
Integrating Computer Algebra and Reasoningthrough the Type System of AldorErik Poll1 and Simon Thompson21 Computing Siene DepartmentUniversity of Nijmegen, The Netherlandserikpoll�s.kun.nl2 Computing Laboratory,University of Kent at Canterbury, UKS.J.Thompson�uk.a.ukAbstrat. A number of ombinations of reasoning and omputer al-gebra systems have been proposed; in this paper we desribe another,namely a way to inorporate a logi in the omputer algebra system Ax-iom. We examine the type system of Aldor { the Axiom Library Compiler{ and show that with some modi�ations we an use the dependent typesof the system to model a logi, under the Curry-Howard isomorphism.We give a number of example appliations of the logi we onstrut andexplain a prototype implementation of a modi�ed type-heking systemwritten in Haskell.1 IntrodutionSymboli mathematial { or omputer algebra { systems, suh as Axiom [13℄,Maple and Mathematia, are in everyday use by sientists, engineers and indeedmathematiians, beause they provide a user with tehniques of, say, integra-tion whih far exeed those of the person themselves, and make routine manyalulations whih would have been impossible some years ago. These systemsare, moreover, taught as standard tools within many university undergraduateprogrammes and are used in support of both aademi and ommerial researh.There are, however, drawbaks to the widespread use of automated sup-port of omplex mathematial tasks, whih has been widely noted: Fateman[10℄ gives the graphi example of systems whih will assume that a 6= 0 on thebasis that a = 0 has not been established. This an have potentially disastrousonsequenes for the naive user of the system or indeed, if it ours within asuÆiently ompliated ontext, any user.Symboli mathematis systems are also limited by their reliane on algebraitehniques. As Martin [14℄ remarks, in performing operations of analysis it mightbe a preondition that a funtion be ontinuous; suh a property annot beguaranteed by a omputer algebra system alone.All this makes the ombination of omputer algebra with theorem proving atopi of onsiderable interest. Reasoning apabilities an allow a user to trak as-sumptions, and thus to ensure that symboli omputations are sound, in ontrastto the urrent situation in many CA systems.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/62872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reasoning an also extend the apability of a CA system. A senario mightinvolve working with a partiular monoid: if during the ourse of omputationit an be shown, for instane, that the monoid is ommutative then it is pos-sible to use di�erent, more eÆient, simpli�ation algorithms for expressions.The addition of reasoning here has made omputation more eÆient; in othersituations - suh as Martin's analysis example mentioned earlier { reasoning anallow omputations to proeed where in general this would not be possible.The literature ontains a number of di�erent strategies proposed for om-bining omputer algebra and theorem proving; see, for instane, [4, 6, 3℄. Thispaper desribes another approah: we use the type system of the Axiom om-puter algebra system [13℄ to represent a logi, and thus to use the onstrutionsof Axiom to handle the logi and represent proofs and propositions, in the sameway as is done in theorem provers based on type theory suh as Nuprl [7℄ or Coq[8℄. This paper partiularly explores the reent Axiom Library Compiler, Aldor[30℄, whih is unusual among omputer algebra systems in being strongly typed,and moreover in having a very powerful type system, inluding dependent typeswhih are entral to our work.The implementation of dependent types in Aldor is somewhat nonstandard:there is no evaluation within type expressions, so that, for example, `vetors oflength 2+3' are distint from `vetors of length 5'; we show how this limits theexpressivity of the dependent types. We desribe a modi�ation of the Aldorsystem whih allow the types to represent the propositions of a onstrutivelogi, under the Curry-Howard orrespondene. We argue that this integratesa logi into the Aldor system, and thus permits a variety of logial extensionsto Aldor, inluding adding pre- and post-onditions to funtion spei�ations,axiomatisations to ategories of mathematial objets as well as the ability toreason about the objets in Aldor.The struture of the paper is as follows. Setion 2 introdues Aldor and inpartiular examines its system of types. In Setion 3 we examine the issue oftype equality in Aldor sine it is entral to our approah to embedding a logi inAldor. The setion also ontains a number of strategies for modifying the Aldorompiler. We show how a logi an be de�ned in a modi�ed variant of the Aldorsystem in Setion 4 and Setion 5 gives some example appliations. We onludewith a disussion of related and future work.2 An Introdution to AldorThe Axiom Library Compiler, Aldor [30℄ (known in the past as AXIOM-XL andA℄), provides the user with a powerful, general-purpose programming languagein whih to model the strutures of mathematis. Aldor is ompiled, in ontrastto most omputer algebra languages, and so it an provide muh more eÆientimplementations of algorithms than interpreted languages.The ore of Aldor is a funtional programming language whih provideshigher-order funtions, generators (whih bear a strong relationship to list om-

prehensions) and other features of modern funtional languages like StandardML [17℄ and Haskell [21℄. It is also strongly typed, in ommon with these lan-guages and indeed the majority of modern programming languages. Under thistype disipline any type error { suh as adding a harater to a boolean operator {an be aught at ompile time rather than at run time. This has two onsequentadvantages. First, a whole lass of programming errors an be deteted priorto program exeution, thus inreasing the dependability of the ompiled ode.Seondly, it means that it is possible to produe more eÆient ompiled odesine no run-time type tags on program data need to be maintained to supporttype heking at run-time.Sine Aldor is designed with mathematis in mind, its type system is moreomplex than those of most programming languages. Mathematiians take aexible approah to terminology, with the onsequene that often the meaningof a symbol or phrase is only determined by its ontext. This requires of aprogramming language that symbols an be overloaded, and that sometimesvalues need to be oered from one type to another: from the integers to oating-point numbers, for example.More importantly this exibility neessitates an entity like the olletion ofintegers to be seen in various di�erent ways, depending on the ontext. In thease of the integers this might be a set of values, a group, an integral domain,a subset of the real numbers and so forth. To do this, the language allows typesand funtions to be olleted into domains, and the type of a domain, whih isdesribed by a signature, is alled a ategory.Categories an be built on top of other ategories, giving a version of inherit-ane between domains. Categories an also be parametrised by values inludingdomains; rather than implement a theory of parametri ategories, Aldor takestypes to be values just like more traditional values like 23 and the Boolean value`false'. This has far-reahing onsequenes for the language.Current desriptions of Aldor, [30, 29℄, give informal de�nitions of the typesystem. We have given a formal desription of the essene of the Aldor typesystem in [22℄. In the remainder of this setion we summarise our approah inthat paper and the onlusions that are drawn there.2.1 An Overview of the Type System of AldorUnusually among languages for omputer algebra, but in keeping with the fun-tional shool, Aldor is strongly typed. Eah delaration of a binding an beaompanied by a delaration of the type of the value bound, as in the de�nitiona : Integer == 23;The type of an expression an be delared expliitly to resolve any uses of over-loaded identi�ers. This annot simply be done by the typing rules, sine arbitraryoverloading is allowed, so that, for instane, a single identi�er fun may be over-loaded to have types Int -> Int, Int -> Bool and Bool -> Int so that neitherthe type of the argument nor the type of result expeted an disambiguate anappliation of fun.

Some `ourtesy' oerions are provided by the system automatially: theseonvert between multiple values (�a la LISP), ross produts and tuples. It is alsopossible to make expliit onversions { by means of the oere funtion { fromintegers to oating point numbers and so forth.As mentioned earlier, Aldor treats types as values. In partiular, a type suhas Integer has itself a type. The type of types is alled Type. Having this typeof all types means that the system supports funtions over types, suh as theidentity funtion over (the type of) types:idType (ty : Type) : Type == ty;and expliit polymorphism, as in the polymorphi identity funtion whih takestwo arguments. The �rst is a type ty and the seond is a value of that typewhih is returned as the result.id (ty : Type, x : ty) : ty == x; (id)Aldor permits funtions to have dependent types, in whih the type of a fun-tion result depends upon the value of a parameter. An example is the funtionwhih sums the values of vetors of integers. This has the typevetorSum : (n:Integer) -> Vetor(n) -> Integerin whih the result of a funtion appliation, sayvetorSum(34)has the type Vetor(34) -> Integer beause its argument has the value 34.In a similar way, when the id funtion of de�nition (id) is applied, its resulttype is determined by the type whih is passed as its �rst argument. We disussthis aspet of the language in more detail in Setion 2.3.The system is not fully funtional, ontaining as it does variables whihdenote storage loations. The presene of updatable variables inside expressionsan ause side-e�ets whih make the eluidation of types onsiderably morediÆult. There is a separate question about the role of `mathematial' variablesin equations and the like, and the role that they play in the type system of Aldor.Categories and domains provide a form of data abstration and are addressedin more detail in Setion 2.5.The Aldor type system an thus be seen to be highly omplex and we shallindeed see that other features suh as maros (see Setion 2.5) ompliate thepiture further.2.2 Formalising the Type System of AldorThis setion outlines the approah we have taken in formalising the type systemof Aldor. Our work is desribed in full in [22℄; for reasons of spae we an onlygive a summary here.The typing relation is formally desribed by typing judgements of the form� ` t : T

whih is read `t has the type T in the ontext � '. A ontext here onsists of alist of variable delarations, type de�nitions and so on. Contexts represent theolletion of bindings whih are in sope at a point in a program text. Note thatt might have more than one type in a given ontext beause of overloading ofidenti�ers in Aldor, and so it would be perfetly legitimate for a well-formedontext � to imply that t : T and t : T 0 where T and T 0 are di�erent types.Complex typing judgements are derived using dedution rules that odifyonditions for a typing judgement to hold. For example,� ` f : S->T � ` s : S (funtion elim)� ` f(s) : Tdesribes the type-orret appliation of a funtion. This dedutive approahis standard; we have adapted it to handle partiular features of Aldor suh asoverloading, �rst-lass types and ategories.Our disussion in [22℄ examines the essential features of the full type system ofAldor; in this paper we onentrate on those aspets of the language relevant toour projet. These are dependent funtion and produt types; equality betweentypes; and ategories and domains, and we look at these in turn now.2.3 Dependent TypesAs we have already seen with the examples of id and vetorSum, the Aldorlanguage ontains dependent types. To reap, the funtion vetorSum de�nes asum funtion for vetors of arbitrary length and has the typevetorSum : (n:Integer) -> Vetor(n) -> IntegerSimilarly one an de�ne a funtion append to join two vetors togetherappend : (n:Integer,m:Integer,Vetor(n),Vetor(m)) -> Vetor(n+m)The typing rule for dependent funtion elimination modi�es the rule (funtionelim) so that the values of the arguments are substituted in the result type, thus� ` f : (x : S)->T � ` s : S (dependent funtion elim)� ` f(s) : T [x := s℄Given vetors of length two and three, ve2 and ve3, we an join them thusappend(2,3,ve2,ve3) : Vetor(2+3)where 2 and 3 have been substituted for n and m respetively.We would expet to be able to �nd the sum of this vetor by applyingvetorSum 5, thus(vetorSum 5) append(2,3,ve2,ve3)

but this will fail to type hek, sine the argument is of type Vetor(2+3),whih is not equal to the expeted type, namely Vetor(5). This is beause noevaluation takes plae in type expressions in Aldor (nor indeed in the earlierversion of Axiom). We examine this question in the next setion, and in Setion3 we disuss how the Aldor type mehanism an be modi�ed to aommodate amore liberal evaluation strategy within the type heker. Similar remarks applyto dependent produt types in whih the type of a �eld an depend on the valueof another �eld.2.4 Equality of Types in AldorWhen are two types in Aldor equal? The de�nition of type equality in anyprogramming language is non-trivial, but in the presene of dependent typesand types as values it beomes a subtle matter.Type equality is fundamental to type heking, as an be seen in the rule(funtion elim): the e�et of the rule in a type-heker is to say that the appli-ation f(s) is only legitimate if f has type S->T , s has type S0, and the types Sand S0 are equal. Non-idential type expressions an denote idential types fora number of reasons.{ A name an be given to a type, as inmyInt : Type == Int;and in many situations myInt and Int will be treated as idential types.[This is often alled Æ-equality.℄{ The bound variables in a type should be irrelevant and Aldor treats themas so. This means that the typesvetorSum : (n:Integer) -> Vetor(n) -> IntegervetorSum : (int:Integer) -> Vetor(int) -> Integershould be seen as idential. [�-equality℄{ Types are values like any other in Aldor, and so an be evaluated. In par-tiular a funtion over types like idType will be used in expressions suh asidType Int. It would be expeted that this would evaluate to Int and thusbe seen as equivalent. [�-equality℄{ In the presene of dependent types, expressions of any type whatsoever anbe subexpressions of type expressions, as in Vetor(2+3). Equality betweenthese subexpressions an be lifted to types, making Vetor(2+3) equal toVetor(5). [Value-equality℄Our report on the type system examines the pratie of equality in the Aldorsystem and shows it to be omplex. The Aldor system implements �-equality innearly all situations, but Æ-equality is not implemented in a uniform way. Overtypes neither �-equality nor value-equality is implemented, so that type equalityin Aldor is a strong relation, in that it imposes �ner distintions than notionslike �- or value-equality.

A rationale for the urrent de�nition in Aldor is that it is a simple notion oftype equality whih is strong enough to implement a weak form of type depend-eny in whih arguments to types are themselves (literal) types whih are notused in a omputational way. This form of dependeny is useful in the modulesystem of Aldor where it an be used to formulate mathematial notions like`the ring of polynomials in one variable over a �eld F ' where the �eld F is aparameter of the type.Our approah to integrating reasoning into Aldor requires a weaker notionof type equality, whih we explore in Setion 3.2.5 Categories and DomainsAldor is designed to be a system in whih to represent and manipulate math-ematial objets of various kinds, and support for this is given by the Aldortype system. One an speify what it is to be a monoid, say, by de�ning theCategory1 alled Monoid, thusMonoid : Category == BasiType with f (Mon)* : (%,%) -> %;1 : %; gThis states that for a struture over a type `%' to be a monoid it has to supplytwo bindings; in other words a Category desribes a signature. The �rst namein the signature is `*' and is a binary operation over the type `%'; the seond isan element of `%'.In fat we have stated slightly more than this, as Monoid extends the ategoryBasiTypewhih requires that the underlying type arries an equality operation.BasiType : Category == with f= : (%,%) -> Boolean; gWe should observe that this Monoid ategory does not impose any onstraintson bindings to `*' and `1': we shall revisit this example in Setion 5.2 below.Implementations of a ategory are abstrat data types whih are known inAldor as domains, and are de�ned as was the value a at the start of Setion 2.1,e.g.IntegerAdditiveMonoid : Monoid == add fRep == Integer;(x:%) * (y:%) : % == per((rep x) + (rep y));1 : % == per 0; gThe ategory of the objet being de�ned { Monoid { is the type of the domainwhih we are de�ning, IntegerAdditiveMonoid. The de�nition identi�es a rep-resentation type, Rep, and also uses the onversion funtions rep and per whihhave the types1 There is little relation between Aldor's notion of ategory and the notion from at-egory theory!

rep : % -> Rep per : Rep -> %The onstruts Rep, rep and per are implemented using the maro mehanismof Aldor, and so are eliminated before type heking. In our report [22℄ we showhow de�nitions of domains an be type heked without maro expansion, whihallows, for instane, more aurate error diagnosis.Categories an also be parametri, and depend upon value or type paramet-ers; an example is the ring of polynomials over a given �eld mentioned earlier.2.6 ConlusionThis setion has given a brief overview of Aldor and its type system. It has shownthat the notion of type equality in Aldor is a strong one, whih makes distintionsbetween types whih ould naturally be onsidered equivalent. This is espeiallyrelevant when looking at the e�et of type equality on the system of dependenttypes. In the setions to ome we show how a logi an be inorporated intoAldor by modifying the notion of type equality in Aldor.3 Modifying Type Equality in AldorSetion 2.4 desribes type equality in Aldor and argues that it is a strong notionwhih distinguishes between type terms whih an naturally be identi�ed. In thissetion we examine various ways of modifying type equality inluding the waywe have hosen to do this in our prototype implementation.3.1 Using the Existing SystemIt is possible to use the existing Aldor system to mimi a di�erent { weaker{ type equality by expliitly asting values to new types, using the pretendfuntion of Aldor.2 This e�etively sidesteps the type heker by asserting thetype of an expression whih is aepted by the type heker without veri�ation.For instane, the vetor example of Setion 2.3 an be made to type hek inAldor by annotating it thus(vetorSum 5) (append(2,3,ve2,ve3) pretend Vetor(5))or thus((vetorSum 5) pretend (Vetor(2+3) -> Integer)) append(2,3,ve2,ve3)This ahieves a result, but at some ost. Wherever we expet to need somedegree of evaluation, that has to be shadowed by a type ast; these asts are alsopotentially ompletely unsafe.2 The pretend funtion is used in the de�nition of rep and per in the urrent versionof Aldor; a more seure mehanism would be preferable.

3.2 Coerion FuntionsAnother possibility is to suggest that the urrent mehanism for oerions inAldor is modi�ed to inlude oerion funtions whih would provide onversionbetween type pairs suh as Vetor(2+3) and Vetor(5), extending the oerionmehanism already present in Aldor. This suggestion ould be implemented butwe envisage two diÆulties with it.{ In all but the simplest of situations we will need to supply uniformly-de�nedfamilies of oerions rather than single oerions. This will substantiallyompliate an already omplex mehanism.{ Coerions are urrently not applied transitively: the e�et of this is to allowus to model single steps of evaluation but not to take their transitive losure.Putting these two fats together fore us to onlude that e�etively mimikingthe evaluation proess as oerions is not a reasonable solution to the problemof modifying type heking.3.3 Adding Full EvaluationTo deal with the problem of unevaluated subexpressions in types, we have imple-mented a prototype version of Aldor using Haskell [23℄. In this implementationall type expressions are fully evaluated to their normal form as a part of theproess of type heking. To give an example, the rule (funtion elim) will beinterpreted thus:f(s) is well-formed if and only if f has type S->T , s has type S0, andthe normal forms of S and S0 are equal modulo �-equality.The e�et of this modi�ation is to fore the type heker to perform evaluationof expressions at ompile time. Clearly this an ause the type heker to divergein general, sine in, for instane, an appliation of the form vetorSum(e) anarbitrary expression e:Nat will have to be evaluated.More details of the prototype implementation of Aldor in Haskell are givenin the tehnial report [23℄.3.4 Controlling Full EvaluationA number of existing type systems, Haskell among them, have undeidable typesystems [12℄ whih an diverge at ompile time. In pratie this is not usually aproblem as the pathologies lie outside the `useful' part of the type system. Thismay well be the ase with Aldor also, but it is also possible to design a subsetof the language, Aldor--, whose type system is better behaved.There is onsiderable urrent interest in de�ning terminating systems of re-ursion [27, 16℄. A system like this is suÆient to guarantee the termination ofexpressions hosen for evaluation as part of the type heking proess. The maine�et of the restrited system is to fore reursion to be strutural (in a generalsense); in pratie this is aeptable, partiularly in the subset of the languageused within type expressions.

4 Logi within AldorIn this setion we disuss the Curry-Howard isomorphism between propositionsand types, and show that it allows us to embed a logi within the Aldor typesystem, if dependent types are implemented to allow evaluation within typeontexts.4.1 The Curry-Howard CorrespondeneUnder the Curry-Howard orrespondene, logial propositions an be seen astypes, and proofs an be seen as members of these types. Aounts of onstrut-ive type theories an be found in notes by Martin-L�of [15℄ amongst others [19,26℄. Central to this orrespondene are dependent types, whih allow the repres-entation of prediates and quanti�ation.Central to the orrespondene is the idea that a onstrutive proof of aproposition gives enough evidene to witness the fat that the proposition stands.{ A proof of a onjuntion A ^ B has to prove eah half of the proposition,so has to provide witnessing information for eah onjunt; this orrespondspreisely to a produt type, in Aldor notation written as (A;B), membersof whih onsist of pairs of elements, one from eah of the onstituent types.{ A proof of an impliation A) B is a proof transformer: it transforms proofsof A into proofs of B; in other words it is a funtion from type A to type B,i.e. a funtion of type A->B.{ In a similar way a proof of a universal statement (8x : A)B(x) is a funtiontaking an element a of A into a proof of B(a); in other words it is an elementof the dependent funtion type (x:A) -> B.{ Similar interpretations an be given to the other propositional operators andthe existential quanti�er.We an summarise the orrespondene in a tableProgramming LogiType FormulaProgram ProofProdut/reord type (...,...) ConjuntionSum/union type \/ DisjuntionFuntion type -> ImpliationDependent funtion type (x:A) -> B(x) Universal quanti�erDependent produt type (x:A,B(x)) Existential quanti�erEmpty type Exit Contraditory propositionOne element type Triv True proposition.Prediates (that is dependent types) an be onstruted using the onstrutsof a programming language. A diret approah is to give an expliit (primitivereursive) de�nition of the type, whih in Aldor might take the form

lessThan(n:Nat,m:Nat) : Type == (lessThan)if m=0 then Exitelse (if n=0 then Trivelse lessThan(n-1,m-1));The equality prediate an be implemented by means of a primitive operationwhih ompares the normal forms of the two expressions in question.4.2 A Logi within AldorWe need to examine whether the outline given in Setion 4.1 amounts to aproper embedding of a logi within Aldor. We shall see that it plaes ertainrequirements on the de�nition and the system.Most importantly, for a de�nition of the form (lessThan) to work properlyas a de�nition of a prediate we need an appliation like lessThan(9,3) to beredued to Exit, hene we need to have evaluation of type expressions. This is amodi�ation of Aldor whih we are urrently investigating, as outlined in Setion2.3. In the ase of (lessThan) the evaluation an be limited, sine the shemeused is reognisable as terminating by, for instane, the algorithm of [16℄.The restrition to terminating (well-founded) reursions is also neessary foronsisteny of the logi. For the logi to be onsistent, we need to require thatnot all types are inhabited, whih is learly related to the power of the reur-sion shemes allowed in Aldor. One approah is to expet users to hek this forthemselves: this has a long history, beginning with Hoare's axiomatisation of thefuntion in Pasal, but we would expet this to be supported with some auto-mated heking of termination, whih ensures that partially or totally unde�nedproofs are not permitted.Consisteny also depends on the strength of the type system itself; a suÆ-iently powerful type system will be inonsistent as shown by Girard's paradox[11℄.5 Appliations of an Integrated LogiHaving identi�ed a logi within Aldor, how an it be used? There are variousappliations possible; we outline some here and for others one an refer to thenumber of implementations of type theories whih already exist, inluding Nuprl[7℄ and Coq [8℄.5.1 Pre- and Post-ConditionsA more expressive type system allows programmers to give more aurate typesto ommon funtions, suh as the funtion whih indexes the elements of a list.index : (l:List(t))(n:Nat)((n < length l) -> t)

An appliation of index has three arguments: a list l and a natural number n{ as for the usual index funtion { and a third argument of type (n < lengthl), that is a proof that n is a legitimate index for the list in question. Thisextra argument beomes a proof obligation whih must be disharged when thefuntion is applied to elements l and n.In a similar vein, it is possible to inorporate post-onditions into types, sothat a sorting algorithm over lists might have the typesort : ((l:List(t))(List(t),Sorted(l))and so return a sorted list together with a proof that the list is Sorted.5.2 Adding Axioms to the Categories of AldorIn de�nition (Mon), Setion 2.5, we gave the ategory of monoids, Monoid, whihintrodues two operation symbols, * and 1. A monoid onsists not only of twooperations, but of operations with properties. We an ensure these propertieshold by extending the de�nition of the ategory to inlude three extra ompon-ents whih are proofs that 1 is a left and right unit for * and that * is assoiative,where we assume that `�' is the equality prediate:Monoid : Category == BasiType with f (MonL)* : (%,%) -> %;1 : %;leftUnit : (g:%) -> (1*g � g);rightUnit : (g:%) -> (g*l � g);asso : (g:%,h:%,j:%) -> (g*(h*j) � (g*h)*j);gFor example, the delaration of leftUnit has the logial interpretation thatleftUnit is a proof of the statement `for all g in the monoid (%), 1*g is equalto g'.The equality prediate is implemented as follows: the type a � b ontainsa value if and only if a and b have the same normal form. The extension oper-ation (i.e. the with in the de�nition above) over ategories will lift to beomeoperations of extension over the extended `logial' ategories suh as (MonL).5.3 Commutative MonoidsIn the urrent library for Axiom it is not possible to distinguish between generalmonoids and ommutative monoids: both have the same signature. With logialproperties it is possible to distinguish the two:CommutativeMonoid : Category == Monoid with fomm : (g:%,h:%) -> (g*h � h*g);g

To be a member of this ategory, a domain needs to supply an extra piee ofevidene, namely that the multipliation is ommutative; with this evidene thestruture an be treated in a di�erent way than if it were only known to be amonoid. This proess of disovery of properties of an mathematial strutureorresponds exatly to a mathematiian's experiene. Initially a struture mightbe seen as a general monoid, and only after onsiderable work is it shown to beommutative; this proof gives entry to the new domain, and thus allows it to behandled using new approahes and algorithms.5.4 Di�erent Degrees of RigourOne an interpret the obligations given in Setions 5.1 and 5.2 with di�ering de-grees of rigour. Using the pretend funtion we an onjure up proofs of the logialrequirements of (MonL); even in this ase they appear as important doumenta-tion of requirements, and they are related to the lightweight formal methods of[9℄. Alternatively we an build fully-edged proofs as in the numerous implement-ations of onstrutive type theories mentioned above, or we an indeed adopt anintermediate position of proving properties seen as `ruial' while asserting thevalidity of others.6 ConlusionWe have desribed a new way to ombine { or rather, to integrate { omputeralgebra and theorem proving. Our approah is similar to [3℄ and [4℄ in thattheorem proving apabilities are inorporated in a omputer algebra system.(In the lassi�ation of possible ombinations of omputer algebra and theoremproving of [6℄, all these are instane of the "subpakage" approah.) But the wayin whih we do this is ompletely di�erent: we exploit the expressiveness of thetype system of Aldor, using the Curry-Howard isomorphism that also providesthe basis of theorem provers based on type theory suh as Nuprl [7℄ or Coq [8℄.This provides a logi as part of the omputer algebra system. Also, having thesame basis as existing theorem provers suh as the ones mentioned above makesit easier to interfae with them.So far we have worked on a formal desription of the ore of the Aldortype system [22℄, and on a pilot implementation of a typeheker for Aldorwhih does evaluation in types whih an be used as a logi [23℄. This pilotforms the model for modi�ations to the Aldor system itself, as well as givinga mehanism for interfaing Aldor with other systems like the theorem proverCoq, omplementary to reent work on formalising the Aldor system within Coq[1℄. The logi is being used in a mathematial ase study of symboli asymptotis[25℄.It is interesting to see a onvergene of interests in type systems from anumber of points of view, namely

{ omputer algebra,{ type theory and theorem provers based on type theory,{ funtional programming.For instane, there seem to be many similarities between struturing mehan-isms used in these di�erent �elds: [5℄ argues for funtors in the sense of theprogramming language ML as the right tool for struturing mathematial theor-ies in Mathematia, and [24℄ notes similarities between the type system of Aldor,existential types [18℄, and Haskell lasses [28℄. More losely related to our ap-proah here, it is interesting to note that onstrutive type theorists have addedindutive types [20℄, giving their systems a more funtional avour, while fun-tional programmers are showing an interest in dependent types [2℄ and languageswithout non-termination [27℄. We see our work as part of that onvergene,bringing type-theoreti ideas together with omputer algebra systems, and thusproviding a bridge between symboli mathematis and theorem proving.Aknowledgements We are grateful to Stephen Watt of the University ofWestern Ontario and to Ursula Martin and her researh group at the Universityof St Andrews for feedbak on these ideas. We would also like to thank NAGfor granting us aess to the Aldor ompiler, and in partiular to Mike Dewarfor his help in failitating this. We are indebted to Dominique Duval who �rstintrodued us to the type system of Aldor, and to EPSRC for supporting hervisit to UKC under the MathFIT programme. Finally we are grateful to Ther�eseHardin of LIP6, Paris, for her omments on this work.Referenes1. Guillaume Alexandre. De Aldor �a Zermelo. PhD thesis, Universit�e Paris VI,1998.2. Lennart Augustsson. Cayenne { a language with dependent types. ACM Press,1998.3. Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytia - an experiment inombining theorem proving and symboli omputation. In AISMC-3, volume 1138of LNCS. Springer, 1996.4. Bruno Buhberger. Symboli Computation: Computer Algebra and Logi. In F.Baader and K.U. Shulz, editors, Frontiers of Combining Systems. Kluwer, 1996.5. Bruno Buhberger, Tudor Jebelean, Franz Kriftner, Mirea Marin, Elena Tomuta,and Daniela Vasaru. A survey of the Theorema projet. In Proeedings of ISSAC'97(International Symposium on Symboli and Algebrai Computation), pages 384{391. ACM, 1997.6. Jaques Calmet and Karsten Homann. Classi�ation of ommuniation and ooper-ation mehanisms for logial and symboli omputation systems. In FroCos'96.Kluwer, 1996.7. Robert L. Constable et al. Implementing Mathematis with the Nuprl Proof De-velopment System. Prentie-Hall In., 1986.8. C. Cornes et al. The Coq proof assistant referene manual, version 5.10. Rapporttehnique RT-0177, INRIA, 1995.

9. Martin Dunstan and Tom Kelsey. Lightweight Formal Methods for ComputerAlgebra Systems. ISSAC'98, 1998.10. Rihard Fateman. Why omputer algebra systems an't solve simple equations.ACM SIGSAM Bulletin, 30, 1996.11. Jean-Yves Girard. Int�erpretation fontionelle et �elimination des oupures dansl'arithm�etique d'ordre sup�erieure. Th�ese d'Etat, Universit�e Paris VII, 1972.12. Fritz Henglein. Type Inferene with Polymorphi Reursion. ACM Transationson Programming Languages and Systems, 15, 1993.13. Rihard D. Jenks and Robert S. Sutor. Axiom: The Sienti� Computation System.Springer, 1992.14. Ursula Martin. Computers, reasoning and mathematial pratie. In HelmutShwihtenberg, editor, Computational Logi, Marktoberdorf 1997. Springer, 1998.15. Per Martin-L�of. Intuitionisti Type Theory. Bibliopolis, Naples, 1984. Based on aset of notes taken by Giovanni Sambin of a series of letures given in Padova, June1980.16. D. MAllester and K. Arkondas. Walther reursion. In M.A. Robbie and J.K.Slaney, editors, CADE 13. Springer, 1996.17. Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.MIT Press, 1990.18. John C. Mithell and Gordon D. Plotkin. Abstrat types have existential type.ACM Trans. on Prog. Lang. and Syst., 10(3):470{502, 1988.19. Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of's Type Theory | An Introdution. Oxford University Press, 1990.20. Christine Paulin-Mohring. Indutive de�nitions in the system Coq. In TLCA,volume 664 of LNCS. Springer, 1993.21. John Peterson and Kevin Hammond, editors. Report on the Programming Lan-guage Haskell, Version 1.4. htttp://www.haskell.org/report/, 1997.22. Erik Poll and Simon Thompson. The Type System of Aldor. Tehnial Report11-99, Computing Laboratory, University of Kent at Canterbury, 1999.23. Chris Ryder and Simon Thompson. Aldor meets Haskell. Tehnial Report 15-99,Computing Laboratory, University of Kent at Canterbury, 1999.24. Philip S. Santas. A type system for omputer algebra. Journal of Symboli Com-putation, 19, 1995.25. J.R. Shakell. Symboli asymptotis and the alulation of limits. Journal ofAnalysis, 3:189{204, 1995. Volume ommemorating Maurie Blambert.26. Simon Thompson. Type Theory and Funtional Programming. Addison Wesley,1991.27. David Turner. Elementary strong funtional programming. In Pieter Hartel andRinus Plasmeijer, editors, Funtional programming languages in eduation (FPLE),LNCS 1022. Springer-Verlag, Heidelberg, 1995.28. Philip Wadler and Stephen Blott. Making ad ho polymorphism less ad ho. InProeedings of the 16th ACM Symposium on Priniples of Programming Languages.ACM Press, 1989.29. Stephen M. Watt et al. A First Report on the A# Compiler. In ISSAC 94. ACMPress, 1994.30. Stephen M. Watt et al. AXIOM: Library Compiler User Guide. NAG Ltd., 1995.

