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Abstract

The low complexity of minimotif patterns results in a high false-positive prediction rate, hampering protein function
prediction. A multi-filter algorithm, trained and tested on a linear regression model, support vector machine model, and
neural network model, using a large dataset of verified minimotifs, vastly improves minimotif prediction accuracy while
generating few false positives. An optimal threshold for the best accuracy reaches an overall accuracy above 90%, while a
stringent threshold for the best specificity generates less than 1% false positives or even no false positives and still produces
more than 90% true positives for the linear regression and neural network models. The minimotif multi-filter with its
excellent accuracy represents the state-of-the-art in minimotif prediction and is expected to be very useful to biologists
investigating protein function and how missense mutations cause disease.
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Introduction

Minimotifs (also called Short Linear Motifs) are short contig-

uous peptide pieces of proteins that have a known biological

function, which can be categorized into binding, posttranslational

modification of the minimotif, and protein trafficking. Minimotifs

are involved in nearly all cell processes including intracellular

signaling, extra-cellular activities, and disease [1–4].

Minimotifs contain both a known biological function and a

short protein sequence representation generally of less than 15

amino acids which distinguishes them from protein domains like

those in ProSite and other tools such as MEME and SCOP that

identify sequence patterns, but do not have known functions [5,6].

Computational minimotif prediction tools have arisen to perform

searches and predict new functions in proteins based upon

established functions associated with minimotifs in other proteins.

Minimotif Miner (MnM), Eukaryotic Linear Motif (ELM), and

ScanSite fulfill these roles [3,7,8–11]. These approaches do have

value in their successes; however, the relatively low sequence

complexity of minimotifs gives rise to many false positives, which

limit their usefulness.

Our approach to this problem has developed five separate

scores/filters each of which has a significant value in reducing false

positive predictions [7,8,12,13]. Frequency Score analysis (FS) uses

the complexity of minimotif sequence definitions to rank-order

minimotifs. A Surface Prediction (SP) algorithm identifies mini-

motifs likely to be on the surface of a protein. The remaining three

approaches take advantage of both the target and source proteins.

The Protein-Protein Interaction filter (PPI) refines minimotif

predictions by selecting only motifs whose source protein and

target protein are known to interact in vivo, eliminating any whose

source protein and target protein do not interact [12]. In addition

to exact PPIs, protein-protein interactions are also expanded based

on orthologues and paralogues across species and taxa (‘‘Homo-

loGene-PPI’’), as well as sequence similarity (‘‘Similarity-PPI’’).

The Cellular or Molecular Function filters (CF/MF), retain

minimotifs whose source protein and target protein share a

common cellular or molecular function, respectively [13]. Exact

functional matching is not required; rather function terms are

related through the network structure provided by the Gene

Ontology (GO) database [14]. For example, one function may be a

subclass of another function, or one function may regulate another

function.

These scores/filters exploit different components of a minimotif

syntax developed for this purpose [15]. We next demonstrated that

pairwise combinations of filters were better than either alone,

suggesting that each filter used distinct information. This led us to

perform a systematic comparison of different combinations of five

scores/filters that we had developed previously. A study of

minimotif filtering with linear regression, support vector machine,

and neural network algorithms shows a vast improvement in

minimotif prediction with accuracies above 85% and in one

analysis less than 1% false positives while retaining more than

,90% of the true positives. This advance sets us on a path to

vastly reducing false positive predictions. Implementation of this

filter combination on the MnM website renders minimotif-

mediated protein function prediction much more reliable and

influential.

Results

To build and test the multi-filter approach we used five existing

filters designed to remove false-positive minimotifs [7,8,12,13].

This multi-filter approach was enabled in large part due to a rich

model of the syntactical and semantic structure for minimotifs

[14]. Briefly, a minimotif is found in a ‘source protein’ and the
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target protein binds the minimotif or alters the minimotif. Two of

the filters are based upon regular expression searches involving

solely the source protein (where the minimotif is found). Frequency

Score analysis (FS) uses the complexity of minimotif sequence

definitions to rank-order minimotifs. A surface prediction

algorithm identifies minimotifs likely to be on the surface of a

protein.

We first evaluated each individual filter on the same dataset by

generating Receiver Operator Curves (ROCs) and comparing the

area under the curves (AUC) (Fig. 1, Table 1). The (AUC) for

individual filters ranged from 0.72–0.88, indicating good filter

performance. There is much room for improvement.

We evaluated several approaches for combining differing

filtering techniques. Linear regression, support vector machine,

and neural network multi-filter models were trained and tested by

randomly partitioning the true positive and true negative data

equally into five groups, each of which contained a subset of 400

instances. A five-fold cross validation was performed by succes-

sively using four groups to train the multi-filter models and one

group of validation data to evaluate the effectiveness of the multi-

filter. The three multi-filter models used the individual CF, MF,

FS, PPI, and SP minimotifs filters. The AUC values indicated that

the multi-filters were significantly better than any individual filter

(Table 2).

We next optimized the multi-filters. We repeated the minimotif

filtering varying the filter score threshold to identify the maximum

AUC for the best cross validation test in each of the three models

(#2 of linear regression, #3 of support vector machine, and #3 of

neural network). Plots showing the dependency of sensitivity,

specificity, and accuracy on the filter threshold are shown for the

linear regression, support vector machine, and neural network

models in Fig. 2. The threshold dependence was typical of that for

any filter. For these models, as the threshold increases, the

sensitivity decreases as one would expect. As the threshold value

increased the specificity for both models increased. The accuracy

increased to a maximum and then decreased as the sensitivity

dropped.

The plots shown in Fig.2 were used to identify several threshold

values for each model to help us select the best minimotif-filtering

model. A threshold with the maximum accuracy is defined as the

optimal threshold (To). A stringent threshold that minimizes the

number of false positives while retaining a high sensitivity is

denoted as Ts. The optimal threshold for the three minimotif

filtering models produced accuracies above 90% with , 85% true

positive rate and less than 1% false positives (6% for the neural

network) (Table 3). The stringent threshold produced less than

1% or in some cases no false positives (linear regression in

Table 3), while retaining more than ,90% of the true positives

for the linear regression and neural network models (84% for the

support vector machine model). Our evaluation of the selected

models was also supported by the Matthews Correlation Coeffi-

cient (MCC) with a good performance of the filter combinations

(MCC of 1 indicates a perfect prediction while 0 indicates no

better than random).

Remarkably, the linear regression model with the Ts threshold

produced 84% true positives with no false positives (Table 3), and

the neural network model produced 83% true positives with less

than 0.3% false positives. The ROC analysis further validated the

optimized multi-filter approach as being far superior to any one

filter by itself (Fig. 1). These ROC plots showed that each multi-

filter model significantly outperformed any single filter by itself

with AUCs above 0.95, whereas the AUCs for individual filters

ranged form 0.72–0.88. The neural network had an AUC of 0.998

indicating that it is a superior filter model. This AUC was

significantly better than that of the linear regression and the

support vector machine models. The identification of highly

efficient and accurate minimotif filter approaches represents an

important milestone in the prediction of minimotifs.

In most minimotif searches the number of true positives far

outweighs the negatives. Therefore, we also repeated the training

and testing analysis on a larger data set where the negative data

size was increased to 5-fold (10,000 randomly generated negative

data points). This analysis for the combined filters showed a

modest increase in the AUC and accuracy for all three algorithm

models further supporting this approach for minimotif identity.

Since some of the individual filters had non-significant P values

(Fig. 1), we questioned whether all five minimotif filters were

needed to achieve the high level of accuracy. We repeated the filter

analysis to find the best performing of all the five 4-combinations

for each model. The average value of the AUCs and standard

deviation (STD) of the 5-fold cross validation were calculated and

a t-test was used to test which filters were optimal (P,0.05;

Table 4). When the t-test identified more than one filter with

similar performance, we reported the filter with highest average

Figure 1. ROC plots comparing linear regression, support
vector machine, and neural network multi-filters with, individ-
ual CF, MF, PPI, FS, and SP filters. ROCs are colored orange for
linear regression, cyan for support vector machine, cyan dark green for
neural network, red for PPI filter, blue for CF filter, green for MF filter,
purple for FS filter, and yellow for SP filter.
doi:10.1371/journal.pone.0045589.g001

Table 1. ROC statistics for individual motif filters.

Method AUC P-value

CF 0.72 0.12

MF 0.83 0.03

FS 0.72 0.08

PPI 0.88 1.461023

SP 0.38 1.00

doi:10.1371/journal.pone.0045589.t001
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AUC, but also list the alternative filter combinations. The same

approach was used to successively identify the best three-filter, and

two filter combinations (Table 4).

To identify the best performing filters, the t-tests were also used

to compare two-, three-, four- and five-filter combinations based

on AUCs. One of the best filter combinations was the neural

network model with the MF+FS+PPI+SP filters, having an AUC

of 99.5%. This combination had an accuracy of 96.4% on the

optimal threshold and an accuracy of 95.0% on the stringent

threshold. For the linear regression the FS+PPI two-filter

combination was significantly better than the other filter combi-

nations. For the support vector machine, FS+SP was significantly

better than FS+PPI+SP and CF+MF+FS+PPI+SP. For the neural

network the MF+FS+PPI+SP and FS+PPI+SP were significantly

better than the other filters. Collectively, this analysis identified the

best model and filter combinations for increasing the accuracy of

minimotif predictions.

Implementation
We have now implemented multi-filtering on the Minimotif

Miner website to help eliminate false-positive predictions (http://

mnm.engr.uconn.edu and http://minimotifminer.org). The mini-

motif results table now lists the predictions ranked with the five-

filter linear regression multi-filter score. We chose this model over

the linear regression because so few false positives were produced

while maintaining a very similar accuracy to the neural network.

We chose the five-filter combination because, even though it had

only a non-significant increase in AUC over some two-, three- and

four-filter combinations, we could identify a threshold that had

high accuracy with false-positives and a high percentage of true-

positives. Those minimotifs with a score larger than 0.48 (a

threshold above which only true positives surpass, and maximum

accuracy of 92.1% is reached) are colored green, a score below

0.33 (which is the intersection of sensitivity and specificity shown

in Fig. 2A) are colored red, and those between 0.48 and 0.33 are

colored yellow. Those minimotifs where information is lacking and

hence no score can be calculated are also colored red. A test of 20

randomly selected queries shows on average that 83% of minimotif

predictions are rejected when using the threshold of 0.33 and 88%

are rejected when 0.48 is used. This demonstrates that the trained

filter successfully reduces the number of candidate minimotifs and

the analysis of the global test set shows that most of the removed

minimotifs are likely false-positives.

Discussion

Minimotifs, by their definition are short, thus are of low

complexity and highly prone to prediction of false positives, which

limits their usefulness. As a result, tools that predict new

minimotifs have developed scoring techniques or filter approaches.

Even though a number of such scoring mechanisms are known,

their effectiveness in reducing false positive rate has been limited

[3,7–9,12,13,16]. One approach has been to try to increase the

expected value by reducing the search space [17]. Most other

approaches use different types of information to eliminate false

positives. In our prior work we have considered pairwise

combinations of select filters and found better filtering efficiency

[13].

In this paper, we have developed and tested a new approach by

combining multiple filters in an appropriate manner to achieve

more effective filtering. An important decision to make in this case

is on how to create a composite score, from several other disparate

scoring metrics. We take the general view that we can pose the

combination problem as one of learning. In this paper we have

investigated three important ones, namely, linear regression,

neural networks, and the support vector machine. Neural networks

have been employed to solve different learning problems in

biology such as identifying tyrosine based sorting signals and

nucleolar localization sequences [18,19]. Likewise linear regression

and support vector machines have also been fruitfully employed in

examples such as DNA splice site prediction, predicting antifreeze

proteins sequences, NAD+ binding sites, etc. [20–22]. The

suitability of these techniques for a given application can only be

decided empirically because these techniques do not easily render

themselves to complexity analysis. For instance, even for simple

neural networks, convergence proofs are hard to derive. Similarly,

for support vector machines, the separation achievable between

the hyperplanes not only depends on the application, but also the

specific set of data points.

Our empirical results show the robustness of the multi-filter in

eliminating false positives and reaching a high accuracy. Mean-

while, joining different knowledge from each individual filter, the

multi-filter also has limitations. The multi-filter works only if all the

information of each individual filter for a minimotif is known, or

all individual filters give valid results. Missing related information

for one individual filter or incomplete data will limit the

effectiveness of the multi-filter. This is part of the rationale for

choosing the five-filter combination over other combinations with

fewer filters with similar levels of significance. Also, there is bound

to be bias in the datasets used in this analysis – the true positives

are those reported for well studied proteins – while it is

acknowledged that a tiny portion of false negatives are introduced

in our generation of the negative dataset. Despite these limitations,

the combined score with its excellent accuracy achievement

represents the state-of-the-art in minimotif prediction and will be

of great importance for biologists investigating proteins and disease

mechanisms.

Table 2. ROC statistics for three minimotif multi-filter models.

5-fold cross validation #1 #2 #3 #4 #5 Average
Standard
Deviation

linear regression AUC 96.4% 96.7% 96.6% 96.2% 95.9% 96.7% 0.3%

P-Value 2.3*102114 5.3*102116 1.3*102115 1.9*102113 4.2*102112 – –

support vector machine AUC 93.6% 92.9% 93.8% 92.9% 93.8% 93.4% 0.5%

P-Value 9.8*102259 1.2*102178 3.3*102266 ,102325 1.7*102266 – –

neural network AUC 99.6% 99.0% 99.8% 99.3% 96.7% 98.9% 1.3%

P-Value ,102325 ,102325 ,102325 ,102325 1.7*102211 – –

doi:10.1371/journal.pone.0045589.t002

Achieving High Accuracy Prediction of Minimotifs

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45589



Materials and Methods

Data Sources
In order to both train and evaluate the multi-filter, it was

necessary to compare a dataset of verified minimotifs with one

containing known negatives. A set of , 5,300 verified minimotifs

exist in the MnM 2 database [8]. However, due to the nature of

the individual filtering mechanisms, not all filters give definite

results for each minimotif (for instance, minimotifs in which either

the target or source proteins are undefined). The inclusion of such

instances would bias the training towards those filters, which can

act on incomplete definitions. Thus, the verified dataset was

pruned to the 2,000 minimotifs that had unique source proteins,

for which each filter yields a definite result, termed the ‘‘validated

positive dataset’’.

Since some minimotif sources proteins in the Minimotif Miner

database have more than one target, we wanted to ensure that this

was not providing a strong bias to our minimotif filtering analyses.

100 minimotif source proteins were randomly selected and

pairwise alignment to all other minimotif source proteins in the

dataset was performed using BLAST [23]. Approximately 10% of

the source sequences had a bit score .30. Since this is often

Figure 2. Dependence of minimotif multi-filter performance on threshold values for the linear regression and neural network
models. Sensitivity, specificity, and accuracy for the linear regression (A) support vector machine (B) and neural network (C) models. Thresholds
were selected by picking the best model in the 5-fold cross validation (model 2 of the linear regression and model 3 of the neural network) evaluated
using the test dataset.
doi:10.1371/journal.pone.0045589.g002
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considered a threshold for common ancestry, this analysis indicates

that there is some sequence similarity in the dataset used, but not

enough to impact our conclusions.

Unfortunately, no database of verified negative minimotifs

exists. Therefore, a negative dataset was computationally gener-

ated as previously described for our analyses of the PPI, CF and

MF filters [12,13]. First, pairs of (source protein, target protein)

were randomly generated including no duplicates. For each source

protein, minimotifs were found based on sequence matching from

minimotifs in MnM database. In this manner, unique tuples of

(source protein, minimotif, target protein) were generated. We

created two data sets, one with the same number of data points as

used in the positive dataset and one with a 5-fold excess of negative

data points. These entries were treated as negative dataset and

were estimated to have a negligible number of false negatives,

which we expect would have negligible impact on the conclusions

of our paper.

Linear Regression
In linear regression, it is assumed that the relationship between

a dependent variable and the associated independent variables is

approximately linear and the model postulates the formula in (eq.

1).

Y~b0zb1x1zb2x2zbmxmze ð1Þ

Given n statistical observations of Y and X , the linear regression

problem is to find b(b0,b1,bm) such that the linear model best

predicts Y from X , for example, to minimize
P

ej in the least

square approach.

In the filter combination we envision that the independent

variables are the outputs of the PPI filter (PPI), cellular function

filter (CF), molecular function filter (MF), frequency score filter

(FS), and the surface prediction filter (SP). The value of the

dependent variable, called Score, is 1 or 0 and is decided based on

Table 3. Summary of filtering statistics for three models.

Model 1Threshold Sensitivity Specificity Accuracy 2MCC

Linear
regression

To = 0.48 84.3% 100.0% 92.1% 0.85

Ts = 0.48 84.3% 100.0% 92.1% 0.85

support vector
machine

To = 20.99 85.3% 99.3% 92.3% 0.85

Ts = 3.00 73.5% 99.8% 86.6% 0.76

neural
network

To = 0.50 89.8% 94.8% 92.3% 0.85

Ts = 0.74 83.0% 99.8% 91.4% 0.84

1To: the optimal threshold with maximum accuracy; Ts: the stringent threshold that minimizes the number of false positives while retaining high sensitivity.
2MCC: Matthews Correlation coefficient.
doi:10.1371/journal.pone.0045589.t003

Table 4. Variations of multi-filter combinations for each model.

To Ts

linear regression Combinations AVG(AUC) STD Accuracy MCC Accuracy MCC

5 CF+MF+FS+PPI+SP 95.5% 0.00 92.7% 0.76 90.1% 0.50

14 MF+FS+PPI+SP 95.4% 0.01 92.7% 0.75 90.2% 0.51

3 MF+FS+PPI 95.6% 0.00 92.9% 0.74 91.0% 0.55

2 FS+PPI 97.7% 0.01 95.5% 0.81 90.0% 0.50

support vector machine

5 CF+MF+FS+PPI+SP 90.2% 0.08 96.6% 0.85 92.6% 0.62

14 MF+FS+PPI+SP 92.5% 0.04 97.2% 0.88 90.0% 0.50

13 FS+PPI+SP 92.4% 0.04 95.8% 0.82 92.5% 0.62

2 FS+SP 97.1% 0.02 94.6% 0.77 93.6% 0.67

neural network

5 CF+MF+FS+PPI+SP 97.6% 0.04 97.2% 0.90 95.6% 0.79

4 MF+FS+PPI+SP 99.5% 0.01 96.4% 0.86 95.0% 0.76

13 FS+PPI+SP 99.1% 0.01 95.8% 0.82 91.7% 0.58

2 FS+PPI 97.8% 0.00 95.8% 0.79 90.4% 0.52

1Alternative filter combinations that were not significantly different than the combination tested in the same row (P,0.05) were found: CF+MF+FS+SP for 4-filter
combination in linear regression; CF+MF+FS+SP or CF+MF+PPI+SP for 4-filter combination, and MF+FS+PPI or MF+FS+SP for 3-filter combination in support vector
machine; MF+FS+PPI for 3-filter combination in neural network.
doi:10.1371/journal.pone.0045589.t004
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whether the training entry is from positive data or negative data,

respectively. Thus, the combination model is shown in formula

(eq. 2).

Score~b0zb1|CFzb2|MFzb3|FSz

b4|PPIzb5|SPze
ð2Þ

The outputs of the cellular function filter and the molecular

function filter are not binary. These filters output the shortest

distance, or the least number of edges between cellular or

molecular functions associated with the source and the target

proteins in this training phase. Similarly, the frequency score filter

outputs the number of minimotif occurrences divided by the

length of the source protein. The surface filter outputs the

likelihood that a motif is on the surface of the protein. The linear

regression model was trained to get the parameter values of

b(b0,b1,bm) and then evaluated on the test data.

Support Vector Machine
Support vector machine is a training and learning technique to

classify data of different classes. In contrast to linear regression,

which looks for a hyperplane crossing as many data points as

possible, using the support vector machine produces a separating

hyperplane which maximizes the margin between the closest

points of two classes of data. That is, given X~fxi Dxi[<ng and

Y~fyi Dyi[f{1,1gg where xi is a data point in n-dimensional

space and yi is the class to which xi belongs, the algorithm

identifies a hyperplane ~ww~xxzb~0 to maximize the distance

between two parallel hyperplanes (~ww~xxzb~1 and ~ww~xxzb~{1)

which separate the data points into two groups. The distance

between those two hyperplanes is 2= ~wwk k . Therefore, the support

vector machine tries to find a hyperplane ~ww~xxzb~0 to minimize

~wwk k, given X and Y .

The original support vector machine is a linear classification

technique [24]. With a kernel function, the non-linear support

vector machine can be created to get a curve with the maximum

margin [25]. Non-linear separation is achieved by transforming

the data points from the original space into a new space in which

they can be more easily separated, which is done by replacing the

linear dot product operations for vectors with (non-linear) kernel

functions. Several kernel functions can be used in the support

vector machine, like polynomial, radial basis function, and

sigmoid. A linear kernel also exists to recover the computation

back to the linear support vector machine. In the proposed

method, we used the original linear support vector machine model

based on the assumption of the independence of individual filters.

The training data for the support vector machine was collected

as in the linear regression, except that the parameter of score of

positive and negative data is not necessary here. Assuming a high

dimensional space, in which each dimension indicates a filter,

given a motif with its output values of all filters, this motif is located

at the coordinate of its filters’ output, like (PPI, CF, MF, FS, SP).

Support vector machine is designed to construct a hyperplane to

separate the motif points of positive data from those of negative

data in the training phase and such a hyperplane is tested in the

evaluation.

Neural Network
Neural network, or artificial neural network, is a model to

simulate biological neural networks. Neurons are the basic units or

nodes in this network, which are interconnected layer by layer.

Each neuron is connected to neurons in adjacent layers based on

the edge weights. Each neuron works independently and accepts

inputs (or input signals) from the previous layer. Layer by layer, all

the neurons are combined together for a final output, to model the

relationship between the inputs and their desired output.

Sometimes an activation function defines whether to activate a

neuron by thresholding its input values.

Mathematically, the neural network uses a function f : X?Y ,

in which each neuron contributes to the final output based upon

edge weights. The output of the jth neuron on the ith layer of a

neural network is a function f i
j (x) that is based on the outputs from

the (i{1)th layer f i{1
1 (x),f i{1

2 (x),f i{1
k (x). In particular,

f i
j (x)~

P
k

wi{1
k f i{1

k (x). The output of the jth neuron on the first

layer is defined as f 1
j (x)~

P
k

w0
kxk, where w0

1,w0
2,w0

k are the

weights on the inputs x1,x2,xk.

In the filter combination we have constructed, the outputs of

individual filters (PPI, CF, MF, FS, SP) are used as input data

X (x1~PPI ,x2~CF ,x3~MF ,x4~FS,x5~SF ) and for Y we

use 1 for positive data and 0 for negative data. By training this

model, it is expected that the filter’s output for positive data will be

,1, while , 0 for negative data. When training and testing the

neural network model, hidden layers were eliminated as much as

possible without sacrificing performance. The reported neural

network has two hidden layers.

Cross Validation
A 5-fold cross-validation was used to validate linear regression,

support vector machine, and neural network models as follows: 1)

partition the positive and negative data into five equally sized

groups: 400 positive and 400 negative data points; 2) for each

group, leave one group out and use the remaining data to train a

linear model and test it with the left-out group of data; 3) Repeat

training and testing five times till each group is used as testing data

once. Evaluation of the filters with Receiver Operator Curve

(ROC) was performed. A threshold is used to determine whether a

new query (source, motif, target) should be retained or eliminated

by the multi-filter. The optimal threshold is determined recursively

for a maximum accuracy (eq. 3, TP: true positive; TN: true

negative; FP: false positive; FN: false negative; P: positive data; N:

negative data).

Accuracy~(TP|PzTN|N)=(PzN) ð3Þ

The Matthews Correlation Coefficient (MCC) is used to show the

performance of the multi-filter (eq. 4). The value is perfect if it is 1,

and 0 means not better than a random prediction.

MCC~(TP|TN{FP|FN)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

ð4Þ
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