UNIVERSITY OF MISSOURI-COLUMBIA COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION

A. Max Lennon, Director

Effect of Top-Dressed Limestone, Nitrogen, Phosphorus and Potassium on Yield and Mineral Content of Tall Fescue Forage and Soil Test Values

Earl M. Kroth and Richard Mattas

Jn

(Publication authorized July, 1981

Columbia, Missouri

ACKNOWLEDGEMENTS

This study was administered under Missouri Agricultural Experiment Station Project 365 Macronutrient Management of Forage Crops. The authors acknowledge the excellent cooperation of Dr. Norman Justus, Superintendent of the Southwest Center during the course of the study. Appreciation is extended to Dr. Wayne Decker, Chairman Department Atmospheric Science, University of Missouri-Columbia, for weather data; Mr. John Garrett, Area Soil Testing Laboratory, Delta Center and Dr. James R. Brown, Area Soil Testing Laboratory, Columbia for soil tests; Dr. Charles Gehrke, Director Missouri Agricultural Experiment Station Chemical Laboratories for plant analyses; and Dr. Gary Krause, Missouri Agricultural Experiment Station statistician and Dr. Earnest Hildebrand Statistical Systems Analyst Academic Computer Center UMC, for statistical analyses.

The finanical assistance of the Missouri Limestone Producers Association during the period of the study is also greatfully acknowledged.

Effect of Top-Dressed Limestone, Nitrogen, Phosphorus and Potassium on Yield and Mineral Content of Tall Fescue Forage and Soil Test Values

Earl M. Kroth and Richard Mattas

INTRODUCTION

The introduction of Kentucky 31 tall fescue into south Missouri in the 1940s made possible a steady increase of beef cow numbers beginning in 1950. That increase peaked in 1975 when a record number of 2,759,000 beef cows calved on Missouri farms. By this date an area estimated to be in excess of four million acres, previously in weedy, brushy pastures and low quality scrub timber, had been planted to tall fescue.

Soil samples from these new pastures were tested by county soil testing laboratories, established in the 1940s, and results were used in making fertilizer recommendations as discussed by Kroth and Meinke (7). Fertilizer recommendations were made on the basis of the soil samples representing an acre furrow slice, 0-7 inches, or 2,000,000 lbs of soil. The assumption made was that forage produced for pasture was a crop needing the same treatment as though it were in a rotation with corn or soybeans.

Kroth et. al. (8), however, showed topdressing small quantities of P_2O_5 and K_2O annually to forage crops would produce as high forage yields as when the soils were brought up to "soil test" following the standard "plow down" fertilizer recommendations. Limestone needs for pastures were determined in the same manner. Frequently eight tons of limestone per acre were recommended, which, because of the shallow stony soils of south Missouri, would be mixed in the surface few inches or spread on the soil surface when applied to established stands.

Limestone recommendations were based on the assumption that a pH of 6.5-7.0 was the range necessary for maximum nutrient availability and crop growth and that this pH needed to extend throughout the plow layer. Unnoticed was the work of Brown and Munsell (3) reported in 1933, that one ton/A of limestone top-dressed every eight years would be adequate for permanent pastures. However, the work of Fisher (4), who summarized limestone experiments conducted by the Department of Agronomy, University of Missouri, over a 15 year period showed that optimum yields of the major crops were produced in the pHs* range of 4.5-5.8 instead of the higher range of 6.5-7.0 as previously thought.

The incidence of grass tetany in southwest Missouri in 1968 stimulated interest in the causes of this malady, Brown et. al. (2). Low soil Mg coupled with high levels of exchangeable K and Ca in the surface one or two inches of soil from topdressed KCl and calcitic limestone could prevent the uptake of the Mg by grass plants. This would result in forage low in Mg thereby supplying inadequate Mg for animal health. The need for determining the actual lime requirement of

^{*}pH determined in 1:1 soil:0.01M CaCl₂ suspension.

tall fescue and the effect of top-dressed limestone and potassium and phosphorus fertilizers on the chemical composition of tall fescue forage caused the establishment of this study.

OBJECTIVES

- 1. Determine the quantity of top-dressed limestone necessary for optimum tall fescue forage production.
- 2. Evaluate the effects of rate of top-dressed limestone and time and rate of top-dressed K₂O on yield and mineral content of tall fescue forage and soil test values.
- 3. Evaluate the effects of rate of top-dressed limestone and time and rate of applying P_2O_5 on yield and mineral content of fescue forage and soil test values.

CONCLUSIONS

- 1. Three T/A calcium limestone top-dressed on tall fescue is adequate to produce high quality forage free of weedy plants and grasses that are tolerant of acid soil. Estimated effectiveness is eight to ten years.
- 2. Eight T/A calcium limestone mixed uniformly through the acre seven inches increased forage yields an average of 0.33 T/A over the top-dressed treatments during a five year period.
- 3. Effect of limestone top-dressed in May 1973 on pHs moved down faster than expected: 3T/A into the second inch by November 1975 and to the sixth inch by March 1979; 6T/A into the sixth inch by 1975 with pronounced changes by March 1979.
- Limestone top-dressed on tall fescue had no appreciable effect on uptake of K by spring grown forage from top-dressed K₂O, also had no effect on K content of November sampled forage.
- 5. Mg content of spring grown forage was reduced by top-dressed limestone, often below the 0.2% Mg considered to be safe from grass tetany. Top-dressed limestone tended to reduce Mg content of November sampled forage but the level was well above 0.2%.
- 6. Top-dressed limestone maintained higher Ca levels in both March and November sampled forages than the 8T/A plow down treatment. Toward the end of the study the Ca values for the 8T/A plowdown treatment were statistically higher than the zero limestone treatment but lower than those of the top-dressed limestone treatments.
- 7. The cation ratio $\frac{K}{Ca+Mg}$ would not be a good indicator of tetany prone forage when limestone and K₂O are top-dressed on pastures.
- 8. Treatment 5, where all the NPK fertilizers were equally divided between early May and August applications, produced the best distribution of grazeable forage.
- 9. Applying K₂O in late fall or early spring increased the K content of fescue forage. This K⁺ combined with Ca⁺⁺ from top-dressed limestone reduced Mg

content of March sampled forage below 0.2% through 1976 for the 3T/A and through 1978 for the 6T/A treatments.

- 10. Application of NPK in early May would produce a more uniform distribution of grazeable forage during June and July than the accepted time of early spring.
- 11. Fescue forage produced after August and early fall rains can be below 0.2% P, the level accepted as nutritionally acceptable for beef cattle. Periods of low fall rainfall could produce this low P forage level regardlesss of the P₂O₅ soil test value of the 0-1 inch depth.
- 12. Three T/A limestone top-dressed would permit red clover to grow with tall fescue in a pasture mixture. This application could be effective for as long as eight to ten years.
- 13. The pHs of the 0-1 inch depth of the 8T/A limestone treatment (1.1T/acre inch) was reduced to 5.0 after seven years due to the acidifying effect of 160 lbs N applied annually. This suggests that grass pastures that have been heavily fertilized with N could be acid enough in the surface 1-2 inches to prevent establishment of red clover.
- 14. Top-dressed limestone at rates higher than 3T/A would fix P of top-dressed P_2O_5 longer than necessary there by tending to produce forage nutritionally deficient in P, especially under low soil moisture conditions.

PROCEDURES

The study site was a Gerald silt loam (fine, mixed, mesic umbric fragiaqualf), naturally low in Mg, on the University of Missouri's Southwest Center, Lawrence County. Initial soil test values for the 0-7 and 8-14 inch depths are given in Table 1.

Limestone treatments were: 0,3T, 6T, top-dressed and 8T/A plowed down, three replications, the 8T/A would have been the recommended treatment for this soil. Each lime block was 50 ft by 35 ft, large enough to accommodate five NPK subplots 10 ft and 35 ft in size. The limestone blocks were laid out, 4T/A limestone disced into the surface of blocks to get the 8T/A treatment, the entire experimental area plowed and the remaining 4T limestone disced into the plowed surface of the blocks getting the 8T/A plowed down, on 3/8/72. The objective was to get the eight tons of limestone worked into the 0-7 inches as uniformly as possible, 1.1T per acre inch. Certified Kentucky 31 fescue, 11 lbs/A, was planted in all blocks with a grain drill using 60+30+30* starter fertilizer on 4/7/72. An excellent stand was obtained, weeds were controlled with 1 gt./A 2,4-D on 5/25/72. The subplots were delinated, 3T and 6T/A limestone were top-dressed on the appropriate blocks, 5/22/73, and the 5 NPK treatments were top dressed 5/24/73. The five different subtreatments included different rates and times of applying NPK to evaluate their effects on cutting and total yields, plant mineral content and soil test values. The first differences in time of applications of the NPK top-dressing began in December 1973 so that meaningful yield data could be taken in 1974. The NPK subtreatments are given in Table 2.

^{*}All references of this type indicate $N + P_2O_5 + K_2O$ in lbs. per acre.

Depth Inches	OM %	pHs*	Neutralizable acidity Me/100 gms.	P20	^D 5 ^P 2	Ca	Mg	ĸ	CEC Me/100 gms.
				Lbs,	/2,000	0,000 11	os. of	soil	
0-7	2.6	4.7	6.1	22	20	2025	151	154	12.0
8-14	2.0	3.9	12.1	10	10	1200	257	135	16.4

Table 1. Initial Soil Test Values of Limestone Topdressing Study, Southwest Center.*

*pH measured in 1:1 soil: 0.01 M CaCl₂ suspension. P₁, P₂ indicate Bray's weak and strong extractants respectively. Exchangeable K determined by ammonium acetate extraction.

Table 2. Rate and Time of Application of NPK Treatments for Each of Four Limestone Blocks.

	Rate a	nd Time of Applic	ation
Treatment No.	December	After lst Harvest	August
1	80+50+150	0	80+0+0
2	80+25+75	0	80+25+75
3	80+50+75	0	80+0+75
4	80+0+0	0	80+50+175
5	0	80+25+75	80+25+75

A total of 160 lbs. N, 50 lbs. P_2O_5 and 150 lbs. K_2O per acre per year were the quantities of nutrients selected to evaluate the effect of limestone on fescue yields. Previous work had indicated these amounts of nutrients were adequate to produce forage yield permissible by the available soil moisture in Southwest Missouri, Kroth, et. al. (8). Yields evaluating the effect of limestone and NPK treatments were first taken in 1974. Three forage harvests as hay were made each year. Average harvest dates were: 1st cutting May 9; 2nd cutting July 18; 3rd cutting November 20. The grab samples used for dry matter determination of the 3rd cutting were saved in 1974, 1975, 1977 for grinding and Ca, Mg, P, K analyses. Also random samples were taken from 6-8 places from each plot in March when forage was 5-6 inches high in 1976, 1977, 1978 for mineral analyses. Chemical analyses were also made on samples from the 1st cutting of 1974. Plots were harvested for forage yields with a five foot flail type forage harvester and over-sized burlap bags. Grab samples of about one pound were taken from each bag for moisture determination.

the second se		and the second s						
Precipitation In Inches	1972	1973	1974	1975	1976	1977	1978	19-year Average
January	.46	3.85	1.97	3.32	.50	1.46	1.52	1.55
February	.83	1.06	1.76	3.66	.91	1.74	1.34	1.66
March	1.24	9.64	5.55	7.10	3.56	3.49	4.88	3.64
April	4.01	6.26	3.02	3.42	5.78	3.78	4.31	4.05
May	2.16	4.07	5.70	2.58	4.12	3.53	7.11	4.67
June	1.27	5.23	7.57	5.49	4.62	8.11	5.34	5.13
July	3.24	1.72	1.98	.68	5.20	2.84	3.68	2.94
August	3.96	.90	6.77	6.05	3.29	7.12	2.80	3.64
September	9,07	9.29	4.52	5.29	2.25	9.90	4.10	5.15
October	4.91	4.16	4.53	1.51	3.60	1.52	- 58	3.22
November	7.91	7.86	5.07	2.92	.65	2.24	5.88	3.40
December	2.10	4.34	2.67	2.78	.71	2.41	2.48	2.51
Total Inches	41.19	58.38	51.11	44.80	35.09	48.14	44.02	41.56

Table 3. Precipitation Southwest Center 1972-1978.

Chemical analyses were made on all forage samples by the Missouri Agricultural Experiment Station Chemical Laboratory according to accepted procedures. Samples were oven dried at 60°C and saved for later processing. Fall sampling was done in November after growth had stopped; it was intended that these samples would represent grazeable forage produced after late August or September rains.

Soil samples by one inch depths to a depth of six inches were taken from all plots of treatment 5 on all four lime treatments fall of 1975. The seventh inch was not sampled for economic reasons as previous studies had shown its value was similar to that of the sixth inch. (6). Eight to ten cores were taken from each plot,

each core cut into six one-inch segments and each segment placed in its appropriate sample bag. All 60 plots of the study were sampled at the close of the experimental period following the same procedure. Final soil samples could not be taken the fall of 1978 due to lack of late fall rains so these samples were taken in the spring of 1979. Results of tests on samples from treatment 5 for 1975 and 1979 are given in Table 20. Results of all final tests for all treatments are given in Appendix Table 2.

Soil samples were tested by the methods outlined by Brown et. al. (1). Soil extractants were calibrated to give results in pounds of nutrients per 2,000,000 lbs. of soil (seven inch furrow slice, one acre in area). When a sample represents an acre inch instead of an acre seven inches the result is interpreted as nutrient concentration in pounds per 2,000,000 lbs. of soil. Since this sample represents only one inch of the acre furrow slice the test results need to be divided by seven to get the actual pounds of nutrient in the acre inch sampled.

Soil samples from the 8-14 inch depth were taken from all lime blocks, compositing samples from the three replications into one sample. Results of these tests are given in Table 21. In restrospect soils of each NPK treatment should have been sampled from the 8-14 inch depth to determine the effect of these, as well as the limestone treatments, below the plow layer.

RESULTS AND DISCUSSION

Forage Yields

The effect of limestone and annually top-dressed NPK treatments on yields of tall fescue by cuttings and total annual production over the five years of the study are given in Appendix Table 1. Since there was very little interaction between NPK and limestone treatments only the single effects of these treatments will be discussed.

Limestone Effects. The effects of limestone on yields of tall fescue by cuttings and total yield are given in Table 4.

	Yields Tons/A 5 Yr. Ave.							
Lime Treatments	Cut l	Cut 2	Cut 3	Total				
0	1.28a*	.55ab	1.07b	2.90b				
ЗТ Т_Д	1.32a	.49b	1.10b	2.91b				
6T TD	1.37a	.51ab	1.16b	3.04b				
9 8T PwDn	1.38a	.60a	1.32a	3.3la				

Table 4. Effect of Limestone on Yields of Tall Fescue.

 Values followed by the same letter are not significantly different - Duncan's New Multiple Range Test. Statistical significance in succeeding tables is indicated by this method of lettering. The results show that thoroughly mixing the 8T/A evenly through the plow layer, 1.1T per acre inch of depth, significantly increased the average yield by .33T/A over the average yields of the top-dressed lime treatments. The increase in yield came in the third cutting, the reason for this increase can not be determined from the data of this study, See Appendix Table 1. The top-dressed limestone had no significant effect on the mass of material on the other plots but the material on the zero lime plots contained quantities of blackberry vines, sour dock and weedy grasses. On the other hand the 3T and 6T/A top-dressed plots produced fescue forage only. From this data it was concluded limestone at 3T/A would be profitable by insuring high quality fescue forage. The length of time this lime would be effective could not be determined by this study but possibly 8 to 10 years.

NPK Treatment Effects. The five different combinations of rate and time of application were selected to test their effect on yields, forage composition and soil test values. The results of these treatment combinations on yield by cuttings and total average yields for the study are given in Table 5. These data show that for total yields all treatment combinations except treatment 4 were significantly equal to treatment 5. Apparently applying all of the P_2O_5 and K_2O in August, treatment 4, tended to reduce yields. Final soil test values show that the surface inch of plots getting treatment 4 have the highest P_2O_5 and exchangeable K soil test values of the study, Appendix Table 2.

		Tons/A 5 Y	r. Ave.	
Treat. Number*	Cut 1	Cut 2	Cut 3	Total
1 2 3 4 5	1.56a 1.45b 1.55a 1.35c .77d	.41b .41b .42b .42b 1.02a	1.04d 1.15cb 1.09cd 1.20b 1.35a	3.01ab 3.02ab 3.06ab 2.96b 3.14a

Table 5. Effect of Different Time and Rate of NPK Applications on Yield of Tall Fescue.

* See Table 2.

The relatively high yield produced at the second cutting by treatment 5 was a surprise. Delaying the spring (December) application until the 9th or 10th of May would tend to produce more forage for grazing during late May and June than when the fertilizers were applied in December or early spring as is generally thought. Brown, et. al. (2) also reported this increased yield due to delayed fertilizer application. Apparently early spring application of N especially, would deplete soil moisture in April and early May which would be used in late May and June if the fertilizer application were delayed until the second week in May. See Appendix Table 1.

The average yield of 3.0T/A is what Kroth et. al. (8) concluded was the yield expectations of forage crops that could be produced by the average available soil moisture during the growing season in southwest Missouri. Hence, it was concluded that the NPK rates used in this study had been adequate to evaluate the effect of limestone on tall fescue production.

Year Effects. The effect of years on cutting and total yields are given in Table 6. The highest cutting and total yields came in 1977 when rainfall amount and distribution were nearly ideal for forage production in southwest Missouri, Table 3, and Appendix Table 1.

	Tons/A						
Cuttings	1974	1975	1 976	1977	1978	Avg.	
1 2 3	1.30c .26e 1.23b	1.46b .39d 1.21b	1.18e .57c .68d	1.52a .82a 1.81a	1.23d .64b .88c	1.34 .54 1.16	
Total	2.79	3.06	2.43	4.15	2.75	3.04	

Table 6. Effect of Years on Cutting and Total Yields of Tall Fescue

Mineral Content of Tall Fescue Forage

Potassium - Spring Samplings. The effects of limestone treatments on K content of spring grown fescue forage are given in Table 7. The data show that mixing 8T/A through out the plow layer tended to reduce the uptake of K in comparison to the other limestone treatments, in 1977. A good rainfall distribution may be the explanation of the rather high K content this year. The lower K values for 1974 show the dilution effect due to maturity of the forage, i.e. harvested as hay rather than grazeable March forage.

Table 7. Effect of Limestone on Potassium Content of Tall Fescue Forage

Timostono		March S	Samplings	November Samplings			
Treatment	<u> 1974*</u>	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1974</u>	<u>1975</u>	<u>1977</u>
0	2.03a	2.31a	2.97a	2.60ab	2.04a	1.90a	2.07a
3T/A TD	1.96ab	2.24a	2.95a	2.66a	1.98a	1.97a	2.18a
6T/A TD 8T/A PwDn	1.98ab 1.93b	2.20a 2.17a	2.82b 2.70c	2.54ab 2.49b	2.05a 1.96a	1.97a 1.89a	2.04a 2.07a

* Sampled in May as first cutting hay.

The effects of NPK applications on K content of spring grown fescue forage are given in Table 8. Applying all of the yearly K_2O in December, treatment 1, resulted in high K concentration in the spring grown forage. When the K_2O was evenly divided between December and August applications, treatments 2,3, K content was reduced somewhat. Applying all of the K_2O in August, treatment 4, also tended to reduce K in the next spring's growth. The lowest concentration of K in spring growth occurred when the K_2O was split equally between May 10 (after first cutting) and August, treatment 5, producing the highest forage yield and removing most of the applied K in the second and third cuttings. Apparently by 1978 enough K⁺ had accumulated in the surface inch of soil that time of applying K_2O no longer had an appreciable effect of the K content of March grown forage. The data of Table 9 show that K content of fescue forage was influenced more by time of top-dressing K_2O than the method of limestone application.

		Marc	n Sampling	Noven	November Samplings			
NPK Treat.	1974*	1976	1977	1978	1974	1975	1977	
No				%K				
1	2.29a	2.43a	3.03a	2.70a	1.94b	1.72b	1.95c	
2	2.14b	2.37b	3.01a	2.62ab	2.02ab	2.01a	2.12ab	
3		2.33b	2.89b	2.52b		1.77b	2.07bc	
4	1.65d	2.17c	2.80b	2.55ab	2.02ab	2.08a	2.23a	
5	1.81c	1.86d	2.58c	2.48b	2.04a	2.08a	2.10abc	
	* Sampl in 19	ed in May 74.	as first	cutting ha	y. Treatm	ent 3 not	sampled	

Table 8. Effect of NPK Rate and Time of Application on Potassium Content of Tall Fescue Forage

Postassium-November Samplings. Limestone treatments had no effect on K concentration of tall fescue forage produced after August or September rains and harvested in November, Table 7. However time of applying K_2O had an effect, Table 8; the December applied K_2O had been removed by the two previous harvests leaving a low K value in the fall grown forage, treatment 1. The other treatments applied some K_2O in August resulting in relatively high K concentration in the fall grown forage. In most cases forage K concentration is lower in the November harvested forage reflecting the more advanced maturity of the growth. Dry soil conditions in the fall could also reduce nutrient uptake; higher forage K resulted in 1977 when August and September rainfall was larger than normal, Table 3 and 8. Time of K_2O applications also influenced K concentration of fescue forage more than limestone applications, Table 9.

Magnesium - Spring Samplings The effects of limestone treatments on magnesium content of spring grown fescue forage are given in Table 10. The 3T and 6T/A top-dressed treatments statistically reduced the Mg content of the forage in 1974 and 1977 and the 6/A treatment in 1978. These Mg levels were below the 0.20% Mg thought necessary to prevent grass tetancy, Brown et. al.

			March S	amplings		Nc	vember Samplin	gs
Limestone	NPK Treat.	1974*	1976	1977	1978	1974	1975	<u>1977</u>
Levels	No				%K			
0	1	2.35a	2.50a	3.lla	2.80a	1.98ab	1.80efghi	2.12abc
	2	2.25ab	2.50a	3.11a	2.68abc	2.02ab	2.llabc	2.07abc
	3		2.44ab	3.04abc	2.52abc		1.66hi	2.03abc
	4	1.66e	2.26def	2.88abcdefg	2.55abc	2.03ab	2.05bcde	2.15ab
	5	1.84d	1.87h	2.73efgh	2.47abc	2.llab	1.90cdefg	2.00abc
3T/A	1	2.28ab	2.40abc	3.11a	2.78a	1.93ab	l.72ghi	2.00abc
TpD	2	2.11bc	2.37abcde	3.07ab	2.65abc	2.00ab	2.06abcd	2.27a
-	3		2.35bcde	3.00abcd	2.60abc		1.80efghi	2.12abc
	4	1.60e	2.26def	2.91abcdef	2.63abc	2.02ab	2.12abc	2.30a
	5	1.86d	1.84h	2.66gh	2.65abc	1.97ab	2.16ab	2.22a
6T/A	1	2.28ab	2.38abcd	2.98abcde	2.57abc	1.90b	1.61i	1.80c
TqT	2	2.17bc	2.30cde	3.02abcd	2.58abc	2.04ab	1.97bcdefg	2.00abc
	3		2.26def	2.79cdefgh	2.53abc		1.84defghi	2.05abc
	4	1.62e	2.16f	2.78defgh	2.53abc	2.13ab	2.13abc	2.25a
	5	1.86d	1.88h	2.55hi	2.48abc	2.12a	2.30a	2.12abc
8T/A	1	2.27ab	2.44ab	2.92abcde	2.68abc	1.94ab	1.79fghi	1.87bc
PwDn	2	2.03c	2.29cde	2.84bcdefg	2.55abc	2.02ab	1.89cdefg	2.15ab
	3		2.25ef	2.73efgh	2.42bc		1.76ghi	2.07abc
	4	1.72de	2.02g	2.63h	2.48abc	1.91ab	2.03cdef	2.23a
	5	1.71de	1.83h	2.38i	2.32c	1.96ab	1.96cdefg	2.05abc

Table 9. Effect of Limestone, NPK Treatments and Time of Sampling on Potassium Content of Tall Fescue Forage.

* Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

(2). It is possible these low values were due to the low exchangeable Mg resulting from the top-dressed lime treatments. These low levels will be pointed out when soil test values are discussed, Appendix Table 2. Mixing 8T/A through the plow layer maintained a satisfactory Mg level in the forage apparently because of the 2% MgCO₃ in the limestone used in the study.

Limestone		March	Samplings	November Samplings			
Treatment	1974*	<u>1976</u>	<u>1977</u>	1978	1974	1975	1977
				%mg			
0 3T/A TD 6T/A TD 8T/A PwDn	.173b .159c .164bc .189a	.201b .187b .185b .221a	.213b .203c .196c .231a	.213b .211b .196c .233a	- 223a - 203b - 200b - 228a	.247b .231b .237b .278a	.241b .254b .252b .252b .275a

Table 10. Effect of Limestone on Magnesium Content of Tall Fescue Forage

* Sampled in May as first cutting hay.

The effects of NPK treatments on the Mg content of spring grown fescue forage are given in Table 11. Treatments 1 and 5 statistically reduced Mg content below the other treatments. The high K level due to December application of all the annual K_2O of treatment 1 may have supressed the uptake of Mg. In the case of treatment 5, the higher yields, thus produced may have removed most of the exchangeable Mg from the soil the previous summer and fall as final soil test values from plots getting top-dressed limestone had low Mg soil test values at the close of the study, Table 20.

Table 11. Effect of NPK Rate and Time of Application on Magnesium Content of Tall Fescue Forage

		Marc	h Samplin	gs	Nove	November Samplings			
NPK Ireat. No	<u>1974*</u>	1976	<u>1977</u>	<u>1978</u>	1974	1975	1977		
				smg					
l	.166c	.183c	.209b	.214ab	.223a	.248a	.267a		
2	.175b	.200b	.218ab	.213ab	.213ab	.245a	.258ab		
3		.204b	.224a	.218a		.255a	.257ab		
4	.188a	.214a	.218ab	.219a	.213ab	.248a	.242b		
5	.156d	.190c	.183c	.203b	.207Ъ	.246a	.253ab		
	* Sampl in 19	ed in May 74.	as first	cutting hay	y. Treatm	ent 3 not	sampled		

The effects of limestone and NPK treatments are re-emphasized in Table 12. Top-dressed limestone tended to produce fescue forage below the .2% Mg in most years. NPK treatments 1 and 5 tended to produce lower Mg contents than the other three treatments at all limestone levels.

			March	Samplings		Nov	November Sampling		
	NPK	1974*	1976	1977	1978	1974	1975	1977	
Limestone	Treat.								
Levels	No				%Mg				
0	1	.167cdefg	.190efg	.207efghi	.207bcde	.220bcd	.240efghi	.243bc	
	2	.177bcd	.200cde	.217cdefghi	.207bcde	.217bcde	.230ghi	.237bc	
	3		.203cde	.220bcdefg	.220abcd		.247defgh	.237bc	
	4	.190b	.213bcd	.230abcde	.223abc	.233ab	.263abcde	.240bc	
	5	.157efgh	.197de	.190ij	.210bcde	.223abcd	.257bcdef	.247bc	
3T/A	1	.160defqh	.173gh	.203fghi	.217abcde	.213bcdef	.230ghi	.267abc	
DqT	2	.177defqh	.190efg	.203ghi	.210bcde	.200def	.230ghi	.247bc	
1	3		.193ef	.227abcde	.22abcd		.243defghi	.253abc	
	4	.170cdef	.203cde	.210efghi	.217abcde	.210bcdef	.233fghi	.260abc	
	5	.147h	.177fgh	.173ij	.190e	.190f	.220i	.243bc	
6T/A	1	.153fqh	.163h	.193hij	.193de	.210bcdef	.243defghi	.263abc	
TqD	2	.173bcde	.193ef	.213defghi	.200cde	.207cdef	.253cdefgh	.270abc	
-1	3		.193ef	.207fghi	.203cde		.243defghi	.240bc	
	4	.180bc	.197de	.197ghi	.193de	.190f	.220i	.227c	
	5	.150gh	.177fgh	.170j	.190e	.193ef	.227hi	.257abc	
8T/A	1	.183bc	.207cde	.233abcd	.240a	.247a	.280ab	.293a	
PwDn	2	.190b	.217bc	.240ab	.233ab	.227abc	.267abcd	.280ab	
	3		.227ab	.243a	.227abc		.287a	.293a	
	4	.213a	.243a	.237abc	.243a	.220bcd	.277abc	.240bc	
	5	.170cdef	.213bcd	.200ghi	.220abcd	.220bcd	.280ab	.267abc	

Table 12. Effect of Limestone, NPK Treatments and Time of Sampling on Magnesium Content Tall Fescue Forage.

* Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

Magnesium - November Samplings. Limestone at 8T/A mixed through the plow layer maintained a significantly higher Mg content in the November samplings than the other treatments except for the no lime treatment in 1974, Table 10. The reason for this exception is not clear. It is apparent NPK treatments had very little effect on the Mg content of fescue forage harvested in November, Table 11. Table 12 also shows that limestone levels, even when combined with NPK treatments, were the dominant factors in effecting the Mg content of fescue forage harvested in November.

Calcium - Spring Samplings. The data in Table 13 show the zero lime treatment produced fescue forage with the statistically lowest Ca content throughout the length of the study. After five years the Ca content of the forage produced by the 3T/A treatment dropped below the 6T/A treatment. On the other hand the 8T/A treatment dropped below the values of the 3T and 6T/A

Limestone		March	Samplings		November Samplings				
Treatment	1974*	1976	1977	1978	1974	1975	1977		
				%Ca					
0	.316b	.420c	.528c	.392d	.357b	.395c	.377d		
3T/A TD	.349a	.559a	.675a	.481b	.435a	.494ab	.473b		
6T/A TD	.370a	.569a	.689a	.505a	.434a	.512a	.495a		
8T/A PwDn	.368a	.503b	.619b	.453c	.430a	.486b	.447c		

Table 13. Effect of Limestone on Calcium Content of Tall Fescue Forage

* Sampled in May as first cutting hay.

top-dressed treatments in 1976 and 1977 and by 1978 its value was between those of the 3T/A and zero limestone treatments. The high Ca contents produced by the top-dressed limestone reflects high Ca⁺⁺ levels possible in the surface inch of the soil of these plots, which, combined with high K⁺ concentration from top-dressed K₂O, could retard uptake of Mg by tall fescue. The reduction of Ca concentration in fescue forage produced on the 8T/A treatment with time reflects the neutralization of the CaCO₃ by the 160 lbs N top-dressed annually and consequent reduction of Ca⁺⁺ in the 0-1 inch layer of the soil of these plots, see 1979 soil sampling, Table 20, and Appendix Table 2.

Table 14. Effect of NPK Rate and Time on Calcium Content of Tall Fescue Forage

		Marc	h Sampling	IS	November Samplings				
NPK Treat.	1974*	1976	1977	1978	1974	1975	1977		
No									
1	.337b	.467ъ	.628b	.464a	.409ab	.498a	.461a		
2	.334b	.516a	.655a	.456ab	.417ab	.462bc	.456a		
3		.516a	.633b	.458ab		.482ab	.447a		
4	.387a	.531a	.639ab	.471a	.428a	.473ab	.437a		
5	.346b	.535a	.583c	.439b	.402b	.444c	.440a		

* Sampled in May as first cutting hay, Treatment 3 not sampled 1974.

The effect of top-dressed NPK on Ca content of spring produced forage is not clear, however, a tendency for summer applied NPK, treatment 5, to reduce Ca content is apparent, Table 14. Possibly the summer applied K_2O produced a very high K⁺ concentration in the 0-1 inch depth, which, combined with the somewhat higher Mg⁺⁺ level of that depth, Appendix Table 2, was able to reduce the uptake of Ca⁺⁺ from a relatingly low Ca⁺⁺ level in the 0-1 inch depth.

Calcium - November Samplings. The effects of limestone applications on Ca content of fescue forage in November are given in Table 13. The same relationships occurred as in the spring samplings, i.e., the 3T and 6T/A treatments produced the higher Ca contents, the zero lime blocks having the lower levels and the 8T/A blocks intermediate levels. The Ca content of the forage on the 8T/A blocks reduced with time reflecting the lower Ca⁺⁺ concentration in the 0-1 inch depth of the soil of these blocks, Table 20 and Appendix Table 2.

The effects of NPK treatments on Ca content of fescue forage sampled in November are given in Table 14. Treatment 5 tends to reduce the Ca content, 1975, possibly due to the K_2O being applied in the summer and hence having a higher K⁺ level in the 0-1 inch depth of soil, Table 20. However the 1977 November sampling showed no difference between NPK treatments on Ca content of the forage. Results of this study do not give an explanation for the difference between November Ca contents of forages in 1975 and 1977.

Table 15 shows that limestone treatments had the greater effect on Ca content of November sampled forage than the NPK treatments.

Phosphorus - Spring Samplings. The effect of limestone treatments on P content of spring sampled fescue forage are given in Table 16. There is evidence that the high H^+ level (low pHs) of the zero limestone blocks and the high Ca^{++} level of the top-dressed blocks tended to reduce P content of this forage. These results would be attributed to the formation of unavailable iron and calcium compounds in the 0-1 inch depth of the soil of these blocks. On the other hand, the more favorable condition existing in the surface inch of the 8T/A treated blocks, i.e. low Fe⁺⁺⁺ and Ca⁺⁺ concentrations would tend to make P more available to fescue plants.

The effects of NPK treatments on P content of spring sampled fescue forage are given in Table 17. These data show that December applied P_2O_5 would be more available to spring produced forage, treatment 1, than when applied the previous summer, treatments 4,5. The 1978 data indicate that by this date (6 annual applications of 50 lbs P_2O_5/A) had increased the P_2O_5 level in the 0-1 inch depth of the soil of the plots to the point that additional P_2O_5 , regardless of lime application, would not effect the P content of the forage, Table 20 and Appendix Table 2. The data for 1974 especially shows the effect of December (spring) applied P_2O_5 , treatment 1, on the P content of the forage before a build up of P_2O_5 in the 0-1 inch depth of the soil of the plots, treatments 4,5, Table 17. A forage P content of less than 0.2% is considered P deficient from the standpoint of animal nutrition.¹ This condition occurred with treatments 4,5, in 1974.

¹Personal communication from Dr. J. Malcolm Asplund, Professor Animal Nutrition, Animal Husbandry Department, University of Missouri-Columbia, Columbia, MO 65211

			March	Samplings		November Samplings			
Limestone	NPK Treat.	1974*	1976	1977	1978	1974	1975	1977	
Levels	<u>No</u>				%Mg				
0	1	.290e	.393b	.520fg	.393fg	.333d	.410ef	.390efg	
	2	.333cde	.423b	.560ef	.393fg	.390bc	.383ef	.380fg	
	3		.427b	.530ef	.410fg		.427de	. 370g	
	4	.347cd	.420b	.547ef	.390fg	.370cd	.393ef	.367g	
	5	.293e	.437b	.483g	.373g	.333d	.360f	.380fg	
3T/A	1	.343cd	.520a	.677ab	.470abcde	.437ab	.523ab	.497ab	
TpD	2	.323de	.570a	.703a	.463bcde	.430ab	.473bcd	.490abc	
	3		.547a	.670abc	.490abc		.483bc	.483abcd	
	4	.363bcd	.570a	.687a	.510abc	.453a	.513abc	.457abcd	
	5	.367bcd	.587a	.637bcd	.470abcde	.420ab	.477bcd	.437cde	
6T/A	1	.343cd	.560a	.687a	.517a	.420ab	.557a	.493ab	
TpD	2	.347cd	.560a	.713a	.507abc	.427ab	.510abc	.503a	
	3		.563a	.697a	.497abc		.527ab	.490abc	
	4	.410ab	.590a	.707a	.513a	.453a	.503abc	.493ab	
	5	.380bc	.573a	.640bcd	.490abc	.437ab	.463d	.497ab	
8T/A	1	.370bcd	.393b	.630cd	.477abcde	.447a	.500bc	.463abcd	
PwDn	2	.333cde	.510a	.643bcd	.460cde	.420ab	.480bcd	.450abcd	
	3		.527a	.633cd	.437def		.490bc	.443bcd	
	4	.426a	.543a	.617d	.470abcde	.437ab	.483bc	.430def	
	5	.343cd	.543a	.570e	.423efg	.417ab	.467bcd	.447bcd	

Table 15. Effect of Limestone, NPK Treatments and Time of Sampling on Calcium Content of Tall Fescue Forage.

* Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

Limestone		March S	amplings		November Samplings					
Treatment	1974*	1976	1977	1978	1974	1975	1977			
				%P						
0	.198b	.268ab	.274b	.273a	.162c	.143b	.189d			
3T/ATD	.192b	.257b	.269b	.268ab	.168bc	.152b	.215c			
6T/ATD	.198b	.259b	.270b	.255b	.173b	.159b	.229b			
8T/APwDn	.211a	.281a	.300a	.275a	.204a	.181a	.251a			

Table 16. Effect of Limestone on Phosphorus Content of Tall Fescue Forage.

*Sampled in May as first cutting hay.

Table 17. Effect of NPK Rate and Time of Application on Phosphorus Content of Tall Fescue Forage

		Marc	h Samplin	gs	Nove	November Samplings				
NPK Treat.	1974*	1976	1977	1978	1974	1975	1977			
No				%P						
1	.233a	.292a	.293a	.272ab	.166c	.145b	.207c			
2	.216b	.276b	.292a	.269ab	.181b	.165a	.227b			
3		.294a	.297a	.274a		.148b	.207c			
4	.163d	.238c	.261b	.256b	.191a	.170a	.243a			
5	.187c	.231c	.250c	.269ab	.169c	.164a	.222b			
	20 mm 2									

 Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

The data in Table 18 show that the effect of summer applied P_2O_5 , treatments 4,5, is a reduction in the P content of spring grown fescue forage regardless of the limestone treatments, in 1974, 1976, and 1977. By 1978 the P_2O_5 content of the 0-1 inch depth of soil had possibly become high enough, Table 20, that additional P_2O_5 top-dressed in December had no statistical effect on P content of spring grown fescue forage.

Phosphorus - November Samplings. The data in Table 16 shows the effects of limestone treatments on P content of fescue forage sampled in November. Blocks receiving no limestone produced forage below the nutritionally satisfactory level of 0.2% P in 1974, 1975, and 1977. Lack of P uptake is attributed to soluble Fe⁺⁺⁺ effectively fixing the applied P so as to make it unavailable for fescue plants. Also the high Ca⁺⁺ from the top-dressed 3T and 6T/A treatments in the 0-1 inch depth made the P relatively unavailable especially in 1974 and 1975. On the other hand the more favorable condition regarding P availability occurred in the 0-1 inch depth of the plots getting the 8T/A mixed through the plow layer allowing for a greater uptake of P by fescue.

Table 17 shows the effect of time of application of P_2O_5 on P content of November harvested fescue forage. December applied P_2O_5 , treatment 1, resulted in lower P content the following November than when phosphorus was applied in August, treatment 4. However all NPK treatments produced forage below the 0.2% level in 1974 and 1975, but higher than .2% in 1977. Since the

			March Sam	plings	November Samplings					
Limestone	NPK Treat.	1974*	1976	1977	1978	1974	1975	1977		
Levels	No				%P					
0	1	.237a	.300abc	.293bc	.287a	.153q	.133f	.187hi		
	2	.223ab	.283cde	.293bc	.277abc	.163efq	.147def	.187hi		
	3		.300abc	.297b	.260abc		.137f	.177i		
	4	.163fg	.230h	.250fgh	.260abc	.177cdef	.157cde	.203fghi		
	5	.170efg	.227h	.237h	.263abc	.153g	.140ef	.190hi		
3T/A	1	.230a	.280def	.277cde	.273abc	.160efg	.140ef	.210efgh		
TpD	2	.200bcd	.263fg	.277cde	.267abc	.173defa	.160cd	.217defah		
	3		.283cde	.290bc	.260abc		.137f	.203fghi		
	4	.150g	.230h	.260efg	.250bc	.180cde	.163cd	.253abc		
	5	.187cdef	.227h	.243gh	.277abc	.160efg	.160cd	.210efgh		
6T/A	1	.230a	.280def	.280bcd	.247c	.157fg	.140ef	.200ghi		
TpD	2	.213abc	.267efg	.283bc	.257abc	.177cdef	.170bc	233cdef		
-	3		.283cde	.277cde	.260abc		.147def	.217defgh		
	4	.153g	.233h	.253fg	.250bc	.190bcd	.163cd	.253abc		
	5	.193cde	.230h	.257fg	.263abc	.167efg	.173bc	.240cde		
8T/A	1	.237a	.307ab	.320a	.280abc	.193bcd	.167bc	.230cdefg		
PwDn	2	.227a	.290bcd	.313a	.277abc	.210ab	.183ab	270abc		
- 100000000	3		.310a	.323a	.283ab		.173bc	.230cdefg		
	4	.183def	.257g	.280bcd	.263abc	.217a	.197a	.277a		
	5	.197cde	.240h	.263def	.273abc	.197abc	.183ab	.247bcd		

Table 18. Effect of Limestone, NPK treatments and Time of Harvest on Phosphorus Content of Tall Fescue Forage.

* Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

rainfall data for August and September in 1975 and 1977, Table 3, are similar one must expect that rainfall distribution was better in 1977 causing the 0-1 inch depth to be moist longer than in 1975 permitting a greater P uptake as well as a higher third cutting yield in 1977 than in 1975, Table 6. Kroth and Meinke (7) point out that P and K uptake from the 0-1 inch depth is dependent on favorable moisture and temperature conditions; in August and September moisture would be the most crucial and forage low in P could be produced even though a high P_2O_5 (P_2) soil test value occurred in the 0-1 inch depth, Appendix Table 2.

The P contents of November sampled fescue forage as influenced by both limestone and NPK treatments are given in Table 18. Treatment 4, where all the top-dressed P_2O_5 is applied in August gave the highest P content of the November produced forage containing 0.2% P or above in 1977. All but three of the other values of the November samples (1974, 1975) were below this nutritionally acceptable standard. These data again point up the possibility that unless unnecessarily high P_2O_5 soil test values for the 0-1 inch depth are maintained fescue forage produced in September and October could be nutritionally deficient in P.

The possibility exists that nutritional problems experienced by cattlemen with tall fescue in the fall and winter may be due to a P deficiency resulting from low rainfall and relatively low P_2O_5 level in the 0-1 inch depth rather than some characteristic of tall fescue itself. However if P is deficient in fall grown fescue forage it would be more economical, as well as more efficient use of P_2O_5 fertilizer, to feed a mineral supplement containing P rather than raising the 0-1 in P_2O_5 soil test to an inefficiently high level. Kroth and Meinke (7) have shown that a P_2O_5 (Bray P_2) soil test value for the 0-3 inch depth of 45 lbs/2,000,000 of soil maintained by annual applications of 30 lbs P_2O_5/A would produce the optimum grazeable cool season forage yield of 3T/A/yr.

This present study top-dressed 50 lbs $P_2O_5/A/yr$ to supply adequate P to test the effect of the limestone treatments. The 50 lbs P₂O₅/A/yr resulted in higher than necessary P_2O_5 soil test values for the 0-3 inch depth; for treatment 5 and 3T/A top-dressed limestone, these values in 1975 and 1979 were 64 and 124 lbs $P_2O_5(P_2)/2,000,000$ lbs of soil respectively, Table 20. These values are considered to be unnecessarily high due to excess top-dressed P_2O_5 . The $P_2O_5(P_2)$ soil test value of 45 lbs/2,000,000 lbs of soil for the 0-3 inch depth as found by Kroth and Meinke (7) could produce P deficient forage in dry falls. As mentioned, this deficiency would better be met by feeding mineral P rather than applying expensive P_2O_5 fertilizer to raise the 0-1 inch depth P_2O_5 soil test value which would not necessarily guarantee that forage so produced would be adequate in P. Good rainfall distribution was experienced in 1977 producing forage with suitable P level Table 18. Indications are that fescue forage harvested in November 1978 could have been P deficient, due to low October rainfall, Table 3. Forage yield should be the criteria for adequate soil P_2O_5 rather than the P level of forage produced in dry falls.

Relationships of Mineral Content and Incidence of Grass Tetany

A brief summary of the literature review by Brown et. al. (2) is as follows: 1. A high concentration of K^+ relative to the concentration of Mg^{++} in the soil could result in forage with high K and low Mg contents; 2. High Ca⁺⁺ concentration relative to Mg^{++} concentration could result in forage with high Ca and low Mg contents; 3. Grazeable forage with less than 0.2% Mg on a dry matter basis can be conducive to grass tetany; 4. The forage cation ratio, $\frac{K}{Ca+Mg}$, expressed in me. of cation per 100 grams of dry matter, with a value greater than 2.2 could indicate possibility of grass tetany.

			March I	larvests		Nove	ember Harv	/ests
Limestone Treatment	N P K No.	1974*	1976	1977	1978	1974	1975	1976
0	1 2 3 4 5	2.17a 1.83b 1.26d 1.58c	1.81a 1.70 1.64a 1.49b 1.25d	1.85a 1.73a 1.74a 1.60b 1.76a	1.95a 1.86a 1.67b 1.72a 1.75a	1.13c 1.12d 1.20b 1.11d	1.14b 1.42a 1.02d 1.26a 1.24a	1.37a 1.38a 1.38a 1.44a 1.30a
3 T/A TpD	1 2 3 4 5	1.94a 1.74b 1.20d 1.57d	1.52b 1.37d 1.39c 1.28d 1.07e	1.58b 1.51b 1.47b 1.44c 1.47b	1.70a 1.67b 1.56c 1.56c 1.74a	1.04d 1.17c 1.15c 1.12d	.99e 1.23a 1.04c 1.20a 1.31a	1.10c 1.29a 1.20a 1.33a 1.36a
6 T/A TpD	1 2 3 4 5	1.97a 1.72b 1.11d 1.57c	1.47b 1.34d 1.31d 1.21e 1.11e	1.52b 1.45b 1.37d 1.38d 1.42d	1.57c 1.59c 1.56c 1.56c 1.58c	1.04d 1.17c 1.27a 1.13d	.86b 1.08c 1.02d 1.25a 1.40a	1.00e 1.08d 1.18a 1.32a 1.17a
8 T/A PwDn	1 2 3 4 5	1.80b 1.79b 1.20d 1.61c	1.77a 1.35d 1.28d 1.09e 1.04d	1.47b 1.40d 1.35d 1.34d 1.35d	1.57c 1.54c 1.53c 1.46d 1.51c	1.17c 1.35a 1.38a 1.29a	.95e 1.05c .93e 1.10b 1.06c	1.01e 1.21a 1.14b 1.39a 1.18a

Table 19. Effect of Limestone, NPK Treatments and Time of Sampling on the Cation Ratio, $\frac{K}{Ca+Mg}$, of Tall Fescue Forage.

* Sampled in May as first cutting hay. Treatment 3 not sampled in 1974.

The work of Kroth and Meinke (7) showed that top dressing fertilizer P_2O_5 and K_2O resulted in high concentrations of these nutrients in the 0-1 inch depth of the fertilized soil. These nutrients, especially K^+ can be quickly absorbed by plants when temperature and soil moisture permit, George and Thill (5). This present study confirms the work of Kroth and Meinke and also shows that top-dressed limestone results in high levels of Ca in fescue forages, Table 12, as well as high Ca soil test values for the 0-1 inch depth of the top-dressed soil, Table 20. Table 10 shows the effect of top-dressed limestone on the Mg content of tall fescue. In all cases of the March sampled forages the 6T/A held the Mg content of the forage below 0.2%; the Mg content of the forage from the 3T/A treated blocks was significantly higher than the 6T/A blocks only in 1978. This is evidence that the Ca⁺⁺ from the 0-1 inch depth tended to hinder Mg uptake by spring produced forage.

The effect of top-dressed K_2O on Mg content of fescue forage is given in Table 11. The direct effect of high K⁺ activity, treatment 1, may have caused reduced Mg content of March sampled forage in 1974, 1976, and 1977. However the similar Mg reduction produced by treatment 5, was probably due to an indirect effect caused by the increased yields of this treatment. Table 5 shows treatment 5, with all top dressed nutrients evenly divided between May and August applications, produced the highest total yield as well as the highest yields for cutting 2 and 3. Treatment 5, Table 11, shows lowered Mg content; below 0.2% for 1974, 1976, 1977 spring samplings. This low Mg content is explained by the naturally low Mg⁺⁺ of the soil having been further lowered through removal by the higher yield of cuttings 2 and 3 of treatment 5. Table 11 shows forage Mg contents above 0.2% for all November samplings. The final soil test values of the study, Appendix Table 2, show Mg values for treatment 5 well below the initial value of 151 lbs/2,000,000 of soil, Table 1.

The effects of limestone and top-dressed K_2O on the cation ratio $\frac{K}{Ca+Mg}$ are given in Table 19. The only ratio equaling 2.0 was that from treatment 1 on the zero limestone blocks in 1974 when the forage was harvested as hay. Table 9 shows treatment 1 in 1974 produced forage with a high K content, Table 12 shows a low Mg content, and Table 15 a low Ca content; these values resulting in the $\frac{K}{Ca+Mg}$ ration of 2.17. The Ca and Mg values could be lower in this mature forage, due to dillution, than in the other samples taken in March, resulting in the higher ratio of 2.17.

The cation ratios for the March samplings of other years show the effect of treatment 1 with all of the K_2O top-dressed the previous December. Also the top dressed limestone, supplying large quantities of Ca⁺⁺, produced low cation ratios indicating the forage would not be tetany prone. This is in contrast to the other criteria based on the 0.2% Mg forage content. Table 10 indicated top-dressed limestone would produce spring grown fescue forage with less than 0.2% Mg, hence likely to cause tetany, other conditions being favorable, Brown et. al. (2).

The cation ratios of November harvested forage were well below the critical level of 2.2, reflecting the generally higher Ca and Mg content of fall harvested forage found in this study, Tables 12 and 15.

It is apparent from this study that the cation ratio $\frac{K}{Ca+Mg}$ is a poor indicator of possible incidence of grass tetany where relatively high rates of limestone have been top-dressed on grass pastures coupled with top-dressed K₂O in late fall or early spring.

Results of Soil Tests

Results of the effect of top-dressed NPK on yields of forage crops by Kroth et. al. (8) indicated that annual applications of 160+40+140 would supply all the nutrients necessary to produce forage permissible by soil moisture. To insure adequate P_2O_5 and K_2O for this study 50 lbs P_2O_5 and 150 lbs K_2O per acre per year were chosen. Consequently an increase in P_2O_5 and exchangeable K soil test values, due to excess P and K over fescue needs, was expected. As explained previously the total annual rates of NPK of 160+50+150 were divided into five different rate and time treatments to evaluate the effect of these variables on forage yields, forage composition and soil test values.

Treatment 5. The effect of treatments with time on soil test values was followed with treatment 5, the treatment that gave promise of producing the highest and best distributed yields of the study. Soil samples by one inch depths to a depth of six inches were taken from all plots getting treatment 5 including all limestone blocks in November 1975. All plots of the study were then sampled in the same manner in the spring of 1979; dry weather the fall of 1978 prevented sampling at that time. The results of tests of soil samples for treatment 5 for both sampling dates are given in Table 20.

pHs. The top-dressed limestone blocks were established in May 1973. The data of Table 20 show that the effect of 3T/A limestone had changed the first inch, with some change in the second inch, by November 1975 but by March 1979 the effect had moved to the sixth inch, the pHs ranging from 6.3 to 5.5 by March 1979. On the other hand the effect of 6T/A limestone had moved to the sixth inch by 1975, with pronounced changes for the entire six inches by March 1979, the pHs ranging from 7.1 to 5.9. This rate of change in pHs was greater than expected.

Evenly mixed 8T/A limestone through the acre seven inches effectively changed the pHs of the plow layer. However the 160 lbs N/A/yr had neutralized much of this limestone in the first inch, with some effect in the second inch by November 1975, a pHs of 5.4 and 6.3 in the first and second inches respectively. By March 1979 these pHs values had changed to 5.0 and 6.1. The implications of these pHs values for red clover establishment in tall fescue stands will be given later. The array of pHs values for all limestone and NPK treatments by separate one inch depths is given in Appendix Table 2.

 P_2O_5 . The data of Table 20 show that the P_1 and P_2 test values changed considerably between 1975 and 1979 for the first inch, the P_2 values changing from 20 lbs initially, to 147 lbs by 1975 and to 307 lbs/2,000,000 of soil by 1979. Changes for the second inch were far less, most of the P not used by the plants staying in the surface inch. The absence of downward movement of P beyond the surface inch is quite evident as shown by the array of P_2O_5 soil test values given in Appendix, Table 2.

The very high P_2O_5 values of the first inch for treatment 4, Appendix Table 2, where all of the annual P_2O_5 is applied in August, is noted. Apparently less P was made available to forage plants from treatment 4 than from the other treatments. Table 17 does show higher November P content of fescue forage for Treatment 4

				1	975 Sam	pling			1979 Sampling						
Limestone Treatment	Depth Inches	0M %	pHs	P20	5 P2	ExK	Mg	Ca	0M %	pHs	P2 P1	⁰ 5 ^P 2	ExK	Mg	Ca
				Lbs/2,0	00,000	lbs soi	1				Lbs	/2,000,	000 1bs	soil	
0	1 2 3 4 5 6	3.6a 2.4b 2.2b 2.4b 2.6b 2.7b	4.lf 4.2f 4.7e 5.0cde 5.lcd 5.lcd	141a 36c 17d 17d 17d 17d 13d	184a 40d 17d 18d 15d 14d	419bc 269d 167fg 115g 112g 97g	123cdefgh 100fghij 113efghi 123cdefgh 127cdefg 140cde	633e 900e 1500d 1967cd 2167c 2133c	5.6a 3.0b 2.9b 219b 2.9b 2.8b	4.6m 4.3m 4.61 4.9k1 5.2jk 5.3jk	242a 81c 30d 21d 18d 16d	288b 97c 34de 28de 26de 25de	564a 385c 273d 148e 203de 131e	134d 81hij 113defg 114defg 105efg 144defg	623k 637k 1223j 1706ghi 2050ghi 2157gh
3T/A TpD	1 2 3 4 5 6	3.6a 2.7b 2.6b 2.6b 2.4b 2.7b	6.0b 4.8de 4.9de 5.1cd 5.2cd 4.9de	110b 22cd 18d 12d 13d 11d	147bc 26d 19d 18d 15d 12d	492 a 285 d 149 fg 11 3g 99g 88g	153c 67k 67k 77jk 97ghijk 93hijk	3333b 1667cd 1800cd 2133c 2000cd 1700cd	5.5a 2.4b 3.2b 3.0b 3.0b 2.8b	6.3def 6.1efgh 6.0gh 5.8hi 5.8hi 5.51j	174b 33d 18d 16d 14d 14d	307ab 42de 24de 22de 20de 12e	504ab 211de 94e 79e 79e 75e	213b 119def 93fghi 76hij 74hij 65j	3840b 2797ef 2660ef 2683ef 2743ef 2437fg
6T/A TpD	1 2 3 4 5 6	3.7a 2.4b 2.3b 2.5b 2.4b 2.5b	6.3ab 5.1cd 5.0cde 5.0cde 5.2cd 5.1cd	103b 27cd 14d 13d 14d 10d	153b 36d 15d 15d 15d 17d 11d	466ab 239de 138fg 112g 94g 92g	147cd 70jk 70jk 90ijk 100fghij 113efghi	4467a 1933cd 1733cd 1833cd 2000cd 1867cd	5.4a 2.8b 2.6b 3.0b 3.3b 3.0b	7.1a 6.6bcd 6.4cde 6.1efgh 6.1efgh 5.9gh	212a 33d 19d 14d 17d 13d	343a 41 de 24de 23de 21 de 21 de	453bc 197de 95e 75e 79e 72e	189c 92ghi 72 hij 68ij 73hij 79hij	4783a 3313cd 2923de 2840e f 2943de 2743e f
8T/A PwDn	1 2 3 4 5 6	3.4a 2.4b 2.3b 2.5b 2.5b 2.5b	5.4c 6.3ab 6.6a 6.5a 6.5a 6.4a	95b 21cd 12d 12d 15d 11d	125c 28d 17d 21d 12d 15d	387c 196ef 106g 98g 98g 94g	250a 193b 127cdefg 113efghi 117efghi 130cdef	2133c 3167b 3533b 3533b 3433b 3300b	5.0a 2.9b 2.8b 2.5b 2.5b 2.5b	5.0k 6.1efgh 6.7bc 6.8ab 6.8ab 6.7bc	228a 57c 21d 12d 13d 13d	280b 71cd 29de 24de 19de 17e	446bc 235de 105e 77e 78e 74e	259a 224b 181c 129de 106efg 97fghi	1843hi 3097de 3613bc 3640bc 3837b 3677bc

Table 20. Effect of Limestone on Soil Test Values at Different Depths - Treatment 5

over other treatments, but in some years these amounts were below the accepted nutritional level for cattle. Also treatment 4 produced March forage with as low a P content as any of the other treatments excepting treatment 5, in 1977.

The relatively low P content of fescue forage produced in the fall by treatment 4 in 1974 and 1975 even though the soil test $P_2O_5(P_2)$ value for the 0-1 inch was relatively high (mean of treatment 5 all lime levels 1975 was 152 lbs/2,000,000, Table 20), implies that dry periods could reduce forage P content.

Exchangeable K. Table 20 shows the exchangeable K soil test values increased from 1975 to 1979 on the zero lime block at all depths. The reverse was true for the two top-dressed limestone blocks, also at all depths excepting the surface inch (492 vs 504 lbs. exchangeable K per 2,000,000 lbs of soil but not significantly different) for the 3T/A limestone treatment. During the same period, 1975-1979, exchangeable Ca⁺⁺ increased at all depths supporting the thesis that K⁺ not absorbed by fescue moved downward below the plow layer, being forced from the soil colloids by the more tenacious and numerous Ca⁺⁺ ions from the surface applied limestone. The array of exchangeable K and Ca soil test values as effected by all K2O treatments given in Appendix, Table 2, supports this thesis. However, it could be possible that the increased yields for cutting 2 and 3 of treatment 5 removed this K rather than being leached downward. Chemical analyses were not made of cutting 2 so quantative removal of K cannot be determined. The exchangeable K values for the 0-1 and 1-2 inch depths of the 8T/A limestone increased slightly reflecting the decreased Ca⁺⁺ of these depths due to the fact that limestone of these depths had been neutralized, especially in the 0-1 inch depth during the 4 year period, Table 20. Again the array of exchangeable K and Ca soil test values in Appendix. Table 2 supports the interpretation that large amounts of Ca⁺⁺ would force top-dressed K from K₂O below the plow layer if not adsorbed due to luxory consumption by the fescue.

Exchangeable Mg. Table 20 shows that for treatment 5 the zero limestone treatment Mg soil test values for most depths were reduced from the initial 151 lbs/2,000,000 of soil, Table 1, by 1975 and had some additional reduction by 1979. For the 3T/A limestone treatment soil test Mg was the same as the initial value for the 0-1 inch depth but values for the other five depths were greatly reduced by 1975. By 1979 the Mg levels of the 0-1 and 1-2 inch depths had increased somewhat due to Mg in the top-dressed limestone but the lower depths had no appreciable changes. Apparently the increased fescue growth due to the limestone treatment extracted Mg below the initial value of 151 lbs/2,000,000 lbs soil. The Ca soil test values increased at all depths but at the expense of the H⁺ rather than Mg⁺⁺ supporting the thesis that reduced Mg was due to extraction by fescue roots. However according to Table 10 top-dressed limestone tended tc reduce Mg content of fescue forage in the spring suggesting the possibility that Mg⁺⁺ was replaced by Ca⁺⁺ forcing Mg⁺⁺ below the plow layer as suggested for the K⁺ ion of applied K₂O.

The Mg soil test values for the 6T/A limestone treatment follow the same pattern as for the 3T/A treatment and do not suggest a different explanation that that given for the 3T/A treatment. The array of Mg soil test values given in Appendix Table 2 shows the similarities of the two top-dressed limestone treatments as related to Mg soil test values.

The Mg soil test values of the 8T/A treatment reflect the 2% Mg MgCO₃ in the 1.1T mixed into each acre inch of these limestone blocks. No appreciable change occurred between 1975 and 1979 with this limestone treatment showing good Mg content of fescue forage, Table 10. The array of Mg soil test values for all NPK treatments on the 8T/A limestone blocks, given in Appendix Table 2, show fairly uniform values within soil sampling depths, the 0-1 depths being the highest. These values when stressed by applications of K₂O still produced spring grown fescue forage above the critical 0.2% Mg, in contrast to the 3T/A and 6T/A treatments, Table 12.

Ca Soil Test Values. The Ca soil test values for the zero lime treatment showed no change between 1975 and 1979, Table 20. On the other hand the top-dressed limestone treatments gave large increases for the 0-1 inch depths. The Ca value for the 0-1 inch depth of the 6T/A treatment was 1000 lbs greater than the 3T/A treatment, also the 1-2 inch depth showed the effect of the 6T/A treatment. The effect of these high Ca⁺⁺ concentrations on Mg⁺⁺ uptake by fescue has been mentioned above. The Ca⁺⁺ values for the 8T/A treatment remained about the same excepting for the upper two depths which declined, reflecting the reduction in pHs values of these depths due to H⁺ resulting from the 160 lbs N applied annually as NH₄NO₃. The array of Ca soil test values in Appendix Table 2 shows that the effect by the other four NPK treatments on these values was the same as treatment 5.

Soil Test Value 8-14 Inch Depth. Table 21 shows the 8T/A limestone application had changed the pHs, neutralizable acidity, Ca and Mg values of the 8-14 inch depth while no changes in this depth were made by the two top-dressed limestone treatments; the 8T/A treatment had been in place for seven years, the two top-dressed treatments for six years.

Limestone Treatment	OM %	pHs	Neutralizable acidity Me/100 gms.	- P2 P1	0 ₅ P ₂	Ca	Mg	ĸ	CEC Me/100 gms.
0	1.9	4.4	9.3	10	12	1370	185	138	13.7
3T/A TpD	1.8	4.6	10.2	8	10	1590	238	157	15.4
6T/A TpD	1.6	4.4	8.3	9	11	1500	215	127	13.2
8T/A PwDn	2.0	5.1	4.3	8	11	2500	255	118	11.9

Table 21. Effect of Limestone on Soil Test Values, 7-14 Inch Depth.

Red Clover and Limestone

Kenstar red clover was drilled into all plots in February 1979. Spring and summer rainfall was nearly ideal for germination and growth of red clover. However red clover did not survive on the zero limestone blocks and initial growth was slow on the 8T/A blocks reflecting the low pHs of the 0-1 and 1-2 inch depths; 5.0 and 5.8 respectively, Appendix Table 2. Excellent stands and rate of growth resulted on the blocks getting the 3T/A and 6T/A applications. The implication of these results are that the 3T/A top-dressed limestone in addition to being adequate for tall fescue production, would also be adequate for red clover growing in combination with tall fescue in a grazing mixture. This limestone application should be adequate for eight to ten years, higher rates would not be expected to improve red clover growth in a red clover-fescue pasture.

The pHs values for the 0-1 and 1-2 inch depths of the 8T/A limestone treatment suggest that where relatively high N applications have been made on grass pastures, establishment of red clover in these pastures may be hindered due to the low pHs values of the surface 0-2 inch depth of these pastures.

LITERATURE CITED

- 1. Brown, J. R., John Garrett and T. R. Fisher. 1977. Soil testing in Missouri. Ext. Div. Univ. MO. Columbia Ext. Comm. 923.
- Brown, J. R., Wm. Rice, A. L. Hoggard, I. B. Strong and Calvin Hoenshell. 1980. Alteration of magnesium in tall fescue with soil amendments. Mo. Agric. Expt. Sta. Res. Bull. 1037.
- 3. Brown, B. A., and R. I. Munsell. 1933. Pasture investigations (second report). Penetration of surface applied lime and phosphates in the soil of permanent pastures. Storrs Agri. Expt. Sta. Bull. 186.
- 4. Fisher, T. R. 1969. Crop yields in relation to soil pH as modified by liming acid soils. Mo. Agri. Expt. Sta. Res. Bull. 947.
- 5. George, R. J. and J. L. Thill. 1979. Cation concentration of N- and K-fertilized smooth bromegrass during spring grass tetany season. Agron. Jour. 71:431-436.
- 6. Kroth, E. M, and R. Mattas. 1974. Yields and soil test values resulting from topdressing forage crops. Mo. Agri. Expt. Sta. Res. Bull. 1005.
- E. M., and Louis Meinke. 1981. Topdressing nitrogen, phosphorus and potassium on cool season grasses for pasture production. Mo. Agri. Expt. Sta. Res. Bull. 1039.
- E. M., G. E. Smith, Richard Mattas, and J. A. Roth. 1969. Fertilizing hay and pasture crops in Missouri. Mo. Agri. Expt. Sta. Res. Bull. 942.

tal	Missouri
abcde de cde e abcde	Agricultur
de cde abcde bcde abcde	AL EXPERIMEN
abcde abcde abc abcde abcde abcde	nt Station

Appendix

Table 1. Effect of Limestone and NPK Treatments on Yields of Tall Fescue 1974-1978

							Yields	T/A*						
Limestone	NPK Treat.	NPK Treat. 1974				1975				<u>Cu+ 1</u>	1976			
Treatment	<u> </u>		CUC Z	cut J	TOLAT		LUL Z	cut 3	TOLAT			Lut 3	TULAT	
0	1 2	1.51	.17	1.20 1.10	2.89abcdef 2.65cdefg	1.61 1.40	.29	.93 1.06	2.81cd 2.77cd	1.38 1.16	.46	.52	2.35abcde 2.15de	
	3 4	1.58	.18	1.03	2.78bcdefg 2.69cdefg	1.50	.28	1.06	2.84cd 2.71d	1.31 1.09	.46	.47	2.24cde 2.11e	
	5	.68	.59	1.43	2./Ibcdefg	.81	.82	1.29	2.92bcd	.50	1.04	.79	2.34abcde	
3T/A TD	1 2 3 4 5	1.70 1.34 1.54 1.27 .63	.15 .16 .17 .20 .54	1.08 1.07 1.02 1.03 1.26	2.93abcde 2.57fg 2.73bcdefg 2.50g 2.43g	1.68 1.49 1.65 1.64 .82	.26 .27 .26 .24 .74	.77 1.16 1.14 1.18 1.40	2.70d 2.92bcd 3.05bcd 3.06bcd 2.95bcd	1.30 1.30 1.40 1.25 .45	.35 .39 .41 .44 1.03	.57 .60 .64 .63 .84	2.22de 2.30cde 2.45abcde 2.32bcde 2.33abcde	
6T/A TD	1 2 3 4 5	1.66 1.47 1.60 1.26 .69	.15 .15 .16 .14 .60	1.16 1.14 .98 1.19 1.33	2.97abc 2.76bcdefg 2.74bcdefg 2.60efg 2.62defg	1.76 1.69 1.82 1.63 .84	.28 .28 .23 .25 .80	.76 1.32 1.14 1.25 1.46	2.80cd 3.29abc 3.18abcd 3.13abcd 3.10bcd	1.33 1.40 1.52 1.29 .58	.41 .42 .44 .42 1.07	.63 .64 .64 .73 .68	2.37abcde 2.46abcde 2.60abc 2.39abcde 2.52abcd	
8T/A PwDn	1 2 3 4 5	1.67 1.33 1.41 1.15 .77	.21 .21 .20 .20	1.35 1.28 1.45 1.65 1.65	3.23a 2.96abcd 3.05ab 3.00abc 3.18a	1.77 1.70 1.72 1.46 .93	. 35 . 32 . 35 . 32 . 93	1.06 1.37 1.37 1.60 1.77	3.18abcd 3.39ab 3.43ab 3.39ab 3.63a	1.48 1.45 1.48 1.26 .63	.48 .47 .47 .49 1.12	.75 .79 .73 .75 .94	2.71a 2.70a 2.68ab 2.49abcd 2.70a	

	NPK								
Limestone	Treat.			1977			19	78	
Treatment	No.	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total
0	1	1.77	.63	1.50	3.87cd	1.43	.50	.85	2.77bcd
	2	1.54	.69	1.56	3.80cd	1.34	.55	.95	2.84bcd
	3	1.69	.62	1.49	3.80cd	1.28	.55	.72	2.55d
	4	1.53	.61	1.65	3.80cd	1.19	.59	.91	2.69cd
	5	.93	1.38	1.77	4.08abcd	.70	1.52	1.04	3.26ab
DT (4			67						
31/A	I	1.65	.61	1.//	4.03abcd	1.31	.41	.77	2.49d
.10	2	1.5/	.62	1.79	3.98bcd	1.32	. 36	.83	2.51d
	3	1.75	. 72	1.84	4.32abc	1.45	.39	.69	2.53d
	4	1.48	.67	1.92	4.08abcd	1.28	.44	.79	2.51d
	5	.94	1.23	1.78	3.96bcd	.76	1.07	1.04	2.88bcd
6T/A	1	1 65	67	1 83	4 15abcd	1 35	40	72	2 174
тр	2	1.70	71	1 82	4 23abcd	1 35	.40	94	2 70cd
15	3	1 76	70	1 88	4 34ab	1 31	.45	72	2 /8d
	ă	1 54	65	1 98	4 21abcd	1 27	.40	.72	2 404
	5	98	1 33	1 84	4.15abcd	80	1 12	1 10	2.45u
	J	. 50	1.55	1.04	4.150000	.05	1.12	1.10	J.1/abc
8T/A	1	1.70	.82	1.90	4.42ab	1.55	.58	.75	2.88bcd
PwDn	2	1.73	.81	2.00	4.54a	1.33	.55	.93	2.81bcd
	3	1.78	.80	1.91	4.50ab	1.45	.56	.81	2.82bcd
	4	1.54	.76	1.99	4.30abcd	1.25	.57	.97	2.78bcd
	5	1.02	1.47	1.99	4.48ab	.90	1.33	1.24	3.47a

Table 1. Effect of Limestone and NPK Treatments on Yields of Tall Fescue 1974-1978 (continued)

Yields T/A*

* Each value the mean of three replications. Results of Ducan's New Multiple Range Test given for yearly total yields only.

Appendix

					^P 2														
Limestone Treatment	NPK Treat. <u>No.</u>				Depth Inches														
		1	2	3	4 .		6	1	2	3	4	5	6	1	2	3	4	5	6
											LI	BS/2	lbs soil						
0	1 2 3 4 5	4.1 4.1 4.1 4.1 4.6	4.0 4.1 4.0 4.2 4.3	4.4 4.4 4.3 4.6	4.7 4.8 4.7 4.8 4.9	4.7 5.0 4.9 4.8 5.2	4.9 5.0 5.0 5.0 5.3	149 222 171 305a 242bc	69 58 83 87 81	17 25 39 32 30	14 20 24 19 17	14 16 18 18 18	12 14 17 13 16	172 250 203 342b 288cd	80 58 84 93 97	23 27 41 36 34	21 23 28 28 28	20 21 23 24 26	17 21 23 21 25
3T/A TpD	1 2 3 4 5	6.6 6.3 6.4 6.5 6.3	6.1 5.8 5.8 5.7 6.1	5.8 5.8 5.7 5.5 6.0	5.9 5.6 5.7 5.4 5.8	5.9 5.6 5.5 5.8	5.8 5.3 5.4 5.3 5.5	131 201 107 306a 174fgh	37 42 36 59 33	19 20 20 24 18	16 16 15 18 16	15 12 14 19 14	12 15 12 17 14	201 260 158 393a 307c	44 54 46 71 42	28 26 23 26 24	22 21 20 21 22	19 17 18 20 20	16 16 16 19 12
6T/A TpD	1 2 3 4 5	6.8 6.3 6.4 6.6 7.1a	6.6 6.0 7.0ab 6.5 6.6	6.2 5.8 6.7 6.1 6.4	6.1 5.8 6.3 5.8 6.1	5.9 5.6 6.2 5.6 6.1	6.1 7.0ab 6.1 5.3 5.9	112 189 126 258b 212cde	30 39 28 63 33	17 22 19 21 19	12 14 13 15 14	12 14 13 14 17	12 12 12 12 13	178 264 194 359b 343b	38 51 36 72 41	23 27 22 27 24	18 19 18 19 23	16 18 17 19 21	17 15 17 16 21
8T/A PwDn	1 2 3 4 5	5.0 5.1 5.0 5.0 5.0	5.6 6.1 5.9 6.0 6.1	6.6 6.8 6.7 6.7 6.7	6.8 6.9abc 6.7 6.8 6.8	6.7 6.8 6.7 6.8 6.8	6.7 6.8 6.8 6.7 6.7	138 169 116 257b 288cd	38 34 34 54 57	15 17 15 25 21	12 12 11 17 12	13 12 12 15 13	13 12 12 13 13	164 206 156 289cd 280cde	40 51 45 71 71	23 26 25 35 29	20 23 21 27 24	22 26 21 26 19	19 22 24 24 17

Table 2. Effect of Limestone and NPK Rate and Time of Application on Soil Test Values by One Inch Depths.*

Appendix

	NPK Treat. No	Exchangeable K Depth Inches							Mg Depth Inches							Са						
Limestone																Depth Inches						
Treatment		<u> </u>	_2	_3	4	_5	_6		_2	3	_4	5	_6	1	2	3	4	5	6			
								LBS	5/2,00	0,000) 1bs	soil-										
0	1	424	307	208	180	151	126	147	78	92	93	92	97	757	700	12/3	1633	1000	2022			
	2	524bc	327	233	174	146	127	138	79	98	97	91	95	717	767	1326	1717	1900	2023			
	3	492cde	318	225	195	161	141	137	70	80	87	84	82	673	590	1040	1600	1967	1022			
	4	624a	371m	271	204	152	114	126	68	84	88	82	81	680	593	1090	1600	1057	2067			
	5	564b	385	273	203	148	122	134	81	113	114	105	114	623	637	1223	1707	2050	2157			
3T/A	1	316	167	125	105	92	93	197	107	89	81	84	86	35.00	2583	2550	2522	2500	2472			
TpD	2	500cd	220	112	106	85	90	240bcd	124	104	92	83	90	3347	2640	2600	2/00	2350	24/3			
	3	434	193	112	95	95	91	239bcd	133	116	101	98	106	3383	2550	2500	2456	2437	2223			
	4	653a	360mn	155	115	97	102	244b	119	88	78	76	68	3583	2473	2247	2373	2500	2290			
	5	503cd	211	94	79	79	75	213	119	93	76	74	65	3840d	2797	2660	2683	2743	2437			
6T/A	1	-245	132	98	87	83	86	194	102	85	82	89	103	4273c	3263	2057	2703	2700	2567			
TpD	2	395	194	115	97	92	86	206	105	87	110	88	110	4207c	3117	2833	2793	2583	2/03			
	3	346	180	111	92	86	86	201	101	80	75	74	75	4673ab	3083	2673	2697	2517	2343			
	4	519cd	318mn	129	98	90	84	221	94	74	64	56	62	4523b	3107	2683	2550	2457	2250			
	5	446	197	95	75	79	72	189	92	74	68	73	79	4783a	3313	2923	2847	2943	2743			
8T/A	1	308	145	103	93	88	82	229	191	153	129	106	98	1710	2033	3267	34.83	2540	2/22			
PwDn	2	437	202	108	95	80	82	244b	196	162	126	115	108	1947	3003	3607	3750	3923	3767			
	3	380	168	98	88	83	83	221	195	158	125	108	93	1673	2850	3267	3470	3550	3450			
	4	568b	295	142	100	93	97	243Ь	210	177	132	103	95	1880	2867	3423	3430	3563	3523			
	5	446	235	105	77	78	74	259a	224	181	129	106	97	1843	3097	3613	3640	3827	3677			

Table 2. Effect of Limestone and NPK Rate and Time of Application on Soil Test Values by One Inch Depths.* - continued

* pHs, ^P1, ^P2, Ex. K, Mg and Ca were analyzed separately - the higher significant values by Duncan's. New Range Test are given to show relationships between the wide ranges of values within the plow layer at the end of the study.

** pH determined in 1:1 soil:0.01 M CaCl₂ suspension.