬A4, E5 ≡ ¬C1 ∧ ¬C3 ∧ ¬C5 ∧ ¬C7 ∧ C9,

0 ≡ (A1 ≡ A2) ∧ (B1 ≡ B2) ∧ (C1 ≡ C2) ∧ (D1 ≡ D2) ∧ (E1 ≡ E2), A6 ≡ BeforeD ∧ ¬AfterD
0 ≡ (A2 ≡ A3) ∧ (B2 ≡ B3) ∧ (C2 ≡ C3) ∧ (D2 ≡ D3) ∧ (E2 ≡ E3), B6 ≡ ¬BeforeD ∧AfterD
A2 ≡ (A3 ≡ A4) ∧ (B3 ≡ B4) ∧ (C3 ≡ C4) ∧ (D3 ≡ D4) ∧ (E3 ≡ E4), C6 ≡ BeforeD ∧AfterD
B2 ≡ (A4 ≡ A5) ∧ (B4 ≡ B5) ∧ (C4 ≡ C5) ∧ (D4 ≡ D5) ∧ (E4 ≡ E5), D6 ≡

∑
i∈{1...10}Di = 0,

C2 ≡ (A5 ≡ A6) ∧ (B5 ≡ B6) ∧ (C5 ≡ C6) ∧ (D5 ≡ D6) ∧ (E5 ≡ E6), E6 ≡ D6

D2 ≡ (A6 ≡ A7) ∧ (B6 ≡ B7) ∧ (C6 ≡ C7) ∧ (D6 ≡ D7) ∧ (E6 ≡ E7),
E2 ≡ (A7 ≡ A8) ∧ (B7 ≡ B8) ∧ (C7 ≡ C8) ∧ (D7 ≡ D8) ∧ (E7 ≡ E8), A7 ≡ E5 ∧ ¬E6 ∧ ¬E7 ∧ ¬E8 ∧ ¬E9 ∧ ¬E10,
0 ≡ (A8 ≡ A9) ∧ (B8 ≡ B9) ∧ (C8 ≡ C9) ∧ (D8 ≡ D9) ∧ (E8 ≡ E9), B7 ≡ E6 ∧ ¬E7 ∧ ¬E8 ∧ ¬E9 ∧ ¬E10,
0 ≡ (A9 ≡ A10) ∧ (B9 ≡ B10) ∧ (C9 ≡ C10) ∧ (D9 ≡ D10) ∧ (E9 ≡ E10), C7 ≡ E7 ∧ ¬E8 ∧ ¬E9 ∧ ¬E10,

D7 ≡ E8 ∧ ¬E9 ∧ ¬E10,
A3 ≡ A4, E7 ≡ E9 ∧ ¬E10,
B3 ≡ A5 ∧ ¬A4,
C3 ≡ A6 ∧ ¬A4 ∧ ¬A5, A8 ≡

∑
i∈{1...10}Bi + Ci +Di = 7,

D3 ≡ A7 ∧ ¬A4 ∧ ¬A5 ∧ ¬A6, B8 ≡
∑

i∈{1...10}Bi + Ci +Di = 6,

E3 ≡ A8 ∧ ¬A4 ∧ ¬A5 ∧ ¬A6 ∧ ¬A7, C8 ≡
∑

i∈{1...10}Bi + Ci +Di = 5,

D8 ≡
∑

i∈{1...10}Bi + Ci +Di = 4,

A4 ≡ B2, E8 ≡
∑

i∈{1...10}Bi + Ci +Di = 3,

B4 ≡ B4 ∧ ¬B2,
C4 ≡ B6 ∧ ¬B2 ∧ ¬B4, A9 ≡

∑
i∈{1...10} Ai + Ei = 0,

D4 ≡ B8 ∧ ¬B2 ∧ ¬B4 ∧ ¬B6, B9 ≡
∑

i∈{1...10} Ai + Ei = 1,

E4 ≡ B10 ∧ ¬B2 ∧ ¬B4 ∧ ¬B6 C9 ≡
∑

i∈{1...10} Ai + Ei = 2,

D9 ≡
∑

i∈{1...10} Ai + Ei = 3,

E9 ≡
∑

i∈{1...10} Ai + Ei = 4,

Figure 3.2: SRQ as a satisfiability problem using 50 variables

FD and Boolean variables, important for our comparative study.
All the SRQ solutions compared here are available over Internet (Fernández, 1998).

3.3.2 The Original Idea

The SRQ shown in Figure 3.2 shows the formulation of the SRQ as satisfiability prob-
lem. Each question has five options, and each of these options is expressed as a
logical formula using the connectives: conjunction, disjunction, negation and equiv-
alence. There are 50 boolean variables li (i ∈ {1 . . . 10} and l ∈ {A,B,C,D,E})
where li has the value true if the answer to question i is l and false otherwise. Thus
we call this formulation the 50 variables formulation. Note than in Figure 3.2 only
9 of the questions have a formulation. Question 10 is redundant and does not con-
tribute to the solution. The additional variable BeforeD is defined to have the truth
value of D1 ∨ D2 ∨ D3 ∨ D4 ∨ D5, and AfterD is defined to have the truth value of
D7 ∨D8 ∨D9 ∨D10.

Only one alternative may be true for each question. Thus, we also have the con-
straints

Aj +Bj + Cj +Dj + Ej = 1 (j ∈ {1 . . . 10}) (3.1)

3.3. The Self Referential Quiz (SRQ) and Two Solutions 55

(Q1 = 1) ≡ (Q4 = 1) ∧
∧

i∈{1,2,3}(Qi 6= 1), (Q6 = 1) ≡ BeforeQ4 ∧ ¬AfterQ4,

(Q1 = 2) ≡ (Q3 = 1) ∧
∧

i∈{1,2}(Qi 6= 1), (Q6 = 2) ≡ ¬BeforeQ4 ∧AfterQ4,

(Q1 = 3) ≡ (Q2 = 1) ∧ (Q1 6= 1), (Q6 = 3) ≡ BeforeQ4 ∧AfterQ4,

(Q1 = 4) ≡ (Q1 = 1), (∗) (Q6 = 4) ≡
∧

i∈{1...10}(Qi 6= 4),

(Q1 = 5) ≡
∧

i∈{1,2,3,4}(Qi 6= 1), (Q6 = 5) ≡ (Q6 = 4), (∗)

(Q2 = 1) ≡ (Q3 = Q4), (Q7 = 1) ≡ (Q5 = 5) ∧
∧

i∈{6...10}(Qi 6= 5),

(Q2 = 2) ≡ (Q4 = Q5), (Q7 = 2) ≡ (Q6 = 5) ∧
∧

i∈{7...10}(Qi 6= 5),

(Q2 = 3) ≡ (Q5 = Q6), (Q7 = 3) ≡ (Q7 = 5) ∧
∧

i∈{8...10}(Qi 6= 5), (∗)

(Q2 = 4) ≡ (Q6 = Q7), (Q7 = 4) ≡ (Q8 = 5) ∧
∧

i∈{9...10}(Qi 6= 5),

(Q2 = 5) ≡ (Q7 = Q8), (Q7 = 5) ≡ (Q9 = 5) ∧ (Q10 6= 5),

(Q3 = 1) ≡ (Q4 = 1), (Q8 = 1) ≡
∑

i∈{1...10}BCDi = 7,

(Q3 = 2) ≡ (Q5 = 1) ∧ (Q4 6= 1), (Q8 = 2) ≡
∑

i∈{1...10}BCDi = 6,

(Q3 = 3) ≡ (Q6 = 1) ∧
∧

i∈{4,5}(Qi 6= 1), (Q8 = 3) ≡
∑

i∈{1...10}BCDi = 5,

(Q3 = 4) ≡ (Q7 = 1) ∧
∧

i∈{4,5,6}(Qi 6= 1), (Q8 = 4) ≡
∑

i∈{1...10}BCDi = 4,

(Q3 = 5) ≡ (Q8 = 1) ∧
∧

i∈{4,5,6,7}(Qi 6= 1), (Q8 = 5) ≡
∑

i∈{1...10}BCDi = 3,

(Q4 = 1) ≡ (Q2 = 2), (Q9 = 1) ≡
∑

i∈{1...10} AEi = 0,

(Q4 = 2) ≡ (Q4 = 2) ∧ (Q2 6= 2), (Q9 = 2) ≡
∑

i∈{1...10} AEi = 1,

(Q4 = 3) ≡ (Q6 = 2) ∧
∧

i∈{2,4}(Qi 6= 2), (Q9 = 3) ≡
∑

i∈{1...10} AEi = 2,

(Q4 = 4) ≡ (Q8 = 2) ∧
∧

i∈{2,4,6}(Qi 6= 2), (Q9 = 4) ≡
∑

i∈{1...10} AEi = 3,

(Q4 = 5) ≡ (Q10 = 2) ∧
∧

i∈{2,4,6,8}(Qi 6= 2), (Q9 = 5) ≡
∑

i∈{1...10} AEi = 4,

(Q5 = 1) ≡ (Q1 = 3) ∧
∧

i∈{3,5,7,9}(Qi 6= 3), To enforce the ‘only’ part of question 2

(Q5 = 2) ≡ (Q3 = 3) ∧
∧

i∈{1,5,7,9}(Qi 6= 3), Q1 6= Q2, Q2 6= Q3

(Q5 = 3) ≡ (Q5 = 3) ∧
∧

i∈{1,3,7,9}(Qi 6= 3), Q8 6= Q9, Q9 6= Q10

(Q5 = 4) ≡ (Q7 = 3) ∧
∧

i∈{1,3,5,9}(Qi 6= 3),

(Q5 = 5) ≡ (Q9 = 3) ∧
∧

i∈{1,3,5,7}(Qi 6= 3),

Figure 3.3: SRQ as a satisfiability problem using 10 variables

The problem consists in finding an assignment of the variables Ai, Bi, Ci, Di and
Ei (i ∈ {1 . . . 10}) to truth values such that formula 3.1 and all the formulas in Fig-
ure 3.2 hold. This formulation was translated to an Oz program in (Henz, 1996). In
Figure 3.4 the table to the left shows the solution to SRQ by this approach.

3.3.3 An Alternative Approach

A more compact representation would have a single variable for each question and
assign the code for the correct answer for that question to the variable (in the style of the
usual representation for the n-queens problem). For that reason, a formulation for SRQ
involving only 10 FD variables, which we call the 10 variables formulation and shown
in Figure 3.3, is studied here. There is exactly one FD variable Qi (i ∈ {1, . . . , 10})
for each of the ten questions. Each Qi takes a value in the domain 1..5 such that the
answer to the i’th question is in the position Qi in the list [A,B,C,D,E]. The problem
comprises finding a value for each of the Qi such that all the formulas in Figure 3.3 hold.
The additional variable BCDi (in the formula for question 8) is 1 if Qi ∈ {2, 3, 4} and
0 otherwise and AEi (in the formula for question 9) is 1 if Qi ∈ {1, 5} and 0 otherwise

56 CHAPTER 3. A Comparison of Glass Box Systems

(i ∈ {1 . . . 10}). The variable BeforeQ4 has the truth value of
∨
i∈{1...5}(Qi = 4), and

AfterQ4 the truth value of
∨
i∈{7...10}(Qi = 4). The table to the right in Figure 3.4

shows the solution by this approach.

A B C D E Q
1 0 0 1 0 0 3
2 1 0 0 0 0 1
3 0 1 0 0 0 2
4 0 1 0 0 0 2
5 1 0 0 0 0 1
6 0 1 0 0 0 2
7 0 0 0 0 1 5
8 0 1 0 0 0 2
9 0 0 0 0 1 5
10 0 0 0 1 0 4

Figure 3.4: Solutions to SRQ using 50 and 10 variables

Note that the constraints marked with (*) in Figure 3.3 are obviously inconsistent
because they constrain an FD variable to have more than one value at the same time.
We observe that such constraints can lead to the removal of inconsistent values from
the domain of the variables before any choices are made (meaning a priori-pruning in
the search space).

The 10 variables formulation uses a form of meta-constraint, that is, a constraint
over constraints. This means that the constraint logical connectives are applied on
constraint expressions where a constraint expression is either an arithmetic constraint
(in the way of Qi = n) or a combination of constraint expressions using the logical FD
connectives.

3.4 Reification and Meta-constraints

In Section 2.7 we introduce a class of complex constraints that lead to provide higher
flexibility to the codification of CSPs. In this class we group the reified constraints and
meta-constraints. In this section we explain how these can be coded in each of the eight
languages involved in the comparison: clp(FD), ECLiPSe, Oz, SICStus, IF/Prolog, Ilog
SOLVER, B-Prolog and CHR. The first seven languages are analysed in Section 3.4.1.
The CHR language is considered separately in Section 3.4.2 since the CHR language is
so flexible that CHR code can be written in each of the styles of the other languages.
We use the SRQ puzzle to illustrate this.

It is important to note that we only consider one aspect of the expressiveness
(that concerned with reification and meta-constraints). More comprehensive discus-
sions concerning expressiveness should also consider, among others, aspects such as (a)
the ability to express search strategies, (b) the ease of development and integration of
constraint satisfaction techniques and (c) the ease of reusing previous work through

3.4. Reification and Meta-constraints 57

the development and exploitation of additional libraries.

3.4.1 Expressing Reification and Meta-constraints

We discuss here the means by which each language can be used to express meta-
constraints and reified constraints.

EXAMPLE 3.1 The logical formula associated to option A in question 6 in the 50
variables formulation for SRQ is expressed, using reified constraints, as follows:

A6 ≡ BfD ∧ ¬AfD (3.2)

where the variable BfD is defined to have the truth value of D1 ∨D2 ∨D3 ∨D4 ∨D5,
and AfD is defined to have the truth value of D7 ∨D8 ∨D9 ∨D10.

The logical formula associated to option A in question 6 in the 10 variables formu-
lation for SRQ is expressed, using meta-constraints, as follows:

(Q6 = 1) ≡ BfQ ∧ ¬AfQ , (3.3)

where the variable BfQ has the truth value of
∨
i∈{1...5}(Qi = 4), and AfQ the truth

value of
∨
i∈{7...10}(Qi = 4).

Formulas 3.2 and 3.3 are used to highlight the differences between the languages.

Oz, SICStus and IF/Prolog.
• These languages allow a reified constraint form and admit propagators with con-

catenation in the way of arg0 R1 arg1 R2 . . . Rn−1 argn−1 Rn argn, where each Ri is
a propagator and argi−1 and argi are arguments (i ∈ {1 . . . n}). For instance, the
disjunction propagator ∨ can be concatenated in the way of D1 ∨D2 ∨D3 ∨D4 ∨D5

where each Di (1 ≤ i ≤ 5) is a Boolean variable.
• Propagators can operate directly over Boolean variables (i.e. B1 ∨ B2 or ∼ B1

where B1 and B2 are Boolean variables and ∨ and ∼ represent the disjunction and
negation propagators respectively2) or over constraint expressions (i.e. (Q1 = n1) ∨
(Q2 = n2) where Q1 and Q2 are FD variables and the values n1 and n2 belong to their
domains).
• Meta-constraints can be combined with reified constraints as for instance in

B ≡ (Q1 = n1) ∧ (Q2 = n2) where B is a Boolean variable.

ECLiPSe and Ilog SOLVER.
• The propagators can be concatenated as in Oz, SICStus or IF/Prolog. The main

difference with these languages is that some propagators are limited to operate on
constraint expressions over FD variables and not directly on the variables themselves.
The direct application of the constraint propagators such as disjunction, conjunction

2The syntax of the propagator changes for each language.

58 CHAPTER 3. A Comparison of Glass Box Systems

and negation over the Boolean variables is not allowed. For instance, to express that the
negation of a Boolean variable B must be true we must write (B# = 0) or (B\# = 1)
in ECLiPSe (resp. (B == 0) or !(B == 1) in Ilog).
• ECLiPSe does not allow the use of reified constraints.
• Ilog SOLVER allows the reification for the Boolean variables.

clp(FD) and B-Prolog.
• Most of the FD constraint propagators have a relational form (that is, in the

way of R(X,Y,Result), where R is a propagator and X,Y and Result are FD Boolean
variables) close to the style of traditional Prolog. Thus it is not possible to employ
the concatenation shown in other languages (which means that, in many cases, large
numbers of extra variables are needed).
• The Boolean operators also require a relational form which means that the code

needs a large number of extra FD variables.
•Meta-constraints cannot be implemented in clp(FD) in a direct way. For instance,

the constraint imposed for the variable BfQ in formula 3.3 which must have the truth
value of

∨
i∈{1...5}(Qi = 4) is best expressed as follows:

(BfQ = 1) ≡ (Q1 = 4) ∨ (Q2 = 4) ∨ (Q3 = 4) ∨ (Q4 = 4) ∨ (Q5 = 4). (3.4)

Code is now required that detects when the constraint (BfQ = 1) is true. It is ex-
plained in (Carlson et al., 1994a) how the clp(FD) framework can be extended so that
constraints such as this can be expressed using just constraints of the form X in r. How-
ever, as this idea is not implemented yet (at least in the version of the language used
here), the approach in (Codognet and Diaz, 1996a) for solving the magic square prob-
lem can be adopted. For instance, for the constraint (3.4) the predicate ‘x = a⇔b’/3
can be used. The call ‘x = a⇔b’(X,A,B) means X = A iff B is true (i.e. B = 1) and
is defined:

‘x = a⇔b’(X,A,B) :− B in ‘X To B ’(dom(X), A), X in ‘B To X ’(val(B), A).

where ‘X To B ’ returns 1 if X = A, 0 if X 6= A and 0..1 otherwise; and ‘B To X ’,
which is delayed until B is instantiated, yields A if B = 1 or else the range 0..∞\A.
These user functions are written in C and can accept ranges or terms as argument. In
clp(FD) the constraint (3.4) can now be expressed as follows:

‘x = a⇔b’(BfQ , 1, B1), ‘x = a⇔b’(Q1, 4, B2), ‘x = a⇔b’(Q2, 4, B3),

‘x = a⇔b’(Q3, 4, B4), ‘x = a⇔b’(Q4, 4, B5), ‘x = a⇔b’(Q5, 4, B6),

or(B2, B3, B23), or(B4, B5, B45), or(B23, B45, B2345), or(B2345, B6, B1).

Note that, just for this one constraint, nine additional Boolean variables (B1, B2,
B3, B4, B5, B6, B23, B45, B2345) are necessary.
• In B-Prolog, as for clp(FD), meta-constraints cannot be defined directly, but the

reification of Boolean variables can be expressed by means of delay clauses (which

3.4. Reification and Meta-constraints 59

avoids the need for any C code). This can be done by defining a predicate iff /33 as
follows:

delay iff (X,Y,B) : − dvar(B), dvar(X) : true.

delay iff (X,Y,B) : − dvar(B), dvar(Y) : true.

iff (X,Y,B) : − integer(B) : (B =:= 1 − > X# = Y ; X#\= Y).

iff (X,Y,B) : − X =:= Y : B = 1.

iff (X,Y,B) : − true : B = 0. (3.5)

Note that #= and #\ are the equality and disequality propagators respectively.
The part of the body of the clauses before the : is called a guard. The first two clauses
are called delay clauses which have guards of the form dvar(Z) which checks that
its argument Z is a domain variable. As a result of the delay/1 clauses, the iff /3
clauses are only executed when either B or X and Y are instantiated to unique values.
The remaining three clauses define iff /3. These use guards integer(B), X =:= Y
and true. Once the guard of a clause has succeeded, the remaining clauses defining
iff /3 are discarded and the call becomes determinate. The call iff(X,Y,B) means
(X = Y) ⇔ B, that is, if B is true, then the constraint X#= Y is imposed and, if
B is false, the disequality X\# = Y is imposed. On the other hand, if the constraint
X = Y is true (false), then B is imposed to be true (false). The constraint (3.4) is then
coded as follows:

iff (BfQ , 1, B1), iff (Q1, 4, B2), iff (Q2, 4, B3), iff (Q3, 4, B4),

iff (Q4, 4, B5), iff (Q5, 4, B6), or(B2, B3, B23),

or(B4, B5, B45), or(B23, B45, B2345), or(B2345, B6, B1).

3.4.2 CHR: a Special Mention

Expressively speaking, CHR deserves a special consideration due to its flexibility for
writing solvers. Its particular glass box approach allows one to provide the same for-
mulation in different styles. To demonstrate this flexibility, the clp(FD) language can
be used as a model for writing the formula 3.2 in CHR code. The different clp(FD)
Boolean propagators can easily be simulated by the CHR constraints.

Meta-constraints and reified constraints are no problem in CHR. For instance, the
formula 3.3 can be coded in CHR in a style close to Oz. This can be done by defining
an equivalence propagator between constraint expressions by means of the definition
of a solve/2 predicate which receives in its first argument a logical restriction over
variable constraints (that is a meta-constraint) or FD variables and returns in its
second argument the result of it. To impose a constraint it is enough to have the value
1 (denoting true) in the last argument and the constraint in the first argument. Then,

3Personal communication with Neng-Fa Zhou.

60 CHAPTER 3. A Comparison of Glass Box Systems

the formula 3.3 can be expressed in CHR as follows:

solve(BfQ⇔ (Q1 = 4) + (Q2 = 4) + (Q3 = 4) + (Q4 = 4) + (Q5 = 4), 1),

solve(AfQ⇔ (Q7 = 4) + (Q8 = 4) + (Q9 = 4) + (Q10 = 4), 1),

solve((Q6 = 1)⇔ (BfQ∗ ∼AfQ), 1).

The first argument of the solve predicate simulates, with minor differences, the Oz
code employed to program the formula 3.3. Note that the Oz arithmetic propagators
∗, + and ∼ have been defined as the Boolean propagators conjunction, disjunction and
negation respectively (as it was done in the Oz program for the SRQ).

3.5 An Efficiency Comparison

In this section we compare the efficiency of the eight constraint systems described in
Section 3.2. Subsection 3.5.1 describes the two labeling strategies used and 3.5.2 gives
the results for the solving of the SRQ in Figure 3.1 under the two different approaches
described in Section 3.3. The efficiency study is extended to other benchmarks in
Section 3.5.3 and the section concludes with an evaluation of the results.

Note that all of the systems (except CHR) provide some built-in symbolic con-
straints which we used in the benchmarks’ code. In particular, for all systems for which
it was provided, the all different constraint was employed where applicable. Thus al-
though we tried to maintain the same formulation for any given benchmark across all
the systems, we did exploit all the facilities that were provided by a system to obtain
the best possible results.

3.5.1 Labeling

As it was shown in Section 2.2.3, constraint solving can be seen as a combination of two
processes, constraint propagation and labeling. Constraint propagation is a procedure
that reads the constraint store and imposes constraints to it by means of constraint
propagators (Jaffar and Lassez, 1987). Labeling assigns values to the domain variables
(instantiation). Thus the labeling process consists of (1) choosing a variable (variable
ordering) and (2) assigning to the variable a value belong to its domain (value ordering).
The variable ordering and the value ordering used for the labeling can considerably
influence the efficiency of the constraint solving when only one solution to the problem
is required. It has little effect when the search is for all solutions. In this study, we
considered two labelings that were described in Example 2.3 on page 17, the naive
labeling and the first fail labeling.

All the results in Section 3.5.2 were obtained using the first fail labeling. As far as
possible, we have maintained the same variable and value ordering for all the systems
in the efficiency comparison. We also used a naive labeling. In contrast to first fail,
naive labeling assures that both variable and value ordering are the same for all the
systems and hence in many ways, although less efficient, is better for comparing the
different systems when only one solution is required. Thus additional results for the

3.5. An Efficiency Comparison 61

first solution search were obtained using the naive labeling. The performance results
for this are given in Section 3.5.3.

3.5.2 Efficiency Compared on the SRQ

In this subsection, we discuss the efficiency of the eight systems for solving the SRQ. We
consider both of the formulations described in Section 3.3. Thus first we examine how
the choice of representation affects the performance and hence the efficiency results.
The performance of the systems for the SRQ are then compared, first under the 50
variables formulation and then under the 10 variables formulation.

Comparing the Search Trees

Figure 3.5: The Oz Explorer on (50 variable formulation) SRQ solving using first fail
labeling for first solution search

The hardness of this kind of puzzle seems to be in the number of choice-points
that are traversed in finding a solution. For that reason, we compare the different
Oz programs under the two different approaches (50 and 10 variables) giving them

62 CHAPTER 3. A Comparison of Glass Box Systems

Figure 3.6: The Oz Explorer on (10 variable formulation) SRQ solving using first fail
labeling for first solution search

to a particular inference machine (which performs the search) called Explorer tool
(Schulte, 1995). This allows the search tree to be visualised as shown in Figures 3.5
and 3.6. Here the choice nodes are denoted by circles, the failure nodes by squares and
the solution nodes by diamonds. The tree in Figure 3.5 shows the search tree of the
original Oz program for first solution search in the SRQ solving using first fail labeling
(see Subsection 3.5.1). This tree contains 27 nodes of which 13 are choice nodes. The
tree in Figure 3.6 shows, under the same conditions, the search tree for the 10 variables
formulation which contains 9 nodes with only 5 choice nodes. This is more than a 60%
reduction in the number of choice nodes.

The SRQ Results Using the Boolean Domain

Here, we present the performance of the set of programs for the SRQ implemented
under the approaches shown in Section 3.3.2. The original solution in Oz involves 50
Boolean variables and all the other programs have been implemented similarly. We
modified the labeling strategy for the original Oz program4 because we wanted to do
the efficiency comparisons under the same conditions of labeling. The first fail labeling

4When no more propagation was possible, the variable on which more propagators depend was
chosen, and then its maximal value was tried first. In this case, the most suitable strategy was used

3.5. An Efficiency Comparison 63

(see Example 2.3 on page 17) was used for all the programs except for the CHR one
which used the built-in labeling for the constraint handling rules.

Since we were not able to install all the systems on the same machine, we used
two machines, a 4/50 SPARCstation IPX (40 MHz) and a Pentium Pro 200 PC oper-
ating under Linux. The SRQ programs for ECLiPSe, CHR (available as a library of
ECLiPSe), clp(FD), Ilog SOLVER, B-Prolog, and Oz, were measured using the SPARC-
station and programs for SICStus, IF/Prolog, and again ECLiPSe, have all been run
on the PC. Note that the program for ECLiPSe was measured on both machines to
provide a means of comparing the results across all platforms.

Table 3.1 summarises the results for the programs that used the SPARCstation
while Table 3.2 gives the results for the programs using the PC.

Table 3.1: Performance results of the 50 variables formulations for the SRQ on Sparc
40 Mhz

language time first time all speedup

Ilog SOLVER 80 100 3.63

clp(FD) 80 110 3.63

ECLiPSe 933 1083 ↓ 3.22

CHR 6150 - ↓ 21.21

B-Prolog 217 270 1.34

Oz 290 305 1.00

Table 3.2: Performance results of the 50 variables formulations for the SRQ on PC
(Linux)

language time first time all speedup

SICStus 40 50 3.00

IF/Prolog 20 20 6.00

ECLiPSe 120 150 1.00

The meaning for the columns is as follows. The first column gives the name of the
constraint language used in the implementation. The second column gives the running
time to find the first (and unique) answer, measured in milliseconds. The next column
shows the time to explore the whole search space. The last column gives the average
speed-up. In Table 3.1, this is in relation to the original program in Oz5 whereas in
Table 3.2 it is in relation to ECLiPSe. The symbol ↓ in Table 3.1 indicates that the
following number is the average slow-down instead of speed-up with respect to Oz.
Because the slow-down for CHR is so high we have only provided the result for the
first solution search.

To give an idea of the efficiency of each of the systems with respect to each other,
Table 3.3 shows the speedup of each system in relation to ECLiPSe (which is taken as

and the general condition could propagate much better.
5Note that Oz has been taken as reference since it provided the original solution.

64 CHAPTER 3. A Comparison of Glass Box Systems

reference).

Table 3.3: Result normalisation for 50 variables formulations on the ECLiPSe column
Ilog clp(FD) Oz CHR SICStus IF/Prolog ECLiPSe B-Prolog

11.7 11.7 3.2 ↓ 6.6 3.0 6.0 1.0 4.3

Table 3.4: Comparable results of the 10 variables formulation for the SRQ on Sparc 40
Mhz

language time first time all speedup speedup prec

Ilog SOLVER 40 90 7.25 2.00

clp(FD) 30 40 9.67 2.67

ECLiPSe 583 933 ↓ 2.01 1.60

CHR 4400 - ↓ 15.17 1.39

B-Prolog 33 50 8.79 6.58

Oz 186 295 1.56 1.56

Table 3.5: Comparable results of the 10 variables formulation for the SRQ on
PC(Linux)

language time first time all speedup speedup prec

SICStus 30 40 4.00 1.33

IF/Prolog 10 10 12.00 2.00

ECLiPSe 100 140 1.20 1.20

These results show that for the SRQ problem, the Ilog and clp(FD) programs are
fastest, while Oz, SICStus, IF/Prolog and B-Prolog were about two to four times slower.
However, these latter four systems were at least three times as fast as ECLiPSe. Of
course, as the times needed to solve the SRQ problem are not high, the real differences
in the performance of these systems are not necessarily indicated here (in the next
subsection, we compare again the performance of these systems using a larger set of
benchmarks). The CHR program is by far the slowest. This is to be expected since
the CHR used here is implemented on the top of the ECLiPSe system.

The SRQ Results Using the 10 Variables Approach

Using the 10 variables formulation in Section 3.3.3, we implemented a program for
all the languages. As for the 50 variables approach the results were measured on two
different machines and later normalised by the ECLiPSe results. Tables 3.4 and 3.5
show the results and Table 3.6 shows the speedup of each of the systems with respect
to the ECLiPSe system.

The meanings for the first four columns in Tables 3.4 and 3.5 are the same as in
Tables 3.1 and 3.2. Just as in the 50 variables formulation, only the result for the

3.5. An Efficiency Comparison 65

Table 3.6: Result normalisation for 10 variables formulation on the column ECLiPSe

Ilog clp(FD) Oz CHR SICStus IF/Prolog ECLiPSe B-Prolog

14.6 19.4 3.1 ↓ 7.5 3.3 10.0 1.0 17.7

first solution search is given for CHR. Note that, in Table 3.4, the column speedup
gives the speed-up with respect to the original program in Oz (that is, with respect
to the 50 variables formulation in Oz) and, in Table 3.5, with respect to the ECLiPSe

program with 50 variables. The fifth column speedup prec indicates the speed-up factor
with respect to the 50 variables program implemented in the same language (results
in Tables 3.1 and 3.2). All programs implemented under the 10 variables approach
improve the speed of the programs over those implemented in the style of the original Oz
program involving 50 Boolean variables. This illustrates how a change of representation
may significantly affect the performance.

Table 3.6 compares all the programs for the 10 variables formulation by normalising
the results relative to the ECLiPSe timings.

3.5.3 A More Comprehensive Comparison

Some Extra Benchmarks

It is clear that a single benchmark may bias the performance results unfairly. Typ-
ically, few constraint languages dominate such an application and thus the resulting
performance figures are vulnerable to slight variations of the implementation of these
constraints. In order to make the comparison more objective we extended the work to
include the following well-known benchmarks (Van Hentenryck, 1989):

• sendmore: a cryptarithmethic problem on 8 variables ranging over 0..9, with
one linear equation and 36 disequations;

• alpha: a cipher problem involving 26 variables over 1..26, with 20 equations and
325 disequations;

• equation 10: a system of 10 linear equations with 7 variables over 0..10;

• equation 20: a system of 20 linear equations with 7 variables over 0..10;

• N queens: place N queens on a N ×N chessboard in such a way that no queen
attacks each other;

• magic sequences (N): calculate a sequence of N numbers such that each of
them is the number of occurrences in the series of its position in the sequence.

The programs sendmore, alpha, equation 10 and equation 20 test the effi-
ciency of the systems to solve linear equation problems. The N queens and magic
sequences programs are scalable and therefore useful to test how the systems works
for bigger instances of the same problem. Note that both the number of variables and

66 CHAPTER 3. A Comparison of Glass Box Systems

Table 3.7: Performance results on Sparc (25 MHz) for first solution search.
Benchmark Ilog clp(FD) Oz CHR ECLiPSe B-Prolog

SRQ (10) 0.060 0.050 0.290 7.600 0.900 0.050

SRQ (50) 0.120 0.120 0.410 9.300 1.380 0.335

64 queens 0.110 2.710 4.190 - 10.816 0.200

100 queens 0.230 Error1 1.270 - 5.533 119.300

sendmore 0.010 0.020 0.020 - 0.033 0.010

alpha 0.130 0.300 0.480 - 1.633 0.233

eq. 10 0.200 0.270 0.460 - 0.833 0.367

eq. 20 0.240 0.360 0.460 - 1.050 0.817

magic(10) 0.020 0.040 0.100 - 0.333 0.284

magic(50) 0.110 1.090 1.870 - 8.234 5.300

magic(100) 0.280 4.320 16.290 - 49.700 Error4

magic(130) 0.410 Error1 35.030 - Error3 Error4

magic(150) 0.530 Error1 50.790 - Error3 Error4

magic(200) 0.860 Error1 Error2 Error3 Error4

the number of values for each variable grow linearity with N . That is, given a value
N , at least N FD variables must be declared with domains that range between 0 or 1
and N .

The programs used for the measurements for each of the extra benchmarks listed
above were either provided with the system or first written by us but then improved
by the language designers themselves. This policy meant that, for each system, only
appropriate programs have been compared. We measured the time required both for
finding just one solution and, where possible, in finding all solutions.

As observed in Section 3.5.1, the choice of labeling can affect the performance when
searching for just one solution. Thus, for just the one solution case, in this section the
systems have been compared using both the first fail labeling and the naive labeling.

For ECLiPSe, we initially used the N queens program provided with the system
and an adaptation of the SICStus program for the magic sequences. However, the
performance was poor. We found that one of the reason for the inefficiency was the first
fail labeling. When there are several with the same smallest domain, the one chosen is
not defined and dependent on the implementation. In order to improve the efficiency,
the first fail labeling of Joachim Schimpf6 was used which was found to improve the
speed by a factor of 14. To obtain further improvements, the programs were compiled
without debugging information and without garbage collection7. As a result of this, for
the magic sequences program, we improved the speed by a factor of 70. However,
the lack of garbage collection reduced the size of problems that could be solved. It
should also be noted that removing the garbage collection in other systems such as
SICStus did not improve the performance.

6Personal communication with Joachim Schimpf.
7Personal communication with Mark Wallace and Joachim Schipmf.

3.5. An Efficiency Comparison 67

Table 3.8: Performance results on Sparc (25 MHz) for all solutions search.
Benchmark Ilog clp(FD) Oz ECLiPSe B-Prolog

8 queens 0.340 0.370 2.210 2.167 0.200

9 queens 1.350 1.410 10.200 8.950 0.817

10 queens 5.350 5.270 36.540 34.467 3.216

11 queens 23.920 23.970 178.240 166.583 14.700

12 queens 118.200 119.760 836.891 840.650 72.533

magic(30) 0.160 0.890 0.890 5.050 6.300

magic(75) 1.300 8.680 9.860 55.850 102.734

magic(100) 2.690 18.380 24.580 125.600 Error4

magic(130) 5.300 Error1 48.590 Error3 Error4

magic(150) 7.640 Error1 83.780 Error3 Error4

The benchmarks measured with first fail labeling

All the results presented in Tables 3.7 to 3.12 were obtained using the first fail labeling.
For each of the benchmarks, the times needed to obtain the first solution have been
measured with each of the constraint systems except for CHR. For CHR, the only
benchmarks used were the 50 and 10 variables solutions for the SRQ. This is because the
only solutions that could be found for the other benchmarks were extremely inefficient;
no solutions for these were supplied with the CHR library and running the existing
ECLiPSe code with the CHR finite domain library (as suggested by the CHR author8)
was still too slow. As an excuse for this, we observe that CHR was not built for writing
efficient solvers but for defining adequate constraints solvers for particular problems on
specific domains.

For the scalable problems (that is, the N queens and magic sequences), the times
for finding all possible solutions have also been measured with each of the constraint
systems (except, that is, for CHR).

As explained in Section 3.5.2, since we were not able to install all the systems on
the same machine, measurements for clp(FD), CHR, Ilog, Oz and B-Prolog have been
obtained on a different machine to SICStus and IF/Prolog. Programs for ECLiPSe

were timed on both machines so that the results could be compared. All the timings
are in seconds.

Tables 3.7 and 3.8 show the results with Ilog SOLVER, clp(FD), Oz, CHR,
ECLiPSe, and B-Prolog, using the same SPARCstation IPC 4/40 to 25 Mhz9. Table 3.7
gives the times for finding the first solution and Table 3.8 the times for obtaining all
solutions for the N queens and magic sequences problems.

Tables 3.9 and 3.10 show the results with SICStus, IF/Prolog, and again ECLiPSe,
using a Pentium Pro 200 PC operating under LINUX. Table 3.9 gives the times for

8Personal communication with Thom Frühwirth.
9Note this machine is different to that used to measure results on SRQ solving in Section 3.5.2.

68 CHAPTER 3. A Comparison of Glass Box Systems

Table 3.9: Performance results on PC (Linux) for first solution search.
Benchmark SICStus IF/Prolog ECLiPSe

SRQ (10) 0.030 0.010 0.100

SRQ (50) 0.040 0.020 0.120

64 queens 0.500 0.300 0.820

100 queens 0.460 0.430 0.460

sendmore 0.005 0.005 0.010

alpha 0.065 8.090 0.120

eq. 10 0.045 0.010 0.055

eq. 20 0.050 0.010 0.070

magic(10) 0.020 0.020 0.030

magic(50) 0.280 0.290 0.650

magic(100) 1.080 1.570 3.830

magic(130) 1.820 2.910 7.750

magic(150) 2.330 3.700 Error3

magic(200) 4.180 13.450 Error3

finding the first solution and Table 3.10 shows the times for obtaining all the solutions
for the N queens and magic sequences problems.

In these tables, Error1 in the clp(FD) columns means that the error message “trail
stack overflow” was returned. This can be avoided by increasing the size of the environ-
ment variable associated with the stack, although the solution is very slow. The Error2
in the Oz column is because Oz system “died” before solving the problem. The Error3
in the ECLiPSe columns means that there was a stack error. Error4 in the B-Prolog
column means a Trail or a Control Stack Overflow error was received. The anomalous
results in Tables 3.7 and 3.9 where, for Oz, SICStus and ECLiPSe, 64 queens took
longer than the 100 queens are due to the choice of first fail labeling. The results
shown in Section 3.5.3 using the naive labeling are more consistent.

The results shown in Tables 3.7 to 3.10 were normalised by means of the ECLiPSe

timings. The normalisation of results for first solution search is shown in Table 3.11
and for all solutions search is shown in Table 3.12. Each cell contains the speedup
with respect to the ECLiPSe solution. Again the symbol ↓ means that the following
number is the average slow-down with respect to ECLiPSe system. In the cases in
which ECLiPSe returned an error, we calculated the average differences between the
two machines used to measure the results and normalised the results for IF/Prolog.
Note that this only occurs in the last two rows of Tables 3.11 and 3.12.

The benchmarks measured with naive labeling

The efficiency results using the naive labeling (see Subsection 3.5.1) are shown in Tables
3.13, 3.14 and 3.15. Note that, for the N queens problem, no results are shown because
the running times were too high. Only results for first solution search are shown. The

3.5. An Efficiency Comparison 69

Table 3.10: Performance results on PC (Linux) for all solutions search.
Benchmark SICStus IF/Prolog ECLiPSe

8 queens 0.130 0.040 0.180

9 queens 0.510 0.180 0.740

10 queens 2.000 0.700 2.950

11 queens 8.810 3.150 13.340

12 queens 43.120 15.580 66.150

magic(30) 0.160 0.140 0.420

magic(75) 1.050 1.140 4.140

magic(100) 1.930 2.490 9.100

magic(130) 3.360 4.720 Error3

magic(150) 4.600 7.050 Error3

results for all solutions search were similar to those shown using the first fail labeling.

Robustness

Using the same machines as for the efficiency comparison in Section 3.5.3, the robust-
ness of each the systems was measured. For this, we used the magic sequences (N)
programs (with garbage collection on) and measured the maximum value of N that
each system could manage. Tables 3.16 and 3.17 give an interval of FD variables.
Each system succeeded at the minimum of the interval while it failed at the maximum.
Note that, for both machines, there was no upper bound for ECLiPSe. This was due
to the garbage collection which made these tests for ECLiPSe extremely slow. CHR
was not evaluated. In spite of the different configurations of the two machines used,
the results on them for ECLiPSe are almost the same.

Note that the precise values in these results are very dependent on the machine
used. However, these results do provide some indication of the comparative robustness
of the systems.

3.5.4 The Results Analysed

In this section we summarise and compare the performance results provided in Sec-
tions 3.5.2 and 3.5.3.

Ilog SOLVER. In general, Ilog was by far the fastest system. Ilog was also extremely
robust, solving the magic sequences problem with over 1600 variables.

clp(FD). This gave good results, although it was not as fast as Ilog. Unfortunately, it
gave error messages when the problem size was increased, indicating that it does not
scale well with respect to the number of FD variables. We have been able to solve larger
problems by changing the size of certain environment variables but the performance

70 CHAPTER 3. A Comparison of Glass Box Systems

Table 3.11: Normalisation table for first solution search.
Benchmark Ilog clp(fd) Oz CHR SICStus IF/Prolog ECLiPSe B-Prolog

SRQ (10) 15.0 18.0 3.1 ↓ 8.4 3.3 10.0 1.0 18.0

SRQ (50) 11.5 11.5 3.4 ↓ 6.7 3.0 6.0 1.0 4.1

64 queens 98.3 4.00 2.6 - 1.6 2.7 1.0 54.1

100 queens 24.1 Error1 4.4 - 1.0 1.1 1.0 ↓ 21.6

sendmore 3.3 1.7 1.7 - 2.0 2.0 1.0 3.3

alpha 12.6 5.4 3.4 - 1.8 ↓ 67.4 1.0 7.0

eq. 10 4.2 3.1 1.8 - 1.2 5.5 1.0 2.3

eq. 20 4.4 2.9 2.3 - 1.4 7.0 1.0 1.3

magic(10) 16.7 8.3 3.3 - 1.5 1.5 1.0 1.2

magic(50) 74.9 7.6 4.4 - 2.3 2.2 1.0 1.56

magic(100) 177.5 11.5 3.1 - 3.6 2.4 1.0 Error4

magic(130) 216.0 Error1 2.5 - 4.3 2.7 1.0 Error4

magic(150) 87.1 Error1 ↓ 1.1 - 1.6 1.0 Error3 Error4

magic(200) 195.0 Error1 Error2 - 3.2 1.0 Error3 Error4

was really poor. For example, with such a change, clp(FD) solved the 100 queens
problem for first solution search in 126 seconds (almost 23 times slower than ECLiPSe).

Oz. Oz was faster than ECLiPSe when finding the first and all solutions. When
obtaining all solutions for the magic sequences problem, it was almost as fast as
clp(FD). Also, Oz was more robust than clp(FD) and only failed to obtain a solution
for the magic sequences (200) problem.

SICStus and IF/Prolog. These had very similar performance figures and were about
two to three times as fast as ECLiPSe (although IF/Prolog performed badly with the
alpha benchmark). Note that IF/Prolog worked particularly well for first solution
search (even sometimes better than clp(FD) and Ilog). SICStus and IF/Prolog were
also more robust than clp(FD), Oz, and ECLiPSe. However, of the two, SICStus has
the greater robustness since it was able to solve the magic sequences problem with
over 1000 FD variables whereas IF/Prolog failed to solve the same problem with 600
FD variables.

B-Prolog. As for clp(FD), this system worked well with problems involving a small
number of FD variables. However, as we increased the number of FD variables for the
queens and magic sequences problems, performance deteriorated rapidly leading,
in most cases, to the program being aborted with error messages. This was a direct
consequence of the fact that this version of B-Prolog does not have a garbage collector.

ECLiPSe. This had the slowest results (except for CHR). To obtain the best pos-

3.6. Related Work 71

Table 3.12: Normalisation table for all solutions search
Benchmark Ilog clp(fd) Oz SICStus IF/Prolog ECLiPSe B-Prolog

8 queens 6.4 5.9 1.0 1.4 4.5 1.0 10.9

9 queens 6.6 6.3 ↓ 1.1 1.5 4.1 1.0 11.0

10 queens 6.4 6.5 ↓ 1.1 1.5 4.2 1.0 10.7

11 queens 7.0 6.9 ↓ 1.1 1.5 4.2 1.0 11.3

12 queens 7.1 7.0 1.0 1.5 4.2 1.0 11.6

magic(30) 31.6 5.7 5.7 2.6 3.0 1.0 ↓ 1.2

magic(75) 43.0 6.4 5.7 3.9 3.6 1.0 ↓ 1.8

magic(100) 46.7 6.8 5.1 4.7 3.7 1.0 Error4

magic(130) 11.1 Error1 1.2 1.4 1.0 Error3 Error4

magic(150) 11.5 Error1 1.1 1.5 1.0 Error3 Error4

sible performance, the figures in Table 3.7 for ECLiPSe had the garbage collection
disabled. With garbage collection, the magic sequences (100) problem took three
times longer to find a solution. We had no results and an error message for the scalable
benchmarks when the number of FD variables was large. In fact, in many cases these
problems could be solved but with a very poor performance. For example, without
garbage collection, the magic sequences (N) problem with N ≥ 130 could not be
solved. However, when the garbage collection was enabled, it was solved (on the Sparc
Station) for first solution search in 480 seconds for N = 130, 795 seconds for N = 150
and 1977 seconds for N = 200.

CHR. This was slowest. Two reasons for this: (1) the system we tested is built on top
of ECLiPSe (which had poor performance) and (2) CHR was not designed primarily
for efficiency but for defining adequate constraints solvers for particular problems on
specific domains.

3.6 Related Work

Traditionally, the basic literature for each paradigm in computer science has a set of
papers that compare different aspects of the paradigm itself as for example, complex-
ity of algorithms, efficiency of systems, expressiveness of languages, applicability of
resources to specific settings, etc. In particular, for CLP systems, there are a number
of publications in which the constraint systems have been tested on the solving of a
number of traditional benchmarks. In the following we discuss some of these works
although the list is, of course, not exhaustive. Taking these chronologically:

• in (Cras, 1993), a review of the main constraint solving tools are presented. This
book focuses on the commercial systems and is mainly directed at people working
in the industry and does not add anything new (Jampel, 1994);

72 CHAPTER 3. A Comparison of Glass Box Systems

Table 3.13: Performance results on Sparc (25 MHz) for first solution search and naive
labeling.

Benchmark Ilog clp(FD) Oz CHR ECLiPSe B-Prolog

SRQ (10) 0.060 0.050 0.290 7.600 0.890 0.050

SRQ (50) 0.120 0.120 0.405 9.300 1.383 0.350

sendmore 0.020 0.020 0.020 - 0.033 0.010

alpha 10.070 14.400 48.99 - 309.200 46.866

eq. 10 0.180 0.220 0.390 - 0.650 0.300

eq. 20 0.230 0.360 0.570 - 1.367 0.834

magic(10) 0.040 0.080 0.150 - 0.433 0.733

magic(50) 0.790 5.970 4.660 - 32.833 599.550

magic(100) 3.930 43.830 37.300 - 232.733 Error4

magic(130) 7.490 Error1 60.900 - Error3 Error4

magic(150) 10.720 Error1 97.516 - Error3 Error4

magic(200) 22.880 Error1 Error2 Error3 Error4

• (Sidebottom, 1993) describes a language based on projection constraints for com-
piling and optimising constraint propagation in the Boolean and numerical do-
mains. This language is implemented in a CLP system called Nicolog that is
compared with languages that process constraints using symbolic computations
such as cc(FD) (Van Hentenryck et al., 1994), BNR(Prolog) (Older and Vel-
lino, 1990), clp(FD) (Codognet and Diaz, 1996a), CLP(BNR) (Benhamou and
Older, 1997), Echidna (Havens et al., 1992), Eristo (Erlt and Krall, 1992), CHIP
(Dincbas et al., 1988b), CAL (Sakai and Aiba, 1989), CLP(<) (Jaffar et al.,
1992b) and Prolog III (Colmerauer, 1990). This comparison is mainly focused
on the capabilities of Nicolog with respect to the rest of the compared systems.
Efficiency is just compared with respect to the clp(FD) system;

• Codognet and Diaz have implemented several CLP systems and have written
several papers comparing their systems on both Boolean and FD with other
systems. In (Codognet and Diaz, 1996b) and (Codognet and Diaz, 1994) they
described two specific propagation-based Boolean solvers called clp(B/FD) and
clp(B) respectively. These systems were compared with the CHIP system as well
as with some specific methods of resolution that accept a set of constraints as
input and solve it. They also described the finite domain CLP system clp(FD)
in (Codognet and Diaz, 1996a) and compared it again with the CHIP system;

• also, in (Puget and Leconte, 1995), there is a discussion about the kind of con-
structs needed to implement global constraints. A system was implemented and
its efficiency compared with respect to local propagation implementations;

• in (Müller and Würtz, 1996), a C++ interface for the concurrent constraint
language Oz for implementing non-basic constraints as propagators is described
and its overall efficiency is compared with the systems clp(FD) and ECLiPSe;

3.7. Concluding Remarks 73

Table 3.14: Performance results on PC (Linux) for first solution search and naive
labeling.

Benchmark SICStus IF/Prolog ECLiPSe

SRQ (10) 0.030 0.010 0.100

SRQ (50) 0.040 0.020 0.120

sendmore 0.005 0.005 0.010

alpha 5.930 51.280 23.360

eq. 10 0.035 0.010 0.045

eq. 20 0.060 0.010 0.090

magic(10) 0.020 0.020 0.040

magic(50) 0.710 0.540 2.180

magic(100) 2.910 3.170 14.190

magic(130) 5.130 6.480 31.400

magic(150) 7.150 9.140 Error3

magic(200) 13.350 25.410 Error3

• in (Carlsson et al., 1997), a finite domain constraint solver integrated in the
SICStus system is described and its efficiency is compared with respect to a
number of constraint systems.

Two main differences are found between our comparative work and most of the
works referenced above. First, in contrast with our own comparative work, most com-
parative work in the literature of CLP, has been done by the language implementers
themselves. Furthermore, the benchmarks used for the comparisons have been used in
the development as well as the assessment of the languages so that such tests are biased.
Our comparison involved no designer of any of the CLP languages studied so that it is
more impartial than previous ones. Secondly, most of the existing comparative works
were concerned solely with comparing the performance of specific characteristics of the
involved systems. However, we also compared several aspects of the expressiveness of
the languages.

3.7 Concluding Remarks

In this chapter, eight popular but very different constraint systems using a glass box
approach have been compared on the Boolean and finite domains. Since, for some of
these systems, the generating of new constraints requires a deeper knowledge of the
implementation than for others, we have divided the systems into black box and glass box
approaches. We have focused the comparison on the efficiency and on specific aspects
of the expressivity (i.e., those concerning reified constraints and meta-constraints). By
showing the main differences between the systems, we have provided some guidelines
that should help the choice of an adequate constraint language for solving a specific
(discrete) constraint satisfaction problem.

74 CHAPTER 3. A Comparison of Glass Box Systems

Table 3.15: Normalisation table for first solution search and naive labeling.
Benchmark Ilog clp(fd) Oz CHR SICStus IF/Prolog ECLiPSe B-Prolog

SRQ (10) 14.8 17.8 3.1 ↓ 8.5 3.3 10.0 1.0 17.8

SRQ (50) 11.5 11.5 3.4 ↓ 6.7 3.0 6.0 1.0 4.0

sendmore 1.7 1.7 1.7 - 2.0 2.0 1.0 3.4

alpha 30.7 21.5 6.3 - 3.9 ↓ 2.2 1.0 6.6

eq. 10 3.6 3.0 1.7 - 1.3 4.5 1.0 2.2

eq. 20 5.9 3.8 2.4 - 1.5 9.0 1.0 1.6

magic(10) 10.8 5.4 2.9 - 2.0 2.0 1.0 ↓ 1.7

magic(50) 41.6 5.5 7.0 - 3.1 4.0 1.0 ↓ 18.3

magic(100) 59.2 5.3 6.2 - 4.9 4.5 1.0 Error4

magic(130) 52.3 Error1 6.4 - 6.1 4.8 1.0 Error4

magic(150) 10.6 Error1 1.2 - 1.3 1.0 Error3 Error4

magic(200) 13.8 Error1 Error2 - 1.9 1.0 Error3 Error4

Table 3.16: Number of FD variables managed in the magic sequences problem (1)
Ilog clp(fd) Oz ECLiPSe B-Prolog

1624-1625 111-112 194-200 230-??? 82-83

It should be noted, that our conclusions are based on simple problems. Implement-
ing these in the eight systems required a considerable amount of work and the tests
needed a large amount of computing time and power. More resources are needed if
more realistic problems are to be used in comparing and contrasting the CLP systems.

To summarise our results, for maximum efficiency Ilog SOLVER is best. clp(FD)
is also a good candidate provided the size of the problem (measured in number of FD
variables) is fairly small. From an expressive point of view, CHR is best. This supports
the accepted view that CHR’s are particularly useful for building specialised constraint
solvers for non-standard applications. Finally, for a balance between the expressiveness
and efficiency, IF/Prolog and SICStus both do well although, in the tests here, SICStus
had the greater robustness.

3.8 Contributions

To our knowledge, this is the first time that such a number of constraint systems have
been compared on the finite domains from both the expressiveness and the efficiency

Table 3.17: Number of FD variables managed in the magic sequences problem (2)
ECLiPSe SICStus IF/Prolog

228-??? 1000-1200 300-600

3.8. Contributions 75

point of view. We have compared not only the performance but also key aspects of the
expressiveness of the languages. This chapter provides two main contributions:

• for the CLP community, the experience reported here can aid others in choosing
an appropriate constraint language for solving their specific discrete constraint
satisfaction problem.

• for this thesis, the results have helped justify the election of the indexical approach
for defining a generic framework for solving interval constraints (as described in
the following four chapters). Observe that, in general, the systems adopting the
indexical approach provide a good balance between efficiency and expressiveness.

76 CHAPTER 3. A Comparison of Glass Box Systems

Part III

Theoretical Framework

77

Chapter 4

Interval Constraint Propagation
on Lattice (Interval) Domains

[Boswell:] Sir, what is poetry?

[Johnson:] Why Sir, it is much easier to say what it is not.

We all know what light is

but it is not easy to tell what it is.

Boswell Life, vol.3, pag: 38 (1776)

Samuel Johnson, 1709-84

4.1 Motivations

As shown in Chapter 2, CLP systems support many different domains such as finite
ranges of integers (Carlson et al., 1994a; Carlsson et al., 1997; Codognet and Diaz,
1996a), reals (Jaffar et al., 1992b; Refalo and Van Hentenryck, 1996; Sidebottom and
Havens, 1992; Benhamou, 1995), finite sets (Walinsky, 1989; Gervet, 1997; Müller and
Müller, 1997) or the Booleans (Codognet and Diaz, 1996b; Codognet and Diaz, 1994;
Barth and Bockmayr, 1996). The type of the domain determines the nature of the
constraints and the solvers used to solve them. In particular, the cardinality of the
domain determines the constraint solving procedure so that existing CLP systems have
distinct constraint solving methods for the finite and the infinite domains. However, in
practice, constraint problems are often not specific to any particular domain and thus
their formulation has to be artificially adapted to fit a given solver.

As also shown in Chapter 2, most constraint solvers, called black box solvers, have
the control fixed by the system. This black box approach enables very efficient im-
plementations and can provide practical tools for the common constraint applications.
However, such black box solvers lack adaptability for use in solving non-standard prob-
lems. To overcome this lack of flexibility, many constraint systems provide glass box

79

80 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

solvers (Frühwirth, 1998; Codognet and Diaz, 1996a). These allow new constraints to
be defined by the user. We are particularly interested in glass box systems that do not
require the user to have a detailed knowledge of the implementation.

From this perspective (see Section 2.4), there have been two main sepa-
rate developments for the provision of glass box constraints: the constraint sys-
tem clp(FD) (Codognet and Diaz, 1996a) and the Constraint Handling Rules
(CHR) (Frühwirth, 1998). The first of these, designed for the finite domain (FD)
of integers, is based on a single constraint that allows the user to define and control the
constraint propagation. This constraint, often referred to as indexical, is very efficient,
as it was shown in Chapter 3, since its implementation uses a simple interval narrowing
technique which can be smoothly integrated into the WAM (Aı̈t-kaci, 1999; Diaz and
Codognet, 1993). As a result, clp(FD) is now part of mainstream CLP systems such
as SICStus Prolog (Carlsson et al., 1997) and IF/Prolog (If/Prolog, 1994). On the
other hand, the CHR (now included as a library in SICStus Prolog (Carlsson et al.,
1997)) enable the creation of new user-defined domains and their solvers and allow any
interaction between them. Unfortunately the flexibility of these rules has an efficiency
cost, as it was also shown in Chapter 3, and the CHR systems have not been able to
compete with other systems that employ the more traditional approaches.

It follows from this discussion that what is needed is a glass box system that
combines the flexibility of CHR with the efficiency of clp(FD). In the previous chapter
we have shown that the systems supporting the indexical approach provided a good
balance between expressiveness and efficiency. Based on this result, in this chapter we
adopt the indexical approach of clp(FD) to constraint propagation, generalising it for
any set of domains that are lattices, thereby providing a flexibility closer to that of
CHR.

Observe that the framework, being applicable to any lattice, provides support for all
the existing practical domains in CLP (e.g. reals, integers, sets and Booleans). More-
over, by using lattice combinators, new compound domains and their solvers can easily
be obtained from previously defined domains such as these. Also, as the framework
supports a set of lattice structure domains, it enables a form of constraint cooperation
by means of one-way channels in which the information can flow between the domains.

In this chapter we provide a generic formalisation of the indexical approach for
interval constraint propagation over domains with lattice structure that is new even in
the case of the finite domains of integers where this approach is well-established and
widely-used.

Our framework, being an alternative to the flexibility of CHR, has many advantages
and, we believe, considerable potential as indicated below.

• The only condition we have placed on a domain is that it is a lattice. Since, as far
as we know, all existing domains provided for CLP systems are already lattices
or could be easily extended to become lattices, our framework supports a wide
variety of applications.

• There are many well known lattice combinators such as the direct and lexico-
graphic products so that it is straightforward to combine existing domains and

4.1. Motivations 81

their solvers to form new (compound) domains.

• The framework is defined on a set of domains, allowing information to flow be-
tween domains so that distinct solvers on distinct domains can communicate and
hence, cooperate.

• The basic schema for propagating constraints is uniform over all domains regard-
less of whether they are user-defined or system-defined and irrespective of their
cardinality.

• Our framework is a totally transparent glass box setting over which new do-
mains, new constraints on the computation domains and the intended propaga-
tion schema can be devised at the user level.

4.1.1 An Overview of Our Proposal

We conclude this motivation by giving an overview of our proposal which is described
in more detail in the rest of this chapter. Consider a computation domain L such as,
the integers or Booleans, then the solver applies interval reasoning to an ordered pair of
elements of L. However, to allow for continuous and infinite domains, this underlying
computation domains L is first replaced by two extended forms of the domain, a left
and a right bounded computation domain. For the right bounded computation domain
Ls each element of L is combined with one of two brackets ‘)’ or ‘]’. Dually, for the
left bounded computation domain Ls, each element of L̂ is combined with one of the
brackets, ‘(’ or ‘[’. Note that each element in L is represented by at least one element
in Ls or Ls. For example, consider the real domain (that is L = <), the real value 1.0
is represented by the value (1.0,‘]’) (resp. (1̂.0,‘]’)) in <s (resp. <s) which, for clarity,
is denoted as 1.0] (resp. [1.0). Also, the greatest value smaller than 1.0 is represented
by the value (1.0,‘)’) in <s and denoted as 1.0), whereas the lowest value higher than
1.0, denoted as (1.0 is in <s. Operators such as + for the numeric domains and ∧ in
the Boolean domain are defined over the bounded domains by extending the definitions
of + and ∧ on the computation domain to include the brackets.

The interval domain which is used for the constraint propagation consists of the set
of pairs 〈a, b〉, where a is in the left and b is in the right bounded computation domain
and1 a ≤ b. The indexicals max (x) and min(x) are used to represent the greatest
and least possible values for x in the bounded domains in which x is constrained. For
example, the constraints

x in 〈[4.0,10.0]〉, x 6= 10.0],

y in 〈[0.0,max(x)〉

1Despite that a and b belong to different domains, in this chapter we show that they can be compared
by applying the duality principle of lattices -see Section 4.2.

82 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

lead to the constraints

x in 〈[4.0,10.0)〉,
y in 〈[0.0,10.0)〉

since the first two constraints for x simply means that max (x) = 10.0).

4.1.2 Chapter Structure

This chapter is structured as follows. In Section 4.2, some fundamental algebraic
concepts used in the rest of this document were recalled. Then, in Section 4.3, we
define the computation domain and construct the interval domain used for interval
constraint solving. In Section 4.4, the interval constraints are presented together with
the procedure for constraint propagation and narrowing (called here, stabilisation). We
also discuss the monotonicity of constraints in this section. In Section 4.5, we provide a
schema for the operational semantics of our constraint solver and show how this can be
adapted so as to ensure termination for infinite as well as finite domains. In Section 4.6,
non-standard examples of computation domains are shown and also it is demonstrated
how new domains can be constructed using different lattice combinators. The chapter
ends with a discussion about related work, the conclusions and an enumeration of the
major contributions of this chapter.

4.2 Preliminaries and Notation

If C is a set, then #C denotes its cardinality, ℘(C) its power set and ℘f (C) the set of
all the finite subsets of C, that is to say, ℘f (C) = {c ∈ ℘(C) | c is finite}.

Ordering. Let C be a set with equality. A binary relation � on C is an ordering
relation if it is reflexive, antisymmetric and transitive. Let C be a set with ordering
relation � and c, c′ ∈ C. Then, write c �C c′ (when necessary) to express that c � c′

and we write c ∼ c′ if either c � c′ or c′ � c (i.e., c and c′ are comparable) and c 6∼ c′

otherwise. Also c ≺C c′ if c �C c′ and c′ 6�C c. Any set C for which an ordering
relation is defined, is said to be ordered. We say C is totally ordered if for any a, b ∈ C,
a ∼ b.

Bounds. Let C be an ordered set. An element c in C is a lower (upper) bound of a
subset E ⊆ C if and only if ∀x ∈ E: c � x (x � c). If the set of lower (upper) bounds
of E has a greatest (least) element, then that element is called the greatest lower bound
(least upper bound) of E and denoted by glbC (E) (lubC (E)). If E = {x, y}, we write
glbC (x , y) to denote glbC ({x , y}) and lubC (x , y) to denote lubC ({x , y}).

Predecessor and successor. Let C be a totally ordered set and let c, c′ ∈ C. Then
c is the immediate predecessor of c′ and c′ the immediate successor of c if c ≺ c′ and
for any c′′ ∈ C with c � c′′ ≺ c′ implies c = c′′.

4.2. Preliminaries and Notation 83

Monotonicity. Let f be a n-ary function f :: C1× . . .×Cn → C, where C and all Ci,
for i ∈ {1, . . . , n}, are ordered sets. Then we say that f is monotonic in C if, whenever
ti, t
′
i ∈ Ci such that ti �Ci t

′
i, for all i ∈ {1, . . . , n}, then

f(t1, . . . , ti, . . . , tn) �C f(t′1, . . . , t
′
i, . . . , t

′
n).

and anti-monotonic if (under the same conditions)

f(t1, . . . , ti, . . . , tn) �C f(t′1, . . . , t
′
i, . . . , t

′
n).

A monotonic function f is strict monotonic if, whenever ti, t
′
i ∈ Ci such that ti �Ci

t′i, for all i ∈ {1, . . . , n} and tj ≺Cj t
′
j , for some j ∈ {1, . . . , n}, then

f(t1, . . . , ti, . . . , tn) ≺C f(t′1, . . . , t
′
i, . . . , t

′
n).

and strict anti-monotonic if (under the same conditions)

f(t1, . . . , ti, . . . , tn) �C f(t′1, . . . , t
′
i, . . . , t

′
n).

Lattice. Let L be an ordered set. L is a lattice if lubL(x , y) and glbL(x , y) exist, for
any two elements x, y ∈ L.

Top and bottom elements. Let L be a lattice. If it exists, glbL(L) = ⊥L is the
bottom element of L. Similarly, if it exists, lubL(L) = >L is the top element of L. The
lack of a bottom or top element can be remedied by adding a fictitious one. Thus, the
lifted lattice of L is L∪{⊥L,>L} where, if glbL(L) does not exist, ⊥L is a new element
not in L such that ∀a ∈ L,⊥L ≺ a and similarly, if lubL(L) does not exist, >L is a new
element not in L such that ∀a ∈ L, a ≺ >L.

Dual. Let L be a lattice. The dual of L, denoted by L̂, is the lattice that contains
exactly the same elements as L and that is obtained by interchanging glbL(a, b) and
lubL(a, b) for any a, b ∈ L. If a ∈ L, then we denote its dual as â ∈ L̂. The duality
principle for lattices is “the dual of a statement about lattices phrased in terms of glb
and lub can be obtained simply by interchanging glb and lub”. Note that the ordering
is also reversed in the dual lattice. That is, if a, b ∈ L and a �L b, then b̂ �L̂ â.

Products. Let L1 and L2 be two (lifted) lattices. Then the direct product 〈L1, L2〉
and the lexicographic product (L1, L2) are lattices where:

〈x1, x2〉 �〈L1,L2〉 〈y1, y2〉 iff x1 �L1 y1 and x2 �L2 y2;

(x1, x2) �(L1,L2) (y1, y2) iff (x1 ≺L1 y1) or (x1 = y1 and x2 �L2 y2).

84 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

Moreover,

glb(〈x1 , x2 〉, 〈y1 , y2 〉) = 〈glbL1
(x1 , y1), glbL2

(x2 , y2)〉;
glb((x1 , x2), (y1 , y2)) = if x1 = y1 then (x1, glbL2

(x2 , y2))

elsif x1 ≺ y1 then (x1, x2)

elsif x1 � y1 then (y1, y2)

else (glbL1
(x1 , y1),>L2);

lub is the dual of glb and

>〈L1,L2〉 = 〈>L1 ,>L2〉 and ⊥〈L1,L2〉 = 〈⊥L1 ,⊥L2〉;
>(L1,L2) = (>L1 ,>L2) and ⊥(L1,L2) = (⊥L1 ,⊥L2).

It is straightforward to extend these definitions to n lattices.

Linear sum. Suppose that L1, . . . , Ln are lattices. Then their linear sum L1]. . .]Ln
is the lattice LS where:
(1) LS = L1 ∪ . . . ∪ Ln;
(2) the ordering relation �LS

is defined:

x �LS
y ⇐⇒

{
x, y ∈ Li and x �Li y; or

x ∈ Li, y ∈ Lj and i ≺ j;

(3) glbLS
and lubLS

are:

glbLS
(x , y) =

glbLi

(x , y) if x, y ∈ Li;
x if x ∈ Li, y ∈ Lj and i ≺ j;
y if x ∈ Li, y ∈ Lj and j ≺ i;

lubLS

(x , y) =

lubLi (x , y) if x, y ∈ Li;
y if x ∈ Li, y ∈ Lj and i ≺ j;
x if x ∈ Li, y ∈ Lj and j ≺ i;

 .

and (4) ⊥LS
= ⊥L1 and >LS

= >Ln .

For more information about lattices see, for example, (Davey and Priestley, 1990).
In the rest of the document, (L,�L, glbL, lubL,⊥L,>L) denotes a (possible lifted) lattice
on L with (possibly fictitious) bounds ⊥L and >L.

4.3 The Computation and Interval Domains

The domain on which the values are actually computed, is called a computation domain.
The key aspect of the constraint system described in this document is that it can be
built on any computation domain provided it is a lattice. Throughout the document,

4.3. The Computation and Interval Domains 85

we let L denote a (possibly infinite) set of computation domains containing at least
one element L and let L̂ = {L̂ | L ∈ L}. With each computation domain L ∈ L, we
associate a set of variable symbols VL that is disjoint from L. We define VL = ∪{VL|L ∈
L}. It is assumed (without loss of generality) that all L ∈ L are lifted lattices.

EXAMPLE 4.1 Most classical constraint domains are lattices. For instance,

(Integer ,≤,mini ,maxi ,⊥Integer ,>Integer),

(<,≤,mini ,maxi ,⊥<,><),

(Bool ,≤,∧,∨, false, true),

(Set L,⊆,∩,∪, ∅, L)

are lattices for the integers, reals, Booleans and sets, respectively, under their usual
orders where mini and maxi functions return, respectively, the minimum and maximum
element of any two elements in the integers or reals. Note that Integer and < are
lifted lattices and include the fictitious elements >Integer , ⊥Integer , >< and ⊥<. For
the Booleans, it is assumed that Bool = {false, true} with the ordering false <Bool

true. For the set lattice, we assume that Set L = ℘(L), for each L ∈ L, where
L = {Integer ,<,Bool}∪{Set L | L ∈ L}. Note that L is an infinite set of computations
domains.

In the rest of the examples in this document, we will use the computation domains
Integer , <, Bool and Set L for some domain L ∈ L without further comment or direct
reference to this example.

Although the framework for our constraint system is based on the indexical ap-
proach of clp(FD) to constraint propagation which propagates constraints on finite
closed intervals, this framework is intended for all lattices including infinite and con-
tinuous ones. For this reason, we need to be able to define the constraints over both
open and closed intervals. Thus, in the rest of this section, we will show how a com-
putation domain can be combined with a special binary lattice we call the bracket
domain to form an interval domain suitable for the constraint propagation mechanism
described in Section 4.4. We do this in a number of stages. First, in 4.3.1, we define
the bracket domain and use this to construct two bounded computational domains, one
for the left and the other for the right bound of an interval. We then extend these
domains in 4.3.2 to allow for constraint operators. These are further extended in 4.3.3
to include an additional construct called an indexical. In 4.3.4, we use this enhanced
bounded domain to construct the interval domain. Finally in 4.4.4 we introduce a
simplification of the interval domain on discrete computation domains such as FD.

4.3.1 Bounded Computation Domains

We first define a domain of brackets,

DEFINITION 4.2 (Bracket domain) The bracket domain B is a lattice containing
just ‘)’ and ‘]’ with ordering ‘)’ ≺B ‘]’. We let ‘}’ denote any element of B.

86 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

We also define the function minB (}1, }2) to return the least value of }1 and }2 in
B.

This domain is combined with any computation domain to form the right bound
of an interval.

DEFINITION 4.3 (Simple bounded computation domain) The simple bounded com-
putation domain (for L) is the lattice resulting from the lexicographic product (L,B)
and is denoted Ls.

We next define the mirror of this domain for the left bound of an interval.

DEFINITION 4.4 (The mirror domain) The mirror (of Ls) is the lexicographic prod-
uct (L̂, B) and is denoted by Ls. The mirror of an element t=(a,‘}’) ∈ Ls is the element
(â, ‘}’) ∈ Ls and is denoted as t.

PROPOSITION 4.5

1. Ls is the simple bounded computation domain for L̂. i.e., Ls = L̂s;

2. ⊥Ls = >L) = (>L and >Ls = ⊥L] = [⊥L.

3. If t1 = (a1, ‘}1’), t2 = (a2, ‘}2’) ∈ Ls then,

if a1 6= a2,

t2 ≺Ls t1 ⇐⇒ t1 ≺Ls t2

glbLs (t1 , t2) = lubLs (t1 , t2)

lubLs (t1 , t2) = glbLs (t1 , t2)

 else

t1 �Ls t2 ⇐⇒ t1 �Ls t2
glbLs (t1 , t2) = glbLs (t1 , t2)

lubLs (t1 , t2) = lubLs (t1 , t2)

 .

PROOF 4.6 All three results are direct consequences of Definitions 4.3 and 4.4.
2

In the rest of the document, to simplify the notation, we often denote an element
(a,‘}’) in Ls as a} and an element (â, ‘}’) in Ls as {a. In particular, with this notation
we have ⊥Ls = ⊥L), and >Ls = >L].

EXAMPLE 4.7 Consider the computation domain L = Integer. Then 6] denotes
(6, ‘]’) ∈ Integers, [6 denotes (6̂, ‘]’) ∈ Integers and 6] = [6. Also

glbLs (3],5]) = lubLs (3],3)) = 3],

glbLs ([3, [5) = lubLs (3],5]) = 5] = [5,

lubLs ([3, [5) = glbLs (3],5]) = 3] = [3,

0) ≺Ls 0] ≺Ls 1) ≺Ls 1] ≺Ls . . . ≺Ls >L) ≺Ls >L] in Ls,

(>L ≺Ls [>L ≺Ls . . . ≺Ls (1 ≺Ls [1 ≺Ls (0 ≺Ls [0.

4.3. The Computation and Interval Domains 87

Moreover, if L = Set Integer, then {1,3}) denotes ({1, 3}, ‘)’), ({1,3} denotes

({̂1, 3}, ‘)’) and {1,3}] = [{1,3}. Also

glbLs ({4}], {4,6}]) = {4}] and lubLs ({3}], {4,6}]) = {3,4,6}],
glbLs ([{4}, [{4,6}) = lubLs ({4}], {4,6}]) = {4,6}] = [{4,6},
lubLs ([{4}, [{4,6}) = glbLs ({4}], {4,6}]) = {4}] = [{4},
{1}] ≺Ls {1,3}) ≺Ls {1,3}] ≺Ls {1,3,5}],
[{1,3,5} ≺Ls ({1,3} ≺Ls [{1,3} ≺Ls [{1}.

PROPOSITION 4.8 Let L′ ∈ {Ls, Ls} and t ∈ L′. Then,

(1) L′ = L′, (2) L′ ∈ {Ls, Ls}, (3) t ∈ L′ and (4) t = t.

PROOF 4.9 We prove the cases separately.

(1) Observe that

Ls =1 (L,B) =2 (
ˆ̂
L,B) =3 (L,B) =4 Ls (4.1)

where equalities, =1 and =4 follow from Definition 4.3 on the facing page, =2

from Definition 4.4 on the preceding page (applied twice), and =3 from the duality
definition for lattices.

Thus, if L′ = Ls, then the result follows. Moreover, if L′ = Ls, then L′ = Ls =
Ls = L′.

(2) By hypothesis, L′ ∈ {Ls, Ls}. Hence, by (4.1), L′ ∈ {Ls, Ls}.

(3) Observe that, as t ∈ L′, t = (a, ‘}’), for some a ∈ L ∪ L̂, we have

t =1 (a, ‘}’) =2 (â, ‘}’) ∈ L′

where the equality =1 follows from Definition 4.3, and equality =2 and relation
∈ from Definition 4.4.

(4) Observe that, for some a ∈ L ∪ L̂, we have

t =1 (a, ‘}’) =2 (ˆ̂a, ‘}’) =3 (a, ‘}’) =4 t.

where equality =1 follows from Definition 4.3, =2 from Definition 4.4 (applied
twice) and =3 from the duality definition for lattices.

2

88 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

4.3.2 Constraint Operators

The bounded computation domains are extended to allow for operators over the com-
putation domains.

DEFINITION 4.10 (Constraint operators) Suppose L,L1, . . . , Ln ∈ L∪ L̂ and that
◦L and ◦B are monotonic n-ary functions

◦L :: L1 × . . .× Ln → L,

◦B :: B × . . .×B︸ ︷︷ ︸
n times

→ B.

Suppose also that, if ◦L is not a strict monotonic function then ◦B is a constant func-
tion. Let ◦ be the operator

◦ :: Ls1 × . . .× Lsn → Ls

◦((a1, }1), . . . , (an, }n)) = (◦L(a1, . . . , an), ◦B(}1, . . . , }n)). (4.2)

Then ◦ is called a constraint operator for Ls.
The mirror ◦ of ◦ is

◦ :: Ls1 × . . .× Lsn → Ls

◦(t1, . . . , ti, . . . , tn) = ◦(t1, . . . , ti, . . . , tn). (4.3)

As is usual, if ◦ is a binary operator we allow for infix notation. Then the expression
◦(t1, t2) will be denoted just as t1 ◦ t2.

EXAMPLE 4.11 Suppose +L and −L are declared as

+L :: L× L→ L −L :: L× L̂→ L.

This means that, when L ∈ {Integer ,<}, if the operators +L/2 and −L/2 have
their usual definition and return the sum and difference of two numbers in L, they are
strict monotonic. Observe that as a and b̂ increase in L and L̂, respectively, a −L b̂
also increases in L.

Suppose, more generally, that, whenever +L/2 and −L/2 are defined for a domain
L, they are strict monotonic on L. Suppose also that +B and −B are defined as

}1 +B }2 = minB (}1, }2) and }1 −B }2 =] if }1 =B }2 and) otherwise.

Then the binary constraint operators + and − for Ls and their mirrors are declared
as

+ :: Ls × Ls → Ls − :: Ls × Ls → Ls

+ :: Ls × Ls → Ls − :: Ls × Ls → Ls.

4.3. The Computation and Interval Domains 89

Consider the case L = <. Then we have

3.2) + 4.1] = 7.3), (3.2 + [4.1 = 3.2) + 4.1] = 7.3) = (7.3,

7.3)− [4.1 = 3.2), (7.3−4.1] = 7.3)− [4.1 = 3.2) = (3.2.

PROPOSITION 4.12 Suppose ◦ is a constraint operator for Ls. Then,

◦ is monotonic; (a)

◦ is a constraint operator (for Ls); (b)

◦ is the mirror of ◦ i.e., ◦ ≡ ◦. (c)

PROOF 4.13 Suppose that ◦ :: Ls1× . . .×Lsn → Ls is a constraint operator. We prove
the cases separately.

(a) Suppose ti �Ls
i
t′i for i ∈ {1, . . . , n}, where ti = (ai, }i) and t′i = (a′i, }′i). We need

to show
◦(t1, . . . , tn) �Ls ◦(t′1, . . . , t′n) (4.4)

Observe that

By the product of lattices: ai �Li a
′
i; moreover if ai = a′i then }i �B}′i;

By monotonicity of ◦L : ◦L(a1, . . . , an) �L ◦L(a′1, . . . , a
′
n);

If ◦L(a1, . . . , an) ≺L ◦L(a′1, . . . , a
′
n) then (4.4) holds by the product of lattices and

Definition 4.10 on the facing page.

Otherwise, ◦L(a1, . . . , an) = ◦L(a′1, . . . , a
′
n). There are two cases:

(1) ∀i ∈ {1, . . . , n}, ai = a′i. Then, by monotonicity of ◦B,

◦B(}1, . . . , }n) �B ◦B(}′1, . . . , }′n).

(2) ∃i ∈ {1, . . . , n}, ai ≺Li a
′
i. Then ◦L is not a strict monotonic function and,

by Definition 4.10, ◦B is a constant. i.e., ◦B(}1, . . . , }n) = ◦B(}′1, . . . , }′n).

Thus, in both cases, (4.4) holds by the product of lattices and Definition 4.10.

(b) Observe that

◦ :: Ls1 × . . .× Lsn → Ls, (by Definition 4.10);

◦ :: L̂1
s × . . .× L̂n

s → L̂s, (by Proposition 4.5(1));

where, for i ∈ {1, . . . , n}, L̂i ∈ L ∪ L̂ and L̂ ∈ L ∪ L̂.

Assuming the notation of Definition 4.10, we have, if ti = (ai, }i) (1 ≤ i ≤ n),
then ◦(t1, . . . , tn) =

(
◦L(a1, . . . , an), ◦B(}1, . . . , }n)

)
.

90 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

Let ◦L̂ :: L̂1× . . .× L̂n → L̂ be the dual operator to ◦L so that, if ◦L(a1, . . . , an) =
a, then ◦L̂(â1, . . . , ân) = â. Then, by the duality principle of lattices, ◦L̂ is

monotonic in L̂. Moreover, ◦L is strict monotonic whenever ◦L̂ is. Hence, we
have

◦(t1, . . . , tn) =◦(t1, . . . , tn) (by Definition 4.10)

=(◦L(a1, . . . , an), ◦B(}1, . . . , }n)) (by Definition 4.10)

=(̂◦L(a1, . . . , an), ◦B(}1, . . . , }n)) (by Definition 4.4)

=(◦L̂(â1, . . . , ân), ◦B(}1, . . . , }n)) (by the definition of ◦L̂).

Thus ◦ is a constraint operator as defined in Definition 4.10.

(c) Observe that,

◦ :: Ls1 × . . .× Lsn → Ls, (by Definition 4.10);

◦ :: Ls1 × . . .× Lsn → Ls, (by Definition 4.10);

◦ :: Ls1 × . . .× Lsn → Ls, (by Proposition 4.8(1));

Also if ti ∈ Lsi for all i ∈ {1, . . . , n},

◦(t1, . . . , tn) = ◦(t1, . . . , tn) (by Proposition 4.8(4));

= ◦(t1, . . . , tn) (by Definition 4.10, applied twice);

= ◦ (t1, . . . , tn) (by Proposition 4.8(4)).

Therefore ◦ is equivalent to ◦.

2

In the definition of an operator, we allowed for the computation domains of its argu-
ments to be different from the domain of the result. This can provide a communication
channel from one solver to another.

EXAMPLE 4.14 Suppose that the unary operator trunc is defined as

trunc :: <s → Integers

trunc(a}) = truncInteger (a) truncB(})

where truncInteger (a) is defined to return the integer part of a, for any a ∈ <, and
truncB(}) =] for any } ∈ B. Then

trunc :: <s → Integers.

Thus, by (4.2) and (4.3),

trunc(3.1]) = truncInteger (3.1)truncB(]) = 3],

trunc([3.1) = trunc(3.1]) = 3] = [3.

4.3. The Computation and Interval Domains 91

4.3.3 Indexicals

The variables in VL are introduced into the domain Ls and its mirror by means of
indexicals. Let OL be a set of constraint operators defined for Ls.

DEFINITION 4.15 (Bounded computation domain) The bounded computation do-

main Lb (for L) and its mirror Lb are defined:

Lb = Ls

∪ {max (x) | x ∈ VL}
∪ {val(x) | x ∈ VL}

∪

{
◦(t1, . . . , tn)

∣∣∣∣∣ ◦ :: L′1 × . . .× L′n → Ls ∈ OL,
ti ∈ (L′i)

b for (1 ≤ i ≤ n)

}
,

Lb = {t | t ∈ Lb}

where for i ∈ {1, . . . , n}, Li ∈ L and L′i ∈ {Lsi , Lsi},

(L′i)
b = Lbi if L′i = Lsi and (L′i)

b = Lbi if L′i = Lsi ;

max (x) = min(x), min(x) = max (x) and val(x) = val(x);

for each ◦ :: L′1 × . . .× L′n → Ls ∈ OL,

◦(t1, . . . , ti, . . . , tn) = ◦(t1, . . . , ti, . . . , tn).

The expressions max (x),min(x), val(x) and val(x) are called indexicals. Elements of

Lb and Lb are called indexical terms.
The bounded computation domain Lb is also a lattice inheriting its ordering from

Ls and where >Lb = >Ls and ⊥Lb = ⊥Ls. Thus, if t1, t2 ∈ Lb, then t1 �Lb t2 if and
only if t1 = ⊥Lb, t2 = >Lb or t1, t2 ∈ Ls \ {⊥Ls ,>Ls} and t1 �Ls t2.

PROPOSITION 4.16

(1) t = t for any t ∈ {Lb, Lb}.

(2) If t ∈ Lb then t ∈ Lb and if t ∈ Lb then t ∈ Lb.

PROOF 4.17 We prove each case separately.

(1) Let n(t) be the number of operators of t. We prove it by induction on n(t).

• Base case: n(t) = 0.

∗ If t ∈ {Ls, Ls}, then t = t by Proposition 4.8(4).

∗ If t ∈ {max (x), val(x),min(x), val(x)} for any x ∈ VL and L ∈ L, then

t = t by Definition 4.15.

92 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

• Non-base case: n(t) > 0.

Let t = ◦(t1, . . . , tn) ∈ Lb ∪ Lb. Then n(t1), . . . , n(tn) < n(t) so that the
inductive hypothesis can be assumed for t1, . . . , tn. Therefore,

t = ◦(t1, . . . , tn)

= ◦(t1, . . . , tn), by Definition 4.15, applied twice;

= ◦ (t1, . . . , tn), by Proposition 4.12(c);

= ◦ (t1, . . . , tn) = t. by the inductive hypothesis.

(2) If t ∈ Lb then t ∈ Lb by Definition 4.15. If t ∈ Lb then, there are three cases:

(a) t ∈ Ls ⇒ t ∈ Ls ⇒1 t ∈ Ls ⇒2 t ∈ Lb;
(b) t ∈ {min(x), val(x)} ⇒2 t ∈ Lb ;

(c) t = ◦(t1, . . . , tn) ∈ Lb ⇒2,3 t ∈ Lb,

where ⇒1 follows from Proposition 4.8(1), ⇒2 follows from Definition 4.15 and
⇒3 follows Proposition 4.16(1).

2

EXAMPLE 4.18 Let + (for L = Integer), − (for L = <) and trunc as defined in
Examples 4.11 and 4.14. Then +, trunc ∈ OInteger , − ∈ O<. Let also x ∈ VInteger and
y ∈ V<, then:

3], max (x), 3) + max (x), trunc(max (y)) are in Integer b;

20.1), max (y), 20.1)−min(y), val(y) are in <b;

[3, min(x), (3+min(x), trunc(min(y)) are in Integer b;

(20.1, min(y), (20.1−max (y), val(y) are in <b

where, for instance, 3) + max (x) = 3)+max (x) = (3+min(x).

4.3.4 Interval Domains

We now define the structure over which constraints will be solved.

DEFINITION 4.19 (Interval domain) Let Lb be the bounded computation domain

for a domain L ∈ L. The interval domain RbL over L is the direct product 〈Lb, Lb〉.
The simple interval domain RsL over L is the direct product 〈Ls, Ls〉. A range is an
element of RbL. It is simple if it is an element of RsL.

4.3. The Computation and Interval Domains 93

By the product of lattices, RbL and RsL are lattices. To simplify the notation, an

element 〈a},b}〉 is written as {a,b}.

Therefore, for any r1 = 〈s1, t1〉, r2 = 〈s2, t2〉 ∈ RbL where s1, s2, t1, t2 ∈ Lb,

r1 �Rb
L
r2 ⇐⇒ (s1 �Lb s2) and (t1 �Lb t2),

glbRb
L
(r1 , r2) = 〈glb

Lb (s1 , s2), glbLb (t1 , t2)〉,

lubRb
L
(r1 , r2) = 〈lub

Lb (s1 , s2), lubLb (t1 , t2)〉,

>Rb
L

= [⊥L,>L] and ⊥Rb
L

= (>L,⊥L).

EXAMPLE 4.20

〈1],8)〉 ∈ RsInteger is written as [1,8),

[2.3,8.9) ∈ Rs< and [1.4,max (x)+4.9] ∈ Rb
<,

glbRb
<

([3.2,6.7], (1.8,4.5]) = [3.2,4.5],

lubRb
<

([3.2,6.7], (1.8,4.5]) = (1.8,6.7],

[3.0,4.0) �Rb
<

(1.8,4.5].

Note that

glbRb
<

([3.2,6.7], (1.8,4.5]) = 〈 glb<b ([3.2, (1.8), glb<b (6.7],4.5]) 〉 = [3.2,4.5];

lubRb
<

([3.2,6.7], (1.8,4.5]) = 〈 lub<b ([3.2, (1.8), lub<b (6.7],4.5]) 〉 = (1.8,6.7].

It is important to note that �Rb
L

simulates the interval inclusion2. Figure 4.1
illustrates the relationship between any two elements of the interval domain RsL over
any computation domain L ∈ L.

The consistency of simple ranges can be generically defined in any RsL as follows.

DEFINITION 4.21 (Consistency conditions) A simple range r = 〈s, t〉 ∈ RsL is
inconsistent if

1. s 6�Ls t (note that this means that r is inconsistent if s 6∼Ls t) or

2. s = (a and t = a} for any } ∈ B.

Otherwise r is consistent. Note that this means that ⊥Rb
L

= ⊥Rs
L

= 〈⊥Ls ,⊥Ls〉 =

(>L,⊥L) is inconsistent.

EXAMPLE 4.22 In the domain Integer, (1,1] and [5,2] are inconsistent whereas
[1,10] is consistent. In the domain Set Integer, [{1,3}, {1}] and [{1,3}, {1,4}] are
inconsistent and [{1}, {1,3}] is consistent, since {1}] ≺(Set Integer)s {1,3}].

2Note that the concept of interval used here differs from the usual concept of interval in set theory.

94 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

Figure 4.1: Relationship between any two ranges s1, t1 and s2, t2 in RsL for some L ∈ L

Any (in)consistent range in RsL identifies a set of (in)consistent ranges in RsL.

PROPOSITION 4.23 Suppose r, r′ ∈ RsL, for any L ∈ L, where r �Rs
L
r′. If r′ is

inconsistent, then r is also inconsistent.

PROOF 4.24 Suppose that

r = 〈s, t〉 r′ = 〈s′, t′〉
s = (a, }1) s′ = (a′, }′1)
t = (b, }2) t′ = (b′, }′2).

By hypothesis, r �Rs
L
r′ and, by Definition 4.19 on page 92 and by the product of

lattices (i.e., direct product),

s �Ls s′; (4.5)

t �Ls t′. (4.6)

From (4.5)

s �Ls s′ ⇒1 (â, }1) �(L̂,B) (â′, }′1)

⇒2 â ≺L̂ â′ or â = â′ and }1 �B}′1
⇒3 a′ ≺L a or a = a′ and }1 �B}′1

⇒2

{
if a ≺L a′ then s′ ≺Ls s;
if a = a′ then s �Ls s′.

(4.7)

4.3. The Computation and Interval Domains 95

where ⇒1 comes from Definition 4.4 on page 86, where ⇒2 comes from the product of
lattices (i.e., the lexicographic product) and ⇒3 comes from the duality principle for
lattices (see Section 4.2).

We suppose that r′ is inconsistent. Then, by Definition 4.21 on page 93, we have
three cases:

t′ ≺Ls s′; (i)

s′ 6∼ t′; (ii)

s′ = a′) and t′ = a}′2. (iii)

We reason with respect to two cases: a ≺L a′ and a = a′. In the following

⇒4 follows from (4.7);

⇒5 follows from (4.6);

⇒6 follows from Definition 4.21;

⇒7 follows from Definition 4.3 on page 86;

⇒8 follows from the product of lattices (i.e., the lexicographic product);

⇒9 follows from a contradiction.

Suppose a ≺L a′. Then,

for (i), a ≺L a′ ⇒5 t ≺Ls s′ ⇒4 t ≺Ls s⇒6 r is inconsistent;

for (ii), a ≺L a′ ⇒4,5 s′ ≺Ls s and t �Ls t′ ⇒∗ t 6�Ls s⇒6 r is inconsistent;

for (iii), a ≺L a′ ⇒8 s ≺Ls s′ ⇒4 false.

where ⇒∗ follows from the fact that if t �Ls s, then s′ ≺Ls s �Ls t �Ls t′ which
contradicts the hypothesis that s′ 6∼ t′.

Suppose now that a = a′. Then,

for (i),

a = a′ ⇒4 s �Ls s′ ⇒

s = s′ ⇒10 t′ ≺Ls s⇒5 t ≺Ls s⇒6 r is inconsistent;
s ≺Ls s′ ⇒7 s = a) and s′ = a]⇒10 t′ ≺Ls a]

⇒8 t′ �Ls a)⇒5 t �Ls a)⇒6 r is inconsistent.

for (ii),

a = a′ ⇒11

b = b′ ⇒12 a 6∼L b⇒8 s 6∼ t⇒6 r is inconsistent;

b ≺L b′ and

b �L a⇒8 t �Ls s′ ⇒5 s′ �Ls t′ ⇒9 false;
b ≺L a⇒8 t ≺Ls s⇒6 r is inconsistent;
b = a⇒ a ≺L b′ ⇒ a′ ≺L b′ ⇒8 s′ ≺Ls t′ ⇒9 false.

for (iii),

a = a′ ⇒4 s = a′)⇒5,

t = t′ ⇒ t = a′}′2 ⇒6 r is inconsistent;

t ≺Ls t′

⇒8 b = a′ and }2 �B}′2 ⇒ t = a′}2

⇒6 r is inconsistent;
⇒8 b ≺L a′ ⇒8 t ≺L s⇒6 r is inconsistent.

96 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

where

⇒10 comes from case (i) (i.e., t′ ≺Ls s′);

⇒11 comes from (4.6) since t �Ls t′ and, by the product of lattices (i.e., lexico-
graphic product), b �L b′;

⇒12 comes from case (ii) so that s′ 6∼ t′. Then, by Definition 4.3 and by the
product of lattices (i.e., lexicographic product) a′ 6∼L b′ and thus a 6∼L b′.

Thus, in all cases, r is inconsistent.
2

EXAMPLE 4.25 Suppose L ∈ L and a, b, c ∈ L where a ≺L c ≺L b. Figure 4.2
illustrates the part of lattice RsL constructed from the elements a, b and c. Note that
the nodes within the square are all inconsistent ranges where the rest of nodes are all
consistent. The nodes with circles are special cases and are considered in Section 4.4.4.

4.4 The Constraint Domains

The constraints are expressed by coupling each variable with one or more intervals of
values (defined using the interval domain) over which the variable may range. These
interval constraints which are defined in 4.4.1 are then solved using two processes:
constraint stabilisation (i.e., constraint narrowing) and constraint propagation defined,
respectively, in 4.4.2 and 4.4.3. In 4.4.5, we provide the concept of solution to a set
of constraints. Finally, in 4.4.6, we explain how our constraint system ensures the
monotonic propagation of constraints and thus ensures the reducing of the sizes of the
intervals in the constraint propagation process.

We continue to use L to denote any domain in L, VL the set of variables associated
with L. We also let RbL be the interval domain over L, VL = ∪{VL|L ∈ L} and
X ∈ ℘f (VL).

4.4.1 Interval Constraints

The interval constraints assign elements of RbL to variables in VL.

DEFINITION 4.26 (Interval constraint domain) Let x ∈ VL and r ∈ RbL. Then

x v r

is called an interval constraint for L with constrained variable x. If r is a simple
range (resp. non-simple range), then x v r is called a simple interval constraint (resp.
non-simple interval constraint). If r is consistent (resp. inconsistent), then x v r is
consistent (resp. inconsistent). If r = >Rb

L
, then x v r is called a type constraint

for x and denoted by x ::′ L. If t ∈ L, then x = t is a shorthand for x v [t, t]. The

4.4. The Constraint Domains 97

Figure 4.2: Structure of the simple interval domain RsL where a, b, c ∈ L and a ≺L
c ≺L b

98 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

interval constraints domain over X for L is the set of all interval constraints for L with
constrained variables in X and is denoted by CXL . The union

CX def
=
⋃
{CXL | L ∈ L}

is called the interval constraint domain over X for L.

The ordering for CX is inherited from the ordering in RbL. We define c1 �CX c2 if
and only if, for some L ∈ L, c1 = x v r1, c2 = x v r2 ∈ CXL and r1 �Rb

L
r2.

In the rest of the document x1, . . . , xn ::′L denotes x1 ::′L, . . . , xn ::′L.

EXAMPLE 4.27 Examples of type constraints, simple constraints and non-simple
interval constraints are shown below in (a), (b) and (c), respectively, where + (for
L = <), − (for L = Integer) and trunc, are as defined in Examples 4.11 and 4.14.

(a) x, y ::′ Integer , b ::′Bool , w , r ::′<;

(b) y v [1,4), b v [true,true], r v [1.23,3.45);

(c) r v min(w),max (w) + 3.2] and

x v trunc(min(w))−max (y),trunc(max (w))−min(y).

DEFINITION 4.28 (Intersection of simple interval constraints) Suppose x ∈ X.
The intersection in a domain L ∈ L of two simple constraints c1, c2 ∈ CXL where
c1 = x v r1, c2 = x v r2 and x ∈ VL is defined as follows:

c1 ∩L c2 = glbCXL
(c1 , c2) = x v glbRs

L
(r1 , r2).

Suppose x ∈ X and c1, c2, c3 ∈ CXL are simple interval constraints with constrained
variable x where c3 = c1 ∩L c2. Then it follows, from the definition, that ∩L has the
properties:

Contractance: c3 �CXL c1 and c3 �CXL c2;

Correctness: if c �CXL c1 and c �CXL c2, then c �CXL c3;

Commutativity: (c1 ∩L c2) = (c2 ∩L c1);

Idempotence: (c1 ∩L c3) = c3 and (c3 ∩L c2) = c3.

If Sx is a set of simple constraints for a variable x ∈ VL, for some L ∈ L, then
we define

⋂
L Sx = glbCXL

(Sx). As a result of the contractance property we have that⋂
L Sx � c, for each c ∈ Sx.

4.4. The Constraint Domains 99

EXAMPLE 4.29 Consider the domains Integer ,<,Bool and Set Integer. Let X =
{i, r, b, s} where i ∈ VInteger , r ∈ V<, b ∈ VBool and s ∈ VSet Integer . Then

i v [5,24] ∩L i v [1,15) = glbCXInteger

(
i v [5,24], i v [1,15)

)
= i v glbRb

Integer

(
[5,24], [1,15)

)
= i v glb

Integerb

(
[5, [1

)
, glbIntegerb

(
24],15)

)
= i v [5,15).

Also,

r v [1.12,5.67) ∩L r v [2.34,5.95) = r v [2.34,5.67);

b v (false,true] ∩L b v [false,true] = b v (false,true];

s v [{1}, {1,2,3,4}] ∩L s v [{3}, {1,2,3,5}] = s v [{1,3}, {1,2,3}].

4.4.2 Constraint Narrowing

Constraint narrowing is called constraint stabilisation and is mainly based on the in-
tersection of simple interval constraints.

DEFINITION 4.30 (Constraint store) A constraint store S for X is a finite subset
of CX . The store S is stable if, for each x ∈ X, there is exactly one simple constraint
c for x in S. The store S is simple if it contains only simple constraints. The store
S is inconsistent if it contains at least one inconsistent (and thus simple) interval
constraint, otherwise it is consistent.

The domain of the simple constraint stores for X is the set of all simple constraint
stores for X and is denoted by SX . The domain of the simple stable constraint stores
for X is the set of all simple stable constraint stores for X and is denoted by SSX .

DEFINITION 4.31 (Stabilised store) Let S ∈ SX and, for each x ∈ X, Sx the set
of constraints in S with constrained variable x. Then, the stabilised store S′ ∈ SSX
of S is defined:

S′ = {∩L(Sx) | x ∈ X ∧ x ∈ VL (for some L ∈ L) }

We write S 7→ S′ to express that S′ is the stabilised store of S.

Note that, by Definition 4.26, if Sx = ∅ then ∩L(Sx) = x v >Rb
L
. This ensures that

S′ ∈ SSX .

EXAMPLE 4.32 Suppose that Integer ,< ∈ L and X = {x, y, i} where x, y ∈ V< and
i ∈ VInteger . Let

S =
{
x v (8.3,20.4], y v [1.2,10.5), i v [0,10],

x v [1.0,15.0], y v (5.6,15.3), i v [2,15)
}
,

S′ =
{
x v (8.3,15.0], y v (5.6,10.5), i v [2,10]

}
.

Then S 7→ S′.

100 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

DEFINITION 4.33 (A partial ordering on simple stable constraint stores) Let
S, S′ ∈ SSX where cx, c

′
x denote the (simple) constraints for x ∈ X in S and S′,

respectively. Then S �s S′ if and only if, for each x ∈ X, cx �CX c′x.

Thus, SSX forms a lattice with ordering �s, top element the set of type constraints
for X (i.e., the set {x v >Rs

L
| x ∈ X ∩ VL, L ∈ L}) and bottom element the set

{x v ⊥Rs
L
| x ∈ X ∩ VL, L ∈ L}.

EXAMPLE 4.34 Consider the domains Integer and Bool. Then{
b v [false,false], i v (2,4]

}
≺s

{
b v [false,true], i v [1,5)

}
.

PROPOSITION 4.35 Let X ′ ⊆ X and C ∈ SX′. Let also S, S′ ∈ SSX such that
S ∪ C 7→ S′. Then, S′ �s S and ∀c ∈ C : ∃c′ ∈ S′ . c′ �CX c.

PROOF 4.36 Suppose for each x ∈ X, x is constrained by the constraints cx ∈ S and
c′x ∈ S′. Also, if x ∈ X ′, suppose that Cx is the set of constraints in C with constrained
variable x. Then, by Definition 4.31 on the preceding page,

c′x = ∩L(Cx ∪ {cx}) if x ∈ X ′,
c′x = cx otherwise.

Therefore, by Definition 4.28 on page 98 and the resulting contractance property, c′x �L
cx for each x ∈ X (and thus by Definition 4.33, S′ �s S) and, if x ∈ X ′, c′x �CX c for
all c ∈ Cx.

2

Any (in)consistent store in SSX identifies a set of (in)consistent stores in SSX .

PROPOSITION 4.37 Suppose S, S′ ∈ SSX where S �s S′. Then, if S′ is inconsis-
tent, S is also inconsistent.

PROOF 4.38 Suppose that S′ is inconsistent. Then, by Definition 4.30 on the pre-
vious page, there is, at least, one inconsistent constraint c′x = x v r′ ∈ S′ (for some
x ∈ X). By Definition 4.26 on page 96, this means that r′ is inconsistent.

Let cx = x v r be the constraint for x in S. By hypothesis, S �s S′ so that by
Definition 4.33, cx �CX c′x for all x ∈ X, and by Definition 4.26 on page 98, r �Rs

L
r′.

Thus, by Proposition 4.23, r is also inconsistent. Thus, by Definition 4.26, cx is also
inconsistent and hence, by Definition 4.30, S is inconsistent.

2

4.4.3 Constraint Propagation

Constraint propagation is defined by means of an evaluation function.

4.4. The Constraint Domains 101

DEFINITION 4.39 (Evaluating Indexical Terms) Let S ∈ SSX , x ∈ X, and let

LX = ∪
{
LX

∣∣L ∈ L, LX = {t ∈ Lb | vars(t) ⊆ X}
}
,

LX = ∪
{
LX

∣∣L ∈ L, LX = {t ∈ Lb | vars(t) ⊆ X}
}

where vars(t) denotes the set of variables occurring in t. Then the (overloaded) evalu-
ation functions are defined:

eval :: SSX × LX → LX , eval :: SSX × LX → LX ,

eval(S , t) = t if t ∈ Ls ∪ Ls, L ∈ L,
eval(S ,max (x)) = t where x v 〈s, t〉 ∈ S,
eval(S ,min(x)) = s where x v 〈s, t〉 ∈ S,
eval(S , val(x)) = t if x v 〈t, t〉 ∈ S,
eval(S , val(x)) = val(x) if x v 〈t, t〉 6∈ S,
eval(S , val(x)) = t if x v 〈t, t〉 ∈ S,
eval(S , val(x)) = val(x) if x v 〈t, t〉 6∈ S,

eval(S , ◦(t1 , . . . , tn)) = ◦(eval(S , t1), . . . , eval(S , tn)),

eval(S , ◦(t1 , . . . , tn)) = ◦(eval(S , t1), . . . , eval(S , tn)).

EXAMPLE 4.40 Let

S =
{
x v (1.23,6.78], y v [1.54,3.41), i v (1,4], b v [false,false]

}
be a simple stable constraint store for {x, y, i, b} i.e., S ∈ SS{x,y,i,b}. Then

eval(S ,2.34]) = 2.34],

eval(S ,min(i)+[3) = eval(S ,min(i))+eval(S , [3) = (1+[3 = (4,

eval(S , trunc(max (x))) = trunc(eval(S ,max (x))) = trunc(6.78]) = 6],

eval(S , val(b)) = [false,

eval(S , val(x)) = val(x).

where +/2 (for L = Integer) and trunc/1 are as defined in Examples 4.11 and 4.14.

Note that our indexical terms are a generalisation of the indexical terms provided
by clp(FD) (Codognet and Diaz, 1996a) and allow for infinite as well as finite ranges.

Let c = x v 〈s, t〉 be an interval constraint in CXL and thus s ∈ Lb and t ∈ Lb for
some L ∈ L. Then we overload eval/2 and define eval(S , c) as

eval(S , c) = x v
〈
eval(S , s), eval(S , t)

〉
.

102 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

DEFINITION 4.41 (Constraint propagation) Suppose S ∈ SSX .
If c, c′ ∈ CXL where c′ is simple and eval(S , c) = c′, then we say that c is propagated

(using S) to c′ and write c;S c′.
If C ⊆ CX and C ′ = {c′ | ∃c ∈ C . c;S c′} then we say that C is propagated to C ′

using S and write C ;S C ′. As a consequence C ′ ⊆ CX′ is a simple constraint store
where X ′ ⊆ X.

Note that, if x v 〈s, t〉 ∈ S where s 6= t, then the evaluation function eval applied
to val(x) (resp. val(x)) returns val(x) (resp. val(x)) unchanged. Thus the index-
ical val(x) (resp. val(x)) provides a useful mechanism to delay the propagation of
constraints. (Subsection 5.3.1 gives an example of their use.)

Observe also that if C is finite and C ;S C ′, then C ′ is computable (i.e., the
process of propagating C to C ′ using S terminates).

EXAMPLE 4.42 Consider both the store S′ and the variables in Example 4.32 on
page 99, and the operator trunc/1 as defined in Example 4.14 on page 90. Then{

x v min(y),20.4], i v trunc
(
min(y)

)
,trunc

(
max (y)

)}
;S ′{

x v (5.6,20.4], i v [5,10]
}
.

4.4.4 Equivalence in the Discrete Domain

When the computation domain L is discrete, we can identify equivalent elements in
the bounded computation domain Ls and its mirror Ls and hence, the interval domain
RsL and the constraint domain CXL .

EXAMPLE 4.43 For any i ∈ Integer, the immediate predecessor is i− 1 so that, for
instance, 3) = 2]. Similarly, with the Bool domain, the immediate predecessor of true
is false so that true) = false].

Suppose that L is a discrete domain in which the immediate predecessor pre(a) of
every value a ∈ L, with a 6= ⊥L, is defined. To reduce the size of the domain Ls, we
introduce the following equivalence rule for any a) ∈ Ls and a 6= ⊥L

a) ≡ pre(a)] in Ls .

By the duality principle of lattices, in the domain Ls (where succ(a) is the immediate
successor of any a ∈ L with a 6= >L) we have

(a ≡ [succ(a) in Ls.

If ⊥L and >L elements were added as fictitious bounds, then we define

pre(>L) ≡ >L, succ(⊥L) ≡ ⊥L.

When the interval domain is constructed from a discrete domain L, the equivalence
rules allows a reduction in the size of Ls and Ls and thus the size of the interval domain
RsL. If pre/1 is defined for every element of L, then they provide a canonical form for
Ls where ‘(’,‘)’ brackets are eliminated in favour of the ‘[’,‘]’.

4.4. The Constraint Domains 103

EXAMPLE 4.44 For the Integer domain, [1,3) ≡ [1,2]. Similarly, for the Bool
domain, [false, true) ≡ [false, false]. Suppose L = {0, 1, 2, 3} is a lattice where 0 < 1 <
2 < 3. Then,

Ls = { 0),0],1),1],2),2],3),3] } ≡ { 0),0],1],2],3] },
Ls = { (3, [3, (2, [2, (1, [1, (0, [0 } ≡ { (3, [3, [2, [1, [0 }.

Suppose also that X = {x, b}, x ∈ VInteger and b ∈ VBool . Then, x v (1,5) is
equivalent to x v [2,4] in CXInteger and b v (false, true] is equivalent to b v [true, true]

in CXBool .

With these rules for discrete domains more inconsistencies can be detected.

EXAMPLE 4.45 Consider again the domain L in Example 4.25. Suppose L is dis-
crete and that pre(c) = a and pre(b) = c. Then the ranges (a, c) ∈ RsL and (c,b) are
inconsistent since they are equivalent to ranges [c,a] and [b, c] respectively. These are
the circled nodes in Figure 4.2.

For instance, let L = Integer. Then the range (1,2) is inconsistent in the domain
RsInteger since [2,1] is inconsistent. Also the constraint x v (1,2) is inconsistent since
x v [2,1] is inconsistent.

In the rest of the document, we assume that all the simple interval constraints
defined on discrete domains are reduced (wherever possible) by the equivalence shown
in this section.

4.4.5 A Solution for a Constraint Store

DEFINITION 4.46 (Solution) Let C ∈ ℘(CX) be a constraint store for X. A solu-
tion for C is a consistent store R ∈ SSX where,

C ;R C ′

R ∪ C ′ 7→ R.

The set of all solutions for C is denoted as Sol(C). If it exists, the most general
solution for C (in short m.g.s. of C), is defined as:

m.g.s. of C = G ∈ Sol(C) | ∀R ∈ Sol(C).R �s G.

Therefore, a solution is a consistent constraint store containing, for each of the
constrained variables, exactly one simple interval constraint that cannot be reduced by
means of the propagation or stabilisation procedures.

LEMMA 4.47 Let C ∈ ℘(CX) and S,R ∈ SSX . If R is a solution for C ∪ S, then,
R �s S.

104 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

PROOF 4.48 By Definition 4.46 on the preceding page, R is consistent, and

C ∪ S ;R CR and R ∪ CR 7→ R. (4.8)

By Definition 4.41 on page 102, if C ∪ S ;R CR, then CR is equivalent to CR =
C1 ∪ C2 where

C ;R C1 and S ;R C2,

and also

C2 = {c′ | ∃c ∈ S . c;R c′}.

Observe that if c = x v 〈s, t〉 is a simple constraint and x ∈ VL then, by Defini-
tion 4.26 on page 96, 〈s, t〉 ∈ RsL and, by Definition 4.19 on page 92, s ∈ Ls and t ∈ Ls.
Therefore

eval(R, c) =1 x v
〈
eval(R, s), eval(R, t)

〉
=2 x v 〈s, t〉 = c.

where =1 comes from (overloaded) definition of eval function for constraints in
Page 101 and =2 comes from Definition 4.39 on page 101. By Definition 4.41 on
page 102, this means that c ;R c if c is simple. Since S contains only simple con-
straints, then by Definition 4.41, C2 = S.

Moreover, from (4.8), R∪CR 7→ R and, as shown previously, CR = C1∪C2 = C1∪S.
Thus R ∪ C1 ∪ S 7→ R and, by Proposition 4.35 on page 100, R �s S.

2

4.4.6 Monotonicity of Constraints

In this Section we show that all the constraints in our framework are intrinsically
monotonic.

LEMMA 4.49 Suppose that c �CX c′ are simple consistent constraints for L ∈ L
constraining the same variable y ∈ X and suppose also that c′ = y v 〈t′, t′〉 for some
t′ ∈ Ls. Then c = c′.

PROOF 4.50 Suppose that t′ = a}, for some a ∈ L. Then, as c′ is consistent, by
Definition 4.21 on page 93, t′ 6= a) so that t′ = a]. Suppose c = y v 〈s, t〉. Then, by
Definition 4.26 on page 98, 〈s, t〉 �Rs

L
〈a],a]〉 and, by Definition 4.19 on page 92,

s �Ls a] and t �Ls a].

Then, by Definition 4.4 on page 86 and by the product of lattices (i.e., the lexicographic
product),

s = a] or s = a) or s = a1} and â1 ≺L̂ â,

t = a] or t = a) or t = a2} and a2 ≺L a.

4.4. The Constraint Domains 105

By the duality principle of lattices in Section 4.2, this is equivalent to

s = a] or s = a) or s = a1} and a ≺L a1,

t = a] or t = a) or t = a2} and a2 ≺L a.

However, c is consistent so that, by Definition 4.26 on page 96, 〈s, t〉 is consistent.
By Definition 4.21, this means that s �Ls t and, if s = a) then t 6= a]. The only case,
for which this holds is when s = t = a].

2

Each interval constraint is propagated monotonically with respect to the ordering
on simple stable stores.

LEMMA 4.51 Let S1, S2 ∈ SSX be two consistent stores such that S1 �s S2 and
c, c2 ∈ CX such that c ;S2 c2. Then, there exists c1 ∈ CX such that c ;S1 c1 and
c1 �CX c2.

PROOF 4.52 Let c = x v 〈s, t〉 where x ∈ X and x ∈ VL for some L ∈ L. Then as
c ;S2 c2, by Definition 4.41 on page 102, c2 = eval(S2 , c) and c2 is simple. Then it
follows from the (overloaded) definition of eval/2 for constraints shown in Page 101
and Definition 4.26 on page 96 that

c2 = x v
〈
eval(S2 , s), eval(S2 , t)

〉
,

eval(S2 , s) ∈ Ls and eval(S2 , t) ∈ Ls . (4.9)

Suppose that c1 = x v eval(S1 , c). Then, again it follows from the (overloaded)
definition of eval/2 for constraints that

c1 = x v
〈
eval(S1 , s), eval(S1 , t)

〉
.

We have to prove that c ;S1 c1 and c1 �CX c2 which means that, by Definitions 4.26
and 4.41, we have to show that c1 is simple and that〈

eval(S1 , s), eval(S1 , t)
〉
�Rs

L

〈
eval(S2 , s), eval(S2 , t)

〉
. (4.10)

However, by Definition 4.19 on page 92, if (4.10) holds, c1 is simple. Thus, by the
product of lattices (i.e., direct product), we just have to show that

eval(S1 , s) �Ls eval(S2 , s) and (i)

eval(S1 , t) �Ls eval(S2 , t). (ii)

Let n(v) be the number of constraint operators in v. We prove (i) by induction on
n(s). The proof of (ii) is similar and omitted.

106 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

• Base case: n(s) = 0.

If s ∈ Ls, then, by Definition 4.39 on page 101, eval(S1 , s) = eval(S2 , s) = s.

If s /∈ Ls, then s = min(y) or s = val(y) for some y ∈ X. Observe that there
exists cy = y v 〈sy, ty〉 ∈ S1 and c′y = y v 〈s′y, t′y〉 ∈ S2 so that as, by hypothesis,
S1 �s S2 we have

S1 �s S2 ⇒1 cy �CX c′y ⇒2 〈sy, ty〉 �Rs
L
〈s′y, t′y〉 ⇒3 sy �Ls s′y and ty �Ls t′y.

(4.11)
where ⇒1 follows from Definition 4.33 on page 100, ⇒2 follows from Defini-
tion 4.26, and ⇒3 follows from the product of lattices (i.e., direct product) and
Definition 4.19.

Suppose first that s = min(y). Then, by Definition 4.39,

eval(S1 , s) = sy and eval(S2 , s) = s ′y .

Therefore, by (4.11), eval(S1 , s) �Ls eval(S2 , s).

Now suppose that s = val(y). By (4.9) eval(S2 , s) ∈ Ls and by Definition 4.39,
eval(S2 , s) = s ′y and s′y = t′y. Therefore, as S1 is consistent by Definition 4.30
cy is also consistent, it follows from (4.11) and Lemma 4.49, that sy = ty = s′y.
Thus, by Definition 4.39, eval(S1 , s) = sy so that eval(S1 , s) = eval(S2 , s).

• Non-base case: n(s) > 0.

Suppose ◦ :: Ls1 × . . . × Lsn → Ls is a constraint operator (for Ls). Then, by
Proposition 4.12(b) in Page 89, ◦ is also a constraint operator. Then,

n(s) > 0⇒ s =◦(s1, . . . , sn) =1 ◦(s1, . . . , sn)

⇒4

{
eval(S1 , s) = ◦(eval(S1 , s1), . . . , eval(S1 , sn));
eval(S2 , s) = ◦(eval(S2 , s1), . . . , eval(S2 , sn));

where =1 comes from Definition 4.10 and ⇒4comes from Definition 4.39 on
page 101. By the inductive hypothesis,

eval(S1 , si) �Ls
i

eval(S2 , si), i ∈ {1 , . . . ,n},

and by Proposition 4.12(a) in Page 89, ◦ is monotonic so that (i) holds.

2

PROPOSITION 4.53 Let S1, S2 ∈ SSX such that S1 and S2 are consistent and
S1 �s S2 and C ∈ ℘(CX) such that

C ;S1 C1 and S1 ∪ C1 7→ S′1,

C ;S2 C2 and S2 ∪ C2 7→ S′2.

Then S′1 �s S′2.

4.4. The Constraint Domains 107

PROOF 4.54 By hypothesis C ;S1 C1 and C ;S2 C2 so that, by Definition 4.41 on
page 102, C1 ∈ CX1 and C2 ∈ CX2 where X1 ⊆ X and X2 ⊆ X and

C1 = {c1 | ∃c ∈ C . c;S1 c1} and C2 = {c2 | ∃c ∈ C . c;S2 c2}.

As S1 �s S2, by Lemma 4.51 on page 105,

∀c2 ∈ C2 : ∃c1 ∈ C1 such that c1 �CX c2. (4.12)

By Definition 4.26 on page 98, if c1 �CX c2 then c1 and c2 are constrained on the
same variable x ∈ X. Then, it follows from (4.12) that

X2 ⊆ X1. (4.13)

Let C1x and C2x be the sets of constraints, in C1 and C2 respectively, with con-
strained variable x ∈ X (note that C1x and C2x can be the empty set). It follows
from (4.12) and (4.13) that, for each c2 ∈ C2x, there exists c1 ∈ C1x such that
c1 �CX c2.

Suppose that c1x, c2x, c
′
1x and c′2x are the constraints for x ∈ X in the stores

S1, S2, S
′
1 and S′2 respectively. By hypothesis S1 �s S2 so that, by Definition 4.33,

c1x �CX c2x. Since S1 ∪ C1 7→ S′1 and S2 ∪ C2 7→ S′2, by Definition 4.31 on page 99,

c′1x = ∩L(C1x ∪ {c1x}),
c′2x = ∩L(C2x ∪ {c2x}).

As consequence of Definition 4.28 on page 98 and contractance property of ∩L,

c′1x �CX c′2x, for each x ∈ X.

Therefore, by Definition 4.33, S′1 �s S′2. 2

EXAMPLE 4.55 Consider the definition of the operator − in Example 4.11 on
page 88, when L is < so that − :: <s ×<s → <s. Suppose that X = {x, y}, x, y ∈ V<,

S1 =
{
y v (2.0,4.0], x ::′ <

}
and S2 =

{
y v (1.0,11.0], x ::′ <

}
.

Then S1, S2 ∈ SSX and S1 ≺s S2. Suppose that

c1 = x v [0.0,20.0]−min(y) and c2 = x v [0.0,20.0]−max (y).

Then c1 is an interval constraint for < because

[0.0 ∈ <b and 20.0]−min(y) ∈ <b

and hence [0.0,20.0]−min(y) ∈ Rb
<. Using the constraint propagation procedure for S1

and S2 we obtain

c1 ;
S1 c11, c1 ;

S2 c12

108 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

where

c11 = x v [0.0,18.0), c12 = x v [0.0,19.0).

Then we have c11 ≺CX c12 (i.e., c1 was propagated monotonically with respect to
the ordering of constraint stores).

However, c2 is not an interval constraint. This is because, although [0.0 ∈ <b and

20.0] ∈ <b, we have max (y) /∈ <b with the consequence that,

20.0]−max (y) /∈ <b

and hence
[0.0,20.0]−max (y) /∈ Rb

<.

Observe that applying the constraint propagation procedure we would obtain

c2 ;
S1 c21, c2 ;

S2 c22

where

c21 = x v [0.0,16.0], c22 = x v [0.0,9.0].

Then we have c22 ≺CX c21. Thus the constraint procedure applied to c2 using the
smallest constraint store S1 derives the largest range for x. The problem is caused by
the fact that if S2 is replaced by a smaller store such as S1, max (y) also decreases in
<s, so that the value of 20.0]−max (y) actually increases. Thus, the right bound of the
range for x in c2 also increases so that the upper limit for y could never be reduced.

Fortunately this problem is detected by a simple check of the validity of the interval
constraints in our theoretical framework. Observe that the acceptability of expressions
such as c2 as valid constraints can be decided a priori using standard type-checking
techniques.

4.5 Operational Semantics

In this section, we provide an operational schema for propagating the interval con-
straints and prove both its correctness and termination.

We continue to use L to denote any domain in L, X ∈ ℘(VL) the set of constrained
variables, CX the set of all interval constraints domain for X and SSX the set of all
simple stable constraint stores for X.

4.5.1 Operational Schema for Constraint Propagation

Let C ∈ ℘f (CX) and S ∈ SSX . We define here solve(C, S), an operational schema for
computing a solution (if it exists) for C ∪ S. This schema is shown in Figure 4.3.

If at least one solution exists, the store S contains a solution for C ∪ S (assuming
termination of the schema).

4.5. Operational Semantics 109

procedure solve(C, S)

begin

if S is consistent then (0)

C := C ∪ S; (1)

repeat

C ;S C ′; %% Constraint Propagation (2)

S′ := S; (3)

S′ ∪ C ′ 7→ S; %% Store stabilisation (4)

until S is inconsistent or S = S′; (5)

endif;

endbegin.

Figure 4.3: solve/2: a generic schema for interval constraint propagation

THEOREM 4.56 (Correctness) Let C ∈ ℘f (CX) and S ∈ SSX . If at least one solu-
tion for C ∪S exists, a terminating execution of the operational schema for solve(C, S)
computes in S the most general solution for C ∪ S. Otherwise, if there is no solution
for C ∪ S, solve(C, S) computes in S an inconsistent store.

PROOF 4.57 Let S0 be the initial value of S and, by step (1), C = C ∪ S0. Suppose
that there are k iterations of the repeat loop and that, for each i where 1 ≤ i ≤ k, Si
is the value of the constraint store S at step (5), after completing i iterations of the
repeat loop.

Suppose first that a solution R (for C ∪ S0) exists. Then, by Definition 4.46, R is
consistent, R ∈ SSX and

C ;R CR and R ∪ CR 7→ R. (4.14)

Note that, initially S0 = S ∈ SSX . Then, by Lemma 4.47 on page 103,

R �s S0. (4.15)

We show by induction on i, that after i ≥ 0 iterations of the repeat loop

R � Si. (4.16)

The base case when i = 0 is given by (4.15). For the inductive step, suppose that
there are at least i > 0 iterations of the repeat loop and that, after i− 1 steps, we have
R � Si−1. Then

C ;Si−1 C ′, step (2); (4.17)

Si−1 ∪ C ′ 7→ Si, step (4). (4.18)

110 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

It follows from (4.14), (4.17), (4.18), and Proposition 4.53 on page 106 that (4.16)
holds.

Therefore, R � Sk. As R is consistent, by Proposition 4.37 on page 100, Sk is
consistent. However, the procedure terminates before the k + 1’th iteration so that the
test in step (5) is true and we must have Sk = Sk−1.

By (4.17) and (4.18)

C ;Sk−1 C ′ and Sk−1 ∪ C ′ 7→ Sk. (4.19)

Thus, by Definition 4.46, Sk is a solution for C (i.e., C ∪ S0). Moreover, if R is
another solution for C ∪ S0, then as R �s Sk and as R was any solution for C ∪ S0,
Sk is the most general solution for C ∪ S0.

Suppose next that there is no solution for C ∪ S0. Then Sk−1 6= Sk or else, by
(4.19), Sk would be a solution. Thus, in this case, as the procedure terminates before
the k+1’th iteration so that the test in step (5) is true, we must have Sk is inconsistent.

2

We do not discuss possible efficiency improvements since the main aim is to pro-
vide the basic methodology, showing how the execution method of clp(FD) may be
generalised for constraint propagation on any lattice-structure domain.

4.5.2 Termination

New constraints, created by the propagation step (2) (see Figure 4.3) are added to the
set of constraints before the stabilisation step (4). Thus, with infinite domains, the
algorithm may not terminate (note that the constraints could be contracted indefinitely
in the stabilisation step).

EXAMPLE 4.58 Consider the operator div2< :: < → < where div2< a = a
2.0 and let

div2B be the identity on B. Then let C be the constraint store{
x v [0.0,10.0], x v [0.0, div2 (max (y)),

y v [0.0,10.0], y v [0.0, div2 (max (x))
}

where x, y ∈ V< and S0 the top element of the lattice SS{x,y}. Let also Si be the value
of the store S at the end of the i’th iteration for i ≥ 1 of the operational schema for
solve(C, S) with S0 the initial value of S. Then, in the execution of solve(C, S), S is
indefinitely reduced i.e.,

S0 =
{
x v [⊥<,><], y v [⊥<,><]

}
,

S1 =
{
x v [0.0,10.0], y v [0.0,10.0]

}
,

S2 =
{
x v [0.0,5.0], y v [0.0,5.0]

}
,

S3 =
{
x v [0.0,2.5], y v [0.0,2.5]

}
,

.

4.5. Operational Semantics 111

To force termination, we introduce the notion of precision of a consistent constraint.

DEFINITION 4.59 (Precision of a constraint) Let CCXL be the set of all consistent
(and thus simple) interval constraints for L with constrained variables in X, x ∈ X∩VL
for any L ∈ L and <I denote the lexicographic product (<+, Integer) where <+ is the
domain of non-negative reals. Then we define

precisionL ::CCXL → <I
precisionL

(
x v {1a,b}2

)
=
(
â �L b, }1 �B }2

) (4.20)

where �L ::
{

(â, b)
∣∣ a, b ∈ L, a �L b

}
→ <+ is a (system or user defined) strict

monotonic function and �B :: B ×B → {0, 1, 2} is the strict monotonic function

‘]’ �B ‘]’
def
= 2 ‘]’ �B ‘)’

def
= 1 ‘)’ �B ‘]’

def
= 1 ‘)’ �B ‘)’

def
= 0.

Since precisionL is defined only on consistent constraints, the function �L only
needs to be defined when its first argument is smaller or equal than the second. This
function has to be defined for each computation domain.

PROPOSITION 4.60 precisionL is strict monotonic. i.e.,

precisionL(c) <<I precisionL(c′) if c <CCXL
c′.

PROOF 4.61 Suppose that c = x v {1a, b}2 and c′ = x v {′1a′, b′}′2 where c ≺CCXL c′.
Then, we have to prove that

precisionL(c) <<I precisionL(c′),

which, by Definition 4.59, is equivalent to showing:(
â �L b, }1�B}2

)
<<I

(
â′ �L b′, }′1 �B }

′
2

)
. (4.21)

By hypothesis, c ≺CCXL c′, so that by Definition 4.26 on page 98

{1a, b}2 ≺Rs
L
{′1a′, b′}′2

and, by the product of lattices (i.e., direct product), either

{1a ≺Ls {′1a′ and b}2 �Ls b′}′2 or (4.22)

{1a �Ls {′1a′ and b}2 ≺Ls b′}′2. (4.23)

If (4.22) holds, then, by the product of lattices (i.e., lexicographic product),(
â ≺L̂ â′ or â =L̂ â′ and }1 ≺B}′1

)
and

(
b ≺L b′ or b =L b

′ and }2 �B}′2
)
. (4.24)

Similarly, if (4.23) holds, then,(
â ≺L̂ â′ or â =L̂ â′ and }1 �B}′1

)
and

(
b ≺L b′ or b =L b

′ and }2 ≺B}′2
)
. (4.25)

112 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

Therefore, there are three cases: â ≺L̂ â′ and b �L b′, â = â′ and b ≺L b′, or â = â′

and b = b′. However, we have{
â ≺L̂ â′ and b �L b′
â =L̂ â′ and b ≺L b′

}
⇒1 â �L b ≺L â′ �L b′ ⇒2 (4.21) holds;

â =L̂ â′ and b =L b
′
{
⇒3}1 ≺B}′1 and }2 �B}′2
⇒4}1 �B}′1 and }2 ≺B}′2

}
⇒1,5

â �L b = â′ �L b′ and }1�B}2 ≺B}′1�B}′2 ⇒2 (4.21) holds

where ⇒1 comes from strict monotonicity of �L in Definition 4.59 on the previous
page, ⇒2 comes from the product of lattices (i.e., lexicographic product), ⇒3 comes
from (4.24), ⇒4 comes from (4.25) and ⇒5 comes from strict monotonicity of �B in
Definition 4.59.

2

EXAMPLE 4.62 Let Integer, <, Bool and Set Integer and let also <2 = 〈<,<〉.
Then we define, for all i1, i2 ∈ Integer, x1, x2, y1, y2 ∈ <, b1, b2 ∈ Bool and s1, s2 ∈
Set Integer such that i1 �Integer i2, x1 �< x2, y1 �< y2, b1 �Bool b2 and s1 �Set Integer

s2,

î1 �Integer i2 = i2 − i1,
x̂1 �< x2 = x2 − x1,

b̂1 �Bool b2 = 0.0 if b1 = b2 and 1.0 otherwise,

̂〈x1, y1〉 �<2 〈x2, y2〉 = +
√

(x2 − x1)2 + (y2 − y1)2,
ŝ1 �Set Integer s2 = #(s2)−#(s1).

Let X = {i, i′, x, y, s, b} and suppose i, i′ ∈ VInteger, x ∈ V<, y ∈ V<2, s ∈
VSet Integer , b ∈ VBool and

c1 = i v [1,4], c2 = i′ v [1,4),

c3 = x v (3.5,5.7), c4 = y v [(2.0,3.0), (3.4,5.6)],

c5 = s v [{}, {3,4,5}) and c6 = b v [false, true].

Then

precisionInteger (c1) = (3.0, 2), precisionInteger (c2) = (2.0, 2),

precision<(c3) = (2.2, 0), precision<2(c4) = (2.95, 2),

precisionSet Integer (c5) = (3.0, 1), precisionBool (c6) = (1.0, 2)

Observe that precisionInteger (c2) is (2.0, 2) instead of (3.0, 1) since the constraint

i′ v [1,4) is equivalent in the domain CX (see Section 4.4.4) to the constraint i′ v [1,3],
and the precision is then computed with respect to this last constraint.

4.5. Operational Semantics 113

The binary operators used in this example, that is, − and + as well as the unary
operators # and squared need to be complete functions over the whole computation
domain and therefore need to include the lifted bounds. The unary operator square root
must be defined over the non-negative real domain, including the lifted upper bound.

DEFINITION 4.63 (Precision of a store) We define the precision of a consistent
constraint store S ∈ SSX as

precision(S) =
∑

c∈S,c∈CCXL for some L∈L

precisionL(c)

where the sum in <I is defined as (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

Therefore, the precision of a consistent simple stable constraint store S is the sum of
the precisions of each of its elements.

EXAMPLE 4.64 Suppose that S = {c1, c2, c3, c4, c5, c6} ∈ SSX , where ci for 1 ≤ i ≤
6 is as defined in Example 4.62 on the facing page, and X = {i, i′, x, y, s, b}. Then

precision(S) =
∑

1≤i≤6
precisionL(ci) = (14.15, 9).

PROPOSITION 4.65 Suppose S, S′ ∈ SSX are consistent stores where S ≺s S′.
Then precision(S) <<I precision(S′).

PROOF 4.66 By hypothesis S ≺s S′ and then, by Definition 4.33 on page 100,

∀x ∈ X . cx �CCXL c′x and ∃y ∈ X . cy ≺CCXL c′y

where, for all x ∈ X and x ∈ VL (for some L ∈ L), cx and c′x are the simple consistent
constraints in S and S′ respectively. Then, by Proposition 4.60 on page 111,

∀x ∈ X . precisionL(cx) ≤<I precisionL(c′x) and

∃y ∈ X . precisionL(cy) <<I precisionL(c′y).

Since the sum in <I is defined monotonically as (a1, a2)+(b1, b2) = (a1+b1, a2+b2),
then ∑

x∈X,cx∈S,cx∈CCXL

precisionL(cx) <<I
∑

x∈X,c′x∈S′,c′x∈CCXL

precisionL(c′x).

Thus, by Definition 4.63,

precision(S) <<I precision(S′).

2

114 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

By defining a computable3 bound ε ∈ <+∪{0.0}, we can check if the precision of the
simple constraints in a store S were reduced by a significant amount in the stabilisation
process (step 4 in the operational schema for solve(C, S)). If the change is large enough
then the propagation procedure continues. Otherwise the set of simple constraints in
the store S is considered a “good enough” solution and the procedure terminates. This
“solution” is an approximation to the concept of solution shown in Definition 4.46.
The case S = S′ is equivalent to the case4 precision(S′) − precision(S) = (0.0, 0) and
the case precision(S′)− precision(S) = (0.0, φ) with φ > 0 corresponds, to a situation
in which only a propagation or change in the brackets of the ranges associated to the
constraints in S was done.

The bound ε is user or system defined. To use precision/1 and ε, we define a new
operational schema for solveε(C, S) which is the same as that for solve(C, S) apart
from step (5) which is replaced by:

(5?) until S is inconsistent or precision(S′)− precision(S) ≤<I (ε, 0).

THEOREM 4.67 (Termination) Let C ∈ ℘f (CX) and S ∈ SSX . If ε > 0.0 then the
operational schema for solveε(C, S) terminates.

PROOF 4.68 Suppose that S0 is the initial value of S. If S0 is inconsistent, then
the test in step (0) fails and the procedure terminates without entering the repeat loop.
Suppose S0 is consistent so that there is at least one iteration of the repeat loop. For
i ≥ 1, let Si denote the value of constraint store S at the end of the i’th iteration of the
repeat loop. If for any i, Si is inconsistent, then the test in step (5?) is true and the
procedure terminates. Suppose now that, for i ≥ 1, Si is consistent. In the first iteration
we have, by step (4), S0 ∪C ′ 7→ S1 so that, by Proposition 4.35 on page 100, S1 �s S0.
Then, if S1 = S0 the procedure terminates since precision(S1) =<I precision(S0) so
that the test in step (5?) is true. Otherwise, S1 ≺s S0 and thus, by Proposition 4.65
precision(S1) <<I precision(S0). Then, precision(S1) <<I ><I so that, for some
constant k, we have

precision(S1) <<I (k × ε, 0).

We will show by induction on i ≥ 1 that

precision(S1)− precision(Si) ≥<I
(
(i− 1)× ε, 0

)
.

It follows that i ≤ k+1 and the procedure terminates after no more than k+1 iterations.

The base case, when i = 1 is obvious. Suppose next that i > 1 and that the
hypothesis holds for i− 1. If there is an i iteration, then, by the condition in step (5?)
of the repeat loop,

precision(Si−1)− precision(Si) ><I (ε, 0).

3That is, representable in the machine which is being used - the computation machine.
4The difference in <I is defined as (a1, a2)− (b1, b2) = (a1 − b1, a2 − b2).

4.5. Operational Semantics 115

However, by the inductive hypothesis,

precision(S1)− precision(Si−1) ≥<I
(
(i− 2)× ε, 0

)
so that

precision(S1)− precision(Si) ≥<I (ε, 0) +
(
(i− 2)× ε, 0

)
=
(
(i− 1)× ε, 0

)
.

2

DEFINITION 4.69 (Approximate solution) Let C ∈ ℘f (CX) and S ∈ SSX . Let
also R be a solution for C ∪ S and (δ, φ) ∈ <I. An approximate solution via (δ, φ) for
C ∪ S is a simple stable constraint store for X denoted as R(δ,φ) where,

precision(R(δ,φ))− precision(R) ≤<I (δ, φ) and R �s R(δ,φ).

The number of iterations of the operational schema depends, for infinite domains,
on the value of ε. In these cases, the final solution for solveε(C, S) is an approximate
solution for C ∪ S.

THEOREM 4.70 (Extended correctness) Let C ∈ ℘f (CX) and S ∈ SSX . If at least
one solution R for C ∪ S exists, a terminating execution of the operational schema for
solveε(C, S) computes in S an approximate solution for C ∪ S.

PROOF 4.71 Suppose the procedure terminates after k iterations with Sε the value
of the store S. It has already been shown in the proof of Theorem 4.56 in line (4.16)
that

R �s Sε,

so that by Proposition 4.65 on page 113

precision(R) ≤<I precision(Sε),

and thus, for some (δ, φ) ∈ <I,

precision(Sε)− precision(R) = (δ, φ).

Then, by Definition 4.69, Sε is an approximate solution for C ∪ S.
2

Also, in these cases, the approximate solution is dependent on the value of ε in the
sense that lower ε is, closer the approximate solution to the solution is.

THEOREM 4.72 Let R be a solution for C ∪ S where C ∈ ℘f (CX) and S ∈ SSX .
Suppose that Sε1 and Sε2 are the approximate solutions computed by the operational
schema for solveε1(C, S) and solveε2(C, S), respectively. Then, if 0.0 ≤ ε1 ≤ ε2,

R �s Sε1 �s Sε2 .

116 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

PROOF 4.73 In the previous proof we have R �s Sε for any ε ≥ 0.0. Therefore
R �s Sε1 and R �s Sε2 Thus, we just have to show that Sε1 �s Sε2.

Suppose the procedures solveε2(C, S) and solveε1(C, S) terminate after k2 and k1 it-
erations respectively. Therefore, the check, in line (5?), for the repeat loop for iterations
from 1 to k2 must also succeed for ε1. Thus k1 ≥ k2.

Suppose that Si is the value of S at the end of the i’th iteration of the repeat loop
(1 ≤ i ≤ k1) (so that Sk1 = Sε1 and Sk2 = Sε2). We show, by induction on i, where
k2 ≤ i ≤ k1, that

Si �s Sε2 . (4.26)

The base case when i = k2 is obvious. For the inductive step, suppose that i > k2
and assume that Si−1 �s Sε2. By step (4) of the extended operational schema, we have

Si−1 ∪ C ′ 7→ Si (4.27)

at the end of the i’th iteration of the repeat loop. Thus, by Proposition 4.35 on page 100,
Si �s Si−1 so that (4.26) holds. Therefore, letting i = k1 we obtain the required result

Sε1 �s Sε2 .

2

The precision map and the bound ε allow direct and transparent control over the
accuracy of the results. For example, we could define ε = 10−8 for reals. Together, the
precision map and the bound ε provide a concept of graded solutions to a constraint
problem as well as a concept of distance to the correct solution: the higher the bound
ε, then the further away (from the correct solution) is the approximate solution. The
set of approximate solutions are ordered by the ordering relation on stores shown in
Definition 4.33.

The termination of our algorithm consists of measuring the propagation by the
difference of the precision of stores. This concept is generic and, to our knowledge,
novel. A naive approach, only on reals, consists of associating a precision parameter
with the real domain to limit the number of times that the domain of a variable can
be refined (Sidebottom and Havens, 1992).

4.6 Instances of Our Framework

4.6.1 Classical Domains

Most classical constraint domains are lattices. For instances, the Integer , <, Bool , and
Set L (for any domain L ∈ L) domains have been used throughout the chapter to illus-
trate the concepts as they were defined. Here are examples of constraint intersection
in the interval domain over these domains:

(1) i v [1,8) ∩L i v (0,5] = i v [1,5];

(2) r v [1.12,5.67) ∩L r v [2.34,5.95) = r v [2.34,5.67);

(3) b v (false, true] ∩L b v [false, true] = b v (false, true].

4.6. Instances of Our Framework 117

Also suppose that L1 ∈ L. Then, Set L1 is a lattice over which it is possible to
solve set constraints. For example, consider the following store:

S =
{
s ::′Set Integer ,

s v [{1},{1,2,3,4}],

s v [{3},{1,2,3,5}]
}

By applying ∩L twice, constraints in S are solved as follows5:

s v [∅,>Set Integer] ∩L s v [{1},{1,2,3,4}] = s v [{1},{1,2,3,4}]

s v [{1},{1,2,3,4}] ∩L s v [{3},{1,2,3,5}] = s v [{1,3},{1,2,3}]

4.6.2 Computation Domains: More Examples

Here we provide further examples of (possibly user-defined) computation domains and
indicate how they may be used.

Binary strings.

The domain of binary strings B is the set of all sequences (possibly infinite) of zeros and
ones together with >B. The bottom element ⊥B is the empty sequence. For all b1, b2 ∈
B, we define b1 �B b2 if and only if b1 is a prefix (finite initial substring) of b2. Therefore
glbB(b1 , b2) is the largest common prefix of b1 and b2 (e.g. glbB(00010 , 00111) = 00)
and lubB(b1 , b2) is >B if b1 6∼ b2, b2 if b1 �B b2 and b1 if b2 �B b1. Therefore

(B,�B, glbB, lubB,⊥B,>B)

is a lattice. Thus, with B as the computation domain and +/2 a constraint operator
that concatenates two binary strings, the following interval constraints for x, y ∈ VB

x, y ::′ B, x v [001+min(y),>B]

constrain x to have values in the set of binary strings that start with the sequence 001.

Non-negative integers ordered by division.

Let Nd denote the set of non-negative integers partially ordered by division: for all
n,m ∈ Nd, m �Nd

n if and only if ∃k ∈ Nd such that km = n (that is, m divides n).
Then

(Nd,�Nd
, gcd , lcm, 1, 0)

is a lattice where gcd denotes the greatest common divisor and lcm the least common
multiple. Thus with Nd as the computation domain we have:

x v
[
2, 24] ∩L x v [3, 36] = x v [6, 12].

5Observe that s ::′Set Integer is the constraint s v [∅,>Set Integer].

118 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

Numeric intervals

We consider Interv as the domain of the (possibly continuous) numeric intervals. We
define it1 �Interv it2 if and only if it1 ⊆ it2 (i.e., it1 is a subinterval of it2). Thus
glbInterv and lubInterv are the intersection and union of intervals respectively. Our
framework solves constraints for the Interv computation domain as follows:

i v [[5, 6], [2, 10)] ∩L i v [(7, 9], [4, 15]] = i v [[5, 6] ∪ (7, 9], [4, 10)]

where [4, 10) = [2, 10) ∩ [4, 15). Observe also that [[5, 6] ∪ (7, 9] ∈ Intervs whereas
[4, 10)] ∈ Intervs.

4.6.3 Combinations of Domains

Our lattice-based framework allows for new computation domains to be constructed
from previously defined domains.

Product of domains

As already observed, the direct and lexicographic products of lattices are lattices. For
example, consider the lattice Integer .
(1) A point in a plane may be defined by its Cartesian coordinates using the direct
product Point = 〈Integer , Integer〉.
(2) A rectangle6 can be defined by two points in a plane: its lower left corner and its
upper right corner. Let Rect be the direct product 〈Point ,Point〉.

Interval constraints can be declared directly on these domains. For example, con-
sider re ∈ VRect , then

re v [〈〈2, 2〉, 〈5, 5〉〉, 〈〈4, 4〉, 〈7, 7〉〉]

constrains the rectangle re to have its lower left corner in the plane 〈2, 2〉×〈4, 4〉 and its
upper right corner in the plane 〈5, 5〉×〈7, 7〉. Thus the rectangle 〈〈3, 3〉, 〈6, 6〉〉 satisfies
this constraint.

Sum of Domains

As already declared, the linear sum of n > 1 lattices is also a lattice.
As an example, consider the lattice AtoF containing all the (uppercase) alphabetic

characters between ‘A’ and ‘F’ with the usual alphabetical ordering and the lattice 0to9
containing the numeric characters from ‘0’ to ‘9’ with the ordering ‘0’<‘1’<...<‘8’<‘9’.
Then the lattice of hexadecimal digits 0toF can be defined as the lattice 0to9]AtoF .
Now, it is possible to constrain variables to have values in such a domain. For example a
code of four hexadecimal digits can be initially represented by four variables h1h2h3h4,
belonging to V0toF , constrained initially by a type constraint as

h1, h2, h3, h4 ::′ 0toF

6We assume a rectangle that has its base parallel to the x axis.

4.7. Related Work 119

Note that this is equivalent to the constraints

h1 v [‘0’,‘F’], h2 v [‘0’,‘F’], h3 v [‘0’,‘F’], h4 v [‘0’,‘F’].

4.7 Related Work

4.7.1 Interval Reasoning

In Section 2.6.5 we discussed the integration of constraints and interval arithmetic.
The indexical approach of clp(FD) to constraint propagation, from which our frame-
work is derived, is based on interval arithmetic. Note that, interval arithmetic has
been applied to constraint satisfaction problems (Benhamou, 1995; Lee and van Em-
den, 1993; Older, 1989) over numeric domains (Benhamou and Older, 1997) and, in
particular, to floating point numbers on relational programming (Cleary, 1987). In
this latter application, interval computations are used to approximate a computed real
number. This concept of approximation which works well on numeric domains does
not generalise since it assumes that the closest value smaller (resp. higher) than any
computed value is computable. Thus, for our framework, we have defined a new system
of approximation for infinite domains that ensures that the constraint solver only has
to deal with computable values.

Older and Vellino in (Older and Vellino, 1993) present a lattice-theoretic semantics
for numeric interval constraints Here, constraint interval arithmetic is described as a
classical numerical computation technique as well as a proof technique that allows to
prove the non-existence of solutions. The framework proposed in (Older and Vellino,
1993) aims to capture the properties of both the primitive interval operations and the
constraint propagation networks created from them. Based on lattice theory, some
analogies with respect to our proposal can be detected: (1) the computation domain
has a lattice structure and is constructed from the bounds of the intervals (2) the theory
can be applied with infinite precision (i.e., without approximating a real to a floating
point number) although only on reals; (3) the operators are assumed to maintain
properties over the computation domain that are also maintained by our constraint
operators (e.g., monotonicity); (4) the propagation process is based on a fixed point
semantics. In spite of the similarities, there are a number of aspects that made this
approach very different from our proposal: (1) The framework is developed exclusively
for numeric domains and then assumes all the basic operations on reals as the primitive
operations; as consequence the initial intervals of the variables are always numeric and
the solutions range only over numeric intervals; (2) we provide a control mechanism, at
the user level, for the propagation by allowing the constraint operators to be defined
directly on the bounds of the interval; in this sense, Older and Vellino do not treat the
issue of the transparency of their theory; (3) the theory proposed in (Older and Vellino,
1993) is “quite abstract and therefore somewhat remote from actual implementations”,
whereas our theory can be directly implemented; (4) the theory described in (Older and
Vellino, 1993) does not complete the solving, as we do in Chapter 6, so that to obtain all
the solutions simply relies on the backtracking mechanism of Prolog; moreover solver

120 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

cooperation is not treated at all in (Older and Vellino, 1993) and implementation issues
are neglected (see Chapters 5 and 7, respectively).

4.7.2 Generic Frameworks

In this section we discuss several proposals for finding general principles for constraint
satisfaction.

Constraint Propagation from Chaotic Iterations (Apt, 1999) proposes a frame-
work for constraint propagation that is based on chaotic iteration (CI) algorithms for
partially ordered domains. The key idea is that most constraint propagation algorithms
presented in the literature can be expressed as direct instances of these algorithms. Apt
also shows in (Apt, 1999) how new constraint propagation algorithms for some domains
(i.e., those that hold a property called the finite chain property) may be obtained as
instances of this framework.

In (Fernández and Hill, 1999c) we presented a preliminar version of our propa-
gation algorithm presented in this chapter. The propagation frameworks described
in (Fernández and Hill, 1999c) and (Apt, 1999) appear to have some analogies; in
particular, both consider schemas for constraint propagation procedures for partially
ordered domains, finite or infinite. In (Fernández and Hill, 1999b) we established the
relationship between these approaches so that the properties of the algorithms shown
in each of them can be generalised to the other. We presented a modified version of the
chaotic iteration algorithm based on one presented in (Apt, 1999). This modified algo-
rithm relaxes the requirement that domains satisfy the finite chain property and can be
used for any domain that is a lattice. The chaotic iteration approach of (Apt, 1999) is
then used to derive a constraint propagation algorithm from the interval-lattice based
constraint propagation framework described in (Fernández and Hill, 1999c). Then, by
establishing the connection between these two theories, we were able to deduce correct-
ness and termination results for algorithms based on our operational schema shown in
Section 4.5 directly from the results about soundness and termination for the chaotic
iteration algorithm.

The main similarities between both approaches were also shown by identifying
the common elements in the algorithms described in (Apt, 1999) and in (Fernández
and Hill, 1999c). It was shown that the process of constraint propagation in our
operational schema can be viewed as a process of function evaluation in the chaotic
iteration algorithm of Apt.

Two main differences between the approach in (Apt, 1999) and its application to the
interval constraints procedure presented here were shown. In (Apt, 1999), a formalism
for solving a constraint satisfaction problem was presented. It was then shown how the
chaotic iteration algorithm can be applied to such a formalism. However, we used the
chaotic iteration algorithm directly rather than via this formalism. The reason was that
our interval constraints do not correspond to the constraints as defined there. These
represented sets of possible solutions whereas our interval constraints embody more;
the intended dependence between the variables for the constraint propagation. Thus,

4.7. Related Work 121

our interval constraints correspond to functions that are used in the chaotic iteration
algorithm. The second difference concerns the chaotic iteration algorithm itself. Since
our domains (such as the reals) do not necessarily possess the finite chain property
(which is assumed in the domains treated in (Apt, 1999)), to ensure termination we
changed the main test in the chaotic algorithm to a test where domain elements are
approximated by values in the domain of non-negative integers.

Constraint Solving on Semirings Bistarelli et al. (Bistarelli et al., 1995) de-
scribed, for finite domains, a general framework for constraint solving over CSPs in
which a certain level of preference (i.e., cost or degree) is associated to each tuple of
values of the domain of the constrained variables. The framework is based on a finite
semiring structure where the set of the semiring specifies the values to be associated to
each tuple of values of the domain of the constrained variables. It was also shown how
to combine constraints from one of the operations of the semiring (×). This framework
is adequate for classical CSPs, partial CSPs, fuzzy CSPs and weighted CSPs among
others.

Later on, (Bistarelli et al., 1997a) extended the CLP formalism in order to handle
semiring-based constraint systems and different semantics for a logical language based
on this kind of constraint solving were described. The syntax of the semiring CLP
programs was also described.

One significant difference with respect to our framework (among others derived
from the different ways of solving the constraints) is that Bistarelli et al. require the
computational domain to be finite, that is, they do not relax the assumption of a finite
domain for the variables whereas our framework allows to work on non-finite domains.
As consequence o the termination of the principal algorithm is only guaranteed by
forcing the domain of the variables to be finite.

Another difference is that, in passing CLP programs to semiring-based CLP (SCLP)
programs, the semantics of CLP have to be modified since in SCLP ground atoms do
not necessarily correspond to truth values (as in CLP) but also to elements of the
semiring. In our framework, the semantics of CLP in this sense are maintained.

Valued Constraint Satisfaction Problems In (Schiex et al., 1995) a simple al-
gebraic framework, related to over-constrained CSPs was described. Schiex et al. pro-
posed a framework to solve CSPs in which different types of knowledge are taken into
account as for example costs, uncertainties, preferences, priorities,etc. This framework
relies on a simple structure, a totally ordered commutative monoid (that is, a totally
ordered domain plus one operation satisfying some properties), in which the values
of the domain are interpreted as costs, or degrees, or probabilities or others. It was
observed that this kind of structure is enough to encompass most of the existing CSP
extensions in such a way that specific choices of the monoid will then give rise to
different instances of the framework.

One of the main differences with respect to our approach is, again, relative to the
cardinality of the variable domain. (Schiex et al., 1995) associates each constrained

122 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

variable with a finite domain whereas we do not necessarily require it.

More recently, in (Bistarelli et al., 1999), this framework and the semiring-based
framework were compared and it was shown that they present the same theoretical
expressive power. It was also shown that these settings are mainly focused in solving
soft CSPs (CSPs with a confidence value tuple of values associated to a constraint)
which is very different to our approach.

Others A generic arc consistency algorithm, called AC-5, is also presented in
(Van Hentenryck et al., 1992). The genericity of the AC-5 algorithm lies in that it
is parametrised on two specified procedures whose implementation is left open. The
algorithm, by the proper implementation of these procedures, can be instantiated to
devise the well known algorithms AC-3 (Mackworth, 1977) and AC-4 (Mohr and Hen-
derson, 1986). Despite of this claim of genericity, in fact the algorithm assumes a total
ordering on the computation domain and thus it is a very limited form of genericity. In
fact, of the classic domains, the algorithm is only valid for the integer and the Boolean
domain. Moreover, the algorithm itself provides a propagation procedure for the kernel
of the system CHIP for finite domains.

Also (Hong and Ratschan, 1995) describes a curious constraint system that provides
a possibility for instantiating a CLP language with an arbitrary domain. This paper
presents the RISC-CLP(Tree(∆)) system that provides an interface on several levels
of abstractions to user-defined constraint domains. The alleged advantage is that the
“user can first implement a simple but inefficient prototype and then refine it to more
complicated but efficient implementations”. This system offers improved genericity but
at expenses of declarativity since the constraint solver for each user-defined domain has
to be defined as a C++ class. The resulting programs are an amalgamation of C++
and Prolog code which is a long way from the declarativity of the CLP paradigm.

Another generic proposal is that of (Le Provost and Wallace, 1993) that shows
that propagation is domain independent by proposing a generalisation of propagation,
called generalised propagation (GP), which can be applied on arbitrary computation
domains. In contrast to our proposal, the constraints are not defined generically here
but the main idea behind this approach is to use any available constraint over any
computation domain X to express restrictions on problem variables. An important
drawback of GP is that termination of the search for answers to a propagation con-
straint is not guaranteed and the entire responsibility for ensuring termination is given
to the programmer. The main instance of GP was proved to be that over the Herbrand
Universe i.e., GP(HU).

4.8 Concluding Remarks

In this chapter we have defined a framework for interval constraint propagation over
lattices and illustrated with many examples the versatility and expressivity of this
approach. For maximum generality and allowing for any lattice, finite or infinite,
discrete or continuous, we have constructed the interval domains used for defining and

4.9. Contributions 123

propagating the constraints in several stages; each stage taking advantage of the lattice
structures inherited from the underlying computation domains on which the interval
domains are built.

Thus, we first defined and added the bracket domain B to each computation domain
L to create the right bounded domain Ls for open and closed (right) bounds a) and a]
for the intervals. We then defined a symmetric mirror domain Ls so as to allow for the
left bounds of intervals (a and [a. These bounds were then combined using the direct
product of lattices to form the range elements r = {1a,b}2 of an interval domain RsL.
Finally, we added the variable to be constrained to the given range to form the interval
constraint x v r.

This summarises the construction of a simple interval constraint. When defining
all the elements of the bounded computation domain Lb, we introduced two additional
constructs. One, which generalises an idea from (Codognet and Diaz, 1996a), was
indexicals max (x), val(x), for the right bounded domain and min(x), val(x), for the left
bounded domain. These provide necessary links between the ranges for the constrained
variables and give the user useful transparent control over the constraint propagation.
The other was that of an operator ◦L which maps a domain constructed from several,
possibly distinct, computation domains L1, . . . , Ln to another, possibly different, co-
domain L. This, combined with the indexicals, allows a one-way communication from
the domains Lb1, . . . , L

b
n to the domain Lb.

We have presented an operational schema for propagating these constraints and
proved it correct. In the case of the non-finite domains, termination of the procedure
can only be guaranteed by letting the solver return an approximation to the correct
result. An idea from (Sidebottom and Havens, 1992) for controlling accuracy in the
processing of disjoint intervals over the reals was adapted for our lattice domains. The
special operator precisionL that maps the domain elements to elements of the combined
domain (<+, Integer) to check the variations of the intervals (including variations just
in the brackets) and a limit element ε ∈ <+ ∪ {0.0} that controls the degree of the
approximation were introduced. The basic operational schema was then adapted so
as to check, using these precision and limit constructs, for just an approximation to
the fix-point. With this modification of the schema, we proved that such a procedure
terminates with an approximate solution.

Observe that the framework, being applicable to any lattice, provides support for
all the existing practical domains in CLP (e.g. reals, integers, sets and Booleans).
Moreover, by using lattice combinators, new compound domains and their solvers can
easily be obtained from previously defined domains such as these.

We have also proved that each constraint defined over the generic structure guar-
antees the monotonicity of the constraint solving.

4.9 Contributions

We have proposed a generalisation of the indexical model. The novelty of our proposal,
which is also novel for the FD, for dealing with interval constraints arises mainly from

124 CHAPTER 4. Interval Constraint Propagation on Lattice (Interval) Domains

1. the generic construction of an interval-lattice structure over which the constraints
are propagated and that is independent of the computation domain and

2. the definition of the constraint operators over multiple domains to generate one-
way channels (via the definition of constraint operators defined for multiple do-
mains) through which information can flow between domains;

Our generic interval propagation schema also provides other contributions that are
enumerated below:

• Our theoretical framework provides a new mechanism for checking a priori if the
interval constraints defined on indexical-based systems are monotonic.

• Many existing constraints systems can be seen as instances of our interval propa-
gation schema. This means that our schema can be used to explain the procedural
behaviour of these instances and thus can guarantee key properties such as ter-
mination and correctness. In this sense, our theoretical setting also shows that
it is the lattice structure of constraint domains that lies at the heart of many
propagation-based constraint programming systems

• Our framework provides an alternative to the generic and transparent CHR ap-
proach.

Chapter 5

Interval Solver Cooperation

Un pour tous et tous pour un.

Les Trois Mousquetaires (1844)

Alexandre Dumas, 1802-70

5.1 Introduction and Motivation

In Chapter 4, we have proposed an alternative to the CHR approach that is based
on the indexical approach of clp(FD) (Codognet and Diaz, 1996a) which, as shown
in Chapter 3, is known to be highly efficient. In this proposal, we have defined a
framework for interval constraint propagation on any domain with a lattice structure.
Thus, this framework is valid on all the classical domains such as Booleans, reals, finite
ranges of integers and sets as well as new specialised domains designed for specific
applications.

However, in practice, constraints are often not specific to any given domain. There-
fore the formulation of real problems has to be artificially adapted to a domain that
is supported by the system. Many problems are most naturally expressed using het-
erogeneous constraints, involving more than one domain. For example, consider a
community of people. To write a constraint that determines the set of people that
are taller than two meters cannot be directly coded in most existing CLP languages.
The main exception to this is the CHR language (Frühwirth, 1998) that allows for
user-defined domains.

In this chapter we generalise our interval propagation framework described in the
previous chapter to allow the cooperation of solvers (possibly defined on different do-
mains). We start from the foundations established in Chapter 4 where we have shown
that when defining all the elements of the bounded computation domain Lb, we allowed
the definition of a set of operators ◦L mapping a domain constructed from several, possi-
bly distinct, computation domains Ls1, . . . , L

s
n to another, possibly different, co-domain

125

126 CHAPTER 5. Interval Solver Cooperation

Ls. This, combined with the indexicals, allows a one-way communication from the
domains Lb1, . . . , L

b
n to the domain Lb.

Full solver cooperation requires two-way communication between domains. Thus
we define a high level constraint as a relation over a domain constructed from a set
of, possibly distinct, computation domains and show how, with this construct, we can
solve non-trivial problems (e.g., we show how, at the user level, we can define complex
constraints such as reified constraints that reflect the validity of a constraint (over any
domain) into a Boolean variable -see Section 2.7).

EXAMPLE 5.1 Consider the direct product domain

community = string×<

(where string is a set of names) that defines a community of people ordered lexicograph-
ically by their name (first argument) and height (second argument). Assume that a high
level constraint >′/2 on the domain community×< is also defined, for name ∈ string
and height, limit ∈ <, as

(name, height) >′ limit⇔ height >< limit.

Then, the constraint
person >′ 2.00,

where person ∈ community, determines the set of people higher than two meters.

Moreover, as the basic framework enables new domains to be constructed from
existing domains by means of lattice combinators (see Section 4.6.3), the generalised
setting allows constraint propagation to go from the basic domains to the combined do-
mains and vice-versa. A direct consequence is that the expressiveness of our framework
is improved.

5.1.1 Chapter Structure

In Section 5.2 we define the concept of high level constraint. Observe then that the con-
straint operators were defined on multiple domains (see Definition 4.10 on page 88) and
that they provide a useful one-way channel of communication from the computation
domains for the arguments of the operator to the (possibly compound) computation
domain in its range and that, in this chapter, we define high level constraints which
enable the propagation of information between the domains to occur in any direction
and allow for real cooperation between the solvers. So as to distinguish the interval
constraints defined and studied in the previous chapter from the high level constraints
defined in 5.2, we call constraints of the form x v r primitive constraints. In Section 5.3,
we give non-trivial examples of high level constraints that allow for propagation (and,
hence, cooperation) over combined domains. Then, in Section 5.4 we provide another
example to show that propagation can also be done among non-related domains. Sec-
tion 5.5 develops a more practical example (in the biomedicine field) that combines

5.2. High Level Constraints 127

constraint propagation, solver cooperation and domain combination in order to show
the flexibility of the framework. As usual, the chapter terminates with a discussion
about related work, the conclusions and some comments about the real contributions
of the chapter.

5.2 High Level Constraints

In the same way as in clp(FD) (Codognet and Diaz, 1996a), high level constraints can
be defined in terms of other (high level or primitive) interval constraints.

DEFINITION 5.2 (High level constraint) Suppose that L′ = {L1, . . . , Lm} ⊆ L.
Then q :: L1 × . . . × Lm is called an m-ary constraint relation for L′. Suppose
x1 ∈ VL1 , . . . , xm ∈ VLm, and c1, . . . , cn are constraints with constrained variables
X ⊇ {x1, . . . , xm}. Then

q(x1, . . . , xm)⇔ c1, . . . , cn.

is called a high level constraint over L′.

However, unlike clp(FD), our framework also allows for the definition of both generic
and overloaded constraints. A high level constraint is generic for arguments i1, . . . , ij
(1 ≤ i1 < · · · < ij ≤ m) if its definition is independent of the choice of domains
Li1 , . . . , Lij in L. A constraint is overloaded for arguments i1, . . . , ij if it is defined for
any Li1 , . . . , Lij in L1 where L1 ⊂ L and #(L1) > 1.

EXAMPLE 5.3 Consider the following high level ‘less-or-equal-than’ constraint:

x ≤ y ⇔x v [⊥L,max (y), (5.1)

y v min(x),>L].

Then this is generic for both arguments of ≤. Note that each L ∈ L has (possible lifted)
top and bottom elements.

EXAMPLE 5.4 Consider the definition of the operators − and + shown in Exam-
ple 4.11 and the following definition of a plus/3 constraint:

plus(x, y, z)⇔x v min(z)−max(y),max(z)−min(y),

y v min(z)−max(x),max(z)−min(x),

z v min(x)+min(y),max(x) +max(y).

where x, y, z ∈ VL for some L ∈ L. This constraint is overloaded since it is valid for
any domain L in which operators +L and −L are defined.

Let c⇔ c1, . . . cn be a high level constraint in a set of constraints C. To propagate
C with respect to a simple stable constraint store S, we first replace c (in C) by
c1, . . . , cn. We do this repeatedly until C just contains primitive constraints. Of course,
termination of this is not guaranteed and will depend on the definitions of the high-level
constraints. As soon as C consists of just primitive constraints, constraint propagation
and constraint stabilisation are executed as usual (i.e., as shown in Chapter 4).

128 CHAPTER 5. Interval Solver Cooperation

EXAMPLE 5.5 Consider L = {Set <,<}, the variables x, y ∈ VSet <, z, w ∈ V< and
the following simple stable constraint stores:

S =
{
x v [{1.2,3.0}, {5.6,1.2,3.0,7.4,9.3}), z v (2.0,15.5),

y v [{}, {3.0,1.2,7.4,4.8}), w v [0.0,12.0]
}

;

S′ =
{
x v [{}, {3.0,1.2,7.4,4.8}), z v [⊥<,12.0],

y v [{1.2,3.0},>Set <], w v (2.0,><]
}

;

S′′ =
{
x v [{1.2,3.0}, {3.0,1.2,7.4}), z v (2.0,12.0],

y v [{1.2,3.0}, {3.0,1.2,7.4,4.8}), w v (2.0,12.0]
}
.

Consider now the high level constraint ≤/2 as defined in Example 5.3. Then
{
x ≤

y, z ≤ w
}
;S S′ and S ∪ S′ 7→ S′′.

EXAMPLE 5.6 Suppose that L ∈ {Integer,<,Point}, where Point is as defined in
Section 4.6.3 on page 118 (i.e., Point = 〈Integer , Integer〉), that operators + and − are
as defined in Example 4.11 on page 88 where +L and −L have their usual definitions
in the integer and real domains (and return the sum and difference of two numbers in
L) and +Point and −Point are defined as

〈a, b〉+Point 〈c, d〉 = 〈a+ c, b+ d〉,
〈a, b〉 −Point 〈c, d〉 = 〈a− c, b− d〉,

that x, y, z ∈ VInteger, that r, w, t ∈ V<, that p1, p2, p3 ∈ VPoint and consider the follow-
ing constraint store:

S = {t v [1.0,4.0], w v (0.0,90.0],

x v [1,2], y v [2,9),

p1 v [〈0, 0〉, 〈1, 2〉], p2 v [〈1, 3〉, 〈2, 9〉] }.

Consider now the high level constraint plus/3 as defined in Example 5.4. This
definition is overloaded and valid for the integer, real and point domains since +L

and −L are defined on these domains. As consequence, the constraint plus/3 may be
propagated on these domains. For example,

{plus(r, w, t)};S { r v [−89.0,4.0) },
{plus(x, y, z)};S { z v [3,11) },
{plus(p1, p2, p3)};S { p3 v [〈1, 3〉, 〈3, 11〉] }.

5.3 Non-Trivial Examples

In this section we show the expressivity and flexibility resulting of the cooperation of
solvers in our framework.

5.3. Non-Trivial Examples 129

5.3.1 Reified Constraints

Reified constraints (RCs) were defined in in Section 2.7. Basically a RC reflects the
validity of a constraint into a Boolean variable. RCs are both useful and difficult to
implement and normally provided as black boxes. As written in (Marriot and Stuckey,
1998, Page 284): “RCs are somewhat complex to implement since they require the
solver to determine whether or not a constraint is implied by the current constraint
store and whether or not its negation is implied. However because of their usefulness
of RCs, some FD constraints solvers provide them”. In our framework, an RC can be
defined completely transparently as a high level constraint.

EXAMPLE 5.7 In order to show how information flows between different domains,
for simplicity we consider the domains Integer and Bool (although other domains may
be considered). Let operators + and − be defined as in Example 4.11 on page 88 (with
L = Integer). Then we define the following operators1 2 (note that i ∈ Integers whereas
v1, v2 ∈ Integer):

⊗ :: Integers × Bool s → Integers ⊗′ :: Integers × Bool s → Integers

i⊗ [true = i ⊗′ [true = ⊥Integer]

⊗ [false = >Integers i⊗′ [false = i + 1]

� :: Integers × Bool s → Integer s �′ :: Integers × Bool s → Integer s

� true] = >Integers i�′ true] = i

i� false] = i − [1 �′ false] = ⊥Integer]

⊕ :: Integers × Integers → Bool s

v1]⊕ v2] = true] if v1 ≤ v2,

v1]⊕ v2] = false] if v1 > v2.

Using the above operators, information can be made to flow between the Bool and
Integer domains. Suppose that for each b ∈ VBool and x, y ∈ VInteger , the high level
constraint c is defined:

b ≡ x ≤ y ⇔
x v min(y) ⊗′ val(b),max (y)⊗ val(b),

y v min(x) �′ val(b),max (x)� val(b),

b v val(x) ⊕ val(y),val(x) ⊕ val(y).

1Note that these operators do not need to be completely defined since the domains are discrete
and thus “open” values such as a) are transformed to “closed” values such as pre(a)] by applying
the equivalence rules shown in Section 4.4.4 on page 102 on both integer and Boolean domains. For
instance i⊗ (false = i ⊗ [true.

2For simplicity, bottom values ⊥Integer) ∈ Integers, false) ∈ Bool s and (true ∈ Bool s are not
considered since constraints using them are detected inconsistent before the evaluation of operators
e.g., a constraint x v [1,⊥Integer) is inconsistent.

130 CHAPTER 5. Interval Solver Cooperation

Thus b ≡ x ≤ y is a reified constraint. Observe that, by imposing b to be true,
val(b) and val(b) are evaluated as true] and [true respectively. Then by evaluating the
terms with operators, b ≡ x ≤ y would propagate to

x v [⊥Integer ,max (y),

y v min(x),>Integer]

which corresponds to impose the constraint x ≤ y as defined in (5.1) (specialised for
the Integer domain). Moreover, by imposing b to be false, val(b) and val(b) evaluate
as false] and [false respectively, and the constraint c would propagate to

x v min(y)+[1 ,>Integer],

y v [⊥Integer ,max (x)− [1

that corresponds exactly with the definition of the high level constraint x > y in the
clp(FD) system (Diaz, 1994). For instance, consider the constraint store

S =
{
x v [1,7], y v [3,8]

}
∈ SS{x,y}.

Then

{c};S∪{b=false} C1

where

C1 =
{
x v [4,>Integer], y v [⊥Integer ,6]

}
and then, by store stabilisation, S ∪ C1 7→

{
x v [4,7], y v [3,6]

}
.

Figure 5.1: The reified constraint b ≡ x ≤ y: an example of transparent cooperation

If, however, it is known3 that x ≤ y, b v [true, true] (i.e., b = true) is imposed
and, as soon as x > y is known to be false, b = false is imposed. For instance,

{c};{x=1,y=3,b::′Bool} {b v [true, true]
}
.

3That is to say, x and y are ground.

5.3. Non-Trivial Examples 131

Note that propagation of constraints using the indexical term val(z) (or its mirror)
for z ∈ {x, y, b}, is delayed until z is ground to any value m (and then the constraint
z v [m,m] is imposed).

Figure 5.1 shows graphically how the information can flow between the domains of
the variables x, y and b.

5.3.2 Propagation on Direct Combinations

Consider the following example taken from (Pachet and Roy, 1995) in the domain of
planar geometry. This is a simplified form of a problem occurring in the field of robot
mobility to avoid a crash between a rectangular robot with another rectangular object
(e.g., a table, a corner or other robot).

Problem Statement. Find all pairs of non-trivial quadrilaterals satisfying the fol-
lowing set of constraints:

1. C1: All vertices have integer coordinates in {1..n}.

2. C2: All quadrilaterals are straight rectangles.

3. C3 : The two rectangles do not intersect.

Representation of the problem. Given the plane (0, 0)× (n, n) a rectangle r is identified
by its lower left corner and its upper right corner (for simplicity, the set of constraints
{x ≤ y, y v [l, l]} where x, y ∈ VL and l ∈ L will just be denoted as x ≤ l. And
analogously for l ≤ x).

In the following we show how it is possible to solve this problem on different domains
by using the generic constraint ≤ /2 defined in Example 5.3.

Designing the problem in the integer domain.

Let integer+ be the (lifted) lattice of the positive integers plus value 0 where
⊥integer+ = 0 and >integer+ is a ficticial bound. A first formulation consists of identify-
ing a rectangle by the coordinates of its corners and consider them as atomic values in
the integer+ domain. Constraints are stated entirely in terms of the integer+ domain.

Let (p1x, p1y),(p2x, p2y) and (p3x, p3y),(p4x, p4y) be the coordinates of the two corners
identifying a rectangle r1 (e.g., a robot) and r2 (e.g., a table) respectively (see diagram
(a) in Figure 5.2). Constraint C1 can be stated as follows:

(1 ≤ p1x) ∧ (p1x ≤ n) ∧ (1 ≤ p1y) ∧ (p1y ≤ n)∧
(1 ≤ p2x) ∧ (p2x ≤ n) ∧ (1 ≤ p2y) ∧ (p2y ≤ n)∧
(1 ≤ p3x) ∧ (p3x ≤ n) ∧ (1 ≤ p3y) ∧ (p3y ≤ n)∧
(1 ≤ p4x) ∧ (p4x ≤ n) ∧ (1 ≤ p4y) ∧ (p4y ≤ n).

C2 as follows:

(p1x < p2x) ∧ (p1y < p2y) ∧ (p3x < p4x) ∧ (p3y < p4y)

132 CHAPTER 5. Interval Solver Cooperation

where constraint </2 is just defined as x < y ⇔ x ≤ y ∧ x 6= y. And C3 as:

(p2x < p3x) ∨ (p2y < p3y)

Designing the problem in the Point domain.

As already shown, our lattice-based framework allows for new computation domains to
be constructed from previously defined domains. The Point domain can be constructed
from the direct product 〈integer+, integer+〉. Note that ⊥Point = 〈0, 0〉 and >Point =
〈>integer+ ,>integer+〉.

Figure 5.2: The problem of non-intersecting rectangles

Then, r1 and r2 can be identified by the points p1,p2 and p3,p4 respectively (see
diagram (b) in Figure 5.2) and constraints C1, C2 and C3 can be stated directly in the
Point domain. Constraint C1 is stated as follows:

(〈1, 1〉 ≤ p1) ∧ (p1 ≤ 〈n, n〉) ∧ (〈1, 1〉 ≤ p2) ∧ (p2 ≤ 〈n, n〉)∧
(〈1, 1〉 ≤ p3) ∧ (p3 ≤ 〈n, n〉) ∧ (〈1, 1〉 ≤ p4) ∧ (p4 ≤ 〈n, n〉),

constraint C2 as (p1 < p2) ∧ (p3 < p4) and constraint C3 should be stated as p3 6≤ p2.
However, it is not clear how to express this last constraint since the meaning is not
exactly p2 < p3 (note that there are values in the point domain such that p2 6∼ p3). In
the following we propose a solution based on the concept of solver cooperation.

Designing the problem by solver cooperation. As it was shown above, constraint
C3 can easily be defined in the integer+ domain. A solution can be formulated via
combining this definition with the adequate definition of an operator to allow the flow
of information between the integer+ domain and the Point domain.

5.3. Non-Trivial Examples 133

For example, let L,L1 ∈ L where L1 = 〈L,L〉 and � defined generically as:

� :: Ls × Ls → Ls1

a}1 � b}2 = 〈a, b〉minB (}1, }2).

Thus, if L = Integer+, we have 3) � 2] = 〈3, 2〉) whereas if L = Point , 〈1, 3〉] �
〈4, 4〉] = 〈〈1, 3〉, 〈4, 4〉〉]. Observe that the operator � generates a one-way channel that
allows information to propagate from the domain L to the domain 〈L,L〉.

Now C1 and C2 are defined as in the formulation for the Point domain shown above
whereas C3 is defined as in the formulation for the integer+ domain also shown above.
To move information resulting from constraint propagation from one domain to the
other one, we can define the following constraints

p2 v min(p2x) � min(p2y),max (p2x) � max (p2y),

p3 v min(p3x) � min(p3y),max (p3x) � max (p3y).
(5.2)

Then any change in the coordinates p2x, p2y, p3x, p3x is directly propagated, by
evaluation of the indexical terms, to points p2 and p3.

Let now Rect the rectangle domain as defined in Section 4.6.3 where Point is as
defined above (i.e., Rect = 〈Point ,Point〉). Note that ⊥Rect = 〈〈0, 0〉, 〈0, 0〉〉 and
>Rect = 〈>Point ,>Point〉. Then information can be propagated from the domain Point
to the domain Rect by using the same operator � defined above. Let r1, r2 ∈ VRect and
p1, p2, p3, p4 ∈ VPoint . Then values in the Point domain can be directly propagated to
the Rect domain via the following constraints:

r1 v min(p1) � min(p2),max (p1) �max (p2)

r2 v min(p3) � min(p4),max (p3) �max (p4)

where r1, r2 ∈ VRect and p1, p2, p3, p4 ∈ VPoint .

5.3.3 A More Motivating Example on Linear Combinations

In this section we show that our extension is useful not only on the direct or lexico-
graphic combination of domains but also on more interesting combinations such as the
linear sum of domains.

In current CLP systems, most of the arithmetical operations executed on a partic-
ular domain return a value belonging to such a domain. For example, an expression
such as a + b, where a, b are reals, returns a real value. However, in practice there
are well-known domains such as the binary and hexadecimal domains in which this
is not necessarily true (see Figure 5.3). For example, in the hexadecimal domain,
‘F’+‘F’ does not belong to the hexadecimal domain but to the lexicographic product
(hexadecimal, hexadecimal). This means that the standard definition of the operator
+ is not valid.

A naive solution would extend the operation + with an extra carry argument.
For example, F+F=(1,E). In the following we propose a more expressive and elegant
solution defined in our setting and based the concept of solver collaboration.

134 CHAPTER 5. Interval Solver Cooperation

Figure 5.3: Linear combinations of the sum of domains

Let 0toF be the lattice of hexadecimal digits as defined in Section 4.6.3 on page 118
(i.e., 0toF = 0to9]AtoF) and 0toF 2 the lexicographic product domain (0toF , 0toF).
Now we overload the operators + and − shown in Example 4.11 on page 88 by defining

+ :: 0toF s × 0toF s → 0toF 2s − :: 0toF 2s × 0toF s → 0toF s

h1}1 + h2}2 = h1 +0toF2 h2 }1+B}1 (h1, h2)}1 − {2h3 = (h1, h2)−0toF ĥ3 }1+B}2

where +B is defined as in Example 4.11 and +0toF2 and −0toF are defined as usual in
the hexadecimal domain i.e.,

+0toF2 :: 0toF × 0toF → 0toF 2 −0toF :: 0toF 2 × 0̂toF → L

‘0’ +0toF2 ‘0’=(‘0’,‘0’), (‘0’,‘0’)−0toF
ˆ‘0’ = ‘0’,

.

‘1’ +0toF2 ‘F’=(‘1’,‘0’), (‘1’,‘0’)−0toF
ˆ‘F’ = ‘1’,

. . . (‘1’,‘0’)−0toF
ˆ‘1’ = ‘F’,

. ,

‘F’ +0toF2 ‘F’=(‘1’,‘E’), (‘1’,‘E’)−0toF
ˆ‘F’ = ‘F’,

.

Then,

‘1’]+‘F’] = (‘1’,‘0’)] and (‘1’,‘0’)]− [‘1’ = ‘F’].

As consequence, the high level constraint plus/3 defined in Example 5.4 can be
used on the hexadecimal if we consider x, y ∈ V0toF and z ∈ V0toF2 .

For instance, let h1, h2 ∈ V0toF and h3 ∈ V0toF2 , and consider the following con-
straint store:

S =
{
h1 v [‘0’,‘F’], h2 v (‘A’,‘F’]

}
.

Then {
plus(h1, h2, h3)

}
;S { h3 v [(‘0’,‘A’),(‘1’,‘E’)] }.

Additional constraints can also be applied. Consider now the generic high level
constraint ≤ /2 as defined in Example 5.3. Then a constraint such as h3 ≤ (‘1’,‘E’)
restricts h3 to the range45 [(‘0’,‘0’),(‘1’,‘E’)]. Moreover, the flexibility of our framework

4Observe that the maximum of the sum of two single hexadecimals is (‘1’,‘E’).
5Remember that ⊥L1 = (‘0’,‘0’).

5.4. Even More Expressivity! 135

allows alternative formulations. For example, let �/2 be a generic operator defined as
the operator � in Section 5.3.2 but where L1 = (L,L), that is to say,

� :: Ls × Ls → L1
s

a}1 � b}2 = (a, b) minB (}1, }2),

and let h4 ∈ V0toF . Then{
h3 v min(h4) � [‘0’,max(h4)� ‘E’]

}
;

{
h4v[‘0’,‘1’]

} {
h3 v [(‘0’,‘0’),(‘1’,‘E’)]

}
.

This example provides an idea of the flexibility and expressivity of the framework.

5.4 Even More Expressivity!

So far, we have shown that our setting allows constraint propagation from basic domains
to combined domains and vice-versa. In this section we show by example that it also
enables information to flow between non-related domains.

EXAMPLE 5.8 Let <0 be the set of non-negative reals and Integer0 the set of non-
negative integers. Consider the following conditional sentence6:

if b then i← trunc(r ∗ r) else i← trunc(r)endif

where b ∈ Bool, r ∈ <0 and i ∈ Integer0. The meaning of this conditional sentence
can be captured in the interval setting by the following interval constraint:

c1 = i v min(b)�min(r),max(b) �max(r)

where r ∈ V<0, b ∈ VBool, i ∈ VInteger0
and � is a constraint operator for Integer0

s

declared and defined as follows

� :: Bool s ×<0
s → Integer0

s

true] � r} = truncInteger (r ∗ r)]

false] � r} = truncInteger (r)].

where truncInteger(a) returns the integer part of a for any a ∈ <0. Observe also that,
as the Boolean domain is discrete, we only consider “closed” values since “open” values
can be reduced to “closed” ones by applying the equivalence rules shown in Section 4.4.4
on page 102.

Constraint propagation is executed as usual. For example, let

S =
{
r v [2.3,8.9), b v [false, true]

}
.

Then7

{c1};S { i v [2,79] }.
6The expression x← e means “assign the value returned by the expression e to the variable x”.
7Note that i v [2,79] comes from i v [false�[2 .3 , true] � 8 .9).

136 CHAPTER 5. Interval Solver Cooperation

More propagation is obtained by constraint stabilisation. For instance,

S ∪ {b v [false, false]} 7→ S1

and S1 = {r v [2.3,8.9), b v [false, false] }. Then8 {c1};S1 { i v [2,8] }.

5.5 An Application (in Biomedicine) with Uncertainty

To demonstrate the practical nature of our framework, we describe here an application
where there is uncertainty in the knowledge base so that an explicit handling of vague-
ness and uncertainty is required. This application involves high level constraints, solver
cooperation and domain combination. The application is taken from a real diagnosis
problem in biomedicine where test results contain a margin of error depending on the
precision of the measuring instrument.

5.5.1 Representing a Margin of Error

We first define a function that corrects for an error measured in a numerical domain
e.g., <. For each i ∈ Integer and n, r ∈ <, we define the constraint operator � when
L1 = < and, for L = < and for L = Integer , as:

�:: Ls × Ls1 → Ls

n}1 � r}2 = n}1 + r}2
i}1 � r}2 = i}1 + round<(r)]

where operator + is defined (for <s and Integers) in Example 4.11 on page 88 and
round<(r) returns the rounded integer of r (e.g., round<(−2.6) = −3 and round<(2.6) =
3). For instance,

3.2)� 2.6) = 3.2) + 2.6) = 5.8),

3)� 2.6) = 3) + 3] = 6).

If α ∈ VL1 , we define a symbolic high level constraint for an approximate equality:

x ≈α y ⇔ x v min(y)�min(α),max (y)� max (α),
y v min(x)�min(α),max (x)� max (α).

where L,L1 ∈ L and x, y ∈ VL. α is a variable (the cut) of L1 that represents the degree
of (in-)equality for x and y. If x ≈α y is true, then we say that x and y are equal via
α. Note that this constraint is overloaded since it can be used for any domains L,L1

in which � is defined.
The meaning of a constraint x ≈α y is that x and y are considered equal if we take

into account a possible error bound α (where α is associated to an error interval). For
instance, a test result such as systolic blood pressure has an error margin due to the

8Note that i v [2,8] comes from i v [false�[2 .3 , false] � 8 .9).

5.5. An Application (in Biomedicine) with Uncertainty 137

measurement’s degree of accuracy. Suppose this margin is known to be ±2.6 so that
we have the constraint α v [-2.6,2.6]. Consider the constraint c defined as

value ≈α reading

where reading , value ∈ VInteger and the store

S =
{
α v [-2.6,2.6], value ::′ Integer

}
.

Suppose now that a patient has an approximate measurement of 117 (i.e.,9

reading = 117). Then, as usual in constraint propagation,

c;S∪{reading=117} { value v min(reading)�min(α),max (reading)� max (α),
reading v min(value)�min(α),max (value)� max (α)

}

that, by evaluation of the indexical terms, is equivalent to

c;S∪{reading=117} { value v [117 � [-2.6,117]� 2.6],
reading v [⊥Integer� [-2.6,>Integer]� 2.6]

}

and, thus by evaluating the operators,

c;S∪{reading=117} { value v [114,120],
reading v [⊥Integer ,>Integer]

}

what is interpreted as meaning that the true reading value is between 114 and 120.

5.5.2 The Problem of Diagnosing the Heart Functionality

The analysis of medical data often uses a combination of different kinds of domains
for diagnosing illness. Consider the three-category problem of differentiating among
normal heart function, myocardial infarction and angina pectoris (Hudson and Cohen,
2000). The heart condition is represented by the combined domain

heart = 〈Category ,<, Integer〉 where

Category = {none, low , high} with ordering none ≺ low ≺ high.

For each component of the heart domain, we define a variable to denote its observed
value:

(1) pvc ∈ Category denotes the rhythm of the postventricular contractions;

(2) pr ∈ < denotes the measured value of the pulse rate and

(3) wbc ∈ Integer denotes the white blood cell count.

138 CHAPTER 5. Interval Solver Cooperation

Table 5.1: Ranges for heart function
State pvc’s pr wbc

Normal none-none [40.0,100.0] [4800,13500]
Angina pectoris none-none ≥ 105.0 [4800,13500]
Myocardial Infarction low-high ≥ 105.0 > 13500

Table 5.1 summarises the three category problem for the heart function. The values
of pr and wbc have a certain degree of imprecision (known to be +

−1.0 and +
−45.7

respectively) and we denote the amount of uncertainty for wbc and pr by αwbc and αpr

respectively. To allow for uncertainty in the value for heart , we use the constraint ≈α
as defined in Section 5.5.1, together with the following overloaded definition for the
operator � (with L = heart and L1 = <2):

�:: hearts × (<2)s → hearts

〈pvc, pr ,wbc〉}1 � 〈αpr , αwbc〉}2 = 〈pvc, pr + αpr ,wbc + round<(αwbc)〉].

Suppose now that STATE is the computation domain:

error1 ≺ normal ≺ error2 ≺ angina ≺ error3 ≺ infarction ≺ error4.

and also that we have the operators10:

3 :: STATE s → hearts 3 :: STATE s → hearts

3′ error1] = ⊥hearts ; 3 error1] = ⊥hearts ;

3′ normal] = 〈none, 40.0, 4800〉]; 3 normal] = 〈none, 100.0, 13500〉];
3′ error2] = 〈none, 100.0, 4800〉); 3 error2] = 〈none, 105.0, 13500〉];
3′ angina] = 〈none, 105.0, 4800〉]; 3 angina] = 〈none,><, 13500〉];
3′ error3] = 〈none, 105.0, 13500〉); 3 error3] = 〈low ,><, 13500〉];
3′ infarction] = 〈low , 105.0, 13501〉]; 3 infarction] = >hearts ;

3′ error4] = >hearts ; 3 error4] = >hearts .

9What is the same as telling reading v [117, 117].
10Note that operators 3 and 3′ do not need to be complete functions by the equivalence rules shown

in Section 4.4.4 on page 102, e.g., 3angina) = 3error2].

5.5. An Application (in Biomedicine) with Uncertainty 139

1:: hearts → STATE s

1 reading = error1] if reading �hearts ⊥hearts

and (reading �hearts 〈high,><, 4799〉]
or reading �hearts 〈high, pr,>Integer 〉] and pr < 40.0);

1 reading = normal] if reading �hearts 〈none, 40.0, 4800〉]
and reading �hearts 〈none, 100.0, 13500〉];

1 reading = error2] if reading �hearts 〈none, pr1, 4800〉] and pr1 > 100.0

and reading �hearts 〈none, pr2, 13500〉] and pr2 < 105.0;

1 reading = angina] if reading �hearts 〈none, 105.0, 4800〉]
and reading �hearts 〈none,><, 13500〉];

1 reading = error3] if reading �hearts 〈none, 40.0, 13501〉]
and reading �hearts 〈high, pr,>Integer〉] and pr < 105.0;

1 reading = infarction] if reading �hearts 〈low , 105.0, 13501〉];
1 reading = error4] otherwise.

Note that values error i for 1 ≤ i ≤ 4 are added to the STATE domain to capture
atypical readings11 and to maintain the monotonicity of 1.

Let reading , true reading ∈ Vheart and state ∈ VSTATE . The state of the heart can
be diagnosed by the correct definition of a high level constraint as follows

diagnostic(reading , state, α)⇔ reading ≈α true reading ,

state v 1(min(true reading)),1 (max (true reading)),

true reading v 3′(min(state)),3(max (state)).

This constraint subsumes the heart evolution and relates the domains STATE ,
heart and <2 by opening two-way channels in which information can flow from one
domain to each another, that is to say, given an observed value (i.e., an interval) in the
variable reading , this is propagated to the variable state by taking into consideration
the possible measurement errors associated to the variable α; also, a state value can
be propagated from the state variable to the reading variable.

For instance, suppose that reading = 〈none, 85.6, 10000〉 and consider the values
for αpr and αwbc provided above. To diagnose the state of the heart we have then to
solve the set of constraints C =

{
c1, c2, c3

}
where

c1 ≡ α v [〈−1.0,−45.7〉, 〈1.0, 45.7〉],
c2 ≡ reading v [〈none, 85.6, 10000〉, 〈none, 85.6, 10000〉],
c3 ≡ diagnostic(reading , state, α).

11It could happen that, for some persons, the observed values are not in the ranges of Table 5.1.
This is an atypical situation to be studied by the doctor and then we return an error value.

140 CHAPTER 5. Interval Solver Cooperation

Table 5.2: Solving sequence in the problem of heart functionality diagnosis
Initialisation S0 = S =

{
α v [⊥<2 ,><2], reading v [⊥heart ,>heart],

true reading v [⊥heart ,>heart], state v [error1, error4]
}

By line (1) C = {c1, c2, c3} ∪ S0

1st iteration

C ;S C ′ C ′ =
{
c1, c2} ∪ S0

S′ ∪ C ′ 7→ S S =
{
c1, c2, true reading v [⊥heart ,>heart], state v [error1, error4]

}
2nd iteration

C ;S C ′ C ′ =
{
c1, c2, true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉]

}
∪ S0

S′ ∪ C ′ 7→ S S =
{
c1, c2, state v [error1, error4],
true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉]

}
3rd iteration

C ;S C ′ C ′ =
{
c1, c2, reading v [〈none, 83.6, 9900〉, 〈none, 87.6, 10100〉],

true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉],
state v [normal ,normal]

}
∪ S0

S′ ∪ C ′ 7→ S S =
{
c1, c2, state = normal ,

true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉]
}

4th iteration

C ;S C ′ C ′ =
{
c1, c2, state = normal ,

reading v [〈none, 83.6, 9900〉, 〈none, 87.6, 10100〉],
true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉],
true reading v [〈none, 40.0, 4800〉, 〈none, 100.0, 13500〉]

}
∪ S0

S′ ∪ C ′ 7→ S S =
{
c1, c2, state = normal

true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉]
}

END The procedure terminates since S = S′

By executing the operational schema solve(C, S), as defined in Section 4.5.1, with
S initialised to the top element of SS{state,reading,true reading,α}, the information is prop-
agated from the heart to the STATE domain and viceversa and the following solution
is found after four iterations of the repeat loop

S =
{
c1, c2,

state = normal ,

true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉]
}
.

Table 5.2 shows the contents of the stores C ′ and S in each of the iterations during
the execution of the procedure solve(C, S)12 where S is initialised to the top element
of the lattice SS{α,reading,true reading,state}. The conclusion is that the heart is found

12Note that the schema solveε(C, S) is not necessary in this example since termination is reached
even if ε = 0.0.

5.6. Related Work 141

to be functioning normally. Observe that during the solving sequence the constraint
reading ≈α true reading is propagated to

true reading v [〈none, 84.6, 9954〉, 〈none, 86.6, 10046〉].

what means that the error of measure instruments was having into account.

5.6 Related Work

Solver cooperation is an important issue for the constraint applications. The interaction
between solvers makes it easier to express compound problems and good communication
can help the efficiency of the systems. Existing cooperative solvers are very diverse and
range from domain combinations to a mix of distinct techniques for solving constraints
over the same domain. Moreover, the cooperating solvers may be very different in
nature: some of them can perform complete constraint solving whereas others can
execute simple forms of propagation. In this section we discuss part of the relevant
constraint literature and compare their proposals with our own. Note that the issues
of communication and cooperation are relevant to many other aspects of computation:
here, we only consider proposals closely related to our own.

There are a number of constraint systems that provide support for the interaction
between solvers defined over built-in and predefined domains. In these systems, the
concept of solver is viewed as a box that transforms the original set of constraints to an
equivalent reduced set. In this category, we have, for example, the following systems:

• CLP(BNR) (Benhamou and Older, 1997), Prolog III (Colmerauer, 1990) and
Prolog IV (N’Dong, 1997) allow solver cooperation, mainly limited to Booleans,
reals and naturals (and also to lists and trees). Observe that our framework
easily emulates this kind of cooperation since all these domains can be naturally
defined as lattices.

• The language NCL (Zhou, 2000a) provides an integrated constraint framework
that strongly combines Boolean logic, integer constraints and set reasoning. In
(Zhou, 2000a), the integration of new constraint domains such as the reals is
described as future work.

We have shown that our framework makes possible not only the communication
between the Boolean, integer, reals and set domains but also the combination of
them by means of lattice combinators.

The two main problems with most of these cooperative existing systems are: (1)
the cooperation is restricted to a limited set of computation domains supported by the
system and (2) the solvers are usually black boxes so that it is difficult (sometimes im-
possible) to extend the original set of constraints. As shown throughout this document,
these are no such problems in our framework.

Another kind of cooperation consists in providing special built-in constructs with
the functionality to propagate information from one domain to another. This is the

142 CHAPTER 5. Interval Solver Cooperation

case with the reified constraints described in Section 2.7 that enable arithmetic values
to be propagated to the Boolean domain and vice-versa. In this chapter we have shown
that reified constraints can be defined in our framework at the user level.

In the same class of cooperation we can cite Conjunto (Gervet, 1997) which is
a constraint language for propagating interval constraints defined over finite sets of
integers. This language also provides a set of constraints called graduated constraints
which map sets onto arithmetic terms, allowing thus a one-way cooperative channel
from the set domain to the integer domain. Graduated constraints can be used in a
number of applications as for instances to handle optimisation problems by applying a
cost function to the quantifiable terms (i.e., arithmetic terms which are associated to
set terms). This form of interaction is easily emulated in our framework by defining
constraint operators from the set to the integer domain. Moreover, our framework
allows the concept of graduated constraints to be extended since communication may
also be enabled from integers to sets by means of suitable definitions of constraint
operators.

Recently, another approach for solver cooperation has appeared. This approach
requires interoperatibility which means that the system has the ability to communicate
and use independently written software components, thus making independent systems
cooperate. Usually to add a solver requires the addition of an interface between the
new solver and the existing ones. The format of the inputs and outputs of the interface
(and thus of the solvers) must be specified precisely.

For instance, (Goualard, 2001) proposes a C++ constraint solving library called
aLiX for communicating between different solvers, possibly written in different lan-
guages. Two of the main aims of aLiX are to permit the transparent communication
of solvers and assure type safety, that is to say, the capacity to prevent a priori the
connection of a solver that does not understand the input format of the interface with
another solver. The current version of aLiX is not mature yet although its interop-
erative approach offers interesting possibilities. One of the main shortcomings of the
current aLiX version is that a component for solving continuous constraints is not
integrated into the system yet and thus real constraints cannot be processed (this is
claimed to be one of the main priorities for future development work).

In the same spirit, for the real domain, many constraint systems provide both a
linear and a non-linear solver. As the linear solver is the most efficient of the two,
this should be used whenever the constraints are linear. Thus there is a need for
communication between the solvers. As an example, (Monfroy et al., 1995) describes
a client/server architecture to enable communication between the component solvers.
This consists of both managers of the system and the solvers that must be defined on the
same computational domain (as real numbers for example) but with different classes of
admissible constraints (i.e., linear and non-linear constraints). The CLP system CoSAc
is an implementation of their system. A built-in platform permits the integration and
connection of the components. The exchange of information is managed by means of
pipes and the data that is exchanged is a character string. One of the main drawbacks
of this system is the lack of type safety. Also, the cooperation happens at a fixed level
that avoids the communication of solvers in a transparent way since the solvers cannot

5.6. Related Work 143

obtain additional information from the structure of the internal constraint store. The
use of this information may lead to speeding up the solving process.

Note that, for our framework, the generic solver used for all the domains can only
handle linear constraints. The question of how our framework may be extended to
handle simple non-linear constraints such as ax2 + b = y in the real domain is ongoing
and future work. A solution may be in the combination of our propagation mechanism
with other interval technique for solving non-linear systems. This is an issue of further
work.

As CoSAc does not permit solver combination, Monfroy designed a domain in-
dependent environment for solver collaboration13 (i.e., solver cooperation plus solver
combination) and constructed the system BALI that facilitates the integration of het-
erogeneous solvers as well as the specification of solver cooperation (Monfroy, 1996).
In his thesis, Monfroy also designed SoleX, a method for extending constraint solvers
with new function symbols. Unfortunately, although it is commented in (Monfroy,
1996) (page 195), SoleX and BALI were not integrated. Observe that such an inte-
gration could lead to a framework including either solver collaboration and/or solver
extension.

There are several papers that focus on the combination of distinct interval solving
methods (basically on the real domain). For instance, (Benhamou, 1996) describes a
unified framework for heterogeneous constraint solving. The main idea is to represent
the solvers as constraint narrowing operators (CNO), that are closure operators, and
use a generalised notion of arc consistency. The necessary conditions of the CNOs to
assure the main properties of the principal algorithm are provided and it is shown how
the solvers can communicate, share common variables and send and receive informa-
tion to each other. In spite of the fact that it is not very clear the similarities of this
work with respect to our proposal, we observe main differences. For instance: (1) in
the system described in (Benhamou, 1996) the cooperation comes from the combina-
tion of different algorithms (possibly defined over distinct structures) whereas in our
framework the cooperation does not depend on the propagation algorithm since this
is common to all the structures (i.e., domains) supported by the system; (2) as we
also do, (Benhamou, 1996) gives a fixed point semantics to describe the cooperation
process. However, the termination of the central algorithm proposed in (Benhamou,
1996) relies on the finiteness of the computation domain14. Thus, termination cannot
be guaranteed in the case of non-finite domains as it can be the case of the domain of
“sets of reals”. Moreover, real interval constraints are viewed as a generalisation of the
finite intervals with a floating point precision for the real domain. In our framework,
reals can be considered with no restriction.

Also (Benhamou et al., 1999) proposes, to solve real constraints, the combination of
hull consistency and box consistency (see Section 2.6.5 on page 38) with the objective
to reduce the computation time of using box consistency alone. This idea was reflected

13We believe that the notion of solver collaboration was first elaborated in (Monfroy, 1996), page 4.
14In fact, on the finiteness of the approximate domain where an approximate domain A over a domain

D is a subset of ℘(D), with D ∈ A, closed under intersection.

144 CHAPTER 5. Interval Solver Cooperation

in DecLic (Benhamou et al., 1997; Goualard et al., 1999), a CLP language that mixes
Boolean, integer and real constraints in the framework of intervals. This system was
shown to be fairly efficient on classical benchmarks but at the expense of decreasing
the declarativity of the language as consequence of allowing the programmer to choose
the best consistency to use for each constraint.

As well (Granvilliers, 2001) tackles the combination of interval techniques for solv-
ing non-linear systems. Granvilliers describes a cooperative strategy to combine the
interval-based local consistencies methods (i.e., box and hull consistency) with the
multi-dimensional interval Newton method and shows the efficiency of the main algo-
rithm.

Another general scheme for solver cooperation is proposed in (Hofstedt, 2000). In
this paper, domains are defined by using “Σ-Structures” in a sorted language and a
constraint is a relation over an n-ary Cartesian product of the domains. As in our
proposal, the combination of the solvers is achieved by means of the Cartesian product
of the different domains. However, Hofstedt focuses on the interface between the solvers
so that the complete system is a combination of this interface with the set of constraint
systems each of which with its own associated solver for a specific domain. In contrast,
in our proposal, it is the high level constraints that determine the possible cooperation
that can occur between the domains and their solvers and these constraints may be
defined by the user or system. The flexibility of these high level constraints implies
that the solver interface defined by Hofstedt could be implemented in our system.

Another, but related form of cooperation is that described in the papers of Baader
and Schulz. For instance (Baader and Schulz, 1995) provides an abstract framework to
combine constraint languages and constraint solvers and focuses on ways in which dif-
ferent and independently defined solvers may be combined. In contrast to our proposal,
they were not concerned with the constraint solving mechanism but with defining the
properties that the structure supporting the framework has to satisfy to be suitable
for the combination of constraint languages and solvers. More recently, Baader and
Schulz present a general method for the combination of constraint systems (Baader and
Schulz, 1998). This method is applicable to a kind of structures called quasi-structures
that comprise very diverse structures such as algebras of (quotient) terms and rational
trees, lists, sets, etc. This algorithm is a generalisation of another algorithm presented
in (Baader and Schulz, 1996). The particularity of these algorithms is that they are
extensions of previous algorithms developed with the aim of combining unification algo-
rithms for equational theories where a unification algorithm can be seen as an instance
of constraint solvers. Thus, as pointed out in (Kepser and Richts, 1999), these algo-
rithms inherit the problems presented in the combination of equational theories: for
instance a lack of practical use. In recent years, some proposals to overcome these
problems have appeared.

Another interesting proposal has been recently reflected in the HAL system
(de la Banda et al., 2001). This system supports the extension of existing solvers
and the construction of hybrid ones. The proposal is noticeably distinct to ours. HAL
provides semi-optional type, mode and determinism declarations for predicates and
functions as well as a system of type classes over which constraint solvers’capabilities

5.7. Concluding Remarks 145

are specified. A type class captures the notion of a type having an associated constraint
solver. This concept of type class seems to be promising and its possible integration in
our cooperative framework could be an issue of further work.

As it is shown in this section, cooperation may be understood from multiple per-
spectives. For more information the reader is referred to (Granvilliers et al., 2001) that
provides a short introduction, with a number of important bibliography references, to
present the basic foundations of solver cooperation.

5.7 Concluding Remarks

In this chapter we have extended our basic framework to enable a mechanism that
ensures the flow of information between the computation domains. The extension is
based on the definition of high level constraints as a relation over a domain constructed
from a set of, possibly distinct, computation domains. In the resulting framework,
solvers may be viewed as relations over one or more computation domains and thus
solvers may be defined on very different domains and even one solver may be defined on
several domains. As consequence, our mechanism for communication makes it possible
for solvers to interact and, hence, cooperate.

We have also shown by a number of non-trivial and practical examples the flexibility
and expressivity of the resulting framework.

Our cooperative framework also provides two very important characteristics that
each cooperative system should hold:

1. Type safety: the erroneous cooperation of solvers is prevented in our framework.
Observe that solvers can be freely connected by means of interval constraints
using constraint operators defined on multiple domains. Therefore, only con-
straints that are valid in the framework with respect to the operator declarations
are allowed in the formulation of problems.

2. Transparency in the communication of solvers: In our framework the cooperation
is due to our defining the constraint operators on multiple domains and allow-
ing high level constraints for specifying the intended propagation between the
different domains. As already shown, both constraint operators and high level
constraints are transparent to the user so that the cooperative schema is a glass
box.

3. Solver collaboration, that is to say, solver combination plus solver cooperation.

5.8 Contributions

We present a novel mechanism for constraint cooperation over which the interaction
of solvers is achieved by means of constraint operators defined on multiple domains
and by the correct definition of the high level constraints. As consequence, constraint
operators play the role of the interface between different solvers whereas high level

146 CHAPTER 5. Interval Solver Cooperation

constraints play the role of pipes through which information is sent to and received
from other solvers. To our knowledge, this cooperative approach is completely new.

From the user’s point of view, the constraint operators and high level constraints
are transparent, so that our cooperative approach is a glass box one. Moreover, to our
knowledge, our framework (perhaps with the exception of CHR) is the only constraint
setting that allows users to define their own interface between the solvers so that they
can control the degree of cooperation (i.e., the direction in which information has to
flow). Observe that this is not the case with other systems such as Prolog IV or
CLP(BNR) in which the solvers are boxed in the systems and there is no possibility
for integrating new ones at the user level.

Observe that, as consequence of integrating the whole cooperation process in one
unique framework, the time spent in the coordination and synchronization of solvers
(in a cooperative system constructed from independent solvers) is nill. This is another
advantage of our framework.

Chapter 6

Interval Constraint Branching

Nothing is particularly hard if you divide it into small jobs.

Henry Ford 1863 - 1947

6.1 Introduction

To solve a CSP, we need to find an assignment of values to the variables such that
all constraints are satisfied. A CSP can have many solutions; usually either any one
or all of the solutions must be found. However, sometimes, because of the cost of
finding all solutions, partial CSPs are used where the aim is just to find the best
solution within fixed resource bounds. An example of a partial CSP is a constraint
optimisation problem (COP) that assigns a value to each solution and tries to find an
optimal solution (with respect to these values) within a given time frame.

In previous chapters we have described a generic interval constraint propagation
schema to solve CSPs (i.e., a set of interval constraints defined on a set of lattice
structure computation domains). Our schema removes inconsistent values from the
initial domain of the variables that cannot be part of any solution. We have shown that
the results are propagated through the whole constraint set and the process is repeated
until a stable set is obtained. However, although our propagation schema will find a
most general solution to the constraint store representing a CSP (see Theorem 4.56), it
is not complete in the sense that it may not determine which values in these intervals
are the correct answers to the problem.

For this reason, in this chapter, we propose a branching schema that is comple-
mentary to the constraint propagation schema already described. The combination of
these two schemas forms an interval constraint solving framework that can be used
for any set of domains which have the structure of a lattice, independently of their
nature and, in particular, their cardinality. As consequence it can be used for most
existing constraint domains (finite or continuous) and, as for the framework described
in previous chapters, is also applicable to multiple domains and cooperative systems.

147

148 CHAPTER 6. Interval Constraint Branching

We also describe here some interesting properties that are satisfied by any instance
of the branching schema and show that the operational procedures of many inter-
val constraint systems (including cooperative systems) are instances of our branching
schema.

6.1.1 Chapter Structure

This chapter is organised as follows. Section 6.2 defines some key concepts used in the
chapter. Section 6.3 describes the main functions involved in interval constraint solving
paying special attention to those required in the branching step. In Section 6.4, a
generic schema for classical interval constraint solving on any set of lattices is developed
and its main properties are stated. Section 6.5 extends this schema for partial constraint
solving and then describes some more interesting properties. Section 6.6 provides an
example illustrating the different ways in which a problem can be solved. As in the rest
of the thesis, the chapter ends with a discussion about related work, some conclusions
and a summary of the main contributions of the chapter.

6.2 Key Concepts

We continue to use L to denote any domain in L, X ∈ ℘f (VL) the set of constrained
variables, CXL the set of all interval constraints for L with constrained variables in X,
CX the interval constraint domain over X for L and SSX the set of all simple stable
constraint stores for X. Also L< denotes any totally ordered lattice in L.

Notation. If {c1, . . . , cn} ∈ SSX and i ∈ {1 . . . , n}, then

{c1, . . . , cn}[ci/c′] = {c1, . . . , ci−1, c′, ci+1, . . . , cn}.

DEFINITION 6.1 (Divisibility) Let c = x v s, t be a consistent interval constraint
in CXL . Then, c is divisible if s 6=Ls t and non-divisible otherwise.

Let S ∈ SSX be a consistent constraint store. Then S is divisible if there exists
c ∈ S such that c is divisible and non-divisible otherwise.

Note that, by Definition 4.21, a non-divisible constraint has the form x v [a,a]
that, as said in Definition 4.26, is a shorthand for x = a where x ∈ VL and a ∈ L
for some L ∈ L (i.e., a non-divisible constraint may be viewed as an assignment of a
constrained variable in a domain to a value belonging to that domain).

EXAMPLE 6.2 Let x, y ∈ VInteger , r, w ∈ V< and S, S′ ∈ SS{x,r}. Then,

x v [1,4] and r v (1.0,3.2] are divisible;

y v [2,2] and w v [1.5,1.5] are non-divisible.

Also

S =
{
x v [1,1], r v [1.0,1.0]

}
is non-divisible;

S′ =
{
x v [1,4], r v [1.0,1.0]

}
is divisible.

6.2. Key Concepts 149

More cases of non-divisibility can be detected by the equivalence of ranges on
discrete domains shown in Section 4.4.4 on page 102.

EXAMPLE 6.3 Consider L = Integer and the consistent constraint c = x v (1,2].
Then c is non-divisible since the range (1,2] is equivalent to the range [2,2] in RsL and
the constraint c = x v [2,2] is non-divisible.

PROPOSITION 6.4 Let X ∈ ℘f (VL).

(1) Let also c, c′ ∈ CXL such that c ≺CXL c′. Then, if c is consistent, c′ is divisible.

(2) Let also S, S′ ∈ SSX such that S ≺s S′. Then, if S is consistent, S′ is divisible.

PROOF 6.5 We prove the cases separately.
Case (1). Suppose that c = x v r and c′ = x v r′, where r = s, t and r′ = s′, t′. By

hypothesis c is consistent and thus, by Definition 4.26 on page 96, r is consistent and
also r ≺Rs

L
r′. By Proposition 4.23, r′ is consistent and thus, again by Definition 4.26,

c′ is consistent. Therefore, by Definition 4.21

s �Ls t ∧ s′ �Ls t′.

Moreover, as r ≺Rs
L
r′, by Definition 4.19,

s ≺Ls s′ ∧ t �Ls t′∨
s �Ls s′ ∧ t ≺Ls t′.

It follows by the duality principle for lattices (see Page 83) that

s′ ≺Ls t′.

Therefore, by Definition 6.1, c′ is divisible.

Case (2). By hypothesis S is consistent and thus by Proposition 4.37 on page 100,
S′ is consistent. By Definition 4.30, for all c ∈ S, c is consistent and also, by Defini-
tion 4.33, there exists c′ ∈ S′ and c ∈ S such that c ≺CX c′. By Proposition 6.4(1), c′

is divisible. Therefore, by Definition 6.1, S′ is divisible.
2

In Section 4.4.5 on page 103 we defined the concept of solution for a constraint store.
A solution was defined to be a consistent stable store that produces no more constraint
narrowing by constraint propagation. In this section we redefine this solution concept
to capture the usual meaning of a solution as an assignment of values to variables that
satisfies all the constraints. So as to distinguish the solution defined in Section 4.4.5
from the concept defined in this chapter, we use the term solution to refer the concept
already defined and the term authentic solution to refer the new concept defined in this
chapter.

150 CHAPTER 6. Interval Constraint Branching

DEFINITION 6.6 (Authentic solution) Let C ∈ ℘f (CX) be a constraint store for X
and R ∈ SSX . Then, R is an authentic solution for C if R is both non-divisible and a
solution for C.

R′ ∈ SSX is a partial solution for C if there exists an authentic solution R′′ for C
such that R′′ ≺s R′. In this case we say that R′ covers R′′.

EXAMPLE 6.7 Consider the operators + and − for L = Integer as defined in Ex-
ample 4.11 on page 88, x, y ∈ VInteger , X = {x, y}, C ∈ ℘f (CX) where

C =
{
x v [0,max (y)− [1 ,

y v [1+min(x), 100]
}

and S, S′ ∈ SSX where

S =
{
x v [1,4], y v [2,5]

}
,

S′ =
{
x v [1,1], y v [3,3]

}
.

Then, S is a solution (and also a partial solution) for C whereas S′ is an authentic
solution for C.

The set of all authentic solutions for C is denoted as Sola(C).

DEFINITION 6.8 (Constraint store stack) Let P = (S1, . . . , S`) be any (possibly
empty) sequence where Si ∈ SSX for 1 ≤ i ≤ ` and ` ≥ 0. Then P is a constraint
store stack for X if the operation push/2 over P is defined for any S ∈ SSX as follows

Precondition : { P = (S1, . . . , S`) }
push(P, S)

Postcondition : { P = (S1, . . . , S`, S`+1), S`+1 = S and P ∈ Stack(X) }.

where Stack(X) is the set of all constraint store stacks for X, and the operation top/1
over P is defined as:

Precondition : {P = (S1, . . . , S`) and ` > 0}
top(P) = S

Postcondition : {S = S`}.

Let P ′ = (S′1, . . . , S
′
`′} be another constraint store stack for X. Then P �p P ′ if

and only if for all Si ∈ P (1 ≤ i ≤ `), there exists S′j ∈ P ′ (1 ≤ j ≤ `′) such that
Si �s S′j. In this case we say that P ′ covers P .

6.3. The Branching Process 151

6.3 The Branching Process

In Section 2.2.3 it was shown that branching often involves two steps of choice usually
called variable ordering and value ordering. The first step selects a constrained variable
and the second one splits the domain associated to the selected variable in order to
introduce a choice point. In this section we explain these choice steps by describing
the main functions that define them.

The selecting function provides a schematic heuristic for variable ordering.

DEFINITION 6.9 (Selecting function) Let S = {c1, . . . , cn} ∈ SSX . Then

choose :: {S ∈ SSX | S is divisible} → CX

is called a selecting function for X if choose(S) = cj where 1 ≤ j ≤ n and cj is
divisible.

EXAMPLE 6.10 Suppose that X = {x1, . . . , xn} is a set of variables constrained re-
spectively in L1, . . . , Ln ∈ L and that S = {c1, . . . , cn} ∈ SSX is any divisible constraint
store for X where for all i ∈ {1, . . . , n}, ci is the simple interval constraint in S with
constrained variable xi. Here is a naive strategy that selects the “left-most” divisible
interval constraint in S.

Precondition : {S = {c1, . . . , cn} ∈ SSX is divisible}
choosenaive(S) = cj

Postcondition : {j ∈ {1, . . . , n}, cj is divisible and

∀i ∈ {1, . . . , j − 1} : ci is non-divisible}.

When branching, some interval constraints need to be partitioned, into two or more
parts, so as to introduce a choice point. We define a splitting function which provides
a heuristic for value ordering.

DEFINITION 6.11 (Splitting function) Let L ∈ L and k > 1. Then

splitL :: CXL → CXL × . . .× CXL︸ ︷︷ ︸
k times

is called a k-ary splitting function for L if, for all c ∈ CXL , with c divisible, this function
is defined splitL(c) = (c1, . . . , ck) such that the following properties hold:

Completeness : ∀c′ ≺CXL c with c′ non-divisible, ∃i ∈ {1, . . . , k} . c′ �CXL ci.

Contractance : ci ≺CXL c, ∀i ∈ {1, . . . , k}.

152 CHAPTER 6. Interval Constraint Branching

EXAMPLE 6.12 Let X = {i, b, r, s} be a set of variables where i ∈ VInteger , b ∈ VBool ,
r ∈ V< and s ∈ VSet Integer and let1 i v [a,a′], b v [false, true], r v {c,d} and
s v {e, f} be divisible interval constraints in CX where a,a′ ∈ Integer, c,d ∈ <
and e, f ∈ Set Integer. Then, the following functions are binary splitting functions
respectively for the domains Integer, Bool, < and Set Integer

split Integer (x v [a,a′]) = (x v [a,a], x v [a + 1,a′]),

splitBool (b v [false, true]) = (b v [false, false], b v [true, true]),

split<(r v {c,d}) = (r v {c, c′), r v [c′,d}),

splitSet Integer (s v {e, f}) = (s v {e, f\g], s v [e ∪ g, f}).

Here, split Integer is a naive enumeration strategy in which values are chosen from
left to right; splitBool divides the only divisible Boolean interval constraint into the two
non-divisible Boolean interval constraints; split< computes the mid point c′ = c+d

2.0 of
the interval [c,d]; and splitSet Integer is a valid splitting function for the domain of sets
of integers if we define g = {l} and l ∈ f\e.

LEMMA 6.13 Let choose/1 be a selecting function for X, C ∈ ℘f (CX), S =
(c1, . . . , cn) ∈ SSX a divisible constraint store, cj = choose(S), cj ∈ CXL for some
L ∈ L, splitL/1 a k-ary splitting function for L and (cj1, . . . , cjk) = splitL(cj). Then

(a) ∀i ∈ {1, . . . , k} : S[cj/cji] ≺s S;

(b) if S′ ∈ Sola(C) and S′ ≺s S, then

∃i ∈ {1, . . . , k} : S′ �s S[cj/cji].

PROOF 6.14 We prove the cases separately.
Case (a). By Definition 6.9, cj is divisible and, by the contractance property shown

in Definition 6.11, for all i ∈ {1, . . . , k} cji ≺CXL cj. Therefore, by Definition 4.33, for

all i ∈ {1, . . . , k} S[cj/cji] ≺s S.
Case (b). By Definition 6.6, S′ ∈ SSX . Suppose that cj is constrained on some

variable x ∈ VL (x ∈ X) and let c′j be the simple interval constraint for x in S′.
Thus, by Definition 4.33 on page 100 c′j �CXL cj. Moreover, by Definition 6.6 S′ is

non-divisible and thus by Definition 6.1, c′j is non-divisible. Also by Definition 6.9 cj
is divisible so that c′j 6= cj and thus c′j ≺CXL cj. As consequence, by the completeness
property of the splitting functions shown in Definition 6.11,

∃i ∈ {1, . . . , k} . c′j �CXL cji (6.1)

Therefore, again by Definition 4.33, ∃i ∈ {1, . . . , k} such that S′ �s S[cj/cji].
2

1Observe that in the integer and Boolean domains only intervals with close brackets are considered
since by the equivalence of ranges on discrete domains shown in Section 4.4.4 on page 102 open brackets
can always be transformed in close brackets e.g., x v (1,8) is equivalent to x v [2,7]. Note also that in
the Boolean domain there is just one unique case of divisible interval constraint (i.e., b v [false, true])
and thus only this case is considered in the definition of splitBool .

6.4. Branching in Interval Constraint Solving 153

6.3.1 The Precision Map as a Normalisation Rule

The precision map already described in Section 4.5.2 also provides a way to normalise
the selecting functions (i.e., the variable ordering) when the constraint system supports
multiple domains.

EXAMPLE 6.15 The well known first fail principle (see Example 2.3) chooses the
variable constrained with the smallest domain. However, in systems supporting multiple
domains it is not always clear which is the smallest domain (particularly if there are
several infinite domains). In our framework, one way to “measure” the size of the
domains is to use the precision map defined on each computation domain.

For instance, suppose that X = {x1, . . . , xn} is a set of variables constrained, respec-
tively, in L1, . . . , Ln ∈ L and that S = {c1, . . . , cn} ∈ SSX is any divisible constraint
store for X where for each i ∈ {1, . . . , n}, ci is the simple interval constraint in S
with constrained variable xi. Here the first fail principle can be emulated by defining
choose/1 to select the interval constraint with the smallest precision2. We denote this
procedure by chooseff .

Precondition : {S = {c1, . . . , cn} ∈ SSX is divisible}
chooseff (S) = cj

Postcondition : {j ∈ {1, . . . , n}, cj is divisible and

∀i ∈ {1, . . . , n}\{j} : ci divisible =⇒ precisionLj
(cj) ≤<I precisionLi

(ci)}.

6.4 Branching in Interval Constraint Solving

Figure 6.1 shows a generic schema for solving completely the interval constraints. This
schema is complementary to that shown in Section 4.5.

We continue to use L to denote any domain in L, X ∈ ℘f (VL) the set of constrained
variables, CX the set of all interval constraints domain for X and SSX the set of all
simple stable constraint stores for X.

The schema requires the following parameters: a finite set C ∈ ℘f (CX) of interval
constraints to be solved, a constraint store S ∈ SSX and a bound p ∈ <I. The
schema requires a non-negative real bound α and also extends the operational schema
solveε/2 described in Section 4.5.1. In the following we state some more properties on
the propagation schema solveε/2.

LEMMA 6.16 (More properties of solveε/2) Let C ∈ ℘f (CX), S, Sf ∈ SSX and
ε ∈ <+∪{0.0}. Suppose that Sf is the value of the constraint store S after a terminating
execution of solveε(C, S). Then,

(a) Sf �s S;

2It is straightforward to include more conditions e.g., if ci, ck, cj have the same (minimum) precision,
the “left-most” domain can be chosen i.e., cminimum(i,k,j).

154 CHAPTER 6. Interval Constraint Branching

(b) ∀R ∈ Sola(C ∪ S) : R �s Sf ;

(c) If Sola(C ∪ S) is not empty and Sf is non-divisible then Sf ∈ Sola(C ∪ S);

(d) If ε = 0.0 and Sf is non-divisible then Sf ∈ Sola(C ∪ S).

PROOF 6.17 In the following, let S0 be the initial value of S and C = C∪S0. Suppose
that the procedure terminates after k iterations of the repeat loop (i.e., Sk = Sf) and
that, for each i where 1 ≤ i ≤ k, Si is the value of the constraint store S at step (5)
of the schema shown in Section 4.5.1 on page 108, after completing i iterations of the
repeat loop.

Now we prove the cases separately.
Case (a).
We show by induction on i, that after i ≥ 0 iterations of the repeat loop

Si �s S0. (6.2)

It follows that after k iterations Sk �s S0 and thus Sf �s S0.
The base case when i = 0 is obvious. For the inductive step, suppose that there are

at least i > 0 iterations of the repeat loop and that, after i−1 steps, we have Si−1 �s S0.
Then, by Line 4,

Si−1 ∪ C ′ 7→ Si,

It follows from Proposition 4.35 on page 100 that Si �s Si−1. Therefore by the
inductive hypothesis Si �s S0.

Case (b).
Let R ∈ Sola(C ∪ S). By Definition 6.6, R is a solution for C ∪ S. From here,

following the same reasoning as in the proof of Theorem 4.56 on page 109 we obtain
that3 R �s Sk. As consequence R �s Sf .

Case (c).
Let R ∈ Sola(C ∪ S). By Case 6.16(b), R �s Sf . Suppose that R ≺s Sf . By

Definition 6.6, R is a solution for C∪S and, by Definition 4.46, R is consistent. Thus,
by Proposition 6.4(2), Sf is divisible which contradicts the hypothesis. As consequence,
R = Sf and thus Sf ∈ Sola(C ∪ S).

Case (d).
By Definition 6.6, Sk (i.e., Sf) is consistent and thus the procedure solveε(C, S)

terminates because

precision(Sk−1)− precision(Sk) ≤ (0.0, 0) (6.3)

By Line 4, in the k-th iteration,

C ;Sk−1 C ′; (6.4)

Sk−1 ∪ C ′ 7→ Sk. (6.5)

3Observe that the outline to prove (4.16) is exactly the same for the procedure solve/2 and the
procedure solveε/2.

6.4. Branching in Interval Constraint Solving 155

Then, by (6.5) and Proposition 4.35 on page 100 Sk �s Sk−1. As consequence,
from (6.3) and Proposition 4.65, Sk = Sk−1. By (6.4), (6.5) and Definition 4.46, Sk
is a solution for C (i.e., C ∪ S0). Therefore, as Sk is non-divisible, by Definition 6.6,
Sk ∈ Sola(C ∪ S).

2

Property (a) ensures that the propagation procedure never gains values, property
(b) guarantees that no solution covered by a constraint store is lost in the propagation
process and properties (c) and (d) guarantee the computed answers are correct4.

There are a number of values and subsidiary procedures that are assumed to be
defined externally to the main branch procedure shown in Figure 6.1:

• a selecting function choose/1 for X;

• a k-ary splitting function splitL for each domain L ∈ L (for some integer k > 1);

• a precision map for each L ∈ L;

• a constraint store stack P for X.

It is assumed that the external procedures have an implementation that terminates
for all possible values.

Before stating the main properties of the schema shown in Figure 6.1, we define
some concepts that will be useful to prove them.

A path q ∈ (Natural\{0})∗ is any finite sequence of (non-zero) natural numbers.
The empty path is denoted by ε, whereas q.i denotes the path obtained by concatenating
the sequence formed by the natural number i 6= 0 with the sequence of the path q. The
length of the sequence q is called the length of the path q.

Given a tree, we label the nodes by the paths to the nodes. The root node is
labelled ε. If a node with label q has k children, then they are labelled, from left to
right, q . 1, . . . , q . k.

DEFINITION 6.18 (Search tree for branchα(C, S, p)). Let X ∈ ℘f (VL), S ∈ SSX ,
C ∈ ℘f (CX), α ∈ <+ ∪ {0.0} and p ∈ <I. The search tree for branchα(C, S, p) is a
tree that has S at the root node and, as children, has the search trees for the recursive
executions of branchα/3 as consequence of reaching Line 8 of Figure 6.1.

Given a search tree for branchα(C, S, p), we say that Sε = S is the constraint store
and pε = p the precision at the root node ε. Let Sq be the constraint store and pq the
precision at a node q. If q has k > 0 children q .1, . . . , q .k, then Sq is consistent and, if

Sfq is the constraint store Sq after a terminating execution of solveε(C, Sq), then Sfq is

divisible so that choose(Sfq) = cj (for some cj ∈ CXLj
and Lj ∈ L) and, for some k > 0,

splitLj
(cj) = (cj1, . . . , cjk). Then we say that Sq.i = Sfq [cj/cji] is the constraint store

and pq.i = precision(Sfq) the precision at node q . i, for i ∈ {1, . . . , k}.
4Theorem 4.56 assures that, if a solution exist, the final state of constraint store S contains the

most general solution but not an authentic solution.

156 CHAPTER 6. Interval Constraint Branching

procedure branchα(C, S, p)

begin

solveε(C, S); (1)

if S is consistent then (2)

if (S is non-divisible or p < ><I and p − precision(S) ≤ (α, 0)) then (3)

push(P, S); (4)

else (5)

cj ← choose(S); (6)

(cj1, . . . , cjk)← splitLj
(cj), where cj ∈ CXLj

and Lj ∈ L; (7)

branchα(C, S[cj/cj1], precision(S)) ∨
. ∨

branchα(C, S[cj/cjk], precision(S));

%% Choice Points (8)

endif;

endif;

end.

Figure 6.1: branchα/3: a generic schema for interval constraint solving

THEOREM 6.19 (Properties of the branchα/3 schema) Let C ∈ ℘f (CX), S ∈ SSX ,
ε, α ∈ <+ ∪ {0.0} and p = ><I . Then, the following properties are guaranteed:

1. Termination: if α > 0.0 and the procedure solveε/2 terminates for all values5

then branchα(C, S, p) terminates;

2. Completeness: if α = 0.0 and the execution of branchα(C, S, p) terminates, then
the final state for the stack P contains all the authentic solutions for C ∪ S;

3. Approximate completeness: if the execution of branchα(C, S, p) terminates and
R ∈ Sola(C∪S), then the final state for the stack P contains either R or a partial
solution R′ that covers R.

4. Correctness: if α = 0.0 and ε = 0.0, the stack P is initially empty and the
execution of branchα(C, S, p) terminates with R in the final state of P , then
R ∈ Sola(C ∪ S).

5. Approximate correctness or control on the result precision: If Pα1 and Pα2 are
non-empty constraint store stacks for X resulting from any terminating execution
of branchα(C, S, p) (where initially P is empty) when α has the values α1 and

5Observe that termination of this procedure is always guaranteed if ε > 0.0 -See Theorem 4.67.

6.4. Branching in Interval Constraint Solving 157

α2, respectively, and α1 < α2 then

Pα1 �p Pα2 .

(In other words, the set of (possibly partial) solutions in the final state of the
stack is dependent on the value of α in the sense that the lower α, the better the
set of solutions.)

Observe that, just as for the bound ε in the solveε/2 procedure, the bound α also
guarantees termination and allows the precision of the results to be controlled.

In the following, each property stated in Theorem 6.19 is proved independently.

PROOF 6.20 (Property (1). Termination) In the following, we show that the search
tree for branchα(C, S, p) is finite so that the procedure effectively terminates.

Let Sε = S and pε = p. If the search tree for branchα(C, Sε, pε) has only one
node then the procedure terminates. Otherwise, the root node ε has k children with
constraint stores Si where i ∈ {1, . . . , k} and Si = Sfε [cj/cji]. By Lemma 6.13(a)
and Lemma 6.16(a), for all i ∈ {1, . . . , k}, Si ≺s Sε and, by Proposition 4.65,
precision(Si) <<I precision(Sε). Then, precision(Si) <<I ><I . Suppose now
that precision(Si) = (><, n) for some n ∈ Integer. Then the test in Line 2
pi − precision(Si) ≤<I (α, 0) holds and the node containing Si has no children. Other-
wise,

pi − precision(Si) ><I (α, 0) (6.6)

and there exists some constant ` ∈ < such that

precision(Si) <<I (`× α, 0).

We show by induction on the length j ≥ 1 of a path q in the search tree that

precision(Si)− precision(Sfq) ≥<I
(
(j − 1)× α, 0

)
.

It follows that j ≤ ` and that, all paths have length ≤ ` + 1 (since the second
condition in Line 3 of Figure 6.1 holds) and thus there are no infinite branches.

The base case when j = 1 follows from (6.6). Suppose next that j > 1 and that the
hypothesis holds for a path q of length j− 1. Let q . iq be a child of q of length j. Then,
by the condition in Line 3 of the if sentence,

pq.iq − precision(Sfq.iq) ><I (α, 0),

However, by the inductive hypothesis,

precision(Si)− precision(Sfq) ≥<I
(
(j − 2)× α, 0

)

158 CHAPTER 6. Interval Constraint Branching

so that, as precision(Sfq) is pq.iq ,

precision(Si)−precision(Sq.iq) ≥<I (α, 0) +
(
(j − 2)× α, 0

)
=
(
(j − 1)× α, 0

)
.

2

PROOF 6.21 (Property (2). Completeness) Let R ∈ Sola(C ∪ S). Then, R is non-
divisible and consistent by Definitions 6.6 and 6.1. By Lemma 4.47 on page 103,
R �s Sε and, by Lemma 6.16(b), R �s Sfε . If R = Sfε then tests in Lines 2-3 hold

and R is pushed on the stack P . Otherwise, R ≺s Sfε . By Proposition 6.4(2), Sfε is
divisible, (and thus by Definition 6.1 consistent). As pε = ><I , the condition in Line 3
does not hold and node ε has k children. By Lemma 6.13(a) and Lemma 6.16(a),

for any q of length m ≥ 1 and iq ∈ {1, . . . , k}, Sfq.iq ≺s S
f
q . By Proposition 4.65,

precision(Sfq)−precision(Sfq.iq) > (0.0, 0). Thus the condition pq.iq −precision(Sfq.iq) ≤
(α, 0) in Line 3 never holds. It follows that all the branches in the tree terminate either
with an inconsistent store (because test in Line 2 does not hold) or with a non-divisible
store (that is also consistent by Definition 6.1) as result of holding tests in Lines 2
and 3. Now, we show by induction on the length j ≥ 1 of a path q in the search tree
that

R ≺s Sfq =⇒ ∃iq ∈ {1, . . . , k} : R �s Sfq.iq . (6.7)

By hypothesis, the procedure terminates so that the search tree is finite. It follows
that there exists some path p = q . q′ with a finite length l ≥ j such that R = Sfp . Thus,

Sfp is non-divisible (and, by Definition 6.1 is consistent) and hence tests in Lines 2
and 3 hold so that R is pushed on the stack P .

In the base case, when j = 1, Si = Sfε [cj/cji] (i ∈ {1, . . . , k}). By Lemma 6.13(b)

and Lemma 6.16(b), ∃i ∈ {1, . . . , k} : R �s Sfi . Suppose next that j > 1 and that

the hypothesis holds for a path q of length j − 1 so that R �s Sfq . If R ≺s Sfq then,

by Proposition 6.4(2), Sfq is divisible (and thus consistent by Definition 6.1) so that

the node Sfq has k children. Therefore, by Lemma 6.13(b) and Lemma 6.16(b), ∃iq ∈
{1, . . . , k} : R �s Sfq.iq .

2

PROOF 6.22 (Property (3). Approximate completeness) Let R ∈ Sola(C ∪ S). By
Lemma 4.47 on page 103, R �s Sε. Since the procedure terminates, as shown in proof
of Theorem 6.19(1), all paths in the search tree have length ≤ ` + 1. Therefore, as
shown in proof of Theorem 6.19(2) (completeness proof), by following (6.7), there

must exists some path q with no children and length j ≥ 1 such that R �s Sfq . If

R = Sfq then R is put on the stack since, by Definition 6.1, R is consistent so that tests

in Lines 2 and 3 hold. Otherwise, as shown in termination proof, the node Sfq has no

more children since the test pq − precision(Sfq) ≤<I (α, 0) holds and Sfq is put on the

stack. As R �s Sfq , by Definition 6.6, either Sfq ∈ Sola(C ∪ S) or is a partial solution
for C ∪ S that covers R.

2

6.4. Branching in Interval Constraint Solving 159

PROOF 6.23 (Property (4). Correctness) Let R ∈ P after executing branchα(C, S, p).

As shown in completeness proof, if α = 0.0 the test pq − precision(Sfq) ≤ (α, 0) never
holds, for all path q (in the search tree) of length m ≥ 1 (observe also that Line 3 is
never satisfied when q = ε since pε 6< ><I). Therefore, R is in P because there exists

a path q where Sfq = R and the tests in Lines 2 and 3 hold. Thus, R is consistent and
non-divisible and by Lemma 6.16(4), R ∈ Sola(C ∪ Sq).

By induction on the length of the path q it is straightforward to prove that Sq �s Sε.
Now we prove that if R ∈ Sola(C ∪ Sq) then R ∈ Sola(C ∪ Sε). By Definition 6.6 R is
a solution for C ∪ Sq and thus by Definition 4.46 on page 103,

C ∪ Sq ;R C ′

R ∪ C ′ 7→ R.

As shown in proof of Lemma 4.47 on page 103, C ′ = C1 ∪ Sq where C ;R C1.
Moreover, C ∪ Sε ;R C ′′ where C ′′ = C1 ∪ Sε. Since Sq �s Sε, by Definition 4.31 on
page 99,

R ∪ C ′ 7→ R =⇒ R ∪ C ′′ 7→ R.

Therefore

C ∪ Sε ;R C ′′

R ∪ C ′′ 7→ R.

Thus, by Definition 4.46, R is as solution for C ∪ S and, by Definition 6.6, R ∈
Sola(C ∪ Sε).

2

PROOF 6.24 (Property (5). Approximate correctness or control on the precision
result) Suppose that R ∈ Pα1. Then R is consistent and there exists a path q of length

m ≥ 0 such that Sfq = R and Sfq was pushed on the stack because the test in Line 3

holds but, for all proper prefixes of q, it does not hold. Thus either Sfq is non-divisible
or

pq < ><I and pq − precision(Sfq) ≤ (α1, 0).

In addition, for all proper prefixes q1 of q, Sfq1 is divisible and, either

pq1 = ><I or pq1 − precision(Sfq1) > (α1, 0).

Since α1 ≤ α2, we also have

pq < ><I and pq − precision(Sfq) ≤ (α2, 0).

160 CHAPTER 6. Interval Constraint Branching

Let q′ be the smallest prefix of q such that

pq′ < ><I and pq′ − precision(Sfq′) ≤ (α2, 0).

Then Sfq′ is in Pα2. By repetitive application of Lemmas 6.13(a) and 6.16(a) it is

straightforward to prove that Sfq �s Sfq1 for all proper prefix q1 of q. Thus, Sfq �s Sfq′.
Therefore, as the choice of R ∈ Pα1 was arbitrary, by Definition 6.8, Pα1 �p Pα2.

2

Instances. Throughout this document we have already provided a number of in-
stances of the branch schema including the integers, reals and sets. These illustrate
that this schema can be used for any set of computation domains for which a splitting
function and precision map are defined.

6.5 Solving Optimisation Problems

The schema in Figure 6.1 can be adapted to solve COPs by means of three new sub-
sidiary functions.

DEFINITION 6.25 (Subsidiary functions and values) Let L< ∈ L be a totally or-
dered domain6. Then we define

• a cost function, fcost :: SSX → L<;

• an ordering relation, � :: L< × L< ∈ {>,<,=};

• a cost bound, δ ∈ L<.

Then the extended branching schema, branchα+/3, is obtained from the schema
branchα/3 by replacing Line 4 in Figure 6.1 with:

if fcost(S) � δ then (4*)

δ ← fcost(S);

push(P, S);

endif;

THEOREM 6.26 (Properties of the branchα+/3 schema) Let C ∈ ℘f (CX), S ∈
SSX , ε, α ∈ <+ ∪ {0.0} and p = ><I . Suppose that the procedure solveε/2 terminates
for all values7. Then, the following properties are guaranteed:

1. Termination: if α > 0.0 then the execution of branchα+(C, S, p) terminates;

6Normally L< would be <.
7Again note that termination of this procedure is always guaranteed if ε > 0.0 -See Theorem 4.67.

6.5. Solving Optimisation Problems 161

2. If fcost is a constant function with value δ and � is =, then all properties shown
in Theorem 6.19 hold for the execution of branchα+(C, S, p).

3. Soundness on optimisation: If at least one authentic solution with a cost higher
than ⊥L< (resp. lower than >L<) exists for C ∪ S , α = 0.0, � is > (resp.
<), δ = ⊥L< (resp. >L<), the stack P is initially empty and the execution of
branchα+(C, S, p) terminates with P non-empty, then the element on the top of
P is the first authentic solution found that maximises (resp. minimises) the cost
function.

Observe that the search tree for branchα+(C, S, p) is the same as for branchα(C, S, p).
In the following we prove independently each property claimed in Theorem 6.26.

PROOF 6.27 (Property (1). Termination) This proof is as that of Theorem 6.19(1).
2

PROOF 6.28 (Property (2)) Observe that if fcost(S) = δ for all S ∈ SSX , then test
in Line 4* of the extended schema always holds. It is straightforward to prove, in this
case, that the schemas branchα/3 and branchα+/3 are equivalent so that all properties
of the schema branchα/3 hold in the schema branchα+/3.

2

PROOF 6.29 (Property (3). Soundness on optimisation) We prove the case when
� and δ are, respectively, > and ⊥L<. The respective case is proved analogously. As
shown in proof of Theorem 6.19(2), for α = 0.0, if R ∈ Sola(C ∪ S) then there exists

in the search tree some path q of length j ≥ 0, such that R = Sfq and the tests in
Lines 2-3 hold by Definition 6.6. Thus, Line 4* is reached for all R ∈ Sola(C ∪ S),
and as consequence, the top of P will contain the first authentic solution found that
maximises fcost/1.

2

Unfortunately, if α > 0.0, we cannot guarantee that the top of the stack contains
an authentic solution or even a partial solution for the optimisation problem. However,
if the cost function fcost/1 is monotonic, solutions can be compared.

THEOREM 6.30 (Approximate soundness) Suppose that, for i ∈ {1, 2}, Pαi is the
constraint store stack resulting from the execution of branchαi+(C, S, p) where αi ∈
<+ ∪ {0.0}. Then, if α1 < α2 the following property hold.

If Pα1 and Pα2 are not empty, and top(Pα2) is an authentic solution or covers a
solution for C ∪ S, then, if fcost/1 is monotonic and � is < (i.e., a minimisation
problem),

fcost(top(Pα1)) �L< fcost(top(Pα2)),

and, if fcost/1 is anti-monotone and � is > (i.e.,a maximisation problem),

fcost(top(Pα1)) �L< fcost(top(Pα2)).

162 CHAPTER 6. Interval Constraint Branching

PROOF 6.31 (Property: Approximate soundness) We prove the case when � is <.
The respective case (i.e., � is >) is proved analogously. We show that during the ex-

ecution of branchα1+(C, S, p), Line 4* is reached for some Sfq′ �s top(Pα2) (where q′

is a path of length m1 ≥ 0) and thus fcost(Sfq′) �L< fcost(top(Pα2)). It follows that

either Sfq′ = top(Pα1) or Sfq′ 6= top(Pα1) because there is another store Sfq′′ = top(Pα1)

such that fcost(top(Pα1)) �L< fcost(Sfq′). In both cases it follows that effectively
fcost(top(Pα1)) �L< fcost(top(Pα2)).

Observe that top(Pα2) is in Pα2 because there exists a path q of length m ≥ 0 such

that Sfq = top(Pα2) and Sfq was pushed on the stack because Line 4* is reached and the

tests in Lines 2 and 3 holds but, for all proper prefixes of q, it does not hold. Thus Sfq
is consistent and either non-divisible or

pq < ><I and pq − precision(Sfq) ≤ (α2, 0).

In addition, for all proper prefixes q1 of q, Sfq1 is divisible and, either

pq1 = ><I or pq1 − precision(Sfq1) > (α2, 0).

Since α1 ≤ α2, we also have that, for all proper prefixes q1 of q, either

pq1 = ><I or pq1 − precision(Sfq1) > (α1, 0).

Thus, the node with path q is in the search tree for branchα1+(C, S, p). Now, we have
two cases: (1) Sqf is consistent and non-divisible. As consequence, Sqf has no children

and Line 4* is reached in the execution of branchα1+(C, S, p). (2) Sqf is consistent and

divisible. By hypothesis Sqf is an authentic solution R or covers an authentic solution
R for C ∪S. Then, reasoning as in proof of Theorem 6.19(3) and by (6.7), there must

exists some path q′, containing the path q, with no children such that Sfq′ is consistent

and either R = Sfq′ or

pq′ < ><I and pq′ − precision(Sfq′) ≤ (α1, 0).

In both cases, Line 4* is reached. Moreover, by repetitive application of Lemmas 6.13(a)

and 6.16(a) it is straightforward to prove that Sfq′ �s S
f
q .

2

A direct consequence of this theorem is that by using a(n) (anti-)monotone cost func-
tion, the lower α is, the better the (probable) solution is. Moreover, decreasing α is a
means to discard approximate solutions. For instance, in a minimisation problem, if

fcost(top(Pα1)) �L< fcost(top(Pα2))

with fcost/1 monotonic, then, by the approximate soundness property it is deduced
that top(Pα2) cannot be an authentic solution or cover an authentic solution.

6.5. Solving Optimisation Problems 163

6.5.1 Different Ways to Solve the Instances

In this section, we explain how the choice of the instantiation of the additional global
functions and parameters in the definition of branchα+/3 determines the method of
solving for a set of interval constraints i.e., the schema branchα+/3 allows a set of
interval constraints to be solved in many different ways, depending on the values for
fcost , δ and �.

Theorem 6.26(2) has shown that to solve classical CSPs, fcost should be defined
as the constant function8 δ and the parameter � should have the value =. Moreover,
Theorem 6.26(3) has shown that a CSP is solved as a COP by instantiating � as either
> (for maximisation problems) or < (for minimisation problems). In all cases, the value
δ should be instantiated to the initial cost value from which an optimal solution must
be found. Some possible instantiations are summarised in Table 6.1 where Column 1
indicates the type of CSP, Column 2 gives any conditions on the cost function, Column
3 gives the range of the cost function (usually, this is <), Columns 4 gives the initial
definition of the � operator, and Columns 5 gives the initial value for δ.

CSP Type fcost L< � δ

Classical CSP constant < = fcost(S)
Typical Minimisation COP any cost function < < ><
Typical Maximisation COP any cost function < > ⊥<

Max-Min COP any cost function <× < < ><×<

Table 6.1: CSP type depends on parameters instantiation

In contrast to typical COPs that usually maintain a fixed criteria (i.e., either max-
imisation or minimisation of the cost function) and a single lower or upper bound, our
schema also permits a mix of the maximisation and minimisation criteria (or even to
give priority to some criteria over others). This is the case (see Row 4 of Table 6.1)
when L< is a compound domain and the ordering in L< determines how the COP will
be solved.

EXAMPLE 6.32 Let C ∈ ℘f (CX) be a set of interval constraints to be solved as a
COP, L< the domain <2 = <× < with ordering

(a, b) < (c, d) ⇐⇒ (a < c ∧ b ≥ d) ∨ (a ≤ c ∧ b > d),

and fcost :: SSX → L< a cost function on <2 defined for any S ∈ SSX as

fcost(S) = (fcost1(S), fcost2(S))

where fcost1, fcost2 :: SSX → < are cost functions defined on <. Then, if δ and � are
initialised respectively to < and ><2 (as shown in Row 4 of Table 6.1), C is solved by
minimising fcost1 and maximising fcost2.

8Usually δ ∈ <.

164 CHAPTER 6. Interval Constraint Branching

On the other hand, if < is defined lexicographically on <2, i.e.,

(a, b) < (c, d) ⇐⇒ a < c ∨ a = c ∧ b < d,

C is solved by giving priority to the minimisation of fcost1 over the minimisation of
fcost2.

For example, suppose Sola(C) = {S1, S2, S3} and fcost(S1) = (1.0, 5.0), fcost(S2) =
(3.0, 1.0) and fcost(S3) = (1.0, 8.0). Suppose also that these solutions have been found
by a terminating execution of the branchα+/3 schema where � ≡< and initially δ ≡ ><2

and that the sequence in which the solutions are found in the search tree is (S1, S2, S3).

Consider the first ordering defined above for <2. When S1 is found, line 4* of
the schema is executed with δ = (><,⊥<) (i.e., with δ = ><2 as shown in Row 4 of
Table 6.1) and as consequence S1 is pushed on the stack P . Afterwards, S2 is found
and line 4* is executed with δ = fcost(S1) = (1.0, 5.0). As fcost(S2) 6< (1.0, 5.0),
S2 is not pushed on the stack. Next S3 is found and again line 4* is executed with
δ = fcost(S1) = (1.0, 5.0). As fcost(S3) < (1.0, 5.0) then S3 is pushed on the stack so
that the top of the new stack contains S3. Note that S3 minimises the first component
of the cost and maximises the second component.

Consider next the lexicographic ordering for the domain <2. When S1 is found,
line 4* is executed with δ = (><,><) (i.e., with δ = ><2 as shown in Row 4 of
Table 6.1) and as consequence S1 is pushed on the stack P . Afterwards, S2 is found
and line 4* is executed with δ = fcost(S1) = (1.0, 5.0). As fcost(S2) 6< (1.0, 5.0) then
S2 is not pushed on the stack. Finally S3 is found and again line 4* is executed with
δ = fcost(S1) = (1.0, 5.0). As fcost(S3) 6< (1.0, 5.0), S3 is not pushed on the stack and
the top of the stack contains S1. In this case, S1 minimises the first component and
only if the values of the first components are equal, minimises the second component.

6.6 A Simple Example

Here we show an example in the integer domain, illustrating the flexibility of the schema
to solve a set of interval constraints in different ways. Suppose we want to solve the
following set of constraints

C =
{
x1 + x2 + x3 ≤ 1,

x1 ≤ 1, x2 ≤ 1, x3 ≤ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
}
.

By considering the high level constraints ≤ and plus/3 as defined in Examples 5.3
and 5.4 (for L = Integer) respectively, the set C can be coded in our interval framework

6.6. A Simple Example 165

as follows9 {
plus(x1, x2, x12), plus(x12, x3, x123), x123 ≤ 1,

x1 ≤ 1, x2 ≤ 1, x3 ≤ 1,

0 ≤ x1, 0 ≤ x2, 0 ≤ x3
}

where L = {Integer}, X = {x1, x2, x3, x12, x123} and each variable in X belongs to
VInteger . Consider also the following cost functions

fcost1, fcost2 :: SSX → <,
fcost3, fcost4 :: SSX → <2,

defined for each S = {x1 v r1, x2 v r2, x3 v r3, x12 v r12, x123 v r123} in SSX as
follows

fcost1(S) = 1.0; %% Constant function

fcost2(S) = mid(r1) + mid(r2) + mid(r3); %% x1 + x2 + x3

fcost3(S) = (fcost2(S),mid(r1) + mid(r3)); %% (x1 + x2 + x3, x1 + x3)

fcost4(S) = (fcost2(S),mid(r2) + mid(r3)); %% (x1 + x2 + x3, x2 + x3)

where mid({a, b}) is a function from Rs< to < that returns the mid point in the range
{a, b} i.e., mid({a, b}) = a+b

2.0 (e.g., mid([1.0,4.0)) = 2.5).

Consider now the schema branchα+/3 with α = 0.0 and ε = 0.0, choosenaive as
defined in Example 6.10 and split Integer as defined in Example 6.12. Now, assume

that initially p = ><I , the global stack P is empty and S is the top element of SSX .
Suppose that the schema branchα+(C, S, p) is executed independently with the values
for δ, � and fcost/1 shown in each of the rows of Table 6.2. Each row is concerning
with an execution of the schema. In this table, Columns 2, 3 and 4 shows respectively
the value to which δ is initialised, the cost function used and the initialisation of � in
the current execution of the schema and

• Column 1 indicates the way in which the CSP is solved (where Max-Min means
that we have mixed criterias for the optimisation as done in Example 6.32),

• Column 5 indicates where, in the final state of the stack P , the authentic solu-
tion(s) is (are) positioned and

9Observe that due to the definition of the plus constraint two intermediate variables x12 and x123
have been added. However this may be easily avoided by considering alternative definitions e.g., we
could declare a plus constraint with four arguments in the following way

plus(x, y, z, w)⇔ plus(x, y, xy), plus(xy, z, w).

166 CHAPTER 6. Interval Constraint Branching

• Column 6 references the figure that shows the final state10 of the stack11 P .

Note that since the integer domain is finite, termination is guaranteed even if α =
0.0 and ε = 0.0.

CSP Type δ Cost function � Solution Figure

Classical CSP 1.0 fcost1 = Any in the stack 6.2(a)
Maximisation COP ⊥< fcost2 > stack top 6.2(b)
Minimisation COP >< fcost2 < stack top 6.2(c)
Max-Min COP (i) (⊥<,><) fcost3 <1 stack top 6.2(d)
Max-Min COP (ii) (⊥<,><) fcost4 <1 stack top 6.2(e)
Max-Min COP (iii) (⊥<,><) fcost3 <2 stack top 6.2(f)
Max-Min COP (iv) (⊥<,><) fcost4 <2 stack top 6.2(g)

Table 6.2: Different solvings of the CSP

Solution S fcost1(S) fcost2(S) fcost3(S) fcost4(S)

(1,0,0) 1.0 1.0 (1.0,1.0) (1.0,0.0)
(0,1,0) 1.0 1.0 (1.0,0.0) (1.0,1.0)
(0,0,1) 1.0 1.0 (1.0,1.0) (1.0,1.0)
(0,0,0) 1.0 0.0 (0.0,0.0) (0.0,0.0)

Table 6.3: Evaluation of the solutions to the problems

Each execution of the schema gives rise to a different way of solving C ∪ S. For
instance, Row 1 of Table 6.2 indicates how to solve the problem as a classical CSP.
Here fcost is a constant function with value δ (where δ is 1.0) and � is =. In this
case, all authentic solutions are pushed on the stack (see Figure 6.2(a)) as stated in
Theorem 6.26(2) (see also Theorem 6.19(2)). Rows 2-3 in Table 6.2 show how the
problem can be solved by maximising and minimising the function fcost2 respectively.
The optimal solution is that on the top of the stack (see Figures 6.2(b) and 6.2(c)). On
their turn, Rows 4-7 indicate how to mix optimisation criterias as done in Example 6.32
where <1 and <2 are defined on <2 as follows:

(a, b) <1 (c, d) ⇐⇒ (a ≥ c ∧ b < d) ∨ (a > c ∧ b ≤ d);

(a, b) <2 (c, d) ⇐⇒ a > c ∨ a = c ∧ b < d.

Thus, Row 4 corresponds to the problem of maximising x1+x2+x3 and minimising
x1 +x3; Row 5 corresponds to maximising x1 +x2 +x3 and minimising x2 +x3; Row 6

10To the right of each element in P we write its cost.
11For simplicity (a, b, c) denotes the constraint store

S = {x1 v [a, a], x2 v [b, b], x3 v [c, c], x12 v [d, d], x123 v [e, e] }

where d and e are any integers - that clearly are not relevant for the solution. For instance, (0, 1, 0)
denotes the constraint store S = {x1 v [0, 0], x2 v [1, 1], x3 v [0, 0], . . .}.

6.7. Related Work 167

Figure 6.2: The final state of the global stack P in the different solvings of the CSP

corresponds to first maximising x1 + x2 + x3 and, if this cannot be further optimised,
then minimising x1 + x3 (this is consequence of the ordering <2 that gives priority
to the maximisation of the first component over the minimisation of the second one);
and Row 7 does the same but minimising x2 + x3. Figure 6.2 shows the final state
of the global stack for each of these cases (in order to help the reader to follow the
example, Table 6.3 shows the cost of each authentic solution with respect to the four
cost functions considered in this example).

Note that, problems involving other mixed criterias of optimisation may be solved
by defining alternative orderings on <2.

6.7 Related Work

Constraint solving algorithms have received intense study from many researchers, al-
though the focus has been on developing new and more efficient methods to solve
classical CSPs (Freuder and Hubbe, 1995; Wallace, 1993) and partial CSPs (Freuder
and Wallace, 1992; Meseguer and Larrosa, 1995). See (Kumar, 1992; Ruttkay, 1998;
Smith, 1995; Van Hentenryck, 1995) for more information on constraint solving algo-
rithms and (Kondrak and Van Beek, 1997; Nadel, 1989) for selected comparisons.

Most of the work existing in the literature about the branching step is focused on the
discrete domain and in this case branching is usually called labeling (Van Hentenryck,
1989). Labeling consists of assigning values (i.e., the instantiation) to the constrained
variables and, by a backtracking search, to find a solution (if it exists) for the CSP.
The order in which variables and values are instantiated will have a significant influence
on the shape of the search tree and thus the performance of the solution (as already
discussed in Section 2.2.3).

On infinite domains, labeling is rarely applied as for FD. Of course there are excep-
tions such as that shown in (Monfroy et al., 1995; Monfroy, 1996) that applied labeling

168 CHAPTER 6. Interval Constraint Branching

to process the solutions on infinite and continuous domains. Before labeling is applied,
the only values that a variable can take are roots of an univariate polynomial so that
in fact only discrete and finite domains are considered.

Traditionally, on the continuous domain (i.e., the real domain) the branching pro-
cess consists of splitting (usually in two parts) the domain of some variable(s) so as
to continue with the search for a solution in each of the derived partitions. This is
the process followed in well known systems such as CLP(BNR) (Older and Benhamou,
1993) and CLIP (Hickey, 2000). These systems provide interval constraint solving on
which a real variable has associated an interval (in the usual meaning of set theory)
and a classical strategy of “divide and conquer” in the solving of problems involving
real numbers is usually employed. When no more propagation is possible, the interval
solver uses a sort of domain splitting to return each answer. This method is called
split-and-solve (Benhamou and Older, 1997). The split-and-solve method repeatedly
selects a variable, splits its associated interval into two or more parts and uses back-
tracking to look for solutions in each partition. Of course, there is the necessity of a
termination test that avoids the infinite splitting of ranges (at least theoretically be-
cause in practice the real domain is finite since the precision of a machine is finite).
Particularly, CLP(BNR) extends this strategy to the Boolean and integer domains.

Throughout this document we have already shown that our framework allows co-
operative instances to solve sets of interval constraints defined on multiple domains.
In our framework, the split-and-solve method of CLP(BNR) is easily emulated if we
consider L to be the set {Integer ,<,Bool}, the definition of the precision maps for the
domains in L of Example 4.62, the definition of the binary splitting functions for the
domains in L of Example 6.12 and the selecting function defined in either Example 6.10
or Example 6.15. To guarantee termination is enough to use the operational procedure
solveε with ε > 0.0 (e.g., ε = 10−6) and impose α > 0.0.

6.8 Concluding Remarks

In this chapter we have generalised the well known split-and-solve method of the
CLP(BNR) system (Benhamou and Older, 1997) to any domain with lattice struc-
ture what means that it is valid for both classical domains (i.e., real, integers, Boolean
and sets) and new (possibly combined) domains. In this generalisation, we propose
an interval branching schema that extends the interval propagation schema described
in Section 4.5. This extension gives rise to a generic schema for interval constraint
solving that allows problems defined on any set of lattices to be solved in terms of
interval constraints.

To achieve this, we have first defined the concept of authentic solution as an as-
signment of values to variables that satisfies all the constraints. Then, by using a
schematic formulation for the branching process, we have indicated which properties
of the main procedures involved in branching are responsible for the key properties of
interval constraint solving. Then we have extended the schema for optimisation and
have shown by means of examples that, in some cases, the methods for solving CSPs

6.9. Contributions 169

depend on the ordering of the range of the cost functions.
We have also proved key properties such as correctness and completeness and shown

how termination may be guaranteed by means of a precision map similar to that defined
for the propagation schema described in Section 4.5. Moreover, by means of an example,
we have also shown how the precision map is a means to normalise the heuristic for
variable ordering on systems supporting multiple domains (e.g., cooperative systems).

The schema can be used for most existing constraint domains (finite or continuous)
and, as for the propagation framework described in Chapter 4, is totally transparent
(i.e., it is a glass box) and also applicable to multiple domains and cooperative systems.

6.9 Contributions

To our knowledge, despite the fact that it is well known that the branching step is
a crucial process in complete constraint solving, papers concerned with the general
principles of constraint solving algorithms have mainly focused on the propagation step
(Apt, 1999; Fernández and Hill, 1999c; Van Hentenryck et al., 1992). The contributions
of this chapter are as follows:

• first, to the CLP community, it is an attempt to find general principles for the
branching process in interval constraint solving. The branching schema provided
here is a generic schema for solving sets of interval constraints on finite and
continuous domains as well on multiple domains and it is useful to prove and
devise generic properties of interval constraint solving.

Moreover, the branching schema proposed here defines a generic operational se-
mantics for interval constraint solving that can explain the behaviour of a number
of existing interval constraint systems such as such as clp(FD) (Codognet and
Diaz, 1996a), clp(B) (Codognet and Diaz, 1994), DecLic (Goualard et al., 1999),
clp(B/FD) (Codognet and Diaz, 1996b), CLIP (Hickey, 2000), Conjunto (Gervet,
1997) or CLP(BNR) (Benhamou and Older, 1997);

• secondly, to the thesis, the chapter completes the cooperative and generic schema
for interval propagation described in Chapter 4 to interval constraint solving.
The resulting framework is a generic, cooperative and transparent setting for
interval constraint solving. To our knowledge, with the exception of CHR, no
other existing interval constraint system hold all these characteristics so that our
interval system is novel.

As minor contributions, this chapter also

• proposes a new method for normalising the heuristic for variable ordering on sys-
tems supporting multiple domains. This method is based on the definition of a
monotonic precision function on each computation domain that maps “intervals”
to values in the totally ordered predefined domain <I. As consequence, inter-
vals defined on different domains can be compared via comparing values in this
domain;

170 CHAPTER 6. Interval Constraint Branching

• shows that, in some cases, the methods for solving CSPs depend on the ordering
of the range of the cost functions;

Part IV

Practical Framework

171

Chapter 7

A 2D Glass Box, Collaborative,
Generic CLP Language

The limits of my language

mean the limits of my world.

Tractatus Logico-Philosophicus (1922)

Ludwig Wittgenstein 1889-1951

7.1 Motivation

In order to validate the feasibility of our ideas, we have implemented a language for
interval constraint solving on lattices based on the theoretical framework described in
Part III.

In this chapter we propose a new CLP language, called clp(L) (i.e., CLP on sets of
lattices), that is totally based in the theoretical framework shown in previous chapters.
The clp(L) language is an alternative for a flexible constraint solver that allows for
user and system defined constraints (that is a glass box on constraints approach) as
well as user and system defined domains (that is a glass box on domains approach)
with lattice structure, even if the cardinality is infinite, and interaction between them
(i.e., cooperation). As clp(L) provides a 2-dimensional (2D) glass box approach on
constraints and on domains (see Figure 1.3 on page 7) we say that clp(L) is transparent.

Here we show the main features of clp(L), discuss briefly a prototype implementa-
tion and show several examples of its flexibility. Observe that we do not pretend to
give the whole specification of both the language and the prototype implementation,
since this can be found in (Fernández, 2000), but only a global overview.

173

174 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

7.1.1 Chapter Structure

This chapter is structured as follows. In Section 7.2 we introduce the basic syntax of
the clp(L) language and show several examples of how to declare both user-defined
domains and constraints. Then Section 7.3 describes the execution procedure of the
clp(L) system (i.e., our prototype implementation of the clp(L) language) by showing
how the unification step of usual LD-resolution is extended. Section 7.4 describes
how the clp(L) system is implemented and enumerates the functionalities available in
the current version. In Section 7.5, three clp(L) programs are developed to show the
flexibility of the system. The chapter ends with a discussion about related work, the
conclusions and a summary of the main contributions of the chapter.

7.2 The clp(L) language

The clp(L) language combines the features of standard Prolog (Sterling and Shapiro,
1986) with some extra declarations such as: (1) declarations of the computation do-
mains (including the combined domains) and (2) declarations of the constraint opera-
tors on the computation domains.

7.2.1 Domain Declarations

A domain declaration allows the user to define a new domain with a lattice structure.
Basically, the predicates lattice/2, finite/1, lt/4, glb/5 and lub/5 are used to declare a
new lattice as computation domain. If the lattice is totally ordered, then the predicates
succ/3 and pred/3 can also be used.

• lattice(D,E) declares that the element E belongs to the domain D.

• finite(D) is true if D is finite and false otherwise.

• lt(normal,D,X,Y) declares that X is lower than Y in the domain D.

• glb(normal,D,X,Y,Z) defines Z to be the greatest lower bound (glb) of the
elements X and Y in the domain D.

• lub(normal,D,X,Y,Z) defines Z to be the least upper bound (lub) of the ele-
ments X and Y in the domain D.

• succ(D,X,Y) defines Y to be the immediate successor of the element X in the
totally ordered domain D. It must be defined for all element X in D.

• pred(D,X,Y) defines Y to be the immediate predecessor of the element X in
the totally ordered domain D. It must be defined for all element X in D.

The first argument in the predicates lt/4, glb/5 and lub/5 is instantiated to ‘normal’
that is a predefined constant term used to distinguish the user-defined declarations from
other built-in declarations.

7.2. The clp(L) language 175

New domains resulting from the combination of existing (user or system) domains
can also be defined by using the predicates product Direct/3, product Lexicographic/3
and linear sum/3.

• product Direct(D,E,F) declares F to be the direct product of D and E.

• product Lexicographic(D,E,F) declares F to be the lexicographic product of
D and E.

• linear sum(D,E,F) declares F to be the linear sum of D and E.

EXAMPLE 7.1 The real domain can be declared as follows:

lattice(real,Ele):-float(Ele).

lt(normal,real,A,B):- lattice(A,real),lattice(B,real),!,A < B.

finite(real):-fail.

glb(normal,real,X,Y,Z):- lattice(real,X),lattice(real,Y),

(X<=Y->Z=X;Z=Y).

lub(normal,real,X,Y,Z):- lattice(real,X),lattice(real,Y),

(X>Y->Z=X;Z=Y).

float/1 is a built-in predicate in clp(L) (see Section 7.4). A call float(X) is true if
X is a real value.

The following clause declares the integer point domain to be the direct product
〈Integer , Integer〉 (where Integer is declared analogously to the real domain -see Ap-
pendix A).

product_Direct(integer,integer,int_point).

More examples of declarations of new computation domains in the clp(L) language
are shown in Appendix A.

7.2.2 Declarations of Constraint Operators.

The current implementation of clp(L) allows both unary and binary operators (see
Section 4.3.2 on page 88). As usual in a logic language, all the constraint operators
have to be declared as dynamic1. The declaration of a constraint operator also requires
the use of the predicate declara/3 or declara/4. Let L,L1, L2 be (user or system) (not
necessarily distinct) computation domains.

• declara(Op,L1,L) specifies the unary operator Op :: Ls1 → Ls.

• declara(Op,L1,L2,L) specifies the binary operator Op :: Ls1 × Ls2 → Ls.

1This is just a matter of the current implementation prototype.

176 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

If the L1 or L2 is replaced in the above by mirror(L1) or mirror(L2), then the
domains Ls1 or Ls2 are replaced by the mirrors Ls1 or Ls2.

Also, any declared operator has to be defined on both the bracket domain and
the computation domain (see Definition 4.10 on page 88). From these definitions the
clp(L) system infers the definition of the constraint operator (by (4.2) in Page 88) as
well as the definition of its mirror operator (by (4.3) in Page 88). As a consequence, if
Op is a (unary or binary) constraint operator defined on both the bracket domain and
a computation domain L, ti ∈ Lsi and ti = ai}i or ti ∈ Lsi and ti = {iai, for i ∈ {1, 2},
then the definition of the constraint operator over the domain Ls is inferred as follows:

Op(t1) = Op(a1) Op(}1) for unary operators (7.1)

Op(t1, t2) = Op(a1, a2) Op(}1,}2) for binary operators.

EXAMPLE 7.2 Assume that the integer and real domains have already been declared
and that the integer point domain is as in Example 7.1 on the preceding page (see
their complete declaration in Appendix A). The following clp(L) clauses declare the
constraint operators + and − as defined in Example 4.11 on page 88. Observe that these
operators have to be defined on the bracket as well as on the computation domains2.

%--- Declaring the operators dynamically as usual

:-dynamic ‘:+:’/3.

:-op(625,xfx,‘:+:’).

:-dynamic ‘:-:’/3.

:-op(625,xfx,‘:-:’).

%--- Operator declarations

declara(:+:,L,L,L). (1)

declara(:-:,L,mirror(L),L).

%--- Definition on the bracket domain.

:+:(close,close,close). (2)

:+:(open,_,open).

:+:(_,open,open).

:-:(A,A,close). (3)

:-:(A,B,open):-A\==B.

%--- Definition on the integer, real and integer point domains

:+:(E1,E2,E3):-(lattice(integer,E1), lattice(integer,E2)); (4)

(lattice(real,E1), lattice(real,E2)),E3 is E1+E2.

:+:((A,B),(C,D),(E,F)):-lattice((A,B),int_point),

2By syntax conventions usually a constraint operator in the current implementation of the clp(L)
system begins and ends with colon.

7.2. The clp(L) language 177

lattice((C,D),int_point),

E is A + C, F is B + D.

%--- Definition on the integer, real and integer point domains

:-:(E1,E2,E3):-(lattice(integer,E1), lattice(integer,E2)); (5)

(lattice(real,E1), lattice(real,E2)),E3 is E1-E2.

:-:((A,B),(C,D),(E,F)):-lattice((A,B),int_point),

lattice((C,D),int_point),

E is A - C, F is B - D.

In clp(L), ‘open’ and ‘close’ are reserved words denoting the brackets) and] re-
spectively. Note that the operators :+: and :− : are declared in line (1) generically for
any L as

‘ :+: ’ :: Ls × Ls → Ls

‘ :− : ’ :: Ls × Ls → Ls

and defined respectively in lines (4) and (5) for the real, integer and integer point
domains. In lines (2) and (3) these operators are defined on the bracket domain as
shown in Example 7.1 on page 175, that is to say, for each }1,}2 ∈ B

}1 :+: }2 = minB(}1, }2),
}1 :− : }2 =] iff }1 = }2 and) otherwise.

From (7.1), the system infers the global definition for :+: and :− : in Ls (where L
is the integer domain, the real domain or the integer point domain) and from (4.3) on
Page 88 deduces its definition in Ls.

It is also important to mention that the clp(L) system infers, from the declara-
tions of the constraint operators, the validity of the interval constraints with respect
to the theoretical framework. This guarantees the monotonicity property defined in
Section 4.4.6 on page 104.

More examples of declarations of constraint operators in the clp(L) language are
shown in Appendix B.

7.2.3 Interval Constraints

An interval constraint x v r is expressed in clp(L) by an expression of the form

X in R

where X is a logical variable and R a range in clp(L).
The basic syntax of the X in R constraint in clp(L) is shown in Table 7.1 where:

‘bottom’ and ‘top’ are reserved words denoting, respectively, fictitious bottom and
top elements of any computation domain; ‘open’ and ‘close’, as already said, are also
reserved words denoting the brackets) and] respectively; d is any value belonging

178 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

Table 7.1: Basic syntax of the constraint X in R in clp(L)

interval constraint ::= X in range (interval constraint)

range::= term..term (range)

term::= ‘(’constant‘,’bracket‘)’ (term in Ls or Ls for some L ∈ L)
‘(’minY ‘)’ (minimum indexical term)
‘(’maxY ‘)’ (maximum indexical term)
‘(’valY ‘)’ (ground indexical term)
δ(term) (δ is a unary operator for Ls)
‘(’term ◦ term‘)’ (◦ is a binary operator for Ls)

bracket::= open (open bracket ‘)’)
close (close bracket ‘]’)

constant::= d (d ∈ L for some L ∈ L)
bottom (lifted bottom element)
top (lifted top element)

to some (user or system defined) domain L already declared as in Section 7.2.1; ◦ is
a binary operator3 (for Ls) and δ is a unary operator (for Ls) already declared as in
Section 7.2.2; X and Y are logical variables ; a term ‘(d, close)’ represents either the
term d] ∈ Ls or the term [d ∈ Ls whereas a term ‘(d, open)’ represents either the term
d) ∈ Ls or the term (d ∈ Ls.

EXAMPLE 7.3 Suppose that operators :+: and :-: are declared in the clp(L) system
as shown in Example 7.2. Then, in clp(L)

‘X in (4,close)..(9,open)’ denotes the constraint x v [4, 9).

‘X in ((4,close):+:(min Y))..(max Y)’ denotes x v [4+min(y),max (y).

‘X in ((0,0),close)..((max Z):+:((3,1),close))’ denotes x v [(0, 0),max (z)+(3 , 1)].

where 4 and 9 are integers, and (0,0) and (3,1) are elements of the domain ‘int point’
(see Example 7.1).

Observe that the position of a constraint operator (together with its declaration)
determines if we are using the operator or its mirror.

7.2.4 High Level Constraints

From the interval constraints in clp(L), it is possible to construct high level constraints.

3Observe that infix notation is allowed for the binary operators.

7.2. The clp(L) language 179

EXAMPLE 7.4 Consider the operators :+: and :-: as declared in Example 7.2. The
following clp(L) code defines the (overloaded) high level constraint plus/3 as shown in
Section 5.4 on page 127.

plus(X,Y,Z) :- X in ((min Z):-:(max Y))..((max Z):-:(min Y)),

Y in ((min Z):-:(max X))..((max Z):-:(min X)),

Z in ((min X):+:(min Y))..((max X):+:(max Y)).

Observe that this constraint can generically be applied on all computation domains
in which operators :+: and :-: have been defined. For example, consider the domains
of integer points and reals as declared in Example 7.1 as well as the domains of inte-
gers and sets (with no specific type base) that are declared in Appendix A (the integer
domain is declared as usual and the set domain is defined as a list with the inclusion
as ordering). Consider also the definition of the constraints operators :+: and :-: for
the integer, real and integer point domains as shown in Example 7.2. In the domain of
sets, the operators :+: and :-: are defined to be the usual union and difference of sets
respectively (see Appendix A on page 227). Then, a goal such as

[X,Y,Z]::’real, [V,W,T]::’integer,

[C1,C2,C3]::’set, [P1,P2,P3]::’int_point,

Z in (1.0,close)..(4.0,close), Y in (0.0,open)..(90.0,close),

V in (1,close)..(2,close), W in (2,close)..(9,open),

C1 in ([1],close)..([1,2,3],close), C2 in ([4],close)..([4,7],close),

P1 in ((0,0),close)..((1,2),close), P2 in ((1,3),close)..((2,9),close),

plus(X,Y,Z),

plus(V,W,T),

plus(C1,C2,C3),

plus(P1,P2,P3).

returns the solution

X in (-89.0,close)..(4.0,open),

T in (3,close)..(10,close),

C3 in ([1,4],close)..([1,2,3,4,7],close),

P3 in ((1,3),close)..((3,11),close).

In clp(L), x::’L denotes a type constraint for x in L (see Definition 4.26 on page 96)
and [x1, . . . , xn] ::’L is equivalent to x1 ::’L, . . . , xn ::’L. Thus, X, Y and Z are con-
strained in the real domain, V, W and T in the integer domain, C1, C2 and C3 in
the domain “sets of integers” and P1, P2 and P3 in the domain of integer points.
Observe that the constraint ‘T in (3,close)..(11,open)’ was reduced to the constraint ‘T
in (3,close)..(10,close)’ by applying of the equivalence rules for discrete domains (see
Section 4.4.4 on page 102).

Note again that the high level constraint plus/3 is used generically on very different
domains with no special reasoning for each domain.

180 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

EXAMPLE 7.5 The generic high level constraint ≤ defined in Example 5.3 on
page 127 is coded in the clp(L) language as follows:

X <=: Y :- X in (bottom,close)..(max Y),

Y in (min X)..(top,close).

Observe that this constraint is generic since any domain has (lifted) top and bottom
elements.

More examples of definitions of high level constraints in the clp(L) language are
shown in Appendix C.

Our prototype implementation also provides an interpreter of the clp(L) language
that allows a syntactic sugar in the command line. For example, the goal shown in
Example 7.4 can be directly coded as4:

clp(L) > [X,Y,Z]::’real, [V,W,T]::’integer,

[C1,C2,C3]::’set, [P1,P2,P3]::’int_point,

Z in [1.0,4.0], Y in (0.0,90.0],

V in [1,2], W in [2,9),

C1 in [{1},{1,2,3}], C2 in [{4},{4,7}],

P1 in [#0,0#,#1,2#], P2 in [#1,3#,#2,9#],

plus(X,Y,Z),

plus(V,W,T),

plus(C1,C2,C3),

plus(P1,P2,P3).

7.3 The Execution Procedure

The clp(L) system manages a single constraint store which contains all the (user or
system defined) constraints for any computation domain. As in Prolog, the resolution
mechanism uses LD-resolution but with the unification step extended as explained in
the following.

Assume that the system supports n (user or system defined) computation domains
and that the computation domains are denoted by Li (1 ≤ i ≤ n). Assume also
that there are n disjoint sets of variables, denoted by VLi (1 ≤ i ≤ n) and that VLi is
associated with the computation domain Li. A constrained variable x ∈ VLi (1 ≤ i ≤ n)
can be unified with

• An unbound variable y: in this case y is just bound to x.

• An element l ∈ Li: this is equivalent to adding x v [l, l] to the constraint store.

• Another constrained variable y ∈ VLi : this is equivalent to adding x v
min(y),max(y) and y v min(x),max(x) to the constraint store.

4‘clp(L) >’ is the prompt of the interpreter prototype for the clp(L) language -see (Fernández, 2000)
for more information.

7.4. The Current clp(L) Implementation 181

The prototype implementation of the clp(L) language returns a fail, called domain
fail, if

• x tries to unify with another constrained variable y ∈ VLj such that j 6= i,

• x tries to unify with an element l and l 6∈ Li or

• x is constrained (by a simple interval constraint) to have values in a domain RLb
j

distinct from RLb
i
.

EXAMPLE 7.6 Let “p(X) :- X in [3,5].” be the only clause for p/1 in a clp(L)
program where X ∈ VInteger . Consider the following clp(L) goals in the command line:

(a) clp(L) > p(Y).

(b) clp(L) > p(4).

(c) clp(L) > Y in [4,14), p(Y).

(d) clp(L) > Y in [8.9,14.2), p(Y).

(e) clp(L) > p(2.1).

Then, assuming Y is an unbound variable, the system:

(a) unifies X with Y and adds the constraint “Y in [3,5]” to the store;

(b) unifies X with 4 and adds the constraint “X in [4,4]” to the store. Then the
constraint “X in [3,5]” is also added and the propagation algorithm shown in
Section 4.5.1 on page 108 is applied. This case is equivalent to unifying X with
4 and adding “4 in [3,5]” to the store which operationally is just equivalent to
testing that 3 ≤ 4 ≤ 5 (but this is an improvement to the implementation level);

(c) adds the constraint “Y in [4,14)” to the store and then unifies X with Y (since
Y ∈ VInteger) adding also the constraints “X in min(Y),max(Y)” and “Y in
min(X),max(X)”. Finally, the constraint “X in [3,5]” is added and constraint
propagation is executed by following the operational schema described in Sec-
tion 4.5.1.

(d) adds the constraint “Y in [8.9,14.2)” to the store. Since this implies that Y ∈ V<
while X ∈ VInteger , Y and X fail to unify and a domain fail is returned;

(e) tries to unify X with 2.1 and a domain fail is returned since X ∈ VInteger and
2.1 6∈ Integer.

7.4 The Current clp(L) Implementation

In this subsection, we briefly describe our prototype implementation of clp(L)
(Fernández, 2000). This has been built on the SICStus 3#7 Prolog platform (Carlsson
et al., 1997).

182 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

7.4.1 Interval Constraints

Constraint consistency, store stabilisation and constraint propagation are implemented
using the constraint handling rules (CHRs) (Frühwirth, 1998) that are part of a SICStus
library. The CHRs are very appropriate since they are solved prior to the resolution
step of the standard logical engine. As shown in Section 2.4.2 on page 28 there are
three kinds of CHRs, the simplification rule, the propagation rule and the simpagation
rule. In the following we briefly detail some aspects of our prototype implementation.

The inconsistency of simple interval constraints (see Definition 4.21 on
page 93) is defined via the following propagation CHRs5:

inconsistency1 @ x v s, t⇒ simple(s, t), not(s ≤L t) | fail.
inconsistency2 @ x v (a, a} ⇒ fail.

The test simple(r) is a built-in predicate that returns true if and only if the range
r is simple (see definition 4.26) and false otherwise.

Store stabilisation (see Definition 4.31 on page 99) is mainly based on the rule ∩L
(see Definition 4.28 on page 98) that is basically implemented via a simplification CHR
as follows:

x v r1, x v r2 ⇔ simple(r1), simple(r2), glbRL
(r1, r2, r3) | x v r3.

In a previous step to store stabilisation, for any simple constraint x v r, the system
deduces the computation domain L over which the range r is constructed. This means
that the system infers the computation domains L1 and L2 for r1 and r2 respectively
and checks that L1 and L2 coincide. glbRL

/3 is a built-in predicate that given two
simple ranges constructed over the same interval lattice RsL computes their greatest
lower bound. Thus, glbRL

(r1, r2, r3) returns in r3 the glb in the interval lattice RsL of
r1 and r2. The test simple on r1 and r2 checks that r1 and r2 are simple (as required
in the definition of rule ∩L).

Constraint Propagation (see Section 4.4.3 on page 100) is implemented via a set
of propagation CHRs that cover all the possible cases of evaluation of indexicals terms
(see Definition 4.39 on page 101). For example, the following propagation CHR

x v (min y), t, y v s1, t1 ⇒ (x 6= y, simple(s1, t1)) | x v s1, t

is the implementation of the case in which the term min(y) is propagated in the way

x v (min y), t;S x v s1, t

where S is a simple stable store containing the simple interval constraint y v s1, t1 (see
Section 4.4.3 on page 100).

5The syntax of the CHRs has been simplified in favour of clarity.

7.4. The Current clp(L) Implementation 183

7.4.2 Current Resources of the Prototype Implementation

The current clp(L) implementation supports user-defined domains (see Section 7.2.1)
as well as the predefined domains Boolean, integer, real, natural, colors (a finite set
of colors), sets and pairs of integers and reals. As implemented on top of the SICStus
system, the prototype also supports the built-in predicates of this system.

It allows user-defined (unary or binary) constraint operators (see Section 7.2.2)
and provides predefined Boolean constraints such as and/3, or/3, xor/3, equiv/3 and
not/2 among others; symbolic constraints such as at least one/1, at most one/1 and
only one/1; arithmetic constraints such as plus/3, diff /3, divide/3 and times/3 as well
as linear arithmetic constraints such as =/2, 6=/2, >/2,≥/2, </2 and ≤/2 defined on
usual numerical domains and on combined domains (see Appendix C).

As well, it provides a system-defined predicate to execute a naive labeling strategy6

on finite lattices in which the successor and predecessor of each element is defined
via the corresponding predicates succ/3 and pred/3 described in Section 7.2.1. For
example, a naive strategy for labeling in the finite domain is implemented by means of
one simplification CHR and two simpagation CHRs that are shown below.

labeling([]):-!.

labeling([X|Xs]):-label(X),labeling(Xs).

constraints label/1.

labeling0 @ label(X) <=> ground(X) | true.

labeling1 @ X in (S,close)..(S,close) \ label(X) <=>

(lattice(S,L)) | X=S.

labeling2 @ label(X) \ X in (Ele,close)..T1 <=>

(constant(T1), %% T1 contains no indexical terms

lattice(Ele,L),

finite(L),

succ(L,Ele,Ele1))

| ((X=Ele) %% Instantiation step

;

(X in (Ele1,close)..T1

)

).

The precision map (see Section 4.5.2) can also be defined by means of a (dynamic)
predicate precision (see example in Appendix A on Page 230).

Appendices A-C show a significant number of examples. We do not pretend in this
document to give a detailed description of the system but only a global overview. For
further details about the implementation and more examples see (Fernández, 2000).

6Possible values are assigned, by enumeration, to the constrained variables and the constraints
checked for consistency. See Section 2.2.3.

184 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

7.5 Programming with clp(L)

In this section we develop three examples of clp(L) programs in order to highlight
the flexibility of the language. The first example, in Section 7.5.1, provides an idea
about the generic power of the clp(L) system by showing how the same formulation
of a problem leads to different instances solved on different computation domains. In
Section 7.5.2, a simple geometry example is used to show how the clp(L) system enables
the generation of one-way channels on which the information can flow from one domain
to another one. Finally, Section 7.5.3 presents the clp(L) solution to the problem of
diagnosing the functionality of the heart proposed in Section 5.5.2 on page 137.

These examples give an idea of the cooperative mechanism and illustrate the flexi-
bility of the system. More examples are shown in Appendix D.

7.5.1 A Generic Scheduling Problem

Consider the simple scheduling problem 7 where there are a number of tasks represented
by terms Task(S,D) where S is the start time of a task and D is the duration of the
task. The predicate in(Task,SuperTask) is true if the interval for SuperTask contains
the interval for Task. noOverlap(Task,Tasks) is true if Task overlaps with none of the
tasks in the list Tasks. The formulation of this predicate uses two high level constraints
(i.e., plus/3 and <=:/2) to make sure Task is either before or after all the tasks in
Tasks. The predicate Schedule(Tasks, Supertask) is true if all the tasks in the list
Tasks are in SuperTask but no pair in Tasks overlap. The clp(L) program to solve this
problem is shown below:

into(task(S1,D1),task(S2,D2)):- S2 <=: S1, plus(S1,D1,SD1),

plus(S2,D2,SD2), SD1 <=: SD2.

noOverlap(_,[]).

noOverlap(task(S1,D1),[task(S2,D2)|Tasks]):-

((plus(S1,D1,SD1), SD1 <=: S2)

;

(plus(S2,D2,SD2), SD2 <=: S1)),

noOverlap(task(S1,D1),Tasks).

schedule([],_).

schedule([Task|Tasks],Supertask):- into(Task,Supertask),

noOverlap(Task,Tasks),

schedule(Tasks,Supertask).

This program makes use of the high level constraints plus/3 and <=:/2 that were
coded in Examples 7.4 and 7.5 respectively.

7This example is a modification of a program proposed in (Sidebottom and Havens, 1992) to schedule
tasks, just considering the real domain, using some of the relations on temporal intervals described in
(Allen, 1983).

7.5. Programming with clp(L) 185

Observe that no explicit domain is specified since the genericity of these constraints
assures that the problem can be solved on different domains with no special reasoning
for them. In the following we show different instances.

An instance in CLP(FD). Below, it is shown how queries in the FD can be solved
from the command line of our prototype.

clp(L) > schedule([task(0,1),task(3,1),task(S,1)],task(0,6)).

yes.

The store contains the following constraints

S in [4,5]

S in (min _24271):-:[1,(max _24271):-:1] ? |: ;

yes.

The store contains the following constraints

S in (min _26743):-:[1,(max _26743):-:1]

S in [1,2]

S in (min _27757):-:[1,(max _27757):-:1] ? |: ;

no.

This query returns the solution “S in [1,2] ∪ [4,5]”. Figure 7.1(a) shows the graphical
representation of the goal. Black points marks the solution set.

A classical instance in CLP(<). Below we show how the problem can be translated
to the continuous domain.

clp(L) > schedule([task(0.0,0.7),task(2.75,1.0),task(S,0.875)],

task(0.0,6.0)).

yes.

The store contains the following constraints

S in [3.75,5.125]

S in (min _24433):-:[0.875,(max _24433):-:0.875] ? |: ;

yes.

The store contains the following constraints

S in (min _26897):-:[0.875,(max _26897):-:0.875]

S in [0.7,1.875]

S in (min _27943):-:[0.875,(max _27943):-:0.875] ? |: ;

no.

This query returns the solution “S in [0.7,1.875] ∪ [3.75,5.125]”. Figure 7.1(b) shows
the graphical representation of the goal. Now the black lines mark the solution sets.

A mixed instance in CLP(<× FD). A more interesting case is obtained by mixing
the preceding instances. Suppose there are two processes p1 = (S1,D1) and p2 =
(S2,D2) where p1 must be executed on a machine A in real time and p2 on a machine

186 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

B in discrete time. Then a task consists in the resolution of both processes and can be
represented as the term Task((S1,S2),(D1,D2)). We first add, to the above program,
the clause “product Direct(real,integer,reint point)” to declare the domain reint point
to be the direct product < × Integer . Then we extend the definition of :+: and :-:
shown in Example 7.2 to this domain by defining (a, b) + (c, d) = (a + c, b + d) and
(a, b)− (c, d) = (a− c, b− d). The clp(L) code is shown below.

%----- Domain declaration

product_Direct(real,integer,reint_point) (1)

%----- Definition of + and - in the point domain

:+:((E11,E12),(E21,E22),(E31,E32)):-lattice(reint_point,(E11,E12)),

lattice(reint_point,(E21,E22)),

E31 is E11+E21, E32 is E12+E22. (2)

:-:((E11,E12),(E21,E22),(E31,E32)):-lattice(reint_point,(E11,E12)),

lattice(reint_point,(E21,E22)),

E31 is E11-E21, E32 is E12-E22. (3)

Line 1 is used to declare the domain reint point whereas Lines 2 and 3 extend the
definition of operators :+: and :-: shown in Example 7.2 to the domain reint point. As
direct consequence, the plus constraint defined in Example 7.4 can now be applied on
variables constrained in this domain and thus also the schedule predicate.

Below we show an example of resolution from the command line of our clp(L)
interpreter.

clp(L)>schedule([task((0.0,0),(0.7,1)),task((2.75,3),(1.0,1)),

task(S,(0.875,1))],task((0.0,0),(6.0,6))).

yes.

The store contains the following constraints

S in [(3.75,4),(5.125,5)]

S in (min _28704):-:[(0.875,1),(max _28704):-:(0.875,1)] ? |: ;

yes.

The store contains the following constraints

S in (min _31376):-:[(0.875,1),(max _31376):-:(0.875,1)]

S in [(0.7,1),(1.875,2)]

S in (min _32582):-:[(0.875,1),(max _32582):-:(0.875,1)] ? |: ;

no.

This query returns the solution “S in [(3.75,4),(5.125,5)] ∪ [(0.7,1),(1.875,2)]” that is
graphically illustrated in Figure 7.1(c). Again black lines mark the solution set

The solution is interpreted as follows: process p1 has to begin its execution in
machine A during the interval [3.75, 5.125] and, in this case, process p2 has to start its
execution, in machine B, during the interval [4, 5] (i.e., in the fourth or fifth unit of time
in machine B). Alternatively, p1 can begin its execution during the interval [0.7, 1.875]
and, then, p2 has to start during the interval [1, 2] (i.e., in the first or second unit of
time in machine B).

7.5. Programming with clp(L) 187

Figure 7.1: Solving a scheduling problem

7.5.2 A Geometry Problem Solved by Solver Collaboration

The clp(L) language also allows information flow between different (possibly combined)
computation domains. Consider the simple problem of computing the pairs of reals
(x1, y1), (x2, y2) such that

x1 + y1 = x2 − y2 = Cons1

in a plane (0.0, 0.0)× (Cons2 ,Cons2) (where Cons1 ,Cons2 ∈ <).

This problem could be solved in the real domain. However, to show the flexibility
of the system we will solve it in such a way that the solution in the real domain is
propagated to the real point domain.

Let the following clp(L) program:

%----- Declaration of domain

product_Direct(real,real,real_point) (1)

%----- Declaration of operator

:-dynamic ‘:@:’/3.

:-op(625,xfx,‘:@:’).

declara(:@:,real,real,real_point). (2)

%----- Operator definition on the bracket domain

:@:(open,_,open). :@:(close,B,B). (3)

%----- Operator definition on the real_point domain

:@:(A,B,(A,B)):-lattice(real,A),lattice(real,B). (4)

188 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

In this program, the domain real point is declared as the direct product 〈<,<〉 (line
1) whereas the operator :@: is defined as follows

‘ :@:’ :: <s ×<s → real points

a}1 :@: b}2 = a : @ :b }1 : @ :}2 = (a,b) minB (}1,}2)

where a}1,b}1 ∈ <s. For instance, 1.5] : @ : 2.0] = (1.5,2.0)]. Observe that this
operator is used to combine elements (and thus propagates values from the real domain
to the domain of real points).

Suppose Cons1 = 3.5 and Cons2 = 20.0. Below we show the query that is typed
from the command line of our clp(L) interpreter to solve this problem8.

clp(L) > [X1,Y1,X2,Y2] in [0.0,20.0],

[P1,P2] in [#0.0,0.0#,#20.0,20.0#],

P1 in ((min X1):@:(min Y1)),((max X1):@:(max Y1)),

P2 in ((min X2):@:(min Y2)),((max X2):@:(max Y2)),

plus(X1,Y1,3.5),plus(Y2,3.5,X2).

yes.

The store contains the following positive constraints

P2 in [(3.5,0.0),(20.0,16.5)]

P2 in (min _29855):@:(min _29888),(max _29855):@:(max _29888)

P1 in [(0.0,0.0),(3.5,3.5)]

P1 in (min _31733):@:(min _31766),(max _31733):@:(max _31766) ? |: ;

no

The returned answer is “P1 in [(0.0,0.0),(3.5,3.5)]” and “P2 in [(3.5,0.0),(20.0,16.5)]”
(see Figure 7.2(a)). Note that real values are propagated from the real domain to the
domain real point by means of the constraints for P1 and P2.

Figure 7.2: Information flow between different computation domains

8[X1, . . . , Xn] in R is a shorthand for X1 in R, . . . ,Xn in R.

7.5. Programming with clp(L) 189

Of course, values can also be propagated in the reverse way (i.e., from the domain
real point to the real domain) by defining the adequate constraint operators. For
example, we can extend the program shown above with the following declarations of
operators.

%----- Declarations of operators

:-dynamic ‘:&&:’/2.

:-op(625,fx,‘:&&:’).

declara(:&&:,real_point,real). (5)

:-dynamic ‘:**:’/2.

:-op(625,fx,‘:**:’).

declara(:**:,real_point,real).

%----- Operator definitions on the bracket domain

:&&:(B,B). :**:(B.B). (6)

%----- Operator definitions on the real_point domain

:&&:((A,B),A):-lattice(real_point,(A,B)). (7)

:**:((A,B),B):-lattice(real_point,(A,B)).

This extension declares and defines the operators :&&: and :∗∗ : as follows

‘ :&&:’ :: real points → <s ‘ :∗∗ : ’ :: real points → <s

:&&:(p) = a} :∗∗ : (p) = b}

for any p = (a, b)} ∈ real points, and a, b ∈ <. Thus the operators :&&: and :∗∗ :
extract respectively the first and the second coordinate of a real point. As consequence
values may be propagated from the real point domain to the real domain. For instance
by means of the following interval constraints:

X1 in :&&:(min P1),:&&:(max P1),

Y1 in :**:(min P1),:**:(max P1),

X2 in :&&:(min P2),:&&:(max P2),

Y2 in :**:(min P2),:**:(max P2).

Of course it is possible to devise more complex cases. For instance by defining
the operators :+: and :-: for the real point domain similarly as done for the domain
reint point in Section 7.5.1, the constraint plus/3 can be used in this domain. Then, if
we add, to the query shown above, the constraint “plus(P1,P2,(5.0,5.0))”, whose mean-
ing is P1 +P2 = (5.0, 5.0), the system returns the solution “P1 in [(0.0,0.0),(1.5,3.5)]”
and P2 in [(3.5,1.5),(5.0,5.0)]” that is illustrated in Figure 7.2(b).

7.5.3 The Heart Diagnosis Problem

In this section we explain how the problem formulated in Section 5.5 on page 136 is
solved in the clp(L) language. The category domain (called here pvc) and the state
domain (called here STATE) are declared in our clp(L) program as follows:

190 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

%-------------- Pvc Domain --

%% The domain ’pvc’ (the domain of the postventricular contractions)

:-dynamic pvc/1.

pvcs(none).

pvcs(low).

pvcs(high).

lattice(Ele,pvc):- (pvcs(Ele);var(Ele)),!.

%--- Cardinality

finite(pvc).

%--- For finite domains we define the succesor and predecessor

succ(pvc,none,low).

succ(pvc,low,high).

succ(pvc,high,high). %% succ(pvc,top,top).

pred(pvc,none,none). %% pred(pvc,bottom,bottom).

pred(pvc,low,none).

pred(pvc,high,low).

%--- Ordering

lt(normal,pvc,none,low).

lt(normal,pvc,none,high).

lt(normal,pvc,low,high).

%--- Glb and Lub

glb(normal,pvc,X,Y,Z):- lattice(X,pvc),lattice(Y,pvc),!,

(lt(normal,pvc,X,Y) -> Z=X;Z=Y).

lub(normal,pvc,X,Y,Z):- lattice(X,pvc),lattice(Y,pvc), !,

(gt(normal,pvc,X,Y) -> Z=X;Z=Y).

%--- Top and bottom elements

bottom(pvc,none).

top(pvc,high).

%-------------- State Domain ------------------------------------

:-dynamic state/1.

states(error1).

states(normal).

states(error2).

states(angina).

states(error3).

states(infarction).

states(error4).

lattice(Ele,state):- (states(Ele);var(Ele)),!.

%--- Cardinality

finite(state).

7.5. Programming with clp(L) 191

%--- For finite domains we define the succesor and predecessor

succ(state,error1,normal).

succ(state,normal,error2).

succ(state,error2,angina).

succ(state,angina,error3).

succ(state,error3,infarction).

succ(state,infarction,error4).

succ(state,error4,error4). %% succ(state,top,top).

pred(state,error1,error1).

pred(state,X,Y):-succ(state,Y,X),!.

%--- Ordering

lt(normal,state,A,A):-lattice(A,state),!,fail.

lt(normal,state,X,Y):-lattice(X,state),lattice(Y,state),

succ(state,X,Y),!.

lt(normal,state,X,Y):-lattice(X,state),lattice(Y,state),

succ(state,X,Z),

X\==Z,!,lt(normal,state,Z,Y).

lt(normal,state,X,Y):-lattice(X,state),lattice(Y,state),!,fail.

%--- Glb and Lub

glb(normal,state,X,Y,Z):- lattice(X,state),lattice(Y,state),!,

(lt(normal,state,X,Y) -> Z=X;Z=Y).

lub(normal,state,X,Y,Z):- lattice(X,state),lattice(Y,state), !,

(gt(normal,state,X,Y) -> Z=X;Z=Y).

%--- Top and bottom elements

bottom(state,error1).

top(state,error4).

Now the heart domain is constructed from the pvc domain by simply adding the
following two clauses to our clp(L) program:

product_Direct(real,integer,reint_point).

product_Direct(pvc,reint_point,heart).

The declaration of the three operators used in the problem is shown below. In this
clp(L) code the operators �′, � and 1 are typed as :<<>>:, :<>: and :><: respectively9.

%------------------ Operator ‘:<<>>:’ ---------------------

:-dynamic ‘:<<>>:’/2.

:-op(625,fx,‘:<<>>:’).

%--- Mode declaration

declara(:<<>>:,state,heart). %% ‘:<<>>:’ :: state^s -> heart^s

%--- Def. on Bracket domain

9The declaration of 1 has been smoothly simplified.

192 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

:<<>>:(open,open).

:<<>>:(close,close).

%--- Definition

%% For simplicity we take top_{Int}= 50000 and top_{reals}=1000000.0

%% bot_{Int}=0 and bot_{reals}=0.0

:<<>>:(error1,(low,(0.0,0))):-!. %%(low,(0.0,0))= bottom in heart^s

:<<>>:(normal,(none,(40.0,4800))):-!.

:<<>>:(error2,(none,(100.0,4800))):-!.

:<<>>:(angina,(none,(105.0,4800))):-!.

:<<>>:(error3,(none,(105.0,13500))):-!.

:<<>>:(infarction,(low,(105.0,13501))):-!.

:<<>>:(error4,(high,(1000000.0,50000))):-!.

%------------------ Operator ‘:<>:’ ---------------------

:-dynamic ‘:<>:’/2.

:-op(625,fx,‘:<>:’).

%--- Mode declaration

declara(:<>:,state,heart). %% ‘:<>:’ :: state^s -> heart^s

%--- Def. on Bracket domain

:<>:(open,open).

:<>:(close,close).

%--- Definition

:<>:(error1,(low,(0.0,0))):-!.

:<>:(normal,(none,(100.0,13500))):-!.

:<>:(error2,(none,(105.0,13500))):-!.

:<>:(angina,(none,(1000000.0,13500))):-!.

:<>:(error3,(low,(1000000.0,13500))):-!.

:<>:(infarction,(high,(1000000.0,50000))):-!.

:<>:(error4,(high,(1000000.0,50000))):-!.

%------------------ Operator ‘:><:’ ---------------------

:-dynamic ‘:><:’/2.

:-op(625,fx,‘:><:’).

%--- Mode declaration

declara(:><:,heart,state). %% ‘:><:’ :: heart^s -> state^s

%--- Def. on Bracket domain

:><:(open,open). :><:(close,close).

%--- Definition

:><:(Reading,error1):-lattice(Reading,heart),

(le(normal,heart,Reading,(high,(1000000.0,4799)));

le(normal,heart,Reading,(high,(40.0,50000)))),!.

:><:(Reading,normal):-lattice(Reading,heart),

ge(normal,heart,Reading,(none,(40.0,4800))),

le(normal,heart,Reading,(none,(100.0,13500))),!.

7.5. Programming with clp(L) 193

:><:(Reading,erro2):-lattice(Reading,heart),

ge(normal,heart,Reading,(none,(100.00000001,4800))),

le(normal,heart,Reading,(none,(105.0,13500))),!.

:><:(Reading,angina):-lattice(Reading,heart),

ge(normal,heart,Reading,(none,(105.0,4800))),

le(normal,heart,Reading,(none,(1000000.0,13500))),!.

:><:(Reading,error3):-lattice(Reading,heart),

ge(normal,heart,Reading,(none,(40.0,13501))),

le(normal,heart,Reading,(high,(105.0,50000))),!.

:><:(Reading,infarction):-lattice(Reading,heart),

ge(normal,heart,Reading,(low,(105.0,13501))),!.

:><:(Reading,error4):-lattice(Reading,heart), !.

The following step is to code the high level constraint ≈α/2. In Section 5.5.1, we
show that this constraint is based on the operator� that must also be declared in our
clp(L) program. The declaration of this operator and the definition of the constraint
≈α /2 are shown below:

%------------- declaration of operator ----------------

:-dynamic ‘:>>:’/3.

:-op(625,xfx,‘:>>:’).

%--- Mode declaration

declara(:>>:,L,L1,L). %% ‘:>>:’ :: L^s \times L1^s -> L

%--- Def. on Bracket domain

:>>:(open,_,open).

:>>:(close,B,B).

%--- Def. on integer x real (i.e.,L=integer,L1=real)

:>>:(Ele1,Ele2,Ele3):-lattice(Ele1,integer), lattice(Ele2,real),

Ele3 is Ele1 + integer(round(Ele2)).

%--- Def. on real x real (i.e.,L=real,L1=real)

:>>:(Ele1,Ele2,Ele3):-lattice(Ele1,real), lattice(Ele2,real),

Ele3 is Ele1 + Ele2.

%--- Def. on heart X real^2.

:>>:((PVC,(PR,WBC)),(AlphaPR,AlphaWBC),(PVC,(PR1,WBC1))):-

lattice((PVC,(PR,WBC)),heart),

lattice((AlphaPR,AlphaWBC),real_point),

:>>:(PR,AlphaPR,PR1),

:>>:(WBC,AlphaWBC,WBC1).

%----------- CONSTRAINT ‘APPROXIMATELY EQUAL VIA ALPHA’ ----

operator(650,xfx,~=:).

constraints (~=:)/2.

X ~=: (Y,Alpha) <=>

(X in ((min Y) :>>: (min Alpha))..((max Y) :>>: (max Alpha)),

194 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

Y in ((min X) :>>: (min Alpha))..((max X) :>>: (max Alpha))

).

The final step is to code the high level constraint diagnostic/3 whose clp(L) code
is shown below.

constraints diagnostic/3.

diagnostic(Reading,State,Alpha) <=>

~=:(Reading,(TrueRead,Alpha)),

State in (:><:(min TrueRead))..(:><:(max TrueRead)),

TrueRead in (:<<>>:(min State))..(:<>:(max State)).

The problem is solved by calling this last constraint. In the following the query
marked in Section 5.5.2 (i.e., the constraint set {c1, c2, c3}) can be solved by typing the
equivalent constraints in our system. Below, we show10 how this is solved11.

?- Alpha in ((-1.0,-45.7),close)..((1.0,45.7),close),

Reading in ((none,(85.6,10000)),close)..((none,(85.6,10000)),close),

diagnostic(Reading,State,Alpha).

%%ANSWER

State = normal,

Reading = (none,85.6,10000),

Alpha in((-1.0,-45.7),close)..((1.0,45.7),close),

_A in ((none,84.6,9954),close)..((none,86.6,10046),close) ? ;

no.

7.6 Related and Further Work

The clp(L) language is based on the indexical model and, in recent years, the indexical
approach has been successfully used to implement a number of CLP languages. Well-
known CLP systems such as SICStus (Sicstus manual, 1994) or IF/Prolog (If/Prolog,
1994) now integrate the primitive x in r to solve constraints on the finite domain
(FD). Traditionally, indexicals have been implemented by modifying the WAM (Aı̈t-
kaci, 1999) but we have to consider alternative approaches that may lead to more
efficient implementations. In this section we briefly discuss some of the traditional
existing implementations of the indexical model as well as alternative approaches for
their implementation.

10Observe that the query is called from the SICStus command line since the syntax analyser of our
interpreter is not fully implemented.

11The variable A corresponds to the variable TrueRead.

7.6. Related and Further Work 195

7.6.1 WAM Based Implementations

Originally, (Diaz and Codognet, 1993) integrated, by extending the WAM, the primitive
x in r in the logical language clp(FD) to solve interval constraints on the finite domain
(an extended and more recent version of this paper is found in (Codognet and Diaz,
1996a)). Also, the indexical approach was applied in the Boolean domain by encoding
a Boolean solver at a low level with the basic mechanism of clp(FD) and where Boolean
constraints (e.g., and, or, not, etc.) were decomposed in primitive x in r constraints.
This extension of the clp(FD) system was called clp(B/FD) (Codognet and Diaz, 1993).
The success of this system was surprising since sometimes showed a better performance
than most of the existing specific Boolean solvers.

The indexical approach of the clp(B/FD) system was improved by specialising this
system for just the Boolean domain (Codognet and Diaz, 1994). The specialisation
introduced a new type for the Boolean domain and new instructions for the Boolean
variables. As result, the clp(B) system was born. This system is a Boolean constraint
solver based on local propagation techniques and on the indexical approach that also
follows the glass box approach of compiling high level constraints into primitives con-
straints (as done in the clp(FD) system). (Codognet and Diaz, 1994) and (Codognet
and Diaz, 1996b) shown that the clp(B) solver is almost one magnitude of order faster
than most of the existing Boolean constraint solvers. Surprisingly, as it was shown in
(Codognet and Diaz, 1994), “the low level primitive constraint which is at the core of
clp(B) can be implemented into a WAM-based logical engine with a minimal extension:
only four new instructions are needed”. This means that this Boolean solver can be
“easily” integrated into any Prolog system.

As another development, (Georget and Codognet, 1998) used the indexical approach
to implement the language clp(FD,S). This language is a generic schema for compil-
ing semiring-based constraints and corresponds to the implementation of the generic
framework for FD constraint satisfaction and optimisation defined in (Bistarelli et al.,
1995; Bistarelli et al., 1997b) (see Section 4.7.2 on page 120 for more information). Be-
cause of the generality of the approach, some optimisations that could be introduced
in the solver were lost. Despite this, the clp(FD,S) was still found to be fairly efficient
with respect to dedicated systems.

More recently, in (Goualard et al., 1999) it is demonstrated that is possible to
implement an efficient solver (called DecLic) over continuous domains (i.e. the real
domain) by extending the clp(FD) language.

7.6.2 An Alternative Approach: the ATOAM Model

It should be noted that other models have be considered for future implementation of
the indexicals, as for example the model of B-Prolog. As already declared in Section 2.5,
B-Prolog is based on a new abstract machine called ATOAM (Zhou et al., 1990; Zhou,
1994) (yet Another matching Tree Oriented Abstract Machine) that is an alternative
approach to the classical WAM used in most of the existing logic languages.

In the ATOAM arguments are passed through an stack, on reverse to the WAM

196 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

approach of clp(FD) (Codognet and Diaz, 1996a) where arguments are passed in reg-
isters. The access to register is faster than the access to memory and thus the WAM
approach seems to be more efficient. However, the WAM scheme requires the argument
registers to be saved and restored for backtracking and makes it difficult to implement
full tail recursion elimination. The solution is to have emulator-based implementations
because registers are actually simulated by using memory. As already noted, parameter
passing and control stack management are two crucial issues in the efficiency of Pro-
log implementations. The ATOAM is a new abstract machine that contributes to the
Prolog-implementation development with new characteristics. There are three main
innovations with respect to the WAM:

1. Arguments are passed directly into stack frames.

2. Only one frame is used for each procedure call (whereas the WAM used two
frames).

3. Procedures are translated into matching trees if possible, and clauses in each
procedure are indexed on all input arguments.

The ATOAM solves the problems of WAM since tail recursion can be handled in
most cases like a loop statement in procedural languages because backtracking requires
less bookkeeping operations.

The B-Prolog system (at least till version 4.0) supports the delaying (co-routining)
mechanism, which can be used to implement concurrency, test-and-generate search
algorithms, and most importantly constraint propagation algorithms. This is a non-
standard delaying mechanism that relaxes the strict left-to-right computation rule
adopted in Prolog and enables the execution of some predicates calls to be delayed
until some variables in them are instantiated. For specifying delay, B-Prolog includes
a special kind of construct called delay clauses that have the form

delay Head :- Condition : [{Triggers}] Action.

where Condition is a sequence of in-line tests, Triggers is a (possibly empty) sequence
of trigger declarations, and Action is a sequence of arbitrary calls. For any call, if
this matches the Head and Condition is satisfied, then the call delays and Action is
executed. The call will be kept unchanged before Action is executed. If the call does
not match Head or Condition fails, then other clause is tried. If Action fails, then the
original predicate call will fail. The delay clauses are different from the guard clauses in
concurrent languages, and the ’:’ does not mean commitment. After a delay clause is
chosen, the predicate can be reentered and then remaining clauses can be retried later
(the re-execution of the clauses is declared by the sequence of trigger declarations). See
(Zhou, 2000b, Chapter 10) for more information.

For instance, indexicals can be implemented by using delay clauses. Consider the
following indexical12:

12This example is taken from (Zhou, 2000b, Page 36-37)

7.7. Concluding Remarks 197

X in min(Y)+min(Z)..max(Y)+max(Z).

The following clauses implement this indexical in B-Prolog:

delay ‘V in V+V’(X,Y,Z):-dvar(X) :

{ins(Y),min(Y),max(Y),ins(Z),min(Z),maz(Z)},

consistency_check_v_vv(X,Y,Z).

‘V in V+V’(X,Y,Z):-true :

consistency_check_v_vv(X,Y,Z).

consistency_check_v_vv(X,Y,Z) :-

fd_min_max(Y,MinY,MaxY),

fd_min_max(Z,MinZ,MaxZ),

MinX is MinY+MinZ,

MaxX is MaxY+MaxZ,

X in MinX..MaxX.

The constraint is propagated whenever a bound in Z or Y is changed. However,
note that this constraint propagates from Y and/or Z to X but not on reverse.

The delay clauses of B-Prolog are powerful constructs that also enable the im-
plementation of specific constraints in the user level such as reified constraints. As
a consequence, the approach of B-Prolog should be considered as an alternative for
future implementations of our system.

7.7 Concluding Remarks

In this chapter we have introduced the clp(L) language and shown the main charac-
teristics of a first prototype implementation.

The clp(L) language gives support for interval constraint solving on any set of
(possibly user-defined) lattices and thus it provides a uniform approach for interval
constraint solving on the usual domains such as reals, finite ranges of integers, sets
and Booleans among others, and on more application-specific domains defined by the
user. Also, as the theoretical framework is based on lattice theory, it is straightforward
to construct new domains and new constraints for these domains from existing ones.
Moreover, as the operators can be defined over more than one domain, information can
flow between different computation domains.

In this chapter we have shown how the user can define new domains from the
scratch or from the combination of existing ones, constraint operators through infor-
mation can flow between the computation domains and (generic or overloaded) high
level constraints for specific applications. We have also described briefly the existing
prototype implementation of the clp(L) language and shown, by means of examples, the
flexibility, transparency and genericity of the language in the formulation of problems
as well as the cooperative character of the clp(L) system.

198 CHAPTER 7. A 2D Glass Box, Collaborative, Generic CLP Language

We have not discussed performance of our prototype since the implementation
described here is built with CHRs and although highly expressive are known to be
inefficient (see Chapter 3). However, the indexical approach has been proved to be
very efficient over both the finite and continuous domains (Codognet and Diaz, 1996a;
Goualard et al., 1999) so we anticipate that we can adapt the techniques used for
the implementation of systems such as clp(FD), clp(B) and DecLic to our constraint
system thereby obtaining performance comparable with other CLP systems. Despite
the expected loss of some optimizations for specific domains due to the generality of our
framework, we expect to obtain competitive performance compared to domain-specific
systems.

Currently, the branching schema described in Chapter 6 is not integrated in the
prototype implementation. This is an issue of further work.

7.8 Contributions

The main contributions of this chapter are listed below.

• Firstly, it demonstrates that the theoretical ideas shown in Part III are feasible.

• Secondly, it demonstrates that a single system may provide support for user
and system defined constraints, user and system defined domains (independent
of their cardinalities is infinite), interaction between these domains and interval
constraint solving defined on the set of computation domains.

• Finally it proposes a novel interval CLP language combining a number of interest-
ing characteristics such as generic and overloaded constraints, solver cooperation,
transparency to define both constraints and domains and complete and/or partial
interval constraint solving.

To our knowledge no existing interval CLP language groups together all these
characteristics.

Chapter 8

Concluding Remarks

Roma locuta est; causa finita est

Roma has spoken; the case is concluded

Traditional summary of words found in

Sermons (Antwerp, 1702), n.131, seat 10

St. Augustine of Hipo, Ad. 354-430

8.1 Summary of the Results

In this thesis, we have proposed an interval constraint solving schema that combines
three desirable characteristics: (1) true generality, (2) cooperativity of solvers and
(3) full transparency in the definition of constraints, domains and the propagation
mechanism. The schema has been developed in several stages. Also, as the schema is
based on interval reasoning, we can forecast a fourth desirable characteristic: efficiency
in constraint solving.

We first compared the different glass box approaches over the FD. The reason the
FD was elected for this comparison is that most of the existing glass box systems
have been designed for this domain. Moreover, glass box systems also allow user
extensions of the built-in system. From the comparison, we have observed that glass
box systems provides higher flexibility than black box systems without any significant
loss of efficiency. As a result we have used the indexical model as the base on which
to construct the foundations of our schema. This choice has been justified in that the
indexical model has an acceptable performance while providing a high flexibility in
the formulation of (discrete) problems and some transparency in the definition of new
constraints.

We generalised the indexical model to any domain with lattice structure to provide
a generic schema for interval constraint propagation that is valid for any lattice, for
any cardinality. We have also shown that the schema is useful for most of the classical

199

200 CHAPTER 8. Concluding Remarks

domains as well as for new domains resulting either from the application of lattice
combinators over existing domains or from user definitions. We have proved the main
properties of the schema such as correctness. Termination of the propagation can
be assured by the means of a precision map required for each computation domain.
Monotonicity of constraints is also assured by the intrinsic formalisation of the schema.
As consequence non-monotonic constraints are easily detected a priori (i.e., before
their resolution) by simply adding a test about the validity of the constraints in the
theoretical framework. Moreover, as in the indexical model for the FD, our propagation
framework is based on a single primitive constraint x v r which provides both a
specification of the constraint and some control over its propagation mechanism.

Since the framework for constraint propagation provides support for any set of
lattice-structure computation domains, the primitive constraint makes use of constraint
operators defined on multiple domains. This makes possible a novel class of solver co-
operation allowing information to flow between the computation domains supported by
the framework (i.e., any lattice). The concept of high level constraints for CLP(FD)
has also been generalised to lattices. This generalisation increases the potential for
solver cooperation and also allows the definition of generic and overloaded constraints.
Observe also that the cooperation of solvers in our framework guarantees the property
of type security. In fact, constraint operators behave as the “interface” of communica-
tion (of the solvers) from and to which information is propagated. As already indicated
above, non-valid constraints can be detected a priori and, as consequence, only cooper-
ating constraints (i.e., those involving constraints operators defined on some argument
different from the computation domain over which they are defined) that are valid in
the framework are allowed for their resolution.

The generic and cooperative propagation schema for interval constraint solving has
been extended. The resulting schema is also transparent, cooperative and generic and
thus can be used to solve classical CSPs as well as partial CSPs. The resulting schema,
called the branching schema is valid for any set of lattices and is a generalisation of
the well known method split-and-solve of CLP(BNR) that solves interval constraints
in the real, integer and Boolean domain. The branching schema is parametrised in a
number of procedures that have been partially specified (i.e., we have declared them
formally and defined both their pre- and post-conditions). Then, we have also studied
a number of interesting properties that subject to certain conditions held by the main
procedures of the schema are satisfied by any instances of the schema. Termination
is again guaranteed by means of the precision map concept used in the propagation
schema.

To demonstrate the feasibility of our theoretical framework we have proposed a CLP
language based on the framework using the syntax and structure of Prolog. We have
described the main characteristics of both the language and the prototype. We have
used our language to solve several example problems. These illustrate the flexibility of
the language for the formulation of CSPs. They show that systems constructed from
our theory are easy to learn and manage.

8.2. Summary of Main Contributions 201

8.2 Summary of Main Contributions

This thesis has dealt with a number of different aspects of CLP. In each chapter, we
have summarised its main contributions. We now present a brief summary of the most
important contributions of the thesis.

• We have compared the efficiency and some aspects of the expressiveness of eight
existing constraint systems on the FD. To our knowledge, this is the first time
that this number of systems has been compared in the constraint setting. This
comparison discusses some of the issues that need to be taken into account when
choosing a system for solving a specific application in the discrete domain. It
also provides a starting point for further comparative work.

• We have proposed a generalisation of the indexical model for the FD to domains
with lattice structure, independent of their cardinality. This generic model pro-
vides a framework for interval constraint solving. We have proved a number of
interesting properties that are satisfied by any (possibly cooperative) instance of
this framework. The proposal is a glass box system for both domains and con-
straints with the possibility to connect solvers defined on different domains. As
an immediate result, due to its flexibility and genericity our framework provides
an alternative to the CHR language. Moreover, as it is based on the indexical
model which has been proved to be very efficient compared to the CHR model, we
expect that future implementations based on other more direct implementations
of indexicals to have improved performance.

• We have also demonstrated that solver cooperation can be integrated transpar-
ently in our system what means that a single system may provide support for a
glass box solver cooperation mechanism. Perhaps the main drawback of this in-
tegration may be the loss of efficiency but we think that this can be compensated
by a gain in expressiveness and flexibility.

8.3 Further Work

Although we have achieved the objectives of Chapter 1, there are a number of open
lines to continue with (or perhaps we should say “complement”) the work carried out
in this thesis. We outline some of them here.

With respect to our comparison of FD constraint systems, it should be noted that
we have only compared the FD libraries. Similar comparative studies could also be
made for other common domains such as intervals (Benhamou, 1995) or reals (Jaffar
et al., 1992b). Alternative approaches such as integer linear programming could also
be considered for a comparison between systems. This could be the subject of future
work.

In our theoretical framework for interval constraint solving we have imposed that
the sets of constrained variables associated with each computation must be disjoint.
However, it should be possible to remove such a restriction and consider sub-lattices of

202 CHAPTER 8. Concluding Remarks

lattices as computation domains. These could provide a means of having variable sets
of a sublattice allowed as variables in the main lattice. This is another topic for future
work.

We have studied generic properties of interval branching in interval constraint solv-
ing. To guarantee these properties we have imposed a number of generic conditions
over the heuristics for value and variable ordering. However, these conditions do not
guarantee the minimality of the search space, that is to say, they guarantee termina-
tion, correction and completeness but do not avoid the redundancy of information in
the search tree. Therefore, it would be interesting to study if there exist any prop-
erties of the heuristics used in the interval branching process that lead to a reduced
search space. For instance, for the splitting functions (see Definition 6.11) we could
recommend the following property:

∀i, j ∈ {1, . . . , k}, i 6= j : glbCXL
(ci, cj) is inconsistent

that should ensure that “partitions share no common element” and hence avoiding
the redundancy of information in different branches of the search tree. Of course this
requires further study.

Observe also, that in the schema branchα+/3 (i.e., the extension of the basic branch-
ing schema to solve optimization problems) we had not taken into account the efficiency
and just considered the given cost function and the ordering relation in its co-domain
for finding an optimal solution. Obviously, this is clearly inefficient since the whole
search tree has to be traversed completely. Of course, our aim was to study a set
of generic properties (such as correctness, completeness and termination) held by our
branching schema during the solving of optimisation problems. In spite of the fact
that we had not in mind the efficiency issue, it would be interesting to investigate if
this schema can be reformulated (if possible) to prune the search tree when it is known
that no better solution, than the solution found so far, is in the current subtree.

The implementation described here is built with CHRs and although highly ex-
pressive are known to be inefficient. Thus, an issue of further work is to integrate our
system into another more efficient architecture to better evaluate its efficiency. In this
sense we are considering the construction of an abstract machine for the framework
proposed here and, of course, its further implementation in a CLP language. Initially,
we think that this implementation would consist of extending the WAM as done in
the implementation of the clp(FD) system (Diaz and Codognet, 1993). However, an
alternative approach is to use B-Prolog for the implementation. This is based on new
abstract machine called ATOAM that has been shown to be fairly efficient. Therefore,
initially we need to further investigate which is the best approach for the abstract
machine of our system and then, to implement it.

We plan to compare our system with constraint systems dedicated to specific com-
putation domains. Once we have a improved implementation, we plan to “measure” its
performance and expressiveness with respect to existing systems. We anticipate that
as the framework is based on the indexical model (and this has been shown to be very
efficient) it is expected that a good implementation will be comparable with that of

8.3. Further Work 203

dedicated solvers on specific domains. Note also that this implementation should show
a significantly better performance that the best implementations of the CHR language
on top of well known CLP systems.

We are currently studying the integration of our interval constraint solving schema
into a functional logic language. These languages combine logic properties with func-
tional characteristics offering an adequate setting for our generic solver. We believe that
there exists a strong analogy between types and functions in functional logic languages
and computation domains and constraint operators, respectively, in our framework. A
direct consequence of these analogies is that our generic schema could be smoothly inte-
grated in these languages. Some preliminary work has already been done in functional
logic language Toy (Caballero et al., 1997), although the work is far from maturity
(Cazorla, 2001).

204 CHAPTER 8. Concluding Remarks

Bibliography

Abdennadher, S. (1997). Operational semantics and confluence of constraint propa-
gation rules. In Smolka, G., editor, 3rd International Conference on Principles
and Practice of Constraint Programming (CP’97), number 1330 in LNCS, pages
252–266, Linz, Austria. Springer-Verlag.

Abdennadher, S., Frühwirth, T., and Meuss, H. (1999). Confluence and semantics of
constraint simplification rules. Constraints, 4(2):133–165.

Aggoun, A. and Beldiceanu, N. (1992). Extendig CHIP to solve complex scheduling
and placement problems. In Journées Francophones de Programmation Logique
(JFPL’92), Lille, France.

Aggoun, A., Chan, D., Dufresne, P., Falvey, E., Grant, H., Herold, A., Macartney,
G., Meier, M., Miller, D., Mudambi, S., Perez, B., Rossum, E. V., Schimpf, J.,
Periklis, Tsahageas, A., and de Villeneuve, D. (1995). ECLiPSe 3.5, user manual.
European Computer -Industry Research Centre (ECRC). Munich.

Aiba, A. and Sakai, K. (1989). CAL: a theoretical background of constraint logic
programming and its applications. Journal of Symbolic Computation, 8:589–603.

Aiba, A., Sakai, K., Sato, Y., Hawley, D., and Hasegawa, R. (1988). The constraint
logic programming language CAL. In ICOT, editor, International Conference on
Fith Generation Computer Systems (FGCS’88), pages 263–276, Tokyo, Japan.
Ohmsha Ltd. and Springer-Verlag.

Aı̈t-kaci, H. (1999). Warren’s Abstract Machine: a tutorial reconstruction. The MIT
Press, Cambridge, MA.

Aı̈t-kaci, H., Lincoln, P., and Nasr, R. (1987). Le Fun: logic, equations and functions.
In 1987 Symposium on Logic Programming (SLP’87), pages 17–23, San Francisco,
California. IEEE-CS.

Aı̈t-kaci, H. and Nasr, R. (1986). LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3(3):185–215.

Aı̈t-kaci, H. and Podelski, A. (1993). Towards a meaning of LIFE. Journal of Logic
Programming, 16(3):195–234. A preliminary version appeared in (Maluszynski and
Wirsing, 1991), pp:255-274.

205

206 BIBLIOGRAPHY

Aı̈t-kaci, H., Podelski, A., and Smolka, G. (1994). A feature constraint system for logic
programming with entailment. Theoretical Computer Science, 122(1-2):263–283.

Alefeld, G. and Herzberger, J. (1983). Introduction to interval computations. Academic
Press, London and San Diego.

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Apt, K. (1999). The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179–210.

Arenas, P., Gil, A., and López-Fraguas, F. (1994). Combining lazy narrowing with dis-
equality constraints. In 6th International Symposium on Programming Languages
Implementation and Logic Programming (PLILP’94), number 844 in LNCS, pages
385–399, Madrid, Spain. Springer-Verlag.

Arenas, P., Hortalá, M., López-Fraguas, F., and Ullán, E. (1996). Real constraints
within a functional logic language. In Lucio, P., Martelli, M., and Navarro, M., ed-
itors, Joint Conference on Declarative Programming (APPIA-GULP-PRODE’96),
Donostia-San Sebastian, Spain.

Arenas, P., López-Fraguas, F., and Rodŕıguez-Artalejo, M. (1999). Functional plus
logic programming with built-in and symbolic constraints. In Nadathur, G., editor,
International Conference on Principles and Practice of Declarative Programming
(PPDP’99), number 1702 in LNCS, pages 152–169, Paris, France. Springer-Verlag.

Arnon, D., Collins, G., and McCallum, S. (1984). Cylindrical algebraic decomposition
I: the basic algorithm. SIAM Journal on Computing, 13(4):865–877.

Azevedo, F. and Barahona, P. (2000). Modelling digital circuits problems with set con-
straints. In Lloyd, J. W., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi,
C., Pereira, L., Sagiv, Y., and Stuckey, P. J., editors, 1st International Confer-
ence on Computational Logic (CL2000), number 1861 in LNCS, pages 414–428,
London, UK. Springer-Verlag.

Baader, F. and Schulz, K. (1995). On the combination of symbolic constraints, solution
domains and constraints solvers. In Montanari, U. and Rossi, F., editors, 1st
International Conference on Principles and Practice of Constraint Programming
(CP’95), number 976 in LNCS, pages 380–397, Cassis, France. Springer-Verlag.

Baader, F. and Schulz, K. (1996). Unification in the union of disjoint equational theo-
ries: combining decision procedures. Journal of Symbolic Computation, 21(2):211–
243.

Baader, F. and Schulz, K. (1998). Combination of constraint solvers for free and quasi-
free structures. TCS, 192(1):107–161.

BIBLIOGRAPHY 207

Bad́ıa, J. (2000). Evaluación teórica y práctica de algoritmos de arco consistencia
en problemas de resolución de restricciones. Master’s thesis, ETSI (Informática)
Málaga University, Málaga, Spain. Directed by Antonio J. Fernández (in spanish).

Bagnara, R., Gori, R., Hill, P., and Zaffanella, E. (2001). Finite-tree analysis for con-
straint logic-based languages. In Cousot, P., editor, 8th International Symposium
on Static Analysis (SAS’01), volume 2126 of LNCS, pages 165–184, Paris, France.
Springer-Verlag, Berlin.

Barendregt, H. (1984). The lambda calculus - Its syntax and semantics. Studies in Logic
and the Foundations of Mathematics, 103. North-Holland, Netherlands. Second
Revised Edition.

Barendregt, H. (1990). Functional programming and lambda calculus. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics, pages
323–363, Nederlands. Elsevier. J. van Leeuwen editor.

Barták, R. (1999). Constraint programming: In pursuit of the holy grail. In 8th Annual
Conference of Doctoral Students WDS’99 (invited lecturer), Troja, Prague. Charles
University.

Barth, P. (1994). Short guide to CLP(PB). Max-Planck-Institut für Informatik. Avail-
able at ftp://www.mpi-sb.mpg.de/pub/tools/CLPPB/clppb.html.

Barth, P. (1996). Logic-based 0-1 constraint Programming. Operations Re-
search/Computer Science Interfaces. Kluwer.

Barth, P. and Bockmayr, A. (1996). Modelling 0-1 problems in CLP(PB). In Wal-
lace, M., editor, 2nd International Conference on the Practical Application of
Constraint Technology (PACT’96), pages 1–9, London, UK. Prolog Management
Group.

Benhamou, F. (1993). Boolean algorithms in Prolog III. In (Benhamou and Colmer-
auer, 1993), pages 307–325, Cambridge, Massachusetts, London, England. The
MIT Press.

Benhamou, F. (1995). Interval constraint logic programming. In Podelski, A., editor,
Constraint Programming: Basics and Trends, number 910 in LNCS, pages 1–21,
Châtillon-sur-Seine, France. Springer-Verlag.

Benhamou, F. (1996). Heterogeneous constraint solving. In Hanus, M. and Rodŕıguez-
Artalejo, M., editors, 5th International Conference on Algebraic and Logic Pro-
gramming (ALP’96), number 1139 in LNCS, pages 62–76, Aachen, Germany.
Springer-Verlag.

Benhamou, F. and Colmerauer, A., editors (1993). Constraint logic programming:
selected research. The MIT Press, Cambridge, MA.

208 BIBLIOGRAPHY

Benhamou, F., Goualard, F., and Granvilliers, L. (1997). Programming with the declic
language. In 2nd International Workshop on Interval Constraints, Port-Jefferson,
NY, USA.

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999). Revising hull
and box consistency. In D. De Schreye, editor, 16th International Conference on
Logic Programming (ICLP’99), pages 230–244, Las Cruces, New Mexico, USA.
The MIT Press.

Benhamou, F., McAllester, D., and Van Hentenryck, P. (1994). CLP(Intervals) revis-
ited. In Bruynooghe, M., editor, 4th International Symposium on Logic Program-
ming (ILPS’94), Logic Programming, pages 124–138, Ithaca, New York. The MIT
Press.

Benhamou, F. and Older, W. (1997). Applying interval arithmetic to real, integer and
Boolean constraints. The Journal of Logic Programming, 32(1):1–24.

Biasizzo, A. and Novak, F. (1995). Model-based diagnosis of analog circuits. In Inter-
national Mixed Signal Testing Workshop, pages 95–100, Grenoble, France.

Bistarelli, S., Montanari, U., and Rossi, F. (1995). Constraint solving over semirings.
In 14th International Joint Conference on Artificial Intelligent (IJCAI’95), pages
624–630, Québec, Canada. Morgan Kaufman.

Bistarelli, S., Montanari, U., and Rossi, F. (1997a). Semiring-based constraint logic
programming. In 15th International Joint Conference on Artificial Intelligent (IJ-
CAI’97), Nagoya, Japan. Morgan Kaufman.

Bistarelli, S., Montanari, U., and Rossi, F. (1997b). Semiring-based constraint satis-
faction and optimization. Journal of the ACM, 44(2):201–236.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., and Fargier, H. (1999).
Semiring-based CSPs and valued CSPs: frameworks, properties and comparison.
Constraints, 4(3):199–240.

Bockmayr, A. (1993). Logic programming with pseudo-Boolean constraints. In (Ben-
hamou and Colmerauer, 1993), pages 327–350, Cambridge, MA. The MIT Press.

Bockmayr, A. (1994). Solving pseudo-Boolean constraints. In Podelski, A., editor,
Constraint Programming: Basics and Trends, number 910 in LNCS, pages 22–38,
Châtillon-sur-Seine, France. Springer-Verlag.

Buchberger, B. (1987a). Applications of Gröbner bases in non-linear computational
geometry. In Trends in Computer Algebra, number 296 in LNCS. Springer-Verlag.

Buchberger, B. (1987b). Solving problems in non-linear computational geometry by
Gröbner bases. In IMA Workshop on Mathematical Aspects of Scientific Software
(invited paper), New York. Springer.

BIBLIOGRAPHY 209

Buchberger, B. (1997). Gröbner bases: an introduction. In Kuich, W., editor, 19th
International Colloquium on Automata, Languages and Programming (ICALP’92),
number 623 in LNCS, pages 378–379, Vienna, Austria. Springer-Verlag.

Büttner, W. and Simonis, H. (1997). Embedding Boolean expressions into logic pro-
gramming. Journal of Symbolic Computation, 4(2):191–205.

Caballero, R., López-Fraguas, F., and Sánchez, J. (1997). User’s manual for T OY.
Technical report SIP-5797, Universidad Complutense de Madrid, Dpto. Lenguajes,
Sistemas Informáticos y Programación.

Carlson, B., Carlsson, M., and Diaz, D. (1994a). Entailment of finite domain con-
straints. In Van Hentenryck, P., editor, 11th International Conference on Logic
Programming (ICLP’94), pages 339–353, Santa Margherita Ligure, Italy. The MIT
Press.

Carlson, B., Janson, S., and Haridi, S. (1994b). AKL(FD): A concurrent language for
FD programming. In Bruynooghe, M., editor, 4th International Symposium on
Logic Programming (ILPS’94), Logic Programming, pages 521–535, Ithaca, New
York. The MIT Press.

Carlsson, M. and Brindal, M. (1993). Automatic frequency assignment for cellular
telephones using constraint satisfaction techniques. In Warren, D., editor, 10th
International Conference on Logic Programming (ICLP’93), pages 647–665, Bu-
dapest, Hungary. The MIT Press.

Carlsson, M., Ottosson, G., and Carlson, B. (1997). An open-ended finite domain
constraint solver. In Montanari, U. and Rossi, F., editors, 9th International
Symposium on Programming Languages: Implementations, Logics and Programs
(PLILP’97), number 1292 in LNCS, pages 191–206, Southampton, UK. Springer-
Verlag.

Carro, M., Hermenegildo, M., Bueno, F., Cabeza, D., Garćıa, M., López, P., and
Puebla, G. (2000). An introductory course of constraint logic programming. Com-
puter Science School, Technical University of Madrid, UPM.

Cazorla, J. (2001). Programación lógico-funcional con restricciones genéricas. Master’s
thesis, ETSI (Informática) Málaga University, Málaga, Spain. Directed by Antonio
J. Fernández (in spanish).

Cleary, J. (1987). Logical arithmetic. Future Computing Systems, 2(2):125–149.

CLP(BNR) (1988). CLP(BNR) reference and users manuals. Bell Northern Research,
Ottawa, Ontario, Canada.

Codognet, P. and Diaz, D. (1993). Boolean constraint solving using clp(FD). In Miller,
D., editor, 1993 International Symposium on Logic Programming (ILPS’93), pages
525–539, Vancouver, British Columbia, Canada. The MIT Press.

210 BIBLIOGRAPHY

Codognet, P. and Diaz, D. (1994). clp(B): combining simplicity and efficiency in
Boolean constraint solving. In 6th International Symposium on Programming
Languages Implementation and Logic Programming (PLILP’94), number 844 in
LNCS, pages 244–260, Madrid, Spain. Springer-Verlag.

Codognet, P. and Diaz, D. (1996a). Compiling constraints in clp(FD). The Journal of
Logic Programming, 27(3):185–226.

Codognet, P. and Diaz, D. (1996b). A simple and efficient boolean solver for constraint
logic programming. The Journal of Automated Reasoning, 17(1):97–129.

Cohen, J. (1988). A view of the origins and development of Prolog. Communications
of the ACM, 31(1):26–36.

Cohen, J. (1990). Constraint logic programming languages. Communications of the
ACM, 33(7):52–68.

Colmerauer, A. (1990). An introduction to PROLOG III. Communications of the ACM
(CACM), 33(7):69–90.

Colmerauer, A. and Roussel, P. (1993). The birth of Prolog. ACM SIGPLAN Notices
as part of 2nd ACM SIGPLAN Conference on History of Programming Languages,
28(3):37–52. Cambridge, United States.

Cras, J.-Y. (1993). A review of industrial constraint solving tools. AI Intelligence.

Crossley, J., Mandel, L., and Wirsing, M. (1996). First-order constrained lambda
calculus. In Baader, F. and Schulz, K. U., editors, 1st International Workshop
on Frontiers of Combining Systems (Frocos’96), volume 3 of Applied Logic Series,
pages 339–356, Munich, Germany. Kluwer Academic Publishers.

Csontó, J. and Paralič, J. (1997). A look at CLP: theory and application. Applied
Artificial Intelligence, 11:59–69.

Curtis, S., Smith, B., and Wren, A. (2000). Constructing driver schedules using it-
erative repair. In 2nd International Conference on The Practical Applications
of Constraint Technology and Logic Programming (PACLP’2000), pages 59–78,
Manchester, UK. Practical Application Company.

Davey, B. and Priestley, H. (1990). Introduction to lattices and order. Cambridge
University Press, Cambridge, England.

Davis, E. (1987). Constraint propagation with interval labels. Artificial Intelligence,
32(3):281–331.

de Boer, F. and Palamidessi, C. (1994). From concurrent logic programming to con-
current constraint programming. In (Levi, 1994), pages 55–113. Oxford University
Press.

BIBLIOGRAPHY 211

de la Banda, M., Jeffery, D., Marriott, K., Nethercote, N., Stuckey, P., and Holzbaur,
C. (2001). Building constraint solvers in HAL. In International Conference on
Logic Programming (ICLP’2001), Paphos, Cyprus. To appear.

Demoen, B., de la Banda, M., Harvey, W., Marriott, K., and Stuckey, P. (1999a). Her-
brand constraint solving in HAL. Technical Report 1999/49, Monash University,
Melbourne.

Demoen, B., de la Banda, M., Harvey, W., Marriott, K., and Stuckey, P. (1999b).
Herbrand constraint solving in HAL. In D. De Schreye, editor, 16th International
Conference on Logic Programming (ICLP’99), pages 260–274, Las Cruces, New
Mexico, USA. The MIT Press.

Diaz, D. (1994). clp(FD) 2.21 user’s manual. INRIA-Rocquencourt, France.

Diaz, D. (1995). Etude de la compilation des langages logiques de programmation par
contraintes sur les domaines finis: le système clp(FD). PhD thesis, l’université
d’Orléans.

Diaz, D. and Codognet, P. (1993). A minimal extension of the WAM for clp(FD).
In Warren, D., editor, 10th International Conference on Logic Programming
(ICLP’93), pages 774–790, Budapest, Hungary. The MIT Press.

Diaz, D. and Codognet, P. (2000). GNU Prolog: beyond compiling Prolog to C.
In Pontelli, E. and Costa, V., editors, 2nd International Workshop on Practical
Aspects of Declarative Languages (PADL’2000), number 1753 in LNCS, pages 81–
92, Boston, USA. Springer-Verlag.

Dincbas, M., Simonis, H., and Van Hentenryck, P. (1988a). Solving a cutting-
stock problem in constraint logic programming. In Kowalski, R. and Bowen,
K., editors, 5th International Conference and Symposium of Logic Programming
(ICLP/SLP’88), pages 42–58, Seattle, Washington. The MIT Press.

Dincbas, M., Simonis, H., and Van Hentenryck, P. (1990). Solving large combinatorial
problems in logic programming. Journal of Logic Programming, 8(1):75–93.

Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F.
(1988b). The constraint logic programming language CHIP. In ICOT, editor, In-
ternational Conference on Fith Generation Computer Systems (FGCS’88), pages
693–702, Tokyo, Japan. Ohmsha Ltd. and Springer-Verlag.

Dovier, A., Omodeo, E., Pontelli, E., and Rossi, G. (1996). {log}: a language for
programming in logic with finite sets. Journal of Logic Programming, 28(1):1–44.

Erlt, M. and Krall, A. (1992). High level constraints over finite domains. Tech Report
TR-1851-1992-14, Institute für Computer Sprachen, Technische Universität Wien,
Austria.

212 BIBLIOGRAPHY

Faugere, J.-C. (1994). Résolution des systèmes d’équations algébriques. PhD thesis,
Université Paris 6.

Fernández, A. (1997). Towards a glass-box typed CLP language. In Fisher, M., edi-
tor, Workshop on Automated Reasoning (WAR’97), AISB Workshop and Tutorial
Series, pages 7–8, Manchester. University of Manchester.

Fernández, A. (1998). Srq solutions. http://www.lcc.uma.es/∼afdez/srq.

Fernández, A. (2000). clp(L) version 0.21, user manual. Available at
http://www.lcc.uma.es/∼afdez/generic.

Fernández, A. and Hill, P. (1997a). Boolean and finite domain solvers compared us-
ing self referential quizzes. In Falaschi, M., Navarro, M., and Policriti, A., edi-
tors, Joint Conference on Declarative Programming (APPIA-GULP-PRODE’97),
pages 533–544, Grado, Italy. CLEUP. Also available as Technical Report ref.97.03,
School of Computer Studies, University of Leeds, January, 1997.

Fernández, A. and Hill, P. (1997b). Finite domain solvers compared using self ref-
erential quizzes. In Sixièmes Journées Francophones de Programmation Logique
et Programmation par Contraintes (JFPLC’97), Orléans, France. LIFO. (Poster
Session). Rapport de Recherche.

Fernández, A. and Hill, P. (1998a). A design for a generic constraint solver for ordered
domains. In Types for Constraint Logic Programming (TCLP’98), Manchester.

Fernández, A. and Hill, P. (1998b). A generic execution model for CLP(X). Research
Report LCC-ITI 98/16, Universidad de Málaga, Departamento de Lenguajes y
Ciencias de la Computación.

Fernández, A. and Hill, P. (1998c). An impartial efficiency comparison of FD con-
straints systems. In Maher, M. and Puget, J.-F., editors, 4th International Con-
ference on Principles and Practice of Constraint Programming (CP’98), number
1520 in LNCS, page 468, Pisa, Italy. Springer-Verlag. Also available as Technical
Report ref.98.18, School of Computer Studies, University of Leeds, September,
1998.

Fernández, A. and Hill, P. (1999a). Constrant solving on lattices. In Meo, C. and
Vilares, M., editors, International Joint Conference on Declarative Programming
(APPIA-GULP-PRODE’99), pages 105–120, L’Aquila, Italy. Gruppo Tipografico
Editoriale.

Fernández, A. and Hill, P. (1999b). Interval constraint solving over lat-
tices using chaotic iterations. In K.Apt, Kakas, A., Monfroy, E., and
Rossi, F., editors, ERCIM/COMPULOG Workshop on Constraints, Paphos,
Cyprus. Dept., of Computer Science, University of Cyprus. Available via
http://www.cwi.nl/ERCIM/WG/Constraints/Workshops/Workshop4/Program.

BIBLIOGRAPHY 213

Fernández, A. and Hill, P. (1999c). An interval lattice-based constraint solving frame-
work for lattices. In Middeldorp, A. and Sato, T., editors, 4th International Sympo-
sium on Functional and Logic Programming (FLOPS’99), number 1722 in LNCS,
pages 194–208, Tsukuba, Japan. Springer-Verlag.

Fernández, A. and Hill, P. (2000a). A comparative study of eight constraint program-
ming languages over the Boolean and finite domains. Constraints, 5(3):275–301.

Fernández, A. and Hill, P. (2000b). Constraint propagation on multiple domains. In
Alpuente, M., editor, 9th International Workshop on Functional and Logic Pro-
gramming (WFLP’00), pages 455–469, Benicássim, Spain. Universidad Politécnica
de Valencia.

Fernández, A. and Hill, P. (2001a). Branching: the essence of constraint solving. In
Apt, K., Barták, R., Monfroy, E., and Rossi, F., editors, ERCIM Workshop on
Constraints, Prague, Czech Republic. Charles University/Faculty of Mathematics
and Physics.

Fernández, A. and Hill, P. (2001b). A constraint system for lattice (interval) domains.
ACM Transactions on Programming Languages and Systems (TOPLAS). Submit-
ted December 2000; subjected to revision in November 2001.

Fikes, R. (1968). A heuristic program for solving problems states as non-deterministic
procedures. PhD thesis, Comput. Sci. Dept., Carnegie-Mellon University, Pitts-
burgh, PA.

FLOPS (1995-96-98-99-2001). International Symposiums. Functional and Logic Pro-
gramming. World Scientific (Singapore) and Springer-Verlag (LNCS Series).

Freeman-Benson, B. and Borning, A. (1992). Integrating constraints with an object-
oriented language. In Madsen, O. L., editor, European Conference on Object-
Oriented Programming (ECOOP’92), number 615 in LNCS, pages 268–286,
Utrecht, The Netherlands. Springer-Verlag.

Freuder, E. (1978). Synthesizing constraint expressions. Communications of the ACM,
21(1):958–966.

Freuder, E. and Hubbe, P. (1995). Extracting constraint satisfaction subproblems.
In 14th International Joint Conference on Artificial Intelligent (IJCAI’95), pages
548–557, Québec, Canada. Morgan Kaufman.

Freuder, E. and Wallace, R. (1992). Partial constraint satisfaction. Artificial Intelli-
gence, 58(21-70):21–70.

Frühwirth, T. (1994). Constraint handling rules. In Podelski, A., editor, Constraint
Programming: Basics and Trends, number 910 in LNCS, pages 90–107, Châtillon-
sur-Seine, France. Springer-Verlag.

214 BIBLIOGRAPHY

Frühwirth, T. (1998). Theory and practice of constraint handling rules. The Journal
of Logic Programming, 37:95–138.

Frühwirth, T. (1999). Compiling constraint handling rules into Prolog with attributed
variables. In Nadathur, G., editor, International Conference on Principles and
Practice of Declarative Programming (PPDP’99), number 1702 in LNCS, pages
117–133, Paris, France. Springer-Verlag.

Frühwirth, T. and Abdennadher, S. (2001). The Munich rent advisor: a success for
logic programming on the internet. Theory and Practice of Logic Programming,
1(3):303–319.

Frühwirth, T. and Brisset, P. (1997). Optimal planning of digital cordless telecom-
munication systems. In Wallace, M., editor, 3rd International Conference on the
Practical Application of Constraint Technology (PACT’97), pages 165–176, Lon-
don, UK. Prolog Management Group.

Frühwirth, T. and Brisset, P. (1998). Optimal placement of base stations in wireless
indoor telecommunication. In Maher, M. and Puget, J.-F., editors, 4th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP’98),
number 1520 in LNCS, pages 476–480, Pisa, Italy. Springer-Verlag.

Frühwirth, T., Herold, A., Kuechenhoff, V., Le Provost, T., Lim, P., Monfroy, E., and
Wallace, M. (1993). Constraint logic programming - an informal introduction. In
Comyn, G., Ratcliffe, M., and Fuchs, N., editors, 2nd International Logic Pro-
gramming Summer School (LPSS’92): Logic programming in Action, number 636
in LNAI, Zurich, Switzerland. Springer-Verlag.

Gaschnig, J. (1974). A constraint satisfaction method for inference making. In 12th
Annual Allerton Conference on Circuit System Theory, pages 866–874, Illinois
University.

Georget, Y. and Codognet, P. (1998). Compiling semiring-based constraints with
clp(FD,S). In Maher, M. and Puget, J.-F., editors, 4th International Conference
on Principles and Practice of Constraint Programming (CP’98), number 1520 in
LNCS, pages 205–219, Pisa, Italy. Springer-Verlag.

Gervet, C. (1994). Conjunto: constraint logic programming with finite set domains.
In Bruynooghe, M., editor, 1994 International Symposium on Logic programming
(SLP’94), pages 339–358, Ithaca, New York. The MIT Press.

Gervet, C. (1997). Interval propagation to reason about sets: definition and implemen-
tation of a practical language. Constraints, 1(3):191–244.

Gilbert, D., Schroeder, M., and van Helden, J. (2000). Interactive visualisation and
exploration of biological data. In Levi, G. and Martelli, M., editors, 5th Joint Con-
ference on Information Sciences (Stream on Biomolecular Informatics), Atlantic
City, New Jersey, USA.

BIBLIOGRAPHY 215

Gorlick, M., Kesselman, C., Marotta, D., and Parker, D. (1990). Mockingbird: a logical
methodology for testing. Journal of Logic Programming, 8(1):95–119.

Goualard, F. (2001). Component programming and interoperatibility in constraint
solver design. In K.Apt, Barták, R., Monfroy, E., and Rossi, F., editors, ERCIM
Workshop on Constraints, Prague, Czech Republic. Charles University/Faculty of
Mathematics and Physics.

Goualard, F., Benhamou, F., and Granvilliers, L. (1999). An extension of the WAM
for hybrid interval solvers. The Journal of Functional and Logic Programming,
1999(1):1–36. Special issue of Workshop on Parallelism and Implementation Tech-
nology for (Constraint) Logic Programming Languages.

Granvilliers, L. (2001). On the combination of interval constraint solvers. Reliable
Computing, 7(6):467–483.

Granvilliers, L., Monfroy, E., and Benhamou, F. (2001). Cooperative solvers in con-
straint programming: a short introduction. ALP Newsletter, 14(2).

Hansen, E. (1992). Global optimization using interval analysis. Marcel Dekker.

Hansen, P., Jaumard, B., and Mathon, V. (1993). Constrained nonlinear 0-1 program-
ming. Journal on Computing, 5(2):97–119.

Hanus, M. (1993). Analysis of nonlinear constraints in CLP(<). In Warren, D., editor,
10th International Conference on Logic Programming (ICLP’93), pages 83–99,
Budapest, Hungary. The MIT Press.

Haralick, R. and Elliot, G. (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313.

Havens, W., Sidebottom, S., Sidebottom, G., Jones, J., and Ovans, R. (1992). Echidna:
a constraint logic programming shell. In Pacific Rim International Conference on
Artificial Intelligence, pages 165–171, Seoul, Korea.

Heintze, N., Michaylov, S., and Stuckey, P. (1992). CLP(<) and some electrical engi-
neering problems. Journal of Automated Reasoning, 9(2):231–260.

Heintze, N., Michaylov, S., Stuckey, P., and Yap, R. (1989). On meta-programming
in CLP(<). In Lusk, E. and Overbeek, R., editors, the 1989 North American
Conference on Logic Programming (NACLP’89), pages 52–66, Cleveland, Ohio.
The MIT Press.

Henz, M. (1996). Don’t be puzzled! In Workshop on Constraint Programming in
conjunction with the 2nd International Conference on Principles and Practice of
Constraint Programming (CP’96), Cambridge, Massachusetts, USA.

216 BIBLIOGRAPHY

Henz, M. and Müller, T. (2000). An overview of finite domain constraint program-
ming. In 5th Conference of the Association of Asia-Pacific Operational Research
Societies, Singapore. to appear.

Hermenegildo, M., Bueno, F., Cabeza, D., Carro, M., de la Banda, M., López-Garćıa,
P., and Puebla, G. (2000). The Ciao logic programming environment. In Lloyd,
J. W., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C., Pereira, L.,
Sagiv, Y., and Stuckey, P. J., editors, 1st International Conference on Compu-
tational Logic (CL’2000), number 1861 in LNCS, London, UK. Springer-Verlag.
Tutorial.

Hickey, T. (2000). CLIP: a CLP(Intervals) dialect for metalevel constraint solving.
In Pontelli, E. and Costa, V., editors, 2nd International Workshop on Practical
Aspects of Declarative Languages (PADL’2000), number 1753 in LNCS, pages
200–214, Boston, USA. Springer-Verlag.

Hickey, T., Ju, Q., and van Emden, M. (1999). Interval arithmetic: from principles to
implementation. CS Technical report CS-99-202, Brandeis Iniversity.

Hofstedt, P. (2000). Better communication for tighter cooperation. In Lloyd, J. W.,
Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C., Pereira, L., Sagiv, Y.,
and Stuckey, P. J., editors, 1st International Conference on Computational Logic
(CL’2000), number 1861 in LNCS, pages 342–357, London, UK. Springer-Verlag.

Holzbaur, C. (1995). OFAI clp(q,r) manual, edition 1.3.3. Technical Report TR-95-09,
Austrian Research Institute for Artificial Intelligence, Vienna.

Hong, H. (1993). RISC-CLP(Real): logic programming with non-linear constraint over
reals. In (Benhamou and Colmerauer, 1993), pages 133–159, Cambridge, MA.
The MIT Press.

Hong, H. and Ratschan, S. (1995). RISC-CLP(Tree(∆)) a constraint logic programming
system with parametric domain. Technical Report 95-25, Research Institute for
Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria.

Hudson, D. and Cohen, M. (2000). Neural networks and artificial intelligence for
biomedical engineering. Biomedical Engineering. The IEEE Press, New York, USA.

Hughes, J. (1989). Why functional programming matters. Computer Journal, 32(2):98–
107.

Huynh, T. and Lassez, C. (1988). A CLP(<) options trading analysis system. In
Kowalski, R. and Bowen, K., editors, 5th International Conference and Symposium
of Logic Programming (ICLP/SLP’88), pages 59–69, Seattle, Washington. The
MIT Press.

Hyvönen, E. (1989). Constraint reasoning based on interval arithmetic. In Sridha-
ran, N. S., editor, 11th International Joint Conference on Artificial Intelligent
(IJCAI’89), pages 1193–1198, Detroit, MI, USA. Morgan Kaufman.

BIBLIOGRAPHY 217

If/Prolog (1994). IF/Prolog V5.0A, constraints package. Siemens Nixdorf Information-
ssysteme AG, Munich, Germany.

Ilog (1995). Ilog SOLVER, reference manual, version 3.1.

Jaffar, J. and Lassez, J. (1987). Constraint logic programming. In 14th ACM Sympo-
sium on Principles of Programming Languages (POPL’87), pages 111–119, Mu-
nich, Germany. ACM Press.

Jaffar, J. and Maher, M. (1994). Constraint logic programming: a survey. The Journal
of Logic Programming, 19-20:503–581.

Jaffar, J., Maher, M., Marriot, K., and Stuckey, P. (1998). The semantics of constraint
logic programs. The Journal of Logic Programming, 37:1–46.

Jaffar, J. and Michaylov, S. (1987). Methodology and implementation of a CLP sys-
tem. In Lassez, J.-L., editor, 4th International Conference on Logic Programming
(ICLP’87), pages 196–218, Melbourne, Australia. The MIT Press.

Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. (1992a). An abstract machine for
CLP(<). SIGPLAN Notices, 27(7):128–139. Publication of the Proceedings of the
ACM SIGPLAN’92 Conference on Programming Language Design and Implemen-
tation (PLDI’92), San Francisco, California.

Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. (1992b). The CLP(<) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339–
395.

Jaffar, J., Michaylov, S., and Yap, R. (1991). A methodology for managing hard con-
straints in CLP systems. SIGPLAN Notices, 26(6):306–316. Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implemen-
tation (PLDI’91), Toronto, Ontario, Canada.

Jampel, M. (1994). A review of ”A review of industrial constraint
solving tools”. It is a review of (Cras, 1993). Available at
http://www.cs.unh.edu/ccc/archive/constraints/archive/cras.html.

Janson, S. and Haridi, S. (1991). Programming paradigms of the Andorra kernel
language. In Saraswat, V. and Ueda, K., editors, 1991 International Symposium
on Logic Programming (ISLP’91), Logic Programming, pages 167–183, San Dieg,
California, USA. The MIT Press.

JFLP (1995-2000). Journal of Functional and Logic Programming. Volumes 1995-2000
published by the MIT Press. From 2001 published by the European Association
for Programming Languages and Systems (EAPLS).

Kepser, S. and Richts, J. (1999). Optimisation techniques for combining constraint
solvers. In Gabbay, D. and de Rijke, M., editors, Frontiers of Combining Systems
2 (FroCoS’98), pages 193–210, Amsterdam. Research Studies Press/Wiley.

218 BIBLIOGRAPHY

King, A. (2000). Pair-sharing over rational trees. Journal of Logic Programming,
46(1-2):139–155.

Kok, J., Marchiori, E., Marchiori, M., and Rossi, C. (1996). Evolutionary training of
CLP-constrained neural networks. In Wallace, M., editor, 2nd International Con-
ference on the Practical Application of Constraint Technology (PACT’96), pages
129–142, London, UK. Publisher Prolog Management Group.

Kondrak, G. and Van Beek, P. (1997). A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89(1-2):365–387.

Kowalski, R. (1974). Predicate logic as programming language. In Rosenfeld, J., editor,
Information Processing, IFIP Congress 74, pages 569–574, Stockholm, Sweden.
North-Holland.

Kowalski, R. (1988). The early years of logic programming. Communications of the
ACM, 31(1):38–43.

Kowalski, R. and Kuehner, D. (1971). Linear resolution with selection function. Arti-
ficial Intelligence, 2(3-4):227–260.

Kozen., D. (1994). Set constraints and logic programming. In Jouannaud, J.-P., editor,
1st International Conference on Constraints in Computational Logics (CCL’94),
number 845 in LNCS, pages 302–303, Munich, Germany. Springer-Verlag. Ex-
tended version published in (Kozen., 1998).

Kozen., D. (1998). Set constraints and logic programming. Information and Compu-
tation, 142(1):2–25.

Kumar, V. (1992). Algorithms for constraint satisfaction problems: a survey. AI
Magazine, 13(1):32–44.

Lassez, C. (1987). Constraint logic programming: a tutorial. BYTE magazine, pages
171–176.

Le Provost, T. and Wallace, M. (1993). Generalized constraint propagation over the
CLP scheme. Journal of Logic Programming, 16(3):319–359.

Lee, J. and van Emden, M. (1993). Interval computation as deduction in CHIP. The
Journal of Logic Programming, Special Issue:Constraint Logic Programming, 16(3-
4):255–276.

Legeard, B. and Legros, E. (1991). Short overview of the CLPS system. In Maluszynski,
J. and Wirsing, M., editors, 3rd International Symposium on Programming Lan-
guage Implementation and Logic Programming (PLILP’97), number 528 in LNCS,
pages 431–433, Passau, Germany. Springer-Verlag.

Levi, G., editor (1994). Advances in logic programming theory, volume 1. Oxford
University Press, UK.

BIBLIOGRAPHY 219

Lloyd, J. (1987). Foundations of logic programming. Springer-Verlag, Berlin, Heidel-
berg.

Lux, W. (2001). Adding linear constraints over real numbers to Curry. In Middeldorp,
A., Kuchen, H., and Ueda, K., editors, 5th International Symposium on Functional
and Logic Programming (FLOPS’2001), number 2024 in LNCS, pages 185–200,
Tokyo, Japan. Springer-Verlag.

Mackworth, A. (1977). Consistency in networks of relations. Artificial Intelligence,
8:99–118.

Maher, M. (1987). Logic semantics for a class of committed-choice programs. In Lassez,
J.-L., editor, 4th International Conference on Logic Programming (ICLP’87),
pages 858–876, Melbourne, Australia. The MIT Press.

Majumdar, S. (1997). Application of relational interval arithmetic to computer perfor-
mance analysis: a survey. Constraints, 2(2):215–235.

Maluszynski, J. and Wirsing, M., editors (1991). 3rd International Symposium in Pro-
gramming Language Implementation and Logic Programming (PLILP’91), volume
LNCS 528. Springer-Verlag, Passau, Germany.

Marriot, K. and Stuckey, P. J. (1998). Programming with constraints. The MIT Press,
Cambridge, Massachusetts.

Meseguer, P. and Larrosa, J. (1995). Constraint satisfaction as global optimization.
In 14th International Joint Conference on Artificial Intelligent (IJCAI’95), pages
579–585, Québec, Canada. Morgan Kaufman.

Mohr, R. and Henderson, T. (1986). Arc and path consistency revisited. Artificial
Intelligence, 28(2):225–233.

Monfroy, E. (1996). Solver collaboration for constraint logic programming. PhD thesis,
Centre de Recherche en Informatique de Nancy, INRIA-Lorraine.

Monfroy, E., Rusinowitch, M., and Schott, R. (1995). Implementing non-linear con-
straints with cooperative solvers. Research Report 2747, Centre de Recherche en
Informatique de Nancy, INRIA-Lorraine.

Montanari, U. and Rossi, F. (1991). Constraint relaxation may be perfect. Artificial
Intelligence, 48(2):143–170.

Moore, R. (1966). Interval analysis. Prentice hall, Englewood Cliffs, NJ.

Müller, T. and Müller, M. (1997). Finite set constraints in Oz. In Bry, F., Freitag,
B., and Seipel, D., editors, 13th Workshop on Logic Programming, pages 104–115,
München. Technische Universität.

220 BIBLIOGRAPHY

Müller, T. and Würtz, J. (1996). Interfacing propagators with a concurrent constraint
language. In JICSLP96 Post-conference workshop and Compulog Net Meeting on
Parallelism and Implementation Technology for (Constraint) Logic Programming
Languages, pages 195–206, Bonn, Germany.

Nadel, B. (1989). Constraint satisfaction algorithms. Computational Intelligence,
5:188–224.

N’Dong, S. (1997). Prolog IV ou la programmation par contraintes selon PrologIA.
In Sixièmes Journées Francophones de Programmation Logique et Programmation
par Contraintes (JFPLC’97), pages 235–238, Orléans, France. Edition HERMES.

Older, W. (1989). Interval arithmetic specification. Technical report, Bell-Northern,
Research Computing Research Laboratory, Ottawa, Ontario, Canada.

Older, W. and Benhamou, F. (1993). Programming in CLP(BNR). 1st International
Workshop on Principles and Practice of Constraint Programming (PPCP’93), In-
formal Proceedings, pages: 228-238, Brown University, Newport, Rode Island.

Older, W. and Vellino, A. (1990). Extending Prolog with constraint arithmetic on
real intervals. In The Canadian Conference on Computer and Electrical Engineer,
Ottawa, Ontario, Canada. IEEE.

Older, W. and Vellino, A. (1993). Constraint arithmetic on real intervals. In (Benhamou
and Colmerauer, 1993), pages 175–195, Cambridge, MA. The MIT Press.

Pachet, F. and Roy, P. (1995). Integrating constraint satisfaction techniques with
complex object structures. In Annual Conference on the British Computer Society
on Expert Systems (ES’95), pages 11–22. Cambridge.

PACLP’2000 (2000). 2nd International Conference of The Practical Applications of
Constraint Technology and Logic Programming. Practical Application Company,
Manchester, UK.

PACLP’99 (1999). 1st International Conference of The Practical Applications of
Constraint Technology and Logic Programming. Practical Application Company,
Manchester, UK.

PACT’96 (1996). 2nd International Conference of Practical Application of Constraint
Technology. Prolog Management Group, London, UK.

PACT’97 (1997). 3rd International Conference of Practical Application of Constraint
Technology. Prolog Management Group, London, UK.

PAPPACT’98 (1998). 6th International Conference of Practical Application of Prolog
and the 4th International Conference on the Practical Application of Constraint
Technology. Publisher Practical Application Company Ltd, London, UK.

BIBLIOGRAPHY 221

Pesant, G. and Boyer, M. (1994). QUAD-CLP(<): adding the power of quadratic
constraints. In Borning, A., editor, 2nd International Workshop on Principles
and Practice of Constraint Programming (PPCP’94), number 874 in LNCS, pages
95–108, Orcas Island, Washington, USA. Springer-Verlag.

Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Compu-
tational Intelligence, 9(3):268–299.

Puget, J.-F. and Leconte, M. (1995). Beyond the glass box: constraints as objects. In
J. W. Lloyd, editor, International Symposium on Logic Programming (ILPS’95),
pages 513–527, Portland, Oregon. The MIT Press.

Refalo, P. and Van Hentenryck, P. (1996). CLP(<lin) revised. In Maher, M., edi-
tor, Joint International Conference and Symposium on Logic Programming (JIC-
SLP’96), pages 22–36, Bonn, Germany. The MIT Press.

Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Levi,
G. and Martelli, M., editors, 12th National Conference on Artificial Intelligence,
volume 1, pages 362–367, Seattle,WA,USA. AAAI Press.

Robinson, A. (1965). A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12(1):23–41.

Robinson, A. (1971). Computational logic: The unification computation. Machine
Intelligence, 6:63–72.

Ruttkay, Z. (1998). Constraint satisfaction-a survey. CWI Quaterly, 11(2-3):163–214.

Sakai, K. and Aiba, A. (1989). CAL: a theoretical background of constraint logic
programming and its applications. Journal of Symbolic Computations, 8(6):589–
603.

Saraswat, V. (1988). A somewhat logical formulation of CLP synchronisation prim-
itives. In Kowalski, R. and Bowen, K., editors, 5th International Conference
and Symposium of Logic Programming (ICLP/SLP’88), pages 1298–1314, Seat-
tle, Washington. The MIT Press.

Saraswat, V. (1989). Concurrent constraint programming languages. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA. Also published in (Saraswat, 1993).

Saraswat, V. (1992). Concurrent constraint programming: A brief survey. Unpublished.

Saraswat, V. (1993). Concurrent constraint programming. The MIT Press, Cambridge,
MA. Doctoral Dissertation Award and Logic programming Series.

Sato, S. and Aiba, A. (1993a). An application of CAL to robotics. In (Benhamou and
Colmerauer, 1993), pages 161–173, Cambridge, MA. The MIT Press.

222 BIBLIOGRAPHY

Sato, S. and Aiba, A. (1993b). A study on Boolean constraint solvers. In (Benhamou
and Colmerauer, 1993), pages 253–267, Cambridge, MA. The MIT Press.

Schiex, T., Fargier, H., and Verfaillie, G. (1995). Valued constraint satisfaction prob-
lems: hard and easy problems. In 14th International Joint Conference on Artificial
Intelligent (IJCAI’95), pages 631–637, Québec, Canada. Morgan Kaufman.

Schulte, C. (1995). Solver– an Oz search debugger. In International Workshop on
Oz Programming (WOz’95), pages 109–115, Martigny, Switzerland. Institut Dalle
Molle d’Intelligence Artificielle Perceptive!

Sedgewick, R. (1984). Algorithms. Series in Computer Science. Addison-Wesley, USA.

Shapiro, E. (1989). The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413–510.

Sicstus manual (1994). SICStus Prolog user’s manual, release 3#5. By the Intelligent
Systems Laboratory, Swedish Institute of Computer Science.

Sidebottom, G. (1993). A language for optimizing constraint propagation. PhD thesis,
Simon Fraser University, Burnaby, Canada.

Sidebottom, G. and Havens, W. (1992). Hierarchical arc consistency for disjoint real
intervals in constraint logic programming. Computational Intelligence, 8(4):601–
623.

Simonis, H. (1995). Applications of constraint logic programming. In Sterling, L.,
editor, 12th International Conference on Logic Programming (ICLP’95), pages
9–11, Tokyo, Japan. The MIT Press. Advanced Tutorials.

Simonis, H. and Dincbas, M. (1987). Using logic programming for fault diagnosis
in digital circuits. In Morik, K., editor, 11th German Workshop on Artificial
Intelligence (GWAI’87), pages 139–148, Geseke. Springer-Verlag.

Smith, B. (1995). A tutorial on constraint programming. Research Report 95.14,
University of Leeds, School of Computer Studies, England.

Smolka, G. (1995). The Oz programming model. In Van Leeuwen, J., editor, Computer
Science Today, number 1000 in LNCS, pages 324–343, Berlin. Springer-Verlag.

Sterling, L. and Shapiro, E. (1986). The art of Prolog. Series in Logic Programming.
The MIT Press, Cambridge, MA.

Stolzenburg, F. (1996). Membership-constraints and complexity in logic programming
with sets. In Baader, F. and Schulz, K., editors, 1st International Workshop on
Frontiers of Combining Systems (FroCos’96), volume 3 of Applied Logic, pages
285–302, Munich, Germany. Kluwer Academic.

BIBLIOGRAPHY 223

Tsang, E. (1993). Foundations of constraint satisfaction. Academic Press, London and
San Diego.

Van Emdem, M. (1997). Value constraints in the CLP scheme. Constraints, 2(2):163–
183.

Van Hentenryck, P. (1988). Tutorial on the CHIP system and applications. In Workshop
of Constraint Logic Programming, Rehovot, Israel. Weizmann Institute of Science.

Van Hentenryck, P. (1989). Constraint satisfaction in logic programming. The MIT
Press, Cambridge, MA.

Van Hentenryck, P. (1995). Constraint solving for combinatorial search problems: a
tutorial. In Montanari, U. and Rossi, F., editors, 1st International Conference
on Principles and Practice of Constraint Programming (CP’95), number 976 in
LNCS, pages 564–587, Cassis, France. Springer-Verlag.

Van Hentenryck, P. (1998). A gentle introduction to NUMERICA. Artificial Intelli-
gence, 103(1-2):209–235.

Van Hentenryck, P. (1999). The OPL optimization programming language. The MIT
Press, Cambridge, MA.

Van Hentenryck, P. and Deville, Y. (1991). The cardinality operator: a new logical
connective for constraint logic programming. In Furukawa, K., editor, 8th In-
ternational Conference on Logic Programming (ICLP’91), pages 745–759, Paris,
France. The MIT Press.

Van Hentenryck, P., Deville, Y., and Teng, C. (1992). A generic arc-consistency algo-
rithm and its specializations. Artificial Intelligence, 57(2-3):291–321.

Van Hentenryck, P., Michel, L., and Benhamou, F. (1988). Newton - constraint pro-
gramming over nonlinear constraints. Science of Computer Programming, 20(1-
2):83–118.

Van Hentenryck, P., Michel, L., and Deville, Y. (1997). Numerica: a modeling language
for global optimization. The MIT Press, Cambridge, MA.

Van Hentenryck, P., Michel, L., Perron, L., and Régin, J.-C. (1999). Constraint pro-
gramming in OPL. In International Conference on Principles and Practice of
Declarative Programming (PPDP’99), number 1702 in LNCS, pages 98–116, Paris,
France. Springer-Verlag.

Van Hentenryck, P., Saraswat, V., and Deville, Y. (1991). Constraint processing in
cc(FD). Unpublished draft.

Van Hentenryck, P., Saraswat, V., and Deville, Y. (1994). Design, implementation and
evaluation of the constraint language cc(FD). In Podelski, A., editor, Constraint

224 BIBLIOGRAPHY

Programming: Basics and Trends, number 910 in LNCS, pages 293–316, Châtillon-
sur-Seine, France. Springer-Verlag.

van Hoeve, W. (2001). The “all different” constraint: a survey. In K.Apt, Barták, R.,
Monfroy, E., and Rossi, F., editors, ERCIM Workshop on Constraints, Prague,
Czech Republic. Charles University/Faculty of Mathematics and Physics.

Walinsky, C. (1989). CLP(Σ∗): constraint logic programming with regular sets. In Levi,
G. and Martelli, M., editors, 6th International Conference on Logic Programming
(ICLP’89), pages 181–196, Lisbon, Portugal. The MIT Press.

Wallace, M. (1996). Practical applications of constraint programming. Constraints,
1(1-2):139–168.

Wallace, R. (1993). Why AC-3 is almost always better than AC-4 for establishing arc
consistency in CSPs. In Bajcsy, R., editor, 13th International Joint Conference
on Artificial Intelligence (IJCAI’93), pages 239–247, Chambéry, France. Morgan
Kaufmann.

Waltz, D. (1972). Generating semantic descriptions from drawings of scenes with
shadows. Technical Report AI271, MIT, MA.

Waltz, D. (1975). Understanding line drawings in scenes shadows. In Winston, P. H.,
editor, The Psychology of Computer Vision, pages 19–91, UK. McGraw-Hill.

Warren, D. (1983). An abstract Prolog instruction set. technical Note 309, SRI Inter-
national, Menlo Park.

Williams, H. (1993a). Model building in mathematical programming. J. Wiley and
Sons, New York, USA. Revised edition.

Williams, H. (1993b). Model solving in mathematical programming. J. Wiley and Sons,
New York, USA.

Wirth, N. (1966). A contribution to the development of Algol. Communications of the
ACM, 9(6):413–431.

Yap, R. (1991). Restriction site mapping in CLP(<). In Furukawa, K., editor, 8th
International Conference on Logic Programming (ICLP’91), pages 521–534, Paris,
France. The MIT Press.

Yap, R. (1993). A constraint logic programming framework for constructing DNA
restriction maps. Artificial Intelligence in Medicine, 5:447–464.

Zhou, J. (2000a). Introduction to the constraint language NCL. The Journal of Logic
Programming, 45(1-3):71–103.

Zhou, N.-F. (1994). Parameter passing and control stack management in Prolog imple-
mentation revisited. ACM Transactions on Programming Languages and Systems,
18(6):752–779.

BIBLIOGRAPHY 225

Zhou, N.-F. (1996). A high-level intermediate language and the algorithms for compil-
ing finite-domain constraints. In Jaffar, J., editor, Joint International Conference
and Symposium on Logic Programming (JICSLP’98), pages 70–84, Manchester,
UK. The MIT Press.

Zhou, N.-F. (1997). B-Prolog user’s manual (version 2.1). Faculty of Computer Science
and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan.

Zhou, N.-F. (2000b). B-Prolog user’s manual (version 4.0). Faculty of Computer Science
and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan.

Zhou, N.-F. and Nagasawa, I. (1994). An efficient finite-domain constraint solver in
beta-Prolog. Journal of Japanese Society for Artificial Intelligence, 9:275–282.

Zhou, N.-F., Takagi, T., and Ushijima, K. (1990). A matching tree oriented abstract
machine for Prolog. In Warren, D. and Szeredi, P., editors, 7th International
Conference on Logic Programming (ICLP’90), pages 159–173, Jerusalem, Israel.
The MIT Press.

226 BIBLIOGRAPHY

Appendix A

Computation Domains in clp(L)

The following code is extracted directly from the file clp l.pl that is provided with the
distribution of the prototype implementation of our generic solver (Fernández, 2000).

Declarations of simple computation domains

%-------------- Integer Domain --

%--- Definition

lattice(Ele,integer):-(integer(Ele);var(Ele)),!.

%--- Cardinality

finite(integer).

%--- For finite domains ----Successor AND Predecessor

succ(integer,X,Y):-lattice(X,integer),

lattice(Y,integer),

Y is X+1.

pred(integer,X,Y):-lattice(X,integer),

lattice(Y,integer),

Y is X-1.

%--- Ordering

lt(normal,integer,A,B):-lattice(A,integer),lattice(B,integer),!,A < B.

%--- Glb and Lub

glb(normal,integer,X,Y,Z):-lattice(X,integer),lattice(Y,integer),

(lt(normal,integer,X,Y) -> Z=X;Z=Y).

lub(normal,integer,X,Y,Z):- lattice(X,integer),lattice(Y,integer),

(gt(normal,integer,X,Y) -> Z=X;Z=Y).

227

228 APPENDIX A. Computation Domains in clp(L)

%--- Top and bottom elements

%% They are fictitious.

%-------------- Real Domain ---

%--- Definition

lattice(Ele,real):-(float(Ele);var(Ele)),!.

%--- Cardinality

finite(real):-fail,!.

%--- Ordering

lt(normal,real,A,B):- lattice(A,real),lattice(B,real),!,A < B.

%--- Glb and Lub

glb(normal,real,X,Y,Z):- lattice(X,real),lattice(Y,real),

(lt(normal,real,X,Y) -> Z=X;Z=Y).

lub(normal,real,X,Y,Z):- lattice(X,real),lattice(Y,real),

(gt(normal,real,X,Y) -> Z=X;Z=Y).

%--- Top and bottom elements

%% They are fictitious.

%--- Precision

%% See below

%-------------- Set Domain --

%--- Definition

% A set is defined as a list with ordering the inclusion.

:-use_module(library(lists)).

:-dynamic set/1.

lattice(Ele,set):-is_list(Ele),!.

%--- Cardinality of set domain

finite(set):-fail.

%--- Set Ordering.

include_in([],_S).

include_in([X|Y],S):-!,member(X,S),include_in(Y,S).

lt(normal,set,S1,S2):-lattice(S1,set),lattice(S2,set),

S1\==S2,include_in(S1,S2).

229

%--- Glb and Lub

union(S1,S2,S3):-lattice(S1,set),lattice(S2,set),!,

append(S1,S2,S),remove_duplicates(S,S3).

intersection([],S2,[]):-lattice(S2,set),!.

intersection([X|Y],S2,[X|S]):-lattice(S2,set),member(X,S2),

!,intersection(Y,S2,S).

intersection([X|Y],S2,S):-lattice(S2,set),not(member(X,S2)),

!,intersection(Y,S2,S).

glb(normal,set,X,Y,Z):- lattice(X,set),lattice(Y,set),

!, intersection(X,Y,Z).

lub(normal,set,X,Y,Z):- lattice(X,set),lattice(Y,set),

!,union(X,Y,Z).

%--- Top element is fictitious

bottom(set,[]).

top(set,top).

%-------------- Colors Domain ---

:-dynamic color/1.

color(white).

color(yellow).

color(orange).

color(green).

color(blue).

color(brown).

color(black).

lattice(Ele,colors):- (color(Ele);var(Ele)),!.

%--- Cardinality

finite(colors).

%--- For finite domains, we declare the successor and predecessor

succ(colors,white,yellow).

succ(colors,yellow,orange).

succ(colors,orange,green).

succ(colors,green,blue).

succ(colors,blue,brown).

succ(colors,brown,black):-!.

succ(colors,black,black). %% succ(colors,top,top).

230 APPENDIX A. Computation Domains in clp(L)

pred(colors,white,white). %% pred(colors,bottom,bottom).

pred(colors,X,Y):-succ(colors,Y,X),!.

%--- Ordering

lt(normal,colors,A,A):-lattice(A,colors),!,fail.

lt(normal,colors,X,Y):-lattice(X,colors),lattice(Y,colors),

succ(colors,X,Y),!.

lt(normal,colors,X,Y):-lattice(X,colors),lattice(Y,colors),

succ(colors,X,Z),

X\==Z,!,lt(normal,colors,Z,Y).

%--- Glb and Lub

glb(normal,colors,X,Y,Z):- lattice(X,colors),lattice(Y,colors),!,

(lt(normal,colors,X,Y) -> Z=X;Z=Y).

lub(normal,colors,X,Y,Z):- lattice(X,colors),lattice(Y,colors), !,

(gt(normal,colors,X,Y) -> Z=X;Z=Y).

%--- Top and bottom elements.

bottom(colors,white).

top(colors,black).

An example of precision declaration

The following code declares a precision of 0.05 for the real domain. aplica/1 is a built-
in predicate that, given a list with three elements, applies a binary operator to the
two first elements (i.e., the operands) that belong to some domain Ls (and, thus, have
the form (R,B) where R belongs to some domain and B is either ‘open’ or ‘close’) and
puts the result in the last element of the list (i.e., Prec). This last element is used
to check the precision. In the example below, if Prec contains a value lower or equal
to the value Epsilon] in <s, the precision predicate returns true indicating that the
system has reached the precision expected for the real domain (of course, Epsilon may
be provided by the user).

%--- Precision

precision((R1,B1),(R2,B2),real,Epsilon):-lattice(B1,bracket),

lattice(B2,bracket),

lattice(R1,real), lattice(R2,real),

!,

aplica(:-:,[(R2,B2),(R1,B1),Prec]),

le(real,Prec,(Epsilon,close)).

231

Examples of combined domains

%----------------------DIRECT PRODUCT ---------------------------------

%------------------- POINT DOMAIN ------------------------------------

% Integer Point domain is the direct product of Integer x Integer

% Real Point domain is the direct product of Real x real

% Integer-Real Point domain is the direct product of Integer x Real

% Real-Integer Point domain is the direct product of Real x Integer

product_Direct(integer,integer,int_point).

product_Direct(real,real,real_point).

product_Direct(integer,real,intre_point).

product_Direct(real,integer,reint_point).

%------------------- A RECTANGLE DOMAIN -------------------------------

product_Direct(int_point,int_point,rectangle).

232 APPENDIX A. Computation Domains in clp(L)

Appendix B

Constraint Operators in clp(L)

Some simple operators

%---------------- DECLARATION OF UNARY AND BINARY OPERATORS -----------

% Each operator must be declared as dynamic and with a priority 625.

% The definition of an operator is done for the bracket

% domain as well as the computation domain.

%-------------------- Sum operator ------------------------------------

:-dynamic ‘:+:’/3.

operator(625,xfx,‘:+:’).

%--- Mode declaration. L2 is not defined as L1 to allow

% the definition of the sum on combined domain (e.g. ‘1’:+:‘1’=‘10’

% in the hexadecimal domain)

declara(:+:,L1,L1,_L2). %% ‘:+:’ :: L1 x L1 -> L2

%--- Def. on Bracket domain

:+:(open,_,open).

:+:(close,B,B).

%--- Def. on integer domain.

:+:(Ele1,Ele2,Ele3):-lattice(Ele1,integer), lattice(Ele2,integer),

Ele3 is Ele1 + Ele2.

%--- Def. on real domain.

:+:(Ele1,Ele2,Ele3):-lattice(Ele1,real), lattice(Ele2,real),

Ele3 is Ele1 + Ele2.

%--- Def. on the integer point domain.

:+:((A,B),(C,D),(E,F)):-lattice((A,B),int_point),

lattice((C,D),int_point),

233

234 APPENDIX B. Constraint Operators in clp(L)

E is A + C, F is B + D.

%--- Def. on the real point domain.

:+:((A,B),(C,D),(E,F)):-lattice((A,B),real_point),

lattice((C,D),real_point),

E is A + C, F is B + D.

%--- Def. on the integer-real point domain.

:+:((A,B),(C,D),(E,F)):-lattice((A,B),intre_point),

lattice((C,D),intre_point),

E is A + C, F is B + D.

%--- Def. on the real-integer point domain.

:+:((A,B),(C,D),(E,F)):-lattice((A,B),reint_point),

lattice((C,D),reint_point),

E is A + C, F is B + D.

%--- Def. on the set domain.

:+:(Ele1,Ele2,Ele3):-lattice(Ele1,set), lattice(Ele2,set),

union(Ele1,Ele2,Ele3).

%-------------------- Subtraction operator ----------------------------

:-dynamic ‘:-:’/3.

operator(625,xfx,‘:-:’).

%--- Mode declaration. L2 is not defined as L1 to allow

% the definition of the subtraction on combined domain

%% (e.g. ‘10’:-:‘F’=‘1’ taking into account the hexadecimal domain)

declara(:-:,_L2,mirror(L1),L1). %% ‘:-:’:: L2 x L1-> L1

%--- Subtraction on bracket domain

:-:(A,A,close).

:-:(A,B,open):-A\==B.

%--- Subtraction on Integers

:-:(Ele1,Ele2,Ele3):-lattice(Ele1,integer),lattice(Ele2,integer),

Ele3 is Ele1 - Ele2.

%--- Subtraction on Reals

:-:(Ele1,Ele2,Ele3):-lattice(Ele1,real),lattice(Ele2,real),

Ele3 is Ele1 - Ele2.

%--- Def. on the integer point domain.

:-:((A,B),(C,D),(E,F)):-lattice((A,B),int_point),

235

lattice((C,D),int_point),

E is A - C, F is B - D.

%--- Def. on the real point domain.

:-:((A,B),(C,D),(E,F)):-lattice((A,B),real_point),

lattice((C,D),real_point),

E is A - C, F is B - D.

%--- Def. on the integer-real point domain.

:-:((A,B),(C,D),(E,F)):-lattice((A,B),intre_point),

lattice((C,D),intre_point),

E is A - C, F is B - D.

%--- Def. on the real-integer point domain.

:-:((A,B),(C,D),(E,F)):-lattice((A,B),reint_point),

lattice((C,D),reint_point),

E is A - C, F is B - D.

%--- Def. on the set domain.

:-:(Ele1,Ele2,Ele3):-lattice(Ele1,set), lattice(Ele2,set),

difference(Ele1,Ele2,Ele3).

%------------------- Product operator ---------------------------------

:-dynamic ‘:*:’/3.

operator(625,xfx,‘:*:’).

%--- Mode declaration

declara(:*:,L,L,L). %% ‘:*:’ :: L x L -> L

%--- Def. on Bracket domain

:*:(open,_,open).

:*:(close,B,B).

%--- Def. on integer domain.

:*:(Ele1,Ele2,Ele3):-lattice(Ele1,integer), lattice(Ele2,integer),

Ele3 is Ele1 * Ele2.

%--- Def. on real domain.

:*:(Ele1,Ele2,Ele3):-lattice(Ele1,real), lattice(Ele2,real),

Ele3 is Ele1 * Ele2.

%------------------- Division operator --------------------------------

:-dynamic ‘:/:’/3.

operator(625,xfx,‘:/:’).

236 APPENDIX B. Constraint Operators in clp(L)

%--- Mode declaration _

declara(:/:,L,mirror(L),L). %% ‘:/:’ :: L x L -> L

%--- Def. on Bracket domain

:/:(open,_,open).

:/:(close,B,B).

%--- Def. on integer domain.

:/:(Ele1,Ele2,Ele3):-lattice(Ele1,integer), lattice(Ele2,integer),

Ele2 \== 0, %% To avoid division by zero

Ele3 is integer(Ele1/Ele2).

%--- Def. on real domain.

:/:(Ele1,Ele2,Ele3):-lattice(Ele1,real), lattice(Ele2,real),

Ele2 \== 0, %% To avoid division by zero

Ele3 is Ele1/Ele2.

%------------------- Binary Sqrt operator -----------------------------

:-dynamic ‘:&:’/3.

operator(625,xfx,‘:&:’).

%--- Mode declaration

declara(:&:,L,L,L). %% ‘:&:’ :: L x L -> L

%--- Def. on Bracket domain

:&:(open,_,open).

:&:(close,_B,close).

%--- Def. on real domain.

%% Observe that this operator has not into account the second element.

%% (A :&: B) is equivalent to :&:(A)

%% For syntax reasons we maintain the binary charateristics of the

%% operator. A unary sqrt operator is defined below

:&:(Ele1,Ele2,Ele3):-lattice(Ele1,real), lattice(Ele2,real),

Ele3 is sqrt(Ele1).

% ------------------- Unary Sqrt operator -----------------------------

:-dynamic ‘:$:’/2.

operator(625,fx,‘:$:’).

%--- Mode declaration

declara(:$:,L,L). %% ‘:$:’ :: L -> L

237

%--- Def. on Bracket domain

:$:(open,open).

:$:(close,close).

%--- Def. on real domain.

:$:(Ele1,Ele3):-lattice(Ele1,real), Ele3 is sqrt(Ele1).

% --------- Unary Operator to inverse the bracket of a value ----------

:-dynamic ‘:@@@:’/3.

operator(625,fx,‘:@@@:’).

%--- Mode declaration

declara(:@@@:,L,L). %% ‘:@@@:’ :: L -> L

%--- Def. on Bracket domain

:@@@:(open,close).

:@@@:(close,open).

%--- Def. on any domain except the bracket domain.

:@@@:(P1,P1):-not(lattice(P1,bracket)).

%% Examples

%% :@@@: 1] = 1)

%% :@@@: 1) = 1]

% --------- Operator to unary minus -----------------------------------

:-dynamic ‘:--:’/3.

operator(625,fx,‘:--:’).

%--- Mode declaration _

declara(:--:,mirror(L),L). %% ‘:--:’ :: L -> L

%--- Def. on Bracket domain

:--:(open,open). :--:(close,close).

%--- Def. on numeric domains.

:--:(A,B):-lattice(A,integer),lattice(B,integer),B is -A.

:--:(A,B):-lattice(A,real),lattice(B,real),B is -A.

Some operators for combined domains

%------------------ COMBINING OPERATORS -----------------------------

% Operator that combines two elements to form a compound element.

238 APPENDIX B. Constraint Operators in clp(L)

:-dynamic ‘:@:’/3.

operator(625,xfx,‘:@:’).

%--- Mode declaration

declara(:@:,L1,L1,_L2). %% ‘:@:’ :: L1 x L1 -> L2

%--- Def. on Bracket domain

:@:(open,_,open).

:@:(close,B,B).

%--- Def. on INTEGER point domain.

:@:(Ele1,Ele2,(Ele1,Ele2)):-lattice(Ele1,integer),

lattice(Ele2,integer),!.

%--- Def. on REAL point domain.

:@:(Ele1,Ele2,(Ele1,Ele2)):-lattice(Ele1,real), lattice(Ele2,real),!.

%--- Def. on rectangle domain.

:@:(Ele1,Ele2,(Ele1,Ele2)):-lattice(Ele1,int_point),

lattice(Ele2,int_point),!.

% --------- Operator to combine points to form a rectangle-------------

:-dynamic ‘:=:’/3.

operator(625,xfx,‘:=:’).

%--- Mode declaration

declara(:=:,L,L,L). %% ‘:=:’ :: L x L -> L

%--- Def. on Bracket domain

:=:(open,_,open).

:=:(close,B,B).

%--- Def. on point domain.

:=:(P1,P2,(P1,P2)):-lattice(P1,int_point),

lattice(P2,int_point),!.

Appendix C

High Level Constraints in clp(L)

Some basic constraints

%%--------------------- A generic ‘equality’ constraint ---------------

operator(650,xfx,=:).

constraints (=:)/2.

X =: Y <=> (X in (min Y)..(max Y),

Y in (min X)..(max X)).

%%--------------------- A generic ‘non-equal’ constraint --------------

operator(650,xfx,\=:).

constraints (\=:)/2.

X \=: Y <=> (var(X),ground(Y))

| (X in (bottom,close)..(Y,open);

X in (Y,open)..(top,close)

).

Y \=: X <=> (var(X),ground(Y))

| (X in (bottom,close)..(Y,open);

X in (Y,open)..(top,close)

).

X \=: Y <=> (ground(X),ground(Y))

| (X \== Y).

%%-------------- A generic ‘less or equal than’ constraint-------------

operator(650,xfx,<=:).

constraints (<=:)/2.

X <=: Y <=> (X in (bottom,close)..(max Y),

Y in (min X)..(top,close)).

%%-------------- A generic ‘greater or equal than’ constraint----------

operator(650,xfx,>=:).

239

240 APPENDIX C. High Level Constraints in clp(L)

constraints (>=:)/2.

X >=: Y <=> Y <=: X.

%%-------------- A generic ‘less than’ constraint----------------------

operator(650,xfx,<:).

constraints (<:)/2.

X <: Y <=> X <=: Y, X \=: Y.

%%An alternative more complex (and incomplete) definition

%X <: Y <=> (var(X),var(Y))

% | X in (bottom,close)..(:@@@:(max Y)),

% Y in (:@@@:(min X))..(top,close).

%X <: Y <=> (ground(X),var(Y))

% | Y in (X,open)..(top,close).

%X <: Y <=> (var(X),ground(Y))

% | X in (bottom,close)..(Y,open).

%X <: Y <=> (ground(X),ground(Y))

% | X @< Y.

%%-------------- A generic ‘greater than’ constraint-------------------

operator(650,xfx,>:).

constraints (>:)/2.

X >: Y <=> Y <: X.

(Overloaded) arithmetic constraints

%%-------------- A ‘plus’ constraint-----------------------------------

constraints plus/3.

plus(X,Y,Z) <=> (X in ((min Z):-:(max Y))..((max Z):-:(min Y)),

Y in ((min Z):-:(max X))..((max Z):-:(min X)),

Z in ((min X):+:(min Y))..((max X):+:(max Y))

).

%%-------------- A ‘substraction’ constraint---------------------------

constraints subs/3.

subs(X,Y,Z) <=> plus(Y,Z,X).

%%-------------- A ‘times’ constraint----------------------------------

%% Note that the operator ‘:/:’ controls the case of division by zero

constraints times/3.

times(X,Y,Z) <=> (X in ((min Z):/:(max Y))..((max Z):/:(min Y)),

Y in ((min Z):/:(max X))..((max Z):/:(min X)),

Z in ((min X):*:(min Y))..((max X):*:(max Y))

241

).

%%-------------- A ‘divide’ constraint---------------------------------

constraints divide/3.

divide(X,Y,Z) <=> times(Y,Z,X).

%%-------------- A ‘negation’ constraint-------------------------------

%%Next constraint is true if X=-Y on numeric domains.

constraints neg/2.

neg(X,Y) <=> (X in (:--:(max Y))..(:--:(min Y)),

Y in (:--:(max X))..(:--:(min X))).

Boolean solvers

Boolean solvers can be coded by following the schema shown in (Codognet and Diaz,
1996a). For example, here we show the constraint not/2.

not(X,Y) <=> [X,Y] in (0,close)..(1,close),

X in ((1,close):-:(val Y))..((1,close):-:(val Y)),

Y in ((1,close):-:(val X))..((1,close):-:(val X)).

Symbolic constraints

constraints and0/2.

and0(X,Y) <=> and(X,Y,0). %% 0 = X and Y

constraints and0/3.

and0(X,Y,Z) <=> and(X,Y,W),and0(W,Z). %% 0 = X and Y and Z

constraints or1/2.

or1(X,Y) <=> or(X,Y,1). %% X or Y = 1

at_least_one(L):-at_least_one1(L,1).

at_least_one1([X],X).

at_least_one1([X|L],R):-at_least_one1(L,R1), or(X,R1,R).

at_most_one([]).

at_most_one([X|L]):-not_two(L,X), at_most_one(L).

not_two([],_).

not_two([X1|L],X):-and0(X1,X), not_two(L,X).

242 APPENDIX C. High Level Constraints in clp(L)

only_one(L):-at_least_one(L), at_most_one(L).

Appendix D

clp(L) Programs

Computing the e number

The following program computes the e number. Observe the use of the high level
constraints ‘divide’/3, ‘plus’/3 and ‘=:’/2.

e(N,E):- Err is exp(10,-(N+2)),

Half is 1/2,

inv_e_series(Half,Half,3,Err,Inv_E),

divide(1.0,Inv_E,E).

inv_e_series(Term,S0,_,Err,Sum):-abs(Term) =< Err,!,

S0 =: Sum.

inv_e_series(Term,S0,N,Err,Sum):-N1 is N+1,

Term1 is -Term/N,

plus(Term1,S0,S1),

inv_e_series(Term1,S1,N1,Err,Sum).

An example of resolution in the clp(L) command line is shown below:

clp(L) > e(100,N).

yes.

N = 2.718281828459044

? |:

Graph colouring

Colour the map shown below with three colors in such a way that no two adjacent
regions are colored with the same color. Observe the use of the high level constraint
‘\=: ’/2, and also note that constraint solving is executed directly over the colour

243

244 APPENDIX D. clp(L) Programs

domain, instead of the usual solution of defining a mapping from the colour to the
integer domain and solving the problem in the integer domain.

+-------------------------+

| | | |

| A | | C |

| | | |

|--------| B |-------|

| | | |

| |--------| |

| D | | F |

| | E | |

| | | |

+-------------------------+

colour([A,B,C,D,E,F]):-

domain([A,B,C,D,E,F],white,orange),

A\=:B, A\=:D, B\=:C,

B\=:D, B\=:E, B\=:F,

C\=:F, D\=:E, E\=:F,

labeling([A,B,C,D,E,F]).

An example of resolution in the clp(L) command line is shown below:

clp(L) > colour(L).

yes

L = [white,yellow,white,orange,white,orange] ;

yes

L = [white,orange,white,yellow,white,yellow]

...

Newton’s approximations to solve square roots

The following benchmark implements N steps of Newton’s approximation for the square
root function at point 2. Observe the use of the high level constraints ‘=:’, ‘divide/3’
and ‘plus/3’.

root(N,R):-root(N,1.0,R).

root(0,S,R):-!, S=:R.

root(N,S,R):-N1 is N-1,

divide(S,2.0,S2aux),

divide(1.0,S,S1aux),

plus(S2aux,S1aux,S1),

root(N1,S1,R).

245

Here we show some examples of resolution on the clp(L) command line.

clp(L) > root(1,R).

yes.

R = 1.5

? |:

no

clp(L) > root(2,R).

yes.

R = 1.4166666666666665

? |:

no

clp(L) > root(3,R).

yes.

R = 1.4142156862745097

clp(L) > root(4,R).

yes.

R = 1.4142135623746899

