UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION RESEARCH BULLETIN 122

The Relation of Inadequate Rations to the Weights of the Internal Organs of Chicks

(Publication authorized March 21, 1929)

COLUMBIA, MISSOURI APRIL, 1929 UNIVERSITY OF MISSOURI

COLLEGE OF AGRICULTURE

Agricultural Experiment Station

EXECUTIVE BOARD OF CURATORS.—F. M. McDAVID, Springfield; MERCER ARNOLD, Joplin; H. J. BLANTON, Paris

ADVISORY COUNCIL .- THE MISSOURI STATE BOARD OF AGRICULTURE

STATION STAFF, APRIL, 1929

STRATTON DULUTH BROOKS, A.M., LL.D., President F. B. MUMFORD, M.S., D.Agr., Director S. B. SHIRKY, A.M., Asst. to Director MISS ELLA PAHMEIER, Secretary

AGRICULTURAL CHEMISTRY A. G. Hogan, Ph. D. L. D. Haiger, Ph. D. W. S. Ritcher, Ph. D. A. R. Halt, B. S. in Agr. J. E. Hunter, Ph. D. C. L. Shrewsbury, Ph. D. E. W. Cowan, A. M. Robert Boucher, Jr., A. B. L. V. Taylor, A. B. AGRICULTURAL ECONOMICS O. R. Johnson, A. M. Ben H. Frame, A. M F. L. Thomsen, Ph. D. G. B. THORNE, A. M. PRESTON RICHARDS, B. S. in Agr. ELGIN E. MCLEAN, B. S. in Agr. AGRICULTURAL ENGINEERING J. C. Wooler, M. S.† Macr M. Jones, M. S. R. R. Parks, B. S. in Agr. Eng. E. G. JOHNSON, M. S. ANIMAL HUSBANDRY ANIMAL HUSBANDRY E. A. TROWERIDES, B. S. in Agr. L. A. WEAVER, B. S. in Agr. F. B. MUMFORD, M. S. D. W. CHITTENDEN, A. M. M. T. FOSTER, A. M. F. F. MCKENZIZ, Ph. D. H. C. MOFFETT, B. S. in Agr. J. E. COMFORT, B. S. in Agr. LESTER E. CASIDA, A. M. BOTANY AND PHYSIOLOGY W. J. Robbins, Ph. D.† I. T. Scott, Ph. D. DAIRY HUSBANDRY DAIRY HUSBANDRY A. C. RAGSDALE, M. S. WM. H. E. REID, A. M. SAMUEL BRODY, Ph. D. C. W. TURNER, Ph. D. E. C. ELTING, A. M. WARREN GIFFORD, A. M. E. R. GARRISON, A. M. M. J. POWELL, B. S. in Agr. ENTOMOLOGY LEONARD HASEMAN, Ph. D. K. C. Sullivan, Ph. D. FIELD CROPS W. C. ETHERIDGE, Ph. D. C. A. HELM, A. M. L. J. STADLER, Ph. D.

R. T. KIREPATRICE, A. M. B. M. King, A. M. Miss Clara Fuhr, M. S.*

HOME ECONOMICS Miss Mabel Campbell, A. M. Miss Jessie Alice Cline, A. M., Miss Bertha K. Whipple, M. S. Miss Margaret C. Hessler, Ph. D. Miss Adella Epper, M. S. Miss Edna Amidon, M. S.

HORTICULTURE T. J. TALBERT, A. M. H. D. HOOKER, Ph. D. H. G. SWARTWOUT, A. M. J. T. QUINN, A. M. A. E. MURNEEK, Ph. D.

POULTRY HUSBANDRY H. L. Kempster, M. S. Earl W. Henderson, A. M.

RURAL SOCIOLOGY E. L. Morgan, A. M. Henry J. Burt, A. M. Miss Eleanor Lattimore, Ph. D. Miss Ada C. Niedermeyer, A. M. Randall C. Hill, A. M.

SOILS M. F. MILLER, M. S. A. H. H. KUSEKOFF, A. M. W. A. ALBERCHT, Ph. D. RICHARD BRADFIELD, Ph. D. HANS JENNY, Ph. D. R. E., UHLAND, A. M. F. L. 'DAVIS, B. S. in Agr. GEO. Z. DOOLAS, A. M. ROY HOCKENSMITH, A. M. LLOYD TUKE, B. S. in Agr.

VETERINARY SCIENCE J. W. CONNAWAY, D. V. M., M. D. O. S. CRISLER, D. V. M. A. J. DURANT, A. M., D. V. M. ANDREW UREN, D. V. M. R. L. CROUCH, A. B., B. S. in Med.

OTHER OFFICERS R. B. PRICE, B. L., Treasurer LESLIE COWAN, B. S., Sec'y of University A. A. JEFFREY, A. B., Agricultural Editor J. F. BARHAM, Photographer Mrss JANE FRODSHAM, Librarian E. E. BROWN, Business Manager

*In service of U. S. Department of Agriculture

†On leave of absence

The Relation of Inadequate Rations to the Weights of the Internal Organs of Chicks

Albert G. Hogan, Charles L. Shrewsbury, and H. L. Kempster

ABSTRACT.—Numerous attempts to rear chicks on synthetic rations have been reported, but complete success has not been attained in any case. Persistent egg yolks were frequently noted in post mortem examinations, so an attempt was made to correlate delayed resorption with nutritional failures. No casual relation could be established. All nutritional factors as yet recognized were incorporated in the experimental rations, but it seemed possible that at least one might be present in insufficient quantity. In order to obtain a hint as to such a possibility the internal organs of a large number of chicks were weighed. The adrenal glands of those receiving synthetic diets, and weighing over 800 grams, were, on the average, much heavier than the average for chicks on adequate rations. This difference in weight suggests that the synthetic diets previously used are deficient in at least one factor of the vitamin B complex.

This laboratory has been attempting for several years^{1*} to define the nutritional requirements of the chick, but complete success has not been attained as yet. Simplified diets almost invariably fail to support normal growth, and a considerable number of individuals develop characteristic abnormalities. In some the symptoms are typical of polyneuritis, and a large proportion of the affected birds may be cured by the administration of large doses of yeast, one gram or more daily. Untreated birds, or those in which treatment is ineffective, usually pass into a state of coma, and die within three or four days. Other individuals never develop acute symptoms, but become unthrifty, emaciated, and unsteady in gait. Many of these, too, are relieved by large doses of yeast; otherwise they may linger for weeks, or may die at any time.

It was the custom to make post mortem observations on all chicks that died, and at the close of experimental periods many were killed for autopsy. One feature that could not fail to attract attention was the frequent presence of unabsorbed yolk, even in chicks that were two or three weeks old. It is the common opinion that persistent egg-yolks are associated with disease, so it seemed possible that the poor growth and other abnormalities encountered were correlated with failure to absorb the yolk, and were altogether unrelated to nutritional factors. It was decided, therefore, to make a special study of that point. At the time the yolk observations were made, weights were also taken of

^{*}Numerals refer to corresponding numbers in bibliography.

some of the internal organs. It was hoped that if the rations were inadequate such observations would indicate the type of deficiency.

Observations on the rate of yolk absorption are not numerous, and apparently very few reports have been made on that topic. Gwatkin² examined healthy chicks to see what period of time is required for yolk absorption. There was considerable variation in the rate of absorption, but in some instances the yolk persisted as long as 13 days, the end of the experimental period. A similar study has been reported by the Arkansas Station. For example, at 9 days of age the weight of yolk in individual chicks varied from 0.004 to 4.80 grams, and at 14 days the weight varied from 0.001 to 0.08 grams. Underfeeding did not affect the rate at which the yolk disappeared.

As indicated previously, some interest is attached to the size of the internal organs, in connection with deficient rations. A number of such studies have been described, but for the present the class *aves* will receive special consideration. Funk and Douglas⁴, McCarrison⁵, Dutcher and Wilkins⁶, and Souba⁷ observed atrophy of the testes of birds, pigeon or fowl, on rations deficient in vitamin B. Allen⁸ made a similar observation on the testes of the rat.

Although there is general agreement that the testes atrophy in periods of vitamin B deficiency, the evidence indicates that the adrenals increase in size. This observation was apparently first made by Mc-Carrison⁵ on pigeons and has been confirmed by many others. A more recent discussion of this topic, with a summary of the literature, may be found in the paper of Marrian, Baker, Drummond, and Woollard⁹. Marrian¹⁰ attempted to decide what relative part in the enlargement was due to each of the recognized factors in the vitamin B complex. He decided it is due chiefly to vitamin B₁ (antineuritic), though a deficiency of B₂ (growth promoting) may be a contribution factor. Findlay¹¹ obtained similar findings with the rat. Though vitamin C is of no immediate concern it is of interest that LaMer and Campbell¹² noted an enlargement of the adrenals of scorbutic guinea pigs.

Similar studies of other types of such deficiencies are not numerous; Marine¹³ reported that chicks receiving a ration deficient in calcium had enlarged thyroid glands. Luce¹⁴ has made a similar observation on rats. Students of rickets have frequently reported enlargement of the parathyroid glands. Pappenheimer and Minor¹⁵ noted an enlargement of these glands in rachitic children. These authors summarize earlier work in this field. More recent workers have made similar studies on the chick, with the same result. Thus Doyle¹⁶, and Nonidez and Goodale¹⁷ have described enlarged parathyroid glands in rachitic chicks. Doyle observed hyperplasia only, while Nonidez and Goodale noted both hyperplasia and hypertrophy.

EXPERIMENTAL

In the studies here reported only White Leghorns were used. and the conditions as to care and environment have been previously described¹

The rations were made up of natural foodstuffs in some cases, and in others the simplified type of diet was employed. Of the latter type, No. 503, one of our basal diets, is given as an example, but it was modified so frequently that the changes can not now be described in detail. Most of the changes consisted in the inclusion of extracts that were being examined for nutritional properties. These supplements were prepared from a variety of materials, such as maize, egg volk. and wheat germ. Also various solvents were used, chiefly water, ether. and ethyl alcohol. These extracts will be described in greater detail in a subsequent publication. For the present it will be sufficient to say that in rare instances these supplements seemed to make the ration adequate, and capable of supporting normal growth. Such cases were rare, were not reproducible, and ordinarily the rations were improved only slightly or not at all. The chicks described in Table 8 were reared on a number of variations of Ration 503, but judging by the results. the changes were immaterial. A description of the rations appears in Table 1

Components of Patien		R	ation Numb	er	
Components of Kation	7521 2 3	7531 2 4	7541 5	7557	5036
Yellow corn White corn Calcium carbonate Sodium chloride Casein Dried yeast Cod liver oil Lard Corn starch Cellulose	<i>per cent</i> 81 2 1 10 6 	<i>per cent</i> 81 -2 1 10 6 	<i>per cent</i> 81 -2 1 10 6 	per cent 81 2 1 10 4 2 	per cent 20 15 5 10 43 3
Salt mixture					1 4

TABLE 1.-COMPOSITION OF EXPERIMENTAL RATIONS

 Skim milk to drink, ad libitum.
 The chicks were irradiated for 15 minutes daily, with a quartz-mercury vapor arc.

3 Control ration.

4 Deficient in Vitamin A.

5 Deficient in Vitamin D.

Typical of our synthetic rations.

7 Deficient in Vitamin B. After 28 days the yeast was removed entirely from the ration and replaced by an equal quantity of grits. Slight modifications of this ration were employed in earlier trials, but since they gave approximately the same result a detailed description seems unnecessary.

After the frequent presence of unabsorbed volk was noted it became the practice to search each chick autopsied for the possible presence of this body. At first merely the presence, or absence. of volk was recorded. with occasional references to size: but in later observations an attempt was made to correlate the rate of growth with the rate of yolk absorption, and all yolks were weighed. The first weights secured were taken on a small group of chicks receiving the basal ration. No. 503. As soon as these came to the laboratory each chick was assigned a date when it was to be sacrificed for autopsv. thus eliminating the possibility of unconscious selection later. The report of Gwatkin had not yet appeared at that time, so the variability noted. and the frequent delay in the time of yolk absorption, were quite surprising. These observations were then repeated, and other groups provided on Ration 634 as controls. Ration 503 is composed of simplified foodstuffs, and so is typical of the diets used in studying the nutritional requirements of the chick. Ration 634 is composed of natural foodstuffs, and supports a fairly rapid rate of growth.18

In view of the great variability of individual chicks it is difficult to draw definite conclusions, but there was no correlation between the rate of growth and the rate of absorption. Retarded absorption was noted both in rapidly and in slowly growing chicks. It seemed possible that the delay in absorption may have been due to disease, so a number of chicks were sent to the Department of Veterinary Medicine for examination.* Infection of any kind was rarely observed, and the idea has been discarded that bacterial disease may be a factor in the nutritional failures observed. What factors do determine the rate of yolk absorption are undertermined. It seems certain, however, that these factors are not of primary importance in fixing the rate of growth, or in developing the untoward symptoms associated with our synthetic rations. The data appear in Table 2.

*We are greatly indebted to Dr. A. J. Durant for his kindness in making post mortem examinations, and in taking bacterial cultures.

		Weights	of Yolks	
Age days	Adequate	Diet; grams	Synthetic 1	Diet; grams
	ਰਾ	Ŷ	്	ę
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 20\\ 22\\ 23\\ 24\\ 26\\ \end{array} $	2.47 6.70, 0.83 6.70 4.25, 0.13 0.50, 1.50 2.00 0.00 0.18, tr. 0.00 tr., 0.00 0.001 tr. 0.00	4.62 1.00 0.20, 0.36, 4.15, 0.50 0.00, 0.12 0.05 0.015 tr. 0.00 0.00 0.00 0.00, tr. 0.00 0.00 0.00 0.00	5.60 5.50, 0.53 3.95 1.99, 0.05 2.42, 0.15 0.03 0.095, 0.00 0.02, tr. 0.00 0.03, 0.015 0.00 0.025, 0.00 tr. 0.00 0.025, 0.00	$\begin{array}{c} 7.55, \ 0.36\\ 1.03\\ 0.50, \ 0.88\\ 1.10, \ 0.53, \\ 0.35, \ 0.27\\ 4.20, \ 0.15, \\ 0.00\\ 0.07, \ 0.00\\ 0.035, \ 0.02\\ tr., \ 0.02\\ 0.00\\ 0.05, \ tr. \ 0.00\\ 0.095, \ 0.00\\ 0.095, \ 0.00\\ 0.17\\ 0.00\\ 0.17\\ 0.00\\ 0.35\\ 3.80, \ 0.75\\ 3.65\\ \end{array}$
27	0.005, 0.20		tr.	0.09

TABLE 2 .- TIME REQUIRED BY THE BABY CHICK FOR YOLK ADSORPTION

As mentioned previously, unabsorbed yolks were frequently noted in other experimental chicks that were autopsied. Few of them were weighed, and it is impossible to assign them any special significance; but the facts seem worthy of record and appear in Table 3.

TABLE 3.-INCIDENCE OF PERSISTENT EGG YOLK, IN THE CHICK

No. of Chick	Sex	Weight; grams	Age; days	Observations
651 119 121 128 122 118 126 149 163 157 181 184 183 185	ᡐᢧᡗᢧᢧᠣᠣᠣᠥ᠋ᠬᢧᡐᡡᡘᠣᡡ	Adequa 35 28 30 33 35 40 34 26 25 32 27 26 32 26 32 26	te Rations 3 3 4 4 4 5 5 5 5 5 5 5	+++++++++++++++++++++++++++++++++++++++

TABLE	3INCIDENCE	OF	PERSISTENT	Ecc	Yolk,	IN	THE	CHICK.—Continued
-------	------------	----	------------	-----	-------	----	-----	------------------

No. of Chick	Sex	Weight; grams	Age; days	Observations
190		26	5	+
191	, °	27	5	÷
204	5	32 40	5	+
123	ð	33	5	÷
659	50	33	5	+
124	ç	34	6	+
2599	Ŷ	33	6	+
1/4	Ç ∂	39	13	+
75	Ŷ	58	25	+, size of pea
74 76	₽ Ø	60 70	25	large amount of viscous yolk
71	°7	80	26	large amount of caseous yolk
652	Ŷ	95 510	35	
2527	Ť	630	56	—
321	5	526	58 58	_
1026	v ∂7	1172	91	trace
1040	Ŷ	890	93	$ \pm 0.7$ grams
7077	o o	960	103	-, 0.7 grams
7032	Ŷ	1100	104	-
1041	P T	990 1565	116	_
1027	5	830	122	-
808	00	1600	148	_
838	¢	1410	162	<u>−</u> ,
7004	-7	Ration Defi	cient in Vit	amin A
1048	Q.	820	91	-
1046	ę.	630	91	+ 1.0 grams
1031	ç,	500	91	trace
941	Ŷ	215	96	_
7032 7077	00	370	101	_
1011	T	Ration Def	cient in V	i tamin B
998 7066	50	345	89	$+, \infty$ grams
7067	Ŷ	200	90	
7046	¢ Z	510	97	+, 0.85 grams
1037	Q Q	620	147	_
842	ਨਾ	760	148	itamin D
7020	ç	540	102	
7012	5	550	102	+, 0.63 grams
1054 1051	30	900	112	
1056	5	940	114	_
1055	202	750	115	
847	Q Q	1030	162	
118	5	Syn 26	t hetic Rati	olus +
110	. 0		-	

No: of	C	Weight;	Age;	Observations
Chick	Sex	grams	days	
$\begin{array}{c} 441\\ 450\\ 485\\ 606\\ 613\\ 123\\ 141\\ 108\\ 110\\ 111\\ 120\\ 132\\ 133\\ 680\\ 2557\\ 2561\\ 484\\ 480\\ 128\\ 131\\ 135\\ 136\\ 138\\ 137\\ 139\\ 141\\ 148\\ 134\\ 137\\ 138\\ 139\\ 141\\ 148\\ 134\\ 137\\ 138\\ 139\\ 24\\ 59\\ 2985\\ 491\\ 544\\ 573\\ 145\\ 305\\ 2549\\ 343\\ 309\\ 328\\ 307\\ 304\\ 4\\ 1\\ 6\\ 45\\ 458\\ 44\\ 603\\ 112\\ 132\\ 2\\ 561\\ 206\\ 70\\ \end{array}$	ზზაბუბადადაგიკივავავაგაფაგადაგადაგიდადადადადადადი დაგადიდადიდადიდევიდადიდედიდი	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	ations (Co 12 333344444444444444444444444444444444	ntinued) +, 4.05 grams +, 1.20 grams +, 2.10 grams + + + + + + + + + + + + + + + + + + +

TABLE 3.-INCIDENCE OF PERSISTENT EGG YOLK, IN THE CHICK .-- Continued

No. of	<u> </u>	Weight;	Age;	Observations
Chick ·	Sex	grams	ays	Observations
Chick 594 116 63 100 611 65 448 549 96 8 2581 592 189 97 98 1012 84 85 90 124 471 468 85 90 124 471 468 85 90 124 471 468 85 90 106 109 1009 89 338 340 336 474 2580 620 616 91 596 476 2545 66 675 194 217	៴ ϫ ᠉ ᠉	grams ynthetic R 95 85 63 70 115 58 60 77 103 65 99 70 70 151 80 72 73 80 90 85 65 58 90 60 97 70 151 80 72 73 80 90 85 65 58 90 90 70 70 151 80 72 73 80 90 85 65 58 90 90 85 65 58 90 90 70 70 151 80 72 73 80 90 85 65 58 90 90 70 70 151 80 72 73 80 90 85 65 58 90 90 85 65 58 90 85 65 58 90 85 65 58 90 85 65 58 90 85 65 58 90 85 65 58 90 90 70 70 70 80 90 85 65 58 90 90 70 70 80 90 85 65 58 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 70 70 80 90 90 75 115 60 110 125 85 85 85 85 85 85 85 85 85 8	days ations (Co 18 19 19 21 21 21 21 22 22 23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Observations ntinued)

TABLE 3 .- INCIDENCE OF PERSISTENT EGG YOLK, IN THE CHICK .- Continued

10

No. of Chick	Sex	Weight; grams	Age; days	Observations
No. of Chick 481 470 232 553 480 145 83 479 333 192 198 303 297 299 294 301 2584 2553 2553 2553 2553 2553 2553 2554 2566 2566 2566 2566 2566 2554 2556 2566 256	ϫ ϧ Ͷ ϘͺϼͺϧϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘͺϼϘ	Vergine; grams Synthetic R 80 120 175 110 90 130 265 165 140 220 290 210 175 250 355 295 600 575 390 365 500 280 475 375 375 375 375 610 565 528 500 486 740 521 590 595 600 140 430 445	ations (Co. 40 42 46 47 47 47 47 47 47 47 47 47 47 47 47 47	Observations ntinued)
3 62 64	₽ [™] 0	77 1450	77 98 111	 +, 0.5 grams

TABLE 3 .- INCIDENCE OF PERSISTENT EGG YOLK, IN THE CHICK .- Continued

A considerable number of the chicks autopsied do not appear in Table 3, and it is not certain that the chicks there described are a representative sample. This is due to the fact that when the earlier autopsies were made there was no special interest in yolk absorption, and no expectation of finding it in chicks more than a few days old. In many such cases no mention is made of yolk, so those individuals have been omitted. It is impossible now to decide whether the yolks had been absorbed, or were small and only unnoticed. It is certain, however, that there is great variability in the rate of absorption, since in a few cases unabsorbed yolks persisted for at least 16 weeks. Such persistence was unexpected and it has not been possible to correlate retarded absorption with the ration, with disease, or with the rate of growth.

An abnormal color of the liver is commonly regarded as a result of disease, so special note was made of the condition of that organ in post mortem records. The liver of chicks examined within a few days of hatching has invariably been light yellow or tan in color, and this gradually darkens until a normal color is attained on about the 10th day². In diseased chicks it is well known that the yellow color of the liver may persist much longer, two weeks or more.

Mention has already been made of a considerable body of evidence that the size of some of the internal organs may be greatly modified by a ration deficient in certain respects. Thus a ration deficient in vitamin B may lead to a reduction in the weight of the testes, and to an increase in weight of the adrenals. A deficiency of vitamin D results in enlargement of the parathyroid. No evidence is available that a deficiency of vitamin A leads to any such abnormality.

It was decided, therefore, as previously mentioned, to weigh the internal organs of a number of chicks that had been reared on synthetic diets. The chicks examined were, with few exceptions, selected from those that had developed the most extreme symptoms of a deficiency disease.

Some of these had developed typical symptoms of leg-weakness, others were merely subnormal in weight. The organs weighed were yolk, if present, also alimentary tract, lungs and trachae, liver, heart, pancreas, spleen, kidneys, adrenals, testes or ovary, and thyroid.

At approximately the same time there were three small lots of chicks under observation, each of which received a ration deficient in one of the following vitamins, A, B, or D. Another group was receiving a control diet adequate in all respects. These chicks were being used for blood analysis, so when they were ready to be discarded, they too were autopsied and the internal organs weighed. In so far as organ weights are concerned, no great interest pertains to these latter groups,

except the controls. The number of individuals on any one of the deficient diets was too small for the results to be of much significance.

Inspection of the data makes it quite evident that the weights of the internal organs are highly variable. This may be explained by the fact that aside from the controls, practically all the chicks studied were distinctly abnormal; some were quite emaciated, others were in fair condition, aside from gross deformities. Studies by other workers, notably Latimer¹⁹, and Juhn and Mitchell²⁰, however, show that evem in stock selected for uniformity, a high degree of variability is to be expected. The data appear in Tables 4 to 8 of the Appendix, and in Figs. 1 and 2.

Fig. 1.—Chicks reared on rachitogenic diets have heavier thyroid-parathyroid glands than those reared on adequate diets.

Tables 5 to 7, including the chicks on rations 753, 754, and 755, will be considered first. Group II (Table 5) received a ration deficient in vitamin A, and as expected, the weights are indistinguishable from the controls (Table 4).

The weights of the organs of the few chicks on Ration 755, deficient in vitamin B (Table 6), were so few and scattered that they are of little significance. It has been stated that such rations produce atrophy of the testes, but no such effect was observed. It is also commonly believed that such a ration produces enlargement of the adrenals, but the data are indecisive on that point. Most of these chicks were killed when rather small, at weights of 600 grams or less, and according to Fig. 2 enlarged adrenals are not to be expected until the chicks have passed 800 grams.

MISSOURI AGRICULTURAL EXPERIMENT STATION

In connection with vitamin D (Table 7), it was observed that the parathyroid is much enlarged, and so the weight of the thyroid-parathyroid complex is increased. In the chick the parathyroid is readily distinguished from the thyroid gland, and the extreme increase in size is easily noted. The results are shown graphically in Fig. 1.

Fig. 2.—The adrenal glands of chicks reared on synthetic diets are heavier than those of chicks reared on adequate diets.

As regards the chicks on the synthetic diets (Table 8), only one abnormality was noted. The adrenal glands of chicks weighing over 800 grams were, on the average, distinctly heavier than those of the other chicks. This conclusion seems obvious from Fig. 2, though there are not enough control chicks to justify treating the data by statistical methods. Because the controls are so few, an estimate was made of the approximate average weights (not shown) if to the controls were

added the chicks reared on Ration 753, 754, and 755. These averages, however, are practically the same as those shown in Fig. 2. In order to obtain additional evidence as to whether these controls were representative, they were compared with the calculated weights given in Latimer's paper¹⁹. This comparison yields additional evidence that the chicks reared on simplified diets have enlarged adrenals.

Both males and females are included in Fig. 2, as the data do not indicate that any sex differences exist. Latimer¹⁹ reported no sex differences in the adrenal gland of chicks, but Marrian¹⁰ reported that the adrenals of the pigeon do vary with sex.

The primary interest in the weights of organs was due to the possibility of obtaining some clue as to the nature of the deficiency in our synthetic ration. No evidence of any kind as to the possibility of a deficiency of vitamin A was obtained. Some students regard legweakness as indicating rickets with great certainty. Leg-weakness was frequently observed, but since the parathyroid glands were of normal weight, we believe rickets is excluded. This deduction is confirmed by unpublished analyses of the blood and bone.

A form of leg-weakness is also associated with a deficiency of vitamin B. Since, however, the basal diets regularly contain 15 per cent of yeast, it seems improbable that any of the vitamin B components could be lacking. Several workers have used similar rations, with similar results, but apparently none found reason to suspect that a deficiency of vitamin B might be responsible. On the other hand the observations reported here yield many instances of enlarged adrenal glands, and this may indicate a deficiency in at least one component of the vitamin B complex. This interpretation is in harmony with other observations. For example, these chicks frequently develop head retraction and paralysis. Furthermore scattered blood sugar analysis on such individuals, to be published elsewhere, have in some instances been distinctly high. The available data, therefore, indicate that the inadequacy of synthetic diets for the chick is due to insufficient provision of one or more components of the vitamin B complex. It is hoped that future studies may yield more definite evidence.

SUMMARY

Numerous attempts to rear chicks on synthetic rations have been reported, but complete success has not been attained in any case.

Persistent egg yolks were frequently noted in post mortem examinations, so an attempt was made to correlate delayed resorption with nutritional failures. No causal relation could be established.

All nutritional factors as yet recognized were incorporated in the experimental rations, but it seemed possible that at least one might be present in insufficient quantity. In order to obtain a hint as to such a possibility, the internal organs of a large number of chicks were weighed. The adrenal glands of those receiving synthetic diets, and weighing over 800 grams, were, on the average, much heavier than the average for chicks on adequate rations. This difference in weight suggests that the synthetic diets previously used are deficient in at least one factor of the vitamin B complex.

BIBLIOGRAPHY

- Hogan, A. G., Guerrant, N. B., and Kempster, H. L. 1925. Mo. Agr. Exp. Sta. Res. Bul. 81.
- (2) Gwatkin, R. 1925. Report of the Ontario Veterinary College, p. 62.
 - (3) Anonymous. 1927. Arkansas Agr. Exp. Sta. Bul. 221, p. 33.
 - (4) Funk, C., and Douglas, M. 1914. Jour. Physiol. xxxxvii, 475.
 - (5) McCarrison, R. 1919. Brit. Med. Jour. i, 177.
 - (6) Dutcher, R. A., and Wilkins, S. D. 1921. Amer. Jour. Physiol. lvii, 437.
 - (7) Souba, A. J. 1923. Amer. Jour. Physiol. lxiv, 181.
 - (8) Allen, Ezra. 1919. Anat. Rec. xvi, 93.
 - Marrian, G. F., Baker, L. C., Drummond, J. C., and Woollard, H. 1927. Biochem. Jour. xxi, 1336.
 - (10) Marrian, G. F. 1928. Biochem. Jour. xxii, 836.
 - (11) Findlay, G. M. 1928. Jour. Path. and Bact. xxxi, 353.
 - (12) LaMer, V. K., and Campbell, H. L. 1921. Proc. Soc. Exp. Biol. Med. xviii, 32.
 - (13) Marine, D. 1913. Proc. Soc. Exp. Biol. Med. xi, 117.
 - (14) Luce, Ethel M. 1923. Jour. Path. and Bact. xxvi, 200.
 - (15) Pappenheimer, A. M., and Minor, J. 1920-21. Jour. Med. Res. xxxxii, 391.
 - (16) Doyle, L. P. 1925. Poultry Science iv, 146.
 - (17) Nonidez, J. F., and Goodale, H. D. 1926-27. Amer. Jour. Anat. xxxviii, 319.
 - (18) Hogan, A. G., Hunter, J. E., and Kempster, H. L. (1928). Jour. Biol. Chem., 1xxvii, 431.
 - (19) Latimer, H. B. 1924. Jour. Agr. Res. xxix, 363.
 - (20) Juhn, Mary, and Mitchell, J. B., Jr. 1929. Amer. Jour. Physiol. lxxxviii, 177.

APPENDIX

- 138-169	Organs	Weigh	ed										
No. of Chick	Sex	Age	Body Weight	Alimen- tary Tract	Liver	Heart	Lungs and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
2728	ę	days 60	gramis 320	grams 20.0	grams 4.516	grams 1.326	grams 1.490	grams 1.325	grams 0.752	grams 0.406	grams 0.604	grams 0.106	grams
2537	ç o™	56 56	365 390	45.6 42.7	9.532	2.476 2.582	1.950	4.123 3.579	1.501	0.198 0.234	0.752 0.425		
315 2531	ç ç	58 56	500 510	87.0 57.4	10.855	3.532 3.497	4.025 3.452	4.580 5.188	1.965	0.165	0.828 1.254	0.075	
321 2527	ି ୯	58 56	526 630	98.5 73.4	15.705	3.695 4.601	3.472 3.557	5.315 6.005	2.420 1.952	0.205 .	0.952 2.152	0.093	
779 780	o [™] ₽	77	660 670	$30.2 \\ 65.5$	10.185	5.900 3.985	5.005	5.055	0.752	0.525 0.220	$1.042 \\ 1.000$	0.143 0.085	
6829 778	o [™] ♀	101 77	695 705	67.0 76.5	9.920	$2.418 \\ 4.150$	2.075 6.870	2.652 6.160	0.968 2.050	3.068	$1.290 \\ 1.240$	0.176 0.101	
782 781	o ^r o ^r	77	760 810	73.7	23.750 21.750	4.652 5.110	4.775	5.750	2.215 2.015	0.600	1.575	0.105 0.087	0.0145
1027 1040	o ⁷ ç	122 93	830 890	$\begin{array}{c} 75.0 \\ 70.0 \end{array}$	20.105 18.000	5.855	5.375	7.500	2.650 2.070	5.455	$1.100 \\ 1.530$	0.125 0.080	0.0852
7052 1041	ር የ	103 116	960 990	82.1 76.9	29.255 28.255	5.525	4.800 7.500	7.240 8.515	2.720 2.585	0.740 0.555	1.920 2.105	0.096 0.108	0.0879 0.0812
7077 7032	Р Р	103 104	1020 1100	85.0 84.2	26.500 25.700	5.625	5.640 5.903	6.425 8.405	2.455 2.920	1.935	1.255 3.400	0.135 0.110	0.0903 0.0500
6017 1043	ф Р	136 151	1192 1350	72.0	20.134 34.400	5.390 7.045	5.642	5.285	$1.710 \\ 3.390$	7.126	2.212	0.180 0.212	0.0928
838 808	ç o	162 148	1410	126.8	27.750	5.855	8.285	10.755	3.350 3.290	4.200	1.530	0.126	0.1273
3627	്	184	1/20	105.0	28.965	1.689	8.061	1 7.553	2.445	1 10.178	1 3.276	0.258	I

TABLE 4.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS Group I. Control Ration

	Organs	Weigh	ed	Alimen			Lungs						
No. of Chick	Sex	Age	Body Weight	tary Tract	Liver	Heart	and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
7033 1031 7077 1030 7094 1046 835	ᡐᢑᡐᢑᡐᡘ	days 97 91 101 91 88 91 120	grams 370 430 440 500 550 630 725	grams 54.0 65.0 59.7 65.5 63.2 69.7 84.5	grams 13.950 12.860 15.050 13.105 16.945 17.000 16.710	grams 2.070 3.840 3.152 3.560 3.800 3.040 5.220	grams 3.620 2.450 1.950 2.760 2.775 3.115 5.555	grams 4.100 2.350 6.125 3.650 4.650 4.650 4.310 5.110	grams 1.125 1.770 1.855 2.040 1.565 1.910 2.170	grams 0.145 0.145 0.215 2.995 0.185 0.305 3.000	grams 0.225 0.720 0.522 0.795 0.600 0.945 0.770	grams 0.135 0.065 0.046 0.099 0.075	grams 0.0308 0.0317
1048	ď	91	820	96.2	18.695	5.710	5.700	5.606	2.565	0.300	1.420	0.085	1

TABLE 5.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS Group II. Ration Deficient in Vitamin A

TABLE 6.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS Group III. Rations Deficient in Vitamin B

	Organs	Weigh	ed	Alimen			Lungs						
No. of Chick	Sex	Age	Body Weight	tary Tract	Liver	Heart	and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
7067 7066 941 998 7064 7046 841 1037	Q+ Q+ Q+ 75 75 Q+ 75 Q+	<i>days</i> 90 81 96 79 99 97 105 147	grams 200 210 215 345 370 510 570 620	grams 28.7 23.7 22.3 45.5 41.1 61.2 58.5 76.5	grams 5.245 7.400 7.600 10.995 9.805 16.850 14.395 15.825	grams 1.305 2.145 2.010 3.650 3.700 3.475 3.950 4.935 4.935	grams 1.125 1.755 1.700 2.975 2.745 4.115 8.600 4.225 2.400	grams 1.650 2.385 3.140 3.350 3.855 5.735 6.680 6.240 7.050	grams 0.880 0.865 0.800 1.270 1.050 1.575 1.590 2.050 2.200	grams 0.103 0.100 0.105 0.132 0.145 0.600 0.121 0.245 0.260	grams 0.110 0.199 0.125 0.325 0.215 0.200 0.645 0.645 1.050	grams 0.073 0.044 0.064 0.071 0.087 0.042 0.137 0.083 0.116	grams 0.0123 0.0169 0.0085 0.0240 0.0200 0.0201 0.0396
842 849	ି ୯	148 149	760 1520	100.0	19.215	8.212	2.400	7.050	3.550	1.330	2.940	0.118	

	Organs	Weigh	ed	Alimon			T	1			1	1	
No. of Chick	Sex	Age	Body Weight	tary Tract	Liver	Heart	and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
797 799 7020 796 1058 7012 800 1055 1054 1051	3 3 3 4 5 5 5 5 5 5	days 62 77 102 77 98 102 77 115 112 113	grams 360 460 540 550 560 560 560 575 750 790 900	grams 43.2 55.8 66.2 80.9 54.4 70.9 67.5 75.5 96.5 82.0	grams 16.722 15.648 16.100 11.000 17.200 19.500 12.555 24.850 26.670 24.700	grams 4.745 3.395 4.700 5.115 4.900 6.410 3.272 5.050 5.920 5.070	grams 2.710 3.700 2.305 3.585 4.150 4.955 2.850 4.020 5.000 4.165	grams 4.675 4.700 5.895 6.755 6.585 6.000 5.200 6.670 9.200 8.100	grams 1.342 1.475 2.545 2.225 2.200 2.370 1.960 2.970 3.355 3.255	grams 0.125 0.990 0.300 0.265 0.265 0.431 0.222 0.355 0.420 1.125	grams 1.570 0.200 0.116 1.862 0.805 0.865 1.675 1.120 1.290 1.170	grams 0.074 0.052 0.111 0.117 0.102 0.070 0.129 0.174 0.130	grams 0.1352 0.1294 0.0526 0.1097 0.0912
1056 847	ơ ç	114 162	940 1030	93.5 79.5	29.550 19.650	6.770 4.200	2.062 6.225	7.665	3.320	1.810 1.060	1.295	0.184	0.1206

TABLE 7.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS Group IV.—Rations Deficient in Vitamin D

	Organs	Weigh	ed		1		1)			1	
No. of Chick	Sex	Age	Body Weight	Alimen- tary Tract	Liver	Heart	Lungs and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
		days	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams
107	o da	25	61	11.3	1.902	0.630	0.422	1.225	0.370	0.018	0.052	0.021	
109	ď	25	65	10.1	2.702	0.502	0.202	1.085	0.395	0.023	0.055	0.008	
124	ď	25	83	14.5	3.265	0.760	0.732	1.500	0.532	0.013	0.082	0.024	
297	ď	56	175	39.0	9.005	1.775	1.205	2.100	0.945	0.099	0.265	0.018	
303	ď	56	210	48.5	8.700	1.622	1.455	3.000	0.995	0.500	0.135	0.032	
3727	ę	85	220	18.0	3.429	.1.614	1.360	1.419	0.251		0.257	0.109	
1964	0 ⁷	85	220	17.0	3.517	1.698	1.304	1.426	0.265		0.265	0.118	
2547	ę	59	230	32.7	8.050	1.962	1.362	2.792	0.797	0.113	0.415	0.017	
299	ę	56	250	58.0	10.335	2.022	1.577	3.505	1.105	0.099	0.319	0.042	
2000	ę	85	260	19.0	3.972	1.925	1.450	1.397	0.276		0.390	0.114	
3746	ę	85	265	20.0	4.016	1.982	1.426	1.516	0.298		0.297	0.116	
311	Ŷ.	58	280	63.3	14.060	2.135	2.105	4.055	1.760	0.146	0.715	0.080	
301	ę	56	295	80.0	10.043	1.845	1.146	3.826	1.850	0.129	0.509	0.015	
216	ę	72	315	30.0	5.880	2.098	2.720	1.315	0.402		0.496	0.142	
1993	ę	85	320	24.0	4.960	2.741	1.940	1.846	0.371		0.369	0.103	
3781	ę	85	320	22.0	5.019	2.451	1.750	1.842	0.347		0.342	0.105	
206	0 ⁷	72	335	31.0	5.890	2.167	2.169	1.304	0.316		0.417	0.138	
294	ę	56	355	73.0	14.958	2.302	3.950	4.555	1.599	0.155	0.758	0.040	
2537	ę	56	365	45.6	9.532	2.467	1.950	4.123	1.501	0.198	0.752		
2554	ę	58	375	56.5	8.770	1.384	2.165	4.008	1.386	0.295	0.462		
2556	ę	58	375	62.6	10.446	2.631	2.115	4.759	1.100	0.166	0.412		
202	ę	72	380	32.0	6.149	2.078	2.270	1.214	0.412		0.468	0.129	
1982	ď	85	385	31.0	6.029	2.016	2.014	1.204	0.394		0.415	0.129	
1958	ę	85	390	30.0	6.219	2.116	2.014	2.000	0.442		0.446	0.127	
2553	0 ⁷	56	390	42.7	10.729	2.582	2.411	3.579	1.600	0.234	0.425		
335	o ⁷	56	400	75.5	12.820	2.555	2.722	4.258	1.657	0.144	0.269	0.038	
212	ď	72	420	32.0	6.279	2.197	2.416	1.297	0.428		0.509	0.159	
332	Ŷ	60	430	92.5	16.400	2.550	2.620		1.755	0.170	0.650	0.070	
1996	ę	85	440	30.0	6.701	3.207	2.197	2.207	0.498		0.472	0.116	
2571	ę	60	445 I	60.0	12.610	1 2.639	2.539	5.605	1.051	0.143	0.818	0.082	

TABLE 8.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS Group V.—Synthetic Ration

Organs Weighed				A1:			- I						
No. of Chick	Sex	Age	Body Weight	tory Tract	Liber	Heart	Lungs and Trachea	Kidney	Pancreas	Gonads	Spleen	Adrenals	Thyroid
		days	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams
3	ę	77	452	59.6	16.755	4.543	3.997	6.175	1.445	0.263	0.407	0.045	
2039	ę	106	460	31.0	7.964	3.607	3.089	3.045	0.637		0.499	0.129	
2546	ď	58	475	62.8	15.428	2.777	2.890	6.000	1.709	0.411	0.785	0.103	
2010	Ŷ	106	4/5	30.0	7.435	3.602	2.319	2.260	0:527		0.502	0.161	
19/2	Ŷ	85	480	31.0	7.215	3.615	2.260	2.192	0.516		0.496	0.119	
2536	Ŷ	59	486	61.4	13.586	4.767	2.083	6.424	1.440	0.153	0.721	0.053	
1963	ď	85	495	35.0	1.554	3.760	2.593	2.601	0.516		0.546	0.132	
330	Ŷ	58	500	107.5	16.250	3.505	3.455	5.655	2.312	0.265	0.800	0.054	
315	Ŷ	58	500	87.0	10.853	3.532	4.025	4.580	1.965	0.828	0.165	0.075	
2541	d,	59	500	58.3	14.200	3.278	2.833	6.134	1.722	0.200	0.775	0.075	
2551	¥	50	510	57.4	16.894	3.497	3.452	5.188	2.013	0.233	1.254		
1965	¥	85	510	36.0	7.624	3.890	2.619	1.572	0.560		0.544	0.132	
334	Q.	58	520	87.5	15.805	3.900	4.000	5.250	3.058	0.135	0.905	0.035	
321	σ.	58	526	98.5	15.705	3.695	3.4/2	5.315	2.420	0.452	0.20/5	0.093	
3729	Ŷ	85	535	35.0	7.910	3.864	2.934	3.091	0.542	0.259	0.507	0.120	
2012	Ŷ	106	555	34.0	8.160	3.967	3.016	3.106	0.621		0.610	0.136	
2566	Ŷ	58	565	67.2	13.712	2.958	3.382	7.301	1.970	0.259	1.086	0.054	
2583	Ŷ	50	5/5	52.4	12.740	3.315	3.323	6.206	1.820	0.232	1.221		
341	Ŷ	59	575	86.0	13.250	3.075	3.628	4.825	1.878	0.150	1.445	0.031	
331	Ŷ	59	590	87.0	19.010	3.250	4.650	5.600	1.768	0.245	1.059	0.075	
325	0'	39	595	120.0	22,950	3.440	4.560	5.940	2.070	0.245	1.555	0.088	
2384	0.	50	600	63.9	19.02/	4.312	3.393	7.820	1.973	0.924	0.898		
34/	<u></u>	59	600	118.0	27.595	3.205	4.345	6.005	2.095	0.120	0.905	0.089	
2562	0' 7	58	610	/0.0	15.100	4.038	3.875	7.740	1.663	1.065	1.070	0.049	
1945	0.	118	615	65.0	10.413	4.8/0	3.127	3.065	1.165	0.437	1.019	0.256	
2521	o'	120	630	/3.4	16.053	4.601	3.557	6.005	1.952	0.404	2.152		
3/40	α.	130	080	30.0	12.440	3.890	4.108	3.212	1.051	2.082	0.996	0.116	
2010	Ŷ	.39	/40	11.5	17.634	3.941	4.514	8.095	1.995	0.391	1.240	0.085	
2049	¥	1 89	1 825	1 /2.0	1 12.864	5.018	1 4.170	1 5.168	1.002	3.098	1.168	0.184	

TABLE 8.—WEIGHTS OF THE INTERNAL ORGANS OF CHICKS—(CONTINUED) Group V. Synthetic Ration

837	♀	559	885	67.0	13.219	5.002	4.092	4.996	1.106	4.078	1.008	0.196	1
3791	Q Q	347	932	72.0	14.316	5.078	4.178	5.046	1.346	3.614	1.117	0.170	
3731	Q Q	316	955	66.0	13.916	4.986	4.160	4.872	1.018	3.092	1.004	0.165	
3742	ď	136	1010	59.0	17.917	5.163	6.085	5.720	1.297	4.635	1.690	0.198	
3728	ę	316	1037	78.0	14.615	5.160	4.234	5.176	1.072	2.164	1.072	0.146	
813	്	559	1105	81.0	15.796	6.127	4.968	6.025	1.043	2.016	1.463	0.176	1
3784	ď	136	1120	60.0	26.000	5.432	5.369	8.272	1.887	8.412	1.406	0.298	
3734	d'	184	1120	90.0	26.468	6.587	6.773	9.283	2.987	1.849	1.209	0.270	
3703	ď	184	1125	92.0	23.840	7.524	8.280	6.770	2.021	4.602	1.245	0.228	
836	Ŷ	559	1125	76.0	14.682	5.196	4.865	4.880	1.146	6.028	1.167	0.176	
3782	ď	136	1127	62.0	26.296	5.131	5.502	8.724	1.042	5.567	1.593	0.346	
3745	5	136	120,5	68.0	26.650	5.839	7.963	6.823	1.557	8.317	2.278	0.296	
3795	റ്	184	1235	90.0	21.400	7.273	7.947	7.231	2.030	7.023	1.476	0.231	
3771	ď	136	1240	65.0	24.629	6.547	7.610	7.252	2.331	8.690	1.315	0.241	
3775	ď	136	1282	66.0	21.790	6.572	7.126	7.587	2,297	5.272	1.376	0.230	
3749	ď	136	1290	72.0	23.300	5.817	7.781	6.649	1.658	9.207	2.577	0.286	
3773	ď	136	1317	74.0	24.452	7.079	8.280	7.736	2.408	7.805	2.009	0.302	
3772	ď	136	1327	72.0	24.815	6.891	8.492	7.935	2.594	12.826	1.966	0.327	
3704	ď	184	1357	96.0	25.531	10.074	6.994	8.090	2.452	10.234	1.295	0.254	
3713	o	184	1390	110.0	31.100	10.170	9.501	9.323	2.639	4.393	1.547	0.308	
3770	ď	136	1435	75.0	23.675	7.159	8.502	8.803	2.830	14.316	2.077	0.401	
3721	ď	184	1475	124.0	28.190	8.531	8.239	9.149	2.707	3.877	1.903	0.360	
1041	ď	559	1547	97.0	25.146	8.432	6.849	7.524	2.016	3.018	2.174	0.218	
3748	ď	136	1675	92.0	27.521	6.215	8.808	7.158	2.368	6.175	2.334	0.349	