RESEARCH BULLETIN 1005

MAY, 1974

Ń

UNIVERSITY OF MISSOURI-COLUMBIA COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION Elmer R. Kiehl, Director

Yields and Soil Test Values Resulting From Topdressing Forage Crops

Summary of Southeast Missouri Tests, 1961 to 1970

EARL M. KROTH AND RICHARD MATTAS

(Publication authorized May 3, 1974)

COLUMBIA, MISSOURI

CONTENTS

Introduction
Purpose and Design of Experiments
Conclusions
Study I - Topdressing Grass-Legume Mixtures with Nitrogen
Study II - Topdressing Orchardgrass-Alfalfa with Phosphorus and Potassium
Study III - Topdressing Orchardgrass-Alfalfa with Nitrogen, Phosphorus and Potassium
Study IV - Topdressing Fescue-Lespedeza with Nitrogen, Phosphorus, and Potassium
Study V - Effect of Plowdown and Topdressed Applications of Phosphorus and Potassium on Yields of Alfalfa
Study VI - Effect of Limestone and Topdressed Nitrogen, Phosphorus, and Potassium on Yields of Fescue-Lespedeza
Appendix
Literature Cited

ACKNOWLEDGEMENTS

The authors acknowledge the excellent cooperation of Dr. Norman Justus, superintendent of the Southwest Center, during the course of the studies reported. Appreciation is also expressed for the assistance of Robert Light and William Rice with the field work, of Dr. Ted R. Fisher in supervising the early soil tests, of Mr. John Garrett of the Area Soil Testing Laboratory, Delta Center for recent soil tests and to Dr. Ernest Hildebrand, Agricultural Experimental Station, statistician for the statistical analysis.

Yields and Soil Test Values Resulting from Topdressed Forage Crops

Summary of Southwest Missouri Tests, 1961 to 1970

EARL M. KROTH AND RICHARD MATTAS

INTRODUCTION

The highly weathered residual soils of Southwest Missouri are suited for grass production but are naturally low in fertility and have low available water storage capacities. Erratic rainfall distribution, coupled with the low available water storage capacities, produces drouth conditions at times during nearly every growing season.

Decker (3) (4) reported that dry periods of two weeks or more can be expected during the last half of June and all of July and August and that 25 percent of the time the monthly precipitation from June through August will be 1.75 inches or less. Meyers (10) reported that it was the low soil moisture that limited alfalfa hay yields to about 3.5 tons per acre, rather than shortage of soil phosphorus when the soil test value was 128 pounds P_2O_5 per acre or higher. Because low soil moisture is one of the major limiting elements in forage production, it was thought that annual surface applications would produce the maximum yield possible each season. This practice would probably cost less than applying full treatment to the entire plow layer to bring it up to levels recommended for new seedings of forage crops. (1)

An analysis of forage production as related to climatic and soil areas in Missouri was outlined by Kroth *et al.* (7).

PURPOSE AND DESIGN OF EXPERIMENTS

Topdressing was evaluated as a method for applying nutrients (1) to stands of forage crops established according to recommended methods, and (2) to new stands not receiving the plowdown treatments indicated by soil tests. Changes in soil nutrient levels at various depths in the plowlayer after several years of topdressed applications of P_2O_5 and K_2O were used to evaluate treatments. Yield changes were also compared.

Most of the studies reported here were conducted at the Southwest Missouri Center, Mount Vernon, on two common soil types of Southwest Missouri, the Baxter and Gerald silt loams. Studies were also established on Baxter silt loam on leased land near Purdy, Mo. Fragipans were found at about 28" in the soils originally classified in the Baxter Series and were therefore not true Baxter soils. However, the Baxter series name is used in this report, meaning "Baxter-like." These soils are classified as Typic Fragiudalfs, fine, mixed, messic. The Gerald soil with a clay pan is an Umbric Fragiudalf, fine, mixed messic. The cation exchange capacities of the individual surface soils in the study ranged from 7 to 11 me/100 grams.

The available water storage capacities to a depth of 28 inches according to Kroth *et al.* (7), were 4 and 6 inches in the Baxter and Gerald soils, respectively. Observations indicated the available water storage capacities of the actual Baxter sites would have been less than these estimates due to considerable chert in the plow layer. Rainfall data at the Southwest Missouri Center during the studies are given in Table 1. Soil testing procedures outlined by Fisher (5) were used on all soil samples.

Plot size was 50 feet by 10 feet, trimmed to 40 feet in length at harvest. Plots were harvested with a modified five-foot flail type forage harvester. The green material was caught in a large burlap bag and weighed. A sample for moisture determination was taken from each bag and yields were calculated and reported in tons of hay, 15 percent moisture. Data from each study were subjected to analysis of variance and the significant differences among the treatments were evaluated by Duncan's New Multiple Range Test. Yields followed by the same letter in an individual table are not significantly different. The list of treatments for each study is given in a table.

CONCLUSIONS

- 1. Topdressing alfalfa-grass mixtures with nitrogen did not increase total yields of hay but did increase the percentage of grass and the yield of the first cutting. (Studies I, III.)
- 2. Thirty pounds of nitrogen per acre topdressed in March to fescue-lespedeza increased spring growth of fescue and did not reduce the stand of lespedeza providing the fescue was removed when in the boot stage. Sixty pounds of nitrogen per acre increased spring growth but extensively reduced the stand of lespedeza. Forty pounds of nitrogen per acre was indicated as a suitable rate if the spring growth was removed in or before the boot stage. (Studies I, IV.)
- 3. Alfalfa-grass mixtures established by recommended methods extracted P and K to low levels in the lower portion of the plow layer. Annual topdressings of P_2O_5 and K_2O (0+30+150) adequately supplemented these nutrients so that optimum yields were maintained. (Study I.)
- 4. The fiberous nature of the alfalfa and grass roots in the upper portion of the plow layer absorbed sufficient nutrients to produce optimum growth under the soil moisture conditions of these studies. (Studies I, III.)

- 5. Fescue-lespedeza stands established by recommended methods extracted P and K from the plow layer in the same pattern as the alfalfa-grass mixtures. The half treatment yields were optimum due to the topdressing of P_2O_5 and K_2O . (Study I.)
- 6. Orchardgrass-alfalfa and fescue-lespedeza mixtures established with starter fertilizers on limed but otherwise unfertilized seed beds produced optimum yields with annual topdressed applications of P_2O_5 and K_2O . Orchardgrass-alfalfa responded best to 0+50+150 and fescue-lespedeza to 30+25+100. Terminal soil test values for P_2O_5 and exchangeable K within the plow layer of these soils were high in the surface inches but relatively low in the lower three or four inches. (Studies II, III, IV.)
- 7. Average soil test values of the plow layers did not reflect the high P_2O_5 and exchangeable K values in the surface inch under grass-legume mixtures which had received topdressed applications of P_2O_5 and K_2O . (Studies II, III, IV.)
- 8. A pHs of 5.5 when compared with a pHs of 6.5 appeared to increase the availability of P to grass-legume mixtures. The relationship between topdressed nitrogen, limestone, and phosphorus carriers needs more clarification. (Studies II, III, IV.)
- 9. A pure stand of alfalfa, established by recommended methods, extracted P and K from the plow layer by the same pattern as the alfalfa-grass mixtures. Maintenance applications resulted in high P_2O_5 and exchangeable K values in the surface one or two inches. (Study V.)
- 10. Three tons per acre of limestone was as good as 6 tons per acre when applied in the surface 3 to 4 inches of a fescue-lespedeza pasture establishment study when the original pHs was 4.1. (Study VI.)
- 11. Under the conditions of these studies—low available water storage capacities and 10 me. cation exchange capacities—an annual topdressing of 0+40+140 would be expected to supply adequate P and K to produce optimum yields of grass-legume mixtures resulting in average soil test values in the plowlayer of 80 to 100 pounds per acre of $P_2O_5(P_2)$ and 180-200 pounds per acre exchangeable K.
- 12. Sampling the 0 to 3 inch depth in addition to the 0 to 7 inch layer when evaluating the fertility needs of pastures seems desirable. More detailed research is needed to quantify the P_2O_5 and exchangeable K levels in the 0 to 3 inch depth necessary to produce optimum forage yields. (Studies II, III, IV)

Study I

TOPDRESSING GRASS-LEGUME MIXTURES WITH NITROGEN Procedure

The objective of this study was to evaluate the effect of nitrogen on yields of grass-legume mixtures and to determine the distribution of P and exchangeable K in the plowlayer at the end of the study. The study was carried out on Baxter silt loam near Purdy, Mo. Rainfall data at this location were incomplete but they indicated the same general amounts and distribution for the period as recorded at Mount Vernon (Table 1).

		Precip	tation 1	n Inches			
Months January February March April May June July August September October November December Total	$\frac{1966}{1.564}$ $\frac{4.69}{2.124}$ $\frac{4.14}{1.476}$ $\frac{4.14}{5.80}$ $\frac{1.476}{2.14}$ $\frac{1.476}{2.00}$ $\frac{1.60}{2.00}$	$\begin{array}{r} \underline{1967} \\ 1.13 \\ 1.01 \\ 1.51 \\ 4.88 \\ 4.75 \\ 7.74 \\ 7.74 \\ 2.23 \\ 1.42 \\ 10.92 \\ 1.14 \\ \underline{2.93} \\ 43.10 \end{array}$	1968 3.539 4.559 4.559 4.559 4.559 4.559 4.559 4.005 0.613 2.8 3 3 8.28 3 3	$ \frac{1969}{3.30} 3.30 1.90 1.62 5.66 1.82 3.38 1.20 $	1970 .84 3.86 4.81 3.95 5.23 1.17 9.79 6.04 1.78 2.11 40.44	1971 1.54 1.55 2.794 5.41 2.2794 5.41 7.22 7.22 7.22 5.41 7.22 7.22 5.41 7.22 5.41 7.22 5.41 7.22 5.42 7.22 5.42 7.20 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	AV868479584475887 11233425987 29824475887 29825987 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 299524475887 2995244775887 2995247 2995247 2995247 2995247 2995247 2995247 2995247 299527 29957 299527 299577 299577 299577 299577 2995777 299577 2995777 29957777 2995777777
Departure from long term mean	-5.77	2.02	7.21	-10.07	58	48	-1.19

Table 1--Preciptation Southwest Missouri Center 1967-1971

Nutrients, other than nitrogen, were brought up to recommended levels (full treatment) in plots of the alfalfa-grass mixtures and one set of the fescue-lespedeza plots with one ton of dolomitic limestone, 500 pounds of P_2O_5 as triple superphosphate, and 200 pounds of K_2O as muriate of potash per acre. One set of fescue-lespedeza plots (half treatment) received no limestone, 250 pounds of P_2O_5 and 100 pounds of K_2O per acre. The limestone, superphosphate, and muriate of potash were thoroughly mixed through the plowlayer. Seedings made in the spring of 1965, with $40+20+20^1$ starter fertilizer broadcast, failed due to dry weather. A successful seeding was made in the fall of 1965, with a broadcasting of 24+24+24, as starter fertilizer. Vernal alfalfa, Summit lespedeza, Southern bromegrass, Potomac orchardgrass and Kentucky 31 fescue were used at recommended rates for the seedings. To further insure adequate P and K, all plots were topdressed annually with 0+30+75 in March and 0+0+75 after the first cutting.

Nitrogen treatments were 0, 30, 60, and 90 pounds of nitrogen per acre as ammonium nitrate, applied to all mixtures annually in March in a randomized

¹All references this type indicate $N+P_2O_5+K_2O$ in lbs per acre.

block design with four replications. Alfalfa-grass mixtures were harvested when the alfalfa was at 1/10 bloom. These mixtures were harvested three times in 1966 and four times the remaining four years of the study.

The three 1966 harvests are not included in this report; total yields were about the same as reported for the last four years.

The fescue-lespedeza plots were harvested when the fescue was in the boot stage with alternate rows of flails of the harvester replaced with shorter ones to simulate grazing. This technique did not completely defoliate the lespedeza, permitting it to set seed each year. Yields of this mixture are reported as two cuttings (before and after July 1), even though in some years two harvests were made before July 1. In the latter case the two yields were summed and reported as one cutting.

At the end of the studies (October 1970) a block of soil six inches by 18 inches was removed from an orchardgrass-alfalfa plot and the soil was carefully washed away to observe the rooting systems and quantity of chert. The soil of each plot was also sampled by one inch depths to a depth of seven inches. Eight cores were taken from each plot and each depth was composited from all four replications into a single composite sample for each treatment. The average of the soil test values of the seven depths should be equal to the values obtained by conventionally sampling the plowlayer.

In the case of phosphorus, this value should be comparable to the P_2O_5 test value used when interpreting soil tests in Missouri (2). Phosphorus was determined by Bray's P_1 and P_2 extractants, K by ammonium acetate extraction and soil pHs was measured in 1:1 soil: 0.01 M CaCl₂ suspension. Samples of alfalfa, orchardgrass, and fescue growing on the plots at the time the soil was sampled were taken for P and K determinations.

Results and Discussion

Hay Yields: Grass-Alfalfa Mixtures

Average total yields and yields for each cutting with its percentages of the total yield for each treatment are given in Table 2. The four cutting dates for the alfalfa mixtures varied between years due to rainfall distribution but cuttings 1, 2, 3, and 4 occurred in May, June, July, and September, respectively. The data show that for the grass-alfalfa mixtures there was no significant difference in total yield among nitrogen treatments. Nitrogen did increase the first cutting yields of these mixtures but the reduced third and fourth cutting yields for orchardgrass-alfalfa offset the benefit of the added nitrogen. In the case of bromegrass-alfalfa the yield reduction occurred in the second and third cuttings. Bromegrass tended to thin out so that by the end of the study only about one-fourth of the original quantity remained, which accounts for the overall lower average yield of the bromegrass-alfalfa mixture.

			Yields	Tons Hay	/Acre				
			Orchardg	rass-Alfa	alfa (4-ye	ear means)		
Nitrogen* Lbs./Acre 0 30 60 90	<u>Total</u> 4.66a 4.75a 4.81a 4.63a	lst cut 1.75 1.98 2.02 1.96	ダ <u>Total</u> 才.6 41.7 41.9 42.4	2nd cut 1.13 1.10 1.18 1.11	% Total 24.2 23.2 24.6 24.0	3rd cut 1.08 1.06 0.97 0.95	% <u>Total</u> 23.1 21.4 20.1 20.5	4th cut 0.70 0.65 0.65 0.61	% Total 15.1 13.7 13.5 13.1
			Bromegr	ass-Alfa	lfa (4-yea	ar means)			
0 30 60 90	4.33a 4.23a 4.27a 4.21a 4.21a	1.45 1.58 1.62 1.68	33.5 37.5 37.9 39.9	1.03 0.93 0.96 0.91	23.8 21.9 22.6 21.6	1.08 0.97 0.97 0.88	25.0 22.9 22.6 21.0	0.77 0.75 0.72 0.74	17.7 17.7 16.9 17.6
		Fescu	e-Lespede	za (Full	Treatmen	t) (5-yea	ar means)		
0 30 60 90	1.49b 1.53b 1.57b 1.95a	0.75 1.01 1.18 1.60	52.4 66.7 75.5 82.2	0.74 0.52 0.39 0.35	47.6 33.3 24.5 17.8				
		escue-Le	spedeza (Oneehalf	Full Trea	atment)(!	5-year me	ans)	
0 30 60 90	1,59d 1,71c 1,88b 2,23a	0.81 1.12 1.39 1.75	51.8 64.9 74.0 79.1	0.78 0.59 0.49 0.47	48.2 35.1 26.0 20.9				

Table 2--Effect of Topdressed Nitrogen on Yields of Grass-Legume Mixtures Baxter Silt Loam-Purdy, Mo. (1966-1970) Vields Tops Hay/Acre

* All plots topdressed annually with 0+30+75 in March and 0+0+75 after first cutting Full treatment--dolomitic limestone, superphosphate and muriate of potash as required by soil test recommendations.

Values followed by the same letter are not significantly different--Duncan's Multiple Range Test.

Hay Yields: Fescue-Lespedeza Mixtures

The results for the full treatment fescue-lespedeza plots show the 30 and 60 pound N rates did not significantly increase total yields over the zero N plots (Table 2). The first cutting yields increased with the increased N rates but the increased yield of grass in the first cutting was offset by the reduced yield of the second cutting due to reduction of lespedeza in the stand. The 90 pound N rate increased the total yield over the zero N rate due to the considerably higher first cutting, but second cutting yield was similar to that of the 60 pound rate. Lespedeza was virtually absent in the stands on the plots getting the 60 and 90 pound N applications.

All total yields of the half treatment plots were slightly higher (.2 T/A) than those of the full treatment plots, apparently because they were nearly level and retained more rainfall than the full treatment plots. Total yields on the half treatment plots increased significantly with increasing rates of N. The plots receiving the 60 and 90 pounds of N had very little lespedeza in the stands and the fescue produced only about .5 ton of hay after July 1 due to lack of available N.

The amount and distribution of rainfall after July 1 influenced the growth of lespedeza on the zero and 30 pound N plots. The highest second cutting yield was 1.4 tons in 1967 on the zero N plots of both fescue-lespedeza studies due to a favorable rainfall distribution (Table 1). For the entire study the average second cutting yields for the first two N treatments of both sets of plots was 0.66 ton per acre compared with 0.43 ton per acre for the third and fourth N treatments. The quality of the forage from the second cuttings of the first two N treatments would be considerably higher due to the lespedeza in the stand.

The results indicate an application of 30 to 40 pounds of N could be topdressed in March on fescue-lespedeza pastures without injuring the stand of lespedeza, provided the first growth of fescue was grazed off in time to allow seedling lespedeza to get established.

Soil Test Values

Three sets of the plots were brought up to desired nutrient levels by thoroughly mixing the recommended amounts of lime, superphosphate, and muriate of potash through the plowed layer at the beginning of the study. One set of plots was brought up to half soil treatment. Each plot received 0+30+150, topdressed annually.

The soil test values of the plow layer for the experimental area and the distribution of P and K at one inch increments in the plow layer at the end of the study are given in Table 3. The values of all initial soil tests and the complete results of the final samplings are given in Appendix Tables I, II, III, and IV.

Grass-Alfalfa Mixtures

The results of Bray's P_2 (Bray's P_1 determinations were not made on the initial samples) phosphate test on the final samples of both groups of grass-alfalfa plots

show an interesting distribution of phosphorus in the plow layer, Table 3. After the soil was brought to recommended nutrient levels, the grass and alfalfa plants extracted phosphorus to its initial values at the third depth and below. All of the phosphorus applied prior to seeding was removed from the lower five depths. The first depth had a higher level due to the annual application of phosphorus.

Potassium was extracted to its initial value in the second depth of both grass-alfalfa mixtures and considerably below the initial value in the lower depths. Potassium accumulated in the first depth due to the annual applications of potassium. A greater amount of K was removed by the orchardgrass-alfalfa mixture than by the bromegrass-alfalfa mixture because of the greater quantity of orchardgrass in the first cutting.

The pattern of nutrient withdrawal similar to that shown in Table 3 was found in results of other studies given in this report. Evidently this is the pattern of nutrient distribution in the plow layer under a forage crop when maintenance applications have been topdressed for several years following a plowdown or

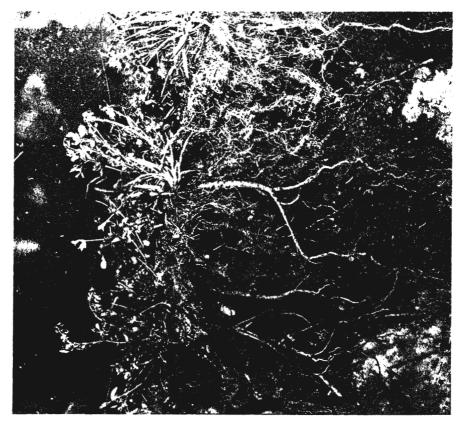


Figure 1: The fibrous root systems that developed in the upper portion of the plowlayer of orchardgrass-alfalfa plots.



Figure 2: Alfalfa roots showing the fibrous nature developed in the upper three inches, making possible the uptake of topdressed nutrients.

corrective application at time of seeding. The extensive root systems of the orchardgrass and alfalfa plants in the plow layer, especially in the upper three inches, are shown in Figures 1 and 2. These systems would readily absorb nutrients from the surface one to three inches, adequately supplying the plant needs for the extent of yield permitted by soil moisture.

The P and K contents of the alfalfa on the alfalfa-bromegrass plots were 0.55 percent and 2.18 percent, respectively, at the time of final soil sampling (October 1970). Phosphorus and K contents of the plants on the orchardgrass-alfalfa plots were: Alfalfa 0.52 percent P, 2.32 percent K; orchardgrass 0.48 percent P, 3.7 percent K. All these values are well above critical ones reported by Martin and Matocha (9), indicating that the alfalfa and orchardgrass had effectively absorbed topdressed P and K. The topdressed P and K apparently did not move below the surface two or three inches before being fixed by soil colloids or absorbed by the plant roots. Such conditions would account for nutrient accumulation only in the surface two or three inches.

	OrchardgrassAlfalfa P205 (Bray P2) Exchangeable K										BromegrassAlfalfa P ₂ O ₅ (Bray P ₂) Exchangeab										
	P2O5 (Bray P2) Exchangeable K Lbs./A Lbs./A Treatments* Treatments											P	20 ₅ (Bray Lbs.	$P_2)$			Excha	ngeab		
		Tre	atmen	ts *			Tr	eatme	nts				Tr	eatme	nts			Tr	eatme	nts	
Depths Inches 0-1 1-2 2-3 3-4 -4-5 5-6 6-7 Avg.	1 215 92 37 41 41 41 32 71	2 188 68 41 50 46 41 68	3 183 60 41 55 50 45 70	4 215 92 50 50 41 79	avg. 200 78 40 47 48 49 42 72	$ \frac{1}{280} 168 100 88 76 64 68 121 $	2 228 132 764 566 564 97	$ \frac{3}{252} 140 60 48 64 64 64 101 $	4 192 140 756 56 56 90	avg. 238 145 82 67 59 59 64 102		$\frac{1}{206}$ 746 550 551 74	2 202 764 546 541 75	3 4 224 5502 6502 5603 8 5603 8	4 26 56 56 56 82 82	avg. 217 64 551 54 55 48 79	$ \begin{array}{r} 1 \\ 316 \\ 192 \\ 100 \\ 80 \\ 64 \\ 68 \\ 84 \\ 129 \\ \end{array} $	2 352 172 968 560 600 123	3 384 168 100 76 64 72 56 131	4 228 100 72 68 60 76 140	<u>avg.</u> 357 190 99 74 63 65 69 131
			Fescu	eLe	spedeza	(Ful	1 Tre	atmen	t)					Fesc	ueLe	espedeza	(Half	Tre	atmen	t)	
0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg.	$133 \\ 142 \\ 101 \\ 92 \\ 87 \\ 92 \\ 46 \\ 106$	178 124 105 110 119 115 <u>82</u> 119	183 137 96 87 96 96 82 111	151 110 96 101 119 <u>73</u> 106	$174 \\ 128 \\ 100 \\ 96 \\ 101 \\ 106 \\ 71 \\ 111$	568 500 396 200 176 <u>160</u> 334	556 508 400 292 292 <u>192</u> 355	556 456 340 304 184 168 <u>176</u> 312	476 372 244 172 112 112 <u>104</u> 227	539 459 289 197 164 <u>158</u> 307		170 96 46 46 41 37 69	202 115 50 55 60 50 83	192 119 55 46 37 <u>37</u> 79	183 87 41 37 40 32 62	187 104 52 48 46 46 <u>39</u> 75	540 568 480 372 324 220 160 381	504 500 400 336 192 144 330	536 392 340 192 144 <u>132</u> 282	460 376 308 184 140 104 <u>92</u> 238	510 459 382 283 223 165 <u>132</u> 306
Initia	1 Soi	l Tes	t Val	ues f	or the	area:	48	Lbs P	205/A	(P2)	, 168	Lbs	K/A								

Table 3 Grass-	-Legume Mixtures	Topdressed with N P I	K. Final P205, and Exchangeable K
	Soil Test Value	as by One Inch Depths,	Baxter Silt LoamPurdy, Mo.(1970)

*See Table 2 for description of treatments.

Magnesium was at its initial level and the pHs and calcium values were below initial values at the end of the studies. A topdressing of dolomitic limestone would be indicated for both sets of grass-alfalfa plots (Appendix Tables 1 and 2).

Fescue-Lespedeza Mixtures

The P_2O_5 levels at all depths for the full treatment plots were above the initial value with high values in the surface layers (Table 3). Exchangeable potassium was very high in the upper three layers with treatment 4 having the lower values due to greater forage removal. Treatment 4 showed lower than initial K values at the fifth depth and below. The other treatments did not extract K below the initial level at any depth. It is apparent that the corrective application for full treatment plus the annual topdressings had supplied P and K in excess of removal by the forage. The data from the full treatment plots show the distribution of P_2O_5 and exchangeable K in the plow layer when these nutrients were applied in excess of crop removal.

The P_2O_5 levels for the half treatment plots were at the initial value at the third depth, with lower values at the fourth depth and below. Treatment 4 had lower values due to the greater forage removal. The exchangeable K values for this group of plots were near those of the full treatment plots because the initial application of K differed by only 100 pounds K_2O/A and forage removal was nearly the same from both sets of plots. The data for these fescue-lespedeza plots show the distribution of P_2O_5 in the plow layer when it was topdressed at about the rate equal to crop removal. It is apparent that fescue and lespedeza roots extract soil P to low values below the surface 2 or 3 inches while drawing on the annually applied P.

The P and K contents of the fescue on the plots at the time of final soil sampling were: 0.42 percent P and 3.31 percent K for the full treatment plots and 0.36 percent P and 3.26 percent K for the half treatment plots. These values are well above the critical ones for fescue and neither nutrient would be considered a factor limiting forage yields (9).

The pHs, calcium, and magnesium were near initial values in the full treatment plots and below initial levels in the half treatment plots at the termination of the study.

Study II

TOPDRESSING ORCHARDGRASS-ALFALFA WITH PHOSPHORUS AND POTASSIUM

Procedure

The last four years' data of an eight-year P and K topdressing study with orchardgrass alfalfa is reported. The first four years' data were given by Kroth et al. (7).

Potomac orchardgrass and Buffalo alfalfa were seeded on limed seedbeds of Baxter and Gerald silt loams at the Southwest Center, Mount Vernon, Mo., August, 1961. A 16+64+30 starter fertilizer was banded with a grain drill before making the planting with a brillion seeder. Four tons per acre of calcitic limestone had been mixed with the plow layer when the seedbed was prepared.

An additional 2 tons per acre of dolomitic limestone were topdressed on the Baxter plots and 3 tons per acre were topdressed on the Gerald plots in 1963. Seven annual topdressing treatments were used with three replications in a randomized block design. The P_2O_5 of treatment 4 was plowed down as rock phosphate in 1961. The 100 pounds of K_2O in treatment 4 was an annual application.

The soil test values for the plow layer produced by these treatments by 1966 are given in Appendix Tables VI and VIII. The values for P_2O_5 and exchangeable K from the 1966 sampling are included in Table 5.

At the end of this study, October 1969, the soils of all plots were sampled by one inch depth layers to a depth of six inches using the method described above and tested by the same procedures. Final values for P_2O_5 and exchangeable K are given in Table 5 with the complete results given in Appendix Tables V and VII. Treatments and yields for the final four years of the study are given in Table 4.

Results and Discussion

Hay Yields

Hay yields of all treatments on the Gerald plots exceeded those on the Baxter plots. The Gerald plots were nearly level and possibly there was less rainfall runoff from these plots; the Baxter plots were on a 4 percent slope. On the average, the Gerald plots produced 0.6 ton per acre more than the Baxter plots. Yields were affected by the differing amounts of P_2O_5 and K_2O of the treatments. The effect of topdressed K_2O was evaluated by comparing differing rates of K_2O at a uniform rate of 50 pounds P_2O_5 . Topdressed P_2O_5 was compared at a rate of 100 pounds K_2O , a rate that proved to be inadequate for optimum yields. However, treatment 7, 0+50+150, supplied both P_2O_5 and K_2O in adequate amounts. The effects on yields of differing rates of K_2O at an optimum rate of P_2O_5 are shown in Figure 3. The effects of differing rates of P_2O_5 with 100 pounds per acre are shown in Figure 4.

			Baxter	Silt L	oam (4ye	ear- mean	s)	Gerald Silt Loam (4-year means)						
		lst	es Bi	2nd	80	3rd	es.		lst	BR	2nd	%	3rd	%
reatments*	Total	cut	Total	cut	Total	cut	Total	Total 1.85e	cut	Total	cut	Total	cut	Tota
L. 0+50+0	1.46e	.77	52.7	.37	25.3	 .32	22.1	1.85e	.93	50.2	50	27.2	.42	22.6
2. 0+50+50	2.10c	.90	42.9	.65	31.2	•54	25.9	2.71b	1.20	44.2	•75	27.5	.76	28.2
3. 0+50+100	2.41b	1.06	43.8	.70	29.3	.65	26.9	3.10b	1.48	47.2	.83	26.6	.82	26.2
+. 0+480+100	2.220	.96	43.6	.65	29.3	.60	27.1	2.75b	1.22	44.3	.80	29.0	.73	26.7
. 0+25+100	2.250	1.00	44.2	.66	29.2	.60	26.6	2.97b	1.41	47.5	.78	26.1	.79	26.4
6. 0+0+100	1.66d	.80	48.5	.43	25.9	.42		2.27c	1.11	48.9	•54	24.0	.62	27.1
. 0+50+150	2.59a	1.09	42.0	.76	29.4	.74	28.6	3.41a	1.56	45.7	.85	25.0	1.00	29.4

Table 4--Effect of Topdressed Phosphorus and Potassium on Yields of Orchardgrass-Alfalfa on Baxter and Gerald Silt Loams Yields Tons Hay/Acre (1966-1969)

down as rock phosphate in 1961.

						Ba	xter	Sil	t Loa	m					
		P20		ay P2)			le K							
				DS./A								bs./A			
			Tre	eatmer	nts*		· · · · ·				Tre	atmen	ts		
Depth	7	~	7	1	-	6			-	0	7	h	E	c	-
Inches 0-1	311	302	$\frac{2}{247}$	$\frac{4}{284}$	 	$\frac{6}{37}$	284		156	208	$\frac{2}{412}$	376	440	$\frac{0}{512}$	600
1-2	128	124	64	353	41	18	87		84	116	272	316	252	388	456
	55	60	41	344	32	18	60		80	92	144	160	152	280	264
2-3 3-4	37	41	37	105	41	27	32		80	88	104	136	104	180	160
4-5	27 18	32	41	41	32	14	37		80	84	100	100	96	152	124
5-6		<u>32</u> 99	$\frac{27}{76}$	<u>46</u> 196	23	14	<u>32</u> 89		<u>100</u> 97	92	$\frac{100}{189}$	$\frac{100}{198}$	$\frac{96}{223}$	$\frac{132}{274}$	$\frac{116}{287}$
Avg.	90	99	70	190	44	21	09		97	113	109	190	225	274	207
Soil test															
values 1966	94	72	68	156	59	67	117		120	167	233	277	220	277	333
Initial soil	tests	for	the	area	1961 ;	58 :	Lbs.	P205	/A (1	$P_2), 1$	<u>x</u> 204	lbs/	Α.		

Table 5OrchardgrassAlfalfa Topdressed with Phosphorus an	nd Potassium
Final P205 and Exchangeable K Soil Test Values by	y One Inch
Baxter and Gerald Silt Loams (1969)	

	Gerald Silt Loam													
0-1 1-2 2-3 3-4 4-5 5-6 Avg.	293 96 41 18 18 23 82	234 46 23 18 18 18 59	206 50 32 18 18 27 59	247 128 60 32 18 18 84	69 37 23 27 14 <u>18</u> 31	27 18 14 14 14 14 14 17	183 50 32 18 14 <u>18</u> 53	13 7 6 5 6 6 7	2 120 4 80 5 64 5 72	188 96 68 68 80	480 300 144 108 84 <u>84</u> 200	392 204 120 92 80 <u>76</u> 161	540 384 208 124 116 <u>112</u> 247	580 340 168 112 84 84 228
Soil test values 1966 Initial soil	84 test	72 valu	73 es fo	116 r the	38 area	23 1961	47 ; 46	8 lbs. P			167 к 186	167 5 Lbs/	227 'A.	160
*See Table 4	for	discr	iptio	n of	treat	ments								

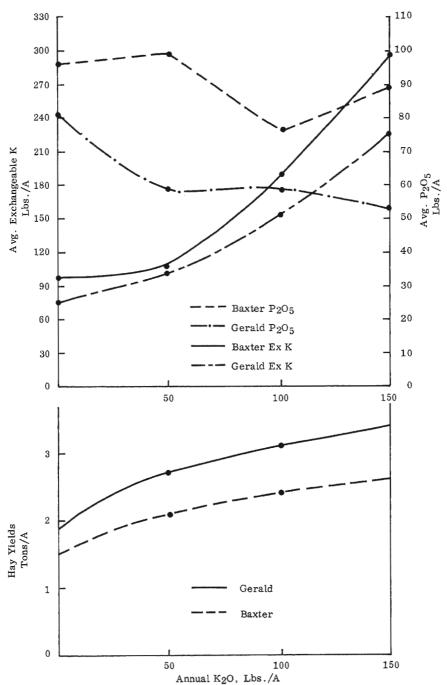
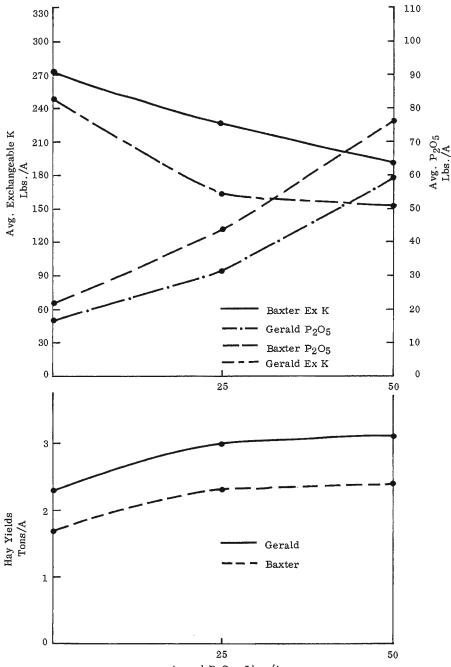



Figure 3: The relationship between hay yields of orchardgrass-alfalfa, average P_2O_5 (P_2) and exchangeable K values, and rate of topdressed K_2O , at a uniform rate of 50 lbs. P_2O_5/A .

Annual P2O5, Lbs./A

Figure 4: The relationship between hay yields of orchardgrass-alfalfa, average soil test P_2O_5 (P₂) and exchangeable K values, and rates of P₂O₅, at a uniform rate of 100 lbs. K₂O/A.

Baxter Silt Loam

The data in Table 4 show that treatment 7, 0+50+150, produced the highest total yield and the yields of all three cuttings were higher than the same cuttings of the other treatments. About 43 percent, 29 percent, and 28 percent of total yield under all treatments were produced by the 1st, 2nd, and 3rd cuttings.

Treatment 3, 0+50+100, produced the second highest yield, the implication being that K was the limiting nutrient. The soil test data (Table 5) show that at the end of the study the average K value for the plow layer for treatment 3 was 100 pounds per acre lower than that for treatment 7.

Treatments 2 (0+50+50) and 5 (0+25+100) produced the third highest yields, treatment 2 for lack of K₂O and treatment 5 for lack of K₂O and P₂O₅. Table 5 shows the soil receiving treatment 2 had a lower average K value than treatment 3 and treatment 5 to have a relatively high average K value but a quite low average P₂O₅ value, indicating that P was the more limiting nutrient in this treatment.

Treatment 4, with 100 pounds of K_2O topdressed annually, produced a lower yield than treatment 3 and the same yield as treatment 5, indicating that P was the limiting nutrient in treatment 4. The rock phosphate, though giving relatively high soil test values with Bray's P_2 extractant, only supplied available P equal to that in 25 pounds of P_2O_5 topdressed as superphosphate.

Treatment 1 (0+50+0), which produced the lowest yield, permitted the soil K to be extracted to very low levels, while treatment 6 (0+0+100) produced the next lowest yield and caused the extraction of P_2O_5 to low levels. The ranking of the yields of these two treatments indicate that both P and K limited yields on the Baxter soil but K to the greater extent.

Gerald Silt Loam

The highest yield on this soil, 3.41 tons per acre (Table 4), was also produced by treatment 7 (0+50+150). The three cuttings were somewhat larger than those on the Baxter plots but had the same percentage ranges. The total yield was 0.82 tons per acre higher than the yield on the Baxter soil, which, consequently, extracted the P and K to lower levels in the Gerald plots than in the Baxter plots (Table 5). Since these yields are near those found by Meyers (13) it is believed that they are close to the highest average yields that could be expected from the available moisture. The next highest yield was produced by treatments 2 (0+50+50), 3 (0+50+100), 4 (0+480+100), and 5 (0+25+100). Treatments 2 and 3 would be limiting in K₂O and treatment 5, in P₂O₅ and K₂O when compared with treatment 7. The rock phosphate of treatment 4 supplied P at the same rate as treatment 5, as was observed on the Baxter plots.

Treatments 1 (0+50+0) and 6 (0+0+100) ranked the same on the Gerald soil as the Baxter soil, extracting the exchangeable K in the case of treatment 1 and the P_sO₅ in the case of treatment 6 to very low levels. This ranking indicates that the Gerald soil also supplied P and K to the plants at about the same levels as the Baxter soil.

Soil Test Values

The P_2O_5 and exchangeable K soil test values by one inch depths given in Table 5 show the same pattern of P₂O₅ and K removal as given in Table 3. Since the treatments were applied over an eight-year period the values obtained at the end of the study at the various depths, except for treatment 4, could be reasonably stable ones produced by the interaction of treatment, fixation, and plant removal. Comparison of the average values of the six depths for each treatment (Table 5) with the plow layer values produced by each treatment in 1966 and the initial values for the experimental areas showed some interesting relationships. A nutrient not in high demand due to absence of another nutrient remained at about the same level while the deficient nutrient was withdrawn to a level much below the original value. The P_2O_5 of treatment 1 (0+50-0), for instance, remained at a fairly constant value after 1966, but exchangeable K was lowered during this period. Exchangeable K for treatment 6 (0+0+100) was maintained at a reasonably constant value in both soils while P2O5 was reduced to quite low levels. Treatment 7 (0+50+150) apparently supplied both P_2O_5 and K_2O at rates needed for crop growth and fixation. Treatment 3 (0+50+100) was an example of a treatment somewhat low in K₂O, thereby lowering the final average exchangeable K value below the initial value, but not to the degree of treatment 1.

Baxter Silt Loam

Soil test P_2O_5 values, with the exception of treatment 4, were equal to or below the initial value at the lower four depths of all treatments with treatment 5 showing removal of P_2O_5 from the lower five and treatment 6 from all depths (Table 5). The average P_2O_5 values over all depths for treatments 1, 2, 3, and 7 were above the initial value due to the high value in the surface inch. Although treatment 4 showed considerable rock phosphate remaining in the plow layer, it did not appear to greatly affect crop yields since the yield produced by treatment 4 was no better than that produced by treatment 5 (0+25+100) and less than treatment 3 (0+50+100). It may be that the pHs of 6.5 could slow the rate of solution of the rock phosphate of treatment 4 (Appendix Table V). On the other hand, the 25 pounds of P_2O_5 in treatment 5 appeared to be efficiently used. The average value and array of P_2O_5 values of treatment 7 are interpreted to be the conditions necessary to produce optimum yields on Baxter silt loam.

The exchangeable K values show K removal below the initial value at all depths for treatment 1, at the second depth and below for treatment 2, and at the third depth and below for treatment 6 and 7. The high average K value, and the high K values for the first and second inches for treatment 7 may be the conditions necessary to produce optimum yields on Baxter silt loam. However, Figure 3 shows a rapid increase in soil test exchangeable K between treatments 3 and 7, indicating the possibility of an efficient application rate of K_2O lower than 150 pounds K_2O per acre.

Gerald Silt Loam

Soil test P_2O_5 values for the Gerald plots were lower than the corresponding values for the Baxter plots, reflecting the greater P removal in the higher yields of the Gerald plots. It may be that the lower pHs of the Gerald plots at the third depth and below increased the solubility of P_2O_5 so that the plants were able to extract P to a lower level than in the Baxter soil. At these depths the pHs is nearly 1 point lower than that of the Baxter plots and the P_2O_5 values from the P_1 and P_2 extractants are nearly equal (Appendix, Tables V, VIII). The lower pHs could explain the greater use of rock phosphate for treatment 4 on the Gerald plots, rather than more available moisture as postulated above. The data from treatment 7 (0+50+150) in Table 5 show that the top yield of 3.41 tons per acre was produced with low P_2O_5 soil test values at the second depth and below, indicating that the 50 pounds of P_2O_5 topdressed annually was effectively adsorbed and used by the plants.

The lower soil test K values on the Gerald plots also reflect the higher yields of these plots over yields of the similarly treated Baxter plots. The same decrease in soil test value with depth is noted, showing that K was extracted under some treatments to near the levels produced by orchardgrass-alfalfa on the Baxter soil of the Purdy plots (Table 3).

The data for both soils show that optimum yields of orchardgrass-alfalfa produced by topdressing K_2O result in high exchangeable K values in the upper three inches and especially in the surface inch. Figure 3 shows a rapid rise in average exchangeable K due to application of 150 pounds of K_2O in comparison with 100 pounds of K_2O while producing only 0.3 tons per acre more yield. According to Figure 3, an application of 130 pounds of K_2O on the Gerald soil would have produced 0.1 tons per acre and reduced average exchangeable K from 228 to 195 pounds per acre. The proportionate decrease in exchangeable K would have been greater on the Baxter soil, a reduction from 287 to 246 pounds per acre.

The high exchangeable K values in the surface two or three inches could result in excessive uptake of K at the expense of Mg in periods of rapid growth, resulting in forage low in Mg. Further studies are necessary to evaluate this relationship and to determine what K levels in the upper two or three inches would be undesirable.

Study III

TOPDRESSING ORCHARDGRASS-ALFALFA WITH NITROGEN, PHOSPHORUS AND POTASSIUM

Procedure

Two studies to evaluate the effect of combining N with topdressed P_2O_5 and K_2O on yields of orchardgrass-alfalfa were started at the Southwest Center on plots where P_2O_5 and K_2O topdressing studies on timothy-red clover, begun in 1961, were terminated in 1964 and 1965 on Baxter and Gerald silt loams respectively. These plots were replanted to orchardgrass-alfalfa in the fall of the year following termination of the timothy-red clover studies, i.e. 1965 and 1966. The original timothy-red clover stands had been established at the same time, in the same way, received the same limestone applications, and the same seven treatments as the orchardgrass-alfalfa studies reported above. By reseeding the timothy-red clover plots to orchardgrass-alfalfa the effect of 40 pounds of nitrogen per acre added to the P_2O_5 and K_2O treatments could be estimated by comparison with the yields in the studies reported previously (Table 4).

To give a further check on the effects of N, N was not added to treatment 2. For these studies the timothy-red clover plots were plowed, the seed-bed was conventionally prepared and Potomac orchardgrass and Vernal alfalfa were seeded without additional lime or fertilizer. The plots were restaked so that the same topdressed P_2O_5 and K_2O treatments were applied to the plots receiving them in the timothy-red clover studies. The timothy-red clover plots on the Baxter soil had three years while those on the Gerald soil had received four years of treatments before the orchardgrass-alfalfa plots were established. Studies on both sets of these orchardgrass-alfalfa plots were terminated in 1970, after a total of eight years of treatment had been made to all plots. The initial soil test values and those of the plow layer for all treatments of both soils in 1968 are given in Appendix Tables X and XII. At the end of the study the soils of all plots were sampled and tested by 1 inch depths to a depth of six inches by the methods described above. Results of tests for P_2O_5 and exchangeable K are given in Table 7 and results of all tests are given in the Appendix (Tables IX and XI). Treatments and yield data are given in Table 6.

Results and Discussion

Hay Yields

Comparison of yield data for the same treatments in Tables 4 and 6 shows no effect on total yield due to 40 pounds of N. The N appeared to increase the first cutting yields from an average of 46 percent to 64 percent of total yields on both soils, the corresponding decreases being shared by the second and third cuttings, each averaging about 18 percent as compared with 27 percent for each of the cuttings where no N was applied. However, the first cutting of treatment 2

Table 6Effect of Topdres	sed Nitrogen, Phosphorus	, and Potassium on	Yields of Orchardgrass-	Alfalfa (1965-1970)

Baxter Silt Loam-- (5-year mean)

<u>Treatments*</u> 1. 40+50+0 2. 0+50+50 3. 40+50+100 4. 40+480+100 5. 40+25+100 6. 40+0+100 7. 40+50+150	<u>Total</u> 1.76e 2.19cd 2.47b 2.19cd 2.35bc 2.07d 2.76a	lst cut 1.20 1.14 1.64 1.40 1.50 1.32 1.71	% Total 68.9 52.1 66.0 63.8 63.7 62.0 61.7	2nd cut c.22 0.42 0.34 0.31 0.33 0.33 0.43	% <u>Total</u> 12.6 19.2 13.7 14.1 14.2 15.4 15.4	3rd <u>cut</u> 0.32 0.63 0.50 0.48 0.52 0.48 0.63	# Total 18.5 28.8 20.3 22.1 22.2 22.6 22.9	<u>Total</u> 1.93e 2.44b 2.83a 2.69ab 2.47b 1.96b 2.79a	lst cut 1.32 1.72 1.62 1.60 1.25 1.78	% Total 68.0 54.1 60.9 60.0 64.7 63.7 63.7	2nd cut 0.29 0.55 0.51 0.49 0.42 0.34 0.50	% <u>Total</u> 15.0 22.5 18.0 18.4 16.8 17.3 17.8	3rd cut 0.33 0.57 0.60 0.58 0.46 0.37 0.52	# Tota1 17.0 23.5 21.1 21.6 18.5 19.0 18.5
* Treatments to as rock phos			spring,	½ K₂ of	treatm	ents 3,4,	5,6 and	7 in April, ż	in June	. The	P205 of t	reatmen	t 4 plowe	d down

						Ba	xter	S111	t Loa	m					
		P20		ay P	2)			Exchangeable K							
				s./A				Lbs./A							
			Trea	tment	<u>s*</u>			Treatments							
Depth			_			~					_		_	-	
Inches	1	2	3	4 156	5	_6	-700		1	$\frac{2}{208}$	3	4	5	6	7
0-1	247	302	224	150	96	37	188		108		332	352	364	476	456
1-2	114	96	64	215	50	32	59		88	152	236	268	248	344	352
2-3 3-4 4-5	50 46	73	50	247	37 32	27	46		88	120	200	168	156	208	228
3-4	46	59 50	50 46	243	32	32	46		92	112	140	136	132	152	128
4-5	46	50		224	37	32	46		80	108	128	116	128	128	116
5-6	<u> </u>	<u>50</u> 105	$\frac{41}{79}$	<u>284</u> 228	<u>- 32</u> - 47	$\frac{27}{31}$	46		84	$\frac{116}{176}$	124	124	$\frac{116}{101}$	128	<u>116</u> 233
Avg.	90	105	.79	220	4.7	21	72		90	136	193	194	191	239	233
Soil Test															
Values 1968	75	100	76	234	56	35	79		113	187	228	227	235	230	283
Values 1900	15	100	10	2)4	00	25	19		11)	101	220	221	200	200	209
Initial soil	test	valu	es fo	r the	area	1961	; 66	Lbs,	P20	5/A (P2),	247 I	bs. K	/A.	

Table 7Orchardgrass-Alfalfa To	pdressed with Nitrogen, Phosphorus
and Potassium. Final PoO5 an	d Exchangeable K Soil Test Values
by One Inch Depths, Baxt	er and Gerald Silt Loams (1970)

						Gei	ald St	llt Loa	m					
0-1 1-2 2-3 3-4 4-5 5-6 Avg.	256 69 46 41 50 <u>37</u> 83	174 64 46 37 41 32 66	188 55 41 37 41 <u>37</u> 67	82 82 114 110 160 <u>110</u> 110	59 23 27 27 27 27 30	32 23 23 23 18 18 23	224 69 41 37 55 46 79	108 80 84 80 80 84 86	132 92 80 92 92 80 95	268 156 108 96 <u>96</u> 137	296 164 92 92 92 138	332 172 96 84 <u>88</u> 144	456 268 148 96 96 92 193	476 284 148 112 104 <u>96</u> 203
Soil Test Values 1968	82	76	78	133	41	42	80	80	98	197	170	172	178	228
Initial soil	test	valu	es fo	r the	area	1961	; 44 I.t	$ps. P_2C$	₅ /A (P ₂) 1	.37 Lb	s. K/	Ά.	
*See Table 6	for	descr	iptio	n of t	reatm	ents,								

(0+50+50) was increased from 43 percent to 52 percent, on Baxter soil, and from 44 percent to 54 percent, on Gerald soil (Tables 4 and 6), indicating part of the first cutting yield increases would have been due to some factor other than N.

There would appear to be no advantage to the use of N on the orchardgrass-alfalfa mixture in this study except possibly in years when a good supply of spring moisture would be followed by a prolonged drouth in June, July, and August. In some cases the increased yield of the first cutting would be an advantage where the later summer growth could be grazed, thereby eliminating costs of harvesting 0.5 ton per acre or less.

Yields on the Gerald soil (Table 6) were slightly higher than the Baxter soil for all treatments except treatments 6 and 7. The lower yields of these Gerald plots may be due to lower exchangeable K values than on the Baxter plots; the higher percentage of grass in the forage removed may have reduced the exchangeable K to a point where a K shortage limited yield. Treatment 7 (40+50+150) (Table 6) produced the highest yield on both soils although on the Gerald plots the yields of treatments 3 and 4 were not significantly different from that of treatment 7. As in the previous two studies the ranking of the yields of the various treatments were related to the levels of P₂O₅ and K₂O applied, which in turn affected the soil test levels of the plots. It was apparent that the available P₂O₅ supplied by the rock phosphate of treatment 4 was equal to that supplied by treatment 5.

Soil Test Values

It is assumed that the phosphorus and potassium levels in the plow layer under the timothy-red clover plants had resulted in an array of values as illustrated by the data from the Purdy plots (Table 3). It is also assumed that plowing and preparation for the new seed bed on these plots had remixed the soil so that the pHs, phosphorus, and potassium levels were uniform throughout the plow layer. At the end of the study (Fall 1970) fertilizer application, plant removal, and soil fixation produced the array of P2O5 and exchangeable K values by one inch depths as given in Table 7. The averages of these values compared with the values obtained by sampling the plow layer in 1968 indicate that by 1968 each treatment, with the exception of the rock phosphate of treatment 4, had developed a set of values in the plow layer which had some degree of stability. By 1970 eight annual fertilizer applications had been made to all plots so that plots receiving treatments identical to those of the previous study had received equal quantities of P_2O_5 and K_2O . A comparison of the data in Tables 5 and 7 shows similar relationships between soil test values of comparable treatments and depths.

Figures 3 and 5 show marked similarity, except for the lower average exchangeable K value of Figure 5, indicating greater K removal of the orchardgrass in the first cutting. Thus, an increased rate of K_2O is possibly needed to produce optimum yields when N is applied to this forage mixture.

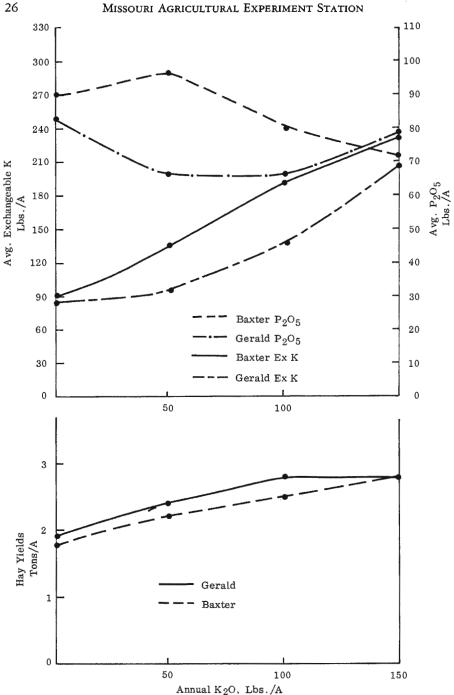


Figure 5: The relationship between hay yields of orchardgrass-alfalfa, average soil test P2O5 (P2) and exchangeable K values, and rates of topdressed K2O, at a uniform rate of 50 lbs. P_2O_5 and 40 lbs. N/A.

Figures 4 and 6 also indicate yields were reduced where N was applied and K was reduced to more limiting levels by the orchardgrass. Average terminal soil test values of both soils for treatments 3, 5, and 6 were nearly identical, indicating similar relationships between application, plant removal, and soil fixation of P_2O_5 and K_2O in both groups of studies.

The original timothy-red clover plots were topdressed with Mg limestone in 1963: 3 tons per acre on the Gerald plots and 2 tons per acre on the Baxter plots. When these plots were plowed and reseeded to orchardgrass-alfalfa mixture, the limestone should have been uniformly mixed throughout the plow layer. Tables X and XII in the Appendix show that by 1968 the pHs was an average of 6.5 for the Baxter soil and 5.2 for the Gerald soil. By 1970 the average pHs of all treatments and all depths for the Baxter soil was 6.1 and 5.2 for the Gerald soil (Appendix Tables IX and XI). Assuming a uniform distribution of limestone in the plow layer of the plots of both soils when planted to orchardgrass-alfalfa, the topdressed nitrogen produced a lower pHs in the upper two inches of both soils by 1970 (Appendix Tables IX and XI).

A summary of the effects of pHs on P_2O_5 soil test values is given in Table 8. Data from Appendix Tables V and VII show the relationships between the average pHs and the average P_2O_5 levels in the plow layer of the Baxter and Gerald soils. The lower pHs resulted in lower P_2O_5 values, indicating the P_2O_5 was more soluble at the lower pHs values and had been removed in greater amounts from the Gerald plots by the plants. However, the Mg limestone topdressed in 1963 maintained a high pHs in the upper two inches of both soils until 1970, resulting in corresponding higher P_2O_5 values, especially in the surface inches. Appendix Tables IX and XI show the effect of the applied N on the pHs of the surface inch and the resulting average lower P_2O_5 values of both soils. Apparently, the lower pHs due to annual application of 40 pounds N resulted in greater solubility of P_2O_5 of both topdressed superphosphate and the rock phosphate of treatment 4.

These data suggest that large amounts of limestone topdressed on established stands of forage crops could reduce phosphate solubility in the upper two inches of the soil. Also, nitrogen applied to forage crops topdressed with rock phosphate could increase the availability of the P_2O_5 of the rock phosphate, making this carrier an economical source of phosphate for pasture crops.

Tables 5, 7 Appendix	Avg. Th	$\frac{\text{rages of Si}}{\text{reatments}}$ $\frac{5, 6, 7}{P_2O_5}$		hs atment 4 P205	Avg. 7	Surface In Freatments 5, 6, 7 P ₂ O ₅		Treatment 4 P205		
	pHs	Lbs./A	pHe	Lbs./A	pHs	Lbs./A	pHs	Lbs./A		
Baxter	6.5	65	6.5	196	6.7	195	6.8	284		
Gerald	5.6	48	5.5	84	6.3	156	6.3	247		
Tables 9, 11 Appendix										
Baxter	6.1	64	6.1	228	5.5	158	5.5	156		
Gerald	5.2	56	5.3	110	5.0	152	5.1	82		

Table 8--Effect of pHs on P₂O₅ Soil Test Values (Bray P₂) Baxter and Gerald Silt Loams

Study IV

TOPDRESSING FESCUE-LESPEDEZA WITH NITROGEN, PHOSPHORUS AND POTASSIUM

Procedure

Studies with Kentucky 31 fescue and Summit lespedeza topdressed with P₂O₅ and K₂O were started at the Southwest Center in 1961. The same seeding conditions and seven combinations of P2O5 and K2O treatments were used as with the orchardgrass-alfalfa studies reported above. Yields for the first five years, reported by Kroth, et al. (10) were low with the fescue always being a light green color. Beginning in 1967, 30 pounds of N were topdressed to all plots in March in addition to the regular P2O5 and K2O treatments. Plots were harvested with the modified flail type forage harvester, alternate rows of flails being replaced with shorter ones to simulate grazing and avoid completely defoliating the lespedeza. The first harvest was made when the fescue was in the boot stage and data are reported as two harvests, before and after July 1, even though rainfall in some years permitted a June or August harvest in addition to those in May and November. Treatments, total yields, yields by harvests and their percentages of total yields, are given in Table 9. At the termination of the studies in 1969 plots were sampled and tested by one inch increments to a depth of six inches by the methods described above. Results of the tests for P2O5 and exchangeable K are given in Table 10 and the results of all tests are given in Appendix Tables XIII and XV. Initial soil test values for the areas in 1961, and soil test results due to treatments by 1966 are given in Appendix Table XIV and XVI.

Results and Discussion

Hay Yields

The addition of 30 pounds of nitrogen per acre to plots receiving P_2O_5 and K_2O applications (treatments 2, 3, 4, 5, 7) produced an average of 1.80 tons per acre on the Baxter and 1.86 tons per acre on the Gerald soils. This was an increase of 0.42 tons per acre on the Baxter plots and 0.81 ton per acre on the Gerald plots over the original study when only P_2O_5 and K_2O were applied to the plots (Kroth *et al.* (9)). The average percentages of the total yield produced by the first cuttings of the five treatments compared were 58.3 percent and 56.3 percent for the Baxter and Gerald plots, respectively. The average second cutting yield for the same five treatments on the Baxter soil was 0.75 ton per acre, and for the Gerald soil, 0.78 ton per acre; both second cuttings consisted of about three-fourths lespedeza. The percentages compare favorably with 59.9 percent for the 30 pounds of nitrogen per acre rate reported for the fescue-lespedeza study on the Purdy plots which produced a total of 1.81 tons per acre (half treatment) (Table 2). The yield data of these studies support the Purdy fescue-lespedeza results which indicated the application of 30 to 40 pounds nitrogen per acre to a

fescue-lespedeza mixture would increase forage yields without injuring the stand of lespedeza.

Appendix Table XIV shows the Baxter plow layer had, in 1966, high exchangeable K values in all plots and high P_2O_5 values (Bray P_2) for plots other than those getting treatments 5 and 6. Yield data (Table 9) show that for the other five treatments there were no significant differences in yield, indicating that for treatments 5 and 6, P was the limiting nutrient. The yield from treatment 4, however, was not significantly greater than that from treatment 5, giving evidence that the rock phosphate was supplying available P at a rate equivalent to an application of about 25 pounds P_2O_5 annually.

In 1966, the Gerald plots, in contrast to the Baxter plots (Appendix Table XVI), had lower exchangeable K values where plots had received treatments 5 and 6. The data (Table 9) show that treatments 1, 2, 4, and 6 did not produce optimum yields while the yield of treatment 5 was equal to those of treatments 3 and 7. The high yield of treatment 5 gave further evidence that a topdressing of 25 pounds of P_2O_5 was efficiently used by the plants.

Soil Test Values

The data of Table 10 show the same pattern of nutrient removal by fescue-lespedeza as for orchardgrass-alfalfa. P_2O_5 and exchangeable K were extracted to quite low levels in the lower three depths, in some cases without a reduction in yield. The actual values at the end of the studies in 1969 were related to the initial level of a nutrient, rates of application, and forage yields.

Baxter Silt Loam

The site for the study on Baxter silt loam had been limed and some P_2O_5 had been applied prior to establishment of the fescue-lespedeza in 1961. The initial P_2O_5 and exchangeable K levels were 63 and 230 pounds per acre respectively. The exchangeable K was such that only treatment 1 (30+50+0) showed a slight yield reduction due to lack of K. In this set of plots, the average exchangeable K value was 105 pounds per acre with values below 84 pounds in the lower three depths. On the other hand, a high yield of 1.86 tons per acre produced by treatment 2 (30+50+50) had an average exchangeable K value 173 pounds per acre with values ranging below 124 pounds in the lower three depths. Other treatments had very high exchangeable K values of over 300 pounds per acre, undoubtedly excessive for a soil having only 9.0 Me per 100 gm. cation exchange capacity.

The lower yields of treatments 5 and 6 were due to lack of phosphorus. Treatment 6(30+0+100) had an average P_2O_5 value of 31 pounds P_2O_5 per acre. Treatment 5 (30+24+100) would have had an average value somewhat higher, due to the 25 pounds P_2O_5 applied in this treatment, but the P_2O_5 would have been at a limiting value. The yield and soil test data for the Baxter soil indicate that the average value of 110 pounds P_2O_5 per acre of treatment 2 could be in excess of crop needs.

		on y				(1966-1969)				
			Yiel	ds Tons H	ay/Acre (3-	-year Means)			-	
		Baxte	r Silt 1	Loam			Geral	d Silt L	oam	
<u>Treatments*</u> 1. 30+50+0 2. 30+50+50 3. 30+50+100 4. 30+480+100 5. 30+25+100 6. 30+0+100 7. 30+50+150	<u>Total</u> 1.71abc 1.86ab 1.91a 1.79ab 1.68bc 1.57c 1.76abc	lst cut 1.06 1.07 1.11 1.13 0.96 0.95 0.98	% 57.6 58.3 62.9 57.3 60.4 55.5	2nd <u>cut</u> 0.65 0.79 0.79 0.67 0.72 0.62 0.79	% <u>Total</u> 38.0 42.4 41.7 37.1 42.7 39.6 44.5	<u>Total</u> 1.35e 1.98a 1.77bc 1.98a 1.71c. 1.88ab 1.47d 1.95ab	lst cut 0.89 1.04 1.12 1.02 1.11 0.89 1.11	% Total 66.8 58.9 55.7 59.8 59.0 60.5 57.2	2nd cut 0.45 0.73 0.86 0.69 0.77 0.58 0.83	% Total 33.2 41.1 43.3 40.2 41.0 39.5 42.8
* Treatments to June. The Pa	opdressed : 05 of trea	in the atment	spring, 4 plowed	½ K₂O of down in	treatments 1961.	3,4,5,6,and	17 app	lied in .	April, ½	in

Table 9--Effect of Topdressed Nitrogen, Phosphorus and Potassium on Yields of Fescue-Lespedeza (1966-1969)

RESEARCH BULLETIN 1005

31

The 2 tons per acre of Mg limestone topdressed on the Baxter plots in 1963 maintained high pHs values both for the surface inch and the plowlayer, each being 6.5 at the end of the study (Appendix XIII). It may be that the high average P_2O_5 value of treatment 4 is related to this high pHs.

Gerald Silt Loam

The Gerald plots, in contrast to the Baxter plots, had low initial P_2O_5 and exchangeable K levels and yields were related to application of both nutrients (Tables 9 and 10). Treatments 3 (30+50+100), 5 (30+25+100), and 7 (30+50+150) all produced statistically the same yield, indicating that treatment 5 supplied adequate P_2O_5 and K_2O to produce optimum yields on this soil. The average exchangeable K values for treatments 3 (213) and 5 (259) may be the levels necessary to produce optimum yields; however, treatment 2 (30+50+50) produced a yield only 0.11 ton per acre less than treatment 3 and had an average exchangeable K value lower by 100 pounds per acre.

The average P_2O_5 value for treatment 5 (33 pounds P_2O_5 per acre) is near the initial value of 30 pounds P_2O_5 per acre, indicating that a topdressing of P_2O_5 can be efficiently used. In this case, 25 pounds of P_2O_5 per acre, topdressed annually, produced the top yield without increasing the average plowlayer value, in contrast to the average P_2O_5 values produced by treatment 3 (86 pounds per acre) and treatment 7 (80 pounds per acre).

Three tons per acre of Mg limestone were topdressed on these Gerald plots in 1963. This limestone maintained a pHs of 6.3 and 6.0 in the first and second depths (Table XV Appendix), with an average pHs of 5.5 for the plowlayer. The corresponding pHs values for the Baxter plots are 6.5, 6.5, and 6.5. Allowing for the loss of the 0-1 inch sample of treatment 5 of the Baxter plots, the array of higher P_2O_5 values for the Baxter plots compared with the array of values for the Gerald plots for this treatment may be due to the differences in pHs values of the two soils. A greater availability of phosphorus in the Gerald soil may have resulted, producing the 0.20 ton per acre increase in yield. These results suggest the need for more information on the effect of pHs on the availability of phosphorus to forage crops in the upper two or three inches of soil.

						Ba	xter	Sil	t Loa	m		- <u>) 0]</u>				
P ₂ O ₅ (Bray P ₂) Lbs./A												ngeab ./A.	le K			
Devel			Treat	ments	*						Treat	ments				
Depth Inches 0-1 2-3 3-4 4-5 5-6 Avg.	1 257 170 73 46 41 27 102	$2 \\ 270 \\ 178 \\ 101 \\ 50 \\ 37 \\ 27 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 100$	3 270 211 344 64 41 37 161	4 353 344 247 96 46 243	5* 78 55 41 37 32	6 32 32 27 23 27 31	7 311 224 137 64 41 41 136		1 204 108 84 80 80 76 105	2 204 124 108 115 108 173	3 528 392 600 276 280 264 390	4 504 480 320 268 296 212 347	5* 436 304 284 240 240	6 528 352 324 280 240 384	7 592 508 380 376 332 461	
Soil Test Values 1966	127	130	161	355	97	36	163		215	250	395	418	447	405	507	
Initial soil	Initial soil tests for the area 1961; 63 Lbs. P_2O_5/A (P_2), 230 Lbs. K/A.															
*The 0-1 inch	n samp	le of	' trea	tment	5 lo:	st.										

Table 10Fescue Lespedeza Topdressed with Nitrogen, Phosphorus, and Potassium.	Final
P_2O_5 and Exchangeable K Soil Test Values by One Inch Depths,	
Baxter and Gerald Silt Loams (1970)	

						Ge		ilt Loa	m						
0-1	284	279	234	321	92	27	224	132	288	520	560	548	600	600	
1-2 2-3	133 50	115 60	110 60	353 257	41 18	18 18	110 60	64 60	120 76	272 168	356 240	376 220	460 304	600 384	
3-4	27	32	37	60	14	14	37	52	76	116	156	152	200	336	
3-4 4-5 5-6	14	18	23	27	14	9	23	52 60	64	112	144	132	180	256	
5-6	18	_14	18	23	18	14	23		72	92	144	128	168	216	
Avg.	- 88	-86	80	174	33	-17	80	70	116	213	250	259	319	399	
Soil Test Values 1966	83	63	79	210	43	32	83	108	145	272	305	275	307	368	
Initial soil	tests	for	the a	rea l	961;	30 I	bs. P2	0 ₅ /A (H	P ₂), 1	.40 lb	s.K/	A.			

*See Table 9 for description of treatments.

3

Study V

EFFECT OF PLOWDOWN AND TOPDRESSED APPLICATIONS OF PHOSPHORUS AND POTASSIUM ON YIELDS OF ALFALFA

Studies with alfalfa testing the effect of different rates of plowdown applications of P_2O_5 on hay yields were started on Baxter and Gerald silt loams at the Southwest Center in the fall of 1961. The stand on the Baxter plots remained for eight years or more but the stand on the Gerald plots thinned severely in the winter of 1965-66. Consequently, the study was terminated with the top yields of 3.3 tons per acre being produced on the better treatments as reported by Kroth *et al.* (7).

To check the adequacy of the original treatments, the study was reestablished using results of tests on soil samples taken from the plowlayer in the spring of 1966. The original treatments, the initial soil test values in 1961, and results of the tests on the 1966 samples are given in Appendix Table XVIII. For the new study 4 tons of calcium limestone per acre were added to all plots and the same amounts of plowdown P_2O_5 were applied to the same plots which received the original treatments in 1961. Half of the new treatments was applied to the plot surfaces and disced in. The plots were then plowed and the remaining half was disced into the plowed surface when the seedbed was prepared for the new seeding of Buffalo alfalfa in the fall of 1966. In addition to the plowdown applications, some plots were to get annual topdressings of P_2O_5 and K_2O .

The experimental design was a randomized block with four replications. Treatments, total yields, and yields of four different cuttings and their percentages of total yields are given in Table 11. Yields for 1970 were not included in the report as dry weather did not allow a fourth cutting; however, total yields were only reduced from 0.2 to 0.6 ton per acre by the drouth (Table 1).

At the termination of the study (fall of 1971) the plots were sampled and tested by 1 inch depths to a depth of six inches by the methods reported above. Results of the tests for P_2O_5 and exchangeable K are given in Table 12. Complete test results are given in Appendix Table XVIII.

Results and Discussion

Hay Yields

Data from the original study indicated that potassium could have been a limiting nutrient, although Myers (10) showed that rainfall during the period of that study would have limited hay yields to about 3 tons per acre. Results of this study (Table 11) show optimum yields of 3.5 tons per acre were produced by treatments 5, 6, 7, 8, which included annual topdressings of P_2O_5 and K_2O . Average soil test values for P_2O_5 and exchangeable K (Table 12) are at acceptable levels, or above, on these treatment plots, indicating these nutrients were not further limiting yields. Rainfall data for the period of the study (Table 1) show

			Yields	s of Hay	Tons/Acre	(4-year	means)		
Treatments Plowdown Topdres	Total	lst _cut_	% Total	2nd 	% Total	3rd cut	% Total	4th cut	% Total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 3.60a 30 3.50a 30 3.35a	1.07 1.06 0.68 1.18 1.14 1.23 1.23 1.19 1.13	37.0 36.4 33.8 38.9 34.0 34.2 35.1 35.5 37.7	0.80 0.54 0.80 0.94 1.01 0.96 0.92 0.80	27.7 27.5 26.9 26.4 28.1 28.1 27.4 27.5 26.6	0.59 0.58 0.41 0.57 0.70 0.77 0.71 0.64 0.54	20.4 19.9 20.4 18.8 20.9 21.4 20.4 19.1 18.0	0.43 0.47 0.38 0.48 0.57 0.59 0.60 0.60 0.53	14.9 16.2 18.9 15.8 17.0 16.4 17.1 17.9 17.7

Table 11--Effects of Plowdown and Topdressed Applications of Phosphorus and Potassium on Yields of Alfalfa Gerald Silt Loam (1967-70)

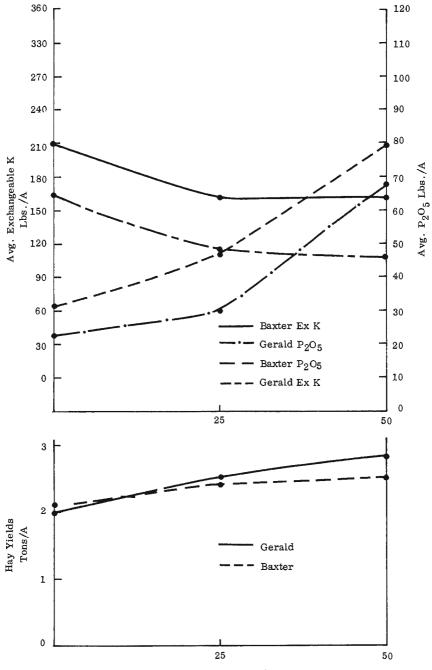
Table 12--Final P205 and Exchangeable K Values by One Inch Depths under Alfalfa Receiving Plowdown and Topdressed Applications of Phosphorus and Potassium (1971)

							1-21	-/									
	<u></u>				Excha Lbs	ngeab ./Acr											
Domth			Tre	eatmer	nts*							Trea	tmen	ts			<u> </u>
Depth <u>Inches</u> 0-1 1-2 2-3 3-4 4-5 5-6 Avg.	$ \begin{array}{c} 1 & 2 \\ 60 & 119 \\ 37 & 69 \\ 32 & 64 \\ 27 & 60 \\ 18 & 41 \\ 18 & 41 \\ 32 & 66 \end{array} $	3 41 23 18 18 18 18 23	4 247 151 133 105 128 124 148	5 234 115 69 50 50 97	6 224 105 82 60 60 99	7 394 279 133 96 55 60 170	8 385- 279 151 110 87 119 189	9 408 321 170 96 73 73 190	1 304 140 88 80 80 56 125	2 268 124 72 84 72 68 115	$ \frac{3}{244} $ 124 88 68 68 72 111	4 212 108 76 76 72 104	5 380 212 108 84 92 80 159	6 368 216 104 80 76 76 153	7 608 352 188 120 96 <u>80</u> 241	8 520 300 180 116 104 92 219	9 672 420 276 168 112 <u>100</u> 291

*See Table 11 for description of treatments.

numerous dry periods during the growing seasons, indicating that soil moisture very probably limited yields to the levels reported.

Soil Test Values


Care was taken to uniformly mix the plowdown P_2O_5 , K_2O , and limestone treatments throughout the plowlayer before seeding the plots in the fall of 1966. The pHs data (Appendix Table XVIII) indicate uniform mixing was obtained: pHs values for all six depths and all treatments were uniform with an average value of 6.4.

The array of P_2O_5 and exchangeable K values at the six different depths for treatments 5, 6, 7, and 8 obtained in the fall of 1971 (Table 12) are of special interest. The data show that alfalfa also extracted nutrients to low levels in the lower portion of the plowlayer. Treatments 5 and 6 have practically equal average P_2O_5 and exchangeable K values of 98 pounds and 156 pounds per acre, respectively; however, plots receiving these two treatments had low P_2O_5 and exchangeable K values at the third depth and below. The average P_2O_5 and exchangeable K values for treatments 7 and 8 are considerably higher than those of treatments 5 and 6 and have low values for these nutrients only in the lower two depths. This data would indicate that where surface P_2O_5 and K_2O applications are high, the alfalfa plants use the surface-applied nutrients and are less likely to extract the nutrients to low levels from the plowlayer.

These results agree with those of Peterson and Smith (11) who recently reported the ease with which alfalfa absorbs K from topdressed applications of K₂O. Although there were no significant differences in the four-year average yields for treatments 5, 6, 7, and 8, the yields in 1971 were 3.02, 3.10, 3.42, and 3.50 tons per acre, respectively. These data indicate that by 1971, treatments 5 and 6 could have been limiting in both P2O5 and K2O since the higher topdressed applications of 7 and 8 sustained appreciably higher yields in 1971. The average soil test values for P2O5 and exchangeable K for treatments 7 and 8 are fairly high, indicating a smaller P2O5 and K2O application rate, possibly 0+60+150, could have been as effective in maintaining yields as Treatment 4, getting only plowdown treatments of P_2O_5 and 0+90+180.K₂O produced yields equal to any treatment the first two years of the study. By 1971 the yield declined to 2.24 tons per acre, reducing the four-year average yield to 3.03 tons per acre. The average soil test values for this treatment are 148 and 104 pounds per acre for P2O5 and exchangeable K, respectively. The low K value indicates it was the limiting factor.

The lower average yield of treatment 9 was caused by the yield of the fourth replication being low three out of the four years. The yields of the other replications of the treatment were equal to those of treatments 7 and 8. The reason for the low yield of the fourth replication of treatment 9 is unknown.

The results of this study indicate that the exchangeable K level during the original study was low and could have resulted in the loss of stand. Also indicated, is that alfalfa plants extract nutrients to low levels in the lower portion of the plowlayer without a reduction in yield if adequate amounts of P_2O_5 and K_2O are topdressed annually.

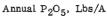


Figure 6: The relationship between yields of orchardgrass-alfalfa, average soil test $P_2O_5(P_2)$ and exchangeable K values, and rates of P_2O_5 , at a uniform rate of 100 lbs. K_2O and 40 lbs. N/A.

Study VI

EFFECT OF LIMESTONE AND TOPDRESSED NITROGEN, PHOS-PHORUS AND POTASSIUM ON THE PRODUCTION OF FESCUE-LESPEDEZA PASTURES, GERALD SILT LOAM

A study to evaluate the effect of limestone and topdressed nitrogen, phosphorus, and potassium, on the establishment and production of fescuelespedeza pastures was started at the Southwest Center in the fall of 1963. The basic objective was to find the minimum amounts of limestone and fertilizer necessary to establish and maintain an effective fescue-lespedeza pasture. The site selected was an unlimed and unfertilized portion of Gerald silt loam, the structure of which proved to be very unstable as hard crusts formed after rains on the new seedbeds making emergence of the grass seedlings difficult. In fact a stand of fescue was not obtained until enough plant residues were produced and incorporated into the soil to produce a relatively porous soil surface.

Procedure

The seed bed for this study was prepared by first applying dolomitic limestone at the rates selected on the appropriate plots and mixing the limestone in the surface three or four inches by discing. Seeding of Kentucky 31 fescue was first attempted in August, 1963, by broadcasting 250 pounds 12-12-12 fertilizer and 18 pounds fescue seed per acre by a brillion seeder. The plots were reseeded by the same method in August 1964. The stand of fescue was poor in the spring of 1965 so additional fescue seed was drilled into the plots using a conventional small grain drill in May and again in October, 1965. Summit lespedeza was overseeded on all plots in the fall of 1965 and again in 1966.

Seven treatments of different nitrogen, phosphorus, and potassium combinations were first topdressed on the limed plots in 1966. The study was terminated in 1970 and results of four of the topdressed combinations on different lime levels are reported in Table 13. Results of the remaining treatments are similar to data for fescue-lespedeza studies reported above and are omitted. In the fall of 1970, soil samples were taken by one inch increments to a depth of seven inches by the sampling method reported above. Results are reported in Table 14 and Appendix Table XIX.

Hay Yields

The data of Table 13 show that 3 tons per acre of magnesium limestone increased yields over no limestone and that 6 tons per acre was no better than 3 tons per acre in affecting yields. The choice of rate and ratio of topdressed nutrients proved to be unfortunate: although nitrogen increased yields (treatments 3 and 4), comparison with treatment 3, Table 9 (Gerald Silt Loam), would indicate that treatment 3 of this study was too low in K_2O to use either the nitrogen or phosphorus efficiently. The results given in Table 9 indicate that for

most efficient results, 100 pounds K_2O per acre would have been a minimum under the conditions of this study where the forage was removed. Under a true pasture situation, 50 pounds K_2O per acre annually would possibly be adequate. Rates and time of application of potassium on permanent pastures which have also been topdressed with limestone is an area that needs further study.

Soil Test Results

The three and six tons of limestone per acre had affected the pHs, exchangeable Ca, and exchangeable Mg, to a depth of seven inches during the seven years since discing the limestone into the surface three or four inches. The data in Appendix Table 19 show that the plots treated with three tons of limestone had an average pHs of 5.4, and those treated with six tons, an average of 5.6, as compared to the untreated soil pHs of 4.1. The percent Ca saturation was low however, 47 percent and 50 percent, respectively, with the percent Mg being 21 percent and 23 percent for the same treatments, giving total percent base saturations of 68 percent and 73 percent. The low percent base saturation of this soil at the beginning of the study, 39 percent, could have persisted for several years, explaining the difficulty in getting the stand of fescue.

Comparison of the P_2O_5 and exchangeable soil test values in Table 14 with those in Table 10 would indicate that K was the most probable limiting element in the study since the forage was removed at each harvest. Further study, preferably under pasture conditions, is necessary to determine the rate of K_2O application needed to supply K in needed amounts but not to an excess.

	Treatment	S		Yield	is T/Acre	9	
	Limestone			lst	%	2nd	%
No	T/A	Topdressing	Total	cut	Total	cut	Total
No 1.	0	25+25+25	1,00	0.74	74.5	cut 0.26	25.5
2.	3	25+25+25	1.40	0.94	67.0	0.46	33.0
3.	3	50+50+50	1.56	1.16	74.2	0.40	25.8
4.	3	0+50+50	1.08	0.47	43.8	0.61	56.2
5.	6	25+25+25	1.19	0.79	76.3	0.40	23.7
6.	6	50+50+50	1.56	1,18	75.9	0.37	24.1
7.	6	100+50+100	2.30	1.84	79.7	0.47	20.3

Table 13--Effect of Limestone and Topdressed Nitrogen, Phosphorus and Potassium on Yields in Tons of Hay/Acre of Fescue-Lespedeza Gerald Silt Loam. (1966-70)

Table 14--Final P205 and Exchangeable K Soil Test Values Under Fescue-Lespedeza Treated with Limestone, Nitrogen, Phosphorus and Potassium Gerald Silt Loam (1970)

		_	Bray Lbs./	A						Excha	Lb	le K <u>s./A</u> tment	Lbs./	Acre	
Depth Inches 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	1 192 55 32 32 27 27 18 55	2 147 50 60 87 142 32 18 77	257 115 50 41 32 27 79	4 96 41 32 119 27 18 80	5 160 60 50 64 32 23 64	6 284 133 50 50 41 37 23 88	7 257 110 60 41 41 32 18 30		1 376 240 192 140 164 140 144 199	2 192 124 76 72 68 68 76 97	304 200 136 112 100 96 112 151	4 232 140 92 80 76 76 80 111	5 292 150 88 92 92 96 128	6 340 220 120 108 92 88 92 151	7 348 176 100 84 80 96 104 141
Initia	al soi	l tes	t valu	es 19	63: 2	2 Lbs	P_2O_5/A	(Pa), 112	2 Lbs	. K/A	, 4.0	pHs.		
2-3 3-4 4-5 5-6 <u>6-7</u> Avg Initia	32 32 27 27 18 55	60 87 142 32 <u>18</u> 77	50 41 32 32 <u>27</u> 79 t valu	32 119 27 <u>18</u> 80 es 19	60 50 64 32 23 64 63: 2	50 50 41 37 23 88 22 Lbs	60 41 32 18 80	(P2	164 140 <u>144</u> 199	76 72 68 68 76 97	136 112 100 96 <u>112</u> 151	92 80 76 76 80 111	88 88 92 92 96 128	120 108 92 88	10

			nic Mat atment			P20		y P ₁) eatment	Lbs./A	cre	<u>P2</u> (ay P ₂) atment	Lbs./	Acre
<u>Depths</u> 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	$ \frac{1}{2.6} \\ 2.1 \\ 1.7 \\ 1.9 \\ 1.7 \\ 1.8 \\ 1.6 \\ 1.9 \\ 1.9 $	$ \frac{2}{2.5} 2.0 1.7 1.9 1.8 1.7 1.7 1.9 $	$\frac{3}{2.5}$ 2.0 1.9 1.7 1.7 1.7 1.6 1.9	4 3.1 1.9 1.7 1.6 1.8 1.8 1.8 <u>1.6</u> 1.9	Avg 2.7 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.6 1.9	1 229 69 23 18 18 14 56	2 174 50 18 23 27 27 18 48	3 215 50 27 23 23 23 55	4 234 73 27 27 27 27 28 63	Avg 213 61 24 25 24 25 24 25 18 56	1 215 92 37 41 41 32 71	2 188 69 41 41 50 46 41 68	3 183 60 41 55 50 46 55 70	4 92 41 50 64 41 79	Avg 200 78 40 47 48 49 42 72
0-1 1-2 2-3 4-5 5-6 6-7 Avg	1100 1100 1600 1900 1900 1700 <u>1800</u> 1586	Ca L 900 1100 1300 1700 2000 1900 2100 1571	bs./Ac 1100 1100 1700 1800 1800 2000 1900 1629	re 800 1100 1500 1800 1900 1700 <u>1900</u> 1529	975 1100 1525 1800 1900 1825 <u>1925</u> 1579	110 90 110 140 140 130 130 121	Mg 1 100 80 90 110 120 120 130 107	Lbs./Ad 110 80 110 110 110 130 <u>120</u> 110	2re 90 70 90 110 110 230 <u>120</u> 117	103 80 100 118 120 153 <u>125</u> 114	280 168 100 88 76 64 <u>68</u> 121	<u>K</u> 1 228 132 64 56 <u>56</u> 97	<u>258./Ac</u> 252 140 80 60 48 64 64 <u>64</u> 101	cre 192 140 72 56 56 52 <u>60</u> 90	238 145 82 67 59 64 102
0-1 2-3 3-4 4-5 5-6 6-7 Avg	4.8.2.4 56 5.5.6 5.1	4.4 4.7 5.13 5.6 5.7 5.0 5.3	pHs 4.4 5.2 5.6 5.8 5.2 5.2	4.3 4.4 5.4 5.6 5.7 5.2	4.51.4.6.6.8 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Ne 4.0 4.0 2.0 1.5 1.5 1.5 2.5		4.0 3.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Acidia 4.5 4.0 2.5 2.0 2.0 1.5 <u>2.0</u> 2.0 2.0	4.1 3.6 2.0 1.8 1.6 <u>1.8</u> 2.5	Cati 7.5 7.5 7.5 7.5 7.5 7.0 6.5 7.1	Lon Exc Me 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.5 6.8	change /100 gr 7.5 7.0 7.5 7.0 7.0 7.5 <u>7.5</u> 7.3	Capaci ms. 7.0 6.5 7.0 7.5 7.0 <u>7.5</u> 7.1	7.3 6.9 6.9 7.1 7.1 7.0 <u>7.3</u> 7.1
	al Soli		Values		C		Ma	v						20	

Table I--Orchardgrass-Alfalfa Topdressed with Nitrogen, Phosphorus and Potassium. Final Soil Test Values by One Inch Depths. Baxter Silt Loam, Purdy, Mo. (1970)

P₂O₅ (Bray P₂) Lbs./A H Me/100 gms. 0.M. Ca CEC Mg Κ 1.5 Lbs./A Lbs./A Lbs./A Me/100 gms. pHs 6.1 2400 45 108 165 8.3 1.6

			andc Matment	atter	%		205 (1 Tre	Bray Pr		/Acre	_1		Bray P ₂ eatment		/Acre
Depths 0-1 2-3 3-4 4-5 5-6 6-7 Avg	$\frac{1}{2.7}$ 2.0 1.7 1.6 1.6 1.6 1.6 1.8	$ \frac{2}{2.9} 1.9 1.6 1.7 1.7 1.7 1.9 1.9 1.9 $	$\frac{3}{2.6}$ 2.0 1.9 1.7 1.8 1.7 <u>1.6</u> 1.9	4 3.1 1.7 1.6 1.6 1.7 1.6 1.7 1.6 1.4 1.8	Avg 2.8 1.9 1.8 1.6 1.7 1.7 1.7 1.9	1 183 64 23 23 23 18 51	2 215 50 23 23 23 23 23 23 23 23 25	3 206 32 32 32 32 32 32 32 52	4 247 237 237 27 27 61	Avg 213 48 25 25 24 25 24 25 25 55	1 206 746 50 55 41 74	2 202 734 506 501 75	344 5024 5024 500 83 603 83	4 234 500 564 564 562 82	Avg 217 64 53 61 54 55 48 79
		Ca I	bs./Ac	re			Mer 1	Lbs./Ac	ere			וא	Lbs./Ac	re	
0-1 1-2 2-3 3-4 4-5 5-6 5-7 Avg	1500 1700 2300 2500 2300 2700 2600 2230	1300 1300 1900 2000 2100 2200 2200 1860	1100 1600 2000 2300 2300 2400 2200 1990	1100 1700 2100 2300 2500 2500 2600 2090	1250 1575 2075 2300 2400 2400 2039	120 110 130 150 120 130 <u>160</u> 131	130 90 110 110 110 120 130 114	100 100 120 140 130 130 <u>120</u> 120	110 110 120 130 130 120 <u>150</u> 124	115 103 120 133 123 125 <u>140</u> 123	316 192 100 80 64 68 <u>84</u> 129	352 172 96 68 56 60 60 123	384 168 100 76 64 72 <u>56</u> 131	376 228 100 72 68 60 <u>76</u> 140	357 190 99 74 63 65 <u>69</u> 131
					T	Cat	lon Exc	hange	Capaci	Lty					

Table II--Bromegrass-Alfalfa Topdressed with Nitrogen, Phosphorus and Potassium. Final Soil Test Values by One Inch Depths. Baxter Silt Loam, Purdy, Mo. (1970)

						Net			Acidit	y	Cat	ion Ex	change	Capac:	ity
			pHs				Me	/100 gi	ns.			Me/	100 gm		
0-1	4.7	4.5	4.2	4.2	4.4	3.5	4.0	5.0	5.5	4.5	8.0	8.0	8.5	9.0	8.4
1-2	4.7	4.6	4.8	4.6	4.7	3.5	3.5	3.5	3.5	3.5	8.5	7.5	8.0	8.5	8.1
2-3	5.4	5.4	5.4	5.5	5.4	2.0	2.0	2.0	2.0	2.0	8.5	7.5	7.5	8.0	7.9
3-4	5.7	5.5	5.7	5.9	5.7	2.0	2.0	1.5	1.5	1.8	9.0	7.5	8.0	8.0	8.1
4-5	5.8	5.7	5.8	6.0	5.8	1.5	1.5	1.5	1.0	1.4	8.0	7.5	8.0	8.0	7.9
5-6	6.0	5.8	5.7	6.1	5.9	1.0	1.5	1.5	1.0	1.3	8.5	7.5	8.0	7.5	7.9
6-7	6.0	5.8	6.0	6.1	6.0	1.0	1.5	$\frac{1.0}{2.3}$	1.0	1.1	$\frac{8.5}{8.4}$	7.5	7.0	$\frac{8.0}{8.1}$	7.8
Avg	5.5	5.3	5.4	5.5	5.4	2.1	2.3	2.3	2.2	2.2	8.4	7.6	7.9	8.1	8.0

Initial Soil Test Values:

P₂O₅ (Bray P₂) Lbs./A 54 О.М. H Me/100 gms. CEC Ca Mg Κ Lbs./A 2700 Me/100 gms. <u>%</u> 1.7 Lbs./A Lbs./A pHs 6.5 126 157 1.0 8.0

						Puru	у, мо.	(191	J]						
	C	rganic	Matte	r %		P205	(Bray	P1) Lt	s./Ac	re	P205	(Bray	P2) Lt	s./Acr	e
		Tre	atment	5			Tre	atment	S			Tre	eatment	5	
Depths 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	$ \frac{1}{4.3} 2.3 1.6 1.8 1.9 2.0 1.6 2.2$	2 4.4 2.3 2.0 1.8 1.9 1.6 2.3	3 4.7 2.1 1.8 1.9 1.8 1.7 <u>1.5</u> 2.2	4 4.4 2.3 2.1 1.8 1.8 1.7 <u>1.6</u> 2.2	Avg 4.5 2.3 1.9 1.8 1.8 1.8 1.6 2.3	$ \begin{array}{r} 1 \\ 211 \\ 119 \\ 78 \\ 73 \\ 64 \\ 73 \\ 32 \\ 93 \\ 93 \end{array} $	2 192 119 87 87 92 87 55 103	3 224 105 64 60 64 69 69 94	4 202 101 73 69 69 82 41 91	Avg 207 111 76 72 72 78 49 95	1 183 142 101 92 87 92 46 106	2 178 124 105 110 119 115 82 119	3 183 137 96 87 96 96 82 111	4 151 100 96 101 119 73 106	Avg 174 128 100 96 101 106 <u>71</u> 111
		Ca T	bs./Ac	re			Mø T	bs./Ac	re			КL	bs./Acr	e	
0-1 1-2 2-3 3-4 4-5 5-6 5-7 Avg	1700 1400 1700 2100 2100 2100 <u>2200</u> 1870	1300 1400 1800 1900 2000 2000 2200 1800	1400 1600 1700 2100 2200 2300 1930	1200 1600 2000 2100 1900 2200 2000 1860	1400 1500 1800 2050 2000 2075 <u>2175</u> 1857	240 170 180 190 150 180 <u>210</u> 189	230 190 190 160 180 180 <u>220</u> 193	270 220 190 210 220 230 <u>280</u> 231	230 220 200 200 170 220 <u>210</u> 207	243 200 190 190 203 230 205	568 500 396 340 200 176 <u>160</u> 334	556 508 400 340 292 200 <u>192</u> 355	556 456 340 304 184 168 <u>176</u> 312	476 372 244 172 112 112 <u>104</u> 227	539 459 345 289 197 164 <u>158</u> 307
			pHs			Ne	eutrali Me/	zable 100 gr	Acidi	ty		on Ex	change /100 gr	Capaci ns.	
0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	5.0 4.7 5.1 5.4 5.5 5.5 5.5 5.2	4.8 5.1 5.2 5.5 5.5 5.5 5.2	4.6 4.8 5.1 5.3 5.4 5.4 5.1 5.1 5.1	4.4 4.8 5.2 5.5 5.5 5.5 5.5 5.2	4.7 4.8 5.1 5.4 5.4 5.4 5.4 5.4 5.2	3.5 3.5 3.0 2.5 2.0 2.0 2.5 2.7	4.0 3.0 2.5 2.5 2.0 <u>2.0</u> 2.7	4.5 3.0 2.0 2.0 2.0 <u>3.0</u> 2.8	5.0 4.0 2.5 2.5 2.0 2.0 3.0	4.3 3.4 3.0 2.4 2.3 2.0 <u>2.4</u> 2.8	9.5 8.5 9.0 7.5 8.0 <u>9.0</u> 8.0	9.0 9.0 8.5 8.5 8.5 8.5 8.5	10.0 8.5 8.5 8.5 8.5 8.5 10.0 8.9	9.5 9.0 9.0 8.0 8.5 8.0 8.8	9.5 8.6 8.8 8.1 8.3 8.9 8.7
Initi	al Soil	Test	Values	:											
	0.M. <u>%</u> 1.8		Bray P _z Lbs./A 41	2)	Ca Lbs 203	/A]	Mg Lbs./A 214	K Lbs 19		р <u>Ня</u> 5.6	Me/100 g 2.6	gms.	Me/100	CEC) gms. .8	

Table III--Fescue Lespedeza (Full Treatment) Topdressed with Nitrogen, Phosphorus and Potassium. Final Soil Test Values by One Inch Depths. Baxter Silt Loam, Purdy, Mo. (1970)

	()rganic Tre	e Matte atment			P205		P ₁) Li eatment	os./Ac:	re	<u>P205</u>	·	P ₂) Lb eatment	s./Acr	<u> </u>
Depths 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	$ \begin{array}{r} 1 \\ 4.9 \\ 2.3 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.4 \\ \end{array} $	$\begin{array}{r} 2 \\ 4.2 \\ 2.1 \\ 1.8 \\ 1.8 \\ 1.9 \\ 2.0 \\ \underline{1.8} \\ 2.2 \end{array}$	$ \frac{3}{4.33} 2.32 2.02 1.8 1.7 2.3 $	4 2.3 2.0 2.0 1.9 1.9 2.3	Avg 4.4 2.3 2.0 1.9 2.0 1.9 1.8 2.3	1 156 92 32 27 27 27 23 56	2 170 96 32 27 32 32 32 32 59	3 178 82 37 32 27 18 18 56	4 183 64 27 18 27 18 52	Avg 172 84 32 26 26 21 56	1 170 96 46 46 41 37 69	2 202 115 50 55 60 50 83	3 192 119 69 55 46 37 	4 183 87 41 41 37 46 32 62	Avg 187 104 52 48 46 46 39 75
		Ca L	bs./Ac	re			Mg I	.bs./Ac	re			K Lł	os./Aci	re	1
0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	1300 1200 1400 1500 1700 1700 1600 1490	1000 1200 1400 1500 1600 1800 1800 1470	1200 1200 1500 1500 1800 1900 1800 1560	800 1200 1700 1700 1800 1800 1800 1540	1075 1200 1500 1550 1725 1800 <u>1750</u> 1514	190 120 90 70 60 60 70 94	170 120 90 60 50 50 60 86	200 120 90 60 60 60 60 60 93	150 110 90 50 50 50 60 80	178 118 90 60 55 55 63 88	540 568 480 372 324 220 160 381	504 500 400 336 236 192 144 330	536 392 340 240 192 144 <u>132</u> 282	460 376 308 184 140 104 <u>92</u> 238	510 459 382 283 223 165 <u>132</u> 306
						Neu			Acidity	T	Cati			Capaci	lty
0-1	5.0	4.7	pHs 4.7	4.5	4.7	3.0	Me/ 4.0	/100 gr 4.0	4.0	3.8	7.5	Me, 8.0	/100 gr 8.5	$\frac{100}{7.0}$	7.8
1-2 2-3 3-4 4-5 5-6 6-7 Avg	4.9 5.3 5.4 5.6 5.3	4.9 5.3 5.6 5.3 5.3	4.9 5.2 5.4 5.6 <u>5.7</u> 5.3	4.8 5.5 5.6 5.6 5.8 5.3	4.9 5.4 5.5 5.6 5.7 5.7 5.7	3.0 2.5 2.0 2.0 2.0 2.0 2.0	3.0 2.5 2.0 2.0 2.0 <u>1.5</u> 2.4	3.0 2.5 2.0 2.0 2.0 2.0 2.0 2.5	3.0 2.5 2.0 2.0 2.0 1.5 2.4	3.0 2.5 2.1 2.0 2.0 1.8 2.5	7.0 7.0 7.0 7.0 7.0 6.5 7.0	7.0 7.0 6.5 7.0 6.5 7.0 6.9	7.0 7.0 6.5 7.0 7.0 7.0 7.1	7.0 7.5 6.5 7.0 6.5 7.0 6.5	7.0 7.1 6.6 6.9 7.0 <u>6.6</u> 7.0
Ini	ltial S	Soil Te	est Val	Lues											

Table IV--Fescue Lespedeza (Half Treatment) Topdressed with Nitrogen, Phosphorus and Potassium. Final Soil Test Values by One Inch Depths. Baxter Silt Loam, Purdy, Mo. (1970)

P₂O₅ (Bray P₂) Lbs./A 0.M. <u>%</u> 1.9 Mg Lbs./A Ca К Н CEC Lbs./A 2040 Lbs./A 156 Me/100 gms. $\frac{\text{pHs}}{6.0}$ Me/100 gms. 51 131 1.7 7.6

MISSOURI AGRICULTURAL EXPERIMENT STATION

				P205	(Bray	P1) Lb	s./Acr	e			P205 (»). Lbs								
			Tre	atment	5					Tre	atment	8					Trea	tments			
Depths 0-1 1-2 2-3 3-4 4-5 5-6 Avg	1 3.5 2.3 2.0 2.0 1.7 2.3	2 3.5 2.0 2.0 1.8 1.8 2.2	3.2 2.3 2.0 2.0 1.9 2.2 2.2	$\begin{array}{r} 4 \\ \hline 2.0 \\ 2.0 \\ 1.6 \\ 1.8 \\ \hline 1.7 \\ 2.1 \end{array}$	5 3.4 2.3 2.0 2.0 1.9 <u>1.9</u> 2.3	$\frac{6}{3.0}$ 2.3 2.0 2.0 1.9 1.9 2.2	$\frac{7}{3.8}$ 2.1 2.0 1.9 1.8 <u>1.6</u> 2.2	1 234 105 32 18 18 14 70	2 270 92 37 23 18 14 76	3 202 41 23 18 18 14 53	4 14 18 14 14 14 14 17	50 18 14 14 14 14 21	6 18 9 9 9 9 9 9	7 202 50 27 14 18 18 55	1 311 128 55 37 27 18 96	2 302 124 60 41 32 32 99	3 247 64 41 37 41 27 76	4 284 353 344 105 41 46 196	5 961 32 41 23 44	6 37 18 18 27 14 14 21	7 284 87 60 32 37 <u>32</u> 89
0-1 1-2 2-3 3-4 4-5 5-6 Avg	3200 2800 2900 2700 2600 <u>2800</u> 2830	2800 2700 2900 2700 2700 2800 2770	Ca I 2500 2700 2600 2500 2700 2400 2570	108./A0 2200 2600 2400 2700 2500 2500 2480	2700 2400 2800 2500 2500 2500 2600	2600 2600 2500 2600 2700 2700 2620	2800 2500 2500 2800 2700 2500 2630	470 300 250 230 <u>320</u> 300	500 390 330 280 260 <u>340</u> 350	Mg 1 460 400 320 280 300 330 350	<u> Cbs./Ac</u> <u>39C</u> <u>39C</u> <u>380</u> 290 290 <u>260</u> <u>280</u> <u>320</u>	490 360 330 260 220 <u>270</u> 320	490 400 320 280 270 <u>300</u> 340	480 380 330 380 380 <u>320</u> 370	156 84 80 80 100 97	208 116 92 88 84 92 113	K I 272 144 104 100 <u>100</u> 189	376 316 160 136 100 <u>100</u> 193	252 152 104 96 223	512 398 280 180 152 132 274	600 456 264 160 124 116 287
				pHs				Ne	eutral	Lzable	Acidi	y Me/I	100 gm	з,	Cati	on Exc	hange	Capaci	ty Me/	/100 gn	ns.
0-1 1-2 2-3 3-4 4-5 5-6 Avg	6.8 6.8 6.7 6.5 6.5 7	665554 66666666	6.4 6.4 6.4 6.5 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.75 6.4 6.5 6.5 6.5	6666556 666666	6.7 6.3 6.4 6.4 6.4 6.4	0.0 0.5 0.5 0.5 <u>1.0</u> 0.6	1.0 1.0 1.0 1.0 1.0 <u>1.0</u> 1.0	0.5 1.0 1.0 1.0 1.0 <u>1.0</u> <u>1.0</u> 0.9	0.5 1.0 1.0 1.0 1.0 <u>1.0</u> <u>1.0</u> 0.9	0.5 1.0 1.0 1.0 1.0 <u>1.0</u> <u>1.0</u> 0.9	0.0 0.5 0.5 1.0 <u>1.0</u> 0.6	0.5 1.0 1.0 1.0 1.0 <u>1.0</u> <u>1.0</u>	10.0 8.5 9.0 8.5 8.0 9.5 8.9	10.5 9.5 9.0 9.0 9.5 9.5	9.0 10.0 9.0 8.5 9.0 8.5 9.0	8.0 9.5 9.5 9.5 5 5 5 7 7	10.0 9.0 9.5 8.5 9.0 9.1	9.0 9.5 9.5 9.0 9.0	10.5 9.5 9.5 9.5 <u>9.5</u> 9.5 9.4

Table V--Orchardgrass-Alfalfa Topdressed with Phosphorus and Potassium (Baxter Silt Loam) Final Soil Test Values by One Inch Depths (1969)

Research Bulletin 1005

Table	VISoil			low Layer sing Study				osphorus and)	
<u>Treatments</u> 1. 0+50+50 2. 0+50+0 3. 0+50+100 4. 0+480+100 5. 0+25+100 6. 0+0+100 7. 0+50+150	0.M. 2.1 2.3 2.1 2.0 2.3 2.1 2.2	P_2O_5 P_1 Ebs./A 57 38 29 21 22 31 66	P_2O_5 P_2 94 72 68 156 59 67 117	Ca <u>Lbs./A</u> <u>3800</u> 3430 3670 3500 3230 3100 2900	Mg <u>Lbs./A</u> 280 330 320 290 320 330 330 300	K 120 167 233 277 220 277 333	рНв 6.6 6.4 6.5 6.5 6.5 6.4	H .8 1.0 1.2 1.5 1.3 1.3 1.3	CEC <u>Me/100 gms</u> 11.6 11.2 12.0 11.8 11.0 10.8 10.2
Initial Value 1961 Treatments t	1.8	 d in sprir	58 19. ± K20	2790 of treatm	347	204	6.0	l.7 h April. ⅓ in	10.8 June. The

 P_2O_5 of treatment 4 plowed down as rock phosphate in 1961.

	Organic Matter \$								P205	(Bray	P1) Lb	s./Acr	e			P ₂ 0 ₅ (1	Bray P	2) Lbs	./Acre		
	_		Tre	atment	8				_	Tre	atment	E				_	Tre	atment	58		
Depth 0-1 1-2 2-3 3-4 4-5 5-6 Avg	1 3,886 2,2,56 2,2,68 2,59 2,59 2,59 2,59 2,59 2,59 2,59 2,59	24.99.76.55.59	3.482.5522.7	42224338	5 3.6 2.4 2.5 2.8 2.8	6 3.3 2.7 2.8 2.7 2.8 2.7 2.4 2.8 2.8	7 4.2 2.7 2.6 2.3 2 2.8 2.8	1 215 60 27 18 14 14 58	2 151 32 14 14 14 14 40	3 133 32 18 14 14 14 78	4 137 32 14 14 14 9 37	5 37 18 14 14 9 14 18	6 18 14 9 9 9 11	7 128 32 18 14 14 14 14 37	1 293 96 41 18 18 23 82	2 234 46 23 18 18 18 59	3 206 50 32 18 18 27 59	4 247 128 60 32 18 18 84	5 69 37 23 27 14 19 31	6 27 18 14 14 14 14 14	7 193 50 32 18 14 <u>18</u> 53
			Ca I	bs./Ad	re						Lbs./A							bs./Ad			
0-1 1-2 2-3 3-4 5-6 5-0 8 8 8 8	2800 2800 2600 2100 2100 1900 2380	3000 2800 2800 2300 2400 2100 2570	2800 2500 2400 2100 1900 1700 2230	2700 2700 2300 2300 2000 1800 2300	2800 2600 2400 2300 <u>2100</u> 2470	2700 2600 2300 2400 <u>2100</u> 2450	2700 2300 2400 2400 2200 2000 2330	480 360 280 200 180 170 278	490 370 290 200 180 <u>180</u> 285	450 330 270 180 150 <u>140</u> 253	470 410 290 230 170 <u>160</u> 288	520 410 360 280 220 200 284	490 410 340 240 210 <u>200</u> 315	480 380 340 260 200 <u>170</u> 305	136 72 64 56 60 75	264 120 80 64 72 <u>72</u> 112	420 188 96 68 68 80 153	480 300 144 108 84 <u>84</u> 200	392 204 120 92 80 76 161	540 384 208 124 116 112 247	580 340 168 112 84 94 229
				рНв				N	eutrali	reble	Actel	v Mo/	00 am		Cati	on Fra	hange	Canaci	ty Me.	/100 gn	ne
0-1 1-2 2-3 3-4 4-5 5-6 Avg	6.6 6.2 5.7 5.0 4.9 5.0	6.2 6.0 5.6 5.2 5.0 5.0	6.2 5.9 5.4 5.1 5.5 5.5	6.3 6.0 5.7 5.1 4.8 5.5	6.3 6.1 5.6 5.7 5.7	6.3 6.1 5.9 5.6 5.4 5.2 5.8	6.2 5.7 5.5 5.5 5.5 5.5 5.6	0.5 1.0 2.0 3.0 4.0 4.0 2.4	$ \begin{array}{r} 1.0 \\ 1.0 \\ 1.5 \\ 2.0 \\ \overline{}.5 \\ \overline{}.5 \\ 2.0 \\ \overline{}.5 \\ 2.0 \\ \end{array} $	$ \begin{array}{r} 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ \frac{4.0}{2.3} \end{array} $	1.0 2.0 2.5 3.0 <u>3.5</u> 2.3	1.0 2.0 2.0 3.0 4.0 2.2	1.0 1.5 2.0 2.0 3.0 <u>3.5</u> 2.2	1.5 2.0 2.0 3.0 3.0 <u>3.5</u> 2.5	9.5 9.5 9.0 10.0 9.5 9.5	$ \begin{array}{r} 11.0 \\ 9.5 \\ 10.0 \\ 8.5 \\ 10.0 \\ 9.5 \\ 9.8 \\ \end{array} $	10.5 9.5 9.0 8.5 9.0 9.2	10.5 11.0 9.0 9.5 9.0 <u>9.0</u> 9.7	10.5 9.5 10.0 9.5 10.0 <u>10.0</u> 9.9	10.5 10.0 10.0 9.0 10.0 9.5 9.5	11.0 10.0 9.5 10.0 9.5 <u>9.5</u> 9.9

Table VII--Orchardgrass-Alfalfa Topdressed with Phosphorus and Potassium (Gerald Silt Loam) Final Soil Test Values by One Inch Depths (1969)

-

Table X		est Values Potassium	s for Plow 1. Topdre	Layer On Essing Stu	rchardgrass Idy Baxter	s-Alfalfa Silt Loa	Nitr m (19	ogen, Phosphor 68)	rus
Treatments 1. 40+50+0 2. 0+50+50 3. 40+50+100 4. 40+480+100 5. 40+25+100 6. 40+0+100 7. 40+50+150	0.M. 7 2.1 1.9 2.1 2.0 1.9 2.2 2.1	P_2O_5 P_1 Ibs./A 49 45 41 22 27 23 38	P_2O_5 P_2 100 76 234 56 35 79	Ca <u>Lbs./A</u> 3330 4520 3950 4100 3850 3980 3900	Mg <u>Lbs./A</u> 303 293 273 303 280 277	K 113 187 228 227 235 230 283	pHs 666666666666666666666666666666666666	H Me/100 gms 1.2 1.0 1.2 1.5 1.2 1.5 1.2 1.2 1.3	CEC <u>Me/100 gms</u> 10.9 12.8 12.6 13.2 12.4 12.6 12.6
Initial Values 1961	1.8		66	2900	301	247	5.7	2.9	11,72

Treatments topdressed in spring, $\frac{1}{2}$ K₂O of treatments 3,4,5,6 and 7 in April, $\frac{1}{2}$ in June. The P₂O₅ of treatment 4 plowed down as rock phosphate in 1961.

			Organi	c Matt	er %				P205	(Bray	P1) Lt	ов./Аст	e			P205 (Bray F	2) Lba	./Acre)	
			Tre	atment	8					Tre	atment	8					Tre	atment	8		
Depths 0-1 1-2 2-3 3-4 4-5 5-6 Avg	1 2.7 2.7 2.7 2.3 2.3 2.7	2 3.4 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	3.8 2.4 2.4 2.3 2.7 2.4 2.3 2.7	4 3.7 2.5 2.2 2.4 2.4 2.7	5 4.1 2.2 2.3 2.2 2.2 2.0	6 7.8 2.4 2.4 2.4 2.7	785 225 222 222 222 222 222 225 225 20 20 20 20 20 20 20 20 20 20 20 20 20	1 211 59 37 46 <u>37</u> 71	2 137 46 32 37 37 54	3 160 46 32 27 37 32 56	4 27 27 27 27 27 28	5 41 32 32 27 37 34	6 37 32 27 27 23 30	7 174 59 41 37 40 41 66	1 256 69 46 41 50 <u>37</u> 83	2 174 64 37 41 32 66	3 188 55 41 37 41 	4 82 82 114 110 160 <u>110</u> 110	5 59 23 27 27 27 30	6 32 23 23 23 18 18 23	7 224 69 41 37 56 79
			Ca I	bs./Ac	re					Mg 1	Lbs./Ad	re					кі	bs./Ac	re		
0-1 1-2 2-3 3-4 4-5 5-6 Avg	2600 2800 2900 2800 2600 2300 2670	2600 2700 2800 2800 2800 2400 2650	2000 2700 2800 2600 2500 2550	2300 2600 2600 2600 2600 2500 2500	2000 2300 2400 2700 2600 <u>2500</u> 2420	2000 2200 2400 2500 2600 2400 2350	2000 2400 2600 2500 2200 2280	410 360 360 320 310 <u>290</u> 342	360 310 320 330 340 <u>310</u> 328	270 330 320 330 330 <u>300</u> 313	310 310 310 310 310 <u>310</u> 310	300 290 300 350 350 <u>370</u> 327	310 280 310 320 330 <u>320</u> 312	260 240 290 340 350 <u>330</u> 302	108 80 84 80 80 84 86	132 92 80 92 92 80 95	268 156 108 96 96 <u>96</u> 137	296 164 92 92 92 92 138	332 172 92 96 84 88 144	456 268 148 96 96 92 193	476 284 148 112 104 <u>96</u> 203
0-1 2-3 3-4 4-5 5-6 Avg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								3.0 3.0 3.5 3.0 3.0 3.0 3.0 3.2	1zable 5.0 3.5 3.0 3.0 3.5 4.0 3.7	Acidit 4.0 3.5 3.0 3.0 3.5 <u>4.0</u> 3.5	4.0 4.5 3.5 3.0 2.5 <u>3.0</u> 3.4	100 gms 3.5 3.5 3.0 3.0 2.5 <u>3.0</u> 3.1	4.5 4.5 4.0 3.0 3.0 <u>3.5</u> 3.8	<u>Cat</u> 12.5 11.5 12.0 11.5 11.0 <u>11.5</u> 11.7	11.0 11.0 11.5 11.5 11.5 <u>11.5</u> 11.5 11.3	thange 11.5 12.0 11.0 11.5 11.5 11.5 11.5	Capac 11.5 11.5 11.0 11.0 11.5 <u>11.0</u> 11.3	10.5 11.5 11.0 11.5 10.5 <u>11.0</u> 11.0	2/100 1 10.5 10.5 10.5 10.5 10.5 10.5 10.5	11.0 11.0 11.5 11.0 11.0 11.0 10.5 11.0

Table XI--Orchardgrass-Alfalfa Topdressed with Nitrogen, Phosphorus and Potassium (Gerald Silt Loam) Final Soil Test Values by One Inch Depths (1970)

	Table	XIISo	oil Test and i	Values for Potassium	r Plow Lag Topdress	yer Orchan ing Study	rdgrass-A Gerald S	lfalfa ilt Loa	Nitrogen, Pho am (1968)	osphorus
<u>Tre</u> 1. 23. 56.7	<u>atments</u> 40+50+0 0+50+50 40+50+100 40+480+100 40+25+100 40+0+100 40+50+150	0.M. 2.866 2.663 2.222 2.222 2.44 2.222 2.44	P ₂ O ₅ P ₁ <u>1bs./A</u> 48 51 55 34 35 34 35 34 62	$ \frac{P_{2}O_{5}}{P_{2}} \frac{Ibs./A}{82} 76 78 133 41 42 80 $	Ca <u>Lbs./A</u> 2300 2230 2670 2450 2770 2270 2070	Mg 240 356 257 253 243 253 327	K <u>Ibs./A</u> 80 98 197 170 172 178 228	pHs 5534 5552 5555 5555 5555555555555555555	H Me/100 gms 3.8 3.7 3.7 3.7 3.7 3.7 3.5 4.0	CEC Me/100 gms 10.7 10.9 11.7 11.1 11.9 10.48 10.8
	tial Values 961	2.2		44	970	173	137	4.3	4.7	8.0

Treatments topdressed in spring, $\frac{1}{2}$ K₂O of treatments 3,4,5,6 and 7 in April, $\frac{1}{2}$ in June. The P₂O₅ of treatment 4 plowed down as rock phosphate in 1961.

	Organic Matter %								P ₂ O ₅ (Bray P ₁) Lbs./Acre								P ₂ O ₅ (Bray.P ₂) Lbs./Acre					
			Tre	atment	s			·		Tre	atment	55					Tre	atment	в			
Depths 0-1 1-2 2-3 3-4 4-5 5-6 Avg	1 2.5 2.0 1.9 2.0 <u>1.9</u> 2.5	2 4.4 2.5 2.1 2.0 2.1 2.1 2.5	3.9 2.5 2.3 2.3 2.0 1.8 2.5	4 2.5 2.3 1.9 1.9 2.5 2.5	5* 2.5 2.3 2.1 1.9 2.0	6 4.2 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.5	7 4.8 2.5 2.0 2.0 2.0 2.0 2.0 2.0	1 234 147 55 27 27 18 85	2 243 170 73 27 27 18 94	3 234 174 94 37 27 23 98	4 50 32 32 37 18 34	5* 60 41 27 27 23	6 32 18 14 14 14 14 18 18	$ \frac{7}{257} 206 101 46 27 27 111 $	$ \frac{1}{257} 170 73 46 41 27 102 102 1 $	2 270 178 101 50 37 27 110	3 270 211 344 64 41 37 161	4 371 353 344 247 96 46 243	78 55 41 37 <u>32</u>	6 46 32 32 27 23 27 31	$ \frac{7}{311} 224 137 64 41 41 136 $	
0-1 1-2 2-3 4-5 5-6 Avg	2900 2600 2400 2500 2200 2530	2900 2400 2300 2500 2700 <u>2600</u> 2570	Ca 1 2400 2200 2400 2300 2400 2300 2330	<u>bs./Ac</u> 2400 2400 2300 2400 2600 <u>2700</u> 2470	2400 2300 2600 2400 2500	2600 2400 2300 2400 2500 <u>2300</u> 2420	2300 2300 2400 2400 2800 <u>2700</u> 2480	590 440 320 240 220 <u>200</u> 335	530 380 280 250 240 <u>220</u> 317	Mg 1 450 360 250 230 <u>210</u> 310	200 270 220 220 190 290	360 260 230 180 190	550 420 310 260 210 <u>170</u> 320	460 370 310 250 240 <u>310</u> 307	204 108 84 80 76 105	376 204 124 108 115 <u>108</u> 173	<u>к</u> 528 392 600 276 280 <u>264</u> 390	<u>508./Ac</u> 504 480 320 268 296 <u>212</u> 347	436 304 284 240 240	580 528 352 324 280 240 384	580 592 508 380 376 332 461	
0-1 1-2 2-3 3-4 4-5 5-6 Avg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							No 1.0 1.0 1.0 1.0 1.0 1.0	eutral: 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9	0.5	1.0 1.0 - 0.5 0.5 0.5	100 gms 0.5 1.0 1.0 0.5 0.5 0.8	0.5 1.0 1.0 1.0 0.5 0.5 0.8	Cat 11.0 9.5 9.0 8.0 8.5 7.5 8.9	11.0 9.0 8.0 8.5 9.0 <u>8.5</u> 9.0	change 9.0 8.5 9.5 8.0 8.5 8.0 8.6	2 Capac 9.0 8.5 8.0 8.0 8.5 8.5 8.4	9.0 8.0 8.5 7.5 8.0	2/100 g 10.0 9.0 8.5 8.5 8.5 7.5 8.7	9.0 9.0 9.0 8.5 9.0 8.5 8.8	

Table XIII-Fescue-Lespedeza Topdressed with Nitrogen, Phosphorus and Potassium (Baxter Silt Loam) Final Soil Test Values by One Inch Depths (1970)

* 0-1 inch sample of treatment 5 lost.

RESEARCH BULLETIN 1005

S

1001	•	and Pota	ssium Top	dressing	Study Bax	ter Silt	Loam (1966)	· · · · · · · · · · · · · · · · · · ·
<u>Treatments</u> 1. 30+50+0 2. 30+50+50 3. 30+50+100 4. 30+480+100 5. 30+25+100 6. 30+0+100 7. 30+50+150	0.M. 2.2 2.3 2.4 2.3 2.4 2.3 2.5 2.3	P_2O_5 P_1 Ibs./A 85 83 112 42 64 21 118	P_2O_5 P_2 <u>105./A</u> 127 130 161 355 97 36 163	Ca <u>Ibs./A</u> 3150 3080 3000 3750 2950 2880 3030	Mg 270 275 260 240 237 240	K 215 250 395 418 447 405 507	pHs 5 5 5 5 5 5 5 4 5 6 6 6 6 6 6 6 6 6 6 6	H <u>Me/100 gms</u> 1.0 1.0 .8 .7 1.0 1.0 1.2	CEC <u>Me/100 gms</u> 10.3 10.1 10.0 11.7 10.0 9.7 10.4
Initial Values 1961	2.0		63	3240	264	230	5.8	2.1	11,6
Treatments to	opdress	ed in spr:	ing, ± Ke	0 of trea	tments 3,	4,5,6 and	7 in .	April, 2 in Ju	une. The

Table XIV--Soil Test Values for Plow Layer Fescue-Lespedeza Nitrogen, Phosphorus and Potassium Topdressing Study Baxter Silt Loam (1966)

Treatments topdressed in spring, $\frac{1}{2}$ K₂O of treatments 3,4,5,6 and 7 in April, $\frac{1}{2}$ in June. P₂O₅ of treatment 4 plowed down in 1961.

	Organic Matter %								P205 (Bray P1) Lbs./Acre								P205 (Bray P2) Lbs./Acre					
			Tre	atment	5					Tre	atment	58					Tre	eatment	58			
Depths 0-1 1-2 2-3 3-4 4-5 5-6 Avg	1 4.9 2.7 2.4 2.1 2.8 2.8	2 5.2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 3.1	3 4.9 2.8 2.4 2.5 4.8 2.4 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	4 4.5 5.6 5.5 5.5 5.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.3 2.9 2.5 2.3 2.2 2.3 2.7	6 2.5 1.9 2.0 2.0 2.4	74.05 2.55 2.41 2.8	$ \frac{1}{215} 105 41 18 14 18 69 69 $	2 188 87 41 27 14 14 62	3 183 87 23 18 14 60	4 32 32 14 14 14 22	50 18 14 14 14 14 21	6 18 14 14 14 14 14 15	7 174 87 46 27 18 <u>18</u> 62	1 284 133 50 27 14 <u>18</u> 88	2 279 115 60 32 18 14 86	3 234 110 60 37 23 18 80	4 321 353 257 60 27 23 174	5 92 41 18 14 14 18 33	6 27 18 18 14 9 14 17	7 224 110 60 37 23 23 80	
	Ca Lbs./Acre									Mg]	Lbs./Ad	ere					K	Lbs./Ad	ere			
0-1 1-2 2-3 3-4 4-5 5-6 Avg	3200 2600 2500 2300 2100 2000 2450	3200 2600 2500 2300 2200 2200 2500	2800 2300 2400 2200 1800 <u>1500</u> 2170	2800 2400 2400 2100 1900 <u>1800</u> 2230	2600 2500 2300 1900 1800 <u>1800</u> 2150	2700 2500 2300 2200 2000 <u>1800</u> 2250	2700 2700 2300 2400 2100 <u>1700</u> 2320	620 380 260 170 130 <u>120</u> 280	620 410 280 190 140 <u>120</u> 293	510 330 260 160 120 110 248	560 380 290 210 150 <u>140</u> 288	530 390 270 150 130 <u>110</u> 263	590 410 290 200 140 <u>120</u> 292	500 400 280 230 150 120 280	132 64 60 52 60 70	288 120 76 76 64 72 116	520 272 168 116 112 92 213	560 356 240 156 144 <u>144</u> 250	548 376 220 152 132 128 259	600 460 304 200 180 <u>168</u> 319	600 600 384 336 256 216 399	
	aHa							Ne	eutral	izable	Acidi	ty Me/1	100 gm	5.	Cation Exchange Capacity Me/100 gms.						zms.	
0-1 1-2 2-3 3-4 4-5 5-6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						6.0 5.5 5.5 4.8	1.0 1.0 2.0 3.0 3.5 4.5	1.0 1.5 2.0 2.5 3.5 4.0	1.5 2.0 3.0 4.5 5.5	1.50 2.50 2.50 5.55 4.5 2.50	1.0 2.0 2.5 3.0 4.0 5.0	1.0 1.0 2.0 2.5 4.0 2.1	1.5 2.0 2.5 3.0 4.5	12.0 9.0 9.5 9.5 10.0	12.0 10.0 9.5 9.0 9.5 <u>10.0</u>	11.5 9.5 10.5 9.5 <u>10.0</u>	11.5 10.0 10.0 9.5 9.0 <u>10.0</u>	10.5 10.5 9.5 8.5 9.0 <u>10.0</u>	11.0 9.5 9.5 8.5 9.0	$ \begin{array}{r} 11.0 \\ 11.0 \\ 9.5 \\ 10.0 \\ 9.0 \\ 9.5 \\ 10.0 \\ \end{array} $	

Table XV--Fescue-Lespedeza Topdressed with Nitrogen, Phosphorus and Potassium (Gerald Silt Loam) Final Soil Test Values by One Inch Depths (1970)

		and Po	tassium T	opdressin	g Study G	erald Sil	t Loam	(1966)	
Treatments 1. 30+50+0 2. 30+50+50 3. 30+50+100	0.M. 2.9 2.7 2.9	P ₂ O ₅ P ₁ Lbs./A 61 53 56	P ₂ O ₅ P ₂ <u>Lbs./A</u> 83 63 79	Ca <u>Lbs./A</u> 2450 2700 26 <u>3</u> 0	Mg <u>Lbs./A</u> 263 227 200	K <u>Lbs./A</u> 108 145 272	<u>pHs</u> 5.4 5.4 5.3	H <u>Me/100 gms</u> 5.0 4.8 5.3	CEC <u>Me/100 gr</u> 12.4 12.7 13.1
4. 30+480+100 5. 30+25+100 6. 30+0+100 7. 30+50+150	2.8 2.5 2.4 2.8	24 32 20 55	210 43 32 83	2780 2600 2480 3130	223 213 207 240	305 275 307 368	5.3 5.4 5.4 5.4	5.2 4.8 4.0 4.5	13.5 12.5 11.5 13.8
Initial Values 1961	2.3		30	1760	208	140	4.3	4.2	9.7

Table XVI--Soil Test Values for Plow Layer Fescue-Lespedeza Nitrogen, Phosphorus

 P_2O_5 of treatment 4 plowed down as rock phosphate in 1961.

	Dasic and Topulessed Applications of								
	Organic Matter %	P_2O_5 (Bray P_2) Lbs./Acre							
	Treatments	Treatments							
Depths 0-1 1-2 2-3 3-4 4-5 5-6 Avg	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
0-1 1-2 2-3 3-4 4-5 5-6 Avg	Ca Lbs./Acre 3600 3200 3200 2900 2800 3000 2800 3100 3500 3700 3600 3900 3400 3500 3200 2800 3500 3500 3700 3600 3900 3400 3500 3200 3400 3400 3500 3800 4100 3400 3400 3700 3400 3400 3400 3400 3400 3400 3400 3500 3600 3500 3600 3500 3600 3500 3600 3100 3500 3600 3100 3500 3600 3100 3200 3300 3200 3300 3200 3300 3200 3300 3200 3300 3200 3300 3200 3320 3330 3220 3320 3330 3220 3320	Mg Lbs./Acre 370 300 240 310 240 230 230 200 230 200 170 160 190 160 160 130 110 160 130 100 130 130 120 120 130 110 120 120 110 110 120 110 110 100 120 140 100 130 140 120 110 120 110 130 130 140 120 110 120 120 110 140 100 130 140 120 120 120 140 182 152 155 173 147 143 142 128 147							
0-1 1-2 2-3 3-4 4-5 5-6 Avg	K Lbs./Acre $\overline{304}$ 268 244 212 380 368 608 520 672 140 124 124 108 212 216 352 300 420 88 72 88 80 103 104 188 180 276 80 84 68 76 84 80 120 116 168 80 72 68 76 92 76 96 104 112 56 68 72 72 80 76 80 92 100 125 115 111 104 159 153 241 219 291	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Table XVII--Final Soil Test Values by One Inch Depths Under Alfalfa Receiving Basic and Topdressed Applications of Phosphorus and Potassium*(1971)

Table XVII (Continued)

	Organic Matter %	P205 (Bray P2) Lbs./Acre
	Treatments	Treatments
Depths	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
	Neutralizable Acidity Me/100 gms.	Cation Exchange Capacity Me/100 gms.
0-1	0.5 0.5 0.0 0.5 1.5 1.0 1.5 1.5 1.5	11.5 10.0 9.5 10.0 10.0 9.5 10.5 10.0 11.0
1-2	0.5 0.5 0.0 0.5 1.0 1.0 1.5 1.0 1.0	10.5 10.5 10.0 11.0 10.5 10.5 10.5 9.0 11.0
2-3	0.5 0.5 0.0 0.5 1.0 0.5 1.0 1.0 1.0	10.0 8.5 10.0 11.5 10.0 9.5 11.0 10.0 10.5
3-4 4-5 5-6	0.5 0.5 0.0 1.0 0.5 0.5 1.0 0.5 1.0	10.5 10.5 9.5 11.5 10.0 10.0 10.0 9.5 10.5
4-5	0.5 0.5 0.0 1.0 0.5 0.5 1.0 0.5 1.0	10.5 9.5 9.5 11.0 10.0 9.5 10.5 10.0 9.5
5-6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>8.0 9.0 10.0 11.0 9.0 10.0 9.5 9.5 10.0</u>
Avg	0.5 0.5 0.1 0.8 0.8 0.8 1.2 0.8 1.1	10.2 9.7 9.8 11.0 9.9 9.8 10.3 9.7 10.4

* Tests with Bray P1 extractant were not made on this set of samples.

Table	XVIIISoil	Test	Values	in 19	965 foi	Plow	Layer	under	Alfa	alfa	Receving
	Applicati	Lons o	f Phosp	horus	and]	otass:	ium beg	ginning	g in	1961	

Treatments Plowdown Topdres	0.M. <u>%</u>	P205 P2 Lbs./A	Ca <u>Lbs./A</u>	Mg Lbs./A	K Lbs./A	<u>pHs</u>	H Me/100 gms	CEC Me/100 gms
$ \begin{array}{r} P_2 0_5 & \underline{K_2 0} \\ 1. & 200 \\ 2. & 400 \\ 3. & 0 \\ 4. & 600 \\ 5. & 400 & 100 \\ 6. & 400 & 0+0+60 \\ 7. & 400 \\ 8. & 400 \\ 9. & 400 \end{array} $	2.1 2.0 1.9 2.2 2.0 2.2 2.2 2.1 2.1	30 59 21 140 62 68 77 62 81	3450 3480 3330 3630 3280 3450 3580 3400 3480	240 245 190 230 215 265 260 215 225	95 95 105 80 95 93 75 85 85	5666646 5555555555555555555555555555555	2.8 2.8 2.8 3.0 3.3 3.3 3.0 3.3	12.5 12.7 11.6 12.9 12.3 13.2 13.4 12.6 13.0

Initial soil test values 1961: 24 Lbs. P205/A (P2), 161 Lbs. K/A, 4.5 pHs

	Organic Matter %							P205 (Bray .P1) Lbs./Acre								P205 (Bray P2) Lbs./Acre					
			Trea	tments						Trea	tmente				Treatments						
Depths 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	1 4.08 2.2.66 2.68 2.2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	2 2.76 2.4.3 2.57 2.57 2.57 2.57 3.0	3 2.1 2.3 2.3 2.3 2.0 7 2 2.5	4 2.3.7.7.5.6.5 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	5 4.7 3.0 3.9 2.8 6 3.2	6 4.4 3.0 2.9 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	7.72.72.72.22.72.22.72.2.73.0	$ \begin{array}{c} 1 \\ 165 \\ 46 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 48 \\ 48 \\ \end{array} $	2 110 41 37 46 55 18 18 46	3 270 96 41 27 27 27 23 18 72	4 224 73 227 73 27 27 18 68	5 105 41 27 23 27 23 18 38	6 284 110 37 37 32 27 18 78	7 215 78 37 27 27 23 14 60	1 192 55 32 27 27 18 55	$2 \\ 147 \\ 50 \\ 60 \\ 87 \\ 142 \\ 32 \\ 18 \\ 77 \\ 77 \\ 18 \\ 77 \\ 18 \\ 77 \\ 14 \\ 77 \\ 18 \\ 77 \\ 18 \\ 77 \\ 18 \\ 77 \\ 18 \\ 77 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	257 115 50 41 32 27 79	4 96 41 32 119 27 18 80	5 160 60 50 632 323 64	6 284 133 50 50 41 37 23 88	7 257 110 60 41 41 32 18 80
	Ca Lbs./Acre										Mg J	bs./Ad	re		K Lbs./Acre						
0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	1200 1000 1200 1100 1300 1300 1400 1210	1600 1800 2000 2000 2000 1900 1840	1300 1700 1900 2100 2200 2000 <u>2100</u> 1930	1700 1300 1500 1700 1600 1400 <u>1100</u> 1470	2100 2200 2100 2300 2500 2300 2200 2240	1600 2000 2200 2300 2200 2300 2000 2000 2	1700 2300 2400 2300 2500 2400 <u>2200</u> 2260	210 180 150 160 150 <u>180</u> 173	490 570 570 610 610 560 500 559	320 450 530 590 600 580 540 516	480 460 530 580 530 480 530 480 530 487	620 680 640 690 740 690 <u>650</u> 673	410 580 660 690 700 650 <u>610</u> 614	480 670 710 680 720 730 <u>680</u> 667	376 240 192 140 164 140 <u>144</u> 199	192 124 76 72 68 68 76 97	304 200 136 112 100 96 <u>112</u> 151	232 140 92 80 76 76 80 111	292 156 88 92 92 96 128	340 220 120 108 92 88 <u>92</u> 151	348 176 100 84 80 96 104 141
				PHC				,	Ventra	lizable	bloA e	tv Me.	/100 g	ms .	Cat	ion Ex	change	Сарас	ity Me	/100 .	ms .
0-1 1-2 2-3 3-4 4-5 5-6 6-7 Avg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							7.5 8.0 8.0 8.5 7.5 7.5 7.9	4.0 3.0 2.5 2.0 3.0 <u>3.0</u> 2.8	5.5 4.0 3.0 2.5 2.0 2.0 <u>3.0</u> 3.1	4.0 4.5 3.5 3.5 4.0 <u>6.0</u> 4.1	4.0 3.0 2.5 2.0 2.0 2.0 <u>3.0</u> 2.6	5.5 4.0 3.0 2.5 2.5 <u>4.0</u> 3.5	5.0 2.5 2.0 2.0 1.0 1.5 <u>3.0</u> 2.4	$ \begin{array}{r} 12.0 \\ 11.5 \\ 12.5 \\ 12.5 \\ 11.5 \\ 12.5 \\ 11.5 \\ 12.0 \\ 11.9 \\ \end{array} $	10.5 8.0 9.5 9.5 9.5 10.0 <u>9.5</u> 9.5	10.5 10.5 10.0 10.5 10.0 10.0 10.0 10.5 10.3	10.5 10.0 9.5 10.5 10.0 9.5 <u>10.5</u> 10.1	12.0 11.5 10.5 10.5 11.5 10.5 <u>11.5</u> 11.5 11.1	11.5 11.5 11.5 11.5 11.5 11.5 11.0 <u>11.5</u> 11.4	11.5 11.5 11.0 10.5 10.5 <u>11.5</u> <u>11.5</u> 11.0
Initia	Initial soil test values 1963: 22 Lbs. P_2O_5/A (P), 112	Lbs.	K/A, 4	.0 pHs											

Table XIX--Effect of Limestone and Topdressed Nitrogen, Phosphorus and Potassium on Fescue-Lespedeza (Gerald Silt Loam) Final Soil Test Values by One Inch Depths (1970)

BIBLIOGRAPHY

- 1. Brown, E. M. 1961. Improving Missouri Pastures. Mo. Agr. Exp. Sta. Bull. 768.
- 2. Christy, Marshall, and Roger Hanson. 1971. Missouri computerized soil test interpretations. Dept. Agron., Univ. Mo. Handbook.
- 3. Decker, W. L. 1955. Monthly precipitation in Missouri, climatic atlas of Missouri. No. 1. Mo. Agri. Exp. Sta. Bull. 650.
- 4. _____1958. Chances of dry periods in Missouri. Mo. Agr. Exp. Sta. Bull. 707.
- 5. Fisher, T. R. 1969. Soil testing procedures and associated equipment and supplies for area soil testing laboratories. Dept. Agron., Univ. Mo.
- 6. Graham, E. R. 1959. An explanation of theory and methods of soil testing. Mo. Agr. Exp. Sta. Bull. 734.
- 7. Kroth, E. M., G. E. Smith, Richard Mattas, and J. A. Roth. 1969. Fertilizing hay and pasture crops in Missouri. Mo. Agr. Exp. Sta. Bull. 942.
- 8. _____, V. C. Jamison, and H. E. Grogger. 1960. Soil moisture survey of some representative Missouri soil types. U.S.D.A., ARS-41-34.
- 9. Martin, W. E., and J. E. Matocha. 1973. Soil testing and plant analysis, Chap. 24, L. M. Walsh and J. D. Beaton (ed.) Soil Science Society of America, Madison, Wisconsin.
- Meyers, R. L. 1968. Maximum yields of alfalfa on a Southwestern Missouri soil as related to soil phosphorus levels and precipitation. Unpublished M.S. thesis. University of Missouri, Columbia, Mo.
- Peterson, L. A., and D. Smith. 1973. Recovery of K₂SO₄ by alfalfa after placement at different depths in a low fertility soil. Agron. Jour. 65:769-772.