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Abstract

Adaptive systems should be able to adapt to changes
that occur in their operating environment without any
external human intervention. Software architectures for
such systems should be flexible enough to allow
components to change their pattern of collaboration
depending on the environmental changes and goals of
the system, without changing the actual components
themselves. This paper describes a co-operative object-
oriented style that is able to represent software
architectures for adaptive systems. The connectors in
this style, described as co-operations, embody the
description of complex interacting behaviour between
the architectural components. Depending on the
environmental changes, the behavioural adaptability in
a co-operative object-oriented architecture is achieved
by replacing the connectors. The applicability of the
architectural style is demonstrated in terms of a case
study of a control system that has to adjust the height of
a vehicle’s suspension to different road conditions.

1. Introduction

In the engineering of computer based systems, there
has been a trend in which the quality of services
delivered by a system, in terms of its dependability,
performance and cost, is directly related to the quality
and extent of the computer facilities embedded in that
system. Software has played a central role in this trend
because of its inherent flexibility in emulating physical
devices and replacing human operators. As the life span
of new emerging software intensive applications
increases, so does the need for software to have the
capability of adapting to changes that occur in its
operating environment. However, providing an adaptive
capability leads to an increase in software size and
complexity, which could put system integrity at risk
unless the software architecture enables adaptability to
be engineered in a disciplined and structured manner.

Architectural structures for systems tend to abstract
away from the details of a system, but assist in
understanding broader system-level concerns [15]. This
can be achieved in software architectures by employing
abstractions and notations that are appropriate for

describing the software components, the interactions
between these components, and the properties that
regulate the composition of components. This paper
introduces an architectural style based on components
and connectors, where components embody
computation, and connectors embody the description of
interacting behaviour between components. However,
instead of adopting the notion of a connector as an
architectural element that just mediates interactions
between components, in this architectural style
connectors are also able to describe collaborative
behaviour between components in terms of the roles
played by the components [1]. That is, connectors in
addition of being the place of communication between
components, they are also the place of state and
computation. This architectural style is associated with
some of the design principles of collaboration-based
designs. In these designs, software systems are
represented as a composition of independently-definable
collaborations [16]. Collaborations are a group of object
roles together with a group of activities that determine
how objects interact: the role of an object prescribes the
activity of an object when involved in collaboration.
There are several design description languages, which
have richer vocabulary, and that are able to describe in
the form of collaborative diagrams interactions between
objects in terms of messages and events [2], and to
represent the implementation of components as a
composition of object roles [7]. However, these object-
oriented languages lack the means for describing the
properties associated with objects and their interactions,
which should be an essential feature of architecture
description languages. Moreover, there are several
software applications in which the notion of
collaboration is not sufficient to represent collaborative
behaviour between components, for instance, in complex
concurrent applications it is also necessary to capture the
notion of co-ordination for supporting error handling
between multiple interacting objects [14, 19].

In this paper, we introduce an architectural style for
describing software systems in terms of co-operative
object-oriented architectures. The architectural elements
of this style are objects and co-operations: objects are
modelling abstractions for representing the components
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of the system, while co-operations are modelling
abstractions for representing the connectors of the
system. Objects are able to participate in several co-
operations through the different roles that they are able
to play, while co-operations co-ordinate the interactions
between the objects, through the roles that objects play.
The behaviour of both objects and co-operations is
described in terms of properties that have to be
maintained for the system to provide the required
services. This uniform way for describing the elements
of a software architecture is advantageous for checking,
early in the lifecycle, whether the composition of
components and connectors are able to satisfy the
requirements for the software system. Moreover, the
description of software systems in terms of components
and connectors provides the necessary architectural
flexibility for describing adaptive software because of its
convenience in manipulating software structures.

In the context of this paper, it is assumed that run-
time adaptability of a software system can be achieved
by changing the way components interact rather than
changing the components themselves. For example,
when adapting a command and control system to
changes that might occur in its environment, instead of
modifying or replacing the components of the system,
the intent is to change how the components collaborate.
The architectural description of adaptive software can
then be made in terms of several architectural
configurations that implement a wide range of
behaviours. If objects and co-operations are used, then a
co-operation is the architectural element that
encapsulates change by representing the different
collaborations between objects, thus capturing at the
architecture level the dynamic composition associated
with run-time adaptability. In this paper, the modelling
abstraction co-operative action (CO action) is
introduced as an architectural entity for representing co-
operations. CO actions describe the collaborative
activity between objects, which can either be co-
operative or competitive [4]. The notion of a CO action
has some similarities to that of an action in DisCo [12],
and joint actions (or use cases) in Catalysis [7].
However in this paper we aim to give an architectural
interpretation to the notion of an action (i.e. connector)
while abstracting away from the actual activity. This is
achieved, but focusing on the specification of the
participants, and the conditions for the participants for
starting, maintaining and finishing a collaborative
activity.

The rest of the paper is organised as follows. In
section 2 the architectural style is defined in detail by
defining a meta-model for co-operative actions (CO
actions). Section 3 discusses some basic issues related
with run-time adaptability, and defines an architectural
pattern that supports run-time adaptability. In section 4,

we present a case study that will be used to illustrate the
feasibility of representing adaptive software structures in
terms of the co-operative object-oriented style. The
architectural description of the case study is presented in
section 5., and finally, section 6 concludes with a
discussion evaluating our contribution and indicating
directions for future work.

2. Co-operative Object-Oriented Style

An architectural style provides a specialised
language for a specific class of systems that are related
by shared structural and semantic properties [15]. The
definition of an architectural style includes: a
vocabulary of architectural elements (components and
connectors), configuration rules that constraint how
components and connectors can be composed, semantic
interpretations that provide well-defined meanings for
the components, connectors, and compositions of these,
and the type of analyses that can be performed on
systems employing a particular style. For example, a
software system might be described using one of the
following more commonly used styles: pipes and filters,
objects, repositories, layers, and interpreters.

Systems are defined in terms of their components
and relationships among their components, which can be
captured by connectors. Hence the need, when
modelling systems using an object-oriented approach, to
introduce co-operative actions (CO actions), as entities
for modelling interactions between classes that
characterise collaborative behaviour [4]. The use of CO
actions in an object-oriented approach is motivated by
the ability of CO actions to extract from the specification
of a class those issues related with its collaborative
activities (although preserving encapsulation property),
thus avoiding a specification of a collaboration to be
scattered among classes. CO actions are a variant of co-
ordinated atomic actions (CA actions) which are design
mechanisms for structuring complex concurrent activi-
ties and supporting error recovery between multiple
interacting objects in an object-oriented system [14, 19].
In the following, we present in more detail the co-
operative object-oriented style, which adopts as a basis
the features of object-oriented models.

2.1. Architectural Elements

The architectural elements of the co-operative
object-oriented style are classes as the basic
components, and CO actions as the basic connectors.
(Classes and CO actions are instantiated, respectively,
into objects and co-operations.) In this style, CO actions
in addition of being the place of communications, they
are also the place for computation. The difference
between components and connectors is that classes
perform local computation, while CO actions can either



co-ordinate the computation performed by the
participant classes, or perform local computation that is
not part of any participant class. In a CO action, the role
of a class is prescribed by the activity of that class. A
class may have as many roles as the number of CO
actions it participates in, and the composition of these
roles defines the interface of the class.

At the architectural level no relational information is
spread across classes, only CO actions contain relational
information (how a co-operative object-oriented
architecture is implemented is discussed later, however a
CO action can be instantiated into an UML association
when interactions between classes are simple service
requests). An advantage for only CO actions to contain
relational information is that, once a co-operative object-
oriented architecture is instantiated, co-operations can be
added or removed without interfering with the
implementation of objects, thus improving modularity
and reusability of the software.

2.1.1. Classes

As in object-oriented models, classes in the proposed
approach support the representation of both structural
and behavioural aspects of a system. A class is described
by a template with the following fields: a name,
declaration of attributes in terms of constants and
variables which are local to the class, a description of its
structure in terms of a collection of components in
composed of and the intra-relations between the classes
and its components, and finally, a description of the
behaviour of the class. The behaviour field includes the
initial state of the object, and behavioural assumptions
or (consistency invariants) associated with the class. The
behavioural field also includes the specification of the
complete space of the behaviour of the class, in terms of
its normal, exceptional and failure behaviours. Normal
and exceptional behaviours are related with the liveness
properties of a system (“something good" eventually
happens), while failure behaviours are related with the
safety properties of a system (“something bad" does not
happen).

2.1.2. Co-operative Actions (CO Actions)

CO actions are employed in the specification of co-
operative behaviour between classes. CO actions can
either co-ordinate the activities to be performed by the
classes, or execute some activity that is not associated
with any of the class participants of the CO action. A CO
action is described by a template with the following
fields: the CO action's name, declaration of attributes in
terms of the names and types of the participants of the
CO action, constants and variables local to the CO
action, and the specification of the collaborative
behaviour of the classes participating in the CO action.

The initial state of a CO action represents its state
when is activated, and is dissociated from the pre-
conditions of the CO action: it either refers to the state
of classes participating in the co-operation or the state of
the variables local to the CO action. Associated with the
description of normal behaviour, pre-condition and post-
condition establish the respective conditions for a set of
classes to start and finish a particular collaborative
activity, and the invariant establishes the conditions that
should hold while the collaborative activity is being
performed. For the description of systems that are
potentially concurrent, there is the need to consider the
conditions that define the pre- and post-conditions to be
trigger (necessary and sufficient) conditions. The
successful execution of a collaborative activity occurs
when the pre- and post-conditions of the normal
behaviour are satisfied, and that the invariant associated
with the collaborative activity is not violated during its
execution. For the specification of exceptional
behaviour, the invariant is replaced by a handler that
identifies the exception event, together with the start and
finish events associated with the handler of the
exception. Although the pre-conditions for normal and
exceptional behaviours are the same, the post-conditions
for the exceptional behaviour might be different,
depending on the degraded outcomes of a CO action,
once an exception has occurred. In the definition of a
CO action, an exception can be associated with the
invariant whenever this is violated, or with the post-
conditions whenever one of the conditions is not
satisfied.

A CO action provides the basis for dealing with both
co-operative and competitive concurrency by integrating
two complementary concepts: conversations [13] and
transactions [9]. Conversational support is used to
control co-operative concurrency and to implement co-
ordinated and disciplined error recovery, whilst
transactional support maintains the consistency of shared
resources in the presence of failures and concurrency
among different collaborative activities competing for
these resources [14, 19].

2.2. Configuration Rules

For the description of systems, the configuration
rules of the co-operative object-oriented style define
how objects and co-operations can be combined. In the
following, we will focus on the static properties of the
co-operative object-oriented style, rather than describing
how the architectural elements should be configured
depending on their dynamic properties.

In a co-operative object-oriented architecture each
class and CO action has a unique name. Classes can
participate in more than one CO action, and at least two
classes have to be associated with a CO action, thus



avoiding the “dangling” of CO actions. A CO action
defines and is defined by the roles of the classes, thus
creating the context in which classes collaborate. For
describing the architecture of a software system, two
different diagrams are employed: a class diagram that
describes the relationships between components, and a
CO action diagram that describes the relationships
between connectors. These diagrams provide a compact
representation of the software system, which can be
completed with a more detailed textual description. For
a rigorous description of software system, a first order
predicate logic can be used for describing the properties
of the architectural elements.

Instead of using two diagrams for describing the
architecture of a system, we could have employed a
single diagram to represent both the components and
their interacting activities, in a similar way of
collaboration diagrams of the Catalysis approach [7].
From our experience, such diagrams are adequate for
systems that have few numbers of components, and
which have interactions involving few components.
However, the type of system we are concerned with are
complex systems containing several components that are
able to engage in interactions which might involve most
of the system components. Hence the preference for
having one diagram of components and other of
connectors, which facilitates the structural representation
of complex systems.

At the architectural level of representation, the only
type of relationships acceptable between the nodes of
both class and CO action diagrams are generalisations,
and aggregations/compositions (white and black
diamonds represent aggregation and composition,
respectively). The diagrams of figure 4 provide an
example how to represent software systems using the co-
operative object-oriented style.

2.3. Meta-Model of a Co-operative Action
(CO Action)

In the following, we define in more detail the
concept of a CO action according with the semantic
description of UML [18]. A CO action is considered as a
specialisation of Classifier in the Core package of UML
Foundation, which also includes the following specific
forms: Class, DataType and Interface. The diagram of
figure 1 shows the concrete constructs that define the
relationships of a CO action.

The purpose of a CO action is to declare the
attributes and the collaborative activities that fully
describe the structure and behaviour of co-operations.
All the co-operations instantiated from a CO action will
have attribute values matching the attributes of the CO
action descriptor, and will support the collaborative
activities defined by the CO action descriptor. An

Attribute is a name property of a CO action that
describes the range of values that instances of the
property may hold. These attributes can either refer to
remote attributes defined by the classes which take part
in the co-operation, or local attributes to the CO action
which includes the list of participants that take part in
the CO action. A Collaborative Activity is the
implementation of a service that can effect the behaviour
of two or more objects. Associated with the
collaborative activity of a CO action there are a Pre-
condition that defines the start of the activity, and one or
more Post-conditions which define end of the activity. A
collaborative activity of a CO action is specified in
terms of a name, together with an Invariant which
defines the collaborative activity, a set of Operations
which establish the normal behaviour of the co-
operation, and a set of Exceptions which establish the
exceptional behaviour of the co-operation. The
exceptions are defined in terms of exceptional Events
and Handlers. The Interface of a CO action is the
collection of collaborative activities that define the
service to be delivered by the CO action.

Generalization

Post-ConditionPre-Condition

Invariant

Collaborative

Activity

OperationsExceptions

Interface

Attributes

AssociationEnds

Association

CO Action

1
subtype

generalizatio
n *

specializatio

n *

2..*

*

*

*

*

*

*
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*

1
supertype
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1
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Figure 1. Meta-model of a CO action.

A Generalisation is a taxonomic relationship
between a more general element and a more specific
element. A CO action can have generalisations to other
CO actions, but not with classes. The full CO action
descriptor of a CO action is derived by inheritance from
its own segment declaration and those of its ancestors.

Following the Catalysis approach, we could instead
have considered a single diagram to represent both
classes and CO actions. If this is the case then the notion
of association has to be included. An Association is a
structural relationship that specifies a connection



between classifiers, e.g. classes and CO actions.
Associations are described in terms of a name, at least
two AssociationEnds (which define the roles and the
properties that should be observed of the classifier
participating in the association), and a multiplicity
property. An association may represent an aggregation
between CO actions, but not between CO actions and
classes. An aggregation specifies a whole-part
relationship between the aggregate (“the whole”) and a
component (“the part”). Composition is a strong form of
aggregation, and requires that a part instance be included
in at most one composite at time, although the owner
may be changed over time.

3. Architectural Pattern for Supporting
Adaptability

3.1. Run-Time Adaptability

Run-time adaptability is the ability of a software
system to adapt itself to changes that occur either
internally or in its operating environment. A system can
either change its behaviour or its structure, although
most adaptive systems contain a mixture of these two
types of adaptability:
•  In behavioural adaptability, the system structure

remains the same while the architectural elements of
the system can be modified or replaced. For
example, a component could be modified for the
provision of new services, or a connector could be
replaced for changing the communication protocols
between the components.

•  In structural adaptability, the system behaviour
remains the same while the configuration of the
architectural elements changes. For example,
depending on changes that might occur in the
environment of the system, it might be necessary to
reconfigure the system for coping with different
workloads. At the design level, an example of
structural adaptability is adaptive fault tolerance
[11].

In a co-operative object-oriented architecture the
degree of run-time adaptability of a software system
depends on the flexibility of components changing their
pattern of collaboration. Instead of having a software
system based on components that are individually able
to provide a wide range of services, the proposed
approach relies on the ability of components to
reconfigure their collaborations while they remain
unchanged. The aim of this paper is to define an
architectural pattern that allows behavioural adaptability
to be incorporated in co-operative object-oriented
architectures.

3.2. Co-operative Object-Oriented
Architectural Pattern

In a co-operative object-oriented system, behavioural
adaptability is obtained by changing how objects co-
operate, and the selection of a co-operation depends on
the state of the collaboration between the objects. An
architectural representation of such system should
describe the collaborative activities between classes in
terms of CO actions. The conditions for selecting a co-
operation should be part of the definition of a CO action,
and these conditions are related to either the internal
state of the co-operation or the states of the objects  (i.e.
roles) participating in the co-operation. Hence the
architectural representation should be able to describe,
across different states, the behavioural adaptability of
the collaborative activities between classes.

In this section, we define an architectural pattern that
supports run-time adaptability targeted for co-operative
object-oriented architectures. An architectural pattern
provides guidance for combining architectural elements
in established and proven ways. The aim is not to define
mechanisms for adding, removing and replacing objects,
which provide the means for systems to dynamically
reconfigure. Instead, we intend to define an architectural
pattern that facilitates the representation of system
configurations that provide the basis for the system to
adapt to changes that occur in its environment.

The intent of the State design pattern is to allow an
object to alter its behaviour when its internal state
changes [8]. In this paper we claim that this design
pattern can be also used to provide the required support
for a co-operation to alter its behaviour when its state
changes. The structure of the design pattern State, in
terms of CO actions, is shown in figure 2. The abstract
Select CO action defines the interface common to all
the CO actions that represent the different states of the
co-operation (an instance of COAction). COAction
delegates all state-specific collaborations to the Select
CO action, and depending on its state, COAction uses
an instance of a specialised CO actions (COAction1,
COAction2,...) of the abstract Select CO action to
implement a collaboration. Using the architectural
pattern  Select, we are able to obtain an effective and
structured representation of behavioural adaptability
using the co-operative object-oriented style.

The applicability of this architectural pattern can be
demonstrated in terms of two examples. The first
example deals with intelligent motorways, where
autonomous vehicles are able to travel in platoons at
high speeds while maintaining minimal distances
between themselves. Depending on the weather
conditions, the properties of the vehicles do not need to
change, instead changes can be associated with the
collaborations that are responsible for maintaining the



required distances between the vehicles. Another
example comes from the world of the Internet. An
Internet bookshop might require, for payment
assurances, additional information from a not so
trustworthy customer (the vice-versa being equally
possible). Instead of changing the components
representing the bookshop and the customer, the
collaboration between these two entities can be changed,
depending on the roles taken by one of its participants.

COAction1 COAction2

Select
delegate to 4

COAction

Figure 2. State design pattern in terms of CO actions.

4. Description of the Case Study: Electronic
Height Control System (EHCS)

The electronic height control system (EHCS)
controls the height of a vehicle by regulating the
individual heights of the wheels through a pneumatic
suspension. The aim of this system is to adjust the
chassis level depending on the road conditions, in order
to improve driving comfort and keep the headlight load-
independent [17].

For this case study three distinct types of road are
considered, namely, off-road, gravel and motorway. For
each type of road we define a set point and two sets of
tolerance intervals, as shown in the diagram of figure 1.
In each of the four wheels there is an pneumatic
suspension which is able to control the height of an
individual wheel. Whenever the height of a wheel is
outside the outer tolerance interval, the controller has to
bring the height into the inner tolerance interval around
the set point.

The major components of the EHCS are a valve and
a height sensor at each wheel, and an escape valve and a
compressor to be shared by all the wheels, as shown in
the diagram of figure 3. The suspension height is
increased by opening the wheel valve, closing the escape
valve, and pumping air into the suspension. The
suspension height is decreased by releasing air from the
suspension by opening the escape valve, and the valve of
the wheel from which the height has to be reduced. The
compressor and the escape valve cannot be used
simultaneously, priority is given to the compressor when
both have to be used. It is assumed that the height values
provided by the sensors are mean values of the actual

readings from which the disturbances, like road holes,
are eliminated.

The aim of this case study is to define a software
architecture that enables the EHCS to adapt at run-time
to changes that occur in the system environment. In
terms of the height control system, the adaptability
element is related with selection of the appropriate
control algorithm depending on the type of road. In
terms of the EHCS software architecture, the software
components remain the same, while the pattern of
collaboration changes between the components.

FR: front right wheel

FL: front left wheel
RR: rear right wheel

RL: rear left wheel

sp: set point

iti: inner tolerance interval
oti: outer tolerance interval

Escape
Valve

Valve

Valve

Compressor

Valve

Valve

FR

FL

RR

RL

motorway

sp

sp

spoti

oti
oti

iti

iti
iti

off-road gravel

Figure 3. Diagrammatic representation of the EHCS.

5. A Software Architecture for the EHCS

In this section the software architecture for the
electronic height control system (EHCS) of a vehicle
suspension is established in terms of the co-operative
object-oriented style, previously defined. The diagram of
figure 4 represents the class and CO action diagrams for
the EHCS. The notation follows UML [2], except for the
CO actions that are represented as boxes with rounded
corners.

The CO action MaintainSP is responsible for
maintaining the height of the suspension around the set
point. It is composed by three other CO actions:
ReadMH which is responsible for updating Wheel with



the value of mean height of the suspension, and
IncreaseMH and DecreaseMH which are responsible,
respectively, for increasing and decreasing the
suspension height of a wheel. Depending on road
condition, a different control algorithm is necessary for
maintaining the height of the suspension, hence
MaintainSP can be specialised into MSPOffRoad,
MSPGravel, and MSPMotorway. For example, it
might be necessary, depending on the road conditions, to
establish different tolerance levels for IncreaseMH and
DecreaseMH, or to establish time intervals for updating
(∆update) the value of the mean height in class Wheel.

EscapeValve

HeightSensor WValve

Suspension

Wheel

41

1 1

1

Compressor

(i) class diagram

(ii) CO action diagram

delegate to 4

IncreaseMH

Compressor
EscapeValve

Wheel
WValve

ReadMH

Wheel

HeighSensor

DecreaseMH

Compressor

EscapeValve
Wheel

WValve

MaintainSP

Compressor
EscapeValve

HeighSensor
Wheel

WValve

RoadType

ReadMH

IncreaseMH
DecreaseMH

MSPGravel

MSPMotorway

MSPOffRoad

Figure 4. Co-operative object-oriented diagrams for
the EHCS.

In this paper, the dynamic behaviour of CO actions is
specified using a property-oriented formalism instead of
operational formalism (like Statecharts, which are part
of UML). The reason for this is that, at the architectural
level, we rather to focus on the properties of an adaptive
system, than on how a design should be implemented. In
the following, the CO actions will be formally specified

in terms of Extended Real-Time Logic (ERTL) [3, 10]
following the template previously presented. In this
paper, the behavioural specification of CO actions will
be restricted to the normal behaviour. It is not in the
scope of this paper to deal with exceptional and failure
behaviours, which were presented elsewhere [5,6]. For
the sake of brevity, and to avoid repetition, only the
composite CO action MaintainSP will be specified. The
specifications of MSPOffRoad, MSPGravel, and
MSPMotorway follow directly from MaintainSP. We
assume that MaintainSP, which is considered
appropriate for all types of road, is replaced by other
three CO actions that encapsulate control algorithms that
are specific for particular types of road.

The CO action MaintainSP co-ordinates the
activities between the components of the Suspension
for maintaining the mean height of a Wheel around the
established set point. The co-ordination of the
collaborative activities is partitioned into three CO
actions, detailed below. The definition of MaintainSP
states that the pre-condition for MaintainSP to be
activated is when EHCS is switched on (ehcs.on), and it
will remain activated until the EHCS is switched off,
which is also captured by the invariant. The provision of
adaptive software will be based on the specialisation of
MaintainSP for the different types of road, which will
be presented at the end of this section.
MaintainSP:

attributes:
participants:

c Compressor
ev Valve
w Wheel
w.hs HeightSensor
w.wv Valve
ehcs EHCS

behaviour:
initial:

Φ(¬ehcs.on, 1, 0)
normal:

pre-condition:
∀ t•∀ i∈ℑ +: Θ(ÉmaintainSP, i, t) ⇔ Θ(Éehcs.on, i, t)

invariant:
∀ t•∀ i∈ℑ +: Φ(maintainSP, i, t) ⇔  Φ( ehcs.on, i, t)

post-condition:
∀ t•∀ i∈ℑ +: Θ(ËmaintainSP, i, t) ⇔ Θ(Ëehcs.on, i, t)

The CO action ReadMH captures the collaboration
between Wheel and HeightSensor, and is responsible
for updating periodically the Wheel’s variable for the
mean height of the suspension, which is obtained from
the HeightSensor. The pre-condition for normal
behaviour establishes that ReadMH starts periodically
every ∆update. The invariant states that for ReadMH
to be active the current update has still to be made and
the interval for the next reading has not expired. The
post-condition is captured by two transition event



predicates that specify the necessary and sufficient
conditions for the co-operation to end: the variable
w.height has been updated, or the time interval
available for updating that variable has expired.
ReadMH:

attributes:
participants:

w Wheel
w.hs HeightSensor

variables:
∆update Real

behaviour:
initial:
normal:

pre-condition:
∀ t•∀ i∈ℑ +:  Θ(ÉreadMH, i, t) ⇔

∃ t1• Θ(ÉreadMH, i-1, t1) ∧  t=t1+∆update
invariant:

∀ t•∀ i∈ℑ +:  Φ(readMH, i, t) ⇔
∃ t1•  Θ(ÉreadMH, i, t1) ∧  t<t1+∆update

post-condition:
∀ t•∀ i∈ℑ +:  Θ(ËreadMH, i, t) ⇔

Θ(É(w.height=w.hs.value), i, t) ∨
 (∃ t1• Θ(ÉreadMH, i, t1) ∧  t≥t1+∆update)

The CO action IncreaseMH is responsible for
increasing the mean height of the suspension once a
minimum threshold is reached. The pre-condition for
normal behaviour establishes that the CO action starts
when the Compressor is off (captured by c.on), the
EscapeValve and WheelValve are closed (captured by
variables ev.open and w.wv.open, respectively), and
the minimum height threshold is reached (captured by
varaible w.height). While the mean height of the
suspension is being increased the Compressor should
be on, the EscapeValve closed, the WheelValve open.
Once the mean height is within the inner tolerance
interval (iti), IncreaseMH ceases to be active.
IncreaseMH:

attributes:
participants:

c Compressor
ev Valve
w Wheel
w.hs HeightSensor
w.wv Valve

variables:
iti, oti Real

behaviour:
initial:

Φ(¬c.on ∧  ¬ev.open ∧  ¬w.wv.open, 1, 0)
normal:

pre-condition:
∀ t•∀ i∈ℑ +: Θ(ÉincreaseMH, i, t) ⇔

Θ(É(¬c.on ∧  ¬ev.open ∧  ¬  w.wv.open ∧
 (w.height<(w.setPoint-oti/2))), i, t)

invariant:
∀ t•∀ i∈ℑ +: Φ(increaseMH, i, t) ⇔

Φ(¬ev.open, i, t)  ∧  Φ( w.height<(w.setPoint-oti/2), i, t)
operations:

∀ t•∀ i∈ℑ +: Φ(w.height<(w.setPoint-oti/2), i, t) ⇒ 
Φ(c.on ∧  w.wv.open, i, t)

∀ t•∀ i∈ℑ +: Θ(É((w.setPoint+iti/2)>w.height>
 (w.setPoint-iti/2increaseMH)), i, t) ⇒
Θ(É(¬c.on ∧  ¬  w.wv.open), i, t)

post-condition:
∀ t•∀ i∈ℑ +: Θ(ËincreaseMH, i, t) ⇔

Θ(É(¬c.on ∧  ¬ev.open ∧  ¬  w.wv.open ∧
((w.setPoint+iti/2)>w.height> (w.setPoint-iti/2))), i, t)

The description of CO action DecreaseMH follows
the same pattern of IncreaseMH. However, for reducing
the mean height of the suspension the Compressor
should be off, and the EscapeValve and WheelValve
should be open. (At this stage of development, we are
not concerned with the priority associated with the
Compressor, instead the implementation of this
requirement should be part of a CO action responsible
for co-ordinating the controllers of the individual
wheels.)
DecreaseMH:

attributes:
participants:

c Compressor
ev Valve
w Wheel
w.wv Valve

variables:
iti, oti Real

behaviour:
initial:

Φ(¬c.on ∧  ¬ev.open ∧  ¬  w.wv.open, 1, 0)
normal:

pre-condition:
∀ t•∀ i∈ℑ +: Θ(ÉdecreaseMH, i, t) ⇔

Θ(É(¬c.on ∧  ¬ev.open ∧  ¬  w.wv.open ∧
 (w.height>(w.setPoint+oti/2))), i, t)

invariant:
∀ t•∀ i∈ℑ +: Φ(decreaseMH, i, t) ⇔

Φ(¬c.on, i, t) ∧  Φ(w.height>(w.setPoint+oti/2), i, t)
operations:

∀ t•∀ i∈ℑ +: Φ(w.height>(w.setPoint+oti/2), i, t)⇒ 
Φ(ev.open ∧  w.wv.open, i, t)

∀ t•∀ i∈ℑ +: Θ(É((w.setPoint+iti/2)>w.height>
 (w.setPoint-iti/2increaseMH)), i, t) ⇒
Θ(É(¬ev.open ∧  ¬w.wv.open), i, t)

post-condition:
∀ t•∀ i∈ℑ +:  Θ(ËdecreaseMH, i, t) ⇔

Θ(É(¬c.on ∧  ¬ev.open ∧  ¬  w.wv.open ∧
((w.setPoint+iti/2)>w.height> (w.setPoint-iti/2))), i, t)

According with the proposed approach, outlined in
section 3.2, an adaptable software system for the EHCS
can be obtained by applying the design pattern State [8]
to the CO actions that capture the collaborative activity
between the components of the Suspension. Referring
to the CO action diagram of figure 4, the behaviour of
MaintainSP depends on the state of RoadType, and
according to this state, the behaviour of MaintainSP
must change at run-time. Instead of defining a CO action
for all types of road, the design pattern State allows to
partition MaintainSP into other CO actions, namely,



MSPOffRoad, MSPGravel and MSPMotorway. These
three CO actions are specified to be mutually
independent, and their selection during run-time depends
on the type of road.

6. Conclusion

In this paper we have presented how collaborations
between objects can be exploited when defining
software architectures for adaptive systems. As a basis
for the proposed approach, we have assumed that objects
are rigid entities, and the basis for adaptability depends
on how they collaborate. Hence all the additional
features which enables an object, or a group of objects,
to adapt to changes that occur in its environment are not
captured in the object itself, instead they are defined in
the co-operations in which the object is a participant.
For describing the architectures for adaptive software
systems we have defined a co-operative object-oriented
style where components are the classes, and connectors
are the co-operative actions (CO actions). As
architectural elements, CO actions capture the
behavioural dependencies between the classes that are
related with the adaptability features of an object, or
group of objects.

Although the definition of a CO action was presented
in the context of components (objects) which have very
simple structures, the aim of the work is to obtain a more
general definition of a CO action which can be used as a
sophisticated connector for structurally more complex
software components. For that, it might be necessary to
define a CO action as an architectural pattern (or
framework) which can be instantiated into several
domain related applications. Also in this paper, we have
only considered the type of run-time adaptability where
the components remains unchanged while the behaviour
of the system changes, however, depending on the type
of application and the purpose of the system, another
types of adaptability may also be considered.
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