
The Evolution and Testing of a Medium SizedNumerial PakageDavid Barnes and Tim HopkinsComputing Laboratory, University of Kent, Canterbury,Kent, CT2 7NF, U.K.February 18, 2000ABSTRACT We investigate the evolution of a medium sized softwarepakage, LAPACK, through its publi releases over the last six yearsand establish a orrelation, at a subprogram level, between a simplyomputable software metri value and the number of oding errorsdeteted in the released routines. We also quantify the ode hangesmade between issues of the pakage and attempt to ategorize thereasons for these hanges.We then onsider the testing strategy used with LAPACK. Currentlythis onsists of a large number of mainly self-heking driver programsalong with sets of on�guration �les. These suites of test odes run avery large number of test ases and onsume signi�ant amounts ofpu time. We attempt to quantify how suessful this testing strategyis from the viewpoint of the overage of the exeutable statementswithin the routines being tested.1 IntrodutionMuh time, e�ort and money is now spent in the maintenane andupgrading of software; this inludes making hanges to existing odein order to orret errors as well as adding new ode to extend fun-tionality. Some soures suggest that as muh as 80% of all moneyspent on software goes on post-release maintenane [Hat98℄. Whenany type of hange is made, programmers need to have enough un-derstanding of the ode to be on�dent that any hanges they makedo not have a detrimental e�et on the overall performane of thei

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/62846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iisoftware. All too often a hange that �xes one partiular problemauses the ode to at inorretly in other irumstanes.We are interested in investigating whether it is possible, via theuse of some quantitative measurements, to determine whih parts ofa software pakage are the most diÆult to understand and thus,probably, the most likely to ontain undeteted errors and the mostlikely to ause further problems if subjeted to ode hanges andupdates.Prior work in this area ([Hop96℄ and [Hop97b℄) has shown that,for a number of rather simple odes, software metris an be usedsuessfully to identify problem routines in a library of Fortran sub-routines. This paper extends this work by applying it to a muhlarger body of ode whih has gone through a number of revisionsboth to extend funtionality and to orret errors. This allows us toidentify where it has been neessary to make hanges to the odeand why, and to orrelate the ourrene of errors in the softwarewith the values of a partiular software metri.Our hope is that it will be possible to identify, prior to its release,whether a pakage ontains subprograms whih are likely to providefuture maintenane problems. This would allow authors to rethink(and possibly reimplement) parts of a pakage in order to simplifylogi and struture and, hene, improve maintainability and under-standability. Our ultimate goal is to be able to improve the qualityand reliability of released software by automatially identifying fu-ture problem subprograms.LAPACK [ABB+95℄ was an NSF supported, ollaborative projetto provide a modern, omprehensive library of numerial linear al-gebra software. It ontains software for the solution of linear sys-tems; standard, non-symmetri and generalized eigenproblems; lin-ear least squares problems and singular value deomposition. Thepakage serves as an eÆient update to the Eispak ([SBD+76℄ and[GBDM77℄) and Linpak [DMBS79℄ libraries that were developedin the 1970's. The omplete pakage is available from netlib (seehttp://www.netlib.org/bib/mirror.html for information as to whereyour nearest server is). Mostly written in standard Fortran 77 [ANS79℄,LAPACK uses the BLAS Level 2 [DDHH88℄ and Level 3 [DDDH90℄routines as building bloks. LAPACK both extends the funtional-ity and improves the auray of its two predeessors. The use ofblok algorithms helps to provide good performane from LAPACK



iiiroutines on modern workstations as well as superomputers and theprojet has spawned a number of additional projets whih have pro-dued, for example, a distributed memory [BCC+97℄ and a Fortran90 [WD98℄ version of at least subsets of the omplete library.An integral part of the omplete software pakage is the very ex-tensive test suite whih inludes a number of test problems saled atthe extremes of the arithmeti range of the target platform. Suh atest suite proved invaluable in the porting exerise whih involved thepakage being implemented on a large number of ompiler/hardwareombinations prior to its release.In setion 2, following a short introdution to LAPACK, we pro-vide a detailed analysis of the size of the pakage and the extent ofthe soure hanges made between suessive versions. We also ate-gorize all the hanges made to the exeutable statements and obtaina ount of the number of routines that have had failures �xed. Wethen report on a strong onnetion between the size of a relativelysimple software ode metri and a substantial fration of the routinesin whih failures have been orreted.In setion 4 we look quantitatively at how well the testing materialsupplied with the pakage exerises the LAPACK ode and suggesthow the use of a software tool may improve this testing proess.Finally we present our onlusions.2 The LAPACK Library Soure CodeThe LAPACK routines onsist of both user allable and support pro-edures; in what follows we do not di�erentiate between these. Thesoure diretory of the original release, 1.0, onsisted of 930 �les (onlytwo �les, dlamh and slamh ontain more than one subprogram; thesix routines in eah of these �les being used to ompute mahine pa-rameters for the available double and single preision arithmetis).Table 1 shows how the number of �les has inreased with suessivereleases of the pakage along with the release dates of eah version.A number of straightforward metris exist for sizing software, forexample, the number of lines in the soure �les. This is somewhatrude and we present in Table 2 a more detailed view of the sizeof the pakage. The olumn headed `exeutable' shows the numberof exeutable statements in the entire pakage whilst that headed`non-exe' gives the number of delarative and other non-exeutable



iv Version No. of �les Release Date1.0 930 29 February 19921.0a 932 30 June 19921.0b 932 31 Otober 19921.1 1002 31 Marh 19932.0 1080 30 September 1994TABLE 1. Number of library soure �les for eah released versionstatements. The third olumn gives the total number of ode state-ments being the sum of the previous two olumns. The �nal twoolumns provide the total number of omment lines in the ode andthe total number of blank lines and blank omment lines.The large number of non-exeutable statements is partially dueto the use of the NAGWare 77 delarization standardizer [Num92℄whih generates separate delaration bloks for subroutine argu-ments, loal variables, parameter values, funtions, et. This is atu-ally no bad thing as it aids the maintenane of the ode by allowing areader to immediately identify the type and sope of eah identi�er.A ratio of exeutable to non-exeutable statements of 1.8 is, how-ever, on the low side, as this implies that there are relatively smallamounts of ode pakaged amidst large quantities of delarationswhih generally makes ode diÆult to read and assimilate.Comments form an important part of the doumentation of anysoftware and this is espeially the ase for LAPACK where the de-sription of the arguments to all proedures (both user allable andinternal) is detailed enough to allow the use of the routine withoutthe need for a separate printed manual. This aounts for the highlevel of ommenting, around 1.5 non-blank omments per exeutableline. There is also heavy use of blank omment lines (or totally blankVersion Exeutable Non-exe Lines Comments Blank1.0 59684 35010 94694 143249 525811.0a 59954 35104 95058 143439 526791.0b 59897 34876 94773 142185 522431.1 67473 38312 105785 156077 575162.0 76134 41986 118120 169813 62618TABLE 2. Statement ounts by type



vVersion Operators Operands Total % Inrease1.0 370784 325907 6966911.0a 371605 326524 698129 0:021.0b 370928 326089 697017 �0:021.1 415626 364816 780442 11:92.0 468487 411122 879609 12:7TABLE 3. Total number of operators and operandslines); suh lines at as an aid to readability within both the textualinformation and the soure ode.A more detailed view of ode size may be obtained by onsider-ing the operators and operands that make up the soure. These arede�ned abstratly in Halstead [Hal77℄ and there appears to be nogeneral agreement as to whih language tokens are onsidered oper-ators and whih operands for any partiular programming language.The values given in Table 3 were generated using the nag metristool [Num92℄ whih de�nes an operator to be� a primitive operator, for example, �, +, :EQ:, :AND: et,� a statement whih ounts as an operator, for example, ASSIGN,IF, ELSE IF, GOTO, PRINT, READ and WRITE,� a pair of parentheses, an end-of-statement, or a ommaand operands as� onstants,� name of variables and onstants,� strings (all strings are onsidered distint from eah other).Thus the delarative part of any program is ignored by this metrias it is not onsidered to add to the omplexity of the ode.At eah new version of the pakage omplete routines were addedand deleted and hanges were made to routines that were ommonto both the new and previous versions. Table 4 show the distributionof a�eted routines. Changes to program units ommon to sues-sive versions have been ategorized depending on whether only om-ments, only non-omments, or both omments and non-ommentswere hanged. This shows that although there were textual hanges



vi ChangedVersion Added Deleted Total /only s/only Both1.0 !1.0a 2 0 147 75 34 381.0a!1.0b 2 2 339 236 33 701.0b!1.1 72 2 570 554 0 161.1 !2.0 84 6 634 279 128 227TABLE 4. Routine hanges at eah versionto 1690 routines over the four revisions 1144 of these involved hangesto omment lines only (this aounts for 64% of all the hanged rou-tines).We analyzed the routines that had been hanged between releasesby running the two versions through the Unix �le omparison tooldi� and proessing the output to ount the number of hanged om-ment and non-omment statements.Di� lassi�es hanges in three ways, lines in the new version thatdid not appear in the old (App), lines in the old version that didnot appear in the new (Del) and bloks of lines that have hangedbetween the two (Changes). Table 5 gives the totals for ommentand non-omment statements aording to the ategories for all thehanged routines at eah version. It should be noted here that somehanges to statements are due to hanges in statement labels whihour when a label is either inserted or deleted and the ode ispassed through the NAGWare Fortran 77 soure ode formatter,nag polish [Num92℄. In a few ases di� exaggerates the number ofhanges due to synhronization problems whih may our if a linehappens to be repeated or setions of ode are moved. No attemptwas made to ompensate for this; indeed it may be argued that amove of a setion of ode should be treated as both a delete and anadd. Resynhronization problems appeared to be relatively few andfar between and, it was felt, they were unlikely to perturb the �nalresults by more than a few perent. In all ases omment hanges re-eting the new version number and release date have been ignored.Finally Table 6 gives a breakdown of the non-omment and om-ment lines added and deleted via omplete routines between releases.Although the release notes made available with eah new revisiongave some details of whih routines had had bug �xes applied to themthis information was far from omplete. It is not safe to assume that



viiComments Non-ommentsChanges ChangesVersion Del App (old/new) Del App (old/new)1.0 !1.0a 38 134 550/484 69 312 775/8081.0a!1.0b 258 605 2183/1573 384 593 1325/17221.0b!1.1 227 70 9428/8354 34 36 724/7521.1 !2.0 541 527 4393/4688 449 730 2363/2274TABLE 5. Interversion statement hanges from di�all non-omment ode hanges are neessarily bug �xes. In order todetermine the nature of the hanges to routines at eah release, avisual inspetion of eah altered single preision omplex and doublepreision real routine was onduted using a graphial �le di�erenetool [BRW88℄. As a result we have ategorized the ode hangesbetween all at eah revision as being one ofi: enhaned INFO heks or diagnostis and INFO bug �x (usually anextended hek on the problem size parameter N),pr: further uses of mahine parameters (for example, the use ofDLAMCH('Preision') in DLATBS at version 1.0a to derive plat-form dependent values),: osmeti hanges (for example, the use of DLASET in plae ofDLAZRO in the routine DPTEQR at version 2.0),en: enhanement (for example, the addition of equilibration fun-tionality to the routine CGBSVX at version 1.0b),ef: eÆieny hange (for example, the quik return from the routineCGEQPF in the ase when M or N is zero at version 1.1),Added DeletedVersion Com Non-om Com Non-om1.0 !1.0a 160 86 0 01.0a!1.0b 99 65 160 861.0b!1.1 14351 10196 160 861.1 !2.0 13770 12248 311 129TABLE 6. Added and deleted routines by omment and non-omment lines



viiire: removal of redundant ode (for example, a CABS2 alulation inCGEEQU was not required and was removed at version 1.0a),mb: minor bug (typially a few lines of hanged ode; for example,the hanges made to DLAGS2 at version 2.0 to add an additionalvariable and to modify a onditional expression to use it),Mb: major bug (a relatively large ode hange; for example, thehanges made to the routine DSTEQR at version 2.0).Suh a lassi�ation provides a muh �rmer base from whih to inves-tigate a possible orrelation between omplexity and oding errors.Routines in the LAPACK library are in one of four preisions; sin-gle or double preision, real or omplex. While the single and doublepreision versions of a routine an generally be automatially gen-erated from one another using a tool like nag apt [Num92℄, the realand omplex parts of the pakage are often algorithmially quite dif-ferent. For this reason we only onsider the single preision omplexand the double preision real routines in the remaining setions ofthis paper. These routines may be identi�ed by their name startingwith either a C (single preision omplex) or a D (double preisionreal).3 The Path Count MetriTable 7 provides a summary of the number of single preision om-plex and double preision real routines that fall into eah ategory forsuessive releases of the pakage. We were interested in disoveringwhether there was any relationship between those routines needingbug �xes and any software omplexity metri values. One metri, aversion of Nejmeh's path ount metri [Nej88℄, is alulated by theQA Fortran tool [Pro92℄. This metri is an estimate of the upperbound on the number of possible stati paths through a programunit (based solely on syntax). Note that some paths so de�ned maynot be exeutable but suh impossible routes annot usually be de-termined by simple visual inspetion. The path ount omplexity ofa funtion is de�ned as the produt of the path omplexities of theindividual onstrutions. Thus, for example, the path omplexity of asimple if-then-else statement is 2 while three onseutive if-then-elsestatements would have an assoiated value of 23 = 8. Three nested



ix1.0a 1.0b 1.1 2.0C, D C, D C, D C, Dmb 9, 9 12, 9 1, 3 16,14Mb 3, 3 1, 1 0, 0 1, 2re 2, 0 1, 1 0, 0 0, 0i 3, 5 8,10 1, 1 9, 9pr 3, 4 1, 0 0, 0 3, 4en 0, 0 5, 5 0, 0 1, 2ef 0, 0 3, 1 1, 1 1, 1 1, 0 0, 1 0, 1 105,15TABLE 7. Number of routines a�eted by eah ategory of soure odehangeif statements would have a path ount of 4. This metri provides auseful measure of the e�ort required to test the ode stringently aswell as giving an indiation of ode omprehensibility and maintain-ability. A redution in the path ount aused by restruturing odewould imply the elimination of paths through the ode whih wereoriginally either impossible to exeute or irrelevant to the ompu-tation. This would be likely to redue the time spent in the testingphase of the software development. An example of the use of thismetri to identify problem ode within a small library of relativelysmall Fortran routines may be found in [Hop96℄ and [Hop97a℄.The metri value returned by the pakage has a maximum value of5�109 although, realistially, a program unit an be lassi�ed as tooomplex to test fully when this value exeeds 105. Table 8 gives thenumber of routines in whih faults were orrelated against the valueof the path metri. (We di�erentiate here between routines that wereintrodued before version 2 and those that were added at version2 and annot, therefore, have had soure hanges applied to them.)This data learly shows a high orrelation between routines identi�edas omplex by the path ount metri and those having had bug �xesapplied to them. 41% of all the bugs ourred in routines with apath ount metri in exess of 105 and these routines onstitutejust 16% of the total number of subprograms making up the library.The hane of a bug ourring in these routines would appear to bearound 6 times more likely than in routines with a path ount of lessthan 105. It should also be noted that a large number of the routinesadded at version 2.0 have extremely large path ounts and, from



x blog10(Path Counts) %> 8 7 6 5 � 5 > 5v2.0 5 1 0 4 26 28<2.0 10 6 10 8 285 16Faults 8 3 7 3 30 41%routines 80 50 70 37 11 �TABLE 8. Ourene of Faults against Path Count Metriour urrent analysis, we would expet a high perentage of these torequire pathes to be applied in forthoming releases.4 TestingThe test suite forms an integral part of the LAPACK software pak-age. The ode was designed to be transportable; all new LAPACKode was to be portable while eÆieny of the pakage as a wholewas to be platform dependent. This was ahieved by oding in stan-dard Fortran 77 [ANS79℄ for portability of the higher level routinesand using platform spei� versions of the BLAS to obtain high ef-�ieny. Thus, by using the BLAS Levels 2 and 3 de�nition odes([DDHH88℄, [DDDH90℄) the entire pakage may be made portableat the prie of suboptimal exeution speed.Two test suites are provided with the released pakage; one forheking the installation and the other for produing platform depen-dent timings. All the tests are self heking in that the only outputthat a user has to hek is in the form of summaries of the number oftests applied to eah user routine along with the number of suessesand ounts and details of any failures.Matrix data is either generated randomly or speially onstruted(see [DM89℄ for more details). In both ases the testing software usesa metri to deide whether eah omputed solution is `orret'. Testases are also generated to exerise the routines on data at the ex-tremes of the oating point arithmeti ranges. The number, and toa minor extent, the range of tests applied, may be ontrolled by theuser at a data �le level. However this generally preludes the userfrom foring exeution through spei� setions of the ode whihusually requires speially onstruted data. To all intents and pur-poses the test strategy must be ategorized as white box (or glassbox) testing, where test ases are seleted by onsidering their e�et



xiBasi %Routines Bloks ExeutedC install 258 12019 89.56C timing 124 5324 72.84D install 263 12852 89.20D timing 143 6615 72.41TABLE 9. Basi blok exeution for installation and timing test suiteson the ode rather than just testing their adherene to the spei�-ation as is the ase with blak box testing.We were interested in determining quantitatively how e�etive thisstrategy was in exerising the ode. The minimal requirement of atest suite should be to ensure that all the exeutable statements inthe pakage are exeuted at least one. Note that this is very di�erentfrom path overage as de�ned earlier.We used the NAGWare 77 soure ode instrumenter and exeu-tion analysis tools nag pro�le and nag history [Num92℄ to determineumulatively the number of times eah basi blok was exeuted. (Abasi blok is a straight line setion of ode, i.e., it does not ontainany transfer of ontrol statements.) This allowed us to determine howmany basi bloks were not exerised by the test suite. We ran theinstrumented ode on both the installation and timing test suites.Table 9 ompares the number and perentage of basi bloks exe-uted using both test suites.Further analysis showed that of the 1388 unexeuted bloks, 214(15.4%) were onerned with the heking of input arguments. Theworst ase was the routine, DGEGS, used for omputing the generalShur fatorization whih has 48% of its basi bloks untested.We looked in detail at the routine DGBBRD. This routine onsisted of111 basi bloks ontaining 124 exeutable statements. The installa-tion test omitted to over 13 basi bloks of whih 11 were onernedwith heking the onsisteny of the input arguments. The �nal twowere in the main body of the ode.The ode operates on a banded, retangular (M � N), matrixwhere the user provides the number of sub- and super-diagonals,KLand KU respetively. The on�guration �le used to provide data forthis routine spei�edM , N andK, the total bandwidth. Code withinthe test routine then splits K into KL and KU . Although a total of1500 alls are made to DGBBRD the test data failed to generate the



xiispeial ase M = N = 2, KU = 0 and KL > 0. The problem wasthat with M and N both greater than zero the ode to set KL andKU ould not generate KU = 0 and KL > 0. Providing data fora separate test is straightforward and the two previously untestedbloks exeuted suessfully.As well as using the pro�ling information from nag pro�le to iden-tify the basi bloks of ode that were not being exeuted by the testdata, we an also use it to hek that individual tests (or bathes oftests) atually ontribute to the overall statement overage. Ideallywe would like to minimize the number of test ases being run toobtain maximum overage. We note here that it may not be possi-ble to exerise 100% of the basi bloks, for example, there may bedefensive ode that exits if onvergene is not attained although nonumerial examples are known whih trip this ondition.Using DGBBRD again as our example, we obtained individual basiblok overage pro�les for eah of the 20 M and N pairs (eah pairgenerates a number of alls to the routine for di�erent KL and KUvalues). It was found that two of these 20 tests overed 83 of the98 exeuted bloks and four ould be hosen to over all 98. Thee�et of using just this minimal number of tests was to redue theexeution time for testing this routine by a fator of four withoutany loss of ode overage. A further redution in the exeution timeould be made by reduing the number of (KL, KU) pairs hosenfor a given (M , N) pair.The above analysis ould be applied to all the test drivers in orderto redue the total number of tests being exeuted whilst maximizingthe ode overage.5 ConlusionWe have analyzed the soure ode hanges made between suessiveversions of the LAPACK software library and we have presentedstrong evidene that the path ount software metri is a good indi-ator of routines that are likely to require post release maintenane.We note that many of the newly introdued routines have metrivalues indiative of problem ode.By using a pro�ling tool we have been able to measure how wellthe installation testing software, provided with the pakage, exeutesthe LAPACK soures. The overage is extremely good although we



xiiibelieve that it ould be improved further. In addition we have shownthat, from the point of view of ode overage, many of the tests donot ontribute as they fail to exerise any bloks of ode that are notalready exeuted by other tests. We are ertain that by analyzingthe output from this tool it would be possible both to redue thenumber of tests neessary to obtain the attained ode overage andto improve the overage by pinpointing untested setions of ode.One of the most worrying trends is that there appears to be ade�nite trend towards very omplex routines being added to thelibrary. Of the new routines introdued at version 2.0 almost 30%had path ounts in exess of 105; this is almost double the perentageof routines introdued prior to that version. Whilst it may be arguedthat new routines are solving more omplex problems it is possibleto struture these odes so that the omponents are far simpler froma software omplexity viewpoint and are thus muh easier to testthoroughly. It is highly likely that over half of the routines with apath ount of 105 or more will require bug �xes in the near future.It is diÆult to ompare the quality of LAPACK with other li-braries of numerial software sine, as far as we know, no otherpubli domain numerial pakage has either a omplete soure odehange history or a omplete set of the soures of all the relevantreleases available. That apart we believe that LAPACK is a highquality software pakage with a bug �x being applied on average forapproximately every 600 exeutable statements.A similar omplexity analysis to the one performed in this paperould be applied to any Fortran 77 software; extrating the requiredmetri values is very simple via QA Fortran, and the NagWare 77pro�ling tool allows a relatively painless analysis of the statementoverage. Far more diÆult is the automati generation of test data;there appear to be no tools available, at least not in the publi do-main, that would help in this area. Generating test drivers and datato ensure a high perentage of statement overage is thus both diÆ-ult and time onsuming.The path ount metri detailed in setion 3 ould be used in a sim-ilar way for both C and Fortran 90 and indeed for almost all imper-ative languages. For objet oriented languages a di�erent approahwould be neessary and there is not as yet any general onsensus onwhih metris are most appropriate. A general disussion of objetoriented software metris may be found in Lorenz and Kidd [LK94℄.



xivIt is our intention to extend the work presented in this paper toinvestigate the detetion of errors in released software. We proposeusing the path ount metri to identify possible problem routinesand to subjet these routines to extensive white box testing in anattempt to exerise as many paths through the ode as possible.Current work ([TCM98b℄, [TCM98a℄ and [TCMM98℄) provides somehope of generating data to exerise spei�ed paths through ode andthis would ertainly open up new possibilities for fault detetion.6 Referenes[ABB+95℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. J.Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. MKenney, S. Ostrouhov, and D. Sorensen. LA-PACK: users' guide. SIAM, Philadelphia, seond edi-tion, 1995.[ANS79℄ ANSI. Programming Language Fortran X3.9-1978.Amerian National Standards Institute, New York,1979.[BCC+97℄ L.S. Blakford, J. Choi, A. Cleary, E. D'Azevedo,J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C.Whaley. SaLAPACK Users' Guide. SIAM, Phiadel-phia, 1997.[BRW88℄ David Barnes, Mark Russell, and Mark Wheadon. De-veloping and adapting UNIX tools for workstations. InAutumn 1988 Conferene Proeedings, pages 321{333.European UNIX systems User Group, Otober 1988.[DDDH90℄ J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammar-ling. Algorithm 679: A set of level 3 basi linear algebrasubprograms. ACM Trans. Math. Softw., 16(1):18{28,Marh 1990.[DDHH88℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.Hanson. Algorithm 656: An extended set of basi lin-ear algebra subprograms: Model implementation andtest programs. ACM Trans. Math. Softw., 14(1):18{32,Marh 1988.



xv[DM89℄ J. Demmel and A. MKenney. A test matrix genera-tion suite. Tehnial Report MCS-P69-0389, ArgonneNational Laboratories, Illinois, Marh 1989.[DMBS79℄ J. J. Dongarra, C. B. Moler, J. R. Bunh, and G. W.Stewart. LINPACK: Users' Guide. SIAM, Philadel-phia, 1979.[GBDM77℄ B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B.Moler. Matrix Eigensystem Routines { EISPACK GuideExtension, volume 51 of Leture notes in omputer si-ene. Springer-Verlag, New York, 1977.[Hal77℄ M.H. Halstead. Elements of Software Siene. Oper-ating and Programming Systems Series. Elsevier, NewYork, 1977.[Hat98℄ Les Hatton. Does OO syn with how we think? IEEESoftware, pages 46{54, May/June 1998.[Hop96℄ T.R. Hopkins. Restruturing software: A ase study.Software | Pratie and Experiene, 26(8):967{982,July 1996.[Hop97a℄ T.R. Hopkins. Is the quality of numerial subroutineode improving? In E. Arge, A.M. Bruaset, and H.P.Langtangen, editors, Modern Software Tools for Si-enti� Computing, pages 311{324. Birkh�auser Verlag,Basel, 1997.[Hop97b℄ T.R. Hopkins. Restruturing the BLAS Level-1 rou-tine for omputing the modi�ed Givens transformation.ACM SIGNUM, 32(4):2{14, Otober 1997.[LK94℄ M. Lorenz and J. Kidd. Objet-Oriented Software Met-ris. Objet-Oriented Series. Prentie Hall, EnglewoodCli�s, New Jersey, 1994.[Nej88℄ B. A. Nejmeh. NPATH: A measure of exeutionpath omplexity and its appliations. Commun. ACM,31(2):188{200, 1988.[Num92℄ Numerial Algorithms Group Ltd., Oxford, UK. NAG-Ware f77 Tools, seond edition, September 1992.



xvi[Pro92℄ Programming Researh Ltd, Hersham, Surrey. QA For-tran 6.0, 1992.[SBD+76℄ B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix Eigen-system Routines { EISPACK Guide, volume 6 of Leturenotes in omputer siene. Springer-Verlag, New York,seond edition, 1976.[TCM98a℄ Nigel Traey, John Clark, and Keith Mander. Auto-mated program aw �nding using simulated annealing.In Software Engineering Notes, Proeedings of the Inter-national Symposium on Software Testing and Analysis,volume 23, pages 73{81. ACM/SIGSOFT, Marh 1998.[TCM98b℄ Nigel Traey, John Clark, and Keith Mander. The wayforward for unifying dynami test-ase generation: Theoptimisation-based approah. In International Work-shop on Dependable Computing and Its Appliations(DCIA), pages 169{180. IFIP, January 1998.[TCMM98℄ Nigel Traey, John Clark, Keith Mander, and John M-Dermid. An automated framework for strutural test-data generation. In Proeedings of the InternationalConferene on Automated Software Engineering. IEEE,Otober 1998.[WD98℄ J. Wasniewski and J.J. Dongarra. High performanelinear algebra pakage { LAPACK90. Tehnial ReportCS-98-384, University of Tennessee, Knoxville, April1998.A Availability of ToolsThe main software tools mentioned in the paper are available asfollows:QA Fortran: Programming Researh Limited, 1/11 Molesey Road,Hersham, Surrey, KT12 4RH, UK.(http://www.prqa.o.uk/qafort.htm)



xviiNagWare 77: NAG Ltd, Wilkinson House, Jordan Hill Road, Ox-ford, OX2 8DR, UK.(http://www.nag.o.uk/nagware/NANB.html)Perl: http://www.perl.om/pae/pub.Vdi�: A graphial �le omparator, Kent Software Tools.(http://www.s.uk.a.uk/development/kst/).Other analysis of the ode reported in the paper was performed usingbespoke perl sripts.


