
UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION

Research Bulletin 205

The Vitamins A and D Activity of Egg Yolks of Different Color Concentrations

Bertha Bisbey, Virginia Appleby, Adelia Weis, Sylvia Cover

(Publication Authorized January 26, 1934)

COLUMBIA, MISSOURI JANUARY, 1934

JWC 8LL 05-224

UNIVERSITY OF MISSOURI

COLLEGE OF AGRICULTURE

Agricultural Experiment Station

EXECUTIVE BOARD OF CURATORS .- MERCER ARNOLD, Joplin; H. J. BLANTON Paris; GEORGE C. WILLSON, St. Louis.

STATION STAFF, MARCH, 1934

WALTER WILLIAMS, LL. D., President

F. B. MUMFORD, M. S., D. Agr., Director S. B. SHIRKY, A. M., Asst. to Director MISS ELLA PAHMEIER, Secretary

AGRICULTURAL CHEMISTRY A. G. Hogan, Ph.D. †L. D. Haigh, Ph.D. W. S. Ritchie, Ph.D. E. W. Cowan, A.M. Robert Boucher, Jr., A.M. Luther R. Richardson, Ph.D. U. S. ASHWORTH, A.B.

AGRICULTURAL ECONOMICS O. R. Johnson, A.M Ben H. Frame, A.M. †F. L. Thomsen, Ph.D. C. H. Hammar, Ph.D.

AGRICULTURAL ENGINEERING J. C. Wooley, M.S. Mack M. Jones, M.S. †R. R. Parks, A.M.

ANIMAL HUSBANDRY ANIMAL HUSBANDRY [E. A. TROWBRIDCE, B.S. in Agr. L. A. WEAVER, B.S. in Agr. A. G. HOGAN, Ph.D. F. B. MUMFORD, M.S., D. Agr. F. F. MCKENZIE, Ph. D.* J. E. COMFORT, A.M.* [H. C. MOFFETT, A.M. S. R. JOHNSON, A.M. C. E. TERRILL, B.S. H. D. FOX, A.M. A. J. DYER, B.S. in Agr.

BOTANY AND PHYSIOLOGY W. J. ROBBINS, Ph.D. C. M. TUCKER, Ph.D.

DAIRY HUSBANDRY A. C. RAGSDALE, M.S. †WM. H. E. REID, A.M. SAMUEL BRODY, Ph.D. C. W. TURNER, Ph.D. WARREN GIFFORD, A.M. H. A. HERMAN, A.M. WARREN C. HALL, A.M. R. C. PROCTOR, B.S. in E. ENTOMOLOGY

Leonard Haseman, Ph.D. T. E. Birkett, A.M. Geo. D. Jones, B.S.

FIELD CROPS W. C. Etheridge, Ph.D. C. A. Helm, A.M.* L. J. STADLER, Ph. D.*

*In cooperative service with the U. S. Department of Agriculture.

B. M. King, A.M.* E. Marion Brown, A.M.* Miss Clara Fuhr, M.S.*

HOME ECONOMICS MABEL CAMPBELL, A.M. MABEL CAMPBELL, A.M. JESSIE ALICE CLINE, A.M. ADELLA EPPEL GINTER, M.S. HELEN BERESFORD, B.S. BERTHA BISBEY, Ph.D. JESSIE V. COLES, Ph.D. BERTHA K. WHIPPLE, M.S. SUZANNE DAVIDSON, A.M. ADELIA WEISS, A.M.

HORTICULTURE A. E. MURNEER, A.M. A. E. MURNEER, Ph.D. H. G. SWARTWOUT, A.M. GEO. CARL VINSON, Ph.D. FRANK HORSFALL, JR., A.M. R. A. SCHROEDER, B.S. in Agr.

POULTRY HUSBANDRY H. L. KEMPSTER, M.S. E. M. FUNK, A.M.

RURAL SOCIOLOGY E. L. MORGAN, Ph.D. Walter Burr, A.M. Arthur S. Emig, Ph.D. L. G. Brown, Ph.D.

SOILS †M. F. Miller, M.S.A. H. H. Krusekopf, A.M. W. A. Albrecht, Ph.D. Hans Jenny, Ph.D. L. D. Baver, Ph.D. H. F. Winterkorn, Ph.D. VETERINARY SCIENCE M.D.

VETERINARY SCIENCE 1. DURANT, A.M. D.V.M. 1. LAW. CONNAWATE D.V.M. M. C. CECIL ELSES, A.M. D.V.M. O. S. CRISLER, D.V.M. ANDREW JREN, D.V.M. HARDIE C. MCDOUCLE, A.M. P.L. PERICY, D.V.M.

....

•

.... 1

• OTHER OFFICERS • R. B. PRIOR, B.L., Treasurer • LESLE COWAN, B.S., See'y of University A. A. JEFFREY, A.B., Agricultural Editor L. R. GRINSTEAD, Ass't. Agricultural Editor J. F. BARHAM, Photographer LEON WAUGHTAL, Assistant Photographer JANE FRODSHAM, Librarian

tOn leave of absence.

ACKNOWLEDGMENT

This study was undertaken in collaboration with Professor Harry L. Kempster of the Poultry Department of the University of Missouri.

TABLE OF CONTENTS

Part I. Vitamin A Experiments	6
Introduction	6
Experimental Procedure	
Animals	
Basal Diet	
Sources of Vitamin A	
Feeding the Supplements	
The Determination of the Carotene and Xanthophyll	
Content of the Egg Yolk1	0
Results and Discussion1	1
Part II. Vitamin D Experiments2	5
Historical	
Experimental Procedure	
Animals2	
Basal Diet	
Supplements to the Basal Diet2	
Results and Discussion	
April 17th to May 26th Experiments2	
June Experiments2	8
Summary	0
Bibliography	2
and the second	

ABSTRACT

A comparison has been made of the vitamins A and D activity of egg yolks of definite and uniform color concentrations produced by hens under carefully controlled conditions as to rations and housing, and an attempt made to correlate such activity with the carotinoid pigments. A method is described for the determination of the carotene and xanthophyll content of egg yolks. The vitamin A tests have shown: (1) that while there seems to be some relationship between color and growth, the vitamin A activity of egg yolks cannot be explained on the basis of the carotinoid pigments they contain; (2) and that the vitamin A activity of egg yolks is directly dependent upon the rations of the hens. The vitamin D tests have shown that the rations of the hens used in these experiments had but little effect upon the deposition of calcium in the bones of the rats.

The Vitamins A and D Activity of Egg Yolks of Different Color Concentrations

BERTHA BISBEY, VIRGINIA APPLEBY*, ADELIA WEIS*, SYLVIA COVER

Eggs are important sources of protein, fat and minerals as well as vitamins and since they are available at all seasons of the vear they should constitute an important item in family dietaries. They are of primary importance in special diets and in the diets of infants and young children. They are also an important source of income and anything that can be done to enhance their value is of interest to producer and consumer alike. The standards that have been set up for the grading of eggs are based upon such qualities as freshness and physical characteristics. Bethke, Kennard and Sassaman¹[†] report a relationship between the vitamins A and D content of the ration of the hen and the occurrence of these vitamins in egg yolks, and in discussing the qualities which determine the relative market price, make the following observation : "May not an additional qualification, their vitamin content, based largely on the ration and management employed with the layers, be required for the highest class of egg in the near future? Even in the light of present information it would not be unreasonable to secure eggs for use in hospitals and for infants, from flocks receiving an adequate ration and having access to suitable outdoor range or its equivalent throughout the year."

Consumers differ as to their preferences for light, medium or dark colored egg yolks. In this connection, the suggestion made by Kempster² that "There may be a close relationship between the degree of yellow color in the yolk and the vitamin A content of the egg," is worthy of investigation.

The experiments described here were designed to determine: (1) the vitamins A and D potency of egg yolks of different color concentrations, produced by hens under carefully controlled conditions; (2) the carotene and xanthophyll content of such egg yolks.

*A part of the data contained in this paper was submitted by Virginia Appleby and Adelia Weis in partial fulfillment of the requirements for the degree of Master of Arts in the Graduate School of the University of Missouri, 1933. †Numerals refer to Bibliography, Page 32.

PART I. VITAMIN A EXPERIMENTS Introduction

Since Steenbock³, in 1919, reported a close correlation between yellow pigments and vitamin A, much attention has been directed to study of plant and animal pigments in relation to their vitamin A activity. These investigations have been excellently reviewed by Sherman and Smith in their monograph "The Vitamins."⁴ Accordingly reference will be made to such papers, only, as have direct connection with the study here reported.

Palmer and Kempster⁵ showed that chicks could be raised to maturity on a carotinoid-free diet and yet be normal in all respects, except for the lack of color in the egg yolks, body fat, and skin. Palmer, Kennedy and Kempster⁶ secured normal growth and reproduction in rats on a diet rich in vitamin A, but practically devoid of yellow pigments. They agreed however, with Steenbock, that yellow pigments and vitamin A are in some way related, but are not the same substance.

Hauge and Trost⁷; Russell⁸; and Fraps⁹ have reported that the vitamin A content of yellow corn seems to be directly related to the amount of pigmentation present.

Moore¹⁰ suggested and presented evidence to show that carotene is a precursor substance synthesized in plants, changed to vitamin A in the animal body and stored. His rats received graded portions of carotene in addition to a basal diet adequate in all respects other than vitamin A. Colorimetric and spectrographic examinations, at the close of the experimental period, showed that the greater part of the carotene had been converted into colorless vitamin A and stored in the liver of the animal. The results of these experiments led Capper, McKibbin, and Prentice¹¹ to determine the possibility of a similar conversion in fowls. Their results showed that chickens as well as rats have the power of converting carotene into vitamin A.

The presence of xanthophyll has been observed in green leaves, yellow corn, and egg yolk. Carotene and xanthophyll are closely associated in plants and are present in the ratio of 0.6 to 1 in green plants according to von Loesecke¹². The amount of yellow color deposited in egg yolks is directly dependent on the amount of xanthophyll in the ration of the hen, therefore the amount of yellow corn or green, leafy vegetables in the ration controls the depth of volk color.

Experiments in which xanthophyll was fed to rats as the sole

Research Bulletin 205

source of vitamin A gave negative results¹³. The xanthophyll used in these feeding experiments was from plant sources. No study has been found of the vitamin A potencies of egg yolks of definite and uniform colors which also shows the relative quantities of carotinoids in the egg yolks tested. In this investigation egg yolks of three distinct color concentrations, light, medium and dark were used as sources of vitamin A and an attempt was made to correlate the vitamin A activity with the amounts of carotinoid pigments they contained.

Experimental Procedure

In general the method developed and described by Sherman and his co-workers¹⁴ for the quantitative determination of vitamin A was used.

Experimental Animals.—The animals used in the experiments herein reported were young, growing, albino rats reared by mothers on a diet consisting of one-third, by weight, whole milk powder, two-thirds ground whole wheat, with sodium chloride, two per cent of the weight of the wheat.

Such young animals, separated from their mothers at 28 to 29 days of age have been shown to have a considerable store of vitamin A. In order to free the bodies of such reserves a fore-period in which the animals received the vitamin-A-free diet alone was observed. When the rats had reached constant weight and symptoms of ophthalmia had appeared they were divided into groups, care being taken to distribute them as uniformly as possible in relation to weight and sex, and placed in individual wire cages with raised buttons to prevent coprophagy. Only those weighing from 65 to 100 grams were used in the tests. One rat of each litter was continued on the vitamin-A-free diet as a negative control. The others received graded portions of egg-yolks as a source of vitamin A. All received the vitamin-A-free diet and distilled water ad libitum. The test period was continued for eight weeks beyond the depletion period. At the end of the experimental period the surviving animals were killed and autopsied.

The Basal Diet.—The basal diet as used in this investigation was of the following composition:

Casein (freed from fat-soluble vitamins by tri-
ple extraction with boiling 95% alcohol) 18%
Salt mixture (Osborne and Mendel) 4%
Sodium chloride
Dried brewers' yeast10%
Corn starch

7

MISSOURI AGRICULTURAL EXPERIMENT STATION

Viosterol* was used as a source of vitamin D. Cover¹⁵ had shown that a 0.5 per cent solution of viosterol (250 D) in cottonsced oil when fed at a level of 1 drop (0.0203 gm.) per rat per day was ample to protect from vitamin D deficiency. She dropped the viosterol from a microburette directly into the mouths of the rats. In the preparation of the basal diet the viosterol was dropped from a microburette upon a small portion of the salt mixture, triturated until the mixture was homogeneous and then added to the remaining components of the diet and mixed thoroughly. It was estimated that a rat would eat an average of 7 grams of the basal diet per day.

Sources of Vitamin A.—The eggs used in these experiments were supplied by the Poultry Department of the University of Missouri. They were produced by White Rock hens, of known dietary history, under carefully controlled conditions. The hens were fed the following all-mash rations:

	Pen 25	Pen 26	Pen 27	Pen 15
	lbs.	lbs.	lbs.	lbs.
Ground wheat Wheat shorts Bran Meat scrap Dried skim milk Sodium chloride Yellow corn White corn Cod liver oil Alfalfa leaf meal	15.0† 4.5 8.0 2.0 0.5 65.0 5.0†	15.0 4.5 5.0 8.0 2.0 0.5 65.0	15.0 4.5 5.0 8.0 0.5 25.0‡ 40.0‡	$ \begin{array}{r} 15.0 \\ 4.5 \\ 5.0 \\ 8.0 \\ 2.0 \\ 0.5 \\ 25.0 \\ 40.0 \\ 0.5 \\ \end{array} $

†Changed from 15 to 10 per cent whole wheat and from 5 to 10 per cent alfalfa leaf meal January first. ‡Changed from 25 to 35 per cent yellow corn and from 40 to 30 per cent white

‡Changed from 25 to 35 per cent yellow corn and from 40 to 30 per cent white corn January first.

A weekly supply of eggs was delivered at the laboratory regularly. They were stored in tightly closed containers in a refrigerator at a temperature of about 35°-40° F. until needed for feeding. A few eggs from each delivery were dipped in paraffin oil and stored for use in the determination of carotene and xanthophyll.

The band number of the hen was placed on the egg before she was released from the trap nest. This was important since care was taken to use eggs from different hens in the same group in making up composite samples of yolks.

*The Viosterol used in these experiments was obtained through the courtesy of Mead Johnson and Company.

8

Feeding the Supplements.—Since vitamin A is stored in the body of the rat and the amount of egg yolk needed is so small, it was fed twice weekly. On the days of feeding three eggs from each group were removed from the refrigerator and allowed to come to room temperature. The yolks were separated from the whites, care being taken to remove all visible traces of whites. A representative part of each yolk was removed by means of a pipette and transferred to a small container.

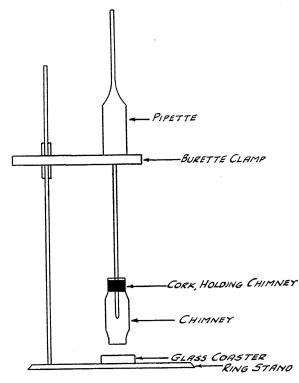


Fig. 1.-Diagram of device used for obtaining drops of egg yolks of near-constant weight, for use as supplements.

The composite sample was drawn into a standardized pipette which delivered a drop weighing 0.0312 ± 0.0001 gram. Drops were collected on individual glass coasters and fed immediately. The pipette tube was fitted through a glass chimney, thus forming a dead air pocket around the tip of the pipette. This chamber lessened the drying of egg yolk as it dropped from the pipette and the weight of the drop was much more uniform than was found in preliminary tests without the chimney. A diagram of the device is shown in Figure 1.

Depth of color and weight of representative drops were obtained when the supplement was fed.

The color of a composite sample of egg yolk was compared with ten milliliter samples of potassium dichromate solutions, each containing 0.1 gram of talc. A range of color was obtained by using solutions of the following concentrations: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12 normal.

The Determination of the Carotene* and Xanthophyll Content of Egg Yolks.†—¹⁶⁻¹⁷⁻¹⁸⁻¹⁹⁻²⁰ The method here described is a modification of the method developed by Schertz^{21, 22} for the extraction and separation of the green and yellow pigments in plants.

The yolks of three eggs were carefully separated from the whites, the membranes removed and the yolks thoroughly mixed. One to two milliliters of methyl alcohol were poured over a 5-gram sample of the mixture and stirred vigorously until the yolk had coagulated into small particles. Acetone was used to extract the pigments from the sample. Several 20 milliliter portions were used before the yolk became colorless. Ethyl ether was used for the final washing. Ten milliliters of 20 per cent potassium hydroxide in methyl alcohol were added to the total volume and the mixture refluxed slowly for one hour. The solution was cooled and transferred to a separatory funnel. 50 to 75 milliliters of ethyl ether were added and then water of a volume somewhat greater than that of the alkaline acetone solution. After washing with water and filtering through anhydrous sodium sulfate, the solution was evaporated under reduced pressure until no further evaporation took place below 50° C.

At this stage, sufficient unsaponifiable substances were present to cause the appearance of a viscous yellow oil. The success of the method depends upon the assumption that substances present, other than carotene and xanthophyll, are either colorless and do not interfere with colorimetric comparisons or are constant in the amount of color they introduce, so that comparative, if not strictly guantitative, results may be obtained.

The residue was taken up in 50 to 75 milliliters of 90 per cent methyl alcohol and 50 milliliters of petroleum ether. It was trans-

10

^{*}It is recognized that the yellow pigment referred to here as carotene may not be identical with the carotene of plant pigments.

[†]Acknowledgment is made to Laurence Ryden for assistance in the determination of the carotene and xanthophyll content of the egg yolks.

ferred to a separatory funnel and the methyl alcohol layer, containing xanthophyll was drawn off. The petroleum ether layer containing carotene was washed with 90 per cent methyl alcohol until the last washing was colorless. The combined alcohol solution and washings were washed with petroleum ether. The petroleum ether washings were added to the carotene fraction and washed with water. It was evaporated under reduced pressure until only a few oily drops remained. Ten milliliters of ethyl alcohol, containing 10 per cent petroleum ether, were added and the solution compared colorimetrically with a standard carotene solution, containing 2 milligrams of carotene per liter. The standard was set at 15 millimeters.

The xanthophyll fraction in methyl alcohol was transferred to a separatory funnel. About 50 milliliters of ethyl ether were added and enough water to cause the ether solution to separate readily. One extraction was usually sufficient. The ether solution was washed with water to remove any remaining alcohol, filtered through anhydrous sodium sulfate and evaporated under reduced pressure. The oily residue containing a few crystals was dissolved in 10 or 20 milliliters of ethyl alcohol and compared colorimetrically with a standard containing 10 milligrams of xanthophyll per liter. The standard was set at 10 millimeters.

To determine the effect of refluxing an alkaline acetone solution on carotene, samples were removed, from a mixture of 10 milliliters of a standard carotene solution (10 milligrams per liter), 40 milliliters of acetone, and 10 milliliters of 20 per cent potassium hydroxide in methyl alcohol, as it slowly refluxed. No significant differences were noted in samples taken after 0, 30, 60 and 80 minutes had elapsed.

Results and Discussion

The average color of composite samples of egg yolks used in these tests corresponds to the following concentrations of potassium dichromate solutions: Dark (Pen 25, 65 per cent yellow corn plus 10 per cent alfalfa leaf meal) 0.1 N; medium (Pen 26, 65 per cent yellow corn) 0.07 N; light-1 (Pen 27, 35 per cent yellow corn) 0.05 N; light-2 (Pen 15, 25 per cent yellow corn plus 0.5 per cent cod liver oil) 0.04 N.

The different colored egg yolks, used in the tests reported here, will be designated as dark, medium, light-1 and light-2. The dark were from Pen 25, the medium from Pen 26, the light-1 from Pen 27, and the light-2 from Pen 15. The weights of drops of composite samples of yolks were determined at frequent intervals throughout the tests, when the pipette was full, half full, and about empty. The weights were exceedingly uniform, the average being 0.0312 ± 0.0001 gram per drop.

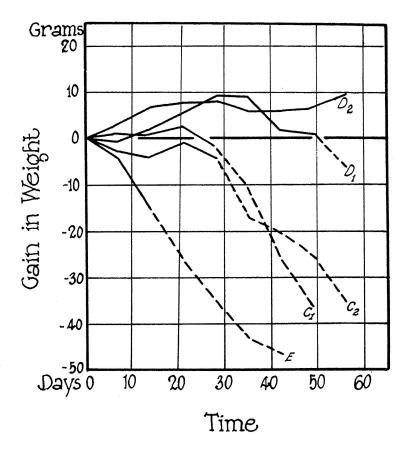
The average length of time required to deplete the rats of their stores of vitamin A was 36 days. This is in close agreement with the time 38.8 days, required for the depletion of rats in the vitamin A experiments reported by Munsell.²³

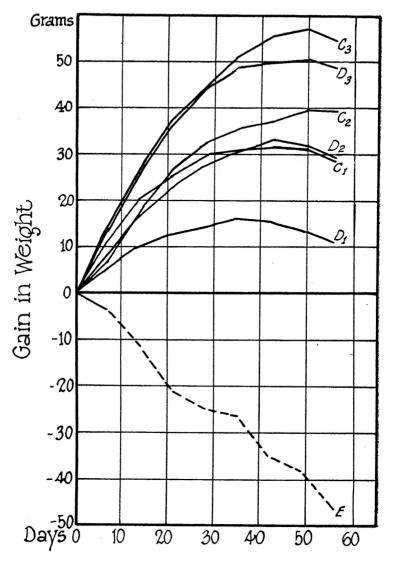
The average survival period of 51 negative controls was 24 days, during which time the average loss in weight was 26 grams. the results are shown in Figures 2, 3, and 4, Table I, Groups 1 and 2, and Table IV (page 20).

Munsell²³ reported that the yolks of market eggs, fed at a level of 0.02 gram per rat per day 6 days per week corresponding to 0.12 gram per rat per week, furnished sufficient vitamin A for unit growth. Preliminary experiments, in this investigation, in which light-1 and medium egg yolks were fed at levels of 4 drops (0.125 gm.), 6 drops (0.19 gm.), 8 drops (0.25 gm.) and 12 drops (0.37 gm.), per rat per week, respectively, showed; (1) that these amounts are insufficient to support unit growth; (2) and that medium yolks are a more potent source of vitamin A than light-1 yolks. The results (8 drops and 12 drops) are given in Figure 2, Tables II and III, Groups 1 and 2.

Accordingly the medium yolks were fed at levels of 16 drops (0.50 gm.), 24 drops (0.75 gm.) and 36 drops (1.12 gm.) and the light-1 yolks 32 drops (1.0 gm.), 48 drops (1.50 gm.) and 72 drops (2.25 gm.), per rat per week, respectively. The results show that 24 drops (0.75 gm.) per week or 0.107 gram per rat per day of medium yolks induced an average gain of 29 ± 1.8 grams in 8 weeks and 32 drops (1.0 gm.) per week or 0.143 gram per rat per day of light-1 yolks induced an average gain of 28 ± 1.4 grams in 8 weeks. The results are given in Figure 3, Tables II and III, Groups 3, 4 and 5.

12




Fig. 2.*—Average gain curves of rats receiving the basal diet alone and the basal diet plus graded portions of either light-1 or medium egg yolks. January 1 to April 15.

 Light-1 egg yolks, color corresponding to 0.05 N potassium dichromate solution. The amounts fed, per rat per week, were as follows: C₁, 8 drops (0.25 gm.)
 C₂, 12 drops (0.37 gm.).

 Medium egg yolks, color corresponding to 0.07 N potassium dichromate solution. The amounts fed, per rat per week, were as follows: D₁, S drops (0.25 gm.)
 D₂, 12 drops (0.37 gm.).

3. Basal diet alone. E. Negative controls.

*Data for Figure 2 are shown in Table I, Group 1; Table II, Groups 1 and 2; and Table III, Groups 1 and 2. A broken line indicates the point at which one or more of the animals died.

ime

Fig. 3.*—Average gain curves of rats receiving the basal diet alone and the basal diet plus graded portions of either light-1 or medium egg yolks. March 15 to July 6.
1. Light-1 egg yolks, color corresponding to 0.05 N potassium dichromate solution. The amounts fed, per rat per week, were as follows:

C₁, 32 drops (1.00 gm.)
C₂, 48 drops (1.50 gm.).

2. Medium egg yolks, color corresponding to 0.07 N potassium dichromate solution. The amounts fed, per rat per week, were as follows:

D₁, 16 drops (0.50 gm.)
D₂, 24 drops (0.75 gm.)

3. Basal diet alone. E. Negative controls.

*Data for Figure 3 are shown in Table I Group 2: Table II Groups 3.4 and 5:

*Data for Figure 3 are shown in Table I. Group 2; Table II, Groups 3, 4, and 5; and in Table III, Groups 3, 4 and 5. A broken line indicates the point at which one or more of the animals died.

Research Bulletin 205

TABLE I.*-GROWTH RECORD OF RATS RECEIVING THE BASAL DIET ALONE

Group 1. Negative Controls. January 1 to April 15

Rat No.	Ini- tial wt. gm.	Wt. after de- pletion gm.	1	Gain	s at end	of succ	essive v	veeks, g	rams	8	Final wt. gm.	Total gain gm.	Total food in- take gm.
5343 53500 5453 5453 5454 5551 5514 5551 5591 5505 5605 5608 5608 5608 5622 Av.	38 47 44 59 46 38 40 33 44 41 40 46 43	78 88 111 90 100 100 107 100 70 98 113 81 80 93.5	$ \begin{array}{r} -4 \\ -7 \\ -3 \\ -19 \\ -16 \\ \pm 0 \\ -5 \\ -3 \\ -13 \\ -13 \\ -4.7 \end{array} $	-15 -11 -18 -12 -20 -111 -15 -3 -7 -21 1 -20 -10.7	-14 -11 -11 -11 -16 -11 -11 -8 -11 -9.8	16 	9 				59 57 76 69 79 80 76 70 68 77 60 49 69.1	$\begin{array}{c} -19 \\ -31 \\ -35 \\ -21 \\ -20 \\ -31 \\ -30 \\ -2 \\ -21 \\ -31 \\ -34 \\ -21 \\ -31 \\ -24 \\ -4 \\ \end{array}$	84 137 113 56 98 79 57 168 39 97 40 217 84 98

Group 2. Negative Controls. March 15 to July 6

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3549988475304082105
--	---------------------

*Average gain curves for Group 1, Table I shown in Figure 2 and for Group 2, Table I in Figure 3.

TABLE II.—GROWTH RECORD OF RATS RECEIVING THE BASAL DIET SUPPLE-MENTED BY GRADED PORTIONS OF LIGHT-1 EGG YOLKS, COLOR CORRE-SPONDING TO 0.05 N POTASSIUM DICHROMATE SOLUTION

Group 1.* Basal Diet plus 8 Drops (0.25 gm.) Egg Yolk per Week January 1 to April 15

Rat No.	Ini- tial wt. gm.	Wt. after de- pletion gm.	1	Gain 2	s at end	of suce	cessive	weeks, g	rams 7	8	Final wt. gm.	Total gain gm.	Total food in- take gm.
53360 54470 54630 54709 55130 55940 56990 56310 56210 Av.	41 56 41 43 34 39 43 43 42.3	82 86 94 86 96 82 106 96 92 91.1	-6 7 -5 -3 -6 -1 -0.7	-7 -1 -1 3 5 1 ± 0 1.0	$ \begin{array}{c} 2 \\ -7 \\ 7 \\ 4 \\ 12 \\ -4 \\ 2 \\ \pm 0 \\ 2 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	-13 -8 -6 -3 -5 -4 -4.3	-9 -8 -6 -13 -12 -3 -10 -8.7	-14 -36 -15 -5 -5 -15.0			58 73 92 76 68 62 73 70 61 70.3	$\begin{array}{r} -24 \\ -13 \\ -2 \\ -10 \\ -28 \\ -20 \\ -33 \\ -26 \\ -31 \\ -20.8 \end{array}$	146 144 261 132 287 177 210 290 257 212

Group 2.—Basal Diet plus 12 Drops (0.37 gm.) Egg Yolk per Week January 1 to April 15

55880 ¹ 37 5610 ² 38 56290 ² 42 5633 ² 42 56190 ³ 48 5623 ² 42 Av. 41.5	91 102 103 89 93 79 92.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccccc} 11 & -16 \\ 2 & -6 \\ -1 & 3 \\ -5 & 5 \\ 12 & 7 \\ -1 & -13 \\ 3.0 & -3.3 \end{array}$	$\begin{vmatrix} -5 & -2 \\ -5 & -10 \\ -2 & -3 \\ -29 & -3 \\ -12.7 & -3.3 \end{vmatrix}$	$\begin{array}{c c} -3 & -12 \\ -5 & -12 \\ -8 & -12 \\ \hline -5 \cdot 3 & -12 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08651
for the second s			5.01 5.5	1-12.71 -5.5	-3.31-12.01	71.5(-21.3) 22	0

*Average gain curves for Groups 1 and 2 shown in Figure 2.

Group 3.*-Basal Diet plus 32 Drops (1.0 gm.) Egg Yolk per Week March 15 to July 6

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccc} 6 & 2 \\ 10 & 5 \\ 7 & 2 \\ -3 & 3 \\ 10 & 4 \\ 8 & 11 \\ 10 & 18 \\ 18 & 15 \\ 17 & 6 \\ 12 & 10 \\ 22 & 18 \\ 17 & 10 \\ 16 & 11 \\ 19 & 8 \\ 16 & 10 \\ 11.7 & 8.4 \\ \end{array}\right $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} & -2 & 5 \\ & 3 & -5 \\ & 2 & -5 \\ & 2 & -1 \\ & 5 & -5 \\ & 2 & -1 \\ & 5 & -5 \\ & -7 & 5 \\ & -7 & 5 \\ & 5 & 1 \\ & \pm 0 & 7 \\ & 1 & 2 & 0.7 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P.E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	---	--	--	---	------	--

*Average gain curves for Group 3, shown in Figure 3.

16

TABLE II.--(CONTINUED)

Group 4.*-Basal Diet plus 48 Dzops (1.50 gm.) Egg Yolk per Week March 15 to July 6

Rat No.	Ini- tial wt. gm.	Wt. after de- pletion gm.	1	Gains 2	at end	of succ 4	essive w	reeks, gr	ams 7	8	Final wt. gm.	Total gain gm.	Total food in- take gm.
56550 5557122 5572250 5772255 57734 577355 57735 5775 577555 577555 577555 577555 577555 5775555 5775555 5775555 57755555 57755555 577555555	$\begin{array}{r} 46\\ 43\\ 48\\ 52\\ 52\\ 47\\ 42\\ 39\\ 42\\ 39\\ 41\\ 37\\ 43\\ 26\\ 32\\ 4\end{array}$	105 95 105 125 104 112 113 83 83 75 85 88 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 83 78 78 78 78 78 78 78 78 78 78 78 78 78	$17 \\ -4 \\ 8 \\ -7 \\ -15 \\ 6 \\ -18 \\ 10 \\ 11 \\ 10 \\ 9 \\ 23 \\ 23 \\ 11 \\ 9 \\ 13 \\ 16 \\ 6.9$	$\begin{array}{c} 3 \\ 57 \\ -1 \\ 15 \\ 40 \\ 206 \\ 11 \\ 100 \\ 9 \\ 25 \\ 23 \\ 16 \\ 152 \\ 16 \\ 10.6 \end{array}$	± 0 10 10 7 12 8 10 6 6 8 10 5 9 15 14 8 16 16 2 8.9	$ \begin{array}{c} 3 \\ -1 \\ 10 \\ 32 \\ 4 \\ 12 \\ 5 \\ 97 \\ 5 \\ 91 \\ 7 \\ 2 \\ 4 \\ 37 \\ 5 \\ .7 \\ 5 \\ .7 \\ 5 \\ .7 \\ 5 \\ .7 \\ 5 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7$	6 6 6 7 4 3 4 5 1 1 5 5 6 5 4 3 7 3 4 5 3 3 - 5 6 5 4 3 7 3 4 5 3 - 3 - - - - - - - - - - - - - - - -	6 3 6 4 2 6 5 1 5 1 2 9 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	$ \begin{array}{c} \pm 0 \\ -18 \\ 3 \\ 12 \\ 3 \\ 43 \\ 41 \\ 3 \\ 5 \\ 47 \\ 73 \\ -15 \\ 2 \\ 5 \\ -7 \\ 2 \\ 5 \\ 5 \\ -7 \\ 2 \\ 5 \\ -5 \\ 2 \\ 5 \\ 5 \\ -5 \\ 2 \\ 5 \\ 5 \\ -5 \\ -$	$\begin{array}{c} 6\\ 9\\ 8\\ 14\\ -1\\ -4\\ 9\\ -1\\ 2\\ -1\\ -4\\ 9\\ -1\\ 2\\ -1\\ -5\\ 4\\ 8\\ 3\\ 0.4 \end{array}$	P.E.	$\begin{array}{r} 41\\ 27\\ 48\\ 33\\ 24\\ 42\\ 31\\ 38\\ 24\\ 51\\ 52\\ 36\\ 42\\ 71\\ 73\\ 47\\ 30\\ 16\\ 40\\ 82\\ 71\\ 35\\ 27\\ 98\\ 12\\ 77\\ 82\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 77\\ 7$	

*Average gain curves for Group 4, shown in Figure 3.

Group 5.*-Basal Diet plus 72 Drops (2.25 gm.) Egg Yolk per Week

	Warch 1	b to July 6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

*Average gain curves for Group 5, shown in Figure 3.

TABLE III.—Growth Record of Rats Receiving the Basal Diet Supplemented by Graded Portions of Medium Egg Yolks, Color Corresponding to 0.07 N Potassium Dichromate Solution

Group 1.*-Basal Diet plus 8 Drops (0.25 gm.) Egg Yolk per Week January 1 to April 15

					-		-						
Rat	Ini- tial wt.	Wt. after de- pletion		Gain	s at end	of succ	essive	weeks, g	rams		Final	Total	Total food in-
No.	gm.	gm.	1	2	3	4	5	6	7	8	wt. gm.	gain gm.	take gm.
5340 5351 54460 5460 5469 5515 5606 5606 5626 Av.	35 52 44 57 42 36 42 41 37 42.9	73 93 94 76 90 105 96 84 89.8	$ \begin{array}{r} 3 \\ -1 \\ 2 \\ -10 \\ -3 \\ -4 \\ -0.6 \end{array} $	-2 5 ± 0 -2 5 -2 5 -2 5 -2 5 -2 5 -2 5 -2 5 -2 5 -2 5 -2 -2 -5 -2 -	$ \begin{array}{r} 14 \\ -3 \\ 5 \\ 5 \\ -5 \\ 4 \\ -1 \\ 5 \\ 3.8 \\ 3.8 \\ \end{array} $	6 10 -2 -5 3 6 5 2 3.4	-5 ± 0 -5 7 -3 -2 -2 -2 -2 -2 -2 -2 -2	$ \begin{array}{c} 6 \\ 4 \\ -9 \\ \pm 0 \\ 3 \\ -1 \\ -29 \\ -19 \\ -19 \\ -7.1 \end{array} $	$ \begin{array}{c} 2 \\ \pm 0 \\ -3 \\ 2 \\ \pm 0 \\ -3 \\ -6 \\ -4 \\ -0.9 \end{array} $	$ \begin{array}{r} -8 \\ -7 \\ -15 \\ 3 \\ -14 \\ -2 \\6 \\ -7 \\ -6 \\ -7 \\ \end{array} $	89 105 94 110 73 95 69 71 63 85.4	$ \begin{array}{r} 16\\12\\-3\\16\\-3\\-36\\-25\\-21\\-21\\-4,3\end{array} $	333 448 448 392 358 386 224 218 285 344

	Group 2.—Basal Diet plus 12 Drops (0.37 gm.) Egg Yolk per Week January 1 to April 15												
	Ini-	Wt. after					•						Total food
Rat	tial wt.	de- pletion					cessive				Final wt.	Total gain	in- take
No. 55959	gm. 34	gm. 82	1 7	2	3 10] ±0	5	6 1	7	8	gm. 96	gm.	gm. 435
56040 56329 56679	41 43	112 98	$-\frac{1}{7}$	3	±0 2	1 5 5	2 2 -15	-5 ±0	-7 5	5523	110	$\frac{14}{-2}$ 26	348 324
56679 56700 56849	43 44 43	104 98 100	-6 5 6	10 ±0	-1 ± 0 -2	5 1 2	-15 3 2	9 2 -6	-1^{6}	3 6 1	124 105 115 101	$1 \\ 17 \\ 1$	285 364 380
Av.	41.3	99	3.0	3.3	1.5	-0.3	-1.8	0.2	0.3	3.3	108.5	9.5	356
*A	verag	ge gain c Grow) Egg	Yolk ne	r Weel	-	
56620	48	114	7	3 1		$\frac{1}{-4}$	$\frac{5 \text{ to } Ju}{\pm 0}$	$\frac{1y}{-4}$	7	Yolk pe	130		392
5662 5674 5683 5715 5723 5730 5730 5769	45 45	111 99	5	-1	4 ±0	$-1 \\ 1$	5	$-\frac{1}{2}$	2 ±0	7 7 7	130 134	16 19 35	437 448
5715 5723 5730	46 48 44	96 107 99	-18 3 -6	12 5 -1	11 7 10	1 2 10	±0 4 3	-7 -5 ± 0	-1^{2}	-1 -1 -1	96 126 113	±0 19 14	347 426 358
57700	41	88 96	-1 6	±0 2		2 9	7	-2 -2 -2 -2	-4 =0	$-\frac{1}{-5}$	82 110	6 14	291 397
58110 58210 59590 59710 59380	43 39 34 47	93 75	-4 11 11	14 6 5	25	-6 7	5 1 1	$-2 \\ -1 \\ 1$	-6 3 2	$-\frac{1}{\pm 0}$	97 103	$28 \\ 26$	308 448 280
5971 5938 5938	30 27 37	69 65 80 80 71	10 8 2	-3	2 ±0	± 0 -1	$-1 \\ -2$	$-\frac{1}{9}$	1 -5		95 57 73	$-8 \\ -7$	291 291
59400 59740 59769	43	80 71	10	±0 10	-4225520222	5 5 ±0	-1 1 -3	-4 2	-8 -8	-5 -14 -9	85 79	5 8	291 342
59720 ⁷ Av.	46 49 41.9	76 80 88.2	15 23 5.3	6 3 4.7	1 3.0	-6 1.5	-3 6 1.5	-1 -1.9	$-14 \\ -0.6$	$\begin{vmatrix} -9 \\ -10 \\ -2.8 \end{vmatrix}$	89 82 98.9	$13 \\ 2 \\ 10.7$	330 347 354
											P.E.	=2.0 114.09	
*A	verag	e gain cu				-							
		Grou	p 4.*—		Diet plu M	s 24 D	to Jul	75 gm. y 6		Yolk pe			
56669 56600 57139 57259	44 50 50	94 117 105 115 123	±0 -8	9 3 15	-3 4	1 3 2	4 5 6	9 1	2 9 ±0		115 155 127	21 38 22	381 431 420
5725¢ 5726	43 53	115 123	-8 3 8	-5	5 7 14	±0 5	6 9 -2	5 8	± 0 -3	$ \begin{array}{c} 1 \\ -7 \\ -1 \end{array} $	139 147	22 24 24 19	493 403
5729 5729 57569 57889 5787 57729 57729 57789	48 43 39	103 89 73	12 9	1 7 9	11 6 6	10 6 9	4 1 2	-5 -5	$-7 \\ -3 \\ 1$	-15 6 1	122 104 111	15	414 386 381
5787 d 5772 Q	39 41	78 87	6 2 6	14 7 7	6 7 5	15 2	2 9 2	555	43	±0 -5	134 112	38 56 25 38 29	386 370
57.78¥ 5795ơ 5818¥	46 40	103 97 83	8 9	4	11	$\frac{4}{2}$	255 821	4552527	5	-4 -4	141 126	38 29	571 381
5927~	44 34 33	70	21 16 16	11 17 11	4 2 4	8 1 1	8 2 1	-7	-2 -10 -11	-4 -3 -5	131 88 87	48 18 18	666 358 453
59670 59479 59799	34 42	69 70 65	8 23	8 7	1Î 6 6.2	±0 7	$-1 \\ -6$	1 2 5	$-11 \\ -2 \\ -2$	-5	92 100	18 22 35 28.8	386 370
Av.	42.5	90.6	8.6	7.8	. 6.2	4.5	3.2	2.7	-1.0	-3.1	119.5 P.E. C.V.	28.8 ±1.8 38.9%	426
 *A	verag	ge gain o	urves f	or Grou	p 4, sho	wn in 1	Figure 3	•				(30.770	
		Grou	p 5.*	Basal I	Diet plu N	s 36 D Iarch 1	rops (1 5 to Ju	.12 gm. ly 6) Egg	Yolk pe	r Weel	c	
5759 5785 5783 5771 5782 5782 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5797 5785 5775	37 42	75 83 67 77	7 10	10 10 15	9 10	10 13 9	6	$-1 \\ -2$	$\begin{vmatrix} 4\\ 3 \end{vmatrix}$	-5	115 137 120	1 40	392 454
57830 57712 57820	43 42 39	67 77 92	10 8 - 7	6	16 5 12 12	9 7 4	9 1 1	±0 3 9	-3 3 ± 0	$-\frac{3}{-2}$	108	54 53 31	375
300/0	39 45	92	12 10	11 5 23	12 12 11	10	4 7	9 4	1 1	8 7 5 -63	128 138 149	36 46 50	470 454 454
58100 58150	42 48	86 95 68	27 30	4 24 16 12.4	11 2	10 17 ±0	-3 5 2	7	$\begin{bmatrix} -2\\ -6\\ 3\\ 2\\ 0.5 \end{bmatrix}$	63	149	50 63 61	487 571
5820⊋ Av	34 41.1	68 83.4	$\substack{\substack{14\\13.5}}$	12.4	10 9.8	4 8.4	4.0	1 1.6	0.5	$\begin{bmatrix} -2 \\ -2.1 \end{bmatrix}$	115 131.5 P.E.	47 48.1 ⇒2.1	331 432
		1		l	l	l • • •	1		<u> </u>		C.V.	20.4%	1

TABLE III.—(CONTINUED) Group 2.—Basal Diet plus 12 Drops (0.37 gm.) Egg Yolk per Wee

*Average gain curves for group 5, shown in Figure 3.

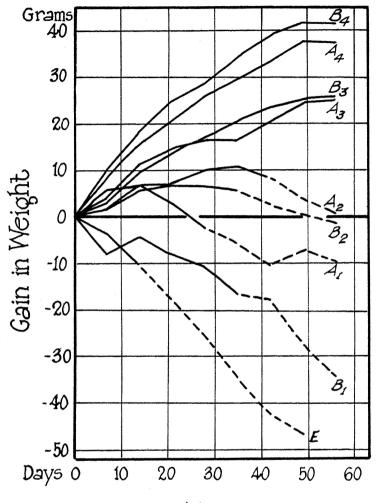

Dark and light-2 egg yolks were fed at levels of 4 drops (0.12 gm.), 6 drops (0.19 gm.), 8 drops (0.25 gm.) and 10 drops (0.31 gm.) per rat per week respectively. Neither 4 drops (0.12 gm.) nor 6 drops (0.19 gm.) per week were sufficient to support unit growth. The rats receiving 8 drops (0.25 gm.) per week or 0.036 gram per day of light-2 yolks gained 25 ± 1.51 grams; those receiving 8 drops (0.25 gm.) per week or 0.036 gram per day of dark yolk gained 26 ± 1.47 grams in 8 weeks. The rats receiving 10 drops (0.312 gm.) per week or 0.045 gram per day of light-2 yolks gained 37 ± 2.55 grams; those receiving 10 drops (0.312 gm.) per week or 0.045 gram per day of dark yolks gained 41 ± 2.33 grams in 8 weeks. The results are given in Figure 4, Tables V and VI. The data for the negative controls of these groups are given in Table IV.

TABLE IV.*-GROWTH RECORD OF RATS RECEIVING THE BASAL DIET ALONE

Rat No.	Ini- tial wt. gm.	Wt. after de- pletion gm.	1	Gain 2	s at end	of succ	essive v	veeks, g	rams	8	Final wt. gm.	Total gain gm.	Week- ly food in- take gm.
53110 53260 54050 54050 55220 55520 55520 5555200 5555200 5555200 557520 5555200 557520 5555200 557730 5555200 557520 557520 557520 557520 557520 557520 557520 557520 557520 557520 557520 557520 5577300 5576300 577500 577500 577500 577500 577500 577500 577500 577500 577500 577500 577500 577500 577500 577500 5775000 5775000 5775000 5775000 5775000 577500000000	47 39 50 537 43 47 50 50 537 43 50 40 52 46 53 50 9 40 9 44 9 44 9	100 80 82 99 103 116 109 85 96 109 116 101 111 84 82 94 70 94.7	$\begin{array}{c} -2 \\ -8 \\ -9 \\ -11 \\ -7 \\ -106 \\ -4 \\ 15 \\ -3 \\ -5 \\ -8 \\ 21 \\ -3.7 \end{array}$	$\begin{array}{c} -17\\ -13\\ -5\\ \pm0\\ -4\\ -17\\ -15\\ -3\\ -2\\ 1\\ -15\\ -3\\ -2\\ 1\\ -15\\ -3\\ -2\\ -5\\ -6.6 \end{array}$	$\begin{array}{c} -8\\ -6\\ -11\\ -29\\ -5\\ -10\\ -16\\ -7\\ -13\\ \hline -7\\ -13\\ \hline -5\\ \pm 0\\ -2\\ -1\\ -7.6\\ \end{array}$	-1 -1 -14 -14 -14 -6 -9 -8 -6 -1 -16 -3 -7.8					72 59 57 67 59 74 81 78 62 76 70 81 83 69 62 65 64 49 7 P.E.	$\begin{array}{c} -28\\ -22\\ -25\\ -24\\ -38\\ -31\\ -29\\ -35\\ -31\\ -20\\ -35\\ -17\\ -42\\ -22\\ -17\\ -22\\ -30\\ -21\\ -26\\ +1.27\\ 30.7\% \end{array}$	38 37 32 45 46 21 26 40 40 40 40 44 42 45 32 37 39 49 38 34 38

Negative Controls

*Average gain curves for Table IV shown in Figure 4.

Time

Fig. 4.*-Average gain curves of rats receiving the basal diet alone and the basal diet plus graded portions of either light-2 or dark egg yolks.

1. Light-2 egg yolks, color corresponding to 0.04 N potassium dichromate solution. The amounts fed, per rat per week, were as follows: $A_1, 4$ drops (0.12 gm.) A_2 , 6 drops (0.19 gm.) $A_3, 8$ drops (0.25 gn.) A_4 , 10 drops (0.31 gm.).

Dark egg yolks, color corresponding to 0.1 N potassium dichromate solution. The amounts fed, per rat per week, were as follows: B₁, 4 drops (0.12 gm.) B₂, 6 drops (0.19 gm.) B₃, 8 drops (0.25 gm.) B₄, 10 drops (0.31 gm.).

3. Basal diet alone. E. Negative controls.

*Data for Figure 4 are shown in Tables IV, V, and VI. A broken line indicates the point at which one or more of the animals died.

TABLE V.*-GROWTH RECORD OF RATS RECEIVING THE BASAL DIET SUPPLEMENTED BY GRADED PORTIONS OF LIGHT-2 EGG YOLKS, COLOR CORRESPONDING TO 0.04 N POTASSIUM DICHROMATE SOLUTION

Rat No.	Ini- tial wt. gm.	Wt. after de- pletion gm:	1	Gains 2	3	of suce	essive v	veeks, g 6	rams	8	Final wt. gm.	Total gain gm.	Week- ly food in- take gm.
53249 54060 54049 54719 Av.	42 46 48 47 45.8	86 85 86 97 88.5	± 0 4 7 11 5.5		-3 -2 -10 1 -3.5	-3 -2 -15 -1 -5.2	-9 -3.5	-7 -2 -4.5	3 3.0	2 -2.0	64 79 70 107 80 P.E.	$\begin{array}{r} -22 \\ -6 \\ -16 \\ 10 \\ -8.5 \\ \pm 4.14 \end{array}$	42 42 50 56 47
	e		Basal	Diet p	lus 6 D	rops (C).19 gm	.) Egg	Yolk pe	r Weel	c		
5313 5410 5410 5413 5400 5473 5555 5578 55578 5652 Av.	42 40 41 55 40 41 45 50 42 51 44.7	78 88 72 96 89 96 104 94 108 114 93.9	$ \begin{array}{c} $	$3 \\ 4 \\ 9 \\ 11 \\ 8 \\ \pm 0 \\ 4 \\ 10 \\ 5 \\ -2 \\ 5.2$	± 0 ± 0 -3 -17 -9 6 10 0.1	9 +2 +20 +33 +20 -2 -4 -3.0	± 0 -7 -4 10 2 1 5 -9 0.8	-5 -19 -6 -3 -5 1 2 -3 -2.6	$ \begin{array}{r} 3 \\ -4 \\ -5 \\ -5 \\ -30 \\ -7 \\ -8 \\ -10 \\ -4.3 \end{array} $	-7 -5 -4 -3 -16 -3.6	85 75 77 114 98 97 78 122 117 94 95.7 P.E. C.V.	$ \begin{array}{c} 7 \\ -13 \\ 5 \\ 18 \\ 9 \\ -26 \\ 28 \\ 9 \\ -20 \\ 1.8 \\ \pm 3.41 \\ 88.8 \\ \end{array} $	46 45 39 53 52 44 48 58 58 43 49
		-	Basal	Diet pl	us 8 D	rops (O	.25 gm.) Egg ?	Yolk pe	Week			
53159 5319 555479 555520 55510 55510 55510 55520 55720 57720 577000 577000 577000 577000 577000 57700000 5770000000000	48 46 41 38 45 39 40 47 39 45 55 55 55 55 55 45 45 45 45 45	83 89 75 93 109 77 92 85 86 103 121 96 101 111 102 97 98 95.1	$ \begin{array}{c} -5 \\ -1 \\ -2 \\ 5 \\ 1 \\ \pm 0 \\ 3 \\ 9 \\ 12 \\ 10 \\ 16 \\ 3 \\ 11 \\ -5 \\ 6 \\ 4 \\ .0 \\ \end{array} $	9 12 12 8 8 3 6 3 9 6 7 4 18 7 9 12 9 7.1	$ \begin{array}{c} 3\\ -22\\ +15\\ 220\\ \pm \\ 89\\ -29\\ 105\\ 44\\ 3.6\\ 6\end{array} $	$ \begin{array}{c} $	$ \begin{array}{r} -3 \\ -18 \\ -24 \\ \pm 0 \\ 26 \\ \pm 0 \\ 26 \\ -26 \\ -27 \\ -13 \\ 23 \\ 5 \\ -0.2 \\ \end{array} $	$23 \\ 86 \\ 10 \\ 127 \\ 73 \\ -43 \\ 22 \\ 11 \\ -3 \\ -1 \\ 4.1 \\ 4.1$	$ \begin{array}{r} & 6 \\ & 7 \\ & 13 \\ & -98 \\ & \pm 0 \\ & 435 \\ & 569 \\ & 584 \\ & 35 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 584 \\ & 356 \\ & 90 \\ & 586 \\ & 366 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 586 \\ & 90 \\ & 100 \\ $	$ \begin{array}{c} 2\\ -2\\ -2\\ 10\\ -5\\ -4\\ -4\\ -2\\ -2\\ -1\\ -7\\ -3\\ 0.2 \end{array} $	101 98 131 118 100 110 120 131 120 131 138 142 113 118 142 120 138 142 120 138 142 120 138 142 120 138 142 120 138	18 9 23 38 9 23 26 28 28 28 28 28 28 28 28 34 28 37 31 11 21 44 24 9 # 1.51 38%	43 43 46 53 45 57 57 57 57 57 57 57 57 57 57 57 48 59 44 40 49 48
					1s 10 I).31 gm	.) Egg	Yolk pe	r Weel			
55540 55582 558140 56172 56172 56172 56172 56172 56172 56172 56172 56252 57400 57400 57400 57400 57400 57682 57400 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 57682 577400 577400 577400 577400 577400 577400 57740000000000	41 37 43 52 49 50 51 33 53 45 43 47 47 44.8	98 82 76 82 99 95 94 100 79 58 108 91 88 96 87 88.1	1 2 3 5 5 16 9 12 13 4 11 15 9 7 16 8.8	99 11 12 -3 -3 89 86 6.6	$ \begin{array}{c} 2 \\ 1 \\ 4 \\ 8 \\ 9 \\ 6 \\ 11 \\ 12 \\ 4 \\ 0 \\ 5 \\ 5 \\ 1 \end{array} $	9 3 3 4 5 3 7 2 5 7 6 3 7 60 5 .4	$5 \\ \pm 0 \\ 2 \\ 6 \\ 5 \\ 12 \\ 6 \\ 8 \\ 5 \\ 13 \\ 4 \\ 8 \\ 9 \\ 1 \\ 1 \\ 3 \\ .7$	9520 + 4324 + 43923 + 63333 = 9	-2894444632380464.2	-16 4 2 3 -1 -3 -4 -70 3 -11 -0.4	115 106 111 104 117 143 140 124 112 131 134 131 134 143 125.3 P.E. C.V.	17 245 285 285 445 287 45 287 438 54 45 287 438 54 37.35 54 27.3%	50 47 52 47 59 54 51 47 50 43 54 47 55 54 55 54 55 55 55 55

Basal Diet plus 4 Drops (0.12 gm.) Egg Yolk per Week

*Average gain curves for Table V shown in Figure 4.

TABLE VI.*—GROWTH RECORD OF RATS RECEIVING THE BASAL DIET SUPPLE-MENTED BY GRADED PORTIONS OF DARK EGG YOLKS, COLOR CORRESPONDING TO 0.1 N POTASSIUM DICHROMATE SOLUTION

		¥¥7.				maders							
Rat	Ini- tial wt.	Wt. after de- pletion		Gain	s at end	o. suc	cessive v	weeks, g	rams	1	Final wt.	Total gain	Week- ly food in- take
No.	gm.	gm.	1	2	3	4	5	6	7	8	gm.	gm.	gm.
53120 53210 54080 55279 55459 Av.	43 43 41 39 51 43.4	88 95 85 94 115 95.4	-13 -3 -12 -4 -8 -8	$ \begin{array}{r} 11 \\ 5 \\ -12 \\ 11 \\ 3.6 \end{array} $	-2 -8 -1 -3 -4 -3.6	$ \begin{array}{r} 1 \\ \pm 0 \\ -4 \\ -12 \\ -2.8 \end{array} $	$ \begin{array}{c} -13 \\ -12 \\ \pm 0 \\ -2 \\ -2 \\ -5.8 \end{array} $	-2 -6 -3 -1.0		7 7 -7	70 72 75 56 91 75 P.E.	$ \begin{array}{r} -18 \\ -23 \\ -10 \\ -38 \\ -24 \\ -20.4 \\ \pm 2.83 \end{array} $	44 43 38 35 46 41
22020							0.19 gm						
5327 5414 5414 5472 5542 5552 5555 5612 5 5612 5 5612 5 6 7 5 6 4 2 6 4 2 6 4 2	39 46 39 52 44 45 42 52 42 52 45.3	80 88 73 96 95 111 100 109 86 110 94.8	-3 -29 -12 -12 -12 -13 -3 -1.5 -1.5	9 7 -1 7 -1 -2 -3 10 3.9	-3 -3 -3 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -12 -1.2	$ \begin{array}{r}1\\2\\-2\\-4\\11\\-4\\-7\\1\\-1\\-0.1\end{array}$	$ \begin{array}{r} -3 \\ -4 \\ -3 \\ 4 \\ -10 \\ -16 \\ 2 \\ 10 \\ -2 \\ -1.2 \\ -1.2 \end{array} $	± 0 6 -11 -2 ± 0 -3	$ \begin{array}{c} 6 \\ 5 \\ -3 \\ -11 \\ 6 \\ -14 \\ -2.4 \\ \end{array} $	$ \begin{array}{c} -2 \\ -5 \\ -1 \\ -15 \\ 11 \\ -1.3 \end{array} $	85 101 63 102 117 104 75 110 85 105 94.7 P.E. C.V.	$5 13 -10 6 22 -7 -25 -1 -5 -0.1 \pm 2.66123 %$	45 43 53 55 50 43 54 46 39 47
			Basal	Diet pl	us 8 D	rops (C).25 gm) Egg	Yolk pe	r Weel	c		
5312024 5312024 54112025 5411255 55575 55575 55675 55738 5578 5778 577	45 46 44 43 37 49 37 49 52 49 52 55 44 44 44.4	81 84 71 88 92 97 76 97 85 88 95 99 105 88 94 90.2	$ \begin{array}{r} 4 \\ -8 \\ 15 \\ 22 \\ -12 \\ 67 \\ 79 \\ -11 \\ 188 \\ -4 \\ 80 \\ 3.2 \\ \pm 0 \\ $	$ \begin{array}{r} -6 \\ 16 \\ 11 \\ 13 \\ 7 \\ 9 \\ -2 \\ 13 \\ 9 \\ 4 \\ 6 \\ 7 \\ -7 \\ 10 \\ 8 \\ 5 \\ 9 \\ 4 \\ 6 \\ 5 \\ 9 \\ 9 \\ 4 \\ 6 \\ 7 \\ 10 \\ 8 \\ 5 \\ 9 \\ 9 \\ 9 \\ 5 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 9 \\ -15 \\ 6 \\ 10 \\ \pm 05 \\ 5 \\ 6 \\ 15 \\ 6 \\ 8 \\ 5 \\ 8 \\ 2 \\ 0 \\ 3 \\ 4 \\ 4 \end{array}$	$ \begin{array}{c} 3 \\ -18 \\ 4 \\ -23 \\ 5 \\ -36 \\ 5 \\ -75 \\ 10 \\ 3 \\ .5 \\ 10 \\ 3 \\ .5 \\ -3 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -3 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ 3 \\ .5 \\ -7 \\ 15 \\ 10 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$	6 73 -32 -6 4 1 86 4 1 4 3 2 6 6 3.8	4 6611821505222523622 - 3622 - 362 - 3622 -	$ \begin{array}{c} 4\\ 8\\ -1\\ -2\\ -3\\ -2\\ -2\\ -3\\ -2\\ -2\\ -3\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$	$ \begin{array}{c} 1 \\ 5 \\ 1 \\ 3 \\ 4 \\ -4 \\ -2 \\ 4 \\ -3 \\ 4 \\ -3 \\ 2 \\ -0 \\ .8 \\ \end{array} $	106 116 104 118 111 98 125 109 140 113 132 148 101 121 121 121 121 121 121 2 P.E. C.V.	25 32 33 19 1 22 28 24 26 26 20 33 43 13 27 56 47 35.6%	47 4521 4437 6095 6475 885 458 458 458
				Diet plu	s 10 D	rops (C).31 gm	.) Egg	Yolk pe	r Weel	ĸ		
5576 5644 5644 5649 5649 5649 5649 5544 5748 5748 5748 5765 5775 5765 57759 5765 57799 5805 4v. Av.	51 57 49 57 508 52 52 52 52 52 52 52 52 52 52	93 76 88 95 95 97 104 101 83 103 100 108 82 89 93.9	17 8 12 2 13 7 4 22 8 13 9 6 13 5 9.9	$ \begin{array}{c} 6 \\ -6 \\ 7 \\ 6 \\ 12 \\ 6 \\ 11 \\ 8 \\ 7 \\ 11 \\ 14 \\ 12 \\ 16 \\ 8 \\ .3 \\ \end{array} $	4 13 13 -3 4 8 7 2 4 5 12 9 4 6.8	1 847 -92384569253.9	8 4 3 10 4 2 8 3 2 4 11 8 6 5.3	2 49 10 25 47 35 43 6 4.8	$ \begin{array}{c} 7 \\ 1 \\ 4 \\ 1 \\ 5 \\ -2 \\ 1 \\ -1 \\ \pm 0 \\ 2.6 \\ \end{array} $	$ \begin{array}{c} 1\\ 2\\ -10\\ -11\\ -3\\ 4\\ -4\\ -2\\ 3\\ 2\\ 1\\ -0.3\\ \end{array} $	139 114 142 128 110 127 142 163 107 146 152 164 135.2 P.E. C.V.	46 38 54 33 15 30 62 24 43 52 56 54 41.3 54 41.3 31.2 %	58 59 52 54 49 48 56 61 62 54 59 60 58 52 56

Basal Diet plus 4 Drops (0.12 gm.) Egg Yolk per Week

*Average gain curves for Table VI shown in Figure 4.

From the results of these tests it would appear: (1) that the amounts of egg yolk necessary to induce approximately unit growth are for dark and light-2 each 0.036 gram, medium 0.107 gran, and light-1 0.143 gram per rat per day; (2) that dark and light-2 egg yolks are of equal vitamin A potency; (3) that they are about three times more potent than medium and four times more potent than light-1 yolks; (4) and that the medium are about one and three-tenths times more potent than light-1 yolks.

These experiments were designed to show quantitative differences in the vitamin A activity of the egg yolks used, but throughout the tests specific evidences of vitamin A deficiencies were observed in the experimental animals. Ophthalmia was observed in all of the negative controls and was common in other rats receiving the lower levels of supplements. Autopsies of negative controls showed pus in the glands at the base of the tongue; pus in one or both ears; an unhealthy condition of the intestinal tract, with the characteristic odor described by Munsell;²³ and a bloody exudate from the urinary tract.

The rats on the lowest levels of supplements exhibited the same symptoms and in addition a prevalence of bladder and urinary tract abnormalities such as were noted by Batchelder.²⁴ At levels which supported unit growth, 5 per cent showed a slight infection of one or both eyes, 22 per cent a little pus in the glands at the base of the tongue, and in a few cases gas in the intestinal tract.

Experiments to determine the carotene and xanthophyll content of the egg yolks used in these tests gave the following results.

	Carotene	Xanthophyll	Ratio of
Egg Yolks	milligrams	milligrams	Carotene to
	per gram	per gram	Xanthophyll
Dark (Pen 25)	0.0099	0.0340	1:3.32
Light-2 (Pen 15)	0.0045	0.0142	1:3.15
Medium (Pen 26)	0.0067	0.0251	1:3.74
Light-1 (Pen 27)	0.0044	0.0147	$1:\!3.34$

The ratio of carotene to xanthophyll in the yolks studied is fairly constant regardless of depth of color of the yolk.

Egg Yolks	Amount of egg yolk fed per day grams	Total gain in 8 weeks grams	Carotene in egg yolk fed per day milligrams	Xanthophyll in egg yolk fed per day milligrams	Units of* Vitamin A per gram
Dark	0.036	26	0.00036	0.00122	28
Light-2	0.036	25	0.00016	0.00051	28
Medium	0.107	29	0.00072	0.00269	9
Light-1	0.143	28	0.00073	0.00243	7

The results are summarized in the following table:

*The units of vitamin A were calculated on the basis of a 7-day week.

Missouri Agricultural Experiment Station

The results seem to show a definite relationship between the depth of color in the medium and light-1 yolks and vitamin A. It is of interest to note that the daily portion of the light-1 yolks necessary to induce an equal increment in weight contains approximately the same amount of carotene and xanthophyll as the medium yolks.

However, a comparison of daily portions of dark and medium yolks which induce similar gains in weight shows that the dark yolks contain only about one-half as much carotene and xanthophyll as the medium yolks.

The rats receiving equal amounts per day of light-2 and dark yolks made equal gains in 8 weeks but the light-2 yolks contained less than one-half as much carotene and xanthophyll as the dark.

The results of the experiments here reported show that the vitamin A activity in egg yolks cannot be explained on the basis of the carotinoid pigments they contain.

The results of the experiments upon the carotene and xantho²⁷ phyll content of egg yolks are submitted as preliminary work only. As stated elsewhere in this paper, the method as modified by us may not be strictly quantitative, but the results are at least comparative. This work is being continued in this laboratory.

It is noteworthy that the egg production of the groups of hens on the different diets was closely parallel to the vitamin A concentration of the egg yolks as shown by the gains in the weights of the test animals. This seems to be of interest in view of the statement by Sherman and Smith²⁵ that, "Undoubtedly the fowl depends upon its food for the vitamin A which the egg contains; but to what extent a shortage of this vitamin in the food results in the production of vitamin-A-poor eggs, as against a simple diminution of egg production, remains to be investigated in detail."

PART II. VITAMIN D EXPERIMENTS Historical

The antirachitic value of egg yolks was first noted by Mellanby²⁶ in her work with dogs in 1921.

Hess (1923)²⁷ found that egg yolks were effective in protecting infants against rickets in winter, but its curative value was less than that of cod liver oil. In experiments upon rats, receiving Sherman and Pappenheimer's Diet 84, he found that 5 drops (0.25 gm.) of egg yolk per week afforded protection against rickets. The amount of phosphorus in the egg yolk was not sufficient to account for such protection. In curative experiments 0.5 gram of egg yolk per day for 8 days resulted in calcification. Hess and Weinstock (1924)²⁸ reported that as little as 1 drop (0.05 gm.) of egg yolk per day fed by pipette was sufficient to protect rats which were on a ration deficient in phosphorous but that the protection was much less when the rachitic diet was of the low calcium type.

Casparis, Shipley, and Kramer (1923)²⁰ reported that the bones of rats, rendered rachitic on McCollum's Diet 3143, showed definite evidences of healing in 6 days, following the substitution of 10 per cent egg yolk for 10 per cent gelatin in the diet.

The effect of irradiation of hens with ultra-violet light or exposure to sunlight, on the vitamin D content of egg yolks has been studied by a number of investigators. Hart, Steenbock, Lepkovsky and Kletzien (1925)³⁰ reported experiments upon the vitamin D potency of egg yolks collected in March, from hens housed in an attic one group of which received the basal ration alone and the other group the basal ration and irradiation with ultra-violet light 10 minutes daily. The egg yolks were fed to rats and the antirachitic activity determined by means of the line test. They reported that "the ration fortified with 0.2 to 0.5 gm. of the egg yolks from irradiated hens was quite as potent antirachitically as the ration fortified with 5.0 gm. of the yolks from the non-irradiated hens. In other words, the yolks from the eggs of the irradiated hens were about ten-fold as potent in calcifying properties as those from the non-irradiated hens."

Hughes, Payne, Titus and Moore (1925)³¹ tested the antirachitic activity of eggs from hens receiving varying degrees of ultraviolet light by feeding the eggs to young growing chicks. They found that "the amount of ultra-violet irradiation which a hen receives is an important factor in determining the antirachitic vitamin content of the eggs which she produces when her feed is low in the antirachitic vitamin."

MISSOURI AGRICULTURAL EXPERIMENT STATION

Bethke, Kennard and Sassaman $(1927)^1$ studied the antirachitic content of egg yolks produced by hens under the following conditions: the hens were divided into four groups of which (1) confined indoors received the basal ration plus 2 parts cod liver oil; (2) confined indoors, received the basal ration alone; (3) confined indoors, received the basal ration and alfalfa hay ad libitum; (4) received the basal ration and had access to blue grass range. They reported (1) that the egg yolks produced by hens that had access to blue grass range were about ten times as active antirachitically as the egg yolks from hens confined indoors; (2) that alfalfa hay did not improve the calcifying properties of the egg yolks; (3) and that cod liver oil increased the antirachitic activity of the egg yolks about five fold. They have shown that the ration of the hen and the ultra-violet light she receives have a marked influence on the vitamin D activity of the egg yolks produced.

Experimental Procedure

The method developed by Sherman and Stiebeling³² for the quantitative determination of vitamin D, with minor modifications, was used in this investigation.

Experimental Animals.—The selection and routine care of the animals was the same as that described for vitamin A experiments. One rat in each litter was given the basal diet alone and served as a negative control; another matched in sex and weight, was given the basal diet plus an adequate amount of vitamin D in the form of a solution of 0.5 per cent viosterol (250D) in cottonseed oil, and served as a positive control. The viosterol was dropped from a standardized microburette directly into the mouths of the rats. The amount of viosterol required, one drop (0.0203 gm.) per rat per day, had been determined previously by Cover.¹⁵ The remaining rats in each litter were distributed among the several groups and fed graded portions of the four kinds of egg yolks as sources of vitamin D. Care was taken that the distribution of sexes and the averages of the weights of the rats were as nearly uniform as possible for all groups.

The Basal Diet.—The basal diet used has the following percentage composition:

Corn Starch66%
Casein (freed from fat-soluble vitamins by triple extrac-
tion with boiling 95 per cent alcohol)18%
Dried brewers' yeast10%
Salt mixture (Osborne and Mendel) 4%
Sodium chloride
Dried winter spinach 1%

26

Previous experience in this laboratory has shown that rats will separate out parts of this diet if it is fed in the dry state. When it was mixed with distilled water in about equal proportions, by weight, it was quite liquid at first but soon set to a stiff jelly. The rats ate it without separation. Records were kept of the dry food before mixing. The food for each rat was mixed separately as needed, usually every second day. The food consumption records were determined at the end of the experimental period by drying the food which was left and subtracting its weight from that of the total dry food given during the experiment.

Supplements to the Basal Diet.—The egg yolk used in the vitamin D experiments were from the same sources and usually from the same composite samples as those used in the vitamin A experiments. Dark yolks were from Pen 25 (65 per cent yellow corn plus 10 per cent alfalfa leaf meal); medium from Pen 26 (65 per cent yellow corn); light-1 from Pen 27 (35 per cent yellow corn); and light-2 from Pen 15 (25 per cent yellow corn plus 0.5 per cent cod liver oil). The technique of feeding was the same as that described for vitamin A experiments.

Two series of tests were made, one from April 17th to May 26th and the other from June 11th to July 13th. The hours of sunshine for the duration of each series were obtained and the effect upon the vitamin D activity of the egg yolks compared.

On the twenty-eighth day of the experimental period (fiftysixth day of life), the rats were killed. After autopsy, the femurs were dissected out, freed from adhering tissue, and weighed in weighing bottles. They were ashed, weighed, and the percentage ash calculated on the basis of the weight of the fresh bone.

Results and Discussion

April 17th to May 26th Experiments.—Egg yolks were fed at the following levels: medium and light-1, 30 drops (0.94 gm.) and 60 drops (1.87 gm.) and dark and light-2, 6 drops (0.19 gm.) and 18 drops (0.56 gm.) respectively, per rat per week. A relative increase in percentage ash of 87 was obtained with 18 drops of light-2 egg yolks per week. About the same relative increase was obtained with 30 drops of medium and with 60 drops of light-1 egg yolks per week. Eighteen drops of dark egg yolks per week induced a relative increase in percentage ash of 63. Although the tests in this series were preliminary the results seem to indicate the following: (1) that light-2 are a somewhat better source of vitamin D than dark egg yolks; (2) that light-2 and dark egg yolks are better sources of vitamin D than either medium or light-1 egg yolks; (3) and that 65 per cent yellow corn in the ration of the henseems to insure somewhat more vitamin D in the egg yolks than when 35 per cent only is used. The results are shown in Table VII.

Rats grouped according to (1) controls (2) source of egg yolks fed.*	Amounts of egg yolk fed per week drops grams		Num- ber of rats	Average begin- ning body weight grams	Average gain per week grams	Ash in green femur per cent	Abso- lute in- crease over neg- ative controls	Rela- tive in- crease
Negative Controls			11	51	14	19.74		
Dark (10% alfalfa)	6	0.19	9	52	16	22.53	2.79	33
	18	0.56	8	•47	18	25.14	5.40	63
Light-2 (0.5% cod liver	6	0.19	8	50	16	23.10	3.36	39
oil)	18	0.56	7	50	19	27.18	7.44	87
Light-1 (35% yellow	30	0.94	7	51	21	25.91	6.17	72
corn)	60	1.87	7	51	22	26.71	6.97	82
Medium (65% yellow	30	0.94	9	52	20	27.10	7.36	86
corn)	60	1.87	8	52	25	28.25	8.51	100
Positive controls, 0.5% viosterol (250 D) 1 drop per day			11	51	22	28.27	8.53	100

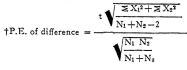
TABLE VII.—SUMMARY OF RESULTS OBTAINED FROM EXPERIMENTS UPON THE VITAMIN D ACTIVITY OF EGG YOLKS PRODUCED FROM APRIL 10 TO MAY 15

*Complete rations of hens producing egg yolks shown on page 8.

June Experiments.—In this series dark and light-2 egg yolks were fed at levels of 3 drops (0.09 gm.) and 6 drops (0.19 gm.) and medium and light-1 at 6 drops (0.19 gm.) and 12 drops (0.37 gm.) respectively, per rat per week. Thus it is possible to compare the results obtained from feeding the different kinds of egg yolks at a level of 6 drops (0.19 gm.) per rat per week.

Six drops (0.19 gm.) of light-1, medium, or dark egg yolks, per week, induced a relative increase in percentage ash of about 50. There seems to be no difference in the vitamin D potency of the eggs produced in June by hens receiving 35 per cent yellow corn, 65 per cent yellow corn, or 65 per cent yellow corn plus 10 per cent alfalfa leaf meal. Six drops (0.19 gm.) of light-2 egg yolks per week induced a relative increase in percentage ash of 62. It would appear that 0.5 per cent of cod liver oil in the ration of the hen increased the vitamin D activity of the egg yolks used in these tests. However, this apparent difference is not significant when treated statistically. It was expected that the cod liver oil in the ration of the hens would have a greater effect in increasing the vitamin D activity of the egg yolks. However, the amount fed 0.5 per cent was only about one-fourth as much as was used by Bethke, Kennard and Sassaman.¹ The results are shown in Tables VIII and IX

							-	
Rats grouped according to (1) controls (2) source of egg yolks fed.*		ts of egg per week grams	Num- ber of rats	Average begin- ning body weight grams	Average gain per week grams	Ash in green femur per cent	Abso- lute in- crease over neg- ative controls	Rela- tive in- crease
Negative controls			22	47	11	17.80		0
Dark (10% alfalfa)	3	0.09	13	47	12	19.63	1.83	20
	6	0.19	13	47	16	22.44	4.64	50
Light-2 (0.5% cod liver	3	0.09	16	47	14	21.29	3.49	38
oil)	6	0.19	14	47	16	23.54	5.74	62
Light-1 (35% yellow	6	0.19	15	47	16	22.73	4.93	53
corn)	12	0.37	13	47	18	25.34	7.54	82
Medium (65% yellow	6	0.19	15	47	16	22.76	4.96	54
corn)	12	0.37	14	48	18	25.13	7.33	79
Positive controls, 0.5% viosterol (250 D), 1 drop per day			22	47	20	27.04	9.24	100


TABLE VIII.—SUMMARY OF RESULTS OBTAINED FROM EXPERIMENTS UPON THE VITAMIN D ACTIVITY OF EGG YOLKS PRODUCED IN JUNE

*Completerations of hens producing egg yolks shown on page 8.

TABLE IX.—MEASUREMENTS OF RELIABILITY OF DIFFERENCES IN PERCENTAGE Ash Obtained from Green Femurs of Rats Fed Graded Portions of Egg Yolks Produced in June

		()) I	Ash in green femur					
Rats grouped according to		of egg yolk r week			probable† erro r of	critical‡		
source of egg yolks fed.*	drops	grams	per cent	difference	differences	ratio		
Light-2 (0.5 % cod liver oil) Dark (10 % alfalfa)	6 6	0.19 0.19	23.54 22.44	1.10	±0.41	3		
Light-2 (0.5 % cod liver oil) Light-1 (35 % yellow corn)	- 6 6	0.19 0.19	23.54 22.73	0.81	±0.42	2		
Light-2 (0.5 % cod liver oil) Medium (65 % yellow corn)	6 * 6	0.19 0.19	23.54 22.76	0.78	±0.41	2		
Light-2 (0.5 % cod liver oil)	6 3	0.19 0.09	23.54 21.29	2.25	±0.52	4		
Dark (10% alfalfa)	6 3	0.19 0.09	22.44 19.63	2.81	±0.35	8		
Light-1 (35% yellow corn)	12 6	0.37 0.19	25.34 22.73	2.61	±0.39	7		
Medium (65% yellow corn)	12 6	0.37 0.19	25.13 22.76	2.37	±0.36	. 7		

*Complete rations of hens producing egg yolks shown on page 8.

N = number of cases X = deviation from mean t is obtained from Fisher's tables

 $Critical ratio = \frac{\text{Difference}}{P. E. of Difference}$

Since a significant difference was obtained from the feeding of 3 drops and 6 drops of egg yolk per rat per week, it is evident that the Sherman-Stiebeling method is delicate enough to distinguish between the vitamin D activity of aproximately one-half drop and one drop of egg yolk per rat per day (Table VIII).

An indication was obtained as to the effect of an increasing number of hours of sunlight on the relative increase in percentage ash. The hours of sunlight from April 10th to May 15th were 254 and from May 29th to July 3rd were 470. There were, therefore, approximately twice as many hours of sunlight available for the hens which produced the eggs for the June tests as for those that produced the eggs for the April-May tests. A comparison of the vitamin D activity of dark and light-2 egg yolks, fed at the same level, in both series shows the following: six drops of dark egg yolk per week gave a relative increase in percentage ash of 33 in April-May tests and 50 in June tests; six drops of light-2 egg yolks gave a relative increase of 35 in April-May tests and 62 in June tests. It is obvious that the additional hours of sunlight increased the storage of vitamin D in the egg yolks.

SUMMARY

A comparison has been made of the vitamins A and D potency of egg yolks of different color concentrations, produced by hens under carefully controlled conditions as to rations and housing.

There was a distinct gradation of color in the egg yolks from the hens on the different rations and the color of the yolks on a given ration was very uniform. The color of a composite sample of egg yolk was compared with 10 milliliter samples of potassium dichromate solutions, each containing 0.1 gram of talc. The colors correspond to the following concentrations of potassium dichromate solutions: dark 0.1 N, medium 0.07 N, light-1 0.05 N and light-2 0.04 N.

A method is described for the determination of the carotene and xanthophyll content of egg yolks.

The tests for vitamin A activity have shown: (1) that while there seems to be some relationship between color and growth, the vitamin A activity of egg yolks cannot be explained on the basis of the carotinoid pigments they contain; (2) and that the vitamin A activity of egg yolks is directly dependent upon the rations of the hens.

The tests to determine the vitamin D activity were carried on in two series, one upon egg yolks produced from April 10th to May 15th and the other upon egg yolks produced in June. In the first series there appeared to be somewhat better relative calcification in rats receiving light-2 and dark yolks than in those receiving light-1 and medium yolks. However, this difference was not apparent in the June tests. The hours of sunshine available for the hens that produced the eggs for the June tests were approximately twice as many as for the April-May tests and the relative calcification was about in the ratio of 1.5:1. These results furnish further evidence that the amount of sunshine available for the layers makes a difference in the vitamin D activity of egg yolks.

BIBLIOGRAPHY

- Bethke, R. M., Kennard, D. C., and Sassaman, H. L., J. Biol. Chem., 72, 695-706 (1927).
- 2. Kempster, H. L., U. S. Egg and Poultry Mag., 36, 14-16, 64-69 (1930).
- 3. Steenbock, H., Science 50, 352-353 (1919).
- Sherman, H. C. and Smith, S. L., "The Vitamins," 2nd Ed. 1931 (Chemical Catalog Co.).
- 5. Palmer, L. S. and Kempster, H. L., J. Biol. Chem., 39, 299-312 (1919)
- Palmer, L. S., Kennedy, C. and Kempster, H. L., J. Biol. Chem. 46, 559-577 (1921).
- 7. Hauge, S. M. and Trost, J. F., J. Biol. Chem., 86, 167-172 (1930).
- 8. Russell, W. C., J. Nutrition, 2, 265-269 (1930).
- 9. Fraps, G. S., Tex. Agr. Expt Sta. Bul., 422, (1931).
- 10. Moore, T., Biochem. J., 24, 692-702 (1930).
- Capper, N. S., McKibbin, I. M. W. and Prentice, J. H., Biochem. J., 25, 265-274 (1931).
- 12. Loesecke, H. von, J. Am. Chem. Soc., 51, 2439-2443 (1929).
- 13. Mattikow, M., Poultry Science, 11, 83-93 (1932)
- 14. Sherman, H. C. and Smith, S. L., "The Vitamins," 2nd Ed., 258 (1931).
- 15. Cover, Sylvia, Dissertation, University of Missouri (1933).
- 16. Palmer, L. S., "Carotinoids," Monograph, 1922 (Chemical Catalog Co.).
- Morrow, C. A., "Biochemical Laboratory Methods," 309, 1927 (Wiley and Sons).
- Terenyi, Sandor, Z. Untersuch Lebensm 62, 566-571 (1931); Chem. Abs. 26, 3853 (1932).
- Olcovich, H. S. and Mattill, H. A., Proc. Soc. Exptl. Biol. Med., 28, 240-241 (1930).
- 20. Holmes, H. M. and Leicester, Jour. Am. Chem. Soc., 54, 716-720 (1932).
- 21. Schertz, F. M., Jr. Agr. Research, 30, 469-474, 575-585 (1925).
- 22. Schertz, F. M., Plant Physiol., 3, 211-216 (1928).
- Munsell, Hazel, Dissertation, Columbia University (1924); Sherman, H. C. and Munsell, Hazel, J. Am. Chem. Soc., 47, 1639-1646 (1925).
- 24. Batchelder, E. L., Dissertation, Columbia University (1929).
- 25. Sherman, H. C. and Smith, S. L., "The Vitamins," 2nd Ed., 271 (1931).
- 26. Mellanby, E., Special Report Series 61, Medical Research Council, London, p. 65 (1921).
- Hess, A. F., J. Am Med. Assn., 81, 15-17 (1923); Proc. Soc. Exper. Biol. and Med. 20, 369-370 (1923).
- Hess, A. F. and Weinstock, M., Proc. Soc. Exper. Biol. and Med. 21, 441-442 (1924).
- 29. Casparis, H., Shipley, P. G. and Kramer, B., J. Am. Med. Assn. 81, 818-819 (1923).
- Hart, E. B., Steenbock, H., Lepkovsky, S., Kletzien, S. W. F., Halpin, J. G., and Johnson, O. N., J. Biol. Chem. 65, 579-595 (1925).
- Hughes, J. S., Payne, L. F., Titus, R. W. and Moore, J. M., J. Biol. Chem. 66, 595-600 (1925).
- 32. Sherman, H. C. and Stiebeling, H. K., J. Biol. Chem., 83, 497-504 (1929).