UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION RESEARCH BULLETIN 147

The Inheritance of Body Weight in Relation to Milk Secretion

(Publication authorized June 13,1930)

COLUMBIA, MISSOURI AUGUST, 1930

CONTENTS

I.	The Inheritance of Body Weight in Jersey Register of Merit	
	Cattle in Relation to Yearly Fat Production	3
	The Body Weight of Dairy Cattle	5
	Comparison of Jersey sires on basis of Daughters' body weight and Fat Production	6
	Comparison of the Body weight of dams and daughters	19
II.	The relation between body weight and fat production	24
	Body weight and fat production	27
	Equalizing fat records of cows varying in body weight	30
	Economic considerations	31
III.	Conversion factors for body weight of dairy cattle	33
	Conversion factors for body weight	33
	Growth of lactating cattle	34
	Conversion factors	34
	Summary and Conclusions	40
	References	42

The Inheritance of Body Weight in Relation to Milk Secretion

C. W. TURNER

ABSTRACT .- By converting fat production and body weight to their "mature equivalent" it is possible to study the progeny performance of Jersey sires in which beth the yearly fat production and body weight of the daughters and their dams are considered. Comparison of the changes in body weight and yearly fat production between dams and daughters indicate that Jersey sires can cause significant changes in yearly fat production of their daughters as compared with their dams without causing a material increase or decrease in body weight. On the average, an increase cf 100 pounds in body weight of the dams results in an increase of about 16 pounds in the body weight of the daughters. It was also determined that there was an increase of approximately 20 pounds in yearly fat production for each 100 pounds increase in body weight above 342 pounds body weight. Based on these observations, evidence was presented which indicates that the greater production of large cows at best only slightly exceeds the cost of obtaining the additional product. It is concluded that the sires whose daughters are above the average for the breed in fat production without exceeding the average in body weight are especially desirable because their daughters are increasing the economy of fat production of the breed.

I. The Inheritance of Body Weight in Jersey Register of Merit Cattle in Relation to Yearly Fat Production

The importance of yearly milk and fat production records in the selection and improvement of dairy cattle has long been recognized. The history of the Advanced Registry and Herd Improvement Associations is ample evidence that some type of testing system will have a permanent place in the progress of the dairy industry. One of the greatest faults of the testing of the past has been the limited number of cows which have been included. This fault is gradually becoming less with the adoption of cheaper methods of testing.

Records of production have several important uses. The immediate value is that it serves as a measure of the cow in culling out low producers. Many studies have been reported showing the relation between the average yearly production of cows and the profit over feed cost, which indicate that the low producer is always a liability. The elimination of low producing cows from the herd may be considered a *passive method* of herd improvement.

Records of production serve also as a *dynamic method* of herd improvement. Instead of passively eliminating low producing cows after they have been grown to a productive age, the records of production should serve as a guide in the selection of sires which have demonstrated their ability to produce daughters above the average for the breed. The continued use of the sire which has proved his ability to transmit high production to his daughters has no equal in herd improvement.

The earliest systematic study of the progeny performance of dairy cattle was begun by Pearl (1917-19) of the Maine Station and continued by Gowen and Covell (1921). Unfortunately they selected as a measure of the transmitting ability of the sire the difference in milk production of the dams and daughters. In many cases they even failed to report the actual mature equivalent production of the sire's daughters.

At the time two objections were raised by the writer to this method of indicating the transmitting ability of dairy sires. The first objection was the possibility of there being differences in the dam and daughter comparison depending on whether the sire was mated with high or low producing dams. It was believed that the measure of the transmitting ability of sires should be the same irrespective of the quality of dams to which they were mated. The second objection was the failure to present the actual average mature equivalent production of the daughters and the dams so that each sire's progeny performance could be compared with the average performance of all sires. Clearly, the sire's producing progeny above the average of the breed should be recognized.

In order to make available for breeders the progeny performance of dairy sires free of these objections Turner and Ragsdale (1923-24) at this Station began a series of studies of the official records of the various dairy breeds, and these studies have been continued up to the present time. (Turner 1925-1927, Gifford and Turner 1928, and Gifford 1930.)

The ultimate goal in this work was the determination of an index of the sires which would represent their potential transmitting ability. To do this it became necessary to determine the average influence of the dams upon the daughters' production. As a result of extensive comparisons of the production of dams and daughters it was found that the relationship as measured by correlation, partial correlation (the sires held constant), or regression equations was very low. So low in fact that considering the effect of environmental factors and other causes of variation in production records, for all practical purposes the most satisfactory measure of the sire's transmitting ability was shown to be the average mature equivalent production of the progeny.

To confirm these findings by other methods, the progeny of various sires were separated into two groups based on the production of the dams. Into one group the daughters of high producing dams were placed. Into the other group the daughters of the low producing dams were placed. The various indexes of sires which have been advanced were then applied to the two groups of dams and daughters of each sire. As the sire was the same for both groups, the best index of the sires would be the one which showed the smallest difference between the two groups. Thus if the two groups gave the same sire index, the evaluation of the influence of the dam would be perfect. The deviation between the two indexes would measure the relative value of the methods employed.

The deviation was found to be lowest when the following equation suggested by the writer was used:

Sire = Daughter's average -.15 Dam's average (Jersey breed). A slightly greater deviation was found when no index was used. The other indexes were shown to be decidedly inferior by this method of comparison.

Gowen (1930) has recently reported quite similar results in a study of Jersey sires. He compared the progeny performance of the sires entering the Register of Merit prior to 1923 with the daughters entering since that date. It was found that the correlation coefficient was 0.433 for milk yield when no sire index was used. The difference between the dams and daughters proposed by Pearl and extensively used by Gowen was shown to be practically worthless as the correlation was only 0.176 for milk yield. The other indexes were found to be less valuable than the actual mature equivalent production of the daughters.

These observations greatly simplify the proving of sires as it eliminates the necessity of excluding dams without production records, and thus not only hastens the proving of sires, but in the case of many sires which are mated with untested dams furnishes a test of progeny performance where dam and daughter comparisons were not possible.

The use of the term "proved sire" by McDowell and Parker (1926) to include only sires having five or more daughters whose yearly milk and butterfat records have been compared with the production records of their dams in studies of cow testing association records explains the reason why the number of proved sires in the entire country up to January 1, 1929 totaled only 700 (McDowell 1930). The number of proved sires would be much greater and they would become proved earlier if progeny performance alone was used as an index of future transmitting ability.

THE BODY WEIGHT OF DAIRY CATTLE

It is interesting to note that in all of the studies of the progeny performance of dairy cattle, nothing was said of the body weight of the cows considered. The reason for the lack of study in most breeds of dairy cattle may be explained by the lack of data on the body weight of the cows in the Advanced Registry. However, in the case of the Jersey Register of Merit either the actual or estimated body weight of all cows completing test were reported prior to 1921. These data are unique in furnishing a large number or records of yearly fat production and body weight. It was believed that a study of these data would furnish interesting information on the mode of inheritance of body weight and its relation to yearly fat production.

The object of the present paper is to report the results of a study of the progeny performance of Jersey sires where both the yearly fat production and body weight of the daughters and their dams are considered.

As in previous studies, the fat production records made at various ages were converted to their mature equivalent by means of age conversion factors. It became necessary to convert the body weight of the cows to their mature body weight also. For this purpose the relation between the age and body weight of Jersey Register of Merit cows was used as a basis in computing the conversion factors. The reader is referred to section III where the weight conversion factors employed are presented.

COMPARISON OF JERSEY SIRES ON BASIS OF DAUGHTERS' BODY WEIGHT AND FAT PRODUCTION

All sires having 10 or more Register of Merit daughters were included in this study. However, only those sires having one or more dam and daughter pairs for both live weight and fat production are reported. As the report of the weight record was discontinued in 1921 only the older sires are included. Thus in many cases the number of dams and daughters compared will be less than the number of yearly record daughters. The more nearly the number of pairs of dams and daughters compares with the cotal number of daughters, the more satisfactory are the values for the given sire. Unfortunately, the number of pairs is far too small to be representative of the sire's progeny performance in many cases.

The results of this study are presented in Table I. It will be noted that the average body weight and yearly fat production of the daughters of each sire are included. The percentage frequency distribution of the average body weight of the progeny of the sires is presented in the form of a histogram in Figure 1. To compare with these data are presented the average body weight and yearly fat production of their dams. In the last two columns are found the increase or decrease in fat production and body weight of the daughters as compared with their dams.

The purpose of reporting the difference between the body weight and fat production of the dams and daughters was not to indicate the sires which had caused improvement in the daughters over their dams, but rather to determine if the increases and decreases in body weight and yearly fat production moved together. In other words, when the daughters of a sire increase in yearly fat production as compared with their dams, does the average body weight of the daughters also increase?

				Daughters		Dams		Daughters ex- ceed dams in	
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production(lbs.)	Average Live Weight (lbs.)
Adelaide's Sultan 123005 Aldan's Noble 89581 Altama Interest 98466 Baronette's Golden Lad 67908 Benedictine King 86100 Benedictine's Plymouth Lad 91106 Benedictine's Plymouth Lad 91106 Bermuda's Eminent 93798 Biltmore's Torment 60761 Bossom's Foxhall 82038 Bluebell's Owl 79641 Bonnetta's King 108980 Brown Lassie's Compass 71626 Buttercup's Golden Lad 124256 Captain Hugo 22410 Champion Torono's Son 114th 136233 Chief Engineer 47148 Champion Torono's Son 114th 136233 Chief Engineer 47148	1912 1909 1910 1913 1904 1909 1909 1910 1900 1900 1900 1906 1912 1905 1913 1905 1913 1905 1914 1898	14 10 20 15 13 13 13 20 14 12 20 14 12 10 14 16 10 11 16 12 11 19	$ \begin{array}{c} 10\\ 6\\ 14\\ 1\\ 2\\ 2\\ 10\\ 1\\ 5\\ 4\\ 3\\ 5\\ 14\\ 3\\ 6\\ 2\\ 10\\ 4\\ 5\\ 10\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	627 459 501 550 524 443 547 607 431 440 506 436 538 540 506 623 499 598 535	1067 882 975 987 921 999 1075 967 787 8565 1045 8300 1075 8300 947 909 947 909 8333 965 972	632 574 563 444 459 662 398 473 477 484 587 487 484 558 440 653 461 532 689	1035 887 951 928 990 978 862 906 832 912 1033 921 905 972 852 1005 929 923	$\begin{array}{c} -5 \\ -115 \\ -23 \\ -13 \\ +80 \\ -16 \\ +77 \\ -55 \\ +33 \\ -38 \\ +28 \\ +24 \\ +18 \\ +66 \\ -31 \\ +38 \\ +66 \\ -155 \end{array}$	$\begin{array}{c} +32\\ -5\\ +24\\ +37\\ -7\\ +98\\ +97\\ -750\\ +214\\ -82\\ +42\\ -31\\ +43\\ -63\\ -19\\ -40\\ +43\\ -11\end{array}$

 TABLE 1.—Comparison of the Mature Equivalent Live Weight and Fat Production of the Daughters of Jersey Sires and Their Dams

V

	-								
				Daughters		Da	ms	Daught ceed da	ers ex- ams in
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production(lbs.)	Average Live Weight (lbs.)
Combination of St. Savjor's 88245 Count's Foxy Lad of Waikiki 142808 Derry's Golden Jolly 82807 Diploma's Bijou Boy 86292 Dolly's Champion Knight 119967 Dulcet's Majesty 98230 Ella's Majesty 0xford 99911 Eminent 69631 Eminent 6075752 Eminent 10th 75753 Eminent 10th 75753 Eminent 19th 78620 Eminent's Pilot 75364 Eminent of St. Martin 73207 Eminent of St. Martin 73207 Eminent's Sensational King 107123 Eurybia's Son 68790 Eurybia's Son 68790 Ev-Ken of Dover 112708 Fairy's Noble Boy 93788	1904 1915 1902 1908 1913 1911 1911 1906 1906 1906 1906 1905 1906 1901 1911 1911 1914 1913 1904	16 14 13 10 28 27 13 33 16 28 27 13 26 22 28 27 11 14 12 35	2 1 3 15 3 1 1 3 12 5 8 4 2 2 1 2 6 7 1	535 386 386 481 582 500 789 448 484 397 642 595 558 552 380 502 380 500 508	$\begin{array}{c} 770\\ 1010\\ 1129\\ 922\\ 889\\ 941\\ 1103\\ 894\\ 927\\ 900\\ 790\\ 962\\ 855\\ 949\\ 963\\ 1069\\ 762\\ 950\\ \end{array}$	556 517 376 463 527 441 389 429 457 451 409 457 451 409 491 420 509 835 509 835 509 504	896 819 1000 877 913 923 1013 1013 943 897 872 934 895 934 895 901 1004 1004 999 873 935 800	$\begin{array}{r} -20\\ -132\\ +11\\ +18\\ +55\\ +56\\ +340\\ +19\\ +27\\ +234\\ +234\\ +107\\ +466\\ -333\\ -75\\ -10\\ +65\\ -50\end{array}$	$\begin{array}{c} -126\\ +191\\ +129\\ +25\\ +25\\ +18\\ +91\\ -119\\ -17\\ -17\\ -82\\ +28\\ +32\\ -40\\ +48\\ -321\\ +70\\ -110\\ +28\\ +351\\ +70\\ -110\\ +28\\ +150\\ \end{array}$

TABLE 1.—Comparison of the Mature Equivalent Live Weight and Fat Production of the Daughters of Jersey Sires and Their Dams (continued)

Fancy's Red Flag 87222 Fanny's Oxford Majesty 91781	1909 1909	15 19	2	437 789	837 1108	425 551	874 1000	+12 +238	-37 + 108
Favic's Prince 107961	1912	42	9	813	996	580	931	+232	+65
Fern's Lad of St. Martin 80126	1906	10	5	535	888	497	984	+38	-97
Fillmore's Foxglove 78878	1906	11	2	406	813	436	768	-29	+45
Financial Beauty's King 132904	1915	24	3	669	1030	680	968	-11	+62
Financial Countess Lad 86252	1908	27	3	587	1020	506	1001	+81	+19
Financial Fern Noble 113644	1912	21	3	614	896	559	1004	155	-107
Financial King's Eminent 94592	1910	27	1	399	658	396	861	+3	-203
Financial King's Stockwell 106574	1911	20	<u>9</u>	617	906	602	943	+16	-37
Financial Raleigh 86298	1907	12	7	548	936	576	946	-28	-10
Financial Remus 104413	1910	13	3	489	963	514	1019	-25	-56
Flying Fox's Eminent 78568	1907	12	10	574	861	452	898	+123	37
Flying Fox's Victor 64768	1902	21	4	524	920	552	921	-28	_1
Fontaine's Cajest 81118	1907	18	ŝ	492	911	511	1012	19	-101
Fontaine's Chieftain 97158	1907	32	13	610	956	469	922	+143	101
Fontaine's Duke 61709	1901	11	6	555	1003	661	962	-107	141
Fontaige's Gambore Knight 96186	1910	15	4	506	880	471	865	135	115
Fontaine's King 65641	1903	îi	î	557	1042	634	967	76	176
Fontaine's Lodestar 77305	1907	10	8	479	998	468	963	+11	135
Fontaine's Raleigh 105374	1912	15	8	540	050	510	948		112
Forfarshire's King Dalton 95339	1908	13	ő	604	822	533	1073	171	-251
Foxhall's Champion 124108	1912	15	6	626	969	584	997	142	28
Foxhall's Fern Lad 99378	1910	îŏ	2	573	906	451	939	1122	33
Foxhall's Jubilee 76944	1905	25	14	557	982	510	987	137	6
Fox's Johnnie O'Dreamwold 68143	1903	13	2	409	850	123	823	1/	1.28
Forv's Brown Poet 82982	1907	16	õl	473	904	167	050	-14	720
Fussy's Fern Noble 129041	1913	îŏ	3	488	203	530	777	-12	
Galway Fern Rioter 98284	1911	13	4	671	932	452	952	1.210	T110
Gamboge Knight 95698	1903	52	4	552	960	506	022	146	1.39
Gamboge Knight's Fox 106160	1912	11	2	801	891	651	008	-151	-107
Gambore Oxford Lad 62784	1903	25	õ	536	947	407	014	130	1.32
Gamboge's Prince 105565	1911	27	ĭ	393	000	474	1103	-91	-104
Gamboge's Vellum's Majesty 123063	1913	15	2	617	080	523	961	1.01	110
Gedney's Farm Girl's Oxford 75998	1907	39	25	599	955	587	072	111	T17
Gedney Farm Napoleon Oxford 93795	1908	13	ĩŏ	591	857	660	030	+11	
Gedney Farm Oxford Lad 71238	1900	24	1	528	891	608	905	00	
Gertie's Son's Boy 71825	1905	12	2	545	891	505	905		
Gertie's Son's Victor 123159	1912	23	4	504	835	471	080	1.34	155
Gertie's Stoke Pogis 56492	1899	15	4	602	871	560	000	133	
Gertrude's Jan 93947	1908	16	9	567	903	556	013	T11	1.00
G G Chief of Ashburn 86044	1909	17	8	560	956	459	815		
Glory's Noble 90655	1909	22	3	483	904	487	012	-101	19
Golden Cicero 80272	1907	15	3	495	882	606	922	_111	105
	2201	15 1		175 1	302 1	000 .	307		

9

				Daugh	Daughters Dams		15	Daught ceed d	ers ex- ams in
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production (lbs.)	Average Live Weight (lbs.)
Golden Fern of Alden 114321 Golden Fern of Linden 84011 Golden Fern's Noble Jr. 103786 Golden Fern's Noble Jr. 103786 Golden Gow's Chief 61460 Golden Jolly's Masterpicce 86295 Golden Lady of Summit 85396 Golden Luy's Maieterpicce 86295 Golden Luy's Eminent Lad 85639 Golden Maid's Prince 94944 Golden Maid's Viscount 113344 Golden Maid's Viscount 113344 Golden Spark of Montpelier 84576 Golden Tycoon 104240 Hawthorne's Prince 104887 Hazel Fern Golden King 77872 Hebton Victor 80100 Hebton Marigold 59121 Holzer 109744	1911 1907 1912 1906 1915 1909 1910 1910 1910 1910 1911 1908 1907 1911 1912 1907 1900 1911 1911	$\begin{array}{c} 11\\ 14\\ 11\\ 25\\ 14\\ 40\\ 18\\ 15\\ 12\\ 11\\ 10\\ 111\\ 11\\ 13\\ 300\\ 111\\ 10\\ 111\\ 13\\ 300\\ 111\\ 10\\ 17\\ 34\\ 29\\ 27\end{array}$	1 48 15 1 1 1 3 10 3 1 1 3 6 4 4 8 2 5 3 6 1 6	534 562 670 554 497 615 599 554 485 582 582 626 404 4551 511 582 534 499 506 473 686 676	950 886 962 955 1069 1001 832 953 893 1023 948 933 948 933 948 933 948 933 980 987 830 987 813 980 987 813	392 432 612 523 577 564 461 514 514 514 514 514 514 537 488 396 501 512 494 448 534 551 512 494 494 494 534 598	789 994 1010 899 1218 1001 881 980 926 973 921 911 1006 888 8901 9918 901 993 878 873 878 807 987 987	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} +162\\ -108\\ -48\\ +57\\ -149\\ -50\\ -27\\ -33\\ +50\\ +27\\ +22\\ -9\\ +201\\ -62\\ -118\\ -86\\ -66\\ -45\\ +28\\ +21\end{array}$

TABLE 1.—Comparison of the Mature Equivalent Live Weight and Fat Production of the Daughters of Jersey Sires and Their Dams (continued)

		۰ I							
Hood Farm Figgie Torono 90517	1000	22	12	525	1072	405	042	1.50	1 1 2 0
Hood Farm Posis Oth 55552	1909	23	12	333	10/2	400	942	+50	+130
Hood Farm's Calder Frank I 1 00427	1098	19	39	560	864	482	877	+78	-13
Hood Farm's Golden Fern's Lad 8045/_	1907	10	10	527	793	565	862	38	70
flood Farm Torono 60326	1900	72	40	691	852	544	897	+147	45
Hood Farm Torono 11th 78757	1907	14	1	687	853	522	962	+165	109
Hood Farm Torono 20th 82854	1906	21	20	589	815	611	824	-22	_10
Hood Farm Torono 21st 83413	1908	14	7	474	874	425	911	110	37
Ibsen's Glory 92986	1910	ÎÎ	3	108	030	457	017		1 21
Idle Hour Blue Belle Prince 72202	1005	12	Ă	526	045	410	002	T41	+21
Illahee Stoke Pogie 97031	1010	10	4	105	1054	429	982	+9/	38
Imported Cambination? Desci 100715	1910	10	4	495	1054	469	1004	+26	+50
Imported Combination's Fremier 150/15	1910	51	2	562	890	595	928	33	
Imported Cowslip's Golden Noble									
120/89	1909	26	5	459	894	517	866	57	+28
Imported Gamboge's Royal Majesty						•			
149864	1909	17	5	533	920	611	896	78	1.25
Imported Golden Fern's Noble 145762	1909	65	6	508	981	561	872	_53	111
Imported Golden Maid's Prince 93538	1900	12	ĭ	108	011	380	010	1.20	TH
Imported Hauteville Fairy Boy 90952	1909	27	6	466	011	176	010	+28	+/1
Imp Ving of Hembis 65200	1001	10	0	400	211	4/0	933	-10	-22
Imp. King of Hamble 03276	1901	19	4	507	969	48/	945	+20	+24
Imported Oxford Majesty 134090	1906	48	3	564	929	483	749	+80	+180
Imported Oxford You'll Do 111860	1906	83	69	552	974	449	927	+103	+47
Imported Ramsgate Champion 93534	1908	16	1	493	857	423	1002	+70	-145
Imported Stockwell 75264	1903	11	1	375	972	585	1000	-210	
Interested Prince 58224	1899	46	29	563	977	529	910	134	1.32
Interested Prince 2nd 95708	1910	31	20	5.83	1023	613	000	20	125
Interested Prince's Owl 98117	1911	30	-6	406	622	479	0.00	30	+25
Interested Vedue Prince 122951	1013	24	13	547	027	127	1620	11/	-30
rana's King Pogus 73192	1005	(1)	20	510	1070	427	1059	+120	-102
Jaland Ladarta 67620	1903	02	20	510	10/9	567	1050	58	+29
Island Lodestar 0,000	1904	11	/	455	851	538	917		66
Ixia's Noble Ra eigh 102596	1911	13	8	504	943	474	1000	+29	57
Jacoba's Emanan 841//	1908	11	9	573	1071	623	1087	-50	
Jacoba's Premier 89296	1909	14	9	560	993	672	1051	-113	59
Jap's Sayda's Baron 142559	1915	11	4	610	1072	473	905	± 138	+167
Jessie's Fairy Lad 112740	1912	15	8	470	897	463	829	1.7	1.69
Jubilee Foxhall 82299	1908	10 l	ĭ	395	1069	404	1013	0	167
Jubilee of Bois D'Arc 29041	1891	13	â	478	1014	527	064	10	+2/
Karnak's Jan 81363	1000	11	î	557	067	100	1075	-49	+31
Karnak's Noble 87052	1000	11	20	557	907	490	1075	+6/	-108
Kanaks's Colden Led 71225	1906	28	20	524	944	545	951	-21	-7
Keepsake's Golden Lad /1525	1904	14	12	547	1030	464	1061	+82	-31
King Melia Ann of Albany 96033	1909	17	8	501	916	504	991	-2	-75
King Sappho King 65262	1902	25	2	454	991	421	1079	+33	
Lad's Pogis of Hickory Lawn 108050	1912	14	1	430	1038	452	1007	-23	+31
Lady Letty's Eminent 82309	1908	40	17	490	956	451	974	+39	-18
Lady Letty's Victor 65020	1902	41	20	595	977	543	940	+51 l	+37
Latoma's Golden Topper 84170	1908	10	ĩ	571	1040	426	810	+146	1 221
Le Cotil's Raleigh 120688	1912	14	ŝl	439	986	513	1015	-75	7421
Leda's King 96707	1911	17	61	515	055	522	1015	-/5	
La Gros 102789	1011	21	2	313	222	525	744	8	+11
Loo of Smith Farm 80490	1007	21	1	407	001	339	199	50	+82
Line Didee Less 20412 Decis 107102	1012	11	1	010	882	480	972	+130	90
Lime Kluge Lass Join & Fogis 10/192	1912	17	8	552	1061	525	924	+27	+137
LOOKOUT Frince 1150/4	1913	27 1	3	424	812 I	433	918	-10	-106

.

H

				Daughters		Da	ms	Daught ceed da	ers ex- ums in
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production(lbs.)	Average Live Weight (lbs.)
Lookout Torono 78593 Loretta's King 65050 Loretta's D's Champion's Son 77002 Loretta's D's Champion's Son 77002 Loreta's D's Champion's Son 77002 Lora's Altana's Interest 108420 Lou's Torono 106614 Lucy's Prince P. S. 3939 H. C. Lucy's Prince P. S. 3939 H. C. Lucy's Port 65780 Mabel's Poet's Sultan 77854 Mabel's Raleigh 77913 Mabel's Raleigh P. S. 3722 H. C. Majesty's Camboge Lad 119409 Majesty's Oxford Fox 134214	1906 1902 1906 1906 1906 1912 1912 1914 1899 1907 1907 1907 1908 1913 1914 1915	31 59 16 10 14 15 10 13 15 10 14 17 27 12 10 18	22 19 8 2 5 6 1 1 5 3 9 3 2 9	457 544 425 507 613 631 426 457 542 666 535 571 541 616 509 589	944 1004 969 908 1026 938 972 910 936 832 912 966 906 1005 1040 977	448 472 445 510 452 613 415 492 464 510 529 474 530 474 530 492 408 496	988 981 1014 1005 956 1000 1050 901 907 940 922 1025 976 976 995 995	$\begin{array}{r} +9\\ +72\\ -20\\ -3\\ +161\\ +18\\ +11\\ +35\\ +78\\ +156\\ +6\\ +97\\ +11\\ +124\\ +101\\ +93\end{array}$	$\begin{array}{c} -444 \\ +23 \\ -45 \\ -97 \\ +11 \\ -18 \\ -28 \\ -140 \\ +35 \\ -728 \\ +43 \\ -119 \\ +29 \\ +43 \\ -119 \\ +29 \\ +45 \\ -16 \end{array}$

TABLE 1-COMPARISON	OF THE]	MATURE	Equivalent	LIVE	Weight	and Fat	PRODUCTION	OF
THE DAT	JGHTERS	of Jerse	Y SIRES AND	THEIR	Dams	(continued)		

								1	
Majesty's Star 104594	1911	17	7	571	938	466	936	+105	+2
Majesty's Western King 113111	1909	16	3	543	894	479	870	+64	+24
Majesty's Wonder 90717	1909	15	4	468	1012	453	1015	+16	4
Marigold's Exile King 63232	1901	14	10	513	963	524	914	-11	+50
Marigold's Ian 100085	1910	12	- 3	504	1021	385	1031	+119	-10
Mangold's Jap 100005	1905	11	10	574	986	506	952	+68	+34
Martha Blueball's Odelio 102298	1910	17	7	524	1041	454	1010	+71	+32
Mattha Dideben's Odeno 1022/02-1	1913	13	i 1	733	910	538	1024	+196	-114
Maudia Malia Diotor 75751	1906	18	2	550	990	445	981	+105	+10
Maudis Miena Kloter / J/JI	1911	12	4	668	965	565	968	+103	3
MCKay & Lau 104234	1011	13	ŝ	507	1027	442	922	+64	+106
Meridale's Interested Duke III310	1013	13	6	654	969	740	959		+10
Meridale Oxford Own 110444	1014	27	. 3	589	950	482	939	+107	+11
Meridale Frince Daring 155045	1014	11	ĭ	738	1010	404	929	+334	+81
Meridale Sayda's Daron 152157	1005	17	Â	440	951	487	1004	-47	-53
Merry Malden Frince /159/	1909	前日	ō	454	994	518	968	-65	+26
Minaret Exile 30933	1006	10	2	510	1025	508	986	+1	+39
Mistletoe rogis /55/1	1900	11	5	465	924	540	960	-75	-36
Model's Uxford Lad 00510	1000	11	ŏ	594	692	585	932	1	+60
Mona Rose's Glory 92551	1909	12	1	413	814	378	937	+35	-122
Mona's Eminent 84018	1000	13	4	404	869	601	969	-110	-100
Mona's Handsome Stockwell 90390	1909	14	2	503	917	613	903	-110	+14
Mon Plaisir's Majesty of F. 120484	1913	11	2	431	942	472	1013	-41	-71
Morny Cannon's Bright Prince 10/441	1910	21	6	746	986	624	1026	+121	40
Morocco's Pioneer 1050/9	1911	16	07	127	957	386	907	+41	+ 50
Mr. Inez Marigold Pedro /9/01	1907	10	2	451	815	450	998	1 11	-152
Naiad's Golden Lad 0/4//5	1903		57	510	848	484	816	+26	+31
Nettina's Meridale Prince 1141/4	1912	19	2	400	866	448	826	1 42	1 40
Nobleman of St. Cloud /6091	1907	1/	5	422	0.13	518	889	-85	1 +54
Noble of Oaklands 95700	1905	10	3	660	1008	630	1004	+31	+4
Noble Peer 90653	1909	10	12	543	1000	573	037		_32
Noble's Aristocratic Boy 101939	1911	21	5	612	1020	541	050	1 - 82	+61
Noble's Sensational Lad 118530	1913	12	4	569	016	506	964	-61	49
Noble's Fawn Prince 95/05	1910	13	1	305	816	521	907	-126	-61
Noble's Jolly Sultan 9/181	1907	44	2	373	800	116	859	120	-50
Noble Oxford Sultan 106403	1911		5	601	1096	628	1108	-27	-12
Noble's Raleigh 82/5/	1908	13	4	427	056	415	1029	± 12	-74
Noble Sultan 106673	1911	13	4	522	915	422	910	+100	_95
Oakwood D's Fox 126834	1913	24	11	522	015	510	005	100	_5
Octavia's Duke 102270	1910	13	11	357	073	442	974	1 +25	
Oonan Count 57470	1899	19	8	10/	027	633	1019	-105	-112
Oonan's 23rd Grandson 74887	1906	1 1 1 2	D D	520	025	516	071	+107	36
Ophelia's Challenger 120468	1913	15	9	023	955	500	050	23	
Owl's Oxford Interest 121457	1913	18	1	4//	1002	500	950	-25	-130
Owl of Belleview 106305	1911	17		490	1092	520	002		1,10
Oxford Daisy's Flying Fox 83284	1908	41	23	597	1005	420	1007	166	-51
Oxford Duke O'Dreamwold 126888	1913	13	5	506	956	439	050	+00	
Oxford Handsome Prince 83338	1908	12	4	1 199	928	610	051	17	1 135
Oxford Lad's Progress 92916	1909	16	5	593	980	610	1010	_12	1 11
Oxford's Fairy Boy 92821	1910		5	615	996	038	1010	-13	_137
Oxford Victory 83122	1908	10	3	505	903	52/	047	1 20	-157
Oxford You'll Do Junior 102269	1910	1 15	9	1 611	1 884	1 382	1 94/	1 + 49	

Research Bulletin 147

······································	-										
				Daug	hters	Da	ms	Daugh ceed d	ters ex- ams in		
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production(lbs.)	Average Live Weight (lbs.)		
Plymouth's Hallowee'n Fox 102320 Pogis 75th of Hood Farm 94501 Pogis 94th of Hood Farm 94502 Pogis 95th of Hood Farm 92620 Pogis 99th of Hood Farm 711 18462 Pogis 99th of Hood Farm 711 118462 Pogis 99th of Hood Farm 711 118462 Pogis of Galiad 84397 Pogis of Galiad 84397 Poppy's St. Mawes 115434 Premier of Fairview 116508 Priety Maid's Figgis Fox O'D 89351 Pride's Olga Rosaire's Son 84768 Pride's Olga Rosaire's Son 84768 Pride's Olga Rosaire's Son 84768 Pride's Olga Rosaire's Son 84768 Pride's Olga Rosaire's Son 84768 Price Jonquil 85334 Queen's Fairy Boy 108321 Queen's Fairy Boy 83767 Raleigh's Fairy Boy 4th 101482 Raleigh's Fairy Boy 4th 101482	1911 1909 1909 1909 1913 1914 1908 1911 1912 1909 1908 1907 1908 1907 1908 1909 1912 1914 1905 1911	$\begin{array}{c} 16\\ 20\\ 16\\ 26\\ 104\\ 17\\ 16\\ 11\\ 24\\ 14\\ 14\\ 16\\ 17\\ 17\\ 11\\ 34\\ 13\\ 12\\ 24\\ 13\\ 12\\ 24\\ 13\\ 12\\ 24\\ 13\\ 12\\ 24\\ 13\\ 12\\ 24\\ 13\\ 12\\ 24\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	7 10 9 10 65 6 3 8 8 12 3 3 6 6 4 4 17 2 3 19 8 8	489 621 538 656 722 586 824 511 675 484 553 608 468 468 521 603 602 461 573 528 73 528	969 866 945 965 898 888 970 950 951 950 990 1034 1020 1047 959 971 792 960 965 965	513 576 466 637 652 593 479 506 713 478 432 500 444 432 500 444 45 44 524 524 524 542 482 705	1029 875 882 956 658 905 883 923 953 821 823 923 923 915 935 979 975 912 997	$\begin{array}{c} -24\\ +44\\ +72\\ +20\\ +71\\ -8\\ +346\\ +5\\ -38\\ +6\\ +122\\ +108\\ +24\\ +108\\ +24\\ +9\\ +112\\ +78\\ -83\\ +31\\ +46\\ 60\end{array}$	$\begin{array}{c} -60 \\ -9 \\ +64 \\ +8 \\ +40 \\ -17 \\ +87 \\ +72 \\ +72 \\ +72 \\ +111 \\ +105 \\ +64 \\ +24 \\ +24 \\ -8 \\ -183 \\ +47 \\ -32 \\ -92 \\$		

Table	1.—Comparison	OF TH	e Mature	Equivalent	LIVE	Weight	and Fat	Production	OF
	THE D	AUGHT	ers of Jers	EY SIRES AND	Their	DAMS (CO	ontinued)		

Raleigh's Noble 90478 Raleigh's Plymouth Noble 104107 Raleigh's Poet 102464	1910 1911 1911	13 11 10	2 1 4	611 537 599	969 891 1012	447 527 477	954 786 880	$^{+164}_{+10}$	+16 +105 +132
Rinda Lad of S. B. 89518	1901 1909	31 48	12 19	603 685	867 949	698 580	814 950	96	+53
Robert You'll Do 120790	1898 1911	24 13	9 3	549 592	953 935	477 492	1030	+71	-77
Rockwood Laddie 82915	1908	13	4	540	861	574	957	-34	96
Rosaire's Olga Lad 87498	1909	51	30	679	953	659	963	+173	+23
Royal Mainety 79313	1906	10	5	577	974	445	828	+132	+146
Royal Majesty of St. Cloud 89541	1903	45 83	24	584	929	495	915	+140	+13
Roycraft Éminent 103231	1911	24	3	598	742	479	849	+105 +119	+48
Sayda's Heir 45360	1896	14	2	465	942	493	947	29	5
Savda's Oxford Owl 121234	1902	62	32	579	967	519	936	+60	+30
Sayda's King of Meridale 121724	1914	22	7	784	979	549	985	+21	-74
Sampson Exile 72702	1902	10	6	508	878	. 578	967	-69	-90
Scott's Champion 105387	1907	18	5	661	988	452	882	+209	-106
Sea Lad P. S. 4720 H. C.	1911	10	3	403	939	594	861	-191	62
Sensational Fern 75024	1906	24	Š	560	933	569	919	-10	+99
Shannon Raleigh 105825	1911	16	3	712	937	696	898	+16	+39
Sibley's Interested Prince 108578	1907	25	10	686	1012	574	980	+113	+33
Silver Chimes of S. B. 96021	1910	10 41	14	641	1046	495	957	+146	+89
Sir Oxford's Majesty 105869	1912	13	7	517	759	391	945	+93	+24
Sultan of Oaklands 78475	1904	22	3	511	892	435	845	+76	+47
Sultan of Rockland 121150	1913	19	10	618	948	645	1031	-27	-83
The Imported Jap 75265	1904	49	37	790 609	940 1037	783	896	+7	+44
The Jap's Owl 138146	1914	Îí	4	665	1046	575	1038	+70	+79
The King of Cloverland 115137	1912	12	5	689	1109	726	1119	-37	-10
The Owl's Double Grandson 80314	1907	14	15	484	1021	554	975	70	+46
The Owl's Oxford Prince 85699	1905	15	7	537	992	512	957	+1 +25	+25
The Plymouth Lad 89792	1905	16	3	569	1021	495	941	+74	+80
Toga's Noble Lord 96421	1907	35	16	465	885	404	833	+61	+53
Tom You'll Do 113062	1913	20	8	400	942 802	522 488	956	-42	-14
Torono Pogis 78657	1907	28	26	561	951	559	970	+10	-100
Tormentor of KawKawlin 42880	1910	10	1	510	816	501	829	+9	-14
Valentine's Ashburn Baronet 100044	1911	23	12	505 704	1014	504	989	1	
Valentine's Count 69878	1904	17	14	424	916	431	983	+220	+103 -67
Valentine's Uonan 58076	1899	20	10	478	990	490	900	-12	+90
Viola's Golden Jolly 79314	1909	13	25	602 498	1010 950	522 511	901 939	+80	+109
				170	550	511	,,,,	-15	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

15

				Daug	hters	Da	ms	Daught ceed da	ters ex- ams in
Name and Number of Sire	Year of Birth	Number of Yearly Record Daughters	Number of Dams and Daughters Compared	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Mature Equivalent Fat Production (lbs.)	Average Mature Equivalent Live Weight (lbs.)	Average Fat Production(lbs.)	Average Live Weight (lbs.)
Viola's Oxford Lad 89600	1910 1908 1911 1913 1916 1915 1915 1914 1912 1909 1910 1909 1910 1904 1913 1914 1914 1914 1914 1914 1914 191	$\begin{array}{c} 14\\ 12\\ 76\\ 200\\ 19\\ 14\\ 29\\ 16\\ 48\\ 27\\ 49\\ 11\\ 21\\ 23\\ 21\\ 23\\ 21\\ 22\\ 12\\ 41\\ 11\\ 17\\ 21\\ 16\\ 10\\ 25\\ 12\\ 21\\ 22\\ 12\\ 21\\ 22\\ 12\\ 21\\ 22\\ 12\\ 1$	6 8 7 2 4 1 1 7 7 2 7 20 17 2 0 17 2 3 3 3 3 3 3 5 2 3 3 4 4 4 7 7 7	587 445 544 734 734 709 627 575 565 609 592 548 692 648 696 649 2513 729 624 667 767 767 767 504 549 602 498 502 498 5551 480 664 5551 485 5551 485 5551 485 5551 5551 5	968 883 867 10101 1030 987 967 980 980 980 997 977 965 980 950 950 950 980 980 950 988 842 873 822 939 928 842 873 822 939 9248 892 928 1019	$\begin{array}{r} 473\\ 489\\ 542\\ 393\\ 738\\ 684\\ 550\\ 579\\ 661\\ 534\\ 498\\ 536\\ 614\\ 568\\ 484\\ 568\\ 484\\ 506\\ 504\\ 596\\ 516\\ 516\\ 516\\ 516\\ 516\\ 516\\ 516\\ 51$	918 876 904 858 842 1129 91083 950 1037 809 948 963 907 1020 981 808 809 907 1020 955 955 955 955 94 904 995 995 904 995 995 904 905 904 807 904 807 904 905 907 904 807 807 907 907 907 907 907 907 907 907 907 9	$\begin{array}{c} +115\\ -43\\ +11\\ +92\\ +307\\ -44\\ -57\\ +222\\ +16\\ +58\\ +150\\ +161\\ +162\\ -54\\ +248\\ +163\\ +17\\ +20\\ -54\\ +18\\ +163\\ +118\\ +118\\ +21\\ +21\\ +21\\ +21\end{array}$	$\begin{array}{c} +50\\ +7\\ -37\\ +26\\ +168\\ +168\\ +168\\ +37\\ -53\\ -70\\ +59\\ +32\\ +74\\ +91\\ -413\\ -166\\ +173\\ -168\\ +88\\ +84\\ +67\\ -62\\ -78\\ -144\\ +311\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -129\\ -162\\ -52\\ -48\\ +131\\ -59\\ -129\\ -129\\ -52\\ -28\\ -52\\ -28\\ -52\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -2$

TABLE 1.—COMPARISON OF THE MATURE FQUIVALENT LIVE WEIGHT AND FAT PRODUCTION OF THE DAUGHTERS OF JERSEY SIRES AND THEIR DAMS (continued)

Fig. 1.—The frequency distribution of the average body weight of the progeny of Jersey sires.

In considering this problem only sires having not less than five dam and daughter pairs were included in the study. The sires which increased the production of their daughters over that of their dams were divided into groups depending on the amount of increase in fat production. Then the average change in body weight between dams and daughters was determined. For example, of the 24 sires whose daughters exceeded the fat production of their dams by 25 pounds or less, there were 9 whose daughters exceeded their dams in body weight and 15 whose daughters were less than their dams. The average body weight of the daughters of the 24 sires showed an actual decrease of 11.3 pounds as compared with their dams. The next group (from 25-50 pounds fat) also showed a slight decrease in body weight on the average. However, as the increase in fat production of the daughters over their dams becomes greater, there appears to be a tendncy for the body weight of daughters to exceed slightly the body weight of the dams. Of a total of 109 sires whose daughters' fat production averaged 72.1 pounds greater than that of their dams there was an average increase in body weight of the daughters of only 6.8 pounds compared to their dams. (See Table 2.) It would appear from these data that the Jersey sires whose daughters exceed the fat production of their dams have increased in yearly fat production for reasons other than a material increase in body weight.

TABLE 2 - RELATION OF INCREASE IN EAT PRODUCTION OF DAUGHTERS OVER DAMS TO CHANGE IN BODY WEIGHT (Based on sires having 5 or more Dam and Daughter pairs)

		Change in Boo	ly Weight of I	Daughters Com	pared to Dams		
Increase of	We Incr	Weight Increase		ight rease	Net Change in Weight		
Daughters in Fat Class Center	Number of Sires	Average Weight Change	Number of Sires	Average Weight Change	Total Num- ber of Sires	Average Weight Change	
<i>lbs.</i> 12.5 37.5 62.5 87.5 112.5 137.5 162.5 187.5 212.5 237.5 Total	9 10 13 5 10 4 5 1 1 2 60	<i>lbs.</i> 49.6 67.2 50.1 52.4 49.3 70.5 53.2 21.0 103.0 50.5	15 15 6 3 7 1 0 0 1 1 49	<i>lbs.</i> 47.9 48.5 75.5 20.0 51.8 45.0 106.0 82.0	24 25 19 8 17 5 5 1 2 3 109	$\begin{array}{r} & $lbs.$\\ -11.3\\ -2.2\\ +10.4\\ +25.2\\ +7.6\\ +47.4\\ +53.2\\ +21.0\\ -1.5\\ +6.3 \end{array}$	
Average		+54.9		-52.2	105	+6.8	

Average fat increase for weight increase = 85 pounds.

Average fat increase for weight decrease = 56.4 pounds. Average fat increase for both = 72.1 pounds.

A similar study was made of the sires whose daughters decreased in fat production when compared with their dams. Of a total of 60 sires. the daughters of 26 showed an average increase in body weight of 36 pounds, while 34 showed an average decrease of 48.9 pounds in body weight. The daughters of the entire group of sires decreased an average of 47.3 pounds in yearly fat production and a decrease of 12.1 pounds in body weight. Here again the change in body weight does not appear to have been a significant factor in causing the decrease in yearly fat production. (See Table 3.)

TABLE 3.—RELATION OF DECREASE IN FAT PRODUCTION OF DAUGHTERS OVER DAMS TO CHANGE IN BODY WEIGHT

	Change in Body Weight of Daughters Compared to Dams								
Increase of	Weight Increase		We Decr	ight ease	Net Change in Weight				
Daughters in Fat Class Center	Number of Sires	Average Weight Change	Number of Sires	Average Weight Change	Total Num- ber of Sires	Average Weight Change			
<i>lbs.</i> 12.5 37.5 62.5 87.5 112.5	10 4 7 4 1	<i>lbs</i> . 37.0 45.5 28.8 35.5 41.0	12 9 5 3 4	<i>lbs.</i> 55.5 32.6 57.2 43.6 69.0	22 13 12 7 5	$\begin{array}{c} lbs. \\ -13.4 \\ -8.6 \\ -7.0 \\ +1.5 \\ -47.0 \end{array}$			
162.5 Total Average	26	36.0	1 34	11.0 48.9	60 60	-11.0 -12.1			

(Based on sires having 5 or more Dam and Daughter pairs)

Average fat decrease for weight increase =44.8 pounds. Average fat decrease for weight decrease =49.2 pounds. Average fat decrease for both =47.3 pounds.

From these observations, the writer is believed to be justified in concluding that Jersey sires can cause significant changes in yearly fat production (either upward or downward) of their daughters as compared with their dams without causing a material increase or decrease in body weight. The importance of this observation will be further considered in a discussion of the efficiency of fat production in relation to body weight.

COMPARISON OF THE BODY WEIGHT OF DAMS AND DAUGHTERS

As indicated in the introductory review, extensive comparisons of the fat production of the dams and daughters of dairy sires have invariably shown a very low relationship. As a result of these findings, it was concluded that for all practical purposes the average mature equivalent fat production of the daughters is entirely satisfactory as a measure of the sire's transmitting ability.

Similarly, in a study of the inheritance of body weight, the relation of the dams' body weight to the daughters' body weight is of interest. Therefore, a study was planned with the object of obtaining data which would throw light on the relation between the body weight of the dams and daughters and indirectly the influence of the dams upon the average progeny performance of the sires.

As pointed out previously (Turner 1927), if a sire was bred to a large number of dams of varying productive abilities, the dam and daughter comparison would indicate the influence of the dams, as the sire would be the same in each case. Unfortunately such sires are not available. It is necessary, therefore, to study the entire population of dams and daughters. There are two alternatives in such an analysis.

First, it is possible to determine the relation between the body weight of the dams and daughters irrespective of the sire's influence. Second, the relation between the dams and daughters of sires whose progeny performance is similar. The latter plan would tend to hold constant the influence of the sires (as far as such is possible) and the relationship indicated by the comparison would more nearly represent the relation between the dam's body weight and their transmitting ability to their daughters. Both methods are presented in Tables 4 to 8, inclusive.

In Table 4 is presented a dam and daughter comparison which includes the daughters of all Jersey sires studied. The mean or average body weight of the daughters by dams of increasing body weight is shown. The regression slope determined by the method of least squares was found to be 0.276. (It is interesting to note that the regression slope for fat production was found to be 0.351).

Dam's Weight Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Daughter's Mean Body Weight	Standard Deviation	Coefficient of Variation
<i>lbs.</i> 675 725 775 825 925 925 975 1025 1025 1075 1125 1175 1225 1275 1325 704	7 46 103 220 299 442 473 355 159 75 35 16 3 4 2237	$\begin{array}{c} lbs.\\ 877.7\\ 891.5\\ 905.3\\ 919.1\\ 932.9\\ 946.5\\ 974.3\\ 988.1\\ 1001.9\\ 1015.7\\ 1029.5\\ 1043.3\\ 1057.1 \end{array}$	$\begin{array}{c} lbs. \pm\\ 896.5 \pm 14.96\\ 895.7 \pm 10.85\\ 909.5 \pm 6.70\\ 903.2 \pm 4.86\\ 939.1 \pm 4.17\\ 947.8 \pm 3.24\\ 969.8 \pm 3.55\\ 997.0 \pm 5.40\\ 1015.0 \pm 8.21\\ 1003.6 \pm 10.82\\ 996.9 \pm 23.27\\ 975\\ 1237.5\end{array}$	$\begin{array}{c} lbs,\\ 58.70\pm10.58\\ 109.05\pm7.67\\ 100.85\pm4.74\\ 106.75\pm3.43\\ 106.85\pm2.95\\ 100.85\pm2.29\\ 99.10\pm2.51\\ 101.00\pm3.85\\ 99.10\pm2.51\\ 101.00\pm3.85\\ 95.00\pm5.81\\ 95.00\pm7.66\\ 138.00\pm16.45\end{array}$	$\begin{array}{c} 6.55 \pm 1.18 \\ 12.18 \pm .87 \\ 11.09 \pm .52 \\ 11.82 \pm .38 \\ 11.38 \pm .31 \\ 10.64 \pm .24 \\ 9.91 \pm .22 \\ 10.22 \pm .26 \\ 10.13 \pm .38 \\ 10.39 \pm .57 \\ 9.47 \pm .76 \\ 13.84 \pm 1.68 \end{array}$

TABLE 4.—RELATION BETWEEN THE DAMS' BODY WEIGHT AND THEIR DAUGHTERS' BODY WEIGHT All Jersey Sires

*Equation fitted by the method of least squares Wt.dau. = 691.4 + 0.276 Wt.dm. where Wt.dau. is the body weight of the daughters and Wt.dm. is the body weight of the dams.

The criticisms of this method have been discussed in a previous publication (Turner 1927) to which the reader is referred. To meet these criticisms, the data were separated as shown in Tables 5 to 8 inclusive. The sires were grouped according to their progeny performance by 100-pound body weight classes beginning at 750 pounds. This grouping has the advantage of holding the influence of the sires fairly constant.

TABLE 5.—RELATION BETWEEN THE DAMS' BODY WEIGHT AND THEIR DAUGHTERS' BODY WEIGHT

Dam's Weight Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Daughter's Mean Body Weight	Standard Deviation	Coefficient of Variation
<i>lbs</i> , 725 775 825 925 975 1025 1075 1125 1175 1225 1275 1325 7072	3 4 5 21 27 22 19 12 6 3 1 3 13	<i>lbs.</i> 956.0 974.8 993.6 1012.4 1031.2 1050.0 1068.8 1087.6 1106.4 1125.2 1144.0 1162.8 1181.6	$\begin{array}{c} lbs.\\ 1025\\ 1050\\ 1075\\ 1075\\ 1048.85 \pm 14.82\\ 1062.70 \pm 10.62\\ 1077.25 \pm 14.12\\ 1064.5 \pm 14.35\\ 11250 \pm 11.24\\ 1083.3\\ 1141.6\\ 1125\\ 1258.3 \end{array}$	$lbs.$ 100.70 ± 10.48 81.70 ± 7.49 98.20 ± 9.98 92.60 ± 10.35 57.65 ± 7.95	$9.60 \pm .99$ 7.94 ± .73 9.11 ± .93 8.69 ± .95 5.12 ± .71

Jersey sires whose daughters average over 1050 pounds in body weight

*Equation fitted by the method of least squares $Wt.d_{au.} = 683.4 \pm 0.376 Wt.d_{m.}$ where $Wt.d_{au.}$ is the body weight of the daughters and $Wt.d_{m.}$ is the body weight of the dams.

TABLE 6.—RELATION	Between	THE	Dams'	Body	Weight	AND	Their	DAUGHTERS	'
		Bo	dy We	IGHT					

Dam's Weight Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Daughter's Mean Body Weight	Standard Deviation	Coefficient of Variation
<i>lbs.</i> 725 775 825 875 925 925 1025 1025 1075 1125 1125 1125	9 21 77 138 240 269 202 97 47 22 9 9 1131	<i>lbs.</i> 964.8 970.3 975.8 981.3 986.8 992.3 997.8 1003.3 1008.8 1014.3 1019.8	$\begin{array}{c} lbs.\\ 991.65\pm21.82\\ 975.00\pm14.53\\ 963.30\pm7.05\\ 995.65\pm4.85\\ 983.95\pm3.51\\ 985.20\pm3.51\\ 994.30\pm3.87\\ 1014.70\pm5.88\\ 1005.80\pm10.28\\ 1013.6\pm10.83\\ 1002.7\end{array}$	$\begin{array}{c} lbs.\\ 97.05\pm15.43\\ 98.70\pm10.28\\ 91.75\pm4.98\\ 84.40\pm3.43\\ 80.70\pm2.48\\ 80.30\pm2.34\\ 81.50\pm2.74\\ 85.85\pm4.16\\ 104.40\pm7.27\\ 75.30\pm7.65\end{array}$	$\begin{array}{c} 9.78 \pm 1.55 \\ 10.12 \pm 1.05 \\ 9.52 \pm .52 \\ 8.47 \pm .34 \\ 8.20 \pm .25 \\ 8.15 \pm .24 \\ 8.19 \pm .27 \\ 8.46 \pm .41 \\ 10.38 \pm .72 \\ 7.43 \pm .76 \end{array}$

Iersey sires whose daughters average between 950 and 1049 pounds in body weight

*Equation fitted by the method of least squares Wt.dau. =885.1+0.110 Wt.dm. where Wt.dau. is he body weight of the daughters and Wt.dm. is the body weight of the dams.

TABLE 7.—RELATION BETWEEN THE DAMS' BODY WEIGHT AND THEIR DAUGHTERS' BODY WEIGHT

Dam's Weight Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Daughter's Mean Body Weight	Standard Deviation	Coefficient of Variation
<i>lbs.</i> 725 775 825 925 975 1025 1075 1125 1175 1225 Total	29 69 100 127 155 160 123 39 17 7 4 830	<i>lbs</i> 869.94 879.58 889.23 908.53 918.18 927.83 937.48 947.13 956.78 966.43	$\begin{array}{c} lbs,\\ 869, 85\pm11.45\\ 888.05\pm7.31\\ 888.00\pm6.51\\ 904.55\pm5.33\\ 906.95\pm4.50\\ 909.10\pm4.48\\ 923.35\pm5.33\\ 926.30\pm10.33\\ 966.20\pm12.94\\ 903.60\pm21.41\\ 975.00\pm31.53 \end{array}$	$\begin{array}{c} lbs.\\ 91.3 \ \pm 8.09\\ 90.0 \ \pm 5.17\\ 89.1 \ \pm 4.25\\ 89.0 \ \pm 3.77\\ 83.05 \ \pm 3.18\\ 83.95 \ \pm 3.17\\ 97.60 \ \pm 7.31\\ 79.05 \ \pm 9.15\\ 83.8 \ \pm 15.13\\ 93.5 \ \pm 22.29 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Jersey sires whose daughters average between 850 and 949 pounds in body weight

*Equation fitted by the method of least squares Wt.dnu. = 729.4 + 0.194 Wt.dnu, where Wt.dau, is the body weight of the daughters and Wt.dn, is the body weight of the dams.

TABLE 8.—Relation Between the Dams' Body Weight and Their Daughters Body Weight

Tersev	sires W	vhose	daughters	average	between	750	and	849	pounds	in	body	/ weig	ght
1 1 1 1 1 1 1 1 1													

Dam's Weight Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Daughter's Mean Body Weight	Standard Deviation	Coeefficient of Variation
<i>lbs.</i> 675 725 775 825 925 975 1025 1025 1025 1125 1125 1225	3 5 9 38 29 28 16 8 3 1 0 1	<i>lbs.</i> 775.2 782.5 789.7 804.2 811.5 818.7 825.9 833.2 840.5 847.7 854.9	$\begin{array}{c} lbs.\\ 891.66\\ 795.00\\ 858.30\\ 806.60\pm 8.26\\ 797.40\pm 7.83\\ 796.40\pm 12.55\\ 831.25\pm 12.58\\ 825.00\\ 875.00\\ 1025.00\\ 725.00\\ \end{array}$	<i>lbs</i> . 75.50 ± 5.85 62.45 ± 5.54 98.45 ± 8.88 74.65 ± 8.90	$9.36 \pm .72$ $7.83 \pm .69$ 12.36 ± 1.11 8.98 ± 1.07

*Equation fitted by the method of least squares Wt.dau. = 677.3 + 0.145 Wt.dm. where Wt.dau is the body weight of the daughters and Wt.dm. is the body weight of the dams.

Fig. 2.—The relation between the body weight of the dams and daughters of various groups of sires is presented. The smooth lines passing through the observed values were fitted by the method of least squares to the equation $Wt_{daw} = a + bWt_{daw}$ in which Wt_{daw} is the body weight of the daughters, Wt_{dam} the body weight of the dams, a the sire's potential transmitting ability for body weight, and b the rate of increase in the body weight of the daughters. The values for a and b are placed on the figure. While there is some variability in the values of b, the weighted average is 0.159. In round numbers there is an increase of 15 to 20 pounds of body weight of the daughters for an increase of 100 pounds of body weight of the dams above the potential transmitting ability of the sire. The data in Tables 4 to 8 are plotted in Figure 2. The smooth lines passing through the observed values were fitted by the method of least squares to the equation Wt. dau. = a + b wt. dam in which Wt. dau. is the body weight of the daughters, Wt. dam the body weight of the dams, *a* the sire's potential transmitting ability for body weight, and b the rate of increase in the body weight of the daughters. The values for a and b are placed on the figure.

TABLE 9.—REGRESSION	Equations	S OF	DAUGHTERS'	Body	Weight	ON	THE	Dams
		Bod	у Weight					

Sire's Progeny Ave. Live Weight	Regression Equation	Dam and Daughter Pairs Included
1050 or over 950-1049 850-949 750-849 All combined	a b 683.4 0.376 885.1 0.110 729.4 0.194 677.3 0.145 691.4 0.276	131 1131 830 141 2237

The equations for each group of sires are presented in Table 9. With the exception of the first group of sires, the values of b are quite similar. The weighted average of the b's was found to be 0.159. This means that there is an increase of about 16 pounds of body weight of the daughters for an increase of 100 pounds of body weight of the dams above the potential transmitting ability of the sires. (The corresponding weighted average of the b's for fat production for Jerseys was 0.135.)

From a consideration of these data, it appears that the inheritance of body weight of Jersey cattle follows much the same plan as the inheritance of yearly fat production. Because the relationship of the body weight of the dams and daughters as measured by regression equations is low, the conclusion is reached that the most satisfactory measure of the sire's potential transmitting ability for body weight is the average mature equivalent body weight of the daughters.

II. The Relation Between Body Weight and Fat Production

The earliest study of the relation between body weight and milk and fat production appears to be the work of Woll (1900) who compared the weight and production records of 183 cows reported by the Agricultural Experiment Stations of the United States. The entire group was divided into three weight classes, light, medium, and heavy. The results of this tabulation are shown below:

Weight Class	Average Weight		Yearly Production	
		$_{\mathrm{Milk}}$	Fat	Fat
.		lb s .	lbs.	%
Light	858	5860	270.2	4.61
Medium	985	6570	287.1	4.37
Heavy	1096	6449	279.0	4.32

These data were also classified by breeds with approximately the same trend; namely, the light cows produced less milk and fat than the medium or heavy cows. Between the medium-sized and heavy cows there appeared little difference. In the light of more recent work it might be noted that the factor of age appears to be entirely neglected. It would be expected that the younger cows would be lighter and lower producers.

Woll (1912) again made a study of the relation between body weight and production in connection with the analysis of the records of the Wisconsin Dairy Cow Competition 1909-1911. In this study the cows were placed in groups of 30 cows each in order of decreasing production of butterfat. The average weight of cows in each group was then determined. In general the body weight declined in the same order as the butterfat. However, this method of determining the effect of body weight is not very satisfactory. This is especially true due to the fact that the age effect again was not considered.

Nevens (1919) reclassified the records published by Woll (1912) on a weight basis. Each breed was studied separately. It was found that as the weight increased the yearly milk and butterfat production increased also. He concluded that the maintenance requirements of cows is directly proportionate to body surface and not to weight. The larger cows thus have a slight advantage in amount of feed required per 100 pounds of live weight. Large cows eat and produce more than small cows and are more efficient producers. The age of the cows was not considered. As both weight and fat production increase with age, the tabulation does not show the effect of weight alone on production.

Recently Gowen (1925) made a study of 339 Holstein 7-day fat records where certain body measurements and live weights of the cows were also available. Due to the fact that body dimensions, body weight, and fat production increase with age, and the age factor was not considered, the study does not indicate the true relation between body weight and fat production.

Turner, Ragsdale, and Brody (1924) made a study of the Register of Merit records where the weight records were available comparing the body weight and yearly fat production of these cows. It was found when all records were grouped together that after the Jersey cow reached the body weight of 470 pounds, there was an increase of 104 pounds in fat production per year for an increase of 100 pounds of body weight with age.

However, when the age was made constant instead of an increase of 104 pounds of fat for an increase of 100 pounds of body weight, there was an increase of about 20 pounds of fat for each 100 pounds of body weight. It was concluded that an increase of body weight contributes about 20 per cent to the total increased fat yield with age, while the other 80 per cent of increased fat yield with age is due to other factors accompanying increased maturity.

In a study of Guernsey Advanced Register records where body weight was available (2700 records), Turner (1929) confirmed the above conclusions. It was found in the case of the Guernseys under consideration that for an increase of 100 pounds in live weight accompanying age there was an increase of 77 pounds of fat per year. However, when age was held constant there was an increase of only 20 pounds of fat for an increase of 100 pounds in weight. It was concluded that about 25 per cent of the total increase of fat secretion with age was due to the live weight of the animals concerned, whereas the other 75 per cent of the increase in fat secretion with age would be ascribed to the development of the udder by recurring pregnancies.

From a study of cow testing association records McDowell (1929) concluded that the big cows win on the average in production of milk and butterfat and in income over cost of feed per cow. From the data presented by McDowell, the writer has computed the average increase in yearly fat production to be 14 pounds for each 100 pounds increase in body weight. While McDowell does not mention the factor of age in this paper, he has informed the writer that only mature cows were included, thus eliminating the factor of age.

Considering the lower average fat production of cows in cow testing associations as compared with officially tested cattle, the difference between 14 and 20 pounds of fat for each 100 pounds increase in body weight is as close as could be expected.

									Body W	eight (p	ounds)								
Yearly Fat Production	Under 600	600 649	650 699	700 749	750 799	800 849	850 899	900 949	950 999	1000 1049	1050 1099	1100 1149	1150 1199	1200 1249	1250 1299	1300 1349	1350 1399	1400 up	Total
lbs. Under 400 400-424 425-449 450-474 475-499 500-524 525-549 500-574 575-599 600-624 625-649 650-674 675-699 700-724 725-749 750-774 755-749 800-824 825-849 800-824 825-849 800-924 905-949 900-924 925-949 900-924 925-949 950-974 975-999 1000-1024 1025-1049 1005-1074 1075-1099 1100-up	1 2 1 2 1 2	2	8566521 513 1	23 18 27 34 15 11 10 18 11 10 11 11 2 1 1 2 1	31 50 49 51 49 22 33 20 19 28 10 2 25 5 1 1 1	96 85 94 94 90 71 48 32 23 32 19 17 5 8 8 9 2 2 3 4 2 1	$\begin{array}{c} 110\\ 123\\ 120\\ 113\\ 133\\ 110\\ 111\\ 71\\ 74\\ 48\\ 20\\ 45\\ 300\\ 222\\ 27\\ 19\\ 100\\ 144\\ 109\\ 4\\ 4\\ 2\\ 1\end{array}$	$\begin{array}{c} 101\\ 120\\ 131\\ 170\\ 113\\ 141\\ 136\\ 70\\ 61\\ 27\\ 27\\ 24\\ 14\\ 13\\ 39\\ 5\\ 27\\ 24\\ 14\\ 13\\ 39\\ 5\\ 21\\ 8\\ 1\\ 1\\ 1\end{array}$	$\begin{array}{c} 110\\ 126\\ 133\\ 179\\ 154\\ 170\\ 177\\ 141\\ 999\\ 74\\ 999\\ 49\\ 55\\ 43\\ 31\\ 27\\ 18\\ 10\\ 27\\ 6\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	79 88 111 91 883 102 806 577 577 377 473 189 244 111 12 8 8 4 5 4 12 24 112 12 12 12 12 12 12 12 12 1	24 28 35 56 713 43 51 43 57 30 46 25 19 27 7 4 17 2 13 6 5 2 2	10 11 29 29 16 8 13 10 13 13 15 17 14 4 7 7 5 8 8 8 3 10 2 2 1 2	$\begin{array}{c} 6\\ 3\\ 16\\ 4\\ 6\\ 6\\ 10\\ 5\\ 9\\ 4\\ 11\\ 12\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	1 3555 4355 41 41 42 1 121 1	2 1 1 2 3 2 1 1 1 1 1 1 1 1	1	1	1133	$\begin{array}{c} 603\\ 664\\ 732\\ 811\\ 812\\ 758\\ 756\\ 6692\\ 583\\ 478\\ 420\\ 340\\ 347\\ 237\\ 244\\ 170\\ 122\\ 126\\ 94\\ 60\\ 54\\ 61\\ 21\\ 33\\ 30\\ 56\\ 7\\ 2\\ 1\\ 6\end{array}$
Total	1 7	3	43	207	441	883	1226	1383	1815	1241	711	276	130	1 49	17	1 3	' 3	5 ا	8443

TABLE 1.—RELATION BETWEEN WEIGHT AND FAT PRODUCTION OF JERSEY REGISTER OF MERIT COWS (Mature Equivalent)

 $r = 0.1137 \pm .006$

BODY WEIGHT AND FAT PRODUCTION

In the previous studies of the relation between body weight and vearly fat production, it was pointed out that the effect of age on these two variables was either entirely ignored or was eliminated by determining the relation between the two variables, holding the age constant.

In connection with the present study, a large number of records were available in which both body weight and yearly fat production had been converted to their mature equivalent. As the conversion to maturity eliminated the age factor, the entire population could now be grouped together to determine the relation between body weight and yearly fat production.

The correlation surface is presented in Table 1. It will be noted that the minimum entrance requirements severely limits the population of the lower producing cows. For this reason the coefficient of correlation is not entirely satisfactory. The coefficient of correlation between mature body weight and yearly fat production was found to equal + 0.1137 ± 0.006 . This is a rather low but distinctly significant value.

These data may also be studied by determining the increase in yearly fat production for each increment in average body weight. These results are shown in Table 2 and Figure 1. For each 100 pounds increase in body weight above 342.3 pounds it was found there was an increase of approximately 22 pounds in yearly fat production. These results are in complete agreement with the preceding study.

Body Weight Mid-class Values	Number of Cows Included	Yearly Fat Production Calculated from Equation*	Mean Fat Production	Standard Deviation	Coefficient of Variation
lbs. 675 725 775 825 925 925 925 1025 1075 1125 1125 1275 1275	43 207 441 883 1226 1383 1815 1241 711 276 130 49 17 8422	<i>lbs.</i> 490.8 501.8 512.8 533.8 534.8 556.8 578.8 578.8 589.8 600.8 611.8 622.8	$\begin{array}{c} lbs.\\ 477.0 \pm 7.99\\ 510.8 \pm 4.82\\ 516.0 \pm 3.09\\ 519.2 \pm 2.50\\ 527.6 \pm 2.19\\ 552.0 \pm 1.91\\ 555.6 \pm 2.53\\ 600.5 \pm 1.91\\ 565.6 \pm 3.58\\ 608.8 \pm 8.68\\ 597.2 \pm 12.90\\ 583.1 \pm 32.41\end{array}$	$\begin{array}{c} lbs.\\ 77.75\pm5.65\\ 102.75\pm3.41\\ 96.17\pm2.18\\ 110.10\pm1.77\\ 113.72\pm1.55\\ 112.07\pm1.45\\ 120.87\pm1.35\\ 131.92\pm1.35\\ 131.92\pm2.53\\ 162.25\pm4.66\\ 146.82\pm6.14\\ 133.92\pm9.12\\ 197.95\pm22.91 \end{array}$	$\begin{array}{c} 16.30 \pm 1.216\\ 20.11 \pm .693\\ 18.64 \pm .438\\ 21.20 \pm .355\\ 21.55 \pm .306\\ 21.15 \pm .283\\ 21.89 \pm .256\\ 23.32 \pm .332\\ 23.58 \pm .444\\ 25.49 \pm .777\\ 24.11 \pm 1.064\\ 22.42 \pm 1.602\\ 33.95 \pm 4.357\\ \end{array}$

TABLE 2.—RELATION BETWEEN WEIGHT AND FAT PRODUCTION OF JERSEY COWS (Both body weight and fat production converted to the mature equivalent)

*Equation fitted by the method of least squares F = 342.3 +0.216W, where F is the yearly fat pro-duction (pounds) and W is body weight at the close of the lactation. Mean fat = 547.087 ± .0367 S. D. = 124.873 ± .0259 C. V. = 22.825

To compare with these data, the cows were grouped into classes according to fat production and the body weight determined. It will be recalled that this was the method used by Woll. The results are

Fig. 1.—The relation between increasing body weight and yearly fat production is presented graphically. The smooth lines passing through the observed values were fitted by the method of least squares to the equation F = a + b W, where F is the yearly fat production (pounds) and W is body weight at the close of the lactation. The values for a and b are placed on the figure. For each 100 pounds increase in body weight above 342.3 pounds it was found of Jersey cows.

shown in Table 3. For each 100 pounds increase in fat production above 845.3 pounds body weight, there was found an increase of 18 pounds in body weight.

A second reason for making an additional study was the hope that these data would furnish the answer to the following question: Does the same relation between body weight and fat production hold true for high producing and low producing cows? In other words, will cows capaable of producing 600-700, or 800 pounds of fat per year show a greater response to increasing body weight than do cows capable of producing 400 or 500 pounds of fat.

	5		1	1	
Yearly Fat Production Mid-class Value	Number of Cows Included	Body Weight Calculated from Equation*	Mean Body Weight	Standard Deviation	Coefficient of Variation
lbs. 387.5 412.5 447.5 426.5 537.5 512.5 587.5 612.5 637.5 787.5 787.5 787.5 787.5 82.5 837.5 82.5 937.5 962.5 770tal	$\begin{array}{c} 603\\ 664\\ 732\\ 811\\ 758\\ 756\\ 692\\ 58\\ 420\\ 340\\ 340\\ 317\\ 237\\ 244\\ 170\\ 122\\ 126\\ 94\\ 60\\ 54\\ 61\\ 21\\ 33\\ 30\\ 15\\ 8421\\ \end{array}$	$\begin{array}{c} lbr.\\ 915.0\\ 919.5\\ 924.0\\ 928.5\\ 933.0\\ 945.5\\ 942.0\\ 944.5\\ 955.5\\ 9442.0\\ 944.5\\ 955.5\\ 960.0\\ 964.5\\ 964.0\\ 973.5\\ 978.0\\ 987.0\\ 987.0\\ 991.5\\ 996.0\\ 1\ 00.5\\ 1\ 0$	$\begin{array}{c} lb_{5}, \\ 915, 0 \pm 2, 80\\ 918, 3 \pm 2, 55\\ 926, \cdot \pm 2, 67\\ 936, 8 \pm 2, 17\\ 924, 6 \pm 2, 48\\ 935, 2 \pm 2, 39\\ 942, 2 \pm 2, 31\\ 949, 5 \pm 2, 81\\ 949, 5 \pm 2, 81\\ 949, 5 \pm 2, 81\\ 946, 6 \pm 3, 37\\ 953, 9 \pm 3, 53\\ 965, 4 \pm 3, 99\\ 981, 6 \pm 4, 71\\ 981, 0 \pm 4, 27\\ 980, 6 \pm 3, 17\\ 980, 6 \pm 5, 94\\ 988, 1 \pm 6, 33\\ 983, 0 \pm 7, 43\\ 1007, 5 \pm 9, 55\\ 1007, 8 \pm 9, 08\\ 1021, 7 \pm 10, 4 + 12, 11\\ 1021, 7 \pm 10, 4 + 12, 88\\ 1035, 0 \pm 12, 88\\ \end{array}$	$\begin{array}{c} lbs,\\ 01,9\pm 1,98\\ 97,1\pm 1,80\\ 106,8\pm 1,88\\ 91,6\pm 1,53\\ 101,4\pm 1,76\\ 97,3\pm 1,69\\ 90,1\pm 1,63\\ 100,5\pm 1,98\\ 109,2\pm 2,38\\ 107,9\pm 2,51\\ 105,4\pm 2,82\\ 107,4\pm 3,33\\ 98,9\pm 3,02\\ 61,3\pm 2,24\\ 107,8\pm 5,22\\ 107,4\pm 3,33\\ 98,9\pm 3,02\\ 61,3\pm 2,24\\ 105,8\pm 5,22\\ 109,8\pm 6,7\\ 103,2\pm 6,66\\ 105,1\pm 6,42\\ 211,0\pm 12,55\\ 105,1\pm 6,42\\ 211,0\pm 12,55\\ 112,0\pm 2,54\\ 112,0\pm 2,54\\ 112,0\pm 2,54\\ 112,0\pm 2,54\\ 112,0\pm 2,55\\ 112,0\pm 2,54\\ 112,0\pm 2,54\\ 112,0\pm 2,54\\ 112,0\pm 2,55\\ 112,0\pm 12,0\pm 12,0,0\pm 12,0,0\pm 12,0,0\pm 12,0,0\pm 12,0,0,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 3.-RELATION BETWEEN YEARLY FAT PRODUCTION AND BODY WEIGHT IERSEY REGISTER OF MERIT CATTLE

*Equation fitted by the method of least squares W =845.3+0.18 F, where W is the body weight at the close of the lactation, and F is the yearly fat. Mean body weight =944.095 ±.0152 S. D. =103.577 ±.0108 C. V. =10:971

From a priori reasoning it might be expected that animals with a large mammary gland capable of large secretion would be handicapped by a lack of body weight and might, therefore, produce 30 or 40 pounds of fat per year for each additional 100 pounds of body weight. Conversely, the low producing cow with limited glandular capacity having a body far in excess of the requirements of the udder would show little or no response, as far as fat production is concerned, to increased body weight.

To test out this theory, it was first proposed to separate the population in Table 1 into groups based on yearly fat production. Thus take the 400 to 500 pound producers and determine the relation between the increase in body weight and fat production. Then study the 500 to 600 pound producers in a similar way. When the records were grouped according to this plan, it was found that there was practically no change in fat production for 100 pounds increase in body weight. The same result was obtained throughout the entire range of fat production.

As an alternative the entire population was divided into two groups. The cows producing under 600 pounds are grouped in Table 4 on the basis of their body weight and corresponding fat production. In Table 5 are grouped all cows producing 600 pounds of fat or more per year.

Body Weight Mid-class Value	Number of Cows Included	Yearly Fat Production Calculated from Equation*	Mcan Fat Production	Standard Deviation	Coefficient of Variation
1bs. 675 725 775 825 875 925 975 1025 1025 1025 1125 1175 1225	39 173 351 709 965 1077 1286 823 399 139 65 300	<i>lbs.</i> 468.04 470.88 473.74 476.59 479.44 482.29 485.14 482.29 490.84 493.69 493.69 499.39	$\begin{array}{c} lbs.\\ 460.6\pm6.49\\ 476.2\pm3.17\\ 477.1\pm2.08\\ 475.9\pm1.55\\ 479.2\pm1.32\\ 482.3\pm1.21\\ 488.8\pm1.12\\ 488.8\pm1.12\\ 488.7\pm1.48\\ 498.7\pm1.95\\ 479.6\pm3.32\\ 479.6\pm3.32\\ 509.1\pm6.55\end{array}$	$\begin{array}{c} lbs.\\ 60.05\pm4.59\\ 61.77\pm2.24\\ 57.87\pm1.47\\ 61.02\pm1.09\\ 60.92\pm.94\\ 58.87\pm.88\\ 7\pm.86\\ 59.47\pm.79\\ 62.85\pm1.04\\ 57.75\pm1.38\\ 88.00\pm2.35\\ 63.92\pm3.78\\ 53.15\pm4.63\end{array}$	$\begin{array}{c} 13.03 \pm 1.01 \\ 12.97 \pm .48 \\ 12.12 \pm .31 \\ 12.82 \pm .23 \\ 12.71 \pm .20 \\ 12.20 \pm .18 \\ 12.16 \pm .16 \\ 12.87 \pm .22 \\ 11.57 \pm .28 \\ 12.03 \pm .49 \\ 13.03 \pm .78 \\ 9.85 \pm .86 \end{array}$

TABLE 4.—RELATION BETWEEN WEIGHT AND YEARLY FAT PRODUCTION IN JERSEY CATTLE PRODUCING UNDER 600 POUNDS OF FAT

*Equation fitted by the method of least squares, $F = 429.6 \pm 0.057$ W, where F is the yearly fat production (pounds) and W is body weight at the close of the lactation.

TABLE 5.—RELATION BETWEEN WEIGHT AND YEARLY FAT PRODUCTION IN JERSEY CATTLE PRODUCING OVER 600 POUNDS OF FAT

Body Weight Mid-class Values	Number of Cows Included	Yearly Fat Production Calculated from Equation*	Me an Fat Production	Standard Deviation	Coefficient of Variation
1bs. 725 775 825 875 925 975 1025 1025 1025 1125 1125 1125 1275 1275	34 90 173 261 305 529 417 310 137 64 19 10 2349	1bs. 678.77 685.15 691.52 697.90 704.27 710.65 717.02 723.40 729.77 736.15 742.52 748.90	$\begin{array}{c} lbs.\\ 686.7 \pm 10.44\\ 667.8 \pm 4.19\\ 693.3 \pm 4.23\\ 706.78 \pm 3.30\\ 696.2^\circ \pm 3.45\\ 717.13 \pm 3.07\\ 728.48 \pm 3.94\\ 745.35 \pm 5.83\\ 721.48 \pm 8.06\\ 736.20 \pm 15.71\\ 787.50 \pm 29.89\end{array}$	$\begin{array}{c} lbs.\\ 90.25 \pm 7.21\\ 58.90 \pm 2.96\\ 82.50 \pm 2.99\\ 79.05 \pm 2.33\\ 89.42 \pm 2.44\\ 90.47 \pm 1.88\\ 92.87 \pm 2.17\\ 102.77 \pm 2.78\\ 101.15 \pm 4.12\\ 95.62 \pm 5.70\\ 101.50 \pm 11.10\\ 140.10 \pm 21.13\end{array}$	$\begin{array}{c} 13.14\pm1.14\\ 8.82\pm.43\\ 11.89\pm.44\\ 11.18\pm.36\\ 12.82\pm.27\\ 12.95\pm.31\\ 14.11\pm.39\\ 13.57\pm.56\\ 13.25\pm.80\\ 13.79\pm1.54\\ 17.79\pm2.76\\ \end{array}$

*Equation fitted by the method of least squares F = 586.3 + 0.128 W, where F is the yearly fat production (pounds) and W is body weight at the close of the lactation.

The regression equations in both cases are very low, due it is believed, to the restriction of the population. From these data the writer reluctantly arrived at the conclusion that the question could not be solved by this method of grouping the records.

EQUALIZING FAT RECORDS OF COWS VARYING IN BODY WEIGHT

In comparing records of official production of dairy cattle, little or no attention is given to a consideration of the body weight of the animals. Total milk and fat is the measure adopted by the breed associations in comparing the outstanding cows of the breed. It matters not that one cow may produce 1000 pounds of butterfat weighing only 900 pounds while another may produce 1001 pounds of butterfat weighing 1100 pounds, the second cow becomes the champion for her class.

The data presented in this paper furnishes the necessary information to equalize the fat records of cows of various body weights. The rule for converting the records of cows to a uniform 1000-pound body weight basis is as follows:

Add to or subtract from the actual record of fat production 20 pounds of fat for each 100 pounds of body weight below or above 1000 pounds body weight.

This method of equalization may be applied to records made at the same age without further conversion. To cows of varying ages it is necessary to first convert both body weight and fat production to a uniform basis.

In addition to Jersey records, the rule may also be used to equalize Guernsey records as the same relation has been found between body weight and yearly fat production. Whether it can be applied to the records of other breeds is not known at the present time.

As noted in the preceding discussion, the question whether the relation between body weight and yearly fat production is the same at all production levels is still unanswered.

ECONOMIC CONSIDERATIONS

Since the study of Woll (1900) calling the attention of breeders of dairy cattle to the importance of large body weight in connection with the economic production of milk and butterfat, there has been an effort on the part of many breeders to select the animals of large size in order to increase the average size of their cattle. This tendency has been further increased especially among breeders conducting official tests as the larger cows usually have a better chance to make satisfactory records and no effort has been made to equalize the records of production of cows of varying body weight.

From an economic standpoint, these factors may have led to a false evaluation of the importance of increasing further the body weight of dairy cattle. The data presented in this paper indicates the quantitative relation between body weight and yearly fat production. For each 100 pounds increase in the body weight of mature cows (the same relation has been demonstrated previously for various ages) there is an average increase of about 20 pounds (21.6) in yearly fat production.

From an economic standpoint the question is: How does the feed cost of maintenance of 100 pounds of body weight and the feed cost of 20 pounds of butterfat compare in value with the 20 pounds of butterfat so obtained? MISSOURI AGRICULTURAL EXPERIMENT STATION

The Morrison feeding standard for dairy cattle will furnish information on the feed cost. The maintenance of a 1000 pound cow for 365 days requires 2893 pounds of total digestible nutrients. Each additional 100 pounds of body weight would require 289.3 pounds of digestible nutrients.

In 400 pounds of 5 per cent milk there are 20 pounds of butterfat. The feed cost of 400 pounds of 5 per cent milk varies between 144.8 pounds and 160.8 pounds of total digestible nutrients. The total feed cost for the maintenance of 100 pounds of live weight and the production of 20 pounds of fat would vary between 434.8 and 450.1 pounds of total digestible nutrients. The feed cost and value of the fat produced is presented below.

Feed Cos	St	Value of Fat				
per lb.T.D.N.	Cost of T. D. N. required for main- tenance and production of 20 pounds of fat	Butterfat at	Value of 20 lbs. of fat			
cents 1.0	\$4.35 to \$4.50	\$.30	\$6.00			
1.5	6.52 to 6.75	.50	10.00			
2.0	8.70 to 9.00	.70 .80	14.00 16.00			

When total digestible nutrients are relatively cheap and the price of butterfat is relatively high there is a fair spread between the two figures. However, when it is considered that the feed cost makes up about 50 per cent of the total cost of milk production, it is apparent that the greater production of large cows at best only slightly exceeds the cost of obtaining the additional product. It is possible that the investment in fewer animals with the resulting reduction in the investment in buildings and equipment would reduce the cost of items other than feed much below 50 per cent. This being true the advantage of the larger cow would increase correspondingly.

From a consideration of these data it is concluded that there may be some conditions where it is desirable to select animals for greater size but from an economic standpoint the small return for the greater cost of maintenance causes one to question this practice. It seems far more desirable to select sires which will increase the yearly fat production of their daughters above the breed average without increasing materially their average body weight. Increasing the production of dairy cattle without increasing their body weight will lead to greater economy of production.

III. Conversion Factors for Body Weight of Dairy Cattle

It was observed at an early date that milk and fat production, on the average, gradually increases as the dairy cow becomes mature. The change in production with age was fairly well predicted when the graduated minimum entrance requirements to the Advanced Registry and Register of Merit were established. Since that time many studies have been reported indicating the change in fat production with age.

These data show that milk and fat production gradually increase as the dairy cow becomes mature and then gradually decrease with the onset of old age; thus under similar conditions of feeding and management a heifer is expected to increase her yearly production at each succeeding lactation period until she reaches maturity.

From these data it is possible to calculate conversion factors by which records made at any age may be converted to their mature equivalent production. The first conversion factors to be published for this purpose were computed by Turner and Ragsdale (1923) to convert Jersey Register of Merit records to a mature equivalent basis. The method of calculation is very simple. It consists in determining the ratio of the average production at maturity (about 8 years) to the average production at various age intervals.

Conversion factors for each of the dairy breeds have since been reported in connection with studies of the progeny performance of dairy sires. (Turner and Ragsdale 1924, Turner 1925 and 1927, and Gifford and Turner 1928.)

CONVERSION FACTORS FOR BODY WEIGHT

Just as the yearly milk or fat production records made at any age may be converted to their "mature equivalent", so the body weights of dairy cattle may be converted to their mature equivalent. Thus conversion factors may be determined from the ratio of the average live weight at maturity to the average live weight at various age intervals.

In connection with the study of the inheritance of body weight of Jersey Register of Merit cattle it became necessary to compare the yearly fat production and body weights of these animals on a uniform basis. Conversion factors for body weight were therefore required. After computing the conversion factors for body weight of Jersey cattle, it seemed desirable to make a compilation of all available growth records of lactating cattle and determine the body weight conversion factors for each breed. The object of the present paper is to present a tabulation of the growth of lactating cattle from the age of first calving until growth ceases. From these growth data, conversion factors for body weight have been computed.

GROWTH OF LACTATING CATTLE

Studies of the growth of dairy cattle from birth until two years of age have been reported by Eckles (1920) and Ragsdale et al (1926). Eckles also presented limited data on the growth of cattle during the first five calving periods. To further determine the rate of growth of lactating cattle a study was made by Turner, Ragsdale, and Brody (1923) of the body weights of over 15,000 Register of Merit Jersey cows. It was found that these animals continue to increase in live weight at a constantly decreasing rate until approximately eight years old.

Recently Turner (1928) reported a similar study of about 2,700 Guernsey Advanced Registry cows in which the general course of growth was found to be quite similar to that of the Jersey Breed.

Davidson (1928) has separated the Jersey Register of Merit original entry cows from the re-entry cows. He found that the re-entry cows differ significantly from the original entry cows not only in the weight at a given age but in the time required to reach maturity.

Johansson (1928) gives the rate of growth of Swedish Ayrshire cattle from $2\frac{1}{2}$ to 10 years of age.

The growth of the Russian Gorbatowka breed of cattle has been studied by Kapazinsky (1928). He found that growth in body weight increased until the fifth or sixth calving period.

These growth data are presented in Tables 1 and 2. It will be noted that both the observed body weights and the calculated body weights are included. These calculated values were obtained in most cases by drawing a smooth curve through the observed values so that minor fluctuations were eliminated. The calculated values presented by Davidson (1928), however, were obtained from equations which were fitted to the observed weights.

CONVERSION FACTORS

Using the calculated weight, except in the case of the Swedish Ayrshire, of the cows given in Table 1, age conversion factors for body weight of Jersey Register of Merit, Guernsey Advanced Registry, Holstein-Friesian and Swedish Ayrshire cattle were determined and are presented in Table 3. It will be noted in Table 1 that maximum body weight is usually reached at about 9 years, so 9 years has been used as the time of maturity. As body weight does not decline significantly after this period, conversion factors for the body weight after 9 years are not needed. The conversion factors for body weight of Jersey cattle used in the study presented in Section 1 are found in column 1 of Table 3.

		Turner et	al (1923)			Davidso	on (1928)	1	
Age	Num-	Jersey R Merit Aver	egister of age Weight	Number	Jersey R. of Entry Aver	M. Original age Weight	Number	Jersey R. entry Aver	of M. Re- age Weight
	ber of Cows	Observed	Calculated	of Cows	Observed	Calculated	of Cows	Observed	Calculated
Under 1.5 1.5 2.0 2.5 3.0 4.0 5.5 6.0 7.5 8.0 8.5 9.0 10.0 11.0 12 13 14 15 16	$\begin{array}{c} 26\\ 1001\\ 3155\\ 1449\\ 1523\\ 1122\\ 1171\\ 916\\ 1692\\ \hline -\overline{965}\\ -\overline{965}\\ -\overline{621}\\ -\overline{364}\\ 208\\ 108\\ 108\\ 108\\ 108\\ -\overline{324}\\ 208\\ 14\\ 9\\ 32\\ 24\\ 9\\ 4\end{array}$	Ibs. 710 767 808 836 872 888 916 938 945 957 957 968 956 951 957 968 9561 1036 975 963	lbs. 710 767 810 843 872 893 915 925 938 947 955 955 955 955 960 	$\begin{array}{c} \bar{831} \\ 2565 \\ 10866 \\ 905 \\ 636 \\ 585 \\ 456 \\ 413 \\ 264 \\ 253 \\ 206 \\ 164 \\ 191 \\ 116 \\ 50 \\ 39 \\ \\ 34 \\ \end{array}$	<i>lbs.</i> 766 808 836 867 881 906 925 937 933 934 940 944 944 943 961 964 943 961 961 961 961 961 961 965 965 965 965 965 965 965 965	<i>lbs.</i> 763 805 839 865 886 902 914 923 936 940 943 944 948 949 951 952 952 953 	 -35 238 285 247 247 2460 242 194 169 158 133 101 78 118 49 38 118 49 38 19 	<i>lbs.</i> 911 907 940 942 949 949 964 973 973 982 983 983 983 983 983 984 996 949 966 949 1007 954 1012	165. 896 918 935 947 969 973 973 973 973 973 973 978 979 981 982 983 984 984
Total	15680	l						l	

TABLE 1GROWTH	OF	LACTATING	CATTLE
---------------	----	-----------	--------

		Turner	(1928)	Jol	ansson (192	8)	Tu	ner et al (19	924)
Age	Num-	Guernsey We	Average ight	Number	Swedish Average	Ayrshire Weight	Number	Holstein We	Average ight
	Cows	Observed	Calculated	of Cows	Observed	Calculated	of Cows	Observed	Calculated
Under 1.5 2.0 2.5 3.0 4.5 5.5 6.0 7.5 8.0 8.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 13.0 9.5 10.0 10.5 11.0 10.5 11.5 12.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 10.5 13.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	- 63 775 415 282 228 197 156 127 116 81 71 46 51 24 31 24 31 15 115 115 117 7 9 7 4 4 3	2bs. 968 1005 1030 1065 1072 1099 1099 1098 112 1179 1125 1103 1121 1132 1088 1121 1131 1121 1132 1088 1221 1011 1181 1181 1182 1063	Ibs. 967 1006 1034 1058 1076 1089 1099 1106 1112 1112 1121 1122 1124 1125 1127 1128 1129 1129 1129 1129	 72 94 -67 -70 105 	2bs. 1038 1074 1166 1212 1265 1276 1291 1267 1267 1267	<i>lbs.</i>	-20 165 81 86 56 87 122 -67 -56 -36 -30 -25 -13 -9 8	$\begin{array}{c} lbs.\\ 1\bar{0}\bar{9}\bar{4}\\ 1184\\ 1182\\ 1249\\ 1285\\ 1352\\ 1408\\ 1408\\ 14\bar{4}\bar{3}\\ 1\bar{4}\bar{2}\bar{8}\\ 1\bar{4}\bar{3}\bar{7}\\ 1\bar{4}\bar{3}\bar{4}\\ 1\bar{5}\bar{2}\bar{3}\\ 1\bar{3}\bar{6}\bar{6}\\ 1\bar{3}\bar{7}\bar{5}\\ 1\bar{4}\bar{1}\bar{8}\end{array}$	Ibs. 1094 1147 1197 1253 1339 1378 1402 1416 1425 1430 1436 1446 1442 1446 1442
Iotali	2/40			542 1			946		

Holstein Jersey Ayrahire Gorbatowka (Rusaii Calv- ing No. of Cows Average Weight Ibr. Ibr. </th <th></th> <th></th> <th></th> <th>Eckles</th> <th>s (1920)</th> <th>1</th> <th></th> <th>Kapazinsl</th> <th>cy (1928)</th>				Eckles	s (1920)	1		Kapazinsl	cy (1928)
Call- ing No. of Cows Average Weight Average Cows No. of Weight Average Weight No. of Cows Average Weight Average Cows Average Weight No. of Cows Average Weight Average Cows Average Weight Average Cows Average Weight Average Cows Average Weight Average Cows Average Weight Average Cows Average Cows		Ho	olstein	Jei	sey	Ayr	shire	Gorbatowka	(Russian)
1 26 12 12 164 5 156 54 64 3 17 1143 877 5 869 12 64 4 1219 877 919 1022 122 74 9-10 77 77 788 74 74 74 9-10 77 77 788 74 74 74 7 77 789 1045 77 788 9-10 77 77 788 178 74 7 77 74 74 74 74 7 77 789 74 74 74 7 77 74 74 74 74 7 77 74 74 74 74 77 77 74 74 74 74 77 77 74 74 74 74 73 910 910 910 910 910 910 73 910 910	Calv- ing	No. of Cows	Average Weight	No. of Cows	Average Weight	No. of Cows	Average Weight	No. of Cows	Average Weight
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	1 2 3 4 5 6 7 8 9-10 Tota I	26 22 17 8 4 77	<i>lbs.</i> 965 1040 1143 1219 1247	12	<i>lbs.</i> 764 827 872 887 919	5	<i>lbs.</i> 868 874 960 1022 1045	54 123 126 122 90 77 51 34 37 714	lbs. 634 693 724 759 768 788 788 794 785
	Convarsion Factor						175 ey (TV 175 ey (TV 175 ey (TV 175 ey (TV 175 ey (TV 175 ey (T) 175 ey (T) 175 hree (Je 175 hree (Je) (Je) (Je) (Je) (Je) (Je) (Je) (J	ner-1923) Davnbor-1923) Davnbor-192 Davnbo	

TABLE 2.--GROWTH OF LACTATING CATTLE

		Jer	sey Register	of Merit Reco	ords		Guernsey A	A. R. records	Hol	stein	Swedish	Ayrshire
	т.	1 (1022)		Davidso	n (1928)		Turne	r (1928)	Turner et	al (1924)	Johansso	n (1928)
Age Years	All r Conversi	ecords on factors	Origin Conversi	al entry on factors	Re-entr Conversi	y records on factors	Conversi	on factors	Conversi	on factors	Conversi	on factors
	Maturity	To 2 years	Maturity	To 2 years	Maturity	To 2½ years	Maturity	To 2 years	Maturity	To 2 years	Maturity	To 2½ years
Under 1.5 1.5 2.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0	$\begin{array}{c} 1.3521\\ 1.2516\\ 1.1852\\ 1.1388\\ 1.1009\\ 1.0750\\ 1.0492\\ 1.0378\\ 1.0235\\ \overline{1.0137}\\ \overline{1.0052}\\ \overline{1.0052}\\ \overline{1.0010}\\ \end{array}$	1.1408 1.0561 1.0000 .9609 .9289 .9071 .8852 .8757 .8635 .8553 .8553 .8482 .8446	$\begin{array}{c} \hline 1.2463\\ 1.1814\\ 1.1335\\ 1.0994\\ 1.0734\\ 1.0543\\ 1.0405\\ 1.0303\\ 1.0226\\ 1.0160\\ 1.0117\\ 1.0085\\ 1.0053\\ 1.0032\\ \end{array}$	1.0550 1.0000 .9595 .9306 .9086 .8925 .8807 .8722 .8656 .8600 .8564 .8537 .8510 .8492	$\begin{array}{c} \hline \\ \hline \\ \hline \\ 1.1326 \\ 1.0960 \\ 1.0697 \\ 1.0503 \\ 1.0370 \\ 1.0261 \\ 1.0184 \\ 1.0032 \\ 1.0092 \\ 1.0061 \\ 1.0041 \\ 1.0030 \\ \end{array}$	1.0000 9676 .9444 .9273 .9155 .9060 .8994 .8947 .8911 .8883 .8865 .8856	$\begin{array}{c} \hline 1.1655\\ 1.1203\\ 1.0889\\ 1.0642\\ 1.0474\\ 1.3049\\ 1.0255\\ 1.0190\\ 1.0135\\ 1.0093\\ 1.0063\\ 1.0045\\ 1.0027\\ 1.0018\\ \end{array}$	$\begin{array}{c} \hline 1.0403\\ 1.0000\\ .9710\\ .9500\\ .9349\\ .9238\\ .9154\\ .9096\\ .9047\\ .9014\\ .8982\\ .8960\\ .8950\\ .8950\\ .8942 \end{array}$	$\begin{array}{c} \hline 1.3181\\ 1.2572\\ 1.2047\\ 1.1508\\ 1.1135\\ 1.0769\\ 1.0464\\ 1.0285\\ 1.0184\\ 1.00184\\ 1.0084\\ 1.0086\\ 1.0084\\ 1.0056\\ 1.0014 \end{array}$	1.0484 1.0000 .9582 .9154 .8857 .8566 .8324 .8181 .8100 .8049 .8021 .7998 .7987 .7965	1.2437 1.2020 1.1072 1.0652 1.0206 1.0118	1.0000 .9665 .8902 .8564 .8206 .8135
9.0	1,0000	.8438	1.0000	.8465	1.0000	.8829	1.0000	. 8926	1.0000	.7954	1.0000	.8040

Table 3.—Conversion Factors for Body Weight of Dairy Cattle

The various conversion factors are compared in Figure 1. It will be noted that the various conversion factors for the Jersey breed are quite similar. The figure also shows that the Guernsey conversion factors are less at a given age than are the Jersey, while the Holstein and Ayrshire are higher.

In addition to the usual conversion factors for converting body weight to the mature equivalent or the average weight that may be reached by cows at maturity, conversion factors are also presented which make possible the comparison of the weight of cows at two years to the body weight at various age intervals.

While the "mature equivalent" conversion factors will probably be used more frequently than the "2-year-old equivalent" factors there are certain advantages in the use of the latter. Very frequently in considering a group of animals for which conversion factors are to be used a majority of the animals will be two-year-olds with a few older animals. If the "mature equivalent" factors are used every record will require conversion, while if the "2-year-old equivalent" factors are used most of the original records will stand with only a few records requiring conversion. All will agree that the less change made in the original records the more stisfactory they will be found. The "2-year-old equivalent" will reduce the number of changes and the magnitude of the change to a minimum in most cases.

In Table 4 are presented the conversion factors based on number of calvings rather than age. The data presented by Eckles covers the first five calving periods. The conversion factors have been deter mined using the fifth calving period as maturity and the first calving period as the "2-year-old equivalent".

Hols	stein	Ayrshire		Jersey		Gorbatowka	
Eckles (1920) Conversion factor to		Eckles (1920) Conversion factor to		Eckles (1920)		Kapazinsky (1928)	
				Conversion factor to		Conversion factor to	
Maturity	lst calving	Maturity	1st calving	Maturity	1st calving	Mat ırity	lst calving
1.2922 1.1990 1.0910 1.0230 1.0000	1.0000 .9279 .8443 .7916 .7739	1.2039 1.1957 1.0885 1.0225 1.0000	1.0000 .9931 .9042 .8493 .8306 	1.2029 1.1112 1.0539 1.0361 1.0000	1.0000 .9238 .8761 .8613 .8313 	$\begin{array}{c} 1.2524\\ 1.1457\\ 1.0967\\ 1.0672\\ 1.0461\\ 1.0339\\ 1.0076\\ 1.0000\\ \end{array}$	$\begin{array}{c} 1.0000\\ .9149\\ .8757\\ .8522\\ .8353\\ .8255\\ .8046\\ .7985\end{array}$
	Hole Eckles Conversion Maturity 1.2922 1.1990 1.0910 1.0230 1.0000	Holstein Eckles (1920) Conversion factor to Maturity 1st calving 1.2922 1.0000 1.1990 .9279 1.0910 .8443 1.0230 .7916 1.0000 .7739	Holstein Ayr Eckles (1920) Eckles Conversion factor to Conversion Maturity 1st calving Maturity 1.2922 1.0000 1.2039 1.1990 .9279 1.1957 1.0910 .8443 1.0885 1.0230 .7916 1.0225 1.0000 .7739 1.0000	Holstein Ayrshire Eckles (1920) Eckles (1920) Conversion factor to Conversion factor to Maturity 1st calving Maturity 1st calving 1.2922 1.0000 1.2039 1.0000 1.1990 .9279 1.1957 .9931 1.0910 .8443 1.0885 .9042 1.0230 .7916 1.0225 .8493 1.0000 .7739 1.0000 .8306	Holstein Ayrshire Jet Eckles (1920) Eckles (1920) Eckles Conversion factor to Conversion factor to Conversion Maturity 1st calving Maturity 1st calving Maturity 1.2922 1.0000 1.2039 1.0000 1.2029 1.1990 .9279 1.1957 .9931 1.1112 1.0910 .8443 1.0885 .9042 1.0539 1.0230 .7916 1.0225 .8493 1.0361 1.0000 .7739 1.0000 .8306 1.0000	Holstein Ayrshire Jersey Eckles (1920) Eckles (1920) Eckles (1920) Eckles (1920) Conversion factor to Conversion factor to Conversion factor to Conversion factor to Maturity 1st calving Maturity 1st calving Maturity 1st calving 1.2922 1.0000 1.2039 1.0000 1.2029 1.0000 1.1990 .9279 1.1957 .9931 1.1112 .9238 1.0910 .8443 1.0885 .9042 1.0539 .8761 1.0230 .7916 1.0225 .8493 1.0361 .8613 1.0000 .7739 1.0000 .8306 1.0000 .8313	Holstein Ayrshire Jersey Gorba Eckles (1920) Eckles (1920) Eckles (1920) Kapazins Conversion factor to Conversion factor to Conversion factor to Conversion Maturity 1st calving Maturity 1st calving Maturity 1st calving Maturity 1.2922 1.0000 1.2039 1.0000 1.2029 1.0000 1.2524 1.1990 .9279 1.1957 .9931 1.1112 .9238 1.1457 1.0910 .8443 1.0885 .9042 1.0539 .8761 1.0967 1.0230 .7916 1.0225 .8493 1.0361 .8613 1.0672 1.0000 .7739 1.0000 .8306 1.0000 .8313 1.0461 1.0339

TABLE 4.—CONVERSION FACTORS FOR BODY WEIGHT OF DAIRY CATTLE

Summary and Conclusions

I. A study is reported of the progeny performance of Jersey sires in which both the yearly fat production and body weight of the daughters and their dams are considered. The body weights of all cows were converted to their "mature equivalent" by means of weight conversion factors.

Comparison of the changes in body weight and yearly fat production between dams and daughters indicates that Jersey sires can cause significant changes in yearly fat production (either upward or downward) of their daughters as compared with their dams without causing a material increase or decrease in body weight.

To determine the effect of the dams on the daughters' weight, the relation between the dams and daughters was determined. It was found that for each increase of 100 pounds in body weight of the dams there was an increase of about 16 pounds in the body weight of the daughters.

From a consideration of these data, it appears that the inheritance of body weight of Jersey cattle follows much the same plan as the inheritance of yearly fat production.

II. The above data were also used in determining the relation between body weight and yearly fat production. When the records of fat production and body weight were converted to their mature equivalent the factor of age was eliminated. Thus all records could be grouped together. From this study it was found that there was an increase of approximately 20 pounds in yearly fat production for each 100 pounds increase in body weight above 342.3 pounds.

Based on these data a rule for converting the records of cows to a uniform 1000-pound body weight was formulated as follows: Add to or subtract from the actual record of fat production 20 pounds of fat for each 100 pounds below or above 1000 pounds body weight.

In answer to the question: "How does the feed cost of maintenance of 100 pounds of body weight and the feed cost of 20 pounds of fat compare in value with the 20 pounds of fat so obtained?" evidence was presented which indicates that the greater production of large cows at best only slightly exceeds the cost of obtaining the additional product. It is concluded that the sires whose daughters are above the average for the breed in fat production without exceeding the average in body weight are especially desirable because their daughters are increasing the economy of fat production of the breed. III. In order to compare the body weight of cows at different ages, weight conversion factors were computed from the growth curves of lactating cattle.

Two sets of conversion factors have been formulated. The first will convert the body weight to the "mature equivalent" while the second will convert the body weight to the "2-year-old equivalent". Certain advantages of the latter plan are pointed out.

REFERENCES

- Davidson, F. A. 1928 Growth and senescence in pure bred Jersey cows. Ill. Agr. Exp. Sta. Bul. 202.
- Eckles, C. H. 1920 Normal growth of dairy cattle. Mo. Agr. Exp. Sta. Res. Bul. 36. Gifford, W. 1930 The mode of inheritance of yearly butterfat production. An analysis of the progeny performance of Holstein-Friesian sires and dams. Mo. Agr. Exp. Sta. Res. Bul. 144. Gifford, W., and Turner, C. W. 1928 The mode of inheritance of yearly butterfai
- production. Analysis of the progeny performance of Ayrshire sires and dams. Mo. Agr. Exp. Sta. Res. Bul. 120.
- Gowen, J. W. 1925 Studies on conformation in relation to milk producing capacity in cattle. IV. The size of the cow in relation to the size of her milk production. Jour. Agr. Research Vol 30, p. 865. Gowen, J. W. 1930 On criteria for breeding capacity in dairy cattle. Proc. Amer. Soc.
- of Animal Production. Pub. by the Society. Gowen, J. W., and Covell, M. R. 1921 Studies in milk secertion. IX. On the per-
- formance of the progeny of Holstein-Friesian sires. Maine Agr. Exp. Sta. Bul. 300.
- Gowen, J. W., and Covell, M. R. 1921 Studies in milk secretion. XII. Transmitting gualities of Holstein-Friesian sires for milk yield, butterfat-percentage and butterfat. Maine Agr. Exp. Sta. Bul. 301.
- Johansson, Ivar 1928 De svenska notkreatursrasernas kroppsutveckling och produktion
- Uppsala, Sweden. Kapazinsky, W. W. 1928 The production of the "Gorbatowka" according to date of controlling communities. (English Summary). The State Breeding Register of the Gorbatoff Red Cattle. Vol. 1.
- McDowell, J. C. 1929 Dairy studies show that within breeds the bigger cows win. Year Book of Agriculture 1928, U. S. D. A.
- McDowell, J. C. 1930 What has happened in Dairy Herd Improvement Associations.
- McDowell, J. C. 1930 What has happened in Dairy Hera Improvement Associations. Hoard's Dairyman, April 10, 1930.
 McDowell, J. C., and Parker, J. B. 1926 Better cows from better sires. U. S. D. A. Dept. Cir. 368.
 Nevens, W. B. 1919 Breed and size of cows as factors affecting the economy of milk production. Jour. Dairy Sci., Vol. 2, p. 99.
 Pearl, Raymond 1917 Report of progress on animal husbandry investigations in 1916. IV. The analysis of milk records. Maine Agr. Exp. Sta. Bul. 261.
 Pearl, R., Gowen, J. W., and Miner, J. R. 1919 Studies in milk secretion. VII. Trans-mitting qualities of Jersey sires for milk yield, butter-fat percentage and butter-
- Feari, K., Gowen, J. W., and Hinner, J. K. 1919 Statues in mite secretion. P. 11. Transmitting qualities of Jersey sires for milk yield, butter-fat percentage and butter-fat. Maine Agr. Exp. Sta. Bul. 281.
 Ragsdale, A. C., Elting, E. C., and Brody, S. 1926 Growth and development. Growth and development of dairy cattle. Mo. Agr. Exp. Sta. Res. Bul. 96.
- Turner, C. W. 1925 A comparison of Guernsey sires based on the average mature equivalent fat production of the daughters and their dams. Mo. Agr. Exp. Sta. Res. Bul. 79.
- Turner, C. W. 1927 The mode of inheritance of yearly butterfat production. An analysis of the progeny performance of Jersey sires and dams. Mo. Agr. Exp. Sta. Res. Bul. 112.
- Turner, C. W. 1928 Growh in weight of Guernsey cows after the age of two years. Jour.
- Turner, C. W. 1929 The relation between weight and fat production of Guernsey cattle. Jour. Dairy Sci., Vol 12, p. 60.
 Turner, C. W., and Ragsdale, A. C. 1923 A comparison of Jersey sires based on the Turner, C. W., and Ragsdale, A. C. 1923 A comparison of Jersey sires based on the
- average mature equivalent fat production of the daughters. Mo. Agr. Exp. Sta. Bul. 206.
- Turner, C. W., and Ragsdale, A. C. 1924 A comparison of Holstein-Friesian sires based on the average mature equivalent fat production of the daughters. Mo. Agr. Exp. Sta. Bul. 217.
- Turner, C. W., Ragsdale, A. C., and Brody, S. 1923 Normal growth of the Jersey cow. Jour. Dairy Sci. Vol. 6, p. 461.
- Turner, Č. W., Ragsdale, A. C., and Brody, S. 1924 The relation between age, weight and fat production in dairy cows. Mo. Agr. Exp. Sta. Bul. 221. Woll, F. W. 1900 Production of milk and butterfat. IV. Breeders' Gazette, Vol. 38,
- pp. 379-380. Woll, F. W. 1912 Studies in dairy production. Wis. Agr. Exp. Sta. Res. Bul. 26.

UNIVERSITY OF MISSOURI

COLLEGE OF AGRICULTURE

Agricultural Experiment Station

EXECUTIVE BOARD OF CURATORS.—F. M. McDAVID, Springfield; MERCER ARNOLD, Joplin; H. J. BLANTON, Paris

ADVISORY COUNCIL .- THE MISSOURI STATE BOARD OF AGRICULTURE

STATION STAFF, AUGUST, 1930

STRATTON DULUTH BROOKS, A.M., LL.D., President F. B. MUMFORD, M.S., D.Agr., Director S. B SHIRKY, A.M., Asst. to Director MISS ELLA PAHMEIER, Secretary

AGRICULTURAL CHEMISTRY A. G. Hogan, Ph. D. L. D. Haigh, Ph. D. W. S. Ritcher, Ph. D. E. W. Cowan, A. M. L. V. Taylor, A. B. A. R. Hall, B. S. in Agr. Robert Boucher, Jr., A. B. Robert Flicher, M. S. Luther W. Richardson, A. M. U. S. Ashworth. A. B. U. S. Ashworth, A. B. AGRICULTURAL ECONOMICS O. R. JOHNSON, A. M. BEN H. FRAME, A. M. F. L. THOMSEN, Ph. D. C. H. HAMMAR, Ph. D. PRESTON RICHARDS, A. M. AGRICULTURAL ENGINEERING J. C. Wooley, M. S. Mack M. Jones, M. S. R. R. Parks, B. S. in Agr. Eng. D. D. Smith, B. S. in A. E. ANIMAL HUSBANDRY ANIMAL HUSBANDRY E. A. TROWBRIDGE, B. S. in Agr. L. A. WEAVER, B. S. in Agr. A. G. HÓGAN, Ph. D. F. B. MUMFORD, M. S., D Agr. D. W. CHITTENDEN, A. M. M. T. FOSTER, A. M. F. F. MCKENZIE, Ph. D. J. E. COMFORT, A. M. H. C. MOFFETT, A. M. H. C. MOFFETT, A. M. BOTANY AND PHYSIOLOGY W. J. Robbins, Ph. D.† I. T. Scott, Ph. D. DAIRY HUSBANDRY A. C. RAGSDALE, M. S. WM, H. E. REID, A. M. SAMUEL BRODY, Ph. D. C. W. TURNER, Ph. D. WARREN GIFFORD, A. M. D. D. C. W. AND. WARREN GIFFORD, A. M. E. R. GARRISON, A. M. M. E. POWELL, B. S. in Agr. H. A. HERMAN, B. S. in Agr. J. D. RHINEHART, B. S. in Agr. J. B. McCROSEY, B. S. in Agr. M. M. COWSER, B. S. in Agr. ENTOMOLOGY LEONARD HASEMAN, Ph. D. T. E. BIRKETT, B. S. in Ed. FIELD CROPS W. C. Etheridge, Ph. D. C. A. Helm, A. M.

L. J. Stadler, Ph. D. R. T. Kirkpatrick, A. M. W. R. Tascher, Ph. D. B. M. King, A. M. S. F. Goodsell, A. M. MISS CLARA FUHR. M. S.* HOME ECONOMICS MABEL CAMPBELL, A. M. MARGARET C. HESSLER, Ph. D. JESSIE ALICE CLINE, A. M., ADELLA EPPEL, M. S. Adella Eppel, M. S. Sylvia Cover, A. M. HORTICULTURE T. J. TALBERT, A. M. A. E. MURNEEK, Ph. D H. G. SWARTWOUT, A. M. J. T. QUINN, A. M. J. ERIC BLANEY, B. S. in Agr. POULTRY HUSBANDRY H. L. KEMPSTER, M.S. Earl W. Henderson, A. M. RURAL SOCIOLOGY KUKAL SOCIOLOGI E. L. MORGAN, A. M. Walter Burr, A. M. Howard E. Jensen, Ph.D Henry J. Burt, A.M. Miss Ada Niedermeyer, A.B. George A. Gemmel, A.M. SOILS M. F. MILLER, M.S.A. H. H. KRUSEKOPF, A. M. W. A. ALBRECHT, Ph.D. RICHARD BRADFIELD, Ph.D. HANS JENNY, Ph.D. GEO. Z. DOOLAS, A.M. LLOYD TURK, A. M. HAROLD F. RHODES, B.S. in Agr. JAS. F. LUTZ, B.S. in Agr. VETERINARY SCIENCE J. W. CONNAWAY, D.V.M., M.D. O. S. CRISLER, D.V.M. A. J. DURANT, A.M., D.V.M. ANDREW UREN, D.V.M. ELLMORE F. SANDERS, D.V.M. OTHER OFFICERS R. B. PRICE, B.L., Treasurer LESLIE COWAN, B.S., Sec'y of University A. A. JEFFREY, A.B., Agricultural Editor J. F. BARHAM, Photographer FLOY FRENCH, Librarian

*In service of U. S. Department of Agriculture

†On leave of absence