UNIVERSITY OF MISSOURI-COLUMBIA COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION ELMER R. KIEHL, Director # Limestone and Nitrogen Application Influence on Cotton Yields and Soil Tests in a Tiptonville Silt Loam Soil in Southeast Missouri JAMES A. ROTH AND THOMAS E. FISHER (Publication authorized May 4, 1972) COLUMBIA, MISSOURI #### **SUMMARY** Seed cotton yields were not influenced significantly by the application of limestone on the Tiptonville silt loam soil (pHs 5.3) except with the application of four tons of fine lime, which significantly reduced the total yield over the seven-year period. The application of limestone, as measured by the soil test, reduced exchangeable potassium, compared to the check plot which received the same potash application. More potassium was available at the termination of the experiment on the fine lime plots than on the agricultural limestone plots. Limestone did not apparently affect phosphate, magnesium, or the cation exchange capacity. Limestone did increase the calcium content and pHs but reduced neutralizable acidity as determined by the soil tests. The 63-pound rate of N application increased yields of seed cotton significantly higher than the 38-pound application. The high rate (113 pounds) significantly reduced first picking and gave only a 19-pound increase in yield, which was not significantly different. #### ACKNOWLEDGEMENT The study reported in this publication was begun under the direction of Dr. G. E. Smith, Chairman, Department of Soils and completed under the guidance of Dr. Roger Mitchell, Chairman, Department of Agronomy. This research was one of the experiments of Project Number 7033-2670 "Soil Fertility and Cotton Production", University of Missouri Agricultural Experiment Station. ### **CONTENTS** | EXPERIMENTAL PROCEDURE | |------------------------| | RESULTS AND DISCUSSION | | Soil Test Results | | LITERATURE CITED | | APPENDIX10 | # Limestone and Nitrogen Application Influence on Cotton Yields and Soil Tests in a Tiptonville Silt Loam Soil in Southeast Missouri JAMES A. ROTH AND THOMAS E. FISHER* Cotton requirements for calcium and nitrogen have been of major concern to farmers of southeast Missouri. With the application of each pound of nitrogen as ammonium nitrate, 1.8 (2)¹ to 3.57 (4) pounds of calcium carbonate are required to neutralize the acid produced by the chemical reaction in the soil. A question arises as to the cotton plant's requirement for calcium or for the control of soil acidity in order to create a more optimum environment for the availability of nutrients. Acording to Neal and Lovett, as reported in "Hunger Signs in Crops" (5), a low pH causes "crinkle leaf" (manganese toxicity) which results in an excess of water soluble manganese in the soil solution. Increasing the pH by the addition of limestone eliminates the cause of "crinkle leaf" in cotton. The objectives of this study were to determine the optimum range of soil pH as well as to determine the effect of agricultural limestone as compared to fine limestone of less than 100 mesh. Also included in the objectives was to determine optimum rate of nitrogen and what effect if any that nitrogen had on the soil pH over a period of years. This study provided an opportunity to observe other changes in soil test values over a period of years. #### EXPERIMENTAL PROCEDURE A field experiment was initiated on a Tiptonville silt loam soil, sandy loam overwash located seven miles southeast of Portageville. The Tiptonville series consists of deep friable, acid, dark-colored, level to very gently sloping well-drained soils on the high rim of the old natural levees (1). Tiptonville silt loam is fertile, easy to till and suitable to all row crops, small grains, grasses, and legumes. The subsoil is moderately permeable and has a high available moisture capacity. ^{*}Associate Professor and Technician, respectively, Department of Agronomy, University of Missouri-Columbia, Delta Center, Portageville, Missouri 63873. ¹Numbers in parentheses are keyed to References at the end of the bulletin. A split plot design was used with the main blocks receiving four rates of calcium carbonate as agricultural limestone² from Jonesboro, Ill., and four rates of fine lime³ from Ste. Genevieve, Mo. Three replications of four-row plots 90 feet long were included in each sub-plot or treatment. All limestone treatments, except the annual treatment, were applied broadcast and plowed down after disking into the soil thoroughly. No additional limestone was applied throughout the duration of the experiment except on the plot which received 500 pounds of fine lime banded by the row annually, after the cotton had emerged. A recommended variety of cotton was planted in 38 inch rows as near to the first of May as soil conditions permitted. Cotton was grown continuously on the same plots throughout the experiment. Annually, 13 pounds of nitrogen, 50 pounds of phosphate, and 50 pounds of potash were applied to all plots at time of planting. The additional nitrogen was sidedressed just prior to blooming. This included three treatments of 38, 63, and 113 pounds of total nitrogen. All cotton plots were irrigated by the row method as needed, ranging from one to three applications, depending on the season. Herbicides were used to control weeds and cultivation was minimal. Insects were controlled when necessary by chemical sprays. The mechanical spindle picker was used to harvest the center two rows of each of the four-row plots for yield determinations. Samples of seed cotton were obtained to determine lint percentage, staple, and number of bolls per pound. Quality of lint data were not included in this publication as differences between treatments were not statistically significant. Initial soil samples were obtained from each plot previous to any soil treatments and following the annual harvest. Soil samples were analyzed according to methods used in the soil testing laboratories of Missouri (3) and are reported in Tables 1 through 8. Duration of the experiment included seven years with final soil samples obtained after completion of the seventh harvest of seed cotton (Table 8). The data were evaluated by Duncan's New Multiple Range Test (5% level of significance) as a split block design. #### RESULTS AND DISCUSSION Limestone applications on a Tiptonville silt loam soil (initial pHs⁴ of 5.3) resulted in a non-significant effect on seed cotton yields over a seven-year period, 1962-69. This indicates that a pHs range of from 5.3 to 6.8 was satisfactory for optimum cotton production on this soil type (Table 9). ²Agricultural grade limestone—98.2% calcium carbonate with 56.5% passing through a 40 mesh sieve. ³Fine lime—98.5% calcium carbonate with 100% passing through a 100 mesh sieve and 80% through a 200 mesh sieve. ^{*}Refers to salt pH (pHs) as measured in 1:1 soil: 0.01M CaCl₂ suspension. The fine lime increased the pHs to a higher level, compared to a similar amount applied of agricultural limestone but resulted in a more rapid rate of decline following the peak one year after application (Figure 1). The four-ton application of agricultural limestone reached as high a pH as the same rate of fine lime and maintained the same pHs (6.0 to 6.1) throughout the experiment. Plots receiving all rates of limestone completed the experiment at a higher pHs level than the check treatment. This would indicate the initial limestone treatments were effective longer than the eight-year duration of the experiment. The optimum rate of nitrogen on this soil appeared to be 63 pounds per acre. The higher rate of 113 pounds was not significantly different from the 63-pound rate. The high (113 pound) rate of nitrogen significantly reduced the pHs, compared to the 63 pound rate, on the Tiptonville silt loam soil but the reduction was only 0.1 pHs. For the reduction in pHs to be of any concern, rates of nitrogen would probably have to be considerably higher than optimum cotton production would tolerate. #### Soil Test Results Organic Matter: Over the period of eight years the percentage of organic matter in the soil was reduced an average of 0.16 (Table 10). There appeared to be no relationship between the soil treatments and organic matter content; the reduction was probably due to depletion under a continuous row cropping of cotton with an insufficient amount of organic matter returned to the soil to maintain the original content. Phosphate: With the application of a total of 350 pounds of phosphate there was an average increase of 38 pounds as determined by soil test over the eight years. The soil treatments, limestone or nitrogen, did not appear to influence the phosphate content of the soil (Table 10). Potassium: During the seven years, 291 pounds of potassium were applied to all plots. The no-limestone showed an increase of 109 pounds (Table 10) of potassium whereas the plots on which limestone was applied experienced a range of reaction from an increase of 98 pounds (1 ton fine limestone) to a decrease of 27 pounds (4 tons fine limestone). There appears to be an indirect relationship between potassium content of the soil and rate of limestone application. Magnesium: Magnesium was not applied to the plots during the experiment but soil tests indicate an average increase of 50 pounds of exchangeable magnesium over the eight years on all treatments. Neither limestone nor nitrogen treatments could explain the change in magnesium content of the soil (Table 10). Calcium: The exchangeable calcium (Table 10) increased with the addition of limestone on most treatments. For some unknown reason the four-ton application of fine lime decreased 133 pounds, which was a decrease of 10 pounds Figure 1: Influence of agricultural and fine limestone on pHs over eight year period 1963-70. more than the no-treatment plot. In viewing the data (Tables 1 through 8) the soil test for exchangeable calcium appeared to be irratic and no explanation for the results
obtained. There was an increase of calcium content of the soil on seven of the limestone treatments and a decrease on two of the limestone treatments. The two ton rate of limestone application increased the content 444 pounds of calcium whereas the four ton rate resulted in a decrease of 133 pounds. Five hundred pounds of fine lime applied annually (total of 3,500 pouds) seemed to be as effective as any of the treatments applied. N.A.: Neutralizable acidity increased on the no treatment plots and on the plots on which low rates of limestone were applied. On the plot with four tons of fine limestone there was also a decline of 0.6. The agricultural limestone was more effective in decreasing the neutralizable acidity, compared to fine lime, over the eight-year duration of the experiment. pHs: The salt pH (pHs) increased with the application of limestone and at the conclusion of the experiment the pHs of all treatments were above the initial pHs. The fine lime reached a higher pHs level than the agricultural limestone of same rate of application but the latter maintained a higher pHs throughout the duration of the experiment (Figure 1). C.E.C.: The cation exchange capacity increased over the eight-year period but neither limestone nor nitrogen appeared to influence the soil test results (Table 10). Seed Cotton Yields: Limestone did not significantly increase yields of seed cotton on the Tiptonville silt loam soil over the seven-year duration of the experiment, 1963 through 1969. On one treatment (four tons of fine lime), the average yield was significantly reduced. The data (Table 9) indicate that a pHs of 5.3 was sufficient and increasing the pHs to 6.7 was not justified on this soil during the years the experiment was conducted. Nitrogen increased total yields of seed cotton up to 113 pounds total nitrogen per acre (Table 9) but results with the 113 pounds were not different from those with 63 pounds. The high rate of nitrogen depressed yields of seed cotton at the first picking. The high rate of nitrogen (113 pounds) resulted in excessive vegetative growth which tended to reduce yields in 1964 (Table 2). #### LITERATURE CITED - Brown, Burton L. Soil Survey Pemiscot County Missouri. U.S.D.A., Soil Conservation Service in Cooperation with Mo. Agric. Exp. Sta. Feb. 1971, 1-48 pp. - 2. Buckman, Harry O., and Nyle C. Brady. 1969. The Nature and Properties of Soils. Collier-Macmillan Limited, London. 7th Ed. - 3. Graham, E. R. An Explanation of Theory and Methods of Soil Testing. Univ. of Mo. Agric. Exp. Sta. Bull. 734, July 1959, 1-20 pp. - Pierre, W. H., J. R. Webb and W. D. Shrader. Quantitative Effect of Nitrogen Fertilizer on the Development and Downward Movement of Soil Acidity in Relation to Level of Fertilization and Crop Removal in a Continuous Corn Cropping System. Agron. Jour. 63(2):291-7, Mar-Apr 1971. - 5. Sprague, Howard B. Hunger Signs in Crops. The Pennsylvania State University, University Park, Pennsylvaia. David McKay Company Inc., 3rd Ed. 1964. ### APPENDIX Table 1: Soil Test Results 5/ and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1963 | Soil Treatmen | <u> </u> | Lb/A | Exch | angeable | Lbs/A | | | Se | ed Cotton Y | ield-Lb/A ⁶ | |--|--|---|---|--|--|---|--|---|--|---| | Limestone | 0.M. | P205 | K | Mg. | Ca | N.A. | pHs | C,E,C, | lst Pick | Total | | None (1) None (2) None (3) 1/2 Tons (1) 2 Tons (2) 2 Tons (3) 4 Tons (2) 4 Tons (3) 8 Tons (1) 8 Tons (3) 8 Tons (3) 12 Tons (2) 12 Tons (3) 12 Tons (2) 12 Tons (3) | 2.23a-f
2.17c-g
2.27a-e
2.40a-d
2.50ab
2.57a
2.50ab
2.50ab
2.20b-g
2.20b-g
2.20b-g
2.13c-h
2.00e-h
1.87gh | 226b-g
232a-g
250a-e
243a-f
233a-f
279a
262abc
245a-e
245a-e
241a-e
177hi
185f-1 | 320b -e
337a -e
300cde
363a -e
330a -e
337a -e
347a -e
347a -e
353a -e
343a -e
353a -e
353a -e | 213c-g
207c-g
207c-g
253b-f
273a-e
293abc
200c-g
240b-f
293abc
240b-f
253b-f
280a-d
253b-d
200c-g
273a-e | 3367b-g
3433b-g
3567b-g
3867ab
3833a-d
4000ab
3867abc
3833a-d
3933ab
3733a-4
4100ab
3600b-g
3633b-g
3637b-f | 2.50ab
2.33abc
2.17abc
2.17abc
2.17abc
2.30abc
2.50ab
2.00bc
2.00bc
2.33abc
2.17abc
2.33abc
2.17abc | 5.23b
5.27b
5.27b
5.27b
5.27b
5.23b
5.33ab
5.33ab
5.37ab
5.37ab
5.30ab
5.30ab
5.30ab
5.30ab | 12.00b-f
12.00b-f
12.50a-f
13.50a-f
13.17a-d
13.17a-d
13.83abc
13.50a-d
13.33a-d
13.83abc
12.83a-f
15.00a
14.17ab
12.67a-f
12.67a-f
13.00a-e | 2186a-d
1919fgh
2026def
2255ab
2305a
2303a
2212abc
2026def
2100b-f
2102b-e
201a-d
204c-f
2224abc
226ab
2222abc | 2821ghi
2752hi
2841ghi
2930e-h
3106b-e
3193ab
2968c-g
2900fgh
3142abc
2968c-g
3149abc
3101b-e
2968c-g
3198ab | | 2/1 Ton (1) 1 Ton (2) 1 Ton (3) 2 Tons (1) 2 Tons (2) 2 Tons (3) 4 Tons (4) 4 Tons (2) 4 Tons (3) | 1.93e-h
2.07d-h
1.93e-h
1.83h
1.80h
1.90fgh
2.37a-d
2.27a-e
2.07d-h | 205d-1
216c-i
219c-i
174i
175hi
184ghi
244a-e
247a-e
200e-i | 297de
327a-e
340a-e
330a-e
353a-e
350a-e
403a
380ab
370a-d | 307ab
253b-f
213c-g
293abc
207c-g
220b-g
173fg
180efg
140g | 2967c-g
2800efg
2867efg
2700g-g
2900d-g
2767fg
3367b-g
3333b-g
3333b-g | 2.17abc
2.00bc
2.00bc
1.83c
2.00bc
2.00bc
2.17abc
2.00bc
2.33abc | 5.27b
5.50a
5.23b
5.33ab
5.30ab
5.33ab
5.30ab
5.33ab
5.30ab | 11.17d-f
10.33f
10.50ef
10.33f
10.50ef
10.33f
11.83b-f
11.67b-f
11.50c-f | 2189a-d
2049c-f
1990efg
2219abc
1962e-h
2094b-f
1827gh
1980efg
1796h | 2917e-h
3058b-f
3124a-d
2948d-g
2986c-g
3126a-d
2573j
2752hi
2688ij | | 500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.93e-h
1.93e-h
1.87gh | 223b-h
219c-i
210d-i | 290e
303b-e
293de | 353a
260a-f
287abc | 2767fg
2767fg
2833efg | 2.17abc
2.00bc
1.83c | 5.30ab
5.37ab
5.43ab | 11.00d-f
10.33f
10.33f | 2184ad
2339a
2349a | 2846ghi
3083b-f
3305a | | in. LSR,LSD
lax. LSR | 0.31 | 41.5
49.5 | 64.8 | 83.8
100.0 | 808.3
964.5 | 0.50 | 0.17 | 2.18 | 155.6
185.7 | 164.3
196.0 | | C.V. % | 8.5 | 11.1 | 11.4 | 20.6 | 14.0
LIMESTONE | 13.5 | 2.0 | 10.7 | 4.4 | 3.3 | | None | 2.22ab | 236a | 319ab | 202ab | 3456ab | 2.44a | 5.27a | 12.17a | 2043ab | 2804a | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.44ab
2.52a
2.18ab
2.00ab | 236a
271a
242a
183a | 352ab
346ab
351ab
344ab | 273a
244ab
253ab
242ab | 3933ab
3878ab
4156a
3633ab | 2.22a
2.49a
2.11a
2.33a | 5.26a
5.30a
5.36a
5.29a | 13.50ab
13.56ab
14.00a
12.72ab | 2288a
2112ab
2122ab
2235ab | 3076a
3003a
3073a
3121a | | 1 Ton2/
2 Tons
4 Tons | 1.98ab
1.84ab
2.23ab | 213a
178a
230a | 321ab
344ab
384a | 258ab
240ab
164b | 2878b
2789b
3344ab | 2.06a
1.94a
2.17a | 5.33a
5.32a
5.31a | 10.67b
10.39b
11.67ab | 2076ab
2092ab
1868b | 3033a
3020a
2671a | | 500 Lbs.3/ | 1.91ab | 217a | 296b | 300a | 2789ь | 2.00a | 5.37a | 10.56b | 2291a | 3078a | | in. LSR,LSD
ax. LSR | 0.59 | 96.1
109.2 | 60.0
68.2 | 91.5
104.0 | 1081.0 | 0.48 | 0.13 | 2.94 | 355.1
403.6 | 470.2
534.4 | | C.V. % | 27.7 | 43.1 | 17.7 | 37.8 | 31.5 | 21.8 | 2.5 | 24.2 | 16.7 | 15.7 | | | | | | | NITROGEN | MEANS | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 2.16a
2.17a
2.11a | 223a
225a
220a | 336a
347a
336a | 254a
229a
243a | 3370a
3463a
3452a | 2.20a
2.14a
2.24a | 5.29a
5.33a
5.31a | 12.07a
12.11a
12.22a | 2155a
2116a
2105a | 2882c
2998b
3080a | | in. LSR,LSD | 0.10 | 13.8 | 21.6 | 27.9 | 269.4
283.3 | 0.17
0.17 | .058 | 0.73 | 51.9
54.6 | 54.8
57.6 | | C.V. % | 8.5 | 11.1 | 11.4 | 20.6 | 14.0 | 13.5 | 2.0 | 10.7 | 4.4 | 3.3 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime
(less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. ^{4/} Fertilizer applied annually (N+P2O5+K2O). ^{5/} Soil samples obtained before limestone applications. ^{6/} Yields obtained after limestone applications. ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. | Table 2: Soil | Test Results and | Seed Cotton Yie | ds on a Tiptonville | Silt Loam Soil 1964 | |---------------|------------------|-----------------|---------------------|---------------------| |---------------|------------------|-----------------|---------------------|---------------------| | | · % | Lb/A | Pych | angeable | The/A | | | | Seed Cotton | Vield-Ib/A | |---|---|--|---|---|--|---|---|---|--|---| | Soil Treatmer
Limestone | 0.M. | P ₂ 0 ₅ | K | Me. | Са | N.A. | pHs | C.E.C. | 1st Pick | Total | | None (1)
None (2)
None (3) | 1.83b-h
2.00a-f
1.77b-h | 244abc
251abc
192abc | 357b-e
350b-e
377abc | 233a-e
180cde
287a | 2967hi
2900hi
2900hi | 2.00ab
2.50a
1.83abc | 5.27mn
5.17n
5.33mn | 10.83g-j
10.83g-j
10.83g-j | 1661ab
1496b-f
1014k1 | 1977ab
1908abc
1470f | | 1/2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3)
8 Tons (1)
8 Tons (2)
8 Tons (3)
12 Tons (1)
12 Tons (2)
12 Tons (2) | 2.07a-d
2.13ab
2.17ab
2.17ab
2.33a
2.17ab
2.10abc
2.13ab
1.77b-h
1.80b-h
1.53gh | 268ab
211abc
231abc
295ab
295ab
279ab
263abc
209abc
213abc
213abc
197abc
258abc | 360a-e
327cde
357b-e
387ab
367a-d
353b-e
333b-e
343b-e
337b-e
350b-e
307e
320cde | 267ab
260abc
260abc
247a-e
260abc
240a-e
253a-d
233a-e
253a-d
253a-d
253a-d
250a-e
180cde | 3833efg
3400f-1
3467fgh
4133defg
433cde
5067c
4700cd
4967c
5200bc
5900ab
5967a | 2.00ab
1.67bcd
1.50b-e
1.00e-h
1.17d-g
1.17d-g
0.17ij
0.83fgh
0.67ghi
0.00j
0.00j
0.17ij | 5.80h-k
5.80h-k
5.73jk
6.17efg
5.97g-j
6.03t-i
6.63abc
6.47bcd
6.60abc
6.87a
6.73ab
6.70ab | 13.17c-f
11.67e-i
11.67e-i
12.83c-g
12.17d-h
13.67cde
14.33abc
14.00bcd
14.67abc
14.33abc
15.83ab
16.17a | 1649ab
1564a-d
1243htj
1554a-e
1457b-e
1187ijk
1480b-f
1363d-i
1149jkl
1564a-d
1424c-h
1215ij | 2038ab
2028ab
1748cde
1985ab
1921abc
1773cde
1921abc
1855bcd
1717de
2008ab
1034abc
1781cde | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (2)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 1.90b-g
1.67d-h
1.70c-h
1.47h
1.53gh
1.43h
1.90b-g
2.03a-e
1.80b-h | 141c
200abc
177bc
313a
264abc
272ab
308a
269ab
243abc | 317de
357b-c
333b-e
343b-e
340b-e
330b-e
413a
330b-e
340b-e | 227a-e
260abc
207a-c
193b-e
193b-e
187b-e
167e
173de
173de | 2867h1
2867h1
2767h1
3333f-1
3133gh1
3567fgh
3833efg
3900d-g
4000def | 1.33c-f
1.17d-g
1.33c-f
0.67ghi
0.67ghi
1.00e-h
0.83fgh
0.83fgh
0.50hi | 5.771jk
5.90g-k
5.87h-k
6.27def
6.27def
6.07fgh
6.27def
6.40cde
6.37cde | 9.831j
9.83ij
9.501j
1033h1j
9.83ij
11.00g-j
11.50f-j
11.67e-i | 1712a
1705a
1310f-j
1498b-f
1271g-j
9631
1478b-f
1437c-h
1129jkl | 2010ab
2064a
1850bcd
1916abc
1758cde
1447£
1880a-d
1898a-d
1641e | | 3/500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.60fgh
1.63e-h
1.67d-h | 229abc
184bc
175bc | 317de
310de
323cde | 213a-e
260abc
260abc | 2933hi
3100ghi
2567i | 1.17d-g
1.50b-e
1.50b-e | 5.67k1
5.33mn
5.471m | 9.83ij
10.67g-j
9.33j | 1621abc
1547a-e
1353e-i | 1982ab
2031ab
1868a-d | | Min. LSR,LSD
Max. LSR | 0.35 | 104.0
124.1 | 49.3
58.8 | 71.2
85.0 | 723.7
863.6 | 0.54 | 0.25 | 1.87 | 177.2
211.4 | 166.4
198.6 | | C.V. % | 11.2 | 26.1 | 8.5 | 18.8 | 11.4 | 29.5 | 2.5 | 9.4 | 7.5 | 5.3 | | | | | | | LIMESTONE | MEANS | | | | | | None | 1,87abc | 229ab | 361a | 233a | 2922e | 2.11a | 5.26h | 10.83cde | 1390ab | 1785a | | 2 Tons 1/4 Tons 8 Tons 12 Tons | 2.12ab
2.22a
2.00abc
1.64bc | 237ab
285a
228ab
229ab | 348a
369a
338a
326a | 262a
249a
247a
207a | 3567cde
4133c
4911b
5689a | 1.72ab
1.11b-e
0.56ef
0.06f | 5.78f
6.06de
6.57ab
6.77a | 12.17bcd
12.89bc
14.33ab
15.44a | 1485ab
1400ab
1331ab
1401ab | 1938a
1893a
1831a
1908a | | 1 Tons
2 Tons
4 Tons | 1.76abc
1.48c
1.91abc | 173b
283a
273a | 336a
338a
361a | 231a
191a
171a | 2833e
3344de
3911cd | 1.28bcd
0.78cde
0.72de | 5.84ef
6.20cd
6.34bc | 9.72e
10.39de
11.61cde | 1576a
1244b
1348ab | 1975a
1707a
1807a | | 500 Lbs.3/ | 1.63bc | 196b | 317a | 244a | 2867e | 1.39bc | 5.49g | 9.94de | 1507ab | 1960a | | Min. LSR,LSD
Max. LSR | 0.48 | 65.4
74.3 | 51.8
58.9 | 86.8
98.7 | 680.8 | 0.59 | 0.22 | 2.18 | 245.0
278.5 | 246.2
279.8 | | C.V. % | 25.7 | 27.6 | 15.1 | 38.4 | 17.9 | 54.8 | 3.4 | 18.3 | 17.4 | 13.2 | | 1.1 | | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 1.87a
1.90a
1.78a | 255a
230a
227a | 353¤
337¤
341¤ | 224a
227a
227a | 3796a
3748a
3848a | 1.02a
1.15a
1.07a | 6.08a
6.00a
6.02a | 11.89a
11.83a
12.06a | 1580a
1474b
1174c | 1969a
1933a
1700b | | Min. LSR,LSD
Max. LSR | 0.12 | 34.7
36.5 | 16.4
17.3 | 23.7 | 241.2
253.7 | 0.18 | .084 | 0.62 | 59.1
62.1 | 55.5
58.3 | | C.V. % | 11.2 | 26.1 | 8.5 | 18.8 | 11.4 | 29.5 | 2.5 | 9.4 | 7.5 | 5.3 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. ^{4/} Fertilizer applied annually (N+P205+K20). ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 3: Soil Test Results and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1965 | Soil Treatmen | _ | Lb/A | | angeable | | | | | Seed Cotton | | |--|---|---|---|--|--|--|---|---|---|--| | Limestone | 0.M. | P205 | K | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Total | | None (1)
None (2)
None (3) | 2.23a-f
2.17b-h
2.27a-e | 227h-k
234£-k
236£-k | 417a-f
423a-e
450ab | 273a
273a
273a | 29671
29671
3233jk1 | 2.67a
2.83a
2.83a | 5.43a
5.33hij
5.37ij | 11.67g-k
11.83f-k
12.67c-1 | 2548h-1
2617f-1
2726b-k | 2777 fgh
2864d - h
3050a - f | | 1/2 Tons (1) 2 Tons (3) 2 Tons (3) 4 Tons (1) 4 Tons (1) 4 Tons (3) 8 Tons (1) 8 Tons (2) 8 Tons (3) 12 Tons (1) 12 Tons (2) 12 Tons (2) | 2.40a-d
2.50ab
2.43abc
2.57a
2.50ab
2.50ab
2.20b-g
2.20b-g
2.13c-1
2.00e-1
2.13c-1
1.87gh1 |
241e-k
253c-j
257c-i
284a-d
282a-d
296ab
263b-h
286abc
301a
241e-k
254c-j
211k | 427a-e
453a
410a-f
420a-f
413a-f
447abc
377ef
433a-d
410a-f
387def
367f | 273a - d
253a - d
253a - d
260abc
227d - g
213fg
233c - g
220e fg
207g
240b - f | 3833e-i
4033e-h
3633g-j
4233c-f
4167d-g
4367b-e
4867ab
4633a-d
4607a
4800abc
4767abc | 2.00bc
1.67cde
2.00bc
1.33d-g
1.67cde
1.067cde
1.083gh
0.83gh
0.17i
0.50i
0.83gh | 5.90efg
6.07b-e
5.80e-h
6.13b-e
6.13b-e
6.13b-e
6.50bc
6.50bc
6.50bc
6.60abc
6.87a
6.73ab
6.63abc | 13.17a-f
13.50a-d
12.67c-i
13.33a-e
13.67abc
13.50a-d
13.33a-e
14.33a
14.00abc
14.00abc
13.67abc
14.17ab | 2645d-1
2818a-h
2879a-f
2489k1
2510jk1
2503a-i
2703c-1
2831a-g
2775a-j
2923abc
2968abc
2945abc | 2864d-h
3040b-f
3188abc
2693gh
2810e-h
3093a-e
2915c-g
3065a-f
3129a-d
3269ab
3246ab | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 1.93e-1
2.07d-1
1.93e-1
1.83hi
1.801
1.90f-1
2.37a-d
2.27a-e
2.07d-1 | 240e-k
248d-j
2211jk
219jk
2231jk
230g-k
267a-g
275a-e
269a-f | 393c-f
410a-f
407a-f
397b-f
393c-f
410a-f
397b-f
407a-f
417a-f | 247a-e
240b-f
220efg
247a-e
233c-g
247a-e
227d-g
213fg
220efg | 3033kl
3233jkl
2967l
3333i-1
3434i-1
3667f-j
4167d-8
3633g-j | 2.00bc
2.00bc
2.00bc
1.50c-f
1.33d-g
1.33d-g
1.7efg
1.83bcd | 5.67g-j
5.80e-h
5.53j
6.00b-g
6.03b-f
6.10b-e
6.07b-e
6.33cd
5.97efg | 11.00jk
11.50h-k
10.67k
11.33ijk
11.33ijk
11.33ijk
12.00e-k
13.00a-g
12.17d-j | 2627f-1
2609f-1
3009a
2609f-1
2912a-d
2943abc
24331
2563g-1
25301-1 | 2810e-h
2826d-h
3356a
2818e-h
3175abc
3241ab
2602h
2816e-h
2770fgh | | 500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.93e-i
1.93e-i
1.87ghi | 220jk
229h-k
225ijk | 367f
393c-f
407a-f | 247a-e
273a
267ab | 33671-1
3567h-k
3233jk1 | 2.33ab
2.33ab
2.33ab | 5.67g-j
5.70f-i
5.70f-i | 12.17d-j
12.83b-h
11.83f-k | 2632e-1
2905a-e
2999ab | 2831d-h
3195abc
3328ab | | in. LSR,LSD
(ax. LSR | 0.31 | 31.2
37.2 | 45.4
54.1 | 27.4
32.7 | 506.6 | 0.54 | 0.31
Q.37 | 1.19 | 235.0
280.4 | 264.0
315.0 | | C.V. % | 8.5 | 7.5 | 6.6 | 6.8 | 7.9 | 19.4 | 3.0 | 5.6 | 5.1 | 5.3 | | | | | | | LIMESTONE | MEANS | | | | | | None | 2.22ab | 2324 | 430a | 273a | 3056e | 2.78a | 5.384 | 12.06b-d | 2630a | 2897a | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.44ab
2.52a
2.18ab
2.00ab | 250a
287a
283a
235a | 430a
427a
407ab
374b | 260a
238a
222a
218a | 3833cd
4211bc
4622ab
4878a | 1.89bc
1.56cd
0.89de
0.50e | 5.92bc
6.11b
6.53a
6.74a | 13.11abc
13.50ab
13.83a
13.94a | 2781a
2601a
2770a
2946a | 3030a
2866a
3026a
3215a | | 1 Ton2/
2 Tons
4 Tons | 1.98ab
1.84b
2.23ab | 236a
224a
270a | 403ab
400ab
407ab | 236a
242a
220a | 3078e
3400de
3822cd | 2.00bc
1.39cd
1.44cd | 5.67
6.04b
6.12b | 11.06d
11.39cd
12.39a-d | 2748a
2821a
2509a | 2997 <i>a</i>
3078 <i>a</i>
2729 <i>a</i> | | 500 Lbs.3/ | 1.91ab | 225a | 389ab | 262a | 3389de | 2.33ab | 5.69c | 12.28a-d | 2845a | 3118a | | in. LSR,LSD
ax. LSR | 0.59 | 66.1
75.2 | 44.6
50.7 | 58.4 | 573.5
651.8 | 0.66 | 0.25 | 1.57 | 489.4
556.3 | 510.0
579.7 | | C.V. % | 27.7 | 26.5 | 11.0 | 24.2 | 15.1 | 40.0 | 4.1 | 12.5 | 17.9 | 17.0 | | | | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 2.16a
2.17a
2.11a | 245a
254a
249a | 397b
411ab
414a | 244a
239a
241a | 3763ab
3922a
3744b | 1.59a
1.59a
1.74a | 6.03a
6.06a
5.98a | 12.44b
12.87a
12.54ab | 2623c
2748b
2846a | 2827c
3010b
3148a | | in. LSR,LSD | 0.10 | 10.4 | 15.1
15.9 | 9.1 | 168.9
177.6 | 0.18
0.19 | 0.10 | 0.40 | 78.3
82.4 | 88.0
92.5 | | C.V. % | 8.5 | 7.5 | 6.6 | 6.8 | 7.9 | 19.4 | 3.0 | 5.6 | 5.1 | 5.3 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. ⁴/ Fertilizer applied annually (N+P₂0₅+K₂0). ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 4: Soil Test Results and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1966 | Soil Treatment % | Lb/A | Exche | angeable | Lbs/A | | | | Seed Cotton | Yield-Lb/ | |---|---|--|---|--|---|---|--|---|--| | Limestone O.M. | P ₂ 0 ₅ | K | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Total | | None (1)
None (2)
None (3) | 284fg
313b-f
298d-g | 457a-d
447a-f
467ab | 260abc
260abc
253a-d | 2767fgh
2733fgh
2833fgh | 2.50bc
3.00a
2.83aა | 5.30j
5.17j
5.17j | 11.00f-j
11.33e-h
11.67c-g | 1544abc
1236f-1
1249e-1 | 2171abc
2018a-h
2046a-h | | 1/2 Tons (1) 2 Tons (2) 2 Tons (3) 4 Tons (3) 4 Tons (2) 4 Tons (3) 8 Tons (3) 8 Tons (1) 8 Tons (3) 12 Tons (2) 12 Tons (2) | 320a~e 331a-d 324a-e 339abc 326a-e 352a 348ab 339abc 328a-e 313a-d 316a-f | 463abc
487a
487a
443a-f
460a-e
447a-f
440b-g
427b-g
423b-g
423b-g
397g | 267ab
253a~d
273a
247a-e
220e-h
240b-f
200ghi
200ghi
213fgh
1801
193hi
193hi | 3500cd
3500cd
3467cd
3967b
3867b
4367a
4367a
4367a
4300a
4533a
4367a | 2.67ab
2.00cd
2.50bc
1.17fg
1.67def
0.83g
1.00g
1.00g
0.33h
0.17h
0.33h | 5.67gh
5.90def
5.67gh
6.07d
6.03d
6.60abc
6.53bc
6.47c
6.80a
6.80a
6.70ab | 13.17a
12.33a-e
12.83ab
12.83ab
12.50a-d
13.33a
13.00a
13.33a
13.00a
12.67abc
12.50a-d | 1592a
1470a-g
1371a-h
1475a-f
1271d-i
1157hi
1358a-h
1279d-i
10961
1350a-h
1317b-i
1279d-i | 2235a
2235a
2168abc
2143a-d
1924d-h
1888e-h
1965c-h
1835h
1600i
1692b-h
2010a-h
2079a-f | | 27
1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 294d-g
279fg
273g
305c-g
292efg
292efe
324a-e
292efg | 447a-f
420c-g
467ab
433b-g
453a-e
463abc
447a-f
437b-g
420c-g | 247a-e
220e-h
240b-f
220e-h
227d-g
233c-f
193hi
200ghi
213fgh | 2800 fgh
2567h
2600 gh
2900 fg
2967 ef
2967 ef
3233 de
3333 d
2967 ef | 2.17cd
2.00cd
2.17cd
1.83de
1.33efg
1.33efg
1.33efg
1.33efg | 5.53h
5.471
5.401
5.90def
5.80efg
5.70fgh
6.07d
6.00de
5.97de | 10.67g-k
9.83k
10.171jk
10.50h-k
10.171jk
10.83f-k
10.67g-k
11.17f-i
10.00jk | 1564ab
1220ghi
1254e-i
1506a-d
1152hi
1177hi
1580a
1437a-g
1493a-e | 2184abc
1954c-h
2077a-g
2163abc
1847gh
1850fgh
2128a-d
2061a-h
2179abc | | 500 Lbs. (1)
500 Lbs. (2)
500 Lbs. (3) | 294d-g
341abc
284fg | 410efg
430b-g
417d-g | 227d-g
247a-e
247a-e | 3367cd
3433cd
3467cd | 1.67def
1.67def
1.67def | 5.97de
5.90def
5.90def | 11.50d-h
11.83b-f
11.83b-f | 1539abc
1353a-h
1302c-i | 2110a-e
2158abc
2207ab | | in. LSR,LSD
ax. LSR | 31.2
37.2 | 39.0
46.6 | 24.5 | 288.7
344.5 | 0.45 | 0.19 | 0.93 | 212.0
253.0 | 196.5
234.5 | | C.V. % | 5.9 | 5.3 | 6.4 | 5.0 | 16.4 | 1.9 | 4.7 | 9.3 | 5.7 | | | | | | LIMESTON | MEANS | | | | | | None | 298ab | 457ab | 258a | 2778de | 2.78a | 5.21g | 11.33bc | 1343a | 2078ab | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 325ab
335a
346a
325ab | 479a
452ab
438bc
409c | 264a
236ab
204bc
189c | 3489bc
3833b
4344a
4500a | 2.39a
1.50bcd
0.94d
0.28e | 5.74e
6.07c
6.53b
6.77a | 12.78ab
12.89ab
13.22a
12.72ab | 1478a
1301a
1244a
1316a | 2213a
1985ab
1800b
2024ab | | 1 Ton2/
2 Tons
4 Tons | 282b
296ab
314ab | 444abc
450ab
434bc | 236ab
227abc
202bc | 2656e
2944de
3178cd | 2.11ab
1.67bc
1.33cd | 5.47f
5.80de
6.01cd | 10.22c
10.50c
10.61c | 1346a
1278a
1503a | 2072ab
1953ab
2122ab | | 500 Lbs.3/ | 306ab | 419bc | 240ab | 3422bc | 1.67bc | 5.92cde | 11.72abc | 1398a | 2158ab | | in. LSR,LSD
ax. LSR |
45.0
51.2 | 34.5
39.2 | 40.6 | 438.7
498.7 | 0.64 | 0.20 | 1.45 | 287.2
326.4 | 344.6
391.7 | | C.V. % | 14.3 | 7.8 | 17.8 | 12.7 | 39.2 | 3.4 | 12.4 | 21.2 | 16.9 | | 4.1 | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 316a
322a
305b | 441s
442s
444s | 227a
224b
234a | 3500¤
3456a
3426a | 1.61a
1.57a
1.70a | 5.99a
5.96a
5.89b | 11.81a
11.69a
11.83a | 1501a
1304b
1264b | 2120a
2005b
2010b | | iin. LSR,LSD
ax. LSR | 10.4 | 13.0
13.7 | 8.2 | 96.2
101.2 | 0.15
0.16 | .064 | 0.31
0.32 | 70.7
74.3 | 65.5 | | C.V. % | 5.9 | 5.3 | 6.4 | 5.0 | 16.4 | 1.9 | 4.7 | 9.3 | 5.7 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. ^{4/} Fertilizer applied annually (N+P205+K20). ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 5: Soil Test Results and Seed Cotton Yields on Tiptonville Silt Loam Soil 1967 | Soil Treatmen | t % | Lb/A | Exch | angeable | Lbs/A | | | | Seed Cotton | Yield-Lb/A | |---|---|--|---|--|--|--|---|---|--|---| | Limestone | O.M. | P205 | K | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Total | | None (1)
None (2)
None (3) | 2.23d-g
2.27c-f
2.33a-e | 331ijk
348f-k
330ijk | 470bcd
513ab
517ab | 220abc
233ab
240a | 3133ghi
3167ghi
3167ghi | 2.17bc
2.83a
2.83a | 5.501
5.23jk
5.17k | 11.50efg
12.33a-f
12.33a-f | 1819ab
1814ab
2324a | 2308abc
2357ab
2846a | | 1/2 Tons (1) 2 Tons (2) 2 Tons (2) 2 Tons (3) 4 Tons (1) 4 Tons (2) 4 Tons (3) 8 Tons (1) 8 Tons (2) 8 Tons (2) 12 Tons (1) 12 Tons (2) 12 Tons (3) | 2.30b-f
2.30b-f
2.50a-d
2.57ab
2.60a
2.57ab
2.33a-e
2.53abc
2.23d-g
1.97ghi
2.03f-i | 358d -k
354e -k
354e -k
382a -f
376a -g
399ab
406a
395abc
395abc
393a -d
375a -g | 507 abc
530 ab
517 ab
463 bcd
463 bcd
517 ab
467 bcd
510 abc
527 ab
437 de
470 bcd
470 bcd | 240a
220abc
240a
213abc
207bcd
200cde
173ef
207bcd
173ef
167f
167f | 3700b-e
3933bcd
3533d-g
4000bc
3933bcd
4000bc
4567a
4700a
4500a
4867a
4900a
4500a | 1.83c-f
1.67def
2.50de
1.33fgh
1.50efg
1.33fgh
0.50i-1
0.33jkl
0.67ijk
0.001
0.001 | 5.80gh
5.83gh
5.8711
6.07efg
6.00fg
6.70bc
6.67bc
6.50cd
7.07a
7.03a
6.87ab | 12.67a-e
13.00abc
12.83a-d
12.83a-d
13.00abc
13.17ab
13.50a
13.33a
13.33a
13.50a
12.67a-e | 1722b
1962ab
1740b
1814ab
1796ab
1575b
1514b
1595b
1432b
1559b
1554b | 2176bc
2370ab
2156bc
2237bc
2273bc
2038bc
1886bc
1906bc
1743c
1962bc
1967bc
1855bc | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 1.93hij
2.13e-h
2.03f-i
1.90hij
1.97ghi
2.10e-i
2.17e-h
2.33a-e
2.37a-e | 324k
343g-k
350f-k
333h-k
341g-k
328jk
367b-h
361c-j
388a-e | 447cd
493a-d
543a
463bcd
523ab
530ab
467bcd
490a-d
503abc | 220abc
220abc
213abc
213abc
207bcd
220abc
180def
213abc
200cde | 3000hi
3000hi
2867i
3267f-i
3200ghi
3167e-g
3633c-f
3400e-h | 2.00b-e
2.00b-e
2.33abc
1.50efg
1.33fgh
2.00b-e
1.50efg
1.33fgh
2.00b-e | 5.53i
5.57hi
5.401jk
5.83gh
5.83gh
5.63hi
5.93fg
6.03fg
5.57hi | 11.00g
11.17fg
11.00g
11.00g
10.83g
11.50efg
11.50efg
11.83c-g
11.83c-g | 1817ab
1651b
1666b
1779ab
1580b
1536b
1722b
1661b
1603b | 2280bc
2196bc
2283bc
2168bc
2013bc
1906bc
2010bc
2005bc
1919bc | | 3/500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.67j
1.83ij
2.03f-i | 365b-1
326jk
324k | 373f
383ef
467bed | 207bcd
200cde
227abc | 3733b-e
4067b
3733b-e | 1.00ghi
0.50i-1
0.83hij | 6.30de
6.47cd
6.20ef | 11.67d-g
12.00b-g
11.67d-g | 1725b
1817ab
1626b | 2148bc
2352ab
2194bc | | Min. LSR,LSD
Max. LSR | 0.25 | 30.3 | 56.2
67.0 | 26.0
31.0 | 371.5
443.2 | 0.47
0.56 | 0.24 | 1.03
1.23 | 485.5
579.3 | 491.2
586.2 | | C.V. % | 6.9 | 5.0 | 6.9 | 7.5 | 5.9 | 19.7 | 2.4 | 5.0 | 17.0 | 13.7 | | | | | | | LIMESTONE | MEANS | | | | | | None | 2.28sb | 336b | 500a | 231a | 3156cd | 2.61a | 5.30g | 12.06abc | 1986a | 2504a | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.37ab
2.58a
2.37ab
1.99bc | 356ab
373ab
400a
385ab | 518a
491a
501a
459ab | 233a
207ab
184bc
167c | 3722b
3978b
4589a
4756a | 2.00b
1.39c
0.50de
0.06e | 5.70ef
6.02d
6.62b
6.99a | 12.83ab
12.89ab
13.33a
13.17ab | 1808ab
1728ab
1514b
1530b | 2234ab
2183ab
1845b
1928b | | 1 Ton2/
2 Tons
4 Tons | 2.03bc
1.99bc
2.29ab | 339b
334b
372ab | 494a
506a
487a | 218ab
213ab
198abc | 2956d
3211cd
3500bc | 2.11ab
1.61bc
1.61bc | 5.50fg
5.77e
5.84de | 11.06c
11.11c
11.72bc | 1711ab
1632ab
1662ab | 2253ab
2029ab
1978b | | 500 Lbs.3/ | 1.84c | 338ь | 408Ь | 211ab | 3844Ь | 0.78d | 6.32c | 11.78bc | 1722ab | 2231ab | | Min. LSR,LSD
Max. LSR | 0.37 | 47.3
53.8 | 69.6
79.1 | 35.8
40.7 | 452.9
514.8 | 0.53 | 0.24 | 1.35 | 353.7
402.0 | 465.9
529.6 | | C.V. % | 16.9 | 13.2 | 14,4 | 17.3 | 12.1 | 37.6 | 4.0 | 11.0 | 20.8 | 21.9 | | | | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 2.12b
2.21a
2.24a | 361a
359a
358a | 455c
490b
510a | 204a
208a
209a | 3748ab
3837a
3652b | 1.31b
1.28b
1.63a | 6.08a
6.07a
5.87b | 12.07a
12.33a
12.24a | 1719a
1715a
1664a | 2131a
2160a
2104a | | Min. LSR,LSD
Max. LSR | .084 | 10.1 | 18.7
19.7 | 8.7
9.1 | 123.8
130.2 | 0.16
0.16 | .080 | 0.34 | 161.8
170.2 | 163.7
172.2 | | C.V. % | 6.9 | 5.0 | 6.9 | 7.5 | 5.9 | 19.7 | 2.4 | 5.0 | 17.0 | 13.7 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. $[\]frac{-}{4}$ / Fertilizer applied annually (N+P₂0₅+K₂0). ³⁸ pounds of nitrogen per acre. 63 pounds of nitrogen per acre. ^{(3) 113} pounds of mitrogen per acre. Table 6: Soil Test Results and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1968 | Soil Treatmen | | Lb/A | | angeable | | | | | Seed Cotton | | |--|---|--|--|--|---|---|--|--|--|--| | Limestone | 0.M, | P205 | Κ | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Total_ | | None (1)
None (2)
None (3) | 2.33a-f
2.30a-f
2.27a-f | 317cd
349a-d
382ab | 563a-d
577a-d
613a | 227a
257a
217a | 3367efg
3667d-g
3833c-g | 2.50a
2.50a
2.33ab | 5.50hi
5.43i
5.60ghi | 12.60a-d
13.47a-d
13.60a-d | 20331
2186e-i
2181e-i
 2413j
2660hij
2762e-1 | | 1/2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3)
8 Tons (1)
8 Tons (3)
12 Tons (3)
12 Tons (1)
12 Tons (2)
12 Tons (3) | 2.20b-f
2.33a-f
2.37a-e
2.63ab
2.40a-d
2.73a
2.23b-f
2.53abc
2.23b-f
1.90ef
2.00def | 341a-d
337a-d
307d-d
345a-d
345a-d
351a-d
355a-d
353a-d
355a-d
358a-d | 590abc
577a-d
5573a-d
543b-e
590abc
553a-d
567a-d
563a-d
563a-d
533b-e
530be
533b-e | 233a
247a
280a
233a
237a
227a
233a
267a
187a
200a
177a
213a | 3500e fg
3533d -g
2833g
4000b - f
4033b - f
4633a - d
4200a - e
3967b - f
4633a - d
4467a - e
5233a
5000ab | 2.33ab
2.33ab
2.50a
1.67a-e
1.50a-e
1.7b-f
1.50a-e
0.50fg
0.83c-g
0.17fg | 5.57ghi
5.60ghi
5.63f-i
6.03c-i
6.07c-h
6.17c-g
6.30e-e
6.03c-i
6.60abc
6.80ab
6.87a | 12.83a-d
12.17a-d
11.47a-d
13.43a-d
13.50a-d
14.13abc
13.37a-d
13.23a-d
13.60a-d
13.50a-d
14.67a
14.10abc | 2255d-1
2474a-e
2395a-g
2064hi
2176e-1
2260c-i
2171e-i
2339b-1
2171e-i
2105ghi
2359b-h | 2739f-1
2956b-h
2996b-8
2627j
2808e-1
2928c-1
2749f-1
2956b-h
2943b-1
2777e-1
2813e-1
3017b-f | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 1.93def
1.93def
1.93def
2.03def
2.03def
1.87f
2.23b-f
2.27a-f
2.10c-f | 305d
343a-d
347a-d
341a-d
335bcd
349a-d
364abc
383ab | 533b-e
567a-d
577a-d
527cde
553a-d
527cde
573a-d
527cde
567a-d | 247a
230a
277a
260a
240a
203a
240a
200a
207a | 3533d-g
3600d-g
3600d-g
3400efg
3033fg
3600d-g
3067fg
4000b-f
3633d-g | 2.17ab
2.00abc
2.00abc
2.00abc
2.00abc
1.33a-e
2.00abc
1.17b-f
1.83a-d | 5.63f-i
5.63f-i
5.60ghi
5.80e-i
5.63f-i
6.03c-i
5.60ghi
6.17c-g
5.90d-i | 12.70a-d
12.70a-d
12.90a-d
12.50a-d
11.30d
11.87bcd
11.40d
12.67a-d
12.47a-d | 2298b-1
2561abc
2691a
2461a-f
2579ab
2693a
2100gh1
2173e-1
2163f-1 | 2742f-1
3119a-d
3371a
2854d-1
3129a-d
3221ab
2561j
2709ghi
26501j | | 500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 2.07c-f
1.97dof
1.90ef | 384ab
368abc
355a-d | 530b-e
553a-d
490e | 243a
187a
200a | 4400a-e
4867abc
4400a-e | 1.17b-f
0.67d-g
0.83c-g | 6.23b-f
6.47a-d
6.30a-e | 13.83a-d
14.33ab
13.33a-d | 2222d-1
2512a-d
2461a-f | 26471j
3047b-e
3147abc | | In LSR,LSD
Bx. LSR | 0.40 | 43.9
52.3 | 54.0
64.5 | 90.2
107.6 | 947.8
1131.0 | 1.01 | 0.52 | 2.24 | 260.2
310.5 | 251.7
300.4 | | C.V. % | 11.0 | 7.5 | 5.8 | 23.5 | 14.4 | 38.0 | 5.2 | 10.3 | 6.7 | 5.2 | | | | | | | LIMESTONE | MEANS | | | | | | None | 2.30ab | 350a | 584a | 233a | 3622bc | 2.448 | 5.51d | 13.22a | 2134a | 2612a | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.30ab
2.59a
2.33ab
2.03b | 328a
346a
358a
366a | 574a
576a
561a
529a | 253a
232a
229a
197a | 3289c
4222abc
4267ab
4900a | 2.39a
1.61ab
1.06bc
0.33c | 5.60d
6.09bc
6.31ab
6.63a | 12.16a
13.69a
13.40a
14.09a | 2375a
2167a
2275a
2212a | 2897a
2788a
2883a
2869a | | 1 Ton2/
2 Tons
4 Tons | 1.93b
1.98b
2.20ab | 332a
342a
365a | 559a
536a
556a | 251a
234a
216a | 3578bc
3344bc
3567bc | 2.06a
1.78ab
1.67ab | 5.62d
5.82cd
5.89cd | 12.77a
11.89a
12.18a | 2517a
2578a
2145a | 3077a
3068a
2640a | | 500 Lbs.3/ | 1.98b | 369a | 524a | 213a | 4556a | 0.89bc | 6.33ab | 13.83a | 2399a | 2947a | | in. LSR,LSD | 0.48 | 43.8 | 67.2
76.4 | 54.1
61.5 | 846.1
961.7 | 0.86 | 0.38 | 2.27 | 490.5
557.5 | 508.0
577.5 | | C.V. % | 21.9 | 12.5 | 12.1 | 23.7 | 21.6 | 54.2 | 6.3 | 17.4 | 21.2 | 17.7 | | | | | | | NITROGEN | MEANS | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 2.17a
2.22a
2.16a | 343b
350a
359a | 550a
559a
557a | 235a
227a
224a | 3770a
3993a
4019a | 1.76a
1.56a
1.43a | 5.88b
5.98a
6.08a | 12.91a
13.11a
13.05a | 2197b
2345a
2391a | 2679c
2911b
3004a | | in. LSR,LSD | 0.13 | 14.6 | 18.0
18.9 | 30.1 | 315.9 | 0.34 | 0.17 | 0.75 | 86.8
91.2 | 83.9 | | C.V. % | 11.0 | 7.5 | 5.8 | 23.5 | 14.4 | 38.0 | 5.2 | 10.3 | 6.7 | 5.2 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. ^{4/} Fertilizer applied annually (N+P205+K20). ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 7: Soil Test Results and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1969 | Soil Treatmen | t % | Lb/A
P205 | Exch | angeable | Lbs/A | | | | Seed Cotton | Yield-Lb/A | |--|---|---|--|--|---|--|---|--|--|--| | Limestone | O.M. | P205 | K | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Total | | None (1)
None (2)
None (3) | 2.10c-f
2.13c-f
2.47abc | 213c-f
235a-f
245a-d | 365b-f
397b-e
350c-h | 347ab
343ab
303a-e | 3367d-h
3167fgh
3200fgh | 2.83ab
3.00a
3.00a | 5.43mn
5.43mn
5.33n | 13.20a-h
12.87a-i
12.70a-j | 1809ij
1954e-j
1934f-j | 2232k
2464e - j
2576c - h | | 1/2 Tons (1) 2 Tons (2) 2 Tons (3) 4 Tons (1) 4 Tons (1) 4 Tons (3) 8 Tons (1) 8 Tons (2) 8 Tons (3) 12 Tons (3) 12 Tons (2) 12 Tons (2) | 2.40a-d
2.43abc
2.57ab
2.57ab
2.73a
2.63a
2.10c-f
2.23b-e
1.97e-h
1.60h
1.63h
1.70gh | 242a-e
235a-f
250ab
260a
252ab
242a-e
257ab
243a-e
203f
203f
213c-f | 313e-h
353c-g
337d-h
417abc
453a
433ab
317e-h
373b-e
293fgh
278h
283gh
293fgh | 300a-e
290b-g
260c-h
250d-h
220gh
237e-h
223gh
230fgh
207h
220gh
223gh
210h | 3633c-g
3733c-f
3500d-h
4367abc
4300abc
4500ab
4333abc
4667ab
3967b-e
4733a
4100a-d | 2.33bcd
2.33bcd
2.33bcd
1.83def
1.83def
1.17g
1.17a
0.83g
0.83g
0.83g | 5.73f-j
5.70g-j
5.631-1
5.97d
5.97d
5.97d
6.37abc
6.23c
6.33bc
6.43ab
6.53a
6.50ab | 13.07a-1
13.37a-g
12.57a-j
14.33a
14.07abc
14.13ab
13.77a-e
13.60a-f
14.10ab
12.03d-k
13.97a-d
12.33b-j | 2066b-h
2107b-g
2209ab
1929f-j
1962d-j
2072b-h
2021b-h
2176abc
1880h1j
2000c-h
2128b-f
2214ab | 2484e-j
2637b-8
2805ab
2367h-k
2520d-1
2673b-e
2540d-h
2731a-d
2637b-g
2449f-j
2675b-e
2803ab | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons (1)
2 Tons (2)
2 Tons (3)
4 Tons (1)
4 Tons (2)
4 Tons (3) | 1.83fgh
1.87e-h
1.80fgh
1.70gh
1.87e-h
1.87e-h
2.03d-g
2.03d-g
2.03d-g | 205f
215c-f
208ef
202f
208ef
212def
248abc
248abc
235a-f | 347c-h
308e-h
347c-h
317e-h
310e-h
293fgh
340d-h
360c-f
343d-h | 313abc
293b-f
363a
270c-h
240e-h
240e-h
240e-h
220gh
203h | 3033fgh
3400d-h
3200fgh
2933gh
3167fgh
3133fgh
3500d-h
3433d-h
2833h | 2.67abc
2.83ab
2.83ab
2.00de
2.00de
2.00de
1.67ef
1.67ef
2.00de | 5.50k-n
5.471-n
5.471-n
5.90def
5.93de
5.83d-h
5.87d-g
5.97d
5.83d-h | 12.00e-k
12.97a-i
12.83a-i
10.87ik
11.33h-k
11.23ijk
11.90e-k
11.57g-k
10.40k | 18271j
2122b-f
2036b-f
1998c-1
2186abc
2344a
1768j
1929f-j
1906g-j | 2291jk
2658b-f
2772@bc
2423g-k
2737a-d
2895a
2291jk
2479e-j
2568c-h | | 500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.90e-h
1.63h
1.90e-h | 208ef
230a-f
222b-f | 308e-h
325d-h
295fgh | 327abc
287b-g
300a-e | 3300d-h
3200fgh
3267e-h | 2.33bcd
2.17cde
2.33bcd | 5.67h-k
5.77e-i
5.57j-m | 12.37b-j
11.80f-k
12.13c-k | 1906g-j
2151a-e
2168a-d | 2321ijk
2665b-f
2770abc | | in. LSR,LSD
ax. LSR | 0.34 | 29.6
35.4 | 62.6
74.7 | 59.3
70.8 | 649.3
774.8 | 0.45 | 0.17 | 1.64 | 177.0
211.2 | 185.4
221.2 | | C.V. % | 9.7 | 7.7 | 11.0 | 13.3 | 10.6 | 13.3 | 1.7 | 7.7 | 5.2 | 4.3 | | | | | | |
LIMESTONE | MEANS | | | | | | None | 2.23abc | 231a | 371ab | 331a | 3244c | 2.94a | 5.40e | 12,92ab | 1899a | 2424a | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.46ab
2.64a
2.10abc
1.64c | 242a
258a
247a
207a | 334ab
434a
328ab
285b | 283ab
236ab
220b
218b | 3622bc
4322ab
4500a
4267ab | 2.33ab
1.83bc
1.22cd
0.83d | 5.69cd
5.97b
6.31a
6.49a | 13.00ab
14.18a
13.82ab
12.78ab | 2128a
1987a
2026a
2114a | 2642a
2520a
2636a
2642a | | 1 Ton2/
2 Tons
4 Tons | 1.83bc
1.81bc
2.03abc | 209a
207a
244a | 334ab
307b
348ab | 323åb
250ab
221b | 3211c
3078c
3256c | 2.78a
2.00b
1.78bc | 5.48de
5.89bc
5.89bc | 12.60ab
11.14b
11.29ab | 1995a
2176a
1868a | 2573a
2685a
2446a | | 500 Lbs.3/ | 1.81bc | 220a | 309Ъ | 304ab | 3256c | 2.28ab | 5.67cd | 12.10ab | 2075a | 2585a | | in. LSR,LSD
ax. LSR | 0.64 | 55.2
62.7 | 99.3
112.8 | 95.8
108.9 | 774.4
880.2 | 0.72 | 0.21 | 2.66 | 414.9
471.6 | 376.4
427.9 | | C.V. % | 30.8 | 24.0 | 29.3 | 36.1 | 21.3 | 36.0 | 3.6 | 21.0 | 20.4 | 14.6 | | 4/ | | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
68+50+50
113+50+50 | 2.03a
2.06a
2.10a | 225e
233e
231a | 334a
351a
332a | 277a
261a
258a | 3622a
3719a
3578a | 1.96a
2.00a
2.04a | 5.87a
5.89a
5.83a | 12.61a
12.84a
12.49a | 1925b
2079a
2085a | 2378c
2618b
2722a | | in. LSR,LSD
ax. LSR | 0.11 | 9.9 | 20.9 | 19.8 | 216.4 227.6 | 0.15 | .056 | 0.55 | 59.0
62.0 | 61.8
65.0 | | C.V. % | 9.7 | 7.7 | 11.0 | 13.3 | 10.6 | 13.3 | 1.7 | 7.7 | 5.2 | 4.3 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied annually. $[\]underline{4}/$ Fertilizer applied annually (N+P205+K20). ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 8: Soil Test Results and Seed Cotton Yields on a Tiptonville Silt Loam Soil 1970 | Soil Treatmen | t % | Lb/A | Exch | angeable | Lbs/A | | | | Seven Year | Summary5/ | |--|---|---|---|---|---|---|--|--|---|--| | Limestone | 0.M. | P205 | K | Mg. | Ca | N.A. | pHs | C.E.C. | lst Pick | Tota1 | | None (1)
None (2)
None (3) | 2.33ab
2.10b-e
2.03b-f | 263a-e
275a-d
257a-e | 460a
412a-f
413a-f | 343a
320a-e
327a-d | 3467d-h
3133f-i
3400e-i | 2.67bc
2.83ab
3.33a | 5.60de
5.43ef
5.27f | 13.33a-e
12.53b-f
13.73a-e | 1943b-e
1889d-g
1922b-f | 2386jk1
2432g-k
2513c-h | | 1/2 Tons (1) 2 Tons (2) 2 Tons (3) 4 Tons (1) 4 Tons (1) 4 Tons (3) 8 Tons (1) 8 Tons (1) 8 Tons (3) 12 Tons (1) 12 Tons (2) 12 Tons (3) | 1.97c-f
2.17a-d
2.03b-f
2.47a
2.13a-d
2.33ab
2.03b-g
2.23abc
2.00b-f
1.90c-f
1.73c-g
1.80d-g | 252a-e
275abc
285ab
292a
280abc
278abc
278abc
276abc
276abc
267a-e
253a-e | 383a-f
430abc
400a-f
447ab
380b-f
427a-d
407a-f
383a-f
377b-f
350def
377b-f
357c-f | 340ab
300a-h
290a-i
307a-a
257a-i
253ghi
237i
280c-i
243hi
260f-i
267e-i
247hi | 3667c-h
4000b-g
3733c-h
4167b-e
4033b-f
3767c-h
4533abc
4800ab
5300a
4333bcd
4800ab
4367bc | 2.50bcd
2.33b-e
2.50ref
1.67ef
1.83def
0.50g
0.67g
0.50g
0.50g
0.33g | 5.67b-e
5.70b-e
5.67b-e
5.97b
5.97b
5.93b
6.60a
6.53a
6.53a
6.53a
6.70a
6.77a | 13.57a-e
14.13ab
13.53a-e
13.93a-d
13.43a-e
13.33a-e
14.33ab
15.23a
12.87a-f
13.93a-d
12.70b-f | 2026ab
2100a
2020abc
1934b-e
1879d-g
1907c-g
1969bcd
1816fg
1970bcd
1965bcd
1959bcd | 2495d-j
2604abcd
2604abcd
2432g-k
2451f-k
2505d-k
2504d-i
2401h-k
2458e-j
2568b-f | | 2/1 Ton (1)
1 Ton (2)
1 Ton (3)
2 Tons(1)
2 Tons(2)
2 Tons(3)
4 Tons(1)
4 Tons(2)
4 Tons(3) | 1.83d-g
1.93c-f
1.97c-f
1.73e-g
1.77e-g
1.70fg
2.17a-d
1.90c-f
1.97c-f | 230e
244b-e
238cde
231e
243cde
250a-e
257a-e
258a-e
255a-e | 407a-f
423a-e
427a-d
373b-f
377b-f
373b-f
380b-f
347ef
343f | 313a-f
300a-h
333a-d
277d-i
300a-h
267e-i
283a-i
280c-i
283a-i | 25671
3100ghi
3000hi
3267f-i
3467d-h
2967hi
3333e-i
3067hi
3233f-i | 2.33b-e
2.50bcd
2.33b-e
2.00c-f
1.83def
2.50def
1.67ef
1.33f
1.67ef | 5.57de
5.60de
5.63cde
5.70b-e
5.90bc
5.67b-e
5.80bcd
5.97b
5.77bcd | 10.60f
12.03b-f
11.80c-f
11.80c-f
12.23b-f
11.50ef
11.70def
10.63f
11.37ef | 2005abc
1988a-d
1994a-d
2010abc
1949b-e
1965bcd
1844efg
1883d-g
1803g | 2462e-j
2553b-f
2690a
2470e-j
2521c-g
2521c-8
22921
23891-1
2345k-1 | | 3/500 Lbs.(1)
500 Lbs.(2)
500 Lbs.(3) | 1.83d-g
1.93c-f
1.50g | 233de
254a-e
257a-e | 367c-f
393a-f
390a-f | 327a-d
337abc
307a-g | 3733c-h
3733c-h
3233f-i | 2.00c-f
1.83def
2.33b-e | 5.80bcd
5.90bc
5.47ef | 13.17a-e
13.07a-e
12.20b-f | 1975b-d
2089a
2037ab | 2412g-k
2647ab
2688a | | Min. LSR.LSD
Max. LSR | 0.31 | 35.1 | 66.4
79.2 | 48.1
57.3 | 767.2
915.5 | 0.60 | 0.26 | 2.01 | 95.3
119.4 | 96.4
120.8 | | C.V. % | 9.3 | 8.0 | 10.1 | 9.8 | 12.3 | 20.0 | 2.6 | 9.3 | 8.1 | 6.4 | | | | | | | LIMESTONE | MEANS | | | | | | None | 2.16a | 265a | 428a | 330a | 3333cde | 2.94a | 5.43d | 13.20abc | 1918ab | 2444ab | | 2 Tons 1/
4 Tons
8 Tons
12 Tons | 2.06a
2.31a
2.09a
1.81a | 271a
284a
277a
266a | 404abc
418ab
389abc
361bc | 310a
272a
253a
258a | 3800cd
3989bc
4878a
4500ab | 2.44ab
1.78bc
0.56d
0.39d | 5.68cd
5.96b
6.56a
6.69a | 13.74ab
13.57abc
14.30a
13.17abc | 2049a
1899ab
1897ab
1965ab | 2576a
2462ab
2442ab
2530a | | 1 Ton2/
2 Tons
4 Tons | 1.91a
1.73a
2.01a | 238a
241a
257a | 419ab
374abc
357c | 316a
281a
282a | 2889e
3233de
3211de | 2.39ab
2.11bc
1.56c | 5.60cd
5.76bc
5.84bc | 11.48bc
11.84bc
11.23c | 1996ab
1974ab
1843b | 2569a
2506ab
2342b | | 500 Lbs.3/ | 1.76a | 248a | 383abc | 323a | 3567cde | 2.06bc | 5.72bc | 12.81abc | 2034a | 2583a | | Min. LSR,LSD
Max. LSR | 0.58 | 42.7
48.6 | 52.3
59.5 | 82.4
93.7 | 644.8
732.9 | 0.64 | 0.23 | 2.14 | 134.9
158.8 | 149.1
175.5 | | C.V. % | 29.2 | 16.4 | 13.3 | 28.3 | 17.4 | 35.5 | 4.0 | 16.7 | 19.8 | 17.1 | | | | | | | NITROGEN | | | | | | | 38+50+50 ⁴ /
63+50+50
113+50+50 | 2.03a
1.99a
1.93a | 257a
264a
261a | 397a
391a
390a | 299a
293a
283a | 3674a
3793a
3667a | 1.76a
1.72a
1.93a | 5.92ab
5.97a
5.86b | 12.70a
12.93a
12.82a | 1957ab
1969a
1933b | 2426b
2519a
2538a | | Min. LSR,LSD
Max. LSR | 0.10 | 11.7
12.3 | 22.1 | 16.0 | 255.7
268.9 | 0.20 | .085 | 0.67 | 31.8
33.5 | 32.1
33.9 | | C.V. % | 9.3 | 8.0 | 10.1 | 9.8 | 12.3 | 20.0 | 2.6 | 9.3 | 8.1 | 6.4 | ^{1/} Agriculture grade, calcium carbonate limestone from Jonesboro, Illinois applied April 1963. ^{2/} Fine lime (less than 100 mesh) calcium carbonate from Ste. Genevieve, Missouri applied April 1963. ^{3/} Fine lime (less than 100 mesh) calcium carbonate from Stc. Genevieve, Missouri applied annually. $[\]frac{-4}{4}$ / Fertilizer applied annually (N+P₂0₅+K₂0). ^{5/} Cotton was not produced on these plots in 1970. ^{(1) 38} pounds of nitrogen per acre. ^{(2) 63} pounds of nitrogen per acre. ^{(3) 113} pounds of nitrogen per acre. Table 9: Seven Year Summary of Limestone and Nitrogen Experiment on the Tiptonville Silt Loam Soil at the Portageville Field. | | | ar Average | | | | | | | |------------------------------------|------------|-----------------------|--------------|--------------|---------|--|--|--| | | | ton Yield
ds/Acre) | | pHs | | | | | | 1./ | First | 15/ACIE) | Initial | 4 Years | 8 Years | | | | | Limestone1/ | Picking | Total | (1963) | (1966) | (1970) | | | | | | LIME | STONE SUMMA | R <u>Y</u> | | | | | | | None | 1918 ab | 2444 ab | 5.3 a | 5.2 g | 5.4 d | | | | | 2 T Agricultural | 2049 a | 2576 a | 5.3 a | 5.7 e | 5.7 cd | | | | | 4 T | 1899 ab | 2462 ab | 5.3 a | 6.1 c | 6.0 b | | | | | 8 T | 1897 ab | 2442 ab | 5.4 a | 6.5 ъ | 6.6 a | | | | | 12 T | 1965 ab |
2530 a | 5.3 a | 6.8 a | 6.7 a | | | | | 1 T Fine Lime $\frac{2}{}$ | 1996 ab | 2569 a | 5.3 a | 5.5 f | 5.6 cd | | | | | 2 T | 1974 ab | 2506 ab | 5.3 a | 5.8 de | 5.8 bc | | | | | 4 T | 1843 Ь | 2342 Ъ | 5.3 a | 6.0 cd | 5.8 bc | | | | | 600 # Fine Lime3/
(Annually) | 2034 a | 2583 a | 5.4 a | 5.9 cde | 5.7 be | | | | | fin L.S.R. (L.S.D05)
fax L.S.R. | 135
159 | 149
176 | 0.13
0.15 | 0.20
0.23 | 0.23 | | | | | C.V. % | 19.8 | 17.1 | 2.5 | 3.4 | 4.0 | | | | | | NITRO | GEN SUMMARY | . | | | | | | | 38+50+50 | 1957 ab | 2426 Ъ | 5.3 a | 6.0 a | 5.9 ab | | | | | 63+50+50 | 1969 a | 2519 a | 5.3 a | 6.0 a | 6.0 a | | | | | 113+50+50 | 1933 Ъ | 2538 a | 5.3 a | 5.9 b | 5.8 ъ | | | | | fin L.S.R. (L.S.D05)
fax L.S.R. | 32
34 | 32
34 | 0.06 | 0.06
0.07 | 0.09 | | | | | C.V. % | 8.1 | 6.4 | 2.0 | 1.9 | 2.6 | | | | | | | | | | | | | | Calcium carbonate agricultural limestone from Jonesboro, Illinois applied April 1963 only. 13 N + 50 P₂O₅ + 50 K₂O applied annually plus additional nitrogen sidedressed. $[\]underline{2}/$ Calcium carbonate agricultural fine lime, less than 100 mesh, from Ste. Genevieve, Missouri applied 1963 only. ^{3/} Calcium carbonate agricultural fine lime, less than 100 mesh, from Ste. Genevieve, Missouri, banded annually near row after emergence. Table 10: Change in Soil Test Values from Initial Soil Test in 1963 and Final Soil Test in 1970. | Soil Treatment 1/ | %
0.M. | Lb/A
P205 | Excha: | ngeable
Mg | Lbs/A
Ca | N.A. | pHs | C.E.C. | |---|-----------|--------------|---------|---------------|-------------|-------|-------|--------| | | | | IMESTON | E SUMMAI | RY | | | | | No Treatment | 06 | +29 | +109 | +128 | -123 | +0.5 | +0.1 | +1.0 | | 2 Tons $\frac{2}{3}$ | 38 | +35 | + 52 | + 37 | -133 | +0.2 | +0.4 | +0.24 | | 4 Tons ² / | 21 | +13 | + 72 | + 28 | +111 | -0.7 | +0.7 | +0.01 | | 8 Tons 2/ | 09 | +35 | + 38 | 0 | +722 | -1.5 | +1.2 | +0.30 | | 12 Tons $\frac{2}{}$ | 19 | +83 | + 17 | + 16 | +867 | -1.9 | +1.4 | +0.45 | | 1 Ton 3/ | 07 | +25 | + 98 | + 58 | + 11 | +0.3 | +0.3 | +0.81 | | 2 Tons $\frac{3}{}$ | 11 | +63 | + 30 | + 41 | +444 | +0.2 | +0.5 | +1.45 | | 4 Tons 3/ | 22 | +27 | - 27 | +118 | -133 | -0.6 | +0.5 | -0.44 | | 500# Fine Lime ^{3/} (Annually) | 15 | +31 | + 87 | + 23 | +778 | +0.1 | +0.3 | +2.25 | | Mean | 16 | +38 | + 53 | + 50 | +283 | -0.4 | +0.6 | +0.67 | | | | N | ITROGEN | SUMMARY | Y | | | | | Lbs. Nitrogen/A | | | | | | | | | | 38 | 13 | +34 | + 61 | + 45 | +304 | -0.44 | +0.63 | +0.63 | | 63 | 18 | +39 | + 44 | + 64 | +330 | -0.42 | +0.64 | +0.82 | | 113 | 18 | +41 | + 54 | + 40 | +215 | -0.31 | +0.55 | +0.60 | | Mean | 16 | +38 | + 53 | + 50 | +283 | -0.38 | +0.61 | +0.68 | | | | | | | | | | | $[\]underline{1}/$ All plots 13 N + 50 $\mathrm{P_2O_5}$ + 50 $\mathrm{K_2O}$ applied annually as starter plus additional nitrogen sidedressed. Limestone applied broadcast and plowed down after obtaining initial soil samples. ^{2/} Calcium carbonate limestone - Agricultural grade from Jonesboro, Illinois applied 1963 only. ^{3/} Calcium carbonate limestone - Fine lime (less than 100 mesh) from Ste. Genevieve, Missouri. Annual application banded near row after emergence.