
Mode Analysis Domains for TypedLogi ProgramsJan{Georg Smaus1, Patriia M. Hill2, and Andy King31 INRIA-Roquenourt, Frane,jan.smaus�inria.fr2 University of Leeds, United Kingdomhill�ss.leeds.a.uk3 University of Kent at Canterbury, United Kingdoma.m.king�uk.a.ukAbstrat. Preise mode information is important for ompiler optimi-sations and in program development tools. Within the framework of ab-strat ompilation, the preision of a mode analysis depends, in part,on the expressiveness of the abstrat domain and its assoiated abstra-tion funtion. This paper onsiders abstrat domains for polymorphiallytyped logi programs and shows how speialised domains may be on-struted for eah type in the program. These domains apture the degreeof instantiation to a high level of preision. By providing a generi def-inition of abstrat uni�ation, the abstration of a program using thesedomains is formalised. The domain onstrution proedure is fully im-plemented using the G�odel language and tested on a number of exampleprograms to demonstrate the viability of the approah.Note: Some proofs have been omitted for spae reasons. They an befound in the full version of this paper [17℄.1 Introdution1.1 BakgroundTyped logi programming languages suh as Merury [19℄ and G�odel [10℄ use apresriptive type system [15℄, whih restrits the underlying syntax so that onlymeaningful expressions are allowed. This enables most typographial errors andinonsistenies in the knowledge representation to be deteted at ompile time.An inreasing number of appliations using typed languages are being developed.Our notion of modes is, in ontrast, a desriptive one [3, 7℄: Modes hara-terise the degree to whih program variables are instantiated at ertain programpoints. This information an be used to underpin optimisations suh as thespeialisation of uni�ation and the removal of baktraking, and to support de-terminay analysis [9℄. When a mode analysis is formulated in terms of abstratinterpretation, the program exeution is traed using desriptions of data (theabstrat domain) rather than atual data, and operations on these desriptionsrather than operations on the atual data. The preision of a mode analysisdepends, in part, on the expressiveness of the abstrat domain.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/62852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 ContributionThe main ontribution of this paper is to desribe a generi method of derivingpreise abstrat domains for mode analysis from the type delarations of a typedprogram. Eah abstrat domain is speialised for a partiular type and hara-terises a set of possible modes for terms of that type. In partiular it haraterisesthe property of termination, well-known for lists as nil-termination.The proedure for onstruting suh domains is implemented (in G�odel) forG�odel programs. By inorporating the onstruted domains into a mode anal-yser, the viability of the approah is demonstrated.The abstrat domains are used in an abstrat ompilation [4℄ framework: Aprogram is abstrated by replaing eah uni�ation with an abstrat ounterpart,and then the abstrat program is evaluated by applying a standard operationalsemantis to it.We believe that this work is the natural generalisation of [3, 5℄ and takesthe idea presented there to its limits: Our abstrat domains provide the highestdegree of preision that a generi domain onstrution should provide. Not onlyan this work be used diretly for the mode analysis of typed logi programs,but it ould be used as a basis for onstruting (more pragmati) domains aswell as providing a unifying theory for other proposals.The paper is organised as follows. Setion 2 introdues three examples. Se-tion 3 de�nes some syntax. Setion 4 de�nes the onepts for terms and typesthat are used in the de�nition of abstrat domains. Setion 5 de�nes abstratdomains and programs, and the relationship between onrete and abstrat pro-grams. Setion 6 reports on experiments. Setion 7 onludes.2 Motivating and Illustrative ExamplesWe introdue three examples that we use throughout the paper. The syntaxis that of the typed language G�odel [10℄, to avoid any onfusion with the (un-typed) language Prolog. Variables and (type) parameters begin with lower aseletters; other alphabeti symbols begin with upper ase letters. We use Integer(abbreviated as Int) to illustrate a type ontaining only onstants (1; 2; 3 : : :).Example 2.1. This is the usual list type. We give its delarations to illustratethe type desription language of G�odel.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).List is a (type) onstrutor; u is a type parameter; Nil is a onstant of typeList(u); and Cons is the usual list onstrutor. We use the standard list notation[: : : j : : : ℄ where onvenient. It is ommon to distinguish nil-terminated lists fromopen lists. For example, [℄ and [1; x; y℄ are nil-terminated, but [1; 2jy℄ is open.Previous approahes annot deal with the following two examples [3, 5, 21℄.

Example 2.2. This example was invented to disprove a ommon point of rit-iism that \list attening" annot be realised in G�odel, that is terms suh as[1; [2; 3℄℄ annot be de�ned, let alone attened. The Nests module formalisesnested lists by the type Nest(v). A trivial nest is onstruted using funtion E,a omplex nest by \nesting" a list of nests using funtion N. The delaration forN is remarkable in that the range type, Nest(v), is a proper sub\term" of theargument type List(Nest(v)).IMPORT Lists, Integers.CONSTRUCTOR Nest/1.FUNCTION E: v -> Nest(v);N: List(Nest(v)) -> Nest(v).Example 2.3. A table is a data struture ontaining an ordered olletion ofnodes, eah of whih has two omponents, a key (of type String) and a value,of arbitrary type. We give part of the Tables module whih is provided as asystem module in G�odel.IMPORT Strings.BASE Balane.CONSTRUCTOR Table/1.CONSTANT Null: Table(u);LH, RH, EQ: Balane.FUNCTION Node: Table(u) * String * u * Balane * Table(u) -> Table(u).Tables is implemented in G�odel as an AVL-tree [22℄: A non-leaf node has a keyargument, a value argument, arguments for the left and right subtrees, and anargument whih represents balaning information.3 Notation and TerminologyThe set of polymorphi types is given by the term struture T (�� ; U) where ��is a �nite alphabet of onstrutor symbols whih inludes at least one base(onstrutor of arity 0), and U is a ountably in�nite set of parameters (typevariables). We de�ne the order � on types as the order indued by some (forexample lexiographial) order on onstrutor and parameter symbols, whereparameter symbols ome before onstrutor symbols. Parameters are denotedby u; v. A tuple of distint parameters ordered with respet to � is denoted by�u. Types are denoted by �; �; �; �; ! and tuples of types by ��; �� .Let �f be an alphabet of funtion (term onstrutor) symbols whih in-ludes at least one onstant (funtion of arity 0) and let �p be an alpha-bet of prediate symbols. Eah symbol in �f (resp. �p) has its type as sub-sript. If fh�1:::�n;�i 2 �f (resp. ph�1:::�ni 2 �p) then h�1; : : : ; �ni 2 T (�� ; U)?and � 2 T (�� ; U) n U . If fh�1:::�n;�i 2 �f , then every parameter ourring inh�1; : : : ; �ni must also our in � . This ondition is alled transpareny ondi-tion. We all � the range type of fh�1:::�n;�i and f�1 : : : �ng its domain types.A symbol is often written without its type if it is lear from the ontext. Termsand atoms are de�ned in the usual way [10, 16℄. In this terminology, if a term hasa type �, it also has every instane of �.1 If V is a ountably in�nite set of vari-1 For example, the term Nil has type List(u), List(Int), List(Nest(Int)) et.

ables, then the triple L = h�p; �f ; V i de�nes a polymorphi many-sorted�rst order language over T (�� ; U). Variables are denoted by x; y; terms byt; r; s; tuples of distint variables by �x; �y; and a tuple of terms by �t. The set ofvariables in a syntati objet o is denoted by vars(o).Programs are assumed to be in normal form. Thus a literal is an equationof the form x =hu;ui y or x =hu;ui f(�y), where f 2 �f , or an atom p(�y), wherep 2 �p. A query G is a onjuntion of literals. A lause is a formula of theform p(�y) G. If S is a set of lauses, then the tuple P = hL; Si de�nes apolymorphi many-sorted logi program.A substitution (denoted by �) is a mapping from variables to terms whihis the identity almost everywhere. The domain of a substitution � is dom(�) =fx j x� 6= xg. The appliation of a substitution � to a term t is denoted as t�.Type substitutions are de�ned analogously and denoted by 	 .4 The Struture of Terms and TypesAn abstrat term haraterises the struture of a onrete term. It is learly aruial hoie in the design of abstrat domains whih aspets of the onretestruture should be haraterised [21, 23℄. In this paper we show how this hoiean be based naturally on the information ontained in the type subsripts ofthe funtion symbols in �f . This information is formalised in this setion. Firstwe formalise the relationship between the range type of a funtion to its domaintypes. We then de�ne termination of a term, as well as funtions whih extratertain subterms of a term. In the following, we assume a �xed polymorphimany-sorted �rst order language L = h�p; �f ; V i over T (�� ; U).4.1 Relations between TypesDe�nition 4.1 (subterm type). A type � is a diret subterm type of �(denoted as ���) if there is fh�1:::�n;�i 2 �f and a type substitution 	 suh that�	 = � and �i	 = � for some i 2 f1; : : : ; ng. The transitive, reexive losure of� is denoted as �� . If ��� �, then � is a subterm type of �.The relation � an be visualised as a type graph (similarly de�ned in [18, 23℄).The type graph for a type � is a direted graph whose nodes are subterm typesof �. The node � is alled the initial node. There is an edge from �1 to �2 if andonly if �2��1.Example 4.1. Figure 1 shows a type graph for eah example in Set. 2. The lefthand type graph illustrates Ex. 2.1 where u�List(u) and List(u)�List(u).The other two type graphs illustrate Exs. 2.2 and 2.3, respetively.A simple type is a type of the form C(�u), where C 2 �� . We impose thefollowing two restritions on the language.Simple Range Condition: For all fh�1:::�n;�i 2 �f , � is a simple type.

Nest(v)

v

List(u)

u

List(Nest(v))

u

BalanceTable(u)

StringFig. 1. Some type graphs, with initial node highlightedReexive Condition: For all C 2 �� and types � = C(��); � = C(��), if ��� � ,then � is a sub\term" (in the syntati sense) of � .The Simple Range Condition allows for the onstrution of an abstrat domainfor a type suh as List(�) to be desribed independently of the type �. InMerury (and also in typed funtional languages suh as ML or Haskell), thisondition is enfored by the syntax [19℄. Being able to violate this ondition anbe regarded as an artefat of the G�odel syntax.The Reexive Condition ensures that, for a program and a given query, thereare only �nitely many types and hene, the abstrat program has only �nitelymany abstrat domains and the type graphs are always �nite. It rules out, forexample, a funtion symbol of the form fhList(Int);List(u)i sine this would implythat List(Int)�� List(u). We do not know of any real programs that violatethe Reexive Condition or the Simple Range Condition.De�nition 4.2 (reursive type and non-reursive subterm type). A type� is a reursive type of � (denoted as � ./ �) if ��� � and ��� �.A type � is a non-reursive subterm type (NRS) of � if � 6�� � and thereis a type � suh that �� � and � ./ �. We write N (�) = f� j � is an NRS of �g:If N (�) = f�1; : : : ; �mg and �j � �j+1 for all j 2 f1; : : : ;m � 1g, we abusenotation and denote the tuple h�1; : : : ; �mi by N (�) as well.It follows immediately from the de�nition that, for any types �; �, we have � ./ �and, if � 2 N (�), then � 6./ �. Consider the type graph for �. The reursive typesof � are all the types in the strongly onneted omponent (SCC) ontaining �.The non-reursive subterm types of � are all the types � not in the SCC butsuh that there is an edge from the SCC ontaining � to �.Example 4.2. Consider again Ex. 4.1 and Fig. 1. Then List(u) ./ List(u), andthis is non-trivial in that, in the type graph for List(u), there is an edge fromList(u) to itself. Furthermore List(Nest(v)) ./ Nest(v). Non-reursive sub-term types of simple types are often parameters, as in N (List(u)) = hui andN (Nest(v)) = hvi. However, this is not always the ase, sine N (Table(u)) =hu; Balane; Stringi.The following simple lemma is used in the proof of Lemma 4.2.Lemma 4.1. Let �; �; � be types so that ��� � �� � and � ./ �. Then � ./ �.

Proof. Sine � ./ �, it follows that ��� �. Thus, sine ��� � , it follows that��� � . Furthermore � �� �, and therefore � ./ �. ut4.2 Traversing Conrete TermsFrom now on, we shall often annotate a term t with a type � by writing t�. Theuse of this notation always implies that the type of t must be an instane of �.The annotation � gives the (type) ontext in whih t is used. If S is a set ofterms, then S� denotes the set of terms in S, eah annotated with �.De�nition 4.3 (subterm). Let t� be a term where t = fh�1:::�n;�i(t1; : : : ; tn)and � = �	 . Then t�i	i is a subterm of t� (denoted as t�i	i � t�) for eahi 2 f1; : : : ; ng. As in Def. 4.1, the transitive, reexive losure of � is denotedby �� .It an be seen that s� �� t� implies ��� �. When the supersripts are ignored,the above is the usual de�nition of a subterm. The supersripts provide a uniformway of desribing the \polymorphi type relationship" between a term and itssubterms, whih is independent of further instantiation.Example 4.3. xv is a subterm of E(x)Nest(v), and 7v is a subterm of E(7)Nest(v).De�nition 4.4 (reursive subterm). Let s� and t� be terms suh thats� �� t� , and � a type suh that � ./ � and � �� �. Then s� is a �-reursivesubterm of t� . If furthermore � = �, then s� is a reursive subterm of t� .In partiular, for every type �, a variable is always a �-reursive subterm of itself.The orrespondene between subterms and subterm types an be illustrated bydrawing the term as tree that resembles the orresponding type graph.Example 4.4.The term tree for t = N([E(7)℄)Nest(v)is given in Fig. 2 where the node fort is highlighted. Eah box drawn withsolid lines stands for a subterm. We anmap this tree onto the type graph forNest(v) in Fig. 1 by replaing the sub- 7

E(7) N([E(7)]) [E(7)] NilFig. 2: Term tree for N([E(7)℄)Nest(v)graphs enlosed with dotted lines with orresponding nodes in the type graph.Thus the reursive subterms of t our in the boxes orresponding to nodes inthe SCC of Nest(v). All subterms of t exept 7v are reursive subterms of t.Note that E(7)Nest(v) is a Nest(v)-reursive subterm of [E(7)℄List(Nest(v)) (inDef. 4.4, take � = � = Nest(v) and � = List(Nest(v))). However, E(7)u is not areursive subterm of [E(7)℄List(u). Thus whether or not a member of a list shouldbe regarded as a reursive subterm of that list depends on the ontext.We now de�ne termination of a term. For a term t�, where � is simple, termi-nation means that no reursive subterm of t� is a variable.

De�nition 4.5 (termination funtion Z). Let t� be a term and � be atype suh that � ./ �. De�ne Z(t� ; �) = false if a �-reursive subterm oft� is a variable, and true otherwise. For a set S� of terms de�ne Z(S� ; �) =Vt2S Z(t� ; �). We omit � in the expression Z(t� ; �) whenever � = � . We saythat t is terminated if � is simple and Z(t; �) = true, and t is open if it is notterminated.Example 4.5. Any variable x is open. The term 7 has no variable subterm,so Z(7; Int) = true and 7 is terminated. The term [x℄List(u) has itself andNilList(u) as reursive subterms, so Z([x℄; List(u)) = true and [x℄ is termi-nated. However, [x℄List(Nest(v)) has xNest(v) as a Nest(v)-reursive subterm, soZ([x℄List(Nest(v)); Nest(v)) = false. Furthermore, N([x℄)Nest(v) has xNest(v) as areursive subterm, so Z(N([x℄); Nest(v)) = false and N([x℄) is open.The abstrat domain should also haraterise the instantiation of subterms of aterm. We de�ne funtions whih extrat sets of subterms from a term.De�nition 4.6 (extrator E� for �). Let t� be a term and �, � be types suhthat � ./ � and � 2 N (�). Let R be the set of �-reursive subterms of t� . De�neE�(t� ; �) = vars(R) [fs j r� 2 R and s� � r�g:For a set S� of terms de�ne E�(S� ; �) = St2S E�(t� ; �). As with Z , we writeE�(t� ; �) simply as E�(t; �).Example 4.6. For N([E(7)℄) of type Nest(Int), we have Ev(N([E(7)℄); Nest(v)) =f7g: The type Table(u) has three non-reursive subterm types u, Balane andString, and so there are three extrator funtions: Eu, whih extrats all valuesubterms; EBalane, whih extrats the argument ontaining balaning informa-tion; and EString, whih extrats all key subterms. Note that for a term t of typeTable(String), both EString(t) and Eu(t) would ontain terms of type String.Note that a priori, the extrated terms have no type annotation. This is beause,in the proofs, we sometimes need to write an expression suh as E�(E�(t; �)�	 ; �),whih reads: �rst ompute E�(t; �), then annotate it with �	 , then pass it to E� .Note also that if t has a �-reursive subterm whih is a variable, then thisvariable is always extrated. Intuitively this is beause this variable might laterbe instantiated to a term whih has variable subterms of type �. Thus theproperty \E�(t; �) does not ontain variables" is losed under instantiation.The following theorem shows that Z and E� an be expressed in terms ofthe immediate subterms of a term. This provides the basis for de�ning the ab-stration of a (normal form) equation in a onrete program, whih naturallyinvolves a term and its immediate subterms.Theorem 4.2. Let t = fh�1:::�n;�i(t1; : : : ; tn) be a term and � 2 N (�). ThenZ(t; �) = ^�i./�Z(t�ii ; �)E�(t; �) = fti j �i = �g [[�i./�E�(t�ii ; �):

Proof. If for some i 2 f1; : : : ; ng where �i ./ � , r� is a � -reursive subterm oft�ii , then � ./ � and r��� t� . Thus r� is a � -reursive subterm of t� .If r� is a � -reursive subterm of t� , then either r� = t� or, for some i 2f1; : : : ; ng, r��� t�ii . In the latter ase, ��� �i, �i� � and � ./ � . Hene, byLemma 4.1, �i ./ � so that r� is a � -reursive subterm of t�ii .Thus the � -reursive subterms of t are t, together with the � -reursive sub-terms of t�ii , where �i ./ � . The result then follows from Defs. 4.5 and 4.6. utConsider simple types �; � suh that �	 ./ � for some type substitution 	 (forexample � = Nest(v), � = List(u) and and 	 = fu=Nest(v)g). The followingtheorem relates � with � with respet to the termination and extrator funtions.Theorem 4.3 (Proof see [17℄). Let � and � be simple types suh that �	 ./ �for some 	 , let t be a term having a type whih is an instane of �	 , and� 2 N (�). ThenZ(t�	 ; �) = Z(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) (1)E�(t�	 ; �) = [�2N(�)�	=�E�(t; �) [[�2N(�)�	./�E�(E�(t; �)�	 ; �) (2)Example 4.7. First let � = � = List(u) and 	 be the identity. Then by Def. 4.2there is no � suh that � 2 N (�) and �	 ./ �. Therefore in both equations ofThm. 4.3, the right half of the right hand side is empty. Furthermore there isexatly one � suh that �	 = �, namely � = �. Thus the equations readZ(t; �) = Z(t; �) (1)E�(t; �) = E�(t; �) (2)Similarly, Thm. 4.3 redues to a trivial statement for Ex. 2.3 and in fat for mosttypes that are ommonly used. However for Ex. 4.4, Thm. 4.3 says thatZ([E(7)℄List(Nest(v)); Nest(v)) =Z([E(7)℄; List(u)) ^ Z(Eu([E(7)℄; List(u)); Nest(v)) (1)Ev([E(7)℄List(Nest(v)); Nest(v)) =; [Ev(Eu([E(7)℄; List(u)); Nest(v)) (2)5 Abstrat Terms and Abstrat ProgramsIn this setion, we �rst de�ne the abstration funtion for terms. Then we de�netermination and extrator funtions for abstrat terms. Finally, we de�ne anabstrat program and show how it approximates its onrete ounterpart.

5.1 Abstration of TermsWe �rst de�ne an abstrat domain for eah type. Eah abstrat domain is aterm struture, built using the onstant symbols Bot, Any, Ter, Open, and thefuntion symbols CA, for eah C 2 �� .De�nition 5.1 (abstrat domain). If � is a parameter, de�neD� = fBot; Anyg:If C(�u) is a simple type with N (C(�u)) = h�1; : : : ; �mi and � = C(�u)	 where 	is a type substitution, de�neD� = fCA(b1; : : : ; bm; Ter) j bj 2 D�j	g [fCA(Any; : : : ; Any| {z }m times ; Open); Anyg:D� is the abstrat domain for �. If b 2 D�, then b is an abstrat term for �.In [17℄, it is proven that every domain is well-de�ned. We shall see later thatif an abstrat term CA(b1; : : : ; bm; Ter) abstrats a term t, then eah bj orre-sponds to a non-reursive subterm type �j of C(�u). It haraterises the degreeof instantiation of the subterms extrated by E�j .The termination ags Ter and Open in the last argument position of anabstrat term are Boolean ags. The ag Ter abstrats the property of a termbeing terminated and Open that of being open. Note that for some types, forexample Int, a term an be open only if it is a variable. In these ases, thetermination ag an be omitted in the implementation (see Set. 6).Example 5.1. Consider the examples in Set. 2 and Fig. 1.DInt = fIntA(Ter); IntA(Open); Anyg:The following examples illustrate that Def. 5.1 is \parametri".DList(Int) = fListA(i; Ter) j i 2 DIntg [fListA(Any; Open); AnygDList(String) = fListA(i; Ter) j i 2 DStringg [fListA(Any; Open); AnygDList(u) = fListA(i; Ter) j i 2 Dug [fListA(Any; Open); Anyg:Some further examples are, assuming that u � Balane � String:DBalane = fBalaneA(Ter); BalaneA(Open); AnygDString = fStringA(Ter); StringA(Open); AnygDTable(Int) = fTableA(i; b; s; Ter) j i 2 DInt; b 2 DBalane; s 2 DStringg[fTableA(Any; Any; Any; Open); AnygDNest(Int) = fNestA(i; Ter) j i 2 DIntg [fNestA(Any; Open); Anyg:We now de�ne an order on abstrat terms whih has the usual interpretationthat \smaller" stands for \more preise".

De�nition 5.2 (order < on abstrat terms). For the termination ags de-�ne Ter < Open. For abstrat terms, < is de�ned as follows:Bot < b if b 6= Bot,b < Any if b 6= Any,CA(b1; : : : ; bm;) � CA(b01; : : : ; b0m; 0) if � 0 and bj � b0j , j 2 f1; : : : ;mg:For a set S of abstrat terms, let tS denote the least upper bound of S.We now de�ne the abstration funtion for terms. This de�nition needs an ab-stration of truth values as an auxiliary onstrution.De�nition 5.3 (abstration funtion � for terms). Let � = C(�u) andN (�) = h�1; : : : ; �mi. For the truth values de�ne �(true) = Ter and �(false) =Open. If S is a set of terms, de�ne�(S) = tf�(t) j t 2 Sg;where �(t) is de�ned as:Any if t is a variable,CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �))) if t = fh�1:::�n;�i(t1; : : : ; tn).Note that this de�nition is based on the fat that �(;) = Bot. From this itfollows that the abstration of a onstant t = fh�i is CA(Bot; : : : ; Bot; Ter).The least upper bound of a set of abstrat terms gives a safe approximationfor the instantiation of all orresponding onrete terms. Safe means that eahonrete term is at least as instantiated as indiated by the least upper bound.Example 5.2. We illustrate Def. 5.3.�(7) = IntA(Ter) (� = Int;m = 0; n = 0)�(Nil) (� = List(u);N (�) = hui; n = 0)= ListA(�(;); �(Z(Nil; �)))= ListA(Bot; Ter)�(Cons(7; Nil)) (� = List(u);N (�) = hui; n = 2)= ListA(tf�(7)g; �(Z(Cons(7; Nil); �)))= ListA(IntA(Ter); Ter):The table below gives some further examples.term type abstrationx u Any[7,x℄ List(Int) ListA(Any; Ter)[7|x℄ List(Int) ListA(Any; Open)E(7) Nest(Int) NestA(IntA(Ter); Ter)[E(7)℄ List(Nest(Int)) ListA(NestA(IntA(Ter); Ter); Ter)N([E(7)℄) Nest(Int) NestA(IntA(Ter); Ter)N([E(7),x℄) Nest(Int) NestA(Any; Open)

Note that there is no term of type Int whose abstration is IntA(Open).The following theorem show that the abstration aptures groundness.Theorem 5.1 (Proof see [17℄). Let S be a set of terms having the same type.Then a variable ours in an element of S (that is S is non-ground) if and onlyif Any or Open ours in �(S).5.2 Traversing Abstrat TermsIn order to de�ne abstrat uni�ation and, in partiular, the abstration of anequation in a program, we require an abstrat termination funtion and ab-strat extrators similar to those already de�ned for onrete terms. The typesupersript annotation for onrete terms is also useful for abstrat terms.De�nition 5.4 (abstrat termination funtion and extrator for �).Let � and � = C(�u) be simple types suh that �	 ./ � for some 	 , and N (�) =h�1; : : : ; �mi. Let b be an abstrat term for an instane of �	 .1. Abstrat termination funtion.AZ(b�	 ; �) = Open if b = AnyAZ(b�	 ; �) = Ter if b = BotAZ(b�	 ; �) = ^ ^�j	./�AZ(b�j	j ; �) if b = CA(b1; : : : ; bm;):2. Abstrat extrator for �. Let � 2 N (�).AE�(b�	 ; �) = Any if b = AnyAE�(b�	 ; �) = Bot if b = BotAE�(b�	 ; �) = t(fbj j �j	 = �g[fAE�(b�j	j ; �) j �j	 ./ �g) if b = CA(b1; : : : ; bm;):We omit the supersript �	 in the expressions AZ(b�	 ; �) and AE�(b�	 ; �)whenever � = � and 	 is the identity. In this (very ommon) ase, the abstrattermination funtion is merely a projetion onto the termination ag of an ab-strat term (or Open if the abstrat term is Any). Similarly, the abstrat extratorfor � is merely a projetion onto the jth argument of an abstrat term, where� = �j . Note the similarity between the above de�nition and Thm. 4.2.Example 5.3.AZ(ListA(Any; Ter)List(Nest(v)); Nest(v)) = Ter ^AZ(Any; Nest(v)) = Open:AEv(ListA(Any; Ter)List(Nest(v)); Nest(v)) = Any:AZ(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)); Nest(v)) =Ter ^ AZ(NestA(IntA(Ter); Ter); Nest(v)) = Ter:AEv(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)); Nest(v)) =AEv(NestA(IntA(Ter); Ter); Nest(v)) = IntA(Ter):

The following theorem states the fundamental relationship between onrete andabstrat termination funtions and extrators.Theorem 5.2. Let � and � = C(�u) be simple types suh that �	 ./ � for some	 , and � 2 N (�). Let t�	 be a term. Then�(Z(t�	 ; �)) = AZ(�(t)�	 ; �) (1)�(E�(t�	 ; �)) = AE�(�(t)�	 ; �) (2)Proof. We only show (2), as the proof for (1) is similar. The proof is by indutionon the struture of t. First assume t is a variable x or a onstant d. Here we omitthe type supersripts beause they are irrelevant.�(E�(x; �))=tf�(x)g=Any=AE�(Any; �)=AE�(�(x); �):�(E�(d; �))=t ;=Bot=AE�(CA(Bot; : : : ; Bot; Ter); �)=AE�(�(d); �):Now assume t is a ompound term. Let N (�) = h�1; : : : ; �mi. In the followingsequenes of equations, � marks steps whih use straightforward manipulationssuh as rearranging least upper bounds or appliations of � to sets.AE�(�(t)�	 ; �) = (Def. 5.3)AE�(CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �)))�	 ; �) = (Def. 5.4)t(f�(E�j (t; �)) j �j	 = �g [fAE�(�(E�j (t; �))�j	 ; �) j �j	 ./ �g) =(� & hyp.)t([�j	=�f�(E�j (t; �))g [[�j	./�f�(E�(E�j (t; �)�j	 ; �))g) =(� & Thm. 4.3)�(E�(t�	 ; �)): utExample 5.4. This illustrates Thm. 5.2 for � = �	 = List(u) and � = u.�(Z([7℄; List(u))) = Ter = AZ(ListA(IntA(Ter); Ter); List(u))�(Eu([7℄; List(u))) = IntA(Ter) = AEu(ListA(IntA(Ter); Ter); List(u)):5.3 Abstrat CompilationWe now show how the abstrat domains an be used in the ontext of abstratompilation. We de�ne an abstrat program and show that it is a safe approxi-mation of the onrete program with respet to the usual operational semantis.In a (normal form) program, eah uni�ation is made expliit by an equation.We now de�ne an abstration of suh an equation. For an equation of the formx = f(y1; : : : ; yn), the abstration is an atom of the form fdep(b; b1; : : : ; bn),where fdep is a prediate de�ned in the abstrat program.

De�nition 5.5 (fdep). Let fh�1:::�n;�i 2 �f where � = C(�u) and N (�) =h�1; : : : ; �mi. Then fdep(b; b1; : : : ; bn) holds ifb = CA(a1; : : : ; am;) whereaj = t (fbi j �i = �jg [fAE�j (b�ii ; �) j �i./�g) for all j2f1;:::;mg (1) = ^�i./�AZ(b�ii ; �) (2)Example 5.5. To give an idea of how Def. 5.5 translates into ode, onsider Cons.Assuming that Lub(a; b;) holds if = tfa; bg, one lause for Consdep might be:Cons_dep(List_a(,Ter),b,List_a(a,Ter)) <-Lub(a,b,).The following theorem shows that fdep orretly aptures the dependeny be-tween �(f(t1; : : : ; tn)) and �(t1); : : : ; �(tn).Theorem 5.3. If t = f(t1; : : : ; tn) then fdep(�(t); �(t1); : : : ; �(tn)) holds.Proof. Suppose N (�) = h�1; : : : ; �mi and � = C(�u). By Def. 5.3�(t) = CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �))):We show that (1) in Def. 5.5 holds. For eah �j 2 N (�),�(E�j (t; �))= �(fti j �i = �jg [[�i./� E�j (t�ii ; �)) (Thm. 4.2)= t (f�(ti) j �i = �jg [f�(E�j (t�ii ; �)) j �i./�g) (moving � inwards)= t (f�(ti) j �i = �jg [fAE�j (�(ti)�i ; �) j �i./�g) (Thm. 5.2).Equation (2) in Def. 5.5 is proven in a similar way. utDe�nition 5.6 (abstration � of a program). For a normal form equatione de�ne�(e) = � e if e is of the form x = yfdep(x; y1; : : : ; yn) if e is of the form x = f(y1; : : : ; yn):For a normal form atom a and lause K = h g1 ^ � � � ^ gl de�ne�(a) = a�(K) = �(h) �(g1) ^ � � � ^ �(gl):For a program P = hL; Si de�ne�(P) = f�(K) j K 2 Sg [ffdep(a; a1; : : : ; an) j fdep(a; a1; : : : ; an) holdsg:Example 5.6. In the following we give the usual reursive lause for Append innormal form and its abstration.

%onrete lause %abstrat lauseAppend(xs,ys,zs) <- Append(xs,ys,zs) <-xs = [x|x1s℄ & Cons_dep(xs,x,x1s) &zs = [x|z1s℄ & Cons_dep(zs,x,z1s) &Append(x1s,ys,z1s). Append(x1s,ys,z1s).We now de�ne the operational semantis of onrete and abstrat programs.We assume a �xed language L and program P = hL; Si, and a left-to-rightomputation rule. A program state is a tuple hG;�i where G is a query and �a substitution. It is an initial state if � is empty. We write C 2� S if C is arenamed variant of a lause in S.De�nition 5.7 (redues to). The relation P�! (\redues to") between statesis de�ned by the following rules:hh1 : � � � : hl; �i P�! hh2 : � � � : hl; ��0iif h1 is `x = t' and x��0 = t��0 (1)hh1 : � � � : hl; �i P�! hG : h2 : � � � : hl; ��0iif h G 2� S and h��0 = h1��0 (2)P�! j for j � 0 and P�!� are de�ned in the usual way. If for an initial query G,hG; ;i P�!� hp(x1; : : : ; xn) : H;�i P�!� hH;�0i;we all p(x1; : : : ; xn)� a all pattern and p(x1; : : : ; xn)�0 an answer pattern forp.Note that this notion of \redues" with arbitrary uni�er is onsidered in [13℄.The next theorem shows that for all all and answer patterns, whih mayarise in a derivation of a onrete program, there are orresponding patterns ina derivation of the abstrat program.Theorem 5.4. Let H;H 0 be queries, � a substitution and j � 0. If hH; ;i P�! jhH 0; �i, then h�(H); ;i �(P)�! j h�(H 0); ��i, where�� = fx=�(x�) j x 2 dom(�)g.Proof. By Def. 5.7, hH; ;i P�! j hH 0; �i if and only if hH;�i P�! j hH 0; �i, andlikewise for �(P). Therefore it is enough to show that for all j � 0hH;�i P�! j hH 0; �i implies h�(H); ��i �(P)�! j h�(H 0); ��i: (3)The proof is by indution on j. The base ase j = 0 holds sine h�(H); ��i �(P)�!0h�(H); ��i. For the indution step, assume (3) holds for some j � 0. We showthat for every query H 00hH;�i P�! j+1 hH 00; �i implies h�(H); ��i �(P)�! j+1 h�(H 00); ��i:

If hH;�i P�! j+1 hH 00; �i is false, the result is trivial. If hH;�i P�! j+1 hH 00; �i,thenhH;�i P�! j hH 0; �i P�! hH 00; �i for some query H 0, andh�(H); ��i �(P)�! j h�(H 0); ��i by hypothesis.It only remains to be shown that h�(H 0); ��i �(P)�! h�(H 00); ��i. We distinguishwhether Rule (1) or (2) of Def. 5.7 was used for the step hH 0; �i P�! hH 00; �i.(1): H 0 = h1 : � � � : hl where h1 is `x = t', and t = y or t = f(x1; : : : ; xn). In the�rst ase �(h1) = h1. Sine x� = y�, it follows that fx=�(x�); y=�(x�)g � ��and therefore x�� = y��. Thus h�(H 0); ��i �(P)�! h�(H 00); ��i by Rule (1). Inthe seond ase �(h1) = fdep(x; x1; : : : ; xn). Sine x� = f(x1�; : : : ; xn�),fx=�(f(x1�; : : : ; xn�)); x1=�(x1�); : : : ; xn=�(xn�)g � ��:Thus, by Thm. 5.3, fdep(x; x1; : : : ; xn)�� holds so that fdep(x; x1; : : : ; xn)�� 2�(P) by Def. 5.6. Thus h�(H 0); ��i �(P)�! h�(H 00); ��i by Rule (2).(2): H 0 = h1 : � � � : hl where h G 2� S and h� = h1�. By Def. 5.6,�(h1 G) 2� �(P). Furthermore �(h) has the form p(�x), and �(h1) has theform p(�y). Sine �x� = �y� it follows that p(�x)�� = p(�y)��. ut6 Implementation and ResultsFrom now on we refer to the abstrat domains de�ned in this paper as typed do-mains. We have implemented our mode analysis for objet programs in G�odel.This implementation naturally falls into two stages: In the �rst stage, the lan-guage delarations are analysed in order to onstrut the typed domains, andthe program lauses are abstrated. In the seond stage, the abstrat programis evaluated using standard abstrat ompilation tehniques.We have implemented the �rst stage in G�odel, using the G�odel meta-pro-gramming failities. G�odel meta-programming is slow, but this �rst stage saleswell, as the time for abstrating the lauses of a program is linear in their number.Analysing the type delarations is not a problem in pratie. We have analysedontrived, omplex type delarations within a ouple of seonds.The seond stage was implemented in Prolog, so that an existing analyserould be used. Abstrat programs produed by the �rst stage were transformedinto Prolog. All all and answer patterns, whih may arise in a derivation of anabstrat program for a given query, are omputed by the analyser. By Thm. 5.4,these patterns orrespond to patterns in the derivation of the onrete program.For example a all p(Any; IntA(Ter)) in the abstrat program indiates thatthere may be a all p(x,7) in the onrete program.We now demonstrate the preision of the typed domain for Table(Int). Thearguments of the prediate Insert represent: a table t, a key k, a value v, anda table obtained from t by inserting the node whose key is k and whose value

Table 1. Some all and answer patterns for InsertInsert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; Any) leads to answer patternInsert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; TabA(IntA; BalA; StrA; Ter)):Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; Any) leads to answer patternInsert(TabA(IntA; BalA; StrA; Ter); StrA; Any; TabA(Any; BalA; StrA; Ter)):is v. Table 1 shows some initial all patterns and the answer pattern that isinferred for eah all pattern. For readability, we have used some abbreviationsand omitted the termination ag for types Integer, Balane and String.Clearly, inserting a ground node into a ground table gives a ground table.This an be inferred with the typed domains, but it ould also be inferred usinga domain whih an only distinguish between ground and non-ground terms [4℄.Now onsider the insertion of a node with an uninstantiated value into a groundtable. With typed domains, it an be inferred that the result is still a table butwhose values may be uninstantiated.We used a modi�ed form of the analyser of [8℄ running on a Sun SPARCUltra 170. The analysis times for the two example analyses using Insert werewere 0.81 seonds and 2.03 seonds, respetively. Comparing this to an analysisusing a domain whih an only distinguish ground and non-ground terms, thetimes were 0.09 seonds and 1.57 seonds, respetively. Apart from Tables, wealso analysed some small programs, namely Append, Reverse, Flatten (fromthe Nests module), TreeToList, Qsort, and Nqueens. For these, all analysistimes were below 0.03 seonds and thus too small to be very meaningful.Our experiene is that the domain operations, namely to ompute the leastupper bound of two abstrat terms, are indeed the bottlenek of the analysis.Therefore it is ruial to avoid performing these omputations unneessarily.Also one might ompromise some of the preision of the analysis by onsideringwidenings [6℄ for the sake of eÆieny. In order to ondut more experiments, onewould need a suite of bigger typed logi programs. A formal omparison betweenanalyses for typed logi programs and untyped ones is of ourse diÆult.7 Disussion and Related WorkWe have presented a general domain onstrution for mode analysis of typedlogi programs. This analysis gives more aurate information than one basedon a ground/non-ground domain [4℄. For ommon examples (lists, binary trees),our formalism is simple and yields abstrat domains that are omparable to thedomains in [3℄. The novelty is that the onstrution is desribed for arbitrarytypes. In ontrast, in [3℄, an abstrat domain for obtaining this degree of preisionfor, say, the types in the Tables module, would have to be hand-rafted.The fundamental onepts of this work are reursive type and non-reursivesubterm type, whih are generalisations of ideas presented in [3℄ for lists. Theresulting abstrat domains are entirely in the spirit of [3, 5℄ and we believe that

they provide the highest degree of preision that a generi domain onstrutionshould provide. Even if type delarations that require the full generality of ourformalism are rare, we think that our work is an important ontribution beauseit helps to understand other, more ad-ho and pragmati domain onstrutionsas instanes of a general theory. One ould always simplify or prune down ourabstrat domains for the sake of eÆieny.In its full generality the formalism is, admittedly, rather omplex. This ismainly due to funtion delarations where the range type ours again as a propersub\term" of an argument type, suh as the delaration of N in Ex. 2.2. Thisphenomenon ours in the delarations for rose trees [14℄, that is, trees wherethe number of hildren of eah node is not �xed. One should note that while thetheory whih allows for a domain onstrution for, say, Nest(Int) is oneptuallyomplex, the omputational omplexity of the domain operations for Nest(Int)is lower than for, say, List(List(List(Int))). In short, the omplexity of theabstrat domains depends on the omplexity of the type delarations.We have built on the ideas presented in [5℄ for untyped languages. Notablythe title of [5℄ says that type, not mode, dependenies are derived. Even in anuntyped language suh as Prolog, one an de�ne types as sets of terms givenby some kind of \delaration", just as in a typed language [1℄. In this asetype analysis (that is, inferring that an argument is instantiated to a term ofa ertain type) is inseparable from mode analysis. It seems that [5℄ provides astraightforward domain onstrution for arbitrary types, but this is not the ase.It is not spei�ed what kind of \delarations" are implied, but the examplesand theory suggest that all types are essentially lists and trees. The Tables andNests examples given in Set. 2 are not aptured.Reursive modes [21℄ haraterise that the left spine, right spine, or both,of a term are instantiated. The authors admit that this may be onsidered anad-ho hoie, but on the other hand, they present good experimental results.They do not assume a typed language and thus annot exploit type delarationsin order to provide a more generi onept of reursive modes, as we have doneby the onept of termination.A omplex system for type analysis of Prolog is presented in [23℄. As far aswe an see, this system is not in a formal sense stronger or weaker that our modeanalysis. The domain Pat(Type) used there is in�nite, so that widenings haveto be introdued to ensure �niteness, and \the design of widening operatorsis experimental in nature" [23℄. In ontrast, we exploit the type delarationsto onstrut domains that are inherently �nite and whose size is immediatelyditated by the omplexity of the type delarations.Merury [19℄ has a strong mode system based on instantiation states. Theseare assertions of how instantiated a term is. An instantiation state is similar toan abstrat term. Indeed, given some type delarations, it is possible to de�ne aninstantiation state in Merury syntax whih, while not being exatly the same,is omparable in preision to an abstrat term in our formalism. The di�ereneis that for a given type, there are potentially in�nitely many instantiation states.

The urrent Merury implementation does not support instantiation states intheir full generality, although a version supporting partially instantiated data-strutures is being developed. Within the limits of the expressiveness of themode system, Merury does a ombination of mode analysis and mode hekingof modes delared by the user.Even if instantiation states were supported in their full generality, the po-tentially in�nite number of instantiation states means that mode inferene mustalways be approximate. Sine our abstrat terms formalise what might be alleda \reasonable" degree of preision, we believe that our proposal ould serve asa basis for this approximation. One ould envisage a Merury implementationdoing a ombination of mode inferene and heking, based on the set of modeswhih is expressible using our abstrat domains. Hene our domains ould alsobe used to delare modes.The mode system in Merury is based on [18℄, where the Simple Range Con-dition and the Reexive Condition that we impose are not expliitly required.However, [18℄ does not de�ne the type system preisely, instead referring to [15℄,whose formal results have been shown to be inorret [16℄. It is therefore diÆultto assess whether that approah would work for programs whih violate theseonditions. We know of no real G�odel programs that violate either of the Sim-ple Range or Reexive Conditions. We have found that violating the ReexiveCondition raises fundamental questions about deidability in typed languages,whih seem to be related to the onept of polymorphi reursion [11, 12℄.There is another potential appliation of our work. In G�odel, the delay dela-rations whih state that a prediate is delayed until an argument (or a subtermof the argument) is ground or non-variable, annot desribe the behaviour ofthe G�odel system prediates preisely. We have observed that, typially, the de-gree of instantiation for a G�odel system prediate to run safely without delayingould be spei�ed by an abstrat term in our typed domains. Thus they ouldprovide a good basis for delaring onditions for delaying.Our approah may also be appliable to untyped languages, if we have infor-mation at hand that is similar to type delarations. Suh information might beobtained by inferring delarations [2℄ or from delarations as omments [20℄. Cer-tainly our analysis would then regain aspets of type rather than mode inferene,whih it had lost by transferring the approah to typed languages.AknowledgementsWe thank Tony Bowers, Henning Christiansen, Bart Demoen, Andrew Heaton,Fergus Henderson, Jonathan Martin and Lambert Meertens for helpful dis-ussions and omments. Jan{Georg Smaus was supported by EPSRC GrantNo. GR/K79635.Referenes1. A. Aiken and T. K. Lakshman. Diretional type heking of logi programs. InSAS '94, pages 43{60. Springer-Verlag, 1994.

2. H. Christiansen. Deriving delarations from programs. Tehnial report, RoskildeUniversity, P.O.Box 260, DK-4000 Roskilde, 1997.3. M. Codish and B. Demoen. Deriving polymorphi type dependenies for logiprograms using multiple inarnations of Prop. In SAS'94, pages 281{297. Springer-Verlag, 1994.4. M. Codish and B. Demoen. Analyzing logi programs using \PROP"-ositionallogi programs and a Magi Wand. Journal of Logi Programming, 25(3):249{274,1995.5. M. Codish and V. Lagoon. Type dependenies for logi programs using ACI-uni�ation. In Israeli Symposium on Theory of Computing and Systems, pages136{145. IEEE Press, 1996.6. P. Cousot and R. Cousot. Comparing the Galois onnetion and widen-ing/narrowing approahes to abstrat interpretation. In M. Bruynooghe andM. Wirsing, editors, PLILP'92, LNCS, pages 269{295. Springer-Verlag, 1992.7. J. Gallagher, D. Boulanger, and H. Sa�glam. Pratial model-based stati analysisfor de�nite logi programs. In J. W. Lloyd, editor, ILPS'95, pages 351{365. MITPress, 1995.8. A.J. Heaton, P.M. Hill, and A.M. King. Analysing logi programs with delay fordownward-losed properties. In N.E. Fuhs, editor, LOPSTR'97, LNCS. Springer-Verlag, 1997.9. P.M. Hill and A. King. Determinay and determinay analysis. Journal of Pro-gramming Languages, 5(1):135{171, 1997.10. P.M. Hill and J.W. Lloyd. The G�odel Programming Language. MIT Press, 1994.11. S. Kahrs. Limits of ML-de�nability. In H. Kuhen and S. D. Swierstra, editors,PLILP'96, LNCS, pages 17{31. Springer-Verlag, 1996.12. A. J. Kfoury, J. Tiuryn, and P. Urzyzyn. Type reursion in the presene of poly-morphi reursion. ACM Transations on Programming Languages and Systems,15(2):290{311, 1993.13. J. W. Lloyd. Foundations of Logi Programming. Springer-Verlag, 1987.14. L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam; IFIPWorking Group 2.1 working paper 592 ROM-25, 1988.15. A. Myroft and R. O'Keefe. A polymorphi type system for Prolog. Arti�ialIntelligene, 23:295{307, 1984.16. F. Pfenning, editor. Types in Logi Programming, hapter 1. MIT Press, 1992.17. J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typed logiprograms. Tehnial Report 2000.06, Shool of Computer Studies, University ofLeeds, 2000. Springer-Verlag.18. Z. Somogyi. A system of preise modes for logi programs. In ICLP'87, pages769{787. MIT Press, 1987.19. Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury,an eÆient purely delarative logi programming language. Journal of Logi Pro-gramming, November 1996.20. K. Stroetmann and T. Gla�. A semantis for types in Prolog: The type system ofpan version 2.0. Tehnial report, Siemens AG, M�unhen, Germany, 1995.21. Jihang Tan and I-Peng Lin. Reursive modes for preise analysis of logi programs.In ILPS'97, pages 277{290. MIT Press, 1997.22. M. van Emden. AVL tree insertion: A benhmark program biased towards Prolog.Logi Programming Newsletter 2, 1981.23. P. Van Hentenryk, A. Cortesi, and B. Le Charlier. Type analysis of Prolog usingtype graphs. Tehnial Report CS-93-52, Brown University Box 1910, Providene,RI 02912, November 1993.

�4 �3 �2 �1C3(�u3) C2(�u2) C1(�u1)6 6 6? ? ?

�

�

�= = =	2 	1 	0	3 	2 	1: : :: : : NRS NRS NRSFig. 3. The sequene of non-reursive subterm typesA ProofsThe following lemma states that the relation � is losed under instantiation ofits arguments.Lemma A.1. Let �; � be types and 	 a type substitution. If ��� then �	 ��	 .If ��� � then �	 �� �	 .Proof. For the �rst statement, there is fh�1:::�n;�i 2 �f and a type substitution	 0 suh that for some i 2 f1; : : : ; ng, �i	 0 = � and �	 0 = �. Consequently�i	 0	 = �	 and �	 0	 = �	 , so �	 ��	 . The seond statement follows fromthe �rst. utThe next lemma ensures that the abstrat domains are well-de�ned. It statesthat any sequene of non-reursive subterm types terminates.Lemma A.2. Let � 2 T (�� ; U) n U and � � �� . Let I be a non-empty indexset (�nite or in�nite) starting at 1 and f(Ci(�ui); �i; 	i) j i 2 Ig a sequene whereC1 2 � , �1 = C1(�u1)	1 = � , dom(1) � �u1 and, for eah i 2 I where i > 1:� Ci 2 � , dom(i) � �ui and Ci(�ui)	i = �i	i�1,� �i 2 T (�;U) and �i 2 N (Ci�1(�ui�1)).Then I and hene f(Ci(�ui); �i; 	i) j i 2 Ig is �nite.Proof. Let 	0 be the identity substitution. The sequene is illustrated in Fig. 3.First note that, by Lemma A.1 and Def. 4.2, for eah i 2 I where i � 2, we have�i	i�1�� �i�1	i�2. Thus, for all i; j 2 I where i > j, �i	i�1�� �j	j�1.Let d(�) be the number of ourrenes of onstrutors in a type �. If �0 � �� ,de�ne D(�0; �) = d(�) + XC2�00� X�2N (C(�u)) d(�)1A :The proof is by indution on D(�; �). Sine � =2 U , it follows that D(�; �) � 1.If D(�; �) = 1, then � = C1(�u1), N (C1(�u1)) � U and jI j � 2.Suppose that D(�; �) = M > 1. Assume that, for all types � and sets ofonstrutors �0 � � suh that D(�0; �) < M , the result holds. Sine the result

�3 = String �2 = u1 �1 = List(Table(Int))
C3 = String C2(u2) = Table(u2) C1(u1) = List(u1)

6 6 6? ? ?

�

�String Table(Int) List(Table(Int))	2 	1 	0 = ;	3 = ; 	2 = fu2=Intg 	1 = fu1=Table(Int)gNRS NRS
Fig. 4. An example of the sequene of non-reursive subterm typesobviously holds if jI j � 2, suppose jI j > 2 so that �2 is not a parameter. Considerthe sequene f(Ci(�ui); �i; 	 0i) j i 2 I 0g where I 0 is an index set starting at 2, 	 01 isthe identity substitution and, for eah i 2 I 0, we have Ci(�ui)	 0i = �i	 0i�1. Sine�i 2 N (Ci�1(�ui�1)), 	 0i	1 = 	i for eah i 2 I 0. As in the �rst paragraph, for eahi 2 I 0, �i	 0i�1�� �2. However, �2 2 N (C1(�u1)). Thus, by the Reexive Conditionand Lemma 4.1, for eah i 2 I 0, we have Ci 6= C1. Thus, for eah i 2 I 0, we haveCi 2 � 0 where � 0 = � n fC1g. However,D(� 0; �2) = d(�2) +D(�; �) � d(�) � X�2N (C1(�u)) d(�):Hene, as d(�) > 0 and �2 2 N (C1(�u)), D(� 0; �2) < M and we an use theindution hypothesis. Hene I 0 is �nite.Assume now that I 0 is maximal wrt. to the above onditions and that jI 0j =N 0 and suppose K = N 0+1 2 I . (If K =2 I , then, as I 0 is �nite, I is �nite.) Then�K	 0K�1 = u where u is parameter sine, if �K	 0K�1 = CK(�uK)	 0K , then K alsosatis�es the above onditions so that I 0 is not maximal. Thus 	 0K�1 is the identitysubstitution and �K = u. By the transpareny ondition, sine �K �� C1(�u1),u 2 �u1. As 	K�1 = 	 0K�1	1, we have 	K�1 = 	1 and �K	K�1 2 �u1	1. Hened(�K	K�1) < d(�) so that D(�; �K	K�1) < D(�; �):Hene, the indutive hypothesis an be applied to the remaining sequene start-ing at �K . Thus the subsequene starting at �K is �nite and therefore the om-plete sequene starting at � is �nite. utExample A.1. Figure 4 gives an example of a sequene of types as onstrutedin Lemma A.2. The abstrat domain for List(Table(Int)) is de�ned in terms ofthe abstrat domain for Table(Int), and the abstrat domain for Table(Int) is

de�ned in terms of the abstrat domain for String. Therefore it is ruial thatany suh hain is �nite.The following lemmas are needed in the proof of Thm. 4.3.Lemma A.3. Let � be a type, 	 a type substitution, and t a term having atype whih is an instane of �	 . If s� is a subterm of t�, then s has a type whihis an instane of �	 .Proof. Indution on the depth of subterms. utLemma A.4. Let �1; �2; �3 be types. If �1 ./ �2 and �2	 ./ �3 for some typesubstitution 	 then �1	 ./ �3.Proof. By Lemma A.1 it follows that �1	 �� �3 and �3�� �1	 . utTheorem 4.3. Let � and � be simple types suh that �	 ./ � for some 	 , lett be a term having a type whih is an instane of �	 , and � 2 N (�). ThenZ(t�	 ; �) = Z(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) (1)E�(t�	 ; �) = [�2N(�)�	=�E�(t; �) [[�2N(�)�	./�E�(E�(t; �)�	 ; �) (2)Proof. The proof onsists of four parts. In Part 1, we de�ne a number of setsof subterms of t. We then show six propositions whih say that eah expressionourring in (1) and (2) an be expressed in terms of these sets. In Part 2 weshow how the left and right hand sides of both (1) and (2) an be related usingthese sets. This is then used in Part 3 to show (1), and in Part 4 to show (2).Part 1: To avoid onfusion between the many symbols ourring in the proof,keep in mind that �, � , � and 	 our in the statement and thus are �xed. Weuse f as an abbreviation for fh� 01:::� 0n;� 0i (not fh�1:::�n;�i, as earlier in this paper),and �r to denote (r1; : : : ; rn). Supersripts are omitted where irrelevant. De�neR = fr! j r! is a �{reursive subterm of t�	gS = fri j f(�r)� 0	 0 2 R and � 0i	 0 = �gA = fr! j r! is a �{reursive subterm of t�g:Note that, by Lemma A.3, eah r! 2 A has a type whih is an instane of !	 .Furthermore for all � 2 N (�) de�neB� = fri j f(�r)� 0	 0 2 A and � 0i	 0 = �g:Note that, by Lemma A.3, eah ri 2 B� has a type whih is an instane of� 0i	 0	 (= �). For all � 2 N (�) with �	 ./ � de�neC� = fr! j r! is a �-reursive subterm of some s�	 ; s 2 B�gD� = fri j f(�r)� 0	 0 2 C� and � 0i	 0 = �g:S1-S6 state how these sets relate to the omputations of (1) and (2).

S1 Z(t�	 ; �) = false if and only if vars(R) 6= ;.S2 Z(t; �) = false if and only if vars(A) 6= ;.S3 E�(t�	 ; �) = vars(R) [S.S4 For eah � 2 N (�), E�(t; �) = vars(A) [B�.S5 For eah � 2 N (�) with �	 ./ �, Z(E�(t; �)�	 ; �) = false i� vars(C�[A) 6=;.S6 For eah � 2 N (�) with �	 ./ �, E�(E�(t; �)�	 ; �) = vars(A) [vars(C�) [D�.S1 and S2 follow from Def. 4.5 and the de�nitions of R and A. S3 and S4 followfrom Def. 4.6 and the de�nitions of R;S;A and B�. S5 and S6 are proved below.First we prove S5.Z(E�(t; �)�	 ; �) = false() (by S4)Z((vars(A) [B�)�	 ; �) = false() (by Def. 4.5)vars(fr! j r! is a ��reursive subterm of s�	 ; s 2 vars(A) [B�g) 6= ; ()(by Def. 4.4)vars(A) [vars(fr! j r! is a ��reursive subterm of s�	 ; s 2 B�g) 6= ; ()(by Def. of C�)vars(A) [vars(C�) 6= ;:We now prove S6.E�(E�(t; �)�	 ; �) = (by S4)E�((vars(A) [B�)�	 ; �) = (by Def. 4.6)vars(fr! j r! is a ��reursive subterm of s�	 ; s 2 vars(A) [B�g) [fri j f(�r)� 0	 0 is a ��reursive subterm of s�	 ; s 2 B�; � 0i	 0 = �g =(by Def. 4.4)vars(A) [vars(fr! j r! is a ��reursive subterm of s�	 ; s 2 B�g)[fri j f(�r)� 0	 0 is a ��reursive subterm of s�	 ; s 2 B�; � 0i	 0 = �g =(by Def. of C�; D�)vars(A) [vars(C�) [D�:Part 2: Let r! be a subterm of t� at depth d. We show by indution on d thatr!	 2 R if and only if r! 2 A or r!	 2 C� for some � 2 N (�) with �	 ./ �. Ford = 0 this follows from the de�nitions of R and A.Suppose now that r! is a subterm of t� at depth d > 0. Then there exists asubterm f(�r)� 0	 0 of t� at depth d � 1 suh that for some i 2 f1; : : : ; ng, r = riand ! = � 0i	 0.\)": Assume that r!	 2 R. Sine !	 ./ �, it follows from Lemma 4.1 that� 0	 0	 ./ � so that f(�r)� 0	 0	 2 R. By the indution hypothesis there are twopossibilities:

a) f(�r)� 0	 0 2 A. Sine � 0	 0 ./ � , either ! ./ � or ! 2 N (�). If ! ./ � thenr! 2 A. If ! 2 N (�), that is ! 2 N (�), then r 2 B! and hene r!	 2 C!,and therefore r!	 2 C� for some � 2 N (�).b) f(�r)� 0	 0	 2 C� for some � 2 N (�) with �	 ./ �. Sine !	 ./ � it followsthat r!	 2 C�.\(": Again we break this up into ases:a) r! 2 A. Sine ! ./ � , it follows by Lemma 4.1 that � 0	 0 ./ � so thatf(�r)� 0	 0 2 A. By the indution hypothesis f(�r)� 0	 0	 2 R. Sine ! ./ � and�	 ./ �, it follows by Lemma A.4 that r!	 2 R.b) r!	 2 C� for some � 2 N (�) with �	 ./ �. By de�nition of C� there aretwo possibilities: either r 2 B�, in whih ase ! = � and f(�r)� 0	 0 2 A, or!	 ./ � and f(�r)� 0	 0	 is a subterm of an element of B�. In the latter ase,by Lemma 4.1, � 0	 0	 ./ � so that f(�r)� 0	 0	 2 C�.In both ases, by the indution hypothesis f(�r)� 0	 0	 2 R. In the �rst ase,sine ! = � and �	 ./ �, it follows that r!	 2 R. In the seond ase, sine!	 ./ �, r!	 2 R.Part 3: We prove (1). By S1, Z(t�	 ; �) = false if and only if vars(R) 6= ;.By Part 2, vars(R) 6= ; if and only if vars(A) 6= ; or vars(C�) 6= ; for some� 2 N (�) with �	 ./ �. Then, by S2 and S5, this holds if and only ifZ(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) = false:Part 4: We prove (2) by showing that:vars(R) [S = [�	=�(vars(A) [B�) [[�	./�(vars(C�) [D�):The result then follows from S3, S4, and S6.\�": For a variable x 2 R it follows by Part 2 that x 2 A, or x 2 C� forsome � 2 N (�) with �	 ./ �. For a term r 2 S, there is f(�r)� 0	 0	 2 R suh thatr = ri, and � 0i	 0	 = �. By Part 2, either f(�r)� 0	 0 2 A, or f(�r)� 0	 0	 2 C� forsome � 2 N (�) with �	 ./ �.Assume �rst f(�r)� 0	 0 2 A. We show that r 2 B� for some � 2 N (�) with�	 = �, namely � = � 0i	 0. Sine by onstrution of A, � 0i	 0�� � , we only haveto show that not � 0i	 0 ./ � . By Lemma A.4, � 0i	 0 ./ � , together with �	 ./ �,would imply � 0i	 0	 ./ �. This however is a ontradition, sine it follows from� 0i	 0	 = � that � 0i	 0	 2 N (�).Assume now f(�r)� 0	 0	 2 C� for some � 2 N (�) with �	 ./ �. Sine � 0i	 0	 =� it follows that r 2 D�.\�": For a variable x 2 A, or x 2 C� for some � 2 N (�) with �	 ./ �, itfollows by Part 2 that x 2 R.

Seondly assume r 2 B� for some � 2 N (�) with �	 = �. By de�nition,there is f(�r)� 0	 0 2 A suh that r = ri and � 0i	 0 = �. By Part 2, f(�r)� 0	 0	 2 R,and sine � 0i	 0	 = �, it follows that r 2 S.Thirdly assume r 2 D� for some � 2 N (�) with �	 ./ �. By de�nition, thereis f(�r)� 0	 0	 2 C� suh that r = ri and � 0i	 0	 = �. By Part 2, f(�r)� 0	 0	 2 R,and sine � 0i	 0	 = �, it follows that r 2 S. utTo prove Thm. 5.1, we need the following auxiliary lemma.Lemma A.5. Let t� be a term. Every subterm of t� is either a reursive subtermof t� , or a subterm of a term in E�(t; �), for some � 2 N (�).Proof. The proof is by indution on the depth of subterms of t� . For the basease observe that t� is a reursive subterm of itself.Now suppose the result holds for all subterms of t� up to depth i. Let r� bea subterm of t� at depth i and w! � r�. If r� is not a reursive subterm of t� ,then r� is a subterm of a term in E�(t; �) for some � 2 N (�), and thus w! isalso a subterm of a term in E�(t; �). If r� is a reursive subterm of t� , then sine� ./ � and !� �, by Def. 4.2 either ! ./ � or ! 2 N (�). Thus either w! is areursive subterm of t� or w 2 E!(t; �). utTheorem 5.1. Let S be a set of terms having the same type. Then a variableours in an element of S (that is S is non-ground) if and only if Any or Openours in �(S).Proof. There are three ases depending on whether S is empty, ontains a vari-able, or neither.Case 1: S is empty. Then �(S) = Bot.Case 2: S ontains a variable x. Then �(x) = Any and thus �(S) = Any.Case 3: S ontains no variables but ontains a non-variable term. Then the typeof terms in S is of the form �	 for some type substitution 	 and simple type� = C(�u). Suppose that N (�) = h�1; : : : ; �mi for some m � 0. Then there areabstrat terms b1; : : : ; bm and termination ag b, suh that�(S) = CA(b1; : : : ; bm; b):There are two subases.Case 3a: For some t 2 S and variable x, x� is a reursive subterm of t� . ThenZ(t; �) = Open. Hene b = Open and�(S) = CA(b1; : : : ; bm; Open):Case 3b: No term in S has a reursive subterm that is a variable. Then Z(t; �) =Ter for eah t 2 S. Hene, by Def. 5.2, b = Ter. The proof for this ase is byindution on the length of the longest NRS-sequene (see Lemma A.2) for �	 .The base ase is when m = 0. Then by Lemma A.5, every term in S is groundand �(S) = CA(Ter).

Now suppose m > 0. By Lemma A.5, S ontains a non-ground term if andonly if E�j (t; �) ontains a non-ground term for some t 2 S and j 2 f1; : : : ;mg.By Def. 5.3�(S) = tfCA(�(E�1 (t; �)); : : : ; �(E�m (t; �)); Ter) j t� 2 Sg:Thus, by Def. 5.2 and Def. 5.3, for eah j 2 f1; : : : ;mg, bj = �(E�j (S; �)). Letj 2 f1; : : : ;mg. If E�j (S; �) is empty, by ase 1 above, �(E�j (S; �)) = Bot: IfE�j (S; �) ontains a variable, by ase 2 above, �(E�j (S; �)) = Any: Otherwise,E�j (S; �) ontains a non-variable term and the terms in E�j (S; �) have type �j	 ,for whih, by indution hypothesis, the result holds. Hene bj has an ourreneof Any or Open if and only if E�j (S; �) ontains a non-ground term. It follows that�(S) has an ourrene of Any or Open if and only if S ontains a non-groundterm. ut

