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ABSTRACT 

In the US, the prevalence of cigarette smoking in the HIV-infected population is 50-70% 

compared to 15-20% in the general population, which further increases the risk of smoking-related 

health problems in this group. For example, HIV-infected smokers show decreased immune 

responses, poorer responses to antiretroviral therapy (ART), and greater risk of virological 

rebound, compared to HIV-infected non-smokers. Several in vivo and in vitro studies have shown 

that smoking/nicotine is associated with decreased immune responses, increased inflammation, 

increased oxidative stress, and increased numbers of opportunistic infections. Furthermore, in vitro 

studies have shown that smoking/nicotine enhances HIV replication in alveolar macrophages, 

microglia, and T cells. However, the mechanism by which smoking or nicotine increases HIV 

replication is largely unknown. As an exception, a report suggests that iron and oxidative stress 

are possible mechanisms of enhanced production of HIV by alveolar macrophages in cigarette 

smokers. 

The role of CYP enzymes has not been studied in context with smoking/nicotine and HIV 

pathogenesis. However, there are several elegant studies that show the involvement of CYP2A6, 

CYP2A13, CYP1A1, and CYP1B1 in smoking/nicotine-mediated toxicity leading to various types 

of cancers and hepatic toxicity. The majority of tobacco constituents, including nicotine, are 
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metabolized and/or activated by CYP enzymes to generate reactive oxygen species (ROS) and/or 

reactive metabolites, NNK. Based on the fact that CYP pathways play a critical role in smoking-

mediated cell/organ toxicity, there is a critical need to explore the involvement of CYP pathways 

in smoking/nicotine-mediated HIV pathogenesis. The present study was based on the central 

hypothesis that tobacco/nicotine, or its metabolites, enhance HIV replication in 

monocytes/macrophages through CYP pathway. 

The key findings of our studies presented in this thesis indicate that (a) CYP2A6-mediated 

metabolism of nicotine increased the generation of ROS in HIV cell model, SVGA astrocytes, (b) 

Cigarette smoke condensate caused significant induction of CYP1A1, CYP2A6, ROS production, 

and cytotoxicity in U937 monocytes as well as enhanced HIV replication in HIV-infected primary 

macrophages, (c) Mild-to-moderate smoking increased viral load in HIV-infected individuals. 

Furthermore, our study suggested that smoking and HIV independently increase oxidative stress 

in the plasma as well as in monocytes. (d) There was a decrease in the level of nicotine and 

subsequent increase in the level of nicotine metabolites, suggesting an increase in nicotine 

metabolism in HIV-infected smokers compared with uninfected smokers. 

In conclusion, our in vitro and ex vivo results are consistent with the hypothesis that CYP 

and CYP-mediated oxidative stress by tobacco/nicotine are associated with increased viral load by 

smoking/smoking constituents. This study has clinical implications in terms of targeting CYP and 

oxidative stress pathways to find potentially novel therapeutic interventions, as well as drug dose 

adjustment to treat HIV-infected smokers effectively.   
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CHAPTER 1 

TOBACCO SMOKING MEDIATED OXIDATIVE STRESS IN ORGAN TOXICITIES: 

ROLE OF CYTOCHROME P450 SYSTEMS 

1.1 Prevalence, diseases, and lifestyles 

 According to WHO, tobacco continues to kill nearly 6 million people annually, 

including more than 600,000 non-smokers who are exposed to tobacco smoke[1]. Further, 

WHO predicts that the smoking related deaths will reach approximately 8 million annually by 

2030[2]. Cigarette smoking is associated with three major diseases; lung cancer, chronic 

obstructive pulmonary disease (COPD), and cardiovascular diseases, which are responsible 

for the highest rate of mortality in the US [3]. Another study has recently suggested that 

cigarette smoking is the cause of 30% of all deaths by cancers, 10% of deaths by 

cardiovascular diseases, 9% of deaths by respiratory diseases, and 7% of deaths by digestive 

diseases[4].  Numerous literatures suggest that smoking-mediated adverse effects of human 

health, including premature death, occur not only because of nicotine, but through other 

cigarette smoke constituents[5]. Tobacco smoke contains 61 known carcinogens, which 

increase the risk of cancers including lung, oro-pharyngeal, pancreatic, and renal cancers[6]. 

Chemicals found in tobacco smoke, including carcinogens, can cross the placenta[7] and cause 

chromosomal damage to the fetus[8]. Further, animal studies have shown that the developing 

brain is much more likely to develop tumors as a result of exposure to neurocarcinogens in 

utero than later in life[9]. Therefore, it is necessary to assess the biological pathways 

responsible for tobacco-mediated toxic effects on disease in order to identify potential targets 

for future drug development and improve the health outcomes of tobacco users. 
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 1.2. General mechanisms of tobacco-mediated toxicities 

 In addition to carcinogens, cigarette smoke (CS) contains over 4000 different chemical 

substances.  Some of the mainstream cigarette smoke constituents are ammonium hydroxide, 

benz[A]anthracene (B[a]A), benzo[A]pyrene (B[a]P), carbon monoxide (CO), diammonium 

phosphate, 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK), and N-

nitrosonornicotine (NNN), “tar”, acetaldehyde, acrolein, acrylonitrile, benzene, 

formaldehyde, and hydrogen cyanide[10, 11]. Tobacco constituents have shown to be both 

proliferative [12-15] and apoptotic or cytostatic[16]. It has been shown that tobacco induces 

cell death via nitric oxide and through the formation of ROS [12]. It has also been reported 

that many tobacco constituents and nicotine-derived nitrosamine ketones (NNK) induce 

mutations through DNA damage. In a study, Elias et al. have shown that tobacco crude extract 

(TCE) induces apoptosis (dose-dependent) in oral squamous carcinoma cell line (OSCC-3) 

via caspase activation, which was accompanied by DNA fragmentation. This suggests that 

despite tobacco’s role in tumor formation, it may have some component that is useful in 

fighting cancer [17]. However, additional work is needed to further explore its beneficial use 

in cancer treatment.  

 When oral mucosa cells are exposed to lead and benzo[A]pyrene, another cigarette 

constituents, caspase-3 activity and 8-epi prostaglandin F2 alpha (8e PGF2a) are increased, 

while 3-nitrotyrosine levels are increased with chronic exposure to lead [18]. 8e PGF2a is of 

non-enzymatic origin, which is produced by random oxidation of tissue phospholipids. In 

other words, these cigarette constituents may increase oxidative and nitrosative stress. 

 Nicotine is the major addictive and abundant (95%) substance present in tobacco 

smoke.  Nicotine is metabolized by liver CYP2A6 through 5’ oxidation to its major metabolite 

cotinine (75%) and many other metabolites (25%) [19]. CYP2A6 is known to further 
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metabolize these compounds into procarcinogenic compounds, including nicotine-derived 

nitrosamine ketone (NNK). CYP2B6 enzyme is also known to be involved in the formation 

of cotinine from nicotine in those who lack CYP2A6 enzyme [20].  NNK, the major tobacco 

specific carcinogen is metabolically activated by 2A6, 1A2, 3A4, and 2B6 CYP isoforms. 

These enzymes are involved in α-hydroxylation of NNK forming unstable diazohydroxides 

and aldehydes [20]. These diazohydroxides then form carcinogenic methyl or pyridyloxobutyl 

adducts by reacting with DNA. CYP2A13, a lung specific enzyme, is also known to 

metabolize nicotine and cotinine as well as activate NNK [21, 22]. NNK is also known to 

cause increase in the levels of reactive oxygen and nitrogen species in mouse microglia cell 

line leading to neuronal damage [23]. Several reports from literature have shown that NNK is 

responsible for generating oxidative stress in neurons and white blood cells [24, 25].  

 Smoking frequency may be determined by the polymorphisms in CYP2A6.  In some 

individuals with low expression of CYP2A6, the half-life of nicotine is increased making these 

individuals crave for nicotine less often, lowering cigarette consumption per day [26]. In 

contrast, smokers with relatively high expression of CYP2A6 have increased nicotine 

metabolism and metabolism of other constituents, which leads to increased smoking 

frequency in these individuals. These individuals would also produce increased ROS, 

carcinogens, and reactive metabolites, which will make them more susceptible to cancers and 

organ toxicities.  

 1.3. Respiratory tract disorders 

 Lung cancer is the leading cause of cancer deaths and about 90% of the lung cancer 

cases are attributed to cigarette smoking [27]. In addition to nicotine metabolism, CYP 

enzymes are also responsible for the oxidation of aromatic moieties and olefins of tobacco 

constituents in the lungs tissues. Further, CYP enzymes are known to activate NNK, a tobacco 
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specific carcinogen, by α hydroxylation leading to the formation of ROS and carcinogenic 

DNA adducts in the lungs tissues. Further, ROS-mediated lipid peroxidation products may 

enhance the inflammation through activation of stress kinases (JNK, MAPK, p38) and redox 

sensitive transcription factors such as AP-1  [28]. The overexpression of the Wnt5a gene, 

followed by PKC activation, has been implicated in cigarette smoke-mediated lung 

carcinogenesis [29]. One study has shown the chemopreventive effects of isothiocyanates 

(ITC) by dual mechanisms involving the inhibition of CYP enzymes and induction of Phase 

II enzymes [27].  The inhibition of CYP enzymes leads to reduced activation of 

procarcinogens e.g. NNK, and increased expression of Phase II enzymes eliminates the toxic 

metabolites generated by CYP enzymes. 

 Glutathione peroxidase-1 (gpx-1) is a detoxifying enzyme that may protect lungs from 

ROS-induced protein denaturation, lipid peroxidation, and DNA damage.  Gpx-1 converts 

two molecules of glutathione (GSH) and one molecule of H2O2 into oxidized glutathione 

(GSSG) and two molecules of water.  One study has shown that gpx-1 knockout mice exposed 

to cigarette smoke has enhanced bronchoalveolar lavage fluid (BALF) neutrophils, 

macrophages, proteolytic burden, and whole lung IL-17A compared to WT mice. Ebselen, a 

gpx-1 mimetic, inhibits the established BALF inflammation when administered 

therapeutically. Thus, it is suggested that gpx-1 protects against cigarette smoke-induced lung 

inflammation, and gpx-1 mimetics may have therapeutic use in inflammatory lung diseases in 

smokers [30]. 

 Manganese SOD2 eliminates anion superoxide free radicals, and is a major 

determinant of antioxidants in matrix mitochondria. One study isolated leukocyte cells of 20 

lung cancer patients, and compared the SOD2 activity to 50 healthy smokers and 50 non-
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smokers.  They found that SOD2 activity is lower in lung cancer patients, and plasma carbonyl 

levels are elevated.  Free radical production in lung cancer patients thus appeared high. 

Smokers also tended to exhibit lower SOD2 and higher carbonyl radicals compared to non-

smokers, thus suggesting a strong role of oxidative stress in lung cancers [31]. 

 1.4. Cardiovascular diseases 

 Women who smoke are 2.4-fold more likely to have sudden cardiac death than non-

smoking women; this risk subsides linearly, with 20 years smoking cessation completely 

abolishing the risk [32]. Cigarette smoke particulate matter-treated human vascular epithelial 

cells has been shown to increase osteopontin (OP), a matrix protein found in bone, which is 

implicated in vascular disease. This effect is diminished following treatment with ascorbate, 

an antioxidant [33]. Increased oxidative stress may activate NFκB and AP-1, transcription 

factors that regulate pro-inflammatory cytokines. Inflammation of vascular endothelial cells 

may lead to serious cardiovascular events, especially in the presence of an atherosclerotic 

plaque. 

            A recent study conducted in mice highlights the negative effects of short-term CS 

exposure (STCSE) on several organ systems. They have shown that STCSE enhances the 

generation of ROS and causes increased lipid peroxidation in heart, liver, and kidneys [34].  

On the other hand, it has been shown that the increase in SOD activity counteracts the 

damaging effects of ROS. This is a protective mechanism in acute exposure of CS but in case 

of chronic smoking the antioxidant defense system is largely impaired leading to ROS induced 

damage. 

 1.5. Reproductive system 

 Cigarette smoke has been found to significantly affect the reproductive system of 

treated mice via oxidative stress [35]. This was confirmed by upregulation of peroxiredoxin, 
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decreased glutathione levels, and increased 8-OHdG in the epithelial cells of the epididymis. 

Structural proteins involved in normal epididymal cell motility, such as Odf2 and Actg1, were 

down-regulated post-treatment [36]. Cigarette smoke has also been associated with reduced 

fertility and possibly the health of newborns. One study has confirmed the role of cigarette 

smoke-induced ROS generation in genotoxicity by exposing mouse embryos to cigarette 

smoke condensate that showed increased oxidative stress and telomere shortening and loss. 

The administration of an antioxidant, N-acetyl-L-cysteine, greatly reduced this toxicity, 

implicating the role of oxidative stress in cigarette-smoke induced genotoxicity [37]. 

             Furthermore, a study has shown the role of the metabolism of benzo[A]pyrene (BAP) 

into (+)-7,8-Diol-9,10-epoxide, which may subsequently form deoxyguanosine BAP adducts, 

on ovotoxicity. They found significantly increased levels of mitochondrial ROS, lipid 

peroxidation, and severely reduced sperm-egg binding in both low and high dose treatments. 

This suggests that BAP is partially responsible for the effects of cigarette smoke on follicular 

development and subfertility [38]. 

 Inhaled cigarette smoke is known to contain trace amounts of cadmium [39], which 

can traverse the placental barrier and exert toxic effects on the fetus.  Gestational cadmium 

exposure has been found to delay puberty.  In the ovary cadmium-treated rats show an increase 

in peroxide and lactoperoxidase (LPO) activities, while a decrease in SOD activity [40].  Since 

LPO is known to oxidize estrogenic hormones, it is implicated in the initiation of breast 

cancer[41].  Lipid peroxidation and other oxidative stress markers were reduced in cadmium-

treated rats upon treatment with diallyl tetrasulfide, a CYP inhibitor [42].  Overall, these 

studies suggest that constituents of cigarette smoke disrupt normal reproductive system via 

CYP pathway-mediated oxidative stress. 
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 1.6. Neurodegenerative diseases 

 Several studies have reported the regulation of CYP enzymes by nicotine in the brain. 

CYP2B6 is expressed in a region specific manner in the brain and is also found in astrocytes 

and neurons [43]. CYP2B6 is known to metabolize several centrally acting drugs and 

endogenous hormones. Smoking and alcoholism are known to induce CYP2B6 protein in 

different regions of brain which interfere with the metabolism of centrally acting drugs leading 

to neurotoxicity [43].  Since smoking is known to increase CYP2B6 levels, studies were done 

to examine the effect of nicotine on the induction of CYP2B6. Nicotine binds to nicotinic 

acetylcholine receptors (nAChRs) and exerts its pharmacological effects, however, it was 

shown that the induction of CYP2B6 by nicotine is not mediated through nAChRs [44]. Other 

studies also reported the induction of CYP2B6 in astrocytes and neurons of African green 

monkeys upon chronic nicotine treatment without affecting their hepatic levels [45].  Together 

these studies suggest that smoking-mediated induction of CYP enzymes may have altered 

therapeutic response leading to neurotoxicity. 

 Several studies have shown that nicotine and NNK cause oxidative stress in many 

other cells such as neurons, microglia, and white blood cells [23-25]. These cell types are very 

important for HIV pathogenesis and neuroAIDS which will be discussed in detail in chapter 

2.   

1.7. Clinical implications 

 Selective inhibition of CYP2A6 and CYP2A13 is considered as a potential therapeutic 

approach to treat nicotine dependence and tobacco-mediated cancers and organ toxicities.  In 

addition, isothiocyanate dietary supplements can be used to prevent tobacco-mediated lung 

carcinogenesis. The use of benzyl isothiocyanate (BITC) and phenethyl isothiocyanate 

(PEITC), which are present in high levels in cruciferous vegetables, such as watercress, 
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gardencress, cabbage, cauliflower, and broccoli, have been extensively studied to prevent 

CYP-mediated lung cancer[46]. Our findings involving the role of CYP2A6 in nicotine-

mediated oxidative stress suggest the potential use of CYP2A6 inhibitors in treating smoking 

related diseases. Furthermore, since our recent findings have shown that CYP2A6 is induced 

by oxidative stress-mediated PKC/MEK/Nrf-2 pathway in monocytes and astrocytes, this 

pathway may also be targeted for the development of potentially novel pharmaceuticals for 

smoking-mediated neurodegenerative diseases. Furthermore, CYP2A6, oxidative stress, and 

PKC/JNK/Nrf-2 pathways can also be utilized for developing novel pharmaceuticals for HIV-

infected smokers.  

 

Tobacco constituents are metabolized/activated by CYP isozymes, leading to the formation 

of ROS and reactive metabolites that cause cancers and organ toxicity.  CYP, cytochrome 

P450; ROS, reactive oxygen species; NNK, nicotine-derived nitrosamine ketone or 4-(N-

nitrosomethylamino)-1-(3-pyridyl)-1-butanone; NNN, N'-nitrosonornicotine; NNAL, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanol. 

  

Figure 1. Tobacco associated organ toxicity 
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CHAPTER 2 

TOBACCO SMOKING EFFECT ON HIV PATHOGENESIS: ROLE OF 

CYTOCHROME P450 ISOZYMES 

2.1. Introduction 

HIV infection is a global pandemic that affects 34 million people worldwide, among 

which, sub-Saharan Africa accounts for 67% of this population [47]. Recent reports reveal 

that the HIV infection is highly prevalent among pregnant women in Africa [48], and this 

increases pediatric infections due to mother-to-child transmission [49]. However, the majority 

of African populations don’t have access to effective treatment to circumvent the increase in 

transmission. The co-infection by hepatitis C virus (HCV) in HIV- infected individuals is 

highly prevalent in the US (25% co-infected individuals)[50]. Similarly, HIV infection is also 

known to be associated with an increased risk of acquiring Mycobacteria tuberculosis (TB) 

infection in sub-Saharan Africa[51]. The advent of highly active antiretroviral therapy 

(HAART) has not only decreased the mortality rates substantially among individuals living 

with AIDS [52], but has also significantly decreased the incidence of HIV-associated 

dementia (HAD) [53]. However, the incidence of HIV-associated neurocognitive disorders 

(HAND), especially the milder form, has actually increased, perhaps due to central nervous 

system (CNS) toxicities mediated by HAART [54, 55]. Consumption of drugs of abuse, such 

as alcohol, tobacco, cocaine, methamphetamine, and marijuana, has also been shown to 

exacerbate HIV pathogenesis by accelerating the incidence and progression of HAND/HAD 

[56].  

Tobacco-related deaths are the highest among  addictive substances, and tobacco-

associated deaths are estimated to increase from 3.0 million in 1990 to 8.4 million in 2020 
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[57]. Further, according to the World Health Organization (WHO) predictions, smoking 

related deaths though are not as severe as predicted by National Institute of Drug Abuse 

(NIDA), but will account for about 8 million annually by 2030 [2]. Furthermore, tobacco use 

is projected to account for 9% of global disability-adjusted life years by 2020, which would 

make it the world’s single largest health problem [58]. In the US, the prevalence of cigarette 

smoking in the HIV-infected population is 50-70% [59] compared to 15-20% in the general 

population [60], which further increases the risk of smoking-related health problems in this 

group. For example, HIV-infected smokers show decreased immune responses, poorer 

responses to antiretroviral therapy (ART), and greater risk of virological rebound, compared 

to HIV-infected non-smokers [61]. Several in vivo and in vitro studies have shown that 

smoking/nicotine is associated with decreased immune responses [62-64], increased 

inflammation [62, 65, 66], increased oxidative stress [67, 68], and increased numbers of 

opportunistic infections [66]. Several in vitro studies have shown that smoking/nicotine 

enhances HIV replication in alveolar macrophages [69], microglia [70], and T cells [71]. 

However, the mechanism by which smoking or nicotine increases HIV replication is largely 

unknown. As an exception, a report suggests that iron and oxidative stress are possible 

mechanisms of enhanced production of HIV by alveolar macrophages in cigarette smokers 

[72].  

Tobacco constituents are known to be metabolized by different isozymes of 

cytochrome P450 (CYP), and this leads to the generation of reactive metabolites and reactive 

oxygen species (ROS) in various organ systems such as, liver, lung, esophagus, and brain [22, 

23, 73]. In view of the fact that ROS is known to play an important role in HIV pathogenesis, 
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the authors propose a novel pathway involving the role of CYP enzymes in oxidative stress-

mediated HIV pathogenesis in tobacco users. 

In this chapter, we discuss the possible role of CYP pathways in tobacco/nicotine-

mediated effects in HIV/AIDS with respect to: 1) the effect of smoking on HIV pathogenesis, 

2) the general mechanism of smoking-mediated oxidative stress and toxicity, 3) the potential 

role of the CYP pathway in tobacco/nicotine-mediated oxidative stress in HIV model systems, 

4) conclusions, and 5) an expert opinion on this subject. 

2.2. Role of smoking on HIV pathogenesis  

A recent study conducted on the assessment of the mortality rates among AIDS 

patients has revealed that the risk of death is twice as high among smokers in the HIV-infected 

population than the non-HIV-infected population[74]. In part, this could be because smoking 

is known to increase the prevalence of other viral infections such as human papilloma virus 

(HPV) leading to the risk of cervical cancer in HIV seropositive women [75]. Similarly, the 

incidence of emphysema is also reported to occur earlier and at an increased level among HIV-

infected smokers than in non-HIV-infected smokers [76]. There is an evidence from the 

literature suggesting that smoking is associated with decline in CD4 cell counts in the HIV-

infected population, despite of the higher baseline CD4 cell counts observed among smokers 

than non-smokers [77]. However, the role of smoking in the progression to AIDS is unknown. 

Recent reports from the literature have also demonstrated the toxic effects of the tobacco 

constituents, nicotine and nicotine-derived nitrosamine ketones (NNK) in neurons, microglia, 

and white blood cells, which are exposed to the virus or viral proteins [23, 24]. For example, 

the treatment with NNK to mouse microglial cells and in vivo injection of mouse with NNK 

showed an increase in ROS, as well as an increase in the levels of proinflammatory cytokines 

[23]. In addition, a multisite longitudinal study for up to 7.9 years using 924 women has shown 



12 
 

that tobacco smoking negates the effect of HAART medication in relation to CD4 recovery 

[61]. However, the mechanism of tobacco-mediated toxicity and decreased efficacy of 

HAART is largely unknown. 

Limited studies have addressed the effects of smoking on cognitive function and 

neurological disorders in the HIV-infected individuals with controversial findings [78]. Of 

relevance, it has been reported that chronic nicotine exposure can lead to the disruption of the 

blood brain barrier (BBB) integrity, which may enhance the exposure to HIV-infected 

monocytes, tobacco constituents, and antiretroviral drugs [79]. The exposure of these agents 

to CNS might exacerbate neuroAIDS and neurodegenerative diseases [79]. Another report 

from an observational cross-sectional study conducted in 56 women (36 HIV-infected and 20 

non-HIV-infected) suggests that there is no correlation between smoking and cognitive 

dysfunction [78] in the HIV-infected population. Collectively, the available evidence suggests 

that there is an increase in smoking-mediated HIV pathogenesis among individuals with 

HIV/AIDS and patients may benefit from the development of novel therapeutic agents and/or 

drug dose adjustments that can be used to treat HIV-infected smokers effectively.  

2.3. Mechanism of tobacco smoking-mediated toxicity: Role of cytochrome P450 

The role of CYP enzymes has not been studied in context with smoking/nicotine and 

HIV pathogenesis. However, there are several elegant studies that show the involvement of 

CYP2A6, CYP2A13, CYP1A1, and CYP1B1 in smoking/nicotine-mediated toxicity leading 

to various types of cancers and hepatic toxicity [19, 80]. The majority of tobacco constituents, 

including nicotine, are metabolized and/or activated by CYP enzymes to generate reactive 

oxygen species (ROS) and/or reactive metabolites, NNK [81]. ROS and reactive metabolites 

are known to cause DNA damage, lipid peroxidation, and protein oxidation that leads to cell 

toxicity [82]. Nicotine, the major constituent of tobacco, is predominantly metabolized by 
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liver CYP2A6 and lung-specific CYP2A13 to cotinine (75%) and other metabolites (15%) 

[22, 80, 83, 84]. In addition, CYP2A6 and CYP2A13 are involved in the metabolic activation 

of tobacco-specific nitrosamines into reactive compounds that lead to liver and lungs toxicities 

[21].  Other tobacco constituents, such as polyarylhydrocarbons (PAH) are mainly activated 

by CYP1A1, and CYP1B1[85, 86] that leads to the formation of recative metabolites, which 

has been shown to be associated with oral toxicity [86]. Furthermore, a study comprising 600 

patients has demonstrated that CYP1A1 is a risk factor in oral cancer among smokers [85]. 

Based on the fact that CYP pathways play a critical role in smoking-mediated cell/organ 

toxicity, there is a critical need to explore the involvement of CYP pathways in 

smoking/nicotine-mediated HIV pathogenesis.  

2.4. Potential role of cytochrome P450 in tobacco/nicotine-mediated oxidative stress 

and toxicity in HIV systems  

In the following sections we discuss whether CYP enzymes, especially those that are 

related to tobacco/nicotine, are expressed in monocytes/macrophages, lymphocytes, 

astrocytes, and neurons (Figure 2). We then discuss the role of CYPs in tobacco/nicotine-

mediated oxidative stress in these cells, and their possible link to HIV pathogenesis and 

neuroAIDS. Finally, we identify the future course of investigation in this area of research.       
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Cells or organs that are involved in tobacco/nicotine metabolism or activation in context to 

HIV infection. The metabolism and/or activation of tobacco/nicotine may be involved in the 

toxicity of lymphocytes, monocytes/macrophages, microglia, astrocytes, and neurons causing 

HIV pathogenesis and neuroAIDS. 

 

 

 

 

 

Figure 2: Smoking mediated Organ toxicity 
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2.5. Monocytes/Macrophages 

Monocytes/Macrophages are considered to be one of the major cellular targets of HIV 

and are thought to function as important viral reservoir [87]. Compared to activated CD4+ T 

lymphocytes, macrophages are more resistant to the cytopathic effect of HIV and survive HIV 

infection for extended periods of time [88, 89]. Furthermore, infiltration of macrophages into 

the brain results in spreading of the virus to resident glia, including perivascular macrophages, 

microglia, and astrocytes [90-92]. Migration of HIV-infected monocytes through the BBB is 

thought to be one of the major mechanisms responsible for the neuropathogenic effects of 

HIV, such as HAD and HIV encephalitis (HIVE)[93, 94]. Investigations to study the effect of 

tobacco/nicotine in monocytes/macrophages in vivo are therefore clinically relevant.  

The major nicotine-metabolizing CYP2A6 mRNA and protein are expressed in U937 

monocytic cell line [95]. A comparison between the levels of CYP2A6 mRNA in U937 cells 

and previously reported hepatocytic cells demonstrated that the level of CYP2A6 mRNA is 

similar in both the cells [96-98]. More importantly, the relative levels of the mRNA of 

CYP2A6 are much higher than the other CYP enzymes, including the mRNA of CYP1A1 and 

CYP1A2 [95, 96]. A relatively high abundance of CYP2A6 in U937 cells is intriguing and 

suggests further investigation on its role in HIV-infected smokers. Other investigations in 

macrophages derived from the U937 monocyte cell line have shown that nicotine is 

metabolized to cotinine and NNK by CYP2A6, a finding that was later confirmed using a 

CYP2A6 selective inhibitor, tryptamine [99]. In addition, it has been demonstrated that the 

metabolism of nicotine by CYP2A6 results in the generation of ROS [99]. Since oxidative 

stress has been linked to increased HIV replication in human primary macrophages in vitro 

[100], we hypothesize that CYP2A6-mediated nicotine metabolism and resultant oxidative 

stress may be a mechanism for the increase in viral replication among HIV-infected smokers. 
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This hypothesis is also supported by the fact that alcohol-mediated oxidative stress through 

CYP2E1 pathway increases the replication of another deadly virus, hepatitis C virus 

(HCV)[101, 102]. In one of these studies, it has been shown that CYP2E1-mediated alcohol 

metabolism, which produces ROS, increases the replication of HCV in hepatic cells and 

decreases the antiviral action of interferon [101]. The study involving the role of CYP2A6 

and other tobacco/nicotine-metabolizing CYPs in oxidative stress and HIV pathogenesis in 

monocytes/macrophages of HIV-infected smokers and non-smokers is needed. 

In addition to CYP2A6, CYP2E1 and CYP3A4 are abundantly expressed in U937 

monocytic cell lines [96]. Furthermore, CYP2E1 and CYP3A4 (mRNA and protein) are both 

induced by alcohol by approximately 2-fold in U937 cells [96]. CYP3A4 is mainly involved 

in the metabolism of ART drugs, non-nucleoside reverse trascriptase inhibitors (NNRTI) and 

protease inhibitors (PI) [103]. Thus an altered level of CYP3A4 in the HIV model systems by 

agents, such as alcohol and other medications, is expected to affect the response to ART drugs, 

especially NNRTI and PI.   

2.6. Lymphocytes 

Smoking has been shown to be associated with a reduction in CD4+ T cells [77] and 

an increase in mortality in HIV-infected individuals [74, 104], but the mechanism for 

smoking-mediated effects on lymphocytes is unknown. From these studies it appears that 

tobacco constituents, especially nicotine, decrease immune response possibly by altering 

cytokines and chemokines in these cells. In addition, other studies have shown that nicotine 

toxicity in lymphocytes is mediated through superoxide anion formation [105]. It has been 

further shown that the ROS generated in lymphocytes, by smoking, results in the oxidation of 

lipids, protein, and DNA. It also decreases the levels of AOE (GST and SOD) [105]. This 

finding is further supported by the fact that DNA fragmentation in lymphocytes is mediated 
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by oxidative stress resulting from nicotine [106]. Earlier study using quantitative RT-PCR 

showed that CYP1A1 mRNA is present at very low levels in human blood lymphocytes [107]. 

Furthermore, this study demonstrated that CYP1A1 mRNA is induced 20-fold by 2, 3, 7, 8-

tetrachlorodibenzo-p-dioxin in lymphocytes. Since the residual levels of tobacco/nicotine-

metabolizing CYP enzymes (CYP1A1, CYP1A2, and CYP2A6) are extremely low in 

lymphocytes, a study involving recombinant expression of these enzymes was performed to 

examine the role of these enzymes in lipid peroxidation through CYP pathways[108]. The 

results showed that these CYP enzymes increased lipid peroxidations by 2.1-fold, suggesting 

their role in oxidative stress. Further, a recent report showed that CYP2A6 is significantly 

induced in peripheral blood lymphocytes of lung cancer patients, suggesting that the 

expression of CYP2A6 could potentially be used to predict environment-induced disease and 

toxicity in humans[109]. However, there is nothing known about the expression of CYP2A6 

or other tobacco/nicotine-metabolizing CYPs in the lymphocytes of HIV-infected smokers or 

non-smokers. Studies are underway to investigate the role of CYP pathway in smoking-

mediated HIV pathogenesis in peripheral blood lymphocytes.        

2.7. Astrocytes 

Despite of the fact that HAART therapy increases the life span of HIV-infected 

individuals, the neurological complications, such as HAND, continue to be a source of 

significant morbidity. This is increasingly important, because since HIV-infected individuals 

live longer, this trend is expected to continue [110]. Astrocytes, the most abundant glial cells 

in the brain, which are important to protect the integrity as well as nourishment of neurons, 

play a major role in the pathology of HAND [111]. Astrocytes are also known to be infected 

by HIV, though to a lesser extent compared to microglia [112]. In addition, viral proteins and 

cytokines released by HIV-infected microglia are known to damage astrocytes [111], which 
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may ultimately lead to HAND. It has been shown that HIV protein gp120 induces 

proinflammatory cytokines/chemokines such as IL-6, IL-8 and CCL5 in SVGA astrocytic cell 

lines and primary astrocytes [113, 114]. The expression of these cytokines/chemokines is 

regulated through the nuclear factor-kappa B-dependent (NF-κB) pathway [113, 114]. In these 

studies, the involvement of NF-B in the regulation of the inflamatory cytokines/chemokines 

was shown using specific chemical inhibitors, as well as siRNA of NF-B pathway.  

Nicotine has been shown to increase BBB permeability by modulating tight junction 

proteins [115]. Since BBB integrity is critical to prevent the development of HAND, smoking 

could enhance the development and progression of these disorders through the effect of 

nicotine on the BBB. It has been reported that a decreased uptake of methyllycaconitine, (a 

selective antagonist for the nicotinic acetylcholine receptor alpha7 subtype), in chronic 

nicotine exposed rodent models, is due to diminished blood–brain passive diffusion of 

compounds with very low extraction rates [116]. Hence it is vital to understand the interactions 

of smoking and HAART with the BBB, which may affect the pharmacokinetic profile of these 

drugs leading to decreased efficacy and increased toxicity. 

2.8. Neurons 

There is very limited information on the effects of smoking on HAND. A recent report 

has shown that genetically expressed HIV viral proteins in rats attenuate nicotine-induced 

behavioral sensitization, which is associated with altered cAMP response element binding 

protein and extracellular regulated kinase signaling pathway in mesocorticolimbic system 

[117]. In vitro and in vivo studies reveal that NNK is known to cause neuroinflammation in 

brain [23]. NNK activates microglia and astrocytes to induce proinflammatory 

cytokines/chemokines with subsequent neuronal damage [23]. In addition, NNK treatment 
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increases phosphorylation of inflammatory signaling molecules such as NF-κB, ERKs, JNK, 

and p38 MAPK in the brains of BALB/c mice [23]. Since HIV gp120, a major viral protein, 

induces proinflammatory cytokines in astrocytes [113, 114], NNK-mediated 

neuroinflammation could further aggravate HAND. 

Another nicotine metabolizing enzyme, CYP2B6, is expressed in both astrocytes and 

neurons [43]. An earlier report has shown that rat CYP2B1 (homologous to human 2B6) is 

induced by nicotine in the brain, however, in this case, induction is not mediated through 

nicotinic acetyl choline receptors (nAChRs) [44]. Similarly, the level of CYP2B6 is increased 

in the brains of smokers compared to non-smokers, specifically in cerebellar purkinje cells 

and hippocampal pyramidal neurons [43]. Similarly, a study  in African green monkeys shows  

the induction of CYP2B6 in the brain, but not in hepatic cells following chronic nicotine 

treatment [45]. An increased level of CYP2B6 in smokers could lead to an altered metabolism 

of CYP2B6 substrates. For example, CYP2B6 metabolizes nicotine and also activates NNK, 

which may lead to increased oxidative stress and damage [118]. In addition, CYP2B6 

metabolizes an important HAART drug, efavirenz, which may cause tobacco-HAART 

interaction. Further studies are needed to examine the role of CYP enzymes in 

tobacco/nicotine-mediated neuropathogenesis and tobacco-HAART interactions in neurons.  

2.9. Conclusions 

Although smoking is highly prevalent in HIV-infected individuals and it is known to 

increase mortality [74, 104], studies related to the effects of smoking on HIV pathogenesis are 

very limited. Therefore, there is an urgent need to investigate the complexities of these 

pathways that are responsible for decreased immune responses, increased HIV replication, 

and increased AIDS related conditions in HIV-infected smokers. Recent findings suggest that 

cytochrome P450 plays an important role in smoking-mediated effects on HIV model systems, 
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such as monocytes/macrophages, lymphocytes, astrocytes, and neurons. In addition, it is 

known that smoking decreases the efficacy of HAART, especially NNRTI and PI, which may 

also involve the CYP pathway. CYPs are the major drug metabolizing enzymes for HAART, 

nicotine, and drugs used to treat opportunistic infections such as tuberculosis. A differential 

expression of CYP enzymes may alter the pharmacokinetic profiles of these drugs, including 

efficacy and toxicity. Therefore, it is imperative not only to examine the role of smoking on 

the CYP pathways, but also the impact of smoking on drug-drug interactions. Future studies 

in the following areas are necessary: 1) investigation of CYP pathway in HIV-infected 

smokers, especially the CYP enzymes by which tobacco-mediated oxidative stress enhances 

HIV replication in macrophages, astrocytes, and neurons, 2) a similar study with women and 

diverse ethnic groups who have CYP2A6 and CYP2B6 polymorphisms, which would provide 

an opportunity for personalized medicine in the future, 3) an investigation in HIV-infected 

patients co-infected with TB/hepatitis who receive HAART and/or anti-tubercular drugs that 

are metabolized through the CYP pathway, 4) studies to determine the role of smoking on the 

immune system in HIV infection, 5) clinical trials to identify potent CYP inhibitors as 

therapeutic agents that block nicotine-mediated HIV replication, 6) investigation of the role 

of the CYP pathway in the combined effect of alcohol and nicotine on oxidative stress-

mediated HIV replication because alcohol consumption is common among smokers and 

appears to follow a similar CYP pathway (CYP2E1)[95].  

2.10. Central hypothesis 

Smoking is common among HIV-infected individuals and smoking/nicotine has been 

shown to enhance HIV replication in alveolar macrophages [69], microglial cells [70], and T 

cells [71]. Monocytes are considered to be one of the major cellular targets for HIV and also 

found to be the crucial viral reservoirs [87]. Infiltration of HIV infected monocytes into the 
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brain through blood brain barrier is found to be one of the major mechanism responsible for 

the development of HIV associated dementia (HAD) and HIV encephalitis (HIVE). These 

infiltrated macrophages carry the virus into the brain and spread the virus to perivascular 

macrophages, microglia and astrocytes [90-92]. Astocytes are the most abundant glial cells in 

the brain providing support and protection to neurons. Studies have shown that HIV affects 

astrocytes leading to induction of neuroinflammatory responses [119]. Similarly HIV proteins 

such as gp120, Tat, Nef transfection in SVGA astrocytes have induced proinflammatory 

cytokine release [113, 120, 121] with implications in neuroAIDS. As neurons don’t get 

infected, the disruption of their supportive astrocytes might be responsible for overall neuron 

damage. The major nicotine metabolizing enzyme CYP2A6 is found to be predominantly 

expressed in monocyte-derived-macrophages (MDM’s) as well as astrocytes. Therefore, it is 

critical to study the role of CYP2A6 in the metabolism of nicotine and resultant oxidative 

stress in HIV replication in monocytes/macrophages, as well as in astrocytes. Furthermore, 

oxidative stress is known to enhance nicotine-mediated HIV replication in alveolar 

macrophages and monocyte-derived macrophages [72, 100]. However, little is known about 

the mechanism/pathways by which nicotine or other constituents of smoking exert its effect 

on these cells. Our approach explores the in vitro effect of nicotine/tobacco on 

monocytes/macrophages, and astrocytes as well as an ex vivo study involving 

monocytes/macrophages of peripheral blood mononuclear cells (PBMC) obtained from HIV-

infected smokers.  

We propose that tobacco/nicotine, or its metabolites, enhance HIV replication in 

monocytes/macrophages through CYP pathway (Figure 3). This is supported by the fact that 

CYP2A6 induces oxidative stress in monocytes/macrophages upon nicotine metabolism [99]. 
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These findings suggest a fruitful new area of study to explore the role of CYP2A6 in nicotine 

metabolism and oxidative stress in HIV replication in HIV-infected smokers. Furthermore, it 

provides an opportunity to explore the use of selective inhibitors to prevent nicotine/tobacco-

mediated oxidative stress and reduce HIV replication. In addition to CYP2A6, several CYP 

enzymes, such as CYP1A1 and CYP2A13, are expected to metabolize or activate other 

tobacco constituents (PAH, NNK, benzopyrene) into procarcinogens and produce oxidative 

stress in monocytes/macrophages, lymphocytes, astrocytes, and neurons (Figure 2). 

Therefore, examination of the role of these CYP enzymes would further aid in development 

of novel pharmaceuticals using selective inhibitors of these CYP enzymes. It is possible that 

specific anti-oxidants, such as vitamin C, vitamin E, melatonin, and taurine, which are very 

effective in alleviating oxidative stress-mediated damage in alcoholic liver disease [122],  

could also reduce nicotine/tobacco-mediated HIV pathogenesis. 
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The proposed mechanistic pathway involving the role of CYP enzymes in nicotine metabolism 

and/or activation of tobacco constituents, especially nicotine, which may lead to HIV 

pathogenesis. 

  

Figure 3: Role of CYP enzymes in nicotine metabolism  
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Tobacco/nicotine causes CYP-mediated oxidative stress [99] as well as inflammation 

through the release of inflammatory cytokines in monocytes/macrophages and astrocytes 

[123].These findings suggest that there is a cross talk between CYP and cytokines in HIV-

infected patients, which may occur through a common pathway in these cells. This hypothesis 

is strengthened by the fact that nicotine activates CYP1A1 in macrophages, which releases 

cytokines that further activate T-lymphocytes leading to chronic inflammation [123]. 

Furthermore, IL-6, an important proinflammatory cytokine, has been shown to be involved in 

the regulation of CYP3A4 [124]. Thus, the cross talk between CYP and cytokines is very 

important to study within the context of HIV pathogenesis.  

In conclusions, smoke extract/nicotine is known to enhance HIV replication in both T cells 

and macrophages, and therefore it would be expected to exacerbate HIV pathogenesis leading 

to accelerated disease progression. This chapter puts forward a novel hypothesis where CYP 

enzymes would be involved in increased oxidative stress that will in turn accelerate HIV 

replication. Since CYP enzymes are not abundantly present in T-cells, we believe that further 

studies using monocytes from in vitro, in vivo/ex vivo human samples from HIV-infected non-

smokers and smokers will substantiate the role of CYP pathway in HIV pathogenesis and 

neuroAIDS. These studies, if successful, will provide a novel and additional target for drug 

development for effective treatment of HIV infected smokers.    “The central hypothesis of 

this project is that, in monocytes and astrocytes, CYP and oxidative stress pathways play 

important role in tobacco-mediated cell toxicity and/or HIV replication. The hypothesis will 

be tested using the following four specific aims.    
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2.11. Specific aims 

In order to study our central hypothesis, we designed the following specific aims: 

Specific Aim 1: To determine the role of CYP2A6 in nicotine metabolism in HIV cell models, 

SVGA astrocytes (chapter 4).  

Specific Aim 2: To study CSC-mediated oxidative stress and cell death in U937 monocytes 

and HIV replication in primary macrophages (chapter 5) 

Specific Aim 3: To determine the levels of CYP enzymes, antioxidant enzymes (AOE), 

oxidative stress, cytokines, and HIV replication in blood plasma/monocytes isolated from a 

cohort of patients (Healthy, smokers, HIV and HIV smokers) (chapter 6) 

Specific Aim 4: To study the nicotine metabolism in plasma samples of smokers and HIV 

Smokers (chapter 7) 
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CHAPTER 3 

GENERAL MATERIALS AND METHODS 

3.1. Chemicals 

RPMI 1640, DMEM, gentamicin and FBS were all purchased from Mediatech Inc. 

(Manassas, VA). Qiagen RNeasy kit for RNA extraction and all prep DNA/RNA/Protein kit 

were brought from Qiagen (Valencia, CA). The dynabeads flowcomp human CD14 kit was 

purchased from Invitrogen (Grand Island, New York). Ficoll hypaque plus was obtained from 

GE Healthcare (Piscataway, NJ). Bicinchoninic Acid (BCA) assay kit was obtained from 

Thermo Scientific (Rockford, IL). Protease inhibitor cocktail, tryptamine, ritonavir, nicotine, 

ascorbic acid (vitamin C), were bought from Sigma-Aldrich (St. Louis, MO). Gene expression 

kits and primer probes (CYP1A1, Hs01054794_m1; Catalase, Hs00156308_m1; SOD1, 

Hs00533490_m1; CYP2A6, Hs0071162_m1; CYP2E1, Hs00559367_m1; CYP3A4, 

Hs00430021_m1; AHR, Hs00169233_m1; CYP1A2, Hs01070369_m1; CYP2A13, 

Hs00426372_m1; CYP2B6, Hs03044636_m1; CYP2C9, Hs00426397_m1; CYP2C19, 

Hs00426387_m1; CYP2D6, Hs_00164385_m1; CYP3A5, Hs0024417_m1; Nrf2, 

Hs00232352_m1; GAPDH 4333764F) were obtained from Applied Biosystems (Foster City, 

CA). Radioimmunoprecipitation assay (RIPA) buffer was obtained from Boston BioProducts, 

(Ashland, MA).  All primary and secondary antibodies were from Santa Cruz Biotechnology 

Inc. (Santa Cruz, CA). Luminata™ Crescendo western HRP substrate was obtained from 

EMD Millipore Corporation (Billerica, MA). Cigarette smoke condensate (CSC) was 

obtained from Murty Pharmaceuticals (Lexington, KY). HIV type 1 p24 antigen ELISA kit 

was bought from ZeptoMetrix Corporation (Buffalo, NY). Multiplex cytokine assay kit was 

purchased from Bio-Rad (Hercules, CA). Oxiselect oxidative DNA damage ELISA kit was 
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purchased from Cell Biolabs (San Diego, CA). EpiQuik™ 8-OHdG DNA Damage 

Quantification Direct Kit (Fluorometric) was obtained from Epigentek (Farmingdale, NY).  

Human-mCSF was obtained from Peprotech (Rockyhill, NJ). Dichlorofluoroscein diacetate 

(DCFDA) was purchased from Life Technologies (Grand Island, NY). Cotinine and NNK 

were bought from Toronto Research Chemicals (North York, On, Canada). Annexin V PE 

apoptosis detection kit was purchased from BD Bioscience (San Jose, CA). MTT salt was 

purchased from Sigma-Aldrich (St. Louis, MO). MTT reagent was prepared by dissolving 

MTT in cell culture medium to a final concentration of 0.1 mg/ml which was used to treat 

cells. AhR inhibitor CH223191 was purchased from Tocris (Minneapolis, MN). Nicotine, 

cotinine, trans-3-hydroxycotinine, nornicotine, norcotinine, nicotine-d4, and cotinine-d3 were 

purchased from Cerilliant Analytical Reference Standards (Round Rock, TX). HPLC-grade 

methanol, acetonitrile, ammonia solution, and formic acid were procured from Fisher 

Scientific (New Brunswick, NJ). An Exterra HPLC reverse phase MS C18 column was 

obtained from Waters Corporation (Milford, MA) and strong cation SPE cartridges from 

Agility DVB; Orochem Technologies (Lombard, IL). 

3.2. Cell culture and treatments 

All experiments were conducted in U937 human monocytic and SVG human 

astrocytic cell lines. U937 cell line was obtained from ATCC (Manassas, VA), and maintained 

in Roswell Park Memorial Institute (RPMI) 1640 media containing 10% fetal bovine serum 

(FBS) and 1% gentamicin. Cells were cultured at an initial concentration of 2 × 105 cells per 

ml and media was refreshed every two days. The human SVGA astrocytic cell line was 

generously provided by Dr. Avindra Nath. SVGA astrocytes were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal bovine serum and 50 

μg/ml gentamycin. SVGA cells were cultured in 10 ml media in a 75 mm2 flask with an initial 
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amount of 0.8 × 106 cells and passaged every other day. Both U937 and SVGA cells were 

incubated at 37°C in the incubator containing 5% CO2, and passaged 2 to 3 times before using 

them for experiments. For treatment purposes, U937 cells were plated at a cell density of 0.8 

× 106 per mL and SVGA cells were seeded at 0.25 × 106 per mL in a 12-well plate the night 

before the treatment. Astrocytes were treated with 1 μM nicotine in triplicate in a 6-well plate 

containing 2 ml of medium. Each experiment was repeated 2-3 times. The nicotine 

concentration was optimized by using various concentrations of nicotine ranging from 0.25 – 

10 μM. The final concentration of nicotine that was used was 1 μM for subsequent 

experiments. This concentration was selected based on our preliminary observations that ≤0.5 

μM nicotine did not show significant induction of CYP1A1 and CYP2A6, whereas 

concentrations ≥2.5 μM were unable to further enhance CYP1A1 and CYP2A6 expression 

levels. In addition, nicotine treatments at ≤0.5 μM showed a very low amount of cotinine and 

NNK formation in SVGA astrocytes. For inhibition experiments, the cells were preincubated 

with 20 μM of tryptamine, a specific inhibitor of CYP2A6, for 30 min prior to nicotine 

treatment. U937 cells were treated with 50 μg/ml CSC (40mg/ml stock solution in DMSO) in 

triplicate in a 12-well plate containing 1 ml of medium. DMSO Vehicle control was employed 

to compare with effects of CSC treatment. For inhibition experiments, the cells were 

preincubated with 50 μM of AHR antagonist, 100 μM of Vit-C for one hour prior to CSC 

treatment. 

3.3. RNA extraction and quantitative reverse transcriptase-polymerase chain reaction  

 RNA was extracted from nicotine treated astrocytes using Qiagen RNeasy Kit as per 

manufacturer’s protocols. RNA (120 ng) from each sample was used for quantitative reverse 

transcription polymerase reaction (qRT-PCR) using a two-step TaqMan_Gene Expression Kit 

in an iCycler iQ system (Bio-Rad Laboratories, Hercules, CA). Relative fold expression of 
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the genes was calculated using the 2-ΔΔCt method with glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) as the internal control. 

3.4. Western blot analysis 

 Total cell lysates were prepared in RIPA Buffer containing protease inhibitor and 

protein concentration was measured using a Pierce BCA protein assay kit. Protein (20 μg) was 

loaded on an acrylamide gel and electrophoresed, followed by transfer to a PVDF membrane. 

After blocking the membrane in 5% non-fat dry milk, it was incubated with primary antibody 

(1:1000 dilution) followed by secondary antibody (1:2000 dilution). The blot was visualized 

by LuminataTM crescendo western HRP substrate using the Alpha Innotech FluorChem HD2 

gel documentation system (Alpha Innotech, San Leandro, CA), and the densitometric data 

was analyzed using AlphaEase FC StandAlone software (version 6.0.0.14; Alpha Innotech). 

β-Actin was used as an internal loading control to normalize the expression of proteins. 

3.5. Measurement of Reactive Oxygen Species (ROS) 

 The production of ROS was measured by flow cytometry using dichlorofluoroscein 

diacetate (DCFDA). Briefly, the cells were treated with nicotine or CSC for different times in 

a 12-well plate. After treatment the cells were washed with PBS and incubated with 10 μM 

DCFDA in PBS for 30 min at 37°C. Then the cells were harvested and dissolved in 1 ml PBS 

to measure the DCF emission at 525 ± 20 nm by flow cytometer (BD Biosciences, San Jose, 

CA), and Mean Fluorescence Intensity (MFI) was measured and analyzed. 

 3.6. MTT cell viability assay 

 Cell viability test was performed in 12-well plates in triplicate, using MTT assay [3-

(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] in U937 monocytes. Cells 

from each well were centrifuged at 2000 rpm for 5 min to remove treatment medium. After 

washing once with PBS, cells of each well were incubated for 4 h in 5 ml flow tubes with 500 
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μl 0.2 mg/ml MTT solution in fresh media. After incubation the tubes were spun down and 

the formazan crystals formed were dissolved in 300 μl of DMSO. Then absorbance was 

measured at 570/630 nm on Biorad Benchmark Plus microplate spectrophotometer (Biorad, 

Hercules, CA) using the Microplate Manager 5.2.1 software.  

3.7. Annexin V apoptosis assay 

Annexin V apoptosis assay was performed in U937 monocytes to measure the effect 

of CSC on apoptosis. Briefly, media was removed and cells of each well were suspended in 

binding solution at a final concentration of 1 × 106 cells per ml, 100 μl of which was 

transferred into a 5 ml tube. Then, 5 μl PE and 5 μl 7-AAD were added to the 100 μl cell 

solution, followed by 15 min incubation at room temperature in darkness. For setting up 

compensation, the following controls were used: unstained, PE stained, 7-AAD stained tubes. 

After incubation, 400 μl binding solution was added to each tube and fluorescence was 

detected using a flow cytometer (BD Biosciences, San Jose, CA). Mean fluorescence intensity 

(MFI) was measured and analyzed. 

3.8. Preparation of standard stocks and spike solutions 

For measurement of nicotine, cotinine and NNK in astrocytes, calibration curve and 

quality control dilutions were prepared and processed as follows: calibration curve standards 

(0.33-663.14 ng/mL for nicotine and 0.11-663.14 ng/mL for both cotinine and NNK) and 

quality control standards (0.33-435.26 ng/mL for nicotine and 0.11-435.26 ng/mL for cotinine 

and NNK). Spike standards dilutions 0.33-663.14ng/mL for nicotine and 0.11-663.14 ng/mL 

for both cotinine and NNK were made in astrocyte cell matrix samples from untreated cells. 

The internal standard, ritonavir (15 μg/mL) was prepared in 20% methanol. All the spike 

standards were stored in a freezer at -800C until further analysis. 
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For measurement of nicotine and its metabolites in plasma samples of HIV-negative 

smokers and HIV-positive smokers, nicotine, cotinine, trans-3-hydroxycotinine, nornicotine, 

norcotinine, and the internal standards (ISs) (deuterated nicotine-d4 and cotinine-d3) were 

dissolved at a concentration of 1 mg/ml in 80% methanol (v/v). To prepare the standard curve, 

20 ml of a working solution at different concentrations (12.60 to 5.04, 2.02, 0.76, 0.25, 0.076, 

0.027, and 0.013 mg/ml) was spiked into 500 ml plasma from a nonsmoker (blank) to obtain 

calibration 

standards of decreasing concentrations (504.0, 201.6, 80.6, 30.6, 10.1, 3.03, 1.06, and 0.53 

ng/ml). Similarly, the quality control (QC) samples were independently prepared at four 

concentrations (504.0, 80.6, 3.03, and 1.06 ng/ml) in plasma from nonsmokers. 

3.9. Determination of CD4 count and viral load 

Whole blood was drawn in EDTA tubes from each subject who qualified for the study 

followed by confirmation of HIV status and a CD4 count by flow cytometry (Becton 

Dickenson, San Jose, CA). The viral load of HIV-infected individuals was determined in 

plasma using quantitative reverse transcriptase polymerase chain reaction (RTPCR) (Roche 

Amplicor System, Biocentric) at Pasteur Institute, Yaounde, Cameroon. The remaining 

sample of plasma from each patient was frozen immediately and shipped on dry ice to the 

University of Missouri-Kansas City for analysis of cytokines and determination of markers of 

oxidative stress and CYP enzymes. 

3.10. Preparation of peripheral blood mononuclear cells and monocytes 

For the peripheral blood mononuclear cells (PBMC) isolation, gradient centrifugation 

technique was employed using ficoll hypaque plus. From the PBMCs, monocytes were 

isolated using dynabeads flowcomp human CD14 kit (Invitrogen, Grand Island, New York). 

The monocytes were immediately lysed using RLT buffer provided in the All prep 
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DNA/RNA/Protein kit (Qiagen, Valencia, CA). The lysed samples were frozen and shipped 

to the University of Missouri-Kansas City for further studies. 

3.11. CSC treatment and HIV replication in primary macrophages 

Primary monocytes were differentiated into macrophages and infected with HIV, prior 

to treatment with CSC, using previously reported protocol [125, 126]. Briefly, PBMCs were 

plated in T-75 flask and non-adherent cells were removed after 1 h at 37 °C. Cells were 

cultured for 6-8 days in media containing human mCSF to facilitate macrophage 

differentiation. Mature macrophages were collected and activated by treating with polybrene 

(2 μg/ml) for 30 min before HIV infection. Macrophages were infected with TCID50 of HIV 

for 2 h and cultured in 6-well plates (1 million/well) for 6 days. Cell supernatant was collected 

on days 0, 3, and 6 to analyze p24 levels. Starting day 7, HIV-infected macrophages were 

treated, once daily, with 25 ug/ml CSC or equivalent amount of DMSO. During the treatment 

period, one-half milliliters of fresh media was added daily to each well to avoid cytotoxicity. 

Supernatant collected on day 11 (24 h after last treatment) was analyzed for viral load using 

the HIV type 1 p24 antigen ELISA. 

3.12. Multiplex cytokine assay 

The protein levels of various pro-inflammatory cytokines/chemokines; RANTES, IL-

6, IL-8, monocyte chemotactic protein-1 (MCP-1), IL1-β, and TNF-α were measured using 

multiplex cytokine assay kit (Bio-Rad, CA, USA) as per the manufacturer’s protocol. Briefly, 

plasma samples were centrifuged at 3000 g for 10 min and the supernatants were diluted with 

three volumes of sample diluent. Next, 50 µl of each sample and standards were mixed with 

magnetic beads and incubated on a shaker at room temperature for 30 min. The beads were 

washed and 25 µl of detection antibody was added to each well followed by incubation for 30 

min at room temperature. Furthermore, the samples were washed and incubated with 50 μl 
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streptavidin-PE conjugate for 10 min. Finally, 125 μl of the assay buffer was added and the 

samples were analyzed using Biorad Bioplex HTS (Bio-Rad, CA, USA). The concentrations 

of the cytokines were determined with Bio-plex manager 5 using 5-PL statistics using standard 

curve.   

3.13. Quantitation of 8-hydroxy-2′-deoxyguanosine content 

The concentration of 8-Hydroxy-2′-deoxyguanosine (8-OHdG) was determined in the 

plasma samples using oxiselect oxidative DNA damage ELISA kit according to 

manufacturer’s instructions. Briefly, after diluting the plasma 50:50, the samples along with 

the 8-OHdG standards provided in the kit were added to an 8-OHdG/BSA conjugate on a 

preabsorbed EIA plate. After incubation for an hour, an anti-8-OHdG primary antibody was 

added, followed by an HRP conjugated secondary antibody. After incubation with substrate 

solution for an hour, the reaction was terminated using the assay “stop solution” and the 

absorbance was measured at 450 nm using a plate spectrophotometer. The 8-OHdG content 

of the DNA in monocytes was estimated using EpiQuik™ 8-OHdG DNA Damage 

Quantification Direct Kit (Fluorometric) following manufacturer’s instructions. It is a highly 

sensitive fluorometric technique to detect 8-OHdG by using as low as 300 ng of unmodified 

DNA. Initially, DNA is bound to the wells that have a high DNA binding affinity. Then the 

8-OHdG present in the samples is detected by using capture and detection antibodies. The 

enhancer solution is used to enhance the signal followed by quantification by reading the plate 

in a fluorescence microplate reader equipped with an excitation filter of 530 nm and emission 

filter of 590 nm. The amount of 8-OHdG in each sample is calculated by using a standard 

curve generated from a series of standards. 
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3.14. DNA/RNA/protein isolation  

Isolation of DNA, RNA, and protein was done from the lysed samples using the All 

prep DNA/RNA/Protein QIAGEN Kit by following the manufacturer’s instructions. Briefly, 

the lysed sample was homogenized and transferred to the DNA column and the flow through 

was transferred to RNA column for obtaining RNA. The flow through from RNA column was 

used to precipitate protein using APP buffer. The RNA and DNA were quantified using UV 

spectrophotometer by measuring their absorbance at 260nm. The protein was quantified using 

BCA protein assay kit (Thermo scientific, Rockford, IL). However, the quantity of protein 

from the some samples, especially HIV positive smokers and HIV positive nonsmokers, were 

very low and insufficient for complete analysis.    

3.15. Statistical analysis 

Statistical analysis for in vitro studies was performed to determine mean ± SD and a 

student t-test was applied to determine p values. A p value of ≤ 0.05 was considered 

significant. For ex vivo study, demographic variables (age, sex ratio) were summarized using 

descriptive statistics. All outcome variables were summarized as the mean plus or minus the 

standard error. Comparisons among the four groups were conducted using one way ANOVA 

with no corrections for multiple comparisons. All tests were two-sided and results that were 

statistically borderline significant at p≤0.1 (#) and significant at p ≤0.05 (*) and ≤0.01 (**). 

A two-way ANOVA was done to determine whether they interact synergistically or additively 

in HIV positive smokers. All analyses were performed using IBM SPSS version 21. 
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CHAPTER 4 

AN LC-MS/MS METHOD FOR CONCURRENT DETERMINATION OF NICOTINE 

METABOLITES AND THE ROLE OF CYP2A6 IN NICOTINE METABOLITE 

MEDIATED OXIDATIVE STRESS IN SVGA ASTROCYTES 

4.1. Introduction 

Recent studies by Jin et al have shown that CYP2A6 is the most abundantly expressed 

CYP (36% of the total CYPs) in the U937 macrophage cell line [96]. Since macrophages are 

critical HIV reservoirs and migration of these cells into the brain may result in neuroAIDS 

[90], Jin studied the role of CYP2A6 in nicotine metabolism and nicotine-mediated oxidative 

stress in U937 macrophages [128]. Results from those studies clearly demonstrate a role for 

CYP2A6 in nicotine metabolism and associated oxidative stress in these cells. Nicotine can 

cross the blood-brain barrier and exert its toxic effects on various brain cells, including 

astrocytes. Therefore, in the present study we examined the role of CYP2A6 in nicotine 

metabolism in astrocytes and its involvement in oxidative stress. However, in order to study 

nicotine metabolism in astrocytes, it was necessary to develop an extremely sensitive 

analytical technique to measure nicotine metabolites. In recent years, tandem triple 

quadrupole linear ion Qtrap mass spectrometry (LC-MS/MS) method has been increasingly 

used for the measurement of nicotine and its metabolites in urine samples and other cell lysates 

[128-132]. Since the level of CYP2A6 enzyme is much lower in astrocytes than most other 

cells, we developed a relatively more sensitive LC-MS/MS method to determine nicotine 

metabolites.  

Nicotine, the major bioactive constituent of tobacco, is metabolized into cotinine and 

other less abundant metabolites, primarily by liver CYP2A6 and to some extent by CYP2B6 
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and CYP2D6 [19]. Some of the nicotine and cotinine metabolites are further metabolized by 

CYP2A6 into procarcinogenic compounds, including nicotine-derived nitrosamine ketones 

(NNK). For example, nicotine is directly metabolized by 2’hydroxylation to aminoketone, 

which is converted into the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

[127]. In addition, nasal and lung CYP2A13 are involved in the biotransformation of NNK 

into a carcinogen [19, 21, 128]. CYP2A6-mediated nicotine metabolism and the subsequent 

activation of reactive metabolites into procarcinogens and formation of reactive oxygen 

species (ROS) have been shown to be involved in liver damage and lung/pancreatic cancers 

[19, 128-130]. Nicotine and NNK have also been demonstrated to generate oxidative stress in 

microglia [23], neurons [25], and white blood cells [24]. However, the mechanism by which 

nicotine induces oxidative stress in these cells has not been determined. We hypothesize that 

CYP2A6 plays a critical role in nicotine metabolism-mediated oxidative stress in SVGA 

astrocytes. Therefore, our specific aim is to determine the role of CYP2A6 in nicotine 

metabolism-mediated oxidative stress in SVGA astrocytes.  

4.2. Development of an analytic method for the measurement of nicotine, cotinine, and 

NNK in SVGA astrocytes 

4.2.1. Extraction procedures and sample preparation 

The liquid-liquid extraction technique was optimized for method development and 

subsequently used for SVGA astrocyte sample analysis. Astrocyte samples were thawed and 

200 µL was aliquoted followed by addition of 25 µL of 15.0 µg/mL freshly prepared internal 

standard stock. Then, 30 µL of 30 % v/v ammonia solution was added to the samples and 

vortexed for 1 minute. The samples were extracted by adding 1000 µL of ethyl acetate then 

vortexed for 2 minutes followed by centrifugation at 12,000 rpm at 40C for 45 min. 

Subsequently, 850 µL of the organic layer was withdrawn and evaporated to dryness using a 
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Speed-Vac at 40C for 60 minutes. The dried samples were redissolved in 200 µL of mobile 

phase and vortexed for 1 minute. To prepare samples for LC-MS/MS analysis 200 µL 

calibrator, control, and nicotine-treated astrocytes, 25 µL working internal standard, and 30 

µL of 30% ammonium hydroxide were mixed and evaporated to dryness at 40°C and the 

samples were reconstituted in 0.2 mL of mobile phase for chromatography. The final 

concentration of working internal standard was 1.5 µg/mL. 

4.2.2. HPLC and mass spectrometry  

HPLC and mass spectrometry were performed with modifications of our  previously 

described method [131]. Briefly, complete column separation was performed  on a Hybrid 

particle organosiloxane Xterra reverse phase carbon 18 HPLC column (50 mm x 4.6 mm (i.d.); 

5µm bead size; 50-Å pore size; Waters Corporation) using a mobile phase consisting of 250 

ml HPLC water, 750 mL acetonitrile and 1 mL formic acid (88%). Sample injection volume 

used was 15 μL and the total analytical run time was 4 min at a flow rate 0.3 mL/min. The 

HPLC system consisted of a high-pressure liquid pump and autosampler (LC-20AD and SIL-

20AST, Shimadzu USA) and a tandem mass spectrometer (API 3200; AB Sciex, Sciex, Faster 

City, CA). The HPLC column was connected directly to the heated nebulizer source of the 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) system and the experiment 

was performed under conditions as described earlier [131].  

The mass spectrometry parameters for LC-MS/MS were optimized as follows: curtain 

and CAD gases (20 psi), gas 1 (45 psi), gas 2 (50 psi), ion spray voltage (4800 V), ionization 

source temperature (400C), and dwell time (200 milliseconds). The de-clustering potentials 

for nicotine, cotinine, and NNK were fixed to 80, 40, and 40 V, respectively, while collision 

energies for nicotine, cotinine, and NNK were adjusted to 26, 28, and 15 V, respectively. The 



38 
 

optimization of MS/MS mass spectra for nicotine, cotinine, NNK, and ritonavir was 

performed by MRM positive mode using ion mass transitions of m/z 163.2/130.1 for nicotine, 

m/z 177.4/98.3 for cotinine, m/z 208.4/122.1 for NNK, and 721.6/296.4 for ritonavir (Table 

1).  

Table 1: LCMS/MS method calibration in SVGA astrocytes 

Compounds MRM 

Transitions 

(m/z) 

Retention 

time 

(min) 

Correlation  

coefficient 

equation 

(y=mx+c) 

Coefficient 

of 

determination  

Calibration 

curve 

range 

(ng/ml) 

LOQ 

(ng/ml) 

Nicotine 163.2→130.1 1.79 y = 175.98x 

+140.36 

R² = 0.9998 0.33 - 

663.14 

0.33 

Cotinine 177.4→98.3 1.89 y = 511.19x - 

16.834 

R² = 0.9997 0.11 - 

663.14 

0.11 

NNK 208.4→122.1 2.1 y = 215.68x 

+21.742 

R² = 0.9935 0.11 - 

663.14 

0.11 

 

4.2.3. Quantification 

The concentration of each analyte was determined by calculating the ratio of each 

analyte peak response relative to its respective internal standard peak response. Results from 

calibration analyses were used to create a calibration curve using simple linear regression 

analysis. The slopes and intercepts from the resulting calibration equations were used to 

calculate control and specimen results (Table 1). The calibration curves were linear within the 

concentration range of 0.11-663.1 ng/ml for cotinine (r2 = 0.9998) and NNK (r2 = 0.9935) 

and 0.3-663.1 ng/ml for nicotine (r2 = 0.9963). 

The LC-MS/MS MRM chromatograms of nicotine, cotinine, NNK, and ritonavir in 

SVGA astrocytes showed no interference in the blank at the retention time of nicotine, 

cotinine, NNK, and ritonavir (Fig. 4). Similarly, there was a small base line peak at the lower 

level of quantification of all the analytes, suggesting a high signal to noise ratio (S/N). In 
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addition, the results suggested that this LC-MS/MS method is extremely sensitive, rapid, and 

robust for quantifying these analytes at very low concentration levels (0.3 ng/mL for nicotine 

and 0.11 ng/mL for both cotinine and NNK). Finally, the peak response was directly 

proportional and uniform to concentrations ranging from the lower limit to the upper limit of 

quantification for all the analytes, demonstrating that the results are highly reproducible 

(Figure 4). 
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Figure 4: Chromatograms of extracted cotinine samples 
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Figure 5: Chromatograms of extracted nicotine samples 
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Figure 6: Chromatograms of extracted NNK samples 

LC-MS/MS MRM chromatograms of cotinine, nicotine, and NNK along with the internal 

standard ritonavir in SVGA astrocytes. The level of the blank, the lower limit of 

quantification, and upper limit of quantification for nicotine (top three panels), cotinine 

(middle three panels), and NNK (bottom three panels) are shown in the left panels. Ritonavir 

is shown in the right column except for the blank for each compound. The intensity (cps) is 

presented in the Y-axis and time (min) is presented in the X-axis.  The standard linear curve 

of nicotine, cotinine, and NNK are shown from top to bottom in the right side of the 

chromatograms. 
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4.2.4. Recovery, precision, and accuracy 

Recovery of samples was analyzed by preparing six replicates of each of two standard 

concentrations in human astrocytes. Recovery was performed and reported as the percentage 

difference between extracted and non-extracted samples as previously described [131, 132]. 

Precision and accuracy were evaluated by analyzing calibration curve and quality control 

(QC) samples. Accuracy was determined by analyzing six replicates of each QC sample. 

Accuracy was reported as the percentage difference between the mean and the nominal 

concentrations divided by the nominal concentration. Precision was reported using the 

coefficient of variation (CV) (standard deviation/mean concentration) multiplied by 100. The 

limit of quantitation was optimized for each analyte, 0.33 ng/mL for nicotine and 0.11 ng/ml 

for both cotinine and NNK. The recoveries, accuracy, precision, and coefficient of variation 

(CV) of nicotine, cotinine, and NNK in astrocytes are presented in Table 2. The recoveries for 

nicotine, cotinine, and NNK were 97.5%, 85.9%, and 78.4%, respectively. The accuracies for 

nicotine, cotinine, and NNK were in the range of 82-114%, 89-118%, and 86-117%, 

respectively. The coefficients of variation for nicotine, cotinine, and NNK were within 14.6%, 

11.9%, and 17.0%, respectively. The limits of quantitation accuracy were 115.2% for nicotine, 

96.5 for cotinine and 83.3 for NNK and precision were within 14.9% for nicotine, 4.5% for 

cotinine and 9.3% for NNK (Table 2).  
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Table 2: Validation and Stability Experiment in SVGA astrocytes  

 

 

 

 

  

  Nicotine Cotinine 
Nitrosamine ketone 

(NNK) 

 

Nominal 

Conc 

(ng/ml) 

Calculated 

Conc (ng/ml) 

% CV 

(±) 

Calculated 

Conc (ng/ml) 

% CV  

(±) 

Calculated 

Conc (ng/ml) 

% CV 

(±) 

CC-1  0.11   0.105 ± 0.005 4.5 0.091 ± 0.016 17.3 

CC-2  0.33 0.28±0.041 14.9 0.32 ± 0.0091 2.8 0.29 ± 0.043 11.9 

CC-3  1.09 1.12 ± 0.03 2.1 1.18 ± 0.09 7.6 1.25 ± 0.16 14 

CC-4  10.86 12.0 ±1.135 9.4 12.02 ± 1.10 9.6 11.02 ± 0.05 0.5 

CC-5  36.21 31.98 ±3.89 12.5 35.65 ± 0.89 2.5 32.65 ± 3.51 10.7 

CC-6  103.45 119.21 ±17.1 14.1 111.21 ± 7.30 6.5 121.21 ± 19.3 16 

CC-7  258.62 278.34 ±18.63 6.6 240.34 ± 19.3 8 235.43 ± 22.92 9.9 

CC-8  431.04 420.59 ±14.1 3.4 430.57 ± 5.0 1.1 475.59 ± 50.10 10.2 

CC-9  663.14 689.92 ±21.1 3 642.36 ± 5.97 8.7 672.39 ± 95.59 14.3 

QCV-1  0.11   0.091 ±0.016 17.3 0.091±0.0082 9 

QCV-2  0.33 0.28 ±0.041 9.6 11.7 ± 1.9 9 12.2 ± 2.6 1.2 

QCV-3  10.97 11.03 ± 0.06 0.6 10.4 ± 0.1 8.2 10.49 ±0.63 9.9 

QCV-4  36.56 37.59 ± 4.1 13.8 340.9 ± 6.6 9.8 35.9 ± 21.7 9.3 

QCV-5  104.46 120.9 ± 13.1 10.5 118.3 ± 17.5 14.7 119.3 ± 23.5 19.6 

QCV-6 435.26 470.8 ± 19.7 4.1 479.7 ± 34.1 7.2 467.7 ± 35.1 7.4 

STQC-1  0.11   0.091 ±0.016 17.3 0.095 ± 0.0082 8.6 

STQC-2  0.33 0.28±0.041 9.6 0.27 ± 0.04 18.5 0.36 ± 0.016 4.4 

STQC--3  10.97 12.2 ± 2.6 1.2 10.4 ± 0.1 0.96 10.49 ± 0.63 9.9 

STQC--4  36.56 31.98±3.89 12.4 34.9 ± 4.6 13.4 35.9 ± 1.7 5.9 

STQC--5  104.46 124.9 ± 23.1 18.5 100.4 ± 0.1 1.2 96.3 ± 13.5 14.03 

STQC--6 435.26 465.8 ± 17.9 3.8 479.7 ± 34.1 7.5 473.7 ± 31.1 6.5 
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4.2.5. Stability analysis 

In order to evaluate the stability of nicotine, cotinine, and NNK in astrocytes, we 

prepared six individual specimens of SVGA astrocytes containing nicotine, cotinine, and 

NNK of each of six concentration levels and we assessed analyte stability at different 

temperatures (ambient, 4°C, and -80°C), after  34 days. The mean results from six replicates 

for each replicate, temperature, and concentrations were compared with the standard 

calibration values and expressed as percentages of accuracy and coefficient of variation (CV). 

The results are shown in Table 2. 

4.2.6. Statistical analysis  

Statistical analysis was performed to determine mean ± SD and a student t-test was 

applied to determine p values. A p value of ≤ 0.05 was considered significant. 
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4.3. Results  

4.3.1. Induction of CYP1A1 and CYP2A6 by nicotine in SVGA astrocytes 

First, the basal levels of mRNA of CYP enzymes were determined in the SVGA 

astrocyte cell line. Interestingly, the relative mRNA expression levels of CYP2A6 and 

CYP1A1 were 56% and 43% of the total CYPs’ mRNA expression in SVGA. The remaining 

1% accounted for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, 

and CYP3A5. Furthermore, exposure of astrocytes to nicotine resulted in significant up 

regulation of CYP1A1 mRNA at 1h (150%) and CYP2A6 mRNA between 1 and 6 h (~200%) 

(Figure 7). Although there was no change in CYP1A1 mRNA level at later time points, 

CYP2A6 mRNA was down regulated at 12 h nicotine treatment. To ensure that the mRNA 

induction was consistent with the protein induction, we measured levels of CYP1A1 and 

CYP2A6 proteins (Fig. 8). Nicotine induced levels of CYP1A1 that were  170%  relative to 

that of control CYP1A1 at 3 h, as well as levels of CYP2A6 that were 140% and 230%  relative 

to that of control  at 1 h and 3 h, respectively. Similar to CYP2A6 mRNA, nicotine down 

regulated CYP2A6 protein at 12 h. Our findings that CYP2A6 is the most abundant CYP in 

astrocytes and that even higher levels of expression are induced by nicotine, suggest its 

important role in nicotine metabolism and nicotine metabolite-associated oxidative stress in 

astrocytes.  
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The SVGA astrocytes were treated with 1 µM nicotine for 0.5, 1, 3, 6, and 12 h. The 

percentage mRNA levels were calculated using qRT-PCR, with 100% expression normalized 

for the control at every time point. Expression of both the CYP genes was normalized to 

glyceraldehyde 3-phosphate dehydrogenase. In the above figures, the X-axis represents 

treatment time (hours) and Y-axis represents % mRNA expression. * Represents p ≤ 0.05 

compared to respective controls. 

Figure 7: Effect of nicotine on mRNA expression of CYP1A1 and 

CYP2A6 in SVGA astrocytes 
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The SVGA astrocytes were treated with 1 µM nicotine for 0.5, 1, 3, 6, and 12h and the protein 

was isolated. The percentage protein expression was calculated by quantifying the 

immunoblots, with 100% expression normalized to the untreated cells (control) at every time 

points. Expression of CYP1A1 and CYP2A6 was normalized against β-actin. In the above 

figures, X-axis represents treatment time (hours) and Y-axis represents % protein expression. 

* Represents p ≤ 0.05 compared to respective controls. 

Figure 8: Effect of nicotine on levels of protein expression of CYP1A1 

and CYP2A6 
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4.3.2. Metabolism of nicotine by CYP2A6 in SVGA astrocytes 

The metabolism of nicotine in SVGA astrocytes was analyzed using the LC-MS/MS 

method as described in Materials and Methods and depicted in Figure 9. Figure 10 shows 

representative MRM chromatogram profiles of nicotine, cotinine, and NNK. Figure 11 shows 

the kinetic profile of cotinine and NNK formation. A very low amount of cotinine (5-7 ng/ml) 

and NNK (1-3 ng/ml) was detected in astrocytes. To ensure that CYP2A6 is involved in 

nicotine-metabolism, cotinine and NNK levels were measured in the presence of tryptamine, 

a CYP2A6 specific inhibitor [133]. Tryptamine decreased cotinine formation by 

approximately 80% at both 1 h and 2 h, whereas NNK formation was reduced by 60% at 1h 

and was almost completely abolished at 2 h (Fig. 12). 
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   Figure 9: Schematic of nicotine metabolism by CYP2A6 
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Figure 10: Representative MRM chromatogram profiles of nicotine, 

cotinine, and NNK 
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Metabolism of nicotine in SVGA astrocytes. The cells were incubated with 1 µM nicotine for 

0.5, 1, 2, and 4h and cotinine and NNK levels were measured using the LC-MS/MS method. 

A. Diagram depicting the metabolism of nicotine and the metabolic products cotinine and 

NNK. B. Representative MS2 profiles of nicotine, cotinine, and NNK with parent molecular 

ion transition and its fragmentation pattern in MS2 of nicotine, cotinine, and NNK. C. Kinetic 

profiles of cotinine and NNK formation. In the figures, X-axis represents the treatment time 

(hours) and Y-axis represents concentration of cotinine and NNK. The graphs were plotted as 

mean ± SD using three replicates for each time point. 

  

Figure 11: Kinetic profile of cotinine and NNK formation 
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Effect of tryptamine (20 µM), a CYP2A6 selective inhibitor, on the formation of cotinine and 

NNK in 1 µM nicotine treated SVGA astrocytes. In the figures, percent of cotinine and NNK 

formation are presented in Y-axis. The time points of nicotine treatment are presented on the  

X-axis. The graphs were plotted as mean ± SD using three replicates for each time point. * 

Represents p ≤ 0.05 compared to respective controls.   

Figure 12: Effect of Tryptamine on Cotinine and NNK formation 
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4.3.3. Formation of ROS by CYP2A6-mediated nicotine metabolism in SVGA 

astrocytes  

We measured the generation of ROS in nicotine-treated SVGA astrocytes using flow 

cytometry. Figure 13 shows the mean fluorescence intensity (MFI) of ROS formation in 

nicotine-treated astrocytes from 15 - 120 min. The results showed a slight decrease in MFI at 

15 min, a peak at 30 min, and then a decrease at 90 and 120 min. To ensure that ROS is formed 

as a result of nicotine metabolism by CYP2A6, we pre-incubated astrocytes with CYP2A6-

specific inhibitor tryptamine. The results showed that tryptamine significantly quenched the 

formation of ROS, suggesting the role of CYP2A6-mediated nicotine metabolism in ROS 

formation. Since our results showed a decrease in the levels of ROS at later time points (Fig. 

13), we determined the expression level of the antioxidant enzymes superoxide dismutase 

(SOD) and catalase at 1, 3, 6, and 12 h (Fig. 14). The results showed that nicotine significantly 

induced SOD, especially at 3 h (~200%). In contrast, nicotine significantly reduced the 

expression of catalase at 1 and 12 h.  

      



55 
 

  

 

The ROS production was measured using a flow cytometer from untreated and 1 µM nicotine 

treated cells from 15, 30, 60, 90, and 120 min. A. Bar graphs representing mean fluorescence 

intensity (MFI) from control and nicotine-treated cells. MFI is presented in Y-axis and the 

time points of nicotine treatment are presented in X-axis. The graphs were plotted as mean ± 

SD from three replicates. B. Effect of 20 µM tryptamine, a CYP2A6 selective inhibitor on the 

formation of oxidant contents in untreated and 1 µM nicotine treated cells for 30 min. * 

Represents p value ≤ 0.05 and # represents p value ≤ 0.1. 

Figure 13: Role of CYP2A6 in nicotine mediated oxidative stress in 

SVGA astrocytes 
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The SVGA astrocytes were treated with 1 µM nicotine for 1, 3, 6, and 12h. The percentage 

mRNA levels of both the enzymes were calculated using qRT-PCR, with 100% expression 

normalized to the control. Expression of both the genes was normalized against 

glyceraldehyde 3-phosphate dehydrogenase. X-axis represents the treatment time and Y-axis 

represents % mRNA expression. * Represents p value ≤ 0.05 and # represents p value ≤ 0.1. 

Figure 14: Effect of 1 µM nicotine on the mRNA expression of 

SOD and catalase in SVGA astrocytes 
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4.4. Discussion 

4.4.1. Abundance of CYP1A1 and CYP2A6 in SVGA astrocytes 

The current study demonstrates very high levels of CYP1A1 (43%) and CYP2A6 

(56%) in SVGA astrocytes, which account for only 3% and 0.1% of the total CYPs, 

respectively, in the liver [134]. Similarly, our previous studies revealed that CYP2A6 is the 

second most abundant (30%)  CYP enzyme in the U937 macrophage cell line. [96]. It should 

be noted that, in many respects, macrophages are similar to microglia in the CNS. Although 

CYP2A6 is the most abundant CYP in SVGA astrocytes, its expression level in SVGA 

astrocytes is approximately 10-fold lower than in U937 macrophages. However, the level of 

CYP1A1 mRNA in astrocytes was comparable to that of U937 macrophages. This is the first 

report that demonstrates the presence of CYP2A6 and CYP1A1 in SVGA astrocytes. CYP2A6 

is the major enzyme involved in the metabolism of nicotine, whereas CYP1A1 is responsible 

for the metabolism/activation of other tobacco constituents, such as polycyclic aromatic 

hydrocarbons (PAH) [135].  

4.4.2. Induction of CYP2A6 by nicotine in SVGA astrocytes 

This is the first report that demonstrates the induction of CYP1A1 and CY2A6 by 

acute nicotine treatment. To our knowledge, there is no report in the literature that 

demonstrates the induction of CYP2A6 and CYP1A1 by nicotine in hepatocytes or lungs. 

Similarly, our recent study did not show an induction of CYP1A1 and CYP2A6 by nicotine 

in U937 macrophages [131]. It is possible that CYP1A1 and CYP2A6 are inducible in 

astrocytes but not in hepatocytes or macrophages because their levels in astrocytes are much 

lower than that of hepatocytes [134] and macrophages [96]. Thus, CYP2A6 and CYP1A1 in 

macrophages and liver may already be at maximal expression levels. Alternatively, the 

inducibility of CYP1A1 and CYP2A6 is a tissue-specific phenomenon. This is quite possible 
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as other CYP’s have been demonstrated to be inducible in a tissue-specific manner. An earlier 

study showed an induction of rat CYP2B1 in certain regions of the brain upon chronic nicotine 

treatment [136]. Similarly, a recent study showed that while nicotine does not induce hepatic 

CYP2B1, it induces CYP2B1 in the frontal cortex, brain stem, and olfactory tubercle [44]. 

Furthermore, chronic nicotine treatment in African green monkeys increased CYP2B6 

(homologous to rat CYP2B1) in astrocytes and neurons (frontal cortex, caudate, thalamus) 

whereas hepatic levels of CYP2B6 were unchanged [45]. These reports are consistent with 

another finding that smokers have higher levels of CYP2B6 in the brain [43], which may 

increase the metabolism of certain drugs such as bupropion and propofol, and lead to a 

decreased response to these drugs.  

We speculate that nicotine induces CYP1A1 and CYP2A6 in astrocytes through 

nicotine metabolism-mediated oxidative stress. Our speculation is based on a recent report 

which demonstrated that increased CYP2A6 expression is associated with increased CYP2E1-

mediated alcohol metabolism and oxidative stress in the liver [137]. Additional observations 

suggest that oxidative stress mediates CYP2A6 induction by alcohol in U937 cell line [95]. 

Although the mechanism by which nicotine induces CYP2B1 or CYP2B6 is not clear, it has 

been shown that nicotine induces CYP2B1/CYP2B6 through transcriptional regulation, and 

in this way  enhances its own metabolism [44]. In contrast to CYP2B6 induction, another 

study suggests that a non-transcriptional mechanism, perhaps a post-translational 

modification, is responsible for the induction of CYP2D6 and CYP2E1 by chronic nicotine 

treatment [138]. 
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4.4.3. Development of LC-MS/MS method for concurrent measurements of nicotine, 

cotinine, and NNK in SVGA astrocyte 

We have demonstrated a simple, rapid, highly sensitive and reproducible LC-MS/MS 

analytical technique for concurrent determination of nicotine, cotinine, and NNK in SVGA 

astrocytes. Nicotine, cotinine, and NNK achieved requisite recovery by a simple liquid-liquid 

extraction procedure. This extraction method is efficient, simple, fast, sensitive, and cost-

effective and has been developed for the first time for astrocytes. We and other investigators 

have previously described   LC-MS/MS methods in other cell types that because of low 

sensitivity were inadequate to determine the intracellular concentrations of nicotine, cotinine, 

and NNK in SVGA astrocytes [131, 139-142]. Our previously reported LC-MS/MS method 

for nicotine, cotinine, and NNK in U937 macrophages [131] was not sufficiently sensitive to 

estimate these analytes in SVGA astrocytes, because astrocytes express a much lower level of 

CYP2A6 than macrophages. Nicotine metabolism in astrocytes is much lower than the 

macrophages, thereby the conversions of nicotine to cotinine and NNK levels are very low in 

SVGA astrocytes. The current method has been successfully applied for determination of 

intracellular levels of nicotine, cotinine and NNK in astrocytes. This is a very important step 

towards the determination of very low levels of cotinine and NNK in brain samples, especially 

in smokers (ex-vivo study), because these compounds may be associated with increased 

oxidative stress and astrogliosis leading to neuronal damage.   

4.4.4. Nicotine metabolism by CYP2A6 in SVGA astrocytes 

The nicotine metabolic profile obtained from SVGA astrocytes is different from those 

obtained with U937 macrophages, in which cotinine and NNK formation was relatively high 

and achieved a peak at 2-4h [131]. In addition, nicotine was metabolized rapidly (within 30 

min) in macrophages [131], whereas the nicotine concentration was decreased by only 25% 
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in 4h in astrocytes (data not shown). These results are consistent with the fact that astrocytes 

express much lower level of CYP2A6 than do macrophages. 

Several CYP enzymes such as CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2D6, 

CYP2E1, CYP2F1 and CYP4B1 [143] are known to metabolize nicotine to cotinine. 

However, CYP2A6 plays a major role in metabolizing nicotine to cotinine (~80%) and NNK, 

as well as to some extent in activating NNK into procarcinogens [144, 145]. CYP2A13 is 

another isoform of the CYP2A family which is known to activate NNK into procarcinogens, 

and is expressed at very high levels in nasal mucosa, lungs, and trachea [146].  However 

CYP2A13 was not detected in astrocytes and other nicotine-metabolizing CYPs were present 

at very low levels (data not shown). CYP2A5, a homologue of human CYP2A6, is the major 

enzyme involved in nicotine metabolism in mouse [147]. Similarly, CYP2B1 and CYP2B6 

are present at high levels in brain and they are further induced by nicotine [44, 45], which also 

correlates with a higher CYP2B6 level in the brains of smokers [43]. However, there has been 

no characterization of the role of CYP enzymes in nicotine metabolism in the brain (astrocytes 

or neurons). Using SVGA astrocytes as a model cell line, our study provides the first evidence 

of nicotine metabolism by CYP2A6 in the brain.  

4.4.5. Nicotine metabolism-mediated oxidative stress in SVGA astrocytes 

The increase in nicotine metabolism-mediated ROS formation in SVGA astrocytes is 

relatively lower than in U937 macrophages [131], which is consistent with the  relatively low 

level of CYP2A6 in astrocytes compared to macrophages. Our results suggest that acute 

nicotine metabolism-mediated oxidative stress is ameliorated by the increase of the 

antioxidant enzyme SOD. However, the chronic exposure of nicotine in smokers, especially 

in astrocytes, would produce high levels of ROS, which can activate astrocytes. Astrocytes 

are the major non-neuronal cell type which are situated in close association with neurons, and 
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provide the neurons with structural, metabolic and trophic support [148]. Activation of 

astrocytes as a result of increased oxidative stress has  been shown to  disrupt the support to 

neurons [149]. Our study would help better understand the role of astrocytes in 

neurodegenerative diseases. Increased oxidative stress is known to occur in various chronic 

neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s 

disease, and amyotrophic lateral sclerosis and is associated with neuronal cell death [150]. 

    The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway has been shown to 

be activated in astrocytes, which protects the neurons from oxidative insult [150, 151]. Nrf2 

is a transcription factor which is translocated into nucleus when cells are subjected to oxidative 

stress. In the nucleus, Nrf2 binds to an antioxidant response element and leads to 

transcriptional activation of antioxidant genes (e.g. SOD and phase II detoxifying enzymes). 

Recently, HIV gp120 has been shown to induce Nrf2 in astrocytes, which is associated with 

stimulation of antioxidant genes such as hemoxygenase (HO-1) and NADPH dehydrogenase 

quinone 1 (Nqo1) [152]. A recent report also demonstrates transcriptional regulation of 

CYP2A6 by the Nrf2 pathway in human hepatocytes [153]. Our unpublished observations 

suggest a similar role for Nrf2 in the induction of CYP2A6 by alcohol-mediated oxidative 

stress in monocytes. Our study opens the way to test the hypothesis that CYPA6-mediated 

nicotine metabolism facilitates the oxidative stress induced by HIV in astrocytes. Our 

hypothesis is consistent with the findings that chronic exposure of nicotine/smoke increases 

the expression of other CYP enzymes, including CYP2A6 in the brain [43, 45]. Nicotine-

induced brain CYP enzymes have relevance to several neurodegenerative diseases, including 

Parkinson's disease [154]. 
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4.5. Clinical relevance 

     In the U.S. cigarette smoking is about three times more prevalent in HIV-infected 

people than in the uninfected population [59]. Nicotine, the major constituent of tobacco, is 

known to enhance HIV replication in alveolar macrophages [69] and microglia [70]. Although 

the mechanism is not known, studies have suggested that oxidative stress plays a role in 

increased viral replication in smokers [72, 155]. A study has also correlated smoking with 

increased infection, decreased immune response, poor response to antiretroviral drugs, and 

enhanced risk of virological rebound [61, 156]. Our recent study with macrophages [96], and 

the current study with astrocytes, suggest an important role for CYP2A6 in nicotine/smoking-

mediated oxidative stress and HIV replication in monocytes and astrocytes. Since HIV protein 

gp120 is known to stimulate oxidative stress pathways [152], we speculate that 

nicotine/smoking in the presence of HIV infection may further enhance oxidative stress in a 

synergistic manner leading to increased HIV replication. Inhibition of the CYP2A6-mediated 

oxidative stress pathway has the potential to decrease viral replication and increase the 

response to ART that would reduce the progression of AIDS in smokers.  

4.6. Conclusion 

In conclusion, this is the first report on the expression levels of CYP1A1 and CYP2A6 

in SVGA astrocytes, and their further induction by nicotine. We also developed a highly 

sensitive LC-MS/MS method for simultaneous determination of nicotine, cotinine, and NNK 

in SVGA astrocytes, which allowed us to determine the role of CYP2A6 in nicotine 

metabolism in astrocytes. Furthermore, the role of CYP2A6 in nicotine metabolism-mediated 

oxidative stress was analyzed in these cells. These findings have clinical relevance because 

smoking among HIV-infected individuals is highly prevalent and these individuals show 

increased HIV replication. Since our previous study in monocytes (Jin et al) specifically used 
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nicotine, one of the major constituents of tobacco smoke, our further goal is to study the net 

effect of cigarette smoke in U937 monocytes by treating these cells with CSC. 
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CHAPTER 5  

CIGARETTE SMOKE CONDENSATE (CSC) MEDIATED OXIDATIVE STRESS AND 

CYTOTOXICITY IN U937 MONOCYTES 

 

5.1. Introduction 

Cigarette smoke contains 4000 different chemical constituents; of which 60 are 

identified as known carcinogens [157]. CSC contains several other constituents along with 

nicotine including dioxins, halogenated and nonhalogenated polycyclic aromatic 

hydrocarbons (PAHs), among which benzo[a] pyrene and semiquinones are few examples 

[158, 159]. CSC constituents are known to induce oxidative stress leading to alterations in 

gene expression in various cell and tissue type [160, 161]. For instance, CSC treatment in oral 

cancer cells resulted in upregulation of genes including CYPs and keto reductases that are 

responsible for metabolism of PAHs [162]. Most of these gene expressions are known to be 

modulated through activation of AHR by its agonists present in CSC [163]. Similarly, reactive 

oxygen species (ROS) produced by CSC can also activate nuclear factor-erythroid2-related 

factor 2 (Nrf2), the master regulator of oxidative stress which in turn transcriptionally 

regulates genes driven by antioxidant response elements (AREs).  

In our earlier studies we explored the role of nicotine (major addictive constituent of 

tobacco) alone in ROS formation and CYP2A6 regulation in U937 monocytes and SVGA 

astrocytes. Since CSC contains most of the cigarette smoke constituents, it represents a better 

smoking model for in vitro use. Our hypothesis for this chapter is that CSC induces CYPs, 

oxidative stress, cytotoxicity and HIV replication in monocytes/macrophages. Our specific 

aim is to study the CSC-mediated CYP induction, oxidative stress, and cell death in U937 
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monocytes, and HIV replication in HIV-infected primary macrophages. In the current chapter, 

we discussed the effects of CSC on AHR-mediated CYP1A1 induction, ROS formation and 

cytotoxicity in U937 cells. We also determined the effects of CSC treatment on viral 

replication in HIV-infected primary macrophages. 
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5.2. Results 

5.2.1. Induction of CYP1A1 and CYP2A6 by CSC in U937 monocytes 

CSC treatment at 50 µg/ml in U937 monocytes resulted in significant up regulation of 

CYP1A1 mRNA from 1H to 96H. CSC treatment significantly induced CYP2A6 mRNA at 

48H and 72H that was quenched at 96H (Fig. 15). To ensure that the mRNA induction was 

consistent with the protein induction, we measured levels of CYP1A1 and CYP2A6 proteins 

(Fig. 16 & 17). Although much lower than the respective mRNA expression, CSC also 

induced CYP1A1 protein levels from 3H to 12H, as well as CYP2A6 at later time points of 

12H and 24H. Our findings that CYP1A1 and CYP2A6 expression are induced by CSC, 

suggest their important role in PAH and nicotine metabolism, respectively, and metabolite-

associated oxidative stress in monocytes.  
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The U937 monocytes were treated with 50 µg/ml CSC for 1, 3, 6, 9, 12, 24, 48, 72, and 96 H. 

The percentage mRNA levels were calculated using qRT-PCR, with 100% expression 

normalized for the control at every time point. Expression of both the CYP genes was 

normalized to glyceraldehyde 3-phosphate dehydrogenase. In the above figures, the X-axis 

represents treatment time (hours) and Y-axis represents % mRNA expression. * Represents p 

≤ 0.05 compared to respective controls. 
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Figure 15: Effect of CSC on mRNA expression of CYP1A1 and CYP2A6 

in U937 monocytes 
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Figure 16: Effect of CSC on protein expression levels of CYP1A1  
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The U937 monocytes were treated with 50 µg/ml CSC for 1, 3, 6, 9, 12, 24, 48, 72, and 96 H 

and the protein was isolated. The percentage protein expression was calculated by quantifying 

the immunoblots, with 100% expression normalized to the untreated cells (control) at every 

time points. Expression of CYP1A1 and CYP2A6 was normalized against GAPDH. In the 

above figures, X-axis represents treatment time (hours) and Y-axis represents % protein 

expression.  

 

12H C    12H T         24H C       24H T       48H C        48H T 

CYP2A6 

GAPDH 

0.0

0.5

1.0

1.5

2.0

2.5

12H 24H 48H

FO
LD

 P
R

O
T

EI
N

 E
X

P
R

ES
SI

O
N

CYP2A6

CTL

50 ug CSC

Figure 17: Effect of CSC on protein expression levels of CYP2A6 
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5.2.2. CSC mediated changes in CYP1A1 gene expression are AHR dependent 

CSC is comprised of PAHs which are known to activate AHR pathway. To determine 

whether CSC-mediated CYP1A1 mRNA induction involved AHR signaling, we used a 

specific AHR antagonist, CH223191, to block its effects. We selected CH223191 because of 

it competitive binding to AHR receptor thus preventing its translocation to the nucleus without 

demonstrating any agonistic action. We treated monocytes with 50 µM CH223191 followed 

by 50 µg/mL CSC for 3 H and examined CYP1A1 mRNA expression level by q-RTPCR. As 

shown in Fig. 18, pretreatment with the AHR antagonist significantly attenuated the CSC-

mediated CYP1A1 mRNA induction. 
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Figure 18: Effect of AHR antagonist on CYP1A1 gene expression 
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5.2.3. Time kinetics of CSC induced ROS formation  

We measured the generation of ROS in 50 µg/mL CSC treated U937 monocytes using 

flow cytometry. Figure 19 shows the mean fluorescence intensity (MFI) of ROS formation in 

nicotine-treated monocytes from 1 - 48 hours. CSC treatment showed a time dependent 

increase in ROS until 6H, where the peak ROS formation was observed and then declined to 

basal level at 48H. Furthermore, our studies showed significant reduction in CSC induced 

ROS formation upon 1H pretreatment with 100 µM Vitamin-C (Vit-C), a potent antioxidant 

compound (Fig. 20). The results suggest that a general antioxidant is not capable of completely 

quenching the ROS induce by CSC.  
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The ROS production was measured using a flow cytometer from untreated and 50 µg/ml CSC 

treated cells from 1H to 48H. Bar graphs representing mean fluorescence intensity (MFI) from 

control and CSC-treated cells. MFI is presented in Y-axis and the time points of CSC 

treatment are presented in X-axis. The graphs were plotted as mean ± SD from three replicates. 

  

Figure 19: Effect of CSC on oxidative stress in U937 monocytes 
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The ROS production was measured using a flow cytometer from untreated and 50 µg/ml CSC 

treated cells for 3H upon 1H pretreatment with 100 µM Vitamin-C. Bar graphs representing 

mean fluorescence intensity (MFI) from control and CSC-treated cells. MFI is presented in 

Y-axis and the time points of CSC treatment are presented in X-axis. The graphs were plotted 

as mean ± SD from three replicates. 

  

Figure 20: Effect of Vitamin-C pretreatment on CSC induced ROS formation in 

U937 monocytes. 
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5.2.4. CSC induced cell death in U937 monocytes 

To determine if CSC treatment is leading to cell death in U937 monocytes, the cells 

were treated with 50 µg/mL CSC for 48 H and MTT assay was performed. Annexin staining 

was also performed to determine the apoptotic cells. As shown in Fig. 21, CSC treatment 

caused significant increase in apoptosis in these cells. To find out if CSC-mediated apoptosis 

involves caspase-3 activation, caspase-3 activity was measured upon CSC treatment for 24H. 

The results showed that CSC significantly increased caspase-3 activity by 2 fold (Fig. 22 A). 

Cleaved caspase-3 protein levels are also increased as determined by western blot (Fig.22 B). 
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Cell death was measured using MTT assay from vehicle control and 50 µg/ml CSC treated 

cells for 48H. Apoptosis was measured using a flow cytometer from vehicle control and 50 

µg/ml CSC treated cells for 48H upon staining with Annexin-PE reagents. Bar graphs 

representing % apoptotic cells in Q2 from control and CSC-treated cells. The graphs were 

plotted as mean ± SD from three replicates. 

Figure 21: Effect of CSC on apoptosis in U937 monocytes 
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Caspase-3 activity is measured in cell lysates obtained from vehicle control and 50 µg/ml CSC 

treated cells for 24H using a colorimetric assay kit. (A) Bar graphs representing fold caspase-

3 activity in DMSO and CSC-treated cells. The graphs were plotted as mean ± SD from three 

replicates. (B) Western blot stained for cleaved caspase-3 antibody and GAPDH in DMSO 

and 50 µg/ml CSC treated cells for 24H. 
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5.2.5. Effect of CSC on HIV replication in primary macrophages 

To determine the effect of CSC treatment on HIV replication in monocytes, we treated 

HIV-infected primary macrophages with CSC for four days (once-daily). The results showed 

that the amount of p24 antigen in cell free supernatant was found to be significantly higher in 

CSC treated HIV-infected macrophages compared to DMSO treated HIV-infected 

macrophages (Figure 23).  
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The viral load in macrophages was determined by measuring p24 antigen levels using ELISA. 

The data for the above assay represents mean of multiple analysis of p24 titer obtained from 

HIV-infected macrophages from three different donors. The p values (** represent p≤0.01) 

are calculated using one way-ANOVA and presented in the graph. 
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Figure 23: Determination of p24 antigen levels in DMSO and CSC 

treated HIV-infected macrophages 
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5.3. Discussion 

In our previous studies, nicotine treatment alone didn’t cause significant induction of 

CYP1A1 and CYP2A6 levels in U937 monocytes. However in the current study, CSC caused 

AHR-mediated CYP1A1 induction as well as CYP2A6 induction, which is significantly 

higher than the effect of nicotine. CSC treatment also caused significantly higher production 

of ROS compared to our earlier study with nicotine. It is possible that since CSC comprises 

of PAHs, the amount of ROS produced was very high compared to that of nicotine alone. CSC 

also caused significant apoptosis as measured by caspase-3 activity as well as cleaved caspase-

3 formation. This may occur both directly, by genotoxicity of CSC constituents, and indirectly 

through generation of reactive oxygen species. Future studies will be conducted to determine 

the role of ROS in CSC-mediated cell death by using general as well as specific antioxidants 

that quench the formation of ROS. Further studies also need to be performed to decipher the 

involvement of CYP1A1 in the generation of ROS as well as oxidative stress-mediated cell 

death. We conducted few studies using nonspecific CYP1A1 inhibitors which didn’t yield 

conclusive findings portraying the need to design novel inhibitors targeted against CYP1A1 

specifically. In addition, in HIV-infected mature macrophages, HIV replication was found to 

be significantly higher in CSC treated macrophages compared to control cells supporting the 

effects of smoking on HIV pathogenesis. Although this study did not decipher the molecular 

mechanism of CSC-mediated induction of ROS and HIV-replication, it led the foundation that 

CSC increases HIV replication and apoptosis, which is consistent with increased induction of 

CYP enzymes and ROS.   

5.4. Conclusion 

In conclusion, as rationalized, in comparison to nicotine alone, the total extract of 

cigarette represented by CSC had a pronounced and significantly higher impact on expression 
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of CYPs and OS in monocytes. These dramatic changes induced by CSC translated into 

enhanced viral replication in primary macrophages. Since our in vitro findings thus far have 

shown CSC-mediated induction of CYPs, ROS formation, enhanced HIV replication, and the 

involvement of CYP2A6 in nicotine metabolism-mediated OS, further goal is to examine 

underlying mechanism, and to confirm the above findings in an ex vivo study using human 

smoker subjects.  
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CHAPTER 6 

EFFECT OF MILD-TO-MODERATE SMOKING ON VIRAL LOAD, CYTOKINES, 

OXIDATIVE STRESS, AND CYTOCHROME P450 ENZYMES IN HIV-INFECTED 

INDIVIDUALS 

6.1. Introduction 

The specific effects of mild-to-moderate smoking on the components of HIV 

pathogenesis such as inflammatory cytokines and oxidative stress, is poorly studied. 

Cytokines/chemokines play a crucial role in HIV pathogenesis by regulating HIV replication 

and immune responses [164, 165]. Several studies have shown that cytokine dysregulation 

contributes to HIV disease progression [166, 167]. For example, cytokines have shown to play 

an important role in development of viral latency and maintenance of latently infected CD4+ 

T cells during antiretroviral therapy (ART) [167]. Furthermore, the myriad of pro-

inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-2 (IL-2), and 

IL-18, present in the plasma and lymphoid tissues, induce HIV replication even after 

prolonged ART. Similarly, oxidative stress is known to play a significant role in HIV 

pathogenesis [100, 168, 169]. More specifically, oxidative stress has been linked to HIV 

replication in monocytes/macrophages [100, 170]. In addition, a report suggested the role of 

iron and oxidative stress in smoking-mediated HIV replication in alveolar macrophages [72]. 

Of importance, the pathway leading oxidative stress, especially in monocytes, in HIV-infected 

smokers is unknown.   

Our recent in vitro studies have also shown that acute nicotine exposure causes 

increased production of reactive oxygen species (ROS) through CYP2A6-mediated pathway 

in monocytic and astrocytic cell lines [95, 99, 171]. Since it is not feasible to conduct an ex 
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vivo study in astrocytes, we will be performing our ex vivo studies in peripheral monocytes 

isolated from human subjects. CYP3A4 metabolizes approximately 50% of commercially 

available drugs including ART in the liver [172] and results in the production of ROS [173, 

174]. However, the functional role of CYP3A4 is unknown in monocytes, which is an 

important site of viral infection and major viral reservoir. Our previous studies have 

demonstrated predominant expression of CYP2A6, CYP2E1, and CYP3A4 in monocytic cell 

lines [96]. The hypothesis in this aim is that smoking increases HIV replication, which is 

associated with increase in the expression of CYP enzymes and oxidative stress. Our specific 

aim is to determine the levels of CYP2A6, CYP2E1, CYP3A4, and antioxidant enzymes 

(AOE), oxidative stress, cytokines, and HIV replication in blood plasma/monocytes isolated 

from a cohort of patients belonging to uninfected non-smokers (Healthy), uninfected smokers 

(smokers), HIV-infected non-smokers (HIV) and HIV-infected smokers (HIV smokers). In 

the current study, we sought to determine whether smoking increases viral replication in 

clinical samples of HIV-infected smokers. Furthermore, we sought to determine whether there 

is a relationship between viral load, cytokines/chemokines, oxidative stress, and CYP 

pathways in HIV-infected smokers.  
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6.2. Experimental design 

6.2.1. Study population 

Thirty two human subjects were recruited and assigned to four different cohorts as 

follows: a) healthy HIV negative control subjects who reported that they were non-smokers 

(HIV negative non-smokers), b) HIV positive non-smokers, c) HIV negative mild-to-

moderate smokers, and d) HIV positive mild-to-moderate smokers. Participants were recruited 

in Cameroon, Africa, from within a long standing reference population of more than 2000 

known HIV positive subjects. The participants provided their written informed consent to 

participate in this study. The signed consent form from the participants was stored as hard 

copy as well as electronically on a password protected computer. The consent procedure was 

approved by Institutional Review Board (IRB) from the University of Missouri-Kansas City, 

Kansas City, MO and IRB/Institutional Ethic Committee (IEC) from the Provincial Regional 

Hospital, Ministry of Public Health, Bamenda, Cameroon. We performed power analysis 

using “Power and Precision” software by considering the magnitude of the known effects of 

smoking on HIV replication [70, 72] and oxidative stress [99, 171]. The results showed that 

6-8 samples from each group would provide a power of ≥0.80. Participants between the ages 

of 21-65 years were recruited, because individuals <13 years and >65 years of age generally 

have altered expression of metabolic (CYP) and to some extent antioxidant enzymes (AOEs) 

[25, 26]. For those individuals in the HIV negative non-smoker category, we recruited 

individuals who reported no history of “cough” and physical examination although some may 

have had malaria in the past (Plasmodium falciparum is indigenous in Cameroon). With 

respect to the HIV negative and positive smokers, mild-to-moderate smokers with a smoking 

history of ≤20 pack years (a pack year is defined as smoking at least one pack a day for one 

year), were enrolled in the study. The documentation of smoking was determined by a HIV 
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counselor and the phlebotomist following a personal interview. With respect to the HIV 

positive category, individuals with CD4+ counts <600 cells/µl were enrolled. Participants 

were recruited using the following strict exclusion criteria: 1) Pregnant or lactating women 

were excluded since they show increased metabolism of nicotine and cotinine [175] (smoking 

is rare among Cameroonian women); 2). Liver damage and lung disease since these alter the 

metabolism of tobacco constituents such as nicotine; 3) Individuals with other infectious 

diseases, such as documented malaria, tuberculosis, and hepatitis B since hepatitis and active 

TB are prevalent in HIV-infected population, and some of these diseases are known to interact 

with HIV [176]; 4) Individuals who were receiving ART. ART drugs or other medications are 

expected to interfere with tobacco constituents [99, 177]. Sufficient numbers of HIV-infected 

individuals who were not already receiving ART or other medication were available among 

village populations in Cameroon, because medications or access to CD4 counting is frequently 

not available in these areas (WHO, Cameroon 2004-2005 report 

http://www.who.int/hiv/HIVCP_CMR.pdf). In order to qualify for free therapy provided by 

the Cameroonian Government, an adult must obtain a CD4 count and that result must be under 

350cells/µl. The test to determine CD4 count is costly and not available in rural areas. Second, 

the local recommendation during the period of the study was to initiate therapy when the CD4 

count was <350 cell/µl. 5) Individuals who consume other recreational substances of abuse, 

e.g. methamphetamine, cocaine, or marijuana. These drugs are expected to interfere with HIV 

pathogenesis and/or oxidative stress [178, 179]. Applying these inclusion and exclusion 

criteria was challenging but subjects were recruited upon personal interview, analysis of their 

history, and following clinical screening for HIV, malaria, and hepatitis B. The clinical 

screening tests for malaria and hepatitis were conducted using standard procedures as 
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described [180] and patients with “cough” suggestive of TB received an AFB or were 

excluded. 

6.2.2. Statistical analysis 

Demographic variables (age, sex ratio) were summarized using descriptive statistics. 

All outcome variables were summarized as the mean plus or minus the standard error. 

Comparisons among the four groups were conducted using one way ANOVA with no 

corrections for multiple comparisons. All tests were two-sided and results that were 

statistically borderline significant at p≤0.1 (#) and significant at p ≤0.05 (*) and ≤0.01 (**). 

A two-way ANOVA was done to determine whether they interact synergistically or additively 

in HIV positive smokers. All analyses were performed using IBM SPSS version 21.  
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6.3. Results  

6.3.1. Characteristics of the study population 

A total of 32 subjects were selected upon screening approximately 2000 HIV positive 

individuals attending the HIV clinic at the Regional Hospital, Mezam Polyclinic HIV/AIDS 

Treatment Center, or at surrounding village health centers. The recruitment was very difficult 

and time consuming owing to strict exclusion criteria, paucity of smokers who also do not 

also drink alcohol and are not yet receiving ART or other medications. Furthermore, smoking 

was rare among women in this region, especially in HIV positive population in which it is 

discouraged. The subjects with such inclusion criteria are nearly impossible to recruit in the 

USA, because HIV-infected individuals receive ART promptly after diagnosis and most 

receive other medications and/or abuse illegal drugs. The recruitment of subjects who were 

not receiving ART was critical to determine the specific effects of mild-to-moderate smoking 

in HIV-infected individuals without an interference by drugs on the results of the study. The 

number of individuals in each group (HIV negative non-smoker, HIV negative smoker, HIV 

positive non-smoker, and HIV positive smoker) along with the age-range, median age, and 

male/female ratio of all the subjects are presented in Table 3. The median age of all the groups 

was 35-45. The male/female ratio varied in each group, with relatively low ratio in HIV 

positive group but high ratio in all smokers because of the low incidence of smoking among 

women with the strict exclusion criteria. Our analysis showed that the subject-to-subject 

variation in CD4 counts, viral load, cytokine production, and oxidative stress was not 

significant on the basis of age and gender differences (data not shown). This analysis was 

performed using HIV negative non-smokers and HIV negative smokers, in which, the number 

of subjects were sufficient to perform such analysis.  
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Table 3: Demography and clinical outcomes (CD4) of the subjects   

 

 

6.3.2. Effect of smoking and HIV on CD4 and viral load in plasma 

The mean CD4 count (cells/µL) and mean viral load (log copies/mL) of each cohort 

are presented in Table 3 and Figure 24. As expected, the CD4 count was lower in HIV positive 

non-smokers (374 ± 43) and HIV positive smokers (387 ± 130) than HIV negative non-

smokers (865 ± 45) or smokers (1037 ± 100). There was a significant increase in the CD4 

count in HIV negative smokers compared with non-smokers (1037 ± 100 vs. 865 ± 45). Our 

results showed that the viral load is significantly increased in HIV positive smokers (4.5 ± 

0.7) compared to the HIV positive non-smokers (3.1 ± 0.5) (Figure 24). These results suggest 

that smoking is associated with increased viral replication.  

Subjects  HIV negative 

non-smokers 

HIV 

positive 

non-smoker 

HIV negative 

smokers 

HIV 

positive 

smokers 

Number, age 

(years), 

male/female 

ratio 

# 11 6 11 4 

Age range 20-64 23-42 31-60 38-57 

Median age 45 34.5 45.5 42 

Male/female 1.2 0.5 1.75 3 

CD4 count 

(cells/µL) 

Range  631-1086 256-551 500-1488 13-584 

Mean ± SE   865 ± 45 374 ± 43 1037 ± 100 387 ± 130 
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The viral loads in the plasma of human subjects were determined by analyzing HIV RNA 

using q-RTPCR. The p values (# and ** represent p≤0.1 and p≤0.01, respectively) are 

calculated using one way-ANOVA and presented in the graph. 
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Figure 24: Determination of Viral load in plasma of HIV-infected and 

HIV-infected smoker subjects 
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6.3.3. Effect of smoking and HIV on cytokine/chemokine production in plasma 

 

We determined the levels of various pro-inflammatory cytokines, IL-1β, IL-6, IL-8, 

RANTES, TNF-α and MCP-1 in all plasma samples. The levels of IL-1β were not detectable 

in any plasma sample within the detection limit of the assay (2 pg/mL). The concentrations of 

cytokines in each group showed significant subject-to-subject variations, and therefore, we 

presented these results in box plot as shown in Figure 25. The concentrations of most of the 

cytokines were in the range of 10-80 pg/mL, while the concentration of RANTES ranged from 

500-12,000 pg/mL. The concentrations of MCP-1 and IL-8 were significantly lower in HIV 

positive non-smokers and HIV negative smokers and marginally lower in HIV positive 

smokers than HIV negative non-smokers (Figure 25). The concentration of RANTES was 

marginally higher in HIV positive non-smokers and smokers than HIV negative non-smokers 

and smokers. However, there were no significant differences in the levels of IL-6 and TNF-α 

between the test and control groups (Figure 25).   
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Box and whisker plots of cytokine/chemokine levels in plasma of HIV negative non-smokers 

(HEALTHY), HIV positive non-smokers (HIV), HIV negative smokers (SMOKER), and HIV 

positive smokers (HIV SMOKER) groups. The box represents the 25th-75th quartile, the 

whiskers represent the range of values, the median is presented as a line inside the box, and 

the out of range values are presented as circles or stars above and below the whiskers. The p 

Figure 25: Box plots of Cytokine levels in plasma samples 
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values (* and ** represent p≤0.05 and p≤0.01, respectively) are calculated using one way-

ANOVA and presented above the bars in the graph. The concentrations of RANTES, IL-6, 

IL-8, MCP-1 and TNF-α were shown in the figure.   
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6.3.4. Effect of smoking and HIV on oxidative stress in plasma and monocytes 

To evaluate oxidative stress in clinical samples, we determined the oxidative DNA 

damage by measuring 8-OHdG content. The results showed that the oxidative damage is 

significantly increased in plasma from HIV negative smokers (2-fold), and HIV positive non-

smokers (2.5-fold) groups compared with HIV negative non-smokers (Figure 26A). 

Furthermore, there was an additive increase in the levels of oxidative damage in HIV positive 

smokers (4-fold) compared to HIV positive non-smokers and HIV negative smokers (two-

way ANOVA for testing the interaction gave p=0.39 suggesting the absence of synergy). 

Similarly, we determined the oxidative DNA damage in the monocytes of all the cohorts. Our 

results demonstrated an increase in 8-OHdG levels in HIV negative smokers (~30%) and HIV 

positive non-smokers (~40%) compared to HIV negative non-smokers (Figure 26B). An 

additive increase was also observed in 8-OHdG levels in the DNA of HIV positive smokers 

(~75%) compared to HIV positive non-smokers and HIV negative smokers. Overall, the 

results suggest an increase in oxidative stress as a result of HIV infection and smoking. 
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Measurement of oxidative stress in plasma (A) and monocyte (B) samples of HIV negative 

non-smokers (HEALTHY), HIV positive non-smokers (HIV), HIV negative smokers 

(SMOKER), and HIV positive smokers (HIV SMOKER) groups. The 8-OHdG contents are 

plotted as a bar graph for each category, and the p values ≤0.05 and ≤0.01 are represented as 

* and **, respectively. * represents the significance with respect to HEALTHY, # represents 

the significance with respect to HIV and @ represents the significance with respect to 

SMOKER in HIV SMOKER group.  

  

Figure 26: 8-OHdG levels in plasma and monocyte samples 
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6.3.5. Effect of smoking and HIV on the expression of antioxidants in monocytes 

The expression of antioxidant enzymes (AOEs) are generally induced to combat 

increased oxidative stress triggered by an agent. Therefore we measured the levels of 

antioxidant genes; SOD1, SOD2, catalase, and Nrf2 in our four cohorts. Our results 

demonstrated that the levels of mRNA of the most antioxidant genes are not altered in HIV 

positive and/or smoker groups compared to HIV negative non-smokers (Figure 27). However, 

we found a 2-fold increase in the level of Nrf2 in HIV negative smokers compared to the HIV 

negative non-smoker. In general, lack of induction of the most AOEs suggests their inability 

to counterbalance oxidative stress generated by smoking and HIV infection.  
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Determination of antioxidant gene expression in HIV negative non-smokers (HEALTHY), 

HIV positive non-smokers (HIV), HIV negative smokers (SMOKER), and HIV positive 

smokers (HIV SMOKER) groups. The mRNA expressions of SOD1, SOD2, catalase, and 

Nrf2 were measured by qRTPCR. A one way-ANOVA was employed to calculate the p value 

(* represent p≤0.05) with respect to HEALTHY in all the groups. 

  

Figure 27: Antioxidant gene expression levels in monocytes from human cohorts 
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6.3.6. Effect of smoking and HIV on the levels of CYP enzymes in monocytes 

CYP enzymes play important role in generating oxidative stress by generating 

superoxide and peroxide as a result of P450-mediated reaction cycle. Therefore, we measured 

the levels of important CYP enzymes (CYP2A6, CYP2E1, and CYP3A4), which are known 

to produce oxidative stress by metabolizing endogenous compounds or xenobiotics such as 

tobacco constituents and marketed drugs. As expected, the results showed that the levels of 

CYP2A6 mRNA is increased (p=0.07; borderline significance) in HIV negative smokers (1.5-

fold) compared to HIV negative non-smokers (Figure 28). However, the level of CYP2A6 

mRNA was only marginally increased in HIV positive non-smokers and HIV positive smokers 

compared to HIV negative non-smokers. Interestingly, the level of CYP3A4 was increased in 

HIV positive non-smokers and HIV positive smokers by approximately 5-fold compared to 

HIV negative non-smokers (Fig 28). However, its level was not significantly increased in the 

HIV negative smokers. As expected, there was no significant increase in the level of CYP2E1 

in HIV positive and/or smoker cohorts, suggesting that CYP2E1, which is induced by alcohol, 

does not play role in inducing oxidative stress in these cohorts.  
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Determination of CYP levels in HIV negative non-smokers (HEALTHY), HIV positive non-

smokers (HIV), HIV negative smokers (SMOKER), and HIV positive smokers (HIV 

SMOKER) groups. The expression levels of CYP2A6, CYP3A4, and CYP2E1 mRNA were 

determined by qRTPCR in all the groups. A one way-ANOVA was employed to calculate the 

p value (** represent p≤0.01; # represents p≤0.1, borderline significance) with respect to 

HEALTHY in all the groups. 

Figure 28: CYP gene expression levels in monocytes from human cohorts 



99 
 

6.4. Discussion 

Nicotine/tobacco smoking has shown to increase HIV replication in in vitro studies 

[69, 70]. In vitro studies have also shown an association between oxidative stress and HIV 

replication [72, 100, 168]. However, there is no clear evidence from the clinical samples of 

HIV-infected smokers, especially in ART-naïve patients. Similarly, to date, there is no clinical 

evidence of the involvement of CYP and oxidative stress pathways in HIV and/or smoking in 

HIV-infected individuals. We have recently shown the involvement of CYP enzymes in 

nicotine metabolism and oxidative stress in in vitro in HIV monocyte and astrocyte model 

systems (Chapter 4). Furthermore, we have shown an association between induction of 

CYP/ROS and HIV replication by CSC in monocytes (Chapter 5). In the current study, we 

used clinical samples from HIV-infected smokers to establish possible involvement of CYP 

and oxidative stress pathways in smoking-mediated HIV pathogenesis. This is the first clinical 

evidence of an increase in viral load in HIV-infected smokers, as well as, possible involvement 

of CYP and oxidative stress pathways in HIV positive smokers and non-smokers.  

Several studies have shown that mild-to-moderate smoking leads to increased CD4 

cell count and CD4/CD8 ratio [181]. In contrast, another study reported that heavy smoking 

caused a decline in CD4 cell count [182]. Our findings are generally consistent with the former 

literature in which smoking showed an increase in the CD4 counts. Our study also suggest an 

increase in HIV replication by tobacco smoking, which is consistent with previous in vitro 

findings [69, 71]. However, this is the first report on clinical samples obtained from HIV-

infected smokers. An earlier study in HIV-seropositive women has shown an association of 

cigarette smoking with viral immune and cognitive function [78]. However, the underlying 

mechanism of the effects of smoking on viral immune, cognitive function, and HIV 

pathogenesis is largely unknown.  
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HIV infection is known to increase the expression of pro-inflammatory cytokines 

including IL-1, IL-6, RANTES, MCP-1 and TNF-α [183, 184]. In contrast, our results did not 

show an increase in the levels of these cytokines in HIV positive cohorts, rather there were 

significant decrease in the levels of IL-8 and MCP-1. There is a report demonstrating that the 

levels of TNF-α, IL-1β and IL-8 are significantly higher in asymptomatic HIV-infected 

African women than women living with AIDS, suggesting the role of cytokines in early phase 

of HIV infection [185]. Thus, it is likely that unaltered/decrease in cytokines levels in our 

study is because the HIV-infected patients had in many cases already progressed to full-blown 

AIDS. Likewise, cigarette smoking is associated with an increased production of pro-

inflammatory cytokines, especially IL-1β and IL-1RA in bronchoalveolar lavage [186], and 

IL-6, IL-1β and TNF-α in the serum [187, 188]. In contrast, in our study, smoking was not 

associated with an increase in the levels of pro-inflammatory cytokines, except RANTES, 

rather it showed a decrease in the levels of IL-8 and MCP-1.  

Tobacco smoking has been shown to affect cytokine network balance and thereby alter 

the host immune responses in the pathogenesis of both periodontal disease and cardiovascular 

disease. For instance, both nicotine and CSC treatment to human endothelial cells had 

significantly reduced MCP-1 levels in those cells compared to control [189]. Similarly, a study 

conducted in smokers with computed tomography (CT) detected emphysema and without 

airway obstruction had demonstrated decreased plasma levels of cytokines including EGF, 

IL-8, IL-15, and IL-1RA than the smokers without CT detected emphysema [190]. In contrast, 

patients with COPD usually exhibit higher IL-8 levels. Therefore these studies suggest that 

the plasma cytokine profiles of smokers widely vary in individuals with either emphysema or 

COPD. This also suggests that smoking could differentially affect the cytokine levels based 
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on their respiratory disease conditions which may be responsible for the decreased levels of 

cytokines observed in our smokers and HIV positive smokers. Moreover, it is well known that 

HIV infection alters the levels of cytokine production in vitro as well as in vivo [191]. 

Nonetheless, there is no report till date about correlation between smoking associated 

increased viral load and cytokine levels. Therefore an extensive longitudinal study that 

monitors the clinical status of smokers can provide us with a better understanding of the 

relation between smoking prompted viral load and their cytokine profiles. In general, we 

acknowledge that our data show contrasting findings, which needs to be investigated further. 

However, it can be noted that the population demography in our study is different from other 

studies in terms of strict exclusion criteria of the subjects (non-HIV medication as well as use 

of other substances of abuse).    

An increase in the oxidative stress in both plasma and monocytes in smokers and HIV-

infected individuals is consistent with the previous reports, especially with monocytes [72, 

100, 168, 192]. However, this is the first evidence of increased oxidative DNA damage in the 

plasma and monocytes using clinical samples from HIV-infected smokers. It is noteworthy 

that while a previous report has shown higher serum 8-OHdG levels in males versus females 

[193], no gender difference in 8-OHdG level was observed in our study, at least in HIV 

negative non-smokers and HIV positive smokers. Further, relatively higher levels of oxidative 

DNA damage in plasma compared with monocyte samples in all the groups suggests that there 

may be increased oxidative stress in other tissues draining into plasma. While the DNA 

damage in plasma may be as a result of ROS generated by liver and other blood cells including 

monocytes, DNA damage in monocytes is expected to entirely come from increased ROS in 

monocytes.     
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An optimal level of ROS is required for cellular functions. However, when the level 

of ROS is elevated, defense mechanism may counterbalance the increased ROS to protect the 

cells. As one of the major defense mechanism, the Nrf2 signaling pathway is activated, which 

results in the transcription of a myriad of AOEs such as SOD1 and catalase to protect the cells 

from oxidative insult [194]. However, if the ROS reaches a threshold level, the AOEs pathway 

is compromised leading to cellular death. On the other hand, a defect in the defense system 

may cause either a decrease or no change in the levels of these AOEs leading to increased 

level of ROS. Since there is no significant increase in the levels of AOEs determined in 

smokers, we suggest that the levels of ROS has reached the threshold level, or the defense 

system through the Nrf2 pathway may be compromised in these individuals.  

The role of oxidative stress as a result of production of ROS, including nitric oxides 

has been implicated in HIV pathogenesis [100, 168, 169, 195, 196]. Similarly, previous 

literature [69-71, 99, 171, 177] and our current findings demonstrate that smoking and 

oxidative stress both are independently associated with increased HIV replication. Thus, we 

suggest that smoking-mediated oxidative stress may be responsible for increased HIV 

replication. Although several mechanisms have been implicated in the production of oxidative 

stress in the HIV systems, smoking-mediated production of ROS through CYP pathway may 

play an important role in HIV pathogenesis. Since CYP-mediated metabolism of tobacco 

constituents is known to produce reactive oxygen species in the liver [197], it is reasonable to 

conclude that CYP-mediated pathways contributes to the DNA damage in both plasma and 

monocytes. Our results relatively low levels of DNA damage in monocytes suggest that CYP-

mediated metabolic pathway also exists in monocytes. Our speculation is consistent with our 

earlier observation that although monocytes contain relatively low levels of CYP enzymes 
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compared to the liver, the relative level of CYP2A6 in monocytes is much higher that other 

CYP enzymes [198]. Therefore, we suggest that although CYP2A6 in smokers and HIV 

positive non-smokers are not induced, the basal level of CYP2A6 is sufficient to metabolize 

tobacco constituents and endogenous compounds and produce ROS. Furthermore, our 

observation is consistent with the recent finding that CYP2A6-mediated metabolism of 

nicotine produces ROS in monocytes and astrocytes [99], which may be responsible for 

increased DNA damage in monocytes. Another recent study from our laboratory, which 

demonstrated an increased metabolism of nicotine in HIV positive smokers compared to HIV 

negative smokers, is also consistent with this observation [199]. It is also possible that the 

increased metabolism is due to increased activity of enzyme rather than the actual protein 

level. An increase in enzyme activity through substrate-mediated enhance stability of enzyme 

is known in the P450 system [200].   

The CYP pathway is also known to produce oxidative stress through the metabolism 

of endogenous compounds and xenobiotics such as marketed drugs [201]. The major drug-

metabolizing enzyme CYP3A4, which is also known to metabolize many endogenous 

compounds and is present at relatively much higher level than other CYP enzymes in the liver, 

is expected to produce oxidative stress. A significant increase in the level of CYP3A4 in HIV-

infected non-smokers as well as in HIV-infected smokers suggests an important role of 

CYP3A4 in HIV pathogenesis. It is possible that induction of CYP3A4 by HIV pathogenesis 

increases the metabolism of many endogenous compounds as well as xenobiotics, which in 

turn leads to increased oxidative stress. Since oxidative stress is also linked with HIV 

replication, the induction of CYP3A4 would further increase HIV replication. In addition to 

its role in oxidative stress, CYP3A4 may play significant role in HIV patients who are 
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receiving ART, especially non-nucleoside reverse transcriptase inhibitor (NNRTIs), protease 

inhibitors (PIs), and more recently integrase inhibitors. CYP3A4 metabolizes majority of 

NNRTIs, integrase inhibitors, and all the PIs, which are an essential component of ART [174]. 

Thus, increased level of CYP3A4 in HIV positive smokers and HIV positive non-smokers 

would increase the metabolism of NNRTIs, PIs, and integrase inhibitors in these individuals. 

An increased metabolism of ART would subsequently decrease the bioavailability of these 

ARTs ultimately leading to decreased response to these drugs and increased toxicity. 

Therefore, further investigation to clarify the role of CYP3A4 in HIV-infected individuals 

over time is necessary.       

6.5. Conclusion    

In conclusion, the current study suggests that mild-to-moderate smoking increases 

viral load in HIV-infected individuals, thereby confirming our in vitro earlier findings in HIV-

infected macrophages. Furthermore, our study suggests that smoking and HIV independently 

increase oxidative stress in the plasma as well as in monocytes. An increase in oxidative stress 

could be as a result of both, CYP-mediated hepatic metabolism of smoking constituents and/or 

endogenous compounds and lack of induction of AOEs. Although we suggest a possible 

association of CYP and oxidative stress pathways in HIV replication, there is a lack of 

evidence supporting changes in metabolism of cigarette constituents in HIV-infected 

individuals. Hence, our next goal was to report the rate of metabolism of chief cigarette 

constituent, nicotine, in HIV-infected individuals.   
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CHAPTER 7 

ENHANCED NICOTINE METABOLISM IN HIV-POSITIVE SMOKERS 

COMPARED TO HIV-NEGATIVE SMOKERS: SIMULTANEOUS 

DETERMINATION OF NICOTINE AND ITS FOUR METABOLITES IN THEIR 

PLASMA USING A SIMPLE AND SENSITIVE ESI-LC-MS/MS TECHNIQUE 

7.1. Introduction 

 Our findings from the ex vivo human samples demonstrated an increase in the 

oxidative stress in both plasma and monocytes in smokers and HIV-infected individuals. Since 

our recent in vitro findings in monocytes by Jin et al and astrocytes showed the role of nicotine 

metabolism by CYP2A6 in ROS production [99, 202], we sought to determine the plasma 

levels of nicotine and four of its metabolites that are formed by CYP2A6 in HIV-positive 

smokers subjects from the above ex vivo study. Our hypothesis is that HIV infection enhances 

nicotine metabolism in HIV-infected smokers. Therefore our specific aim for this chapter is 

to develop a sensitive and rapid method for simultaneous determination of plasma levels of 

nicotine and its major metabolites, and determine the levels of nicotine and its metabolites in 

plasma sample of the human subjects. 

Previously nicotine and its metabolites have primarily been studied in urine and to 

some extent in other biological matrices such as serum, plasma, hair, and nails using 

immunoassay, HPLC, GC-MS, and LC-MS with protein precipitation, liquid extraction 

methods, and SPE methods [141, 203, 204]. However, usefulness of these methods has been 

limited by factors like requirement of high sample volume, lengthy extraction process among 

other impediments. Generally, the plasma concentration of nicotine and its metabolites is 

much lower than that in urine [205]. It is therefore necessary to have a more sensitive 
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analytical technique using an LC-MS/MS instrument with a triple quadrupole linear ion trap, 

which is commonly employed for the determination of low levels of nicotine and its 

metabolites. A previous study has shown the application of the LC-MS/MS method for 

quantifying only cotinine at a sensitivity of 0.5 ng/mL [206, 207]. Subsequently, another LC-

MS/MS method using solid phase extraction (SPE) was developed that was able to quantitate 

two analytes, nicotine and cotinine with a sensitivity of 2 ng/mL [141]. Recently, several LC-

MS/MS analytical techniques have been reported to determine nicotine, cotinine, and trans-

3’-hydroxycotinine but also required a large volume of serum to achieve a sensitivity of 1 

ng/mL. Although these methods had a sensitivity of 1-2 ng/mL, the sample preparation and 

extraction methods were time-consuming and tedious, required high sample volume, and were 

limited to 2-3 analytes [140, 208]. Therefore, our objective in this study was to develop a 

sensitive, selective, and simple ESI-LC-MS/MS technique using a SPE cartridge for the 

simultaneous determination of nicotine and its four metabolites in plasma. In this 

communication, we report the concentrations of nicotine and its metabolites detected in 

plasma from HIV-positve and HIV-negative smokers using the above approach.   

7.2. Development of an analytic method for the measurement of nicotine and its 

metabolites in plasma  

7.2.1. Mass spectrometry optimization 

 The mass spectrometer (3200 QTRAP LC-MS/MS system, AB Sciex) was optimized 

for detection of nicotine and its metabolites along with IS by using 200 ng/mL. Mass 

spectrometry data of each compound was first acquired in full scan mode from the range 

between 50-300 Da to identify their precursor ions. The most suitable proton adduct in the 

positive mode [M+H]+ precursor  ions was determined for nicotine (163.3), cotinine (177.5), 

trans 3’-hydroxycotinine (193.2), nornicotine (149.5), norcotinine (163.4), nicotine-d4 
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(167.3), and cotinine-d3 (180.3) (Fig. 29 and Table 4). These precursor ions were optimized 

by setting the curtain gas, declustering potential, ion spray voltage, and source gas 1.  

7.2.2. Tandem (MS/MS) mass spectrometry conditions 

 The proton adduct m/z [M+H] + precursor ions of nicotine and its metabolites along 

with IS were selected in positive mode for collision cell quadrupole 2 (MS2). Precursor ions 

were fragmented by applying collisionally-activated dissociation gas and collision energy to 

obtain their most abundant and stable product ions. The product ions for nicotine (117.1), 

cotinine (80.3), trans 3’-hydroxycotinine (80.1), nornicotine (132.3), norcotinine (80.3), 

nicotine-d4 (121.4), and cotinine-d3 (101.2) were optimized by adjusting collision energy, 

curtain gas, entrance potentials, and source gas 2 (Fig. 29 and Table 4). The multiple reactions 

monitoring (MRM) transitions (m/z) [M+H]+, (Q1→Q3) selected for quantitative analyses 

were: 163.3→117.1 for nicotine, 177.5→80.3  for cotinine, 193.2→80.1 for trans 3’-

hydroxycotinine, 149.5→132.3 for nornicotine, 163.4→80.3 for norcotinine, 167.3→121.4 

for nicotine-d4, and 180.3→101.2 for cotinine-d3 (Fig. 29 and Table 4). A dwell time of 500 

ms and a source temperature of 4000C were employed for all the analyte determinations.  
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Table 4: MRM parameters for nicotine and its metabolites 

 

 

 

Analyte Precur

sor   

ion 

Q1 

(MS1) 

Product ions 

Q2 (MS2) 

DP 

(V) 

(MS1) 

EP 

(V) 

(MS1

) 

CEP 

(V) 

(MS1) 

MRM 

transitio

n [Q1→ 

Q3] 

CE 

(V) 

Nicotine 163.3 84.1, 106.0, 

117.1, 130.3, 

132.4 

36.0 5.5 10.0 163.3→ 

117.1 

33.0 

Nornicotine 149.5 80.1,117.1, 

130.1, 132.3 

36.0 5.0 11.0 149.5→ 

132.3 

17.1 

Nicotine-

d4(IS) 

167.3 84.3, 110.5, 

121.4, 134.2, 

136.4 

36.0 7.0 9.5 167.3→ 

121.4 

35.0 

Cotinine 177.5 80.3, 98.1, 146.2 46.0 7.0 12.0 177.5→ 

80.3 

23.0 

Norcotinine 163.4 80.3, 84.1, 135.2, 

146.3 

51.0 6.5 10.0 163.4→ 

80.3 

25.0 

Trans 3’-

hydroxy 

cotinine 

193.2 80.1, 134.3, 149.2 51.0 5.5 11.5 193.2→ 

80.1 

25.0 

Cotinine-

d3(IS) 

180.3 80.3, 101.2, 

118.1, 146.0 

46.0 7.5 12.0 180.3→ 

101.2 

29.0 

MS- mass spectrometry;  m/z- mass-to- charge ratio; DP- declustering potential; CE- 

collision energy; CEP- Cell exit potential; CAD- collisionally activated dissociation gas : 

3.0 psi; MRM- multiple monitoring reactions; Dwell time- 500 ms; Source gas (GS1)- 30.0 

psi;  Source gas (GS2)- 30.0 psi; Source temperature (TEM)- 4000C ;  Ion spray voltage 

(IS)- 5500 Volts; Interface heater- on and Analytical total run time-  4.0 min;  
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Figure 29: MS/MS spectra of nicotine and its metabolites with proton adducts in ESI 

positive mode 
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7.2.3. LC-MS/MS chromatographic separation 

 An LC-MS/MS chromatographic separation was achieved by a reverse phase Xterra 

MS C 18 column (50 x 4.6 mm, i.d, 5µm) using UFLC Shimadzu LC-20AD HPLC 

(California, USA). An isocratic mobile phase composed of 55% acetonitrile in water 

containing 0.05% of formic acid at a flow rate of 0.4 mL/min was used. The samples were 

reconstituted in a 500 µL of acetonitrile-water-formic acid (70:30:0.05) solution. A 15 µL 

aliquot of each sample was injected into LC-MS/MS for quantitative analysis for 5 min. The 

LC-MS/MS acquired MRM data was processed with Analyst software (version 1.4.2, AB 

Sciex).  

7.2.4. Sample preparation and extraction 

 A simple SPE technique was used for sample extraction. Five hundred microliters of 

plasma from a non-smoker was aliquoted and to this 20 µL of 3µg/mL IS (final concentration 

of ~0.1 µg/mL) was added. The mixture was vortex-mixed for 30 sec followed by addition of 

25 µL of an aqueous 0.6% formic acid solution, which was again vortex-mixed for 1 min prior 

to SPE. The strong cation SPE columns (SCX 30 mg, 1 mL cartridge) were preconditioned 

with 1 mL of methanol and equilibrated with 1mL of 0.6% formic acid in water. The plasma 

samples were loaded on the SPE cartridge and drained slowly by applying positive pressure 

at 15 psi with a 48 well plate Positive Vacuum Manifold. The SPE columns were washed with 

1 mL of 0.6% formic acid followed by 1 mL each of water and methanol. Next, the SPE 

columns were air dried under positive vacuum at 20 psi for 3 minutes, and analytes were eluted 

with 1 mL of a 7% ammonium hydroxide in methanol. After elution, the pH of the eluate was 

neutralized with 100 µL of 6% of formic acid in methanol and vortex-mixed prior to 

evaporation using a speed vacuum at 350C for 60 min. Samples were re-dissolved in 500 µL 

of reconstitution solution.    
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7.2.5. Specificity and selectivity  

The specificity and selectivity were tested by analyzing six blank plasma samples from 

HIV-negative non-smokers. These blank matrices were used for method standardization, 

which did not show measurable interference at analyte peak of interests for nicotine and its 

metabolites. Lower limit of quantitation (LLOQ, 0.53 ng/mL) of six samples were processed 

in order to assess the blank plasma interference at the analyte peak of interest (Fig. 30-35). 

The percentage of interference determined in the blank was calculated by comparing the mean 

peak area of LLOQ of the analyte with the peak response obtained from the blank samples. 

The peak areas of blanks co-eluting with the analytes were required to be less than 5 times of 

the mean peak area at the LLOQ.  
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Figure 30: LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS for 

extracted lower limit of quantitation (LLOQ, 0.53 ng/mL) 
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Figure 31: LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS for 

extracted upper limit of quantitation (ULOQ, 504 ng/mL) 
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Figure 32: LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS for low 

quality control (LQC, 3.03 ng/mL) standard 
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 Figure 33: LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS for 

extracted middle quality control (MQC, 80.6 ng/mL) 
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Figure 34: LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS for 

extracted high quality control (HQC, 504 ng/mL) 
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 LC-MS/MS-MRM chromatograms of nicotine, its metabolites, and IS: 30. extracted lower 

limit of quantitation (LLOQ, 0.53 ng/mL) with IS, 31. Extracted upper limit of quantification 

(ULOQ, 504 ng/mL) with IS, 32. extracted low quality control (LQC, 3.03 ng/mL) standard, 

33. extracted middle quality control ( MQC, 80.6 ng/mL) and 34. extracted high quality 

control ( HQC, 504 ng/mL) from non-smokers plasma.  
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Figure 35: Extracted blank plasma for nicotinine, cotinine, trans-3-hydroxycotinine, nornicotine 

and norcotinine 
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7.2.6. Precision and accuracy 

 Within-assay & between-assay, precision & accuracy experiments were performed by 

analyzing eight extracted calibration and four levels of QC standards (Table 5). The pooled 

blank plasma samples from HIV-negative non-smokers were used to prepare a calibration 

curve and QC standards. The standard samples were prepared based on the procedure 

described earlier [132]. Precision was determined by analyzing six replicates at each of the 

four levels of QC standards. Accuracy was reported as the percentage difference between the 

mean concentrations divided by the nominal concentration, multiplied by 100. Accuracy was 

required to be ±15% of the nominal value of all the standards, except at LLOQ level where an 

accuracy of ±20% was accepted according to the guidance for industry bioanalytical method 

validation in Food and Drug Administration guidelines published in May 2001 

(www.fda.gov). Precision was calculated using the CV (standard deviation/mean 

concentration) multiplied by 100. Precision of the method was required to be less than ≤15% 

of the nominal concentration, except in the LLOQ where ≤20% was an accepted CV. 
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Table 5: Precision and Accuracy of CC and QC standards for nicotine and its 

metabolites in pooled blank human plasma 

  Within-day: CC (n=4), QC (n=6) Between-day : CC (n=6), 

QC(n=6) 

Analyte Nominal  

Conc 

(ng/mL) 

Calculated 

Conc 

(ng/mL) 

Precision 

(% CV) 

Accuracy 

(%)  

Calculated 

Conc 

(ng/mL) 

Precision 

(% CV) 

Accuracy 

(%)  

Nicotine 

CC std-1 504.00 476.57 7.6 94.6 543.9 3.8 107.9 

CC std-2 201.60 175.18 8.1 86.7 179.0 6.5 88.6 

CC std-3 80.64 78.57 5.5 97.5 91.6 9.1 113.7 

CC std-4 30.64 32.63 5.5 106.6 32.3 5.9 105.7 

CC std-5 10.11 11.24 12.6 114.7 9.9 15.4 100.6 

CC std-6 3.03 3.18 12.4 102.6 2.9 1.7 92.6 

CC std-7 1.06 1.07 5.1 97.3 1.1 4.9 102.2 

CC std-8 0.53 0.51 3.8 96.3 0.47 10.3 88.7 

High QC 504.00 483.33 5.3 95.9 483.3 5.3 95.9 

Middle 

QC 

80.64 70.71 13.5 87.7 71.7 13.6 88.9 

Low QC 3.03 2.64 23.3 87.0 2.82 16.3 93.2 

Lower 

LOQ  

QC 

1.06 1.22 31.5 114.8 1.16 27.8 109.1 

Nornicotine 

CC std-1 504.00 544.00 3.8 107.9 527.2 7.3 104.6 

CC std-2 201.60 179.10 6.5 88.8 179.2 6.4 88.9 

CC std-3 80.64 90.38 8.9 112.1 90.7 9.3 112.4 

CC std-4 30.64 32.27 5.9 105.3 32.5 5.9 105.8 

CC std-5 10.11 10.19 14.4 100.7 10.3 13.1 102.3 

CC std-6 3.03 2.99 2.2 98.6 3.0 1.6 99.1 

CC std-7 1.06 1.08 6.2 101.8 1.08 6.2 101.8 

CC std-8 0.53 0.55 23.4 103.4 0.57 22.5 106.6 

High QC 504.00 483.33 5.3 95.9 483.33 5.3 95.9 

Middle 

QC 

80.64 70.71 13.5 87.7 71.44 14.8 88.6 

Low QC 3.03 2.82 16.3 93.2 2.82 16.3 93.2 

Lower 

LOQ  

1.06 1.17 18.4 110.7 1.24 22.4 117.0 

Cotinine 

CC std-1 504.00 518.83 7.3 102.9 504.83 8.7 100.2 

CC std-2 201.60 179.60 6.4 89.1 181.43 6.7 90.0 

CC std-3 80.64 90.55 9.2 112.2 90.11 10.0 111.7 

CC std-4 30.64 31.94 7.5 104.2 31.61 6.9 103.2 

CC std-5 10.11 10.69 11.2 105.6 10.85 10.6 107.3 

CC std-6 3.03 2.98 2.1 98.4 2.99 2.7 98.8 

CC std-7 1.06 1.06 6.8 100.3 1.09 8.4 102.5 

CC std-8 0.53 1.49 14.8 81.7 1.49 148.0 281.8 
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Analyte Nominal 

Conc 

(ng/mL) 

Calculated 

Conc 

(ng/mL) 

Precision 

(%CV) 

Accuracy 

(%) 

Calculated 

Conc 

(ng/mL) 

Precision 

(%CV) 

Accuracy 

(%) 

High QC 504.00 480.83 5.1 95.4 478.00 4.6 94.8 

Middle 

QC 

80.64 70.61 12.4 87.6 72.44 7.4 89.8 

Low QC 3.03 2.84 14.6 93.9 2.84 14.5 93.7 

Lower 

LOQ  

1.06 1.19 18.7 112.3 1.21 17.6 114.5 

Norcotinine 

CC std-1 504.00 545.67 3.8 108.3 545.67 3.8 108.3 

CC std-2 201.60 180.60 6.0 89.6 180.60 6.0 89.6 

CC std-3 80.64 92.61 8.0 114.8 93.94 8.0 116.5 

CC std-4 30.64 32.44 6.6 105.9 31.44 6.7 102.6 

CC std-5 10.11 10.19 14.4 100.7 10.35 14.5 102.4 

CC std-6 3.03 2.98 2.0 98.2 2.99 1.6 98.8 

CC std-7 1.06 0.99 7.3 93.1 1.02 11.2 96.2 

CC std-8 0.53 0.64 19.9 119.8 0.62 17.9 117.3 

High QC 504.00 478.00 4.7 94.8 484.50 3.7 96.1 

Middle 

QC 

80.64 74.27 6.1 92.1 77.27 8.6 95.8 

Low QC 3.03 2.95 4.0 97.5 3.00 1.9 99.1 

Lower 

LOQ  

1.06 1.19 18.7 112.3 1.17 15.9 110.7 

Trans 3’-hydroxy cotinine 

CC std-1 504.00 511.67 7.4 101.5 529.17 7.8 105.0 

CC std-2 201.60 183.10 6.0 90.8 182.43 6.1 90.5 

CC std-3 80.64 89.61 9.4 111.1 90.27 10.2 111.9 

CC std-4 30.64 30.94 7.4 101.0 31.44 6.7 102.6 

CC strd-

5 

10.11 11.02 9.8 109.0 10.69 12.7 105.7 

CC std-6 3.03 2.98 2.9 98.2 3.01 2.2 99.3 

CC std-7 1.06 1.05 7.4 99.4 1.07 10.9 100.9 

CC std-8 0.53 2.39 116.8 451.6 0.61 19.3 115.1 

High QC 504.00 484.17 3.7 96.1 484.17 3.7 96.1 

Middle 

QC 

80.64 73.61 7.4 91.3 75.44 10.7 93.6 

Low QC 3.03 3.02 0.4 99.8 3.00 1.9 98.9 

Lower 

LOQ  

1.06 1.12 9.2 106.0 1.11 10.1 105.0 

CC-calibration curve; QC- quality control; LOQ- lower limit of quantitation 

 

7.2.7. Recovery, matrix effect, and stability of analytes in plasma from non-smokers 

 Recovery of nicotine and its metabolites was estimated by analyses of two sets of six 

replicates of extracted plasma at low, middle, and high QC standards and post-spiked 

(represent 100% recovery) samples along with IS (Table 6). The three levels of recovered QC 
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standards were prepared in blank extracted plasma from non-smokers. The aqueous dilutions 

were post-spiked in non-smoker blank plasma sample to get the same concentrations (504.0, 

80.6, 3.03 ng/mL). An overall extraction recovery was determined by comparing the mean 

peak area ratios of the analytes with the IS obtained from the extracted QC (matrix samples 

from non-smokers versus the unextracted standards).  

Matrix effect of nicotine and its metabolites along with IS was evaluated by analyzing 

2 sets of six replicates of each low, middle, and high QC standards from post-spiked (extracted 

blank plasma samples), and spiked standards in aqueous solutions (represent no matrix effect) 

(Table 6). Ninety blank matrix samples from a non-smoker and 18 samples of each analyte 

were processed and extracted as described above. The aqueous stock QC dilutions (low, 

middle, and high) were spiked in the extracted blank samples to obtain the QC standards 

(504.0, 80.6, and 3.03 ng/mL). Similarly, these QC standards were prepared by spiking 

analytes in reconstitution solution to obtain the same concentrations. Matrix ion suppression 

was calculated by comparing the mean peak area ratios of each analyte and IS generated from 

the post-spiked QC standards from plasma samples from non-smokers with reconstituted 

spiked QC standards. A relative matrix effect was estimated by comparing the mean peak area 

ratios of the analytes to IS obtained from the post-spiked QC. 

Six replicates of stability samples at concentrations of 504.0, 80.64, and 3.03 ng/mL 

were prepared for each analyte in pooled plasma from the non-smokers (Table 7). They were 

stored at -800C for several weeks to estimate the degradation of analyte in the matrix. Stability 

QC samples were extracted along with freshly prepared calibration standards in pooled plasma 

from the non-smokers. The stability samples were frozen and stored for 6 months at -800C. 

Stability QC samples were freeze-thawed for three cycles, and analyzed with freshly prepared 
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calibration curve standards. The linearity of the analysis was determined using freshly spiked 

calibration standards, which were analyzed in duplicate along with stability samples (bench 

top, freeze-thaw stability) processed as described previously [132]. 
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Table 6: Recovery and matrix effect of QC standards of nicotine and its metabolites in 

pooled blank human plasma 

  Recovery (n=6) Matrix effect (n=6) 

Analyte Nominal conc 

(ng/mL) 

% CV % Recovery % CV %Matrix 

effect 

Nicotine 

High QC 504.00 5.6 97.9 5.7 97.6 

Middle QC 80.64 8.4 102.9 8.3 102.5 

Low QC 3.03 24.4 95.7 27.2 91.6 

Nornicotine 

High QC 504.00 8.6 98.5 9.8 100.9 

Middle QC 80.64 8.3 102.5 8.9 101.1 

Low QC 3.03 22.9 86.7 23.6 86.1 

Cotinine 

High QC 504.00 9.7 100.9 5.6 97.9 

Middle QC 80.64 9.1 99.5 8.4 102.9 

Low QC 3.03 29.3 89.6 24.4 95.7 

Norcotinine 

High QC 504.00 9.7 100.9 9.6 101.2 

Middle QC 80.64 9.1 99.5 8.7 100.2 

Low QC 3.03 29.3 89.6 21.0 83.2 

Trans 3’-hydroxy cotinine 

High QC 504.00 8.7 104.2 9.7 103.2 

Middle QC 80.64 11.3 102.8 9.0 106.2 

Low QC 3.03 23.5 86.6 15.7 90.5 

CC- calibration curve; QC- quality control; CV- coefficient of variation  
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Table 7: Benchtop and freeze thaw stability of QC standards of nicotine and its 

metabolites in pooled blank human plasma 

  Bench top (n=6) Freeze-thaw (n=6) 

Analyte Nominal 

conc.(ng/mL) 

Calculated 

conc.(ng/mL) 

% 

CV 

   % 

stability 

 

Calculated 

conc.(ng/mL) 

% 

CV 

% 

stability 

Nicotine 

High QC 504.00 511.71 9.3 101.5 512.01 9.2 101.6 

Middle QC 80.64 83.19 7.1 103.2 82.89 6.8 102.8 

Low QC 3.03 2.56 13.3 88.6 2.68 15.2 93.5 

Nornicotine 

High QC 504.00 564.28 22.8 112.0 574.01 20.3 113.9 

Middle QC 80.64 79.67 14.2 98.9 78.26 15.7 97.1 

Low QC 3.03 3.00 10.3 101.9 2.78 15.0 96.5 

Cotinine 

High QC 504.00 523.86 8.4 103.9 562.01 19.8 111.5 

Middle QC 80.64 81.87 6.6 101.6 76.36 14.8 94.8 

Low QC 3.03 2.49 14.7 87.6 2.67 14.7 94.0 

Norcotinine 

High QC 504.00 528.38 13.8 104.8 577.01 19.7 114.5 

Middle QC 80.64 83.19 14.2 103.2 81.36 14.4 101.0 

Low QC 3.03 2.69 13.2 94.5 3.00 14.5 104.8 

Trans 3’-hydroxy cotinine 

High QC 504.00 507.28 9.9 100.7 520.56 9.6 103.3 

Middle QC 80.64 82.37 7.3 102.3 78.28 13.5 97.1 

Low QC 3.03 2.76 15.2 95.5 2.69 14.0 94.5 

CC- calibration curve; QC- quality control; LOQ- lower limit of quantitation; %CV- percentage 

of coefficient of variation. 
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7.2.8. Patient recruitment 

 Patient recruitment has been previously described [209]. Briefly, following 

Institutional Review Board approval from the University of Missouri-Kansas City and 

Cameroonian Ministry of Health Regional Hospital in Bamenda, Cameroon, we recruited our 

subjects in Cameroon, Africa using strict inclusion and exclusion criteria. For Smokers 

category, we recruited 11 volunteers (7 males, 4 females) who reported a smoking history of 

1-2 packs per day at least for the past 3 years. For HIV- positive smoker category, we recruited 

4 individuals (3 males and 1 female) with CD4 counts ranging between 100-500 cells/µL with 

a similar smoking history. The demographics in both groups including packs per day and 

duration of smoking are similar, except for diagnostic dates of the infection for HIV-positive 

smoker category. The male to female ratio is relatively high in both the categories owing to 

the low prevalence of smoking among women in Cameroon, especially in HIV-infected 

population. Our exclusion criteria include: pregnant females, individuals under 21 years or 

over 65 years (smoking is illegal in the US among youth and individuals >65 have an altered 

metabolism of tobacco constituents), patients with either hepatitis B, malaria, and TB, a CD4 

count <100 or >500 CD4 lymphocytes/µL for HIV-positive group, and those receiving either 

antiretroviral drugs, traditional medicines, or over the counter drugs. We conducted the 

clinical screening tests for malaria, hepatitis, and TB infections using standard procedures as 

described [180, 210-212]. After recruitment, 60 ml of blood was drawn from each individual 

followed by determination of their CD4 counts (Table 3) using Becton Dickenson instrument 

in Provincial Regional Hospital, Bamenda, Cameroon. The viral load of HIV-infected 

smokers was determined in plasma using real time reverse transcriptase polymerase chain 

reaction by Roche Amplicor System (Biocentric) at Pasteur center, Bamenda, Cameroon. The 

remaining plasma samples were shipped to our lab (Kansas City, USA) and stored at -80ºC 
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until further analysis. Six control samples were also collected from non-smoker healthy 

volunteers at the University of Missouri-Kansas city (4 males, 2 females) ranging in age from 

25-45 years for optimizing the method.  HIV-positive and HIV-negative smoker plasma 

samples were processed and extracted according to the sample preparation and extraction 

protocols described above. 

7.2.9. Statistical analysis 

 The concentration of all analytes in the plasma from subjects was calculated by 

Analyst software (AB Sciex, Foster City, CA). The statistical significance (p-values) was 

calculated using one-way analysis of variance and the mean and standard deviations were 

calculated using Microsoft excel software. The LC-MS/MS data of nicotine, cotinine, trans 

3’-hydroxycotinine, nornicotine, and norcotinine obtained from HIV-positive and HIV-

negative smokers was analyzed using boxplot by SPSS IBM statistical software. 

7.3. Results  

7.3.1. System suitability and carry-over tests 

 The system suitability test resulted in <2% variation for nicotine and its metabolites. 

The %CV for nicotine and nornicotine with nicotine-d4 as IS were 0.72 and 1.97, respectively 

(Table 8). Similarly, the %CV for cotinine, trans 3’-hydroxycotinine, and norcotinine with 

their IS cotinine-d3 were 1.01, 0.77, and 0.31, respectively. The carry-over test for nicotine 

and its metabolites at the highest calibrator did not show any carry over to the blank sample. 
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Table 8: System suitability test for all analytes compared to IS represented in % CV 

 

 

Nicotine Nicotine-d4 

(IS) 

Area ratio 

(Analyte/IS) 

Nornicotine Nicotine-

d4 (IS) 

Area ratio 

(Analyte/IS) 

1141682 1897707 0.5911 2185983 1897707 1.1519 

1149019 1931564 0.5949 2142384 1931564 1.1091 

1171239 1943119 0.6028 2162761 1943119 1.1130 

1148919 1939139 0.5925 2173457 1939139 1.0980 

1161239 1943519 0.5975 2152861 1943519 1.1077 

1184409 1979449 0.5984 2153761 1979449 1.0881 

Mean  0.596198   1.11130 

SD  0.0042781   0.021844 

%CV  0.72   1.97 

Cotinine Cotinine-d3 

(IS) 

Area ratio 

(Analyte/IS) 

Norcotinine Cotinine-

d3 (IS) 

Area ratio 

(Analyte/IS) 

2999425 2273971 1.3190 3771038 2273971 1.6583 

3060224 2316229 1.3212 3804754 2316229 1.6427 

3134471 2313156 1.3551 3815535 2313156 1.6495 

3033583 2290737 1.3243 3781464 2290737 1.6508 

3100583 2390728 1.3243 3790161 2390728 1.6508 

3103501 2298747 1.3243 3879214 2298747 1.6508 

Mean  1.32803      1.65048 

SD  0.013436     0.004958 

%CV  1.01     0.31 

Trans 3’hydroxy 

cotinine 

Cotinine-d3 

(IS) 

Area ratio 

(Analyte/IS) 

3479011 2273971 1.5299 

3549332 2316229 1.5324 

3589533 2313156 1.5518 

3485113 2290737 1.5214 

3525243 2390728 1.5214 

3486313 2298747 1.5214 

Mean  1.52971 

SD  0.011852 

%CV  0.77 



130 
 

7.3.2. Specificity, selectivity, limit of quantification, and linearity of calibration 

standards 

Nicotine and its metabolites, as well as IS were separated from endogenous 

interference peaks of the blank plasma matrix (Figure 35). Figure 30, 31 shows the extracted 

chromatogram peaks for LLOQ and ULOQ with IS. The LLOQ for nicotine and its 

metabolites in plasma was obtained at 0.53 ng/mL. The mean LLOQ peak areas for nicotine, 

cotinine, trans 3’-hydroxycotinine, nornicotine, and norcotinine were 1254, 4902, 941, 481, 

and 1689, respectively. Similarly, the mean ULOQ peak area for nicotine, cotinine, trans 3’-

hydroxycotinine, nornicotine, and norcotinine were 153522, 1293454, 523735, 134858, and 

575084, respectively. Figure 32-34 represents an example of a QC extracted sample validation 

of LQC (3.03 ng/mL), MQC (80.64 ng/mL), and HQC (504 ng/mL) chromatogram peak 

responses of nicotine, its metabolites, and IS in control plasma. The coefficient of 

determination (R2) for nicotine and its metabolites ranged from 0.9963-0.9994 (Figure 36).  
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Figure 36: Linear regression analysis of CC standards of nicotine and its metabolites in 

pooled blank human plasma 
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7.3.3. Accuracy and precision 

The best linear fit and least-square residuals for the standards were achieved with a 

1/X weighing factor that yielded a mean linear regression equation for the calibration curve. 

The assay was linear over the range of 0.53-504 ng/mL with R2 ≥ 0.996 (n=6). A regression 

equation and coefficient of determination were obtained as follows (Figure 35): nicotine: y = 

0.0003x + 0.0035, trans 3'-hydroxycotinine: y = 0.0068x + 0.0055, nornicotine: y = 0.0009x 

+ 0.0073, cotinine: y = 0.0103x - 0.0289, and norcotinine: y = 0.007x + 0.024. The % accuracy 

at LLOQ between the days ranged as follows: 109.1-114.8 % for nicotine, 110.7-117% for 

nornicotine, 112.3-114.5% for cotinine, 110.7-112.3 % for norcotinine, and 105-106 % for 

trans 3’-hydroxycotinine (Table 8).  

7.3.4. Recovery, matrix effect, and stability of analytes in plasma from non-smokers 

The percentage recovery of nicotine, cotinine, trans 3’-hydroxycotinine, nornicotine, 

and norcotinine ranged from 95.7-102.9%, 89.6-100.9%, 86.6-104.2%, 86.7-102.5%, and 

89.6-100.9%, respectively (Table 6). Six replicates of LQC, MQC, and HQC were tested for 

a matrix effect. The % matrix effects were between 91.6-102.5%, 95.7-102.9%, 90.5-106.2%, 

86.1-101.1%, and 83.2-101.2% for nicotine, cotinine, trans 3’-hydroxycotinine, nornicotine, 

and norcotinine, respectively (Table 6). The stability results, which are presented as 

percentage of stability (Table 7), yielded bench top stability of <13% and freeze-thaw stability 

of ~14% for nicotine and its metabolites. The degradation of nicotine and its metabolites were 

determined to be <15% at LQC, MQC and HQC levels. 

7.3.5. Quantitative estimation of nicotine and its metabolites in plasma 

Nicotine and its metabolites cotinine, trans 3’-hydroxycotinine, nornicotine, and 

norcotinine were determined at ng/mL levels in the plasma of both HIV-positive and HIV-

negative smokers (Table 9). Nicotine concentration in the HIV-negative smokers ranged from 
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10.87 to 61.59 ng/mL, while nicotine concentration in the HIV-positive smokers ranged from 

1.9 to 12.3 ng/mL. The concentrations of cotinine, trans 3’-hydroxycotine, nornicotine, and 

norcotinine ranged 2.3-123.38 ng/mL, 1.5-94.19 ng/mL, 1.09-4.10 ng/mL, and 0.63-3.87 

ng/mL, respectively in HIV-negative smokers. However, the concentrations of cotinine, trans 

3’-hydroxycotinine, nornicotine, and norcotinine concentrations ranged 56.00-95.1 ng/mL, 

12.20-34.1 ng/mL, 4.50-8.40 ng/mL and 1.30-2.20 ng/mL, respectively in HIV-positive 

smokers (Table 9). There were no significant differences in the concentration of nicotine and 

its metabolites between male and female subjects when analyzed for HIV-negative smokers 

(data not shown). The mean nicotine concentration in the plasma of HIV-positive smokers 

(6.98 ± 4.26 ng/mL) was 5-fold lower than HIV-negative smokers (33.38 ± 16.41 ng/mL) 

(Figure 37, Table 9). The mean concentration of nicotine metabolite nornicotine was 3-fold 

higher in HIV-positive smokers (5.83 ± 1.8 ng/mL) than HIV-negative smokers (2.58 ± 1.01 

ng/mL). Although not statistically significant, the mean concentration of cotinine was also 

higher in HIV-positive smokers (78.08 ± 16.67 ng/mL) than HIV-negative smokers (77.15 ± 

40.52 ng/mL). However, the mean concentrations of other nicotine metabolites were not 

altered (Figure 37, Table 9).  
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Table 9: Nicotine and its metabolites levels in plasma from HIV-positive and HIV-

negative smokers 

 

 

  

HIV-negative smokers 

Patient 

# 
CD4 

Count 

Nicotine 

(ng/mL) 

Cotinine 

(ng/mL) 

Trans 

3’-hydroxycotinine 

(ng/mL) 

Nornicotine 

(ng/mL) 

Norcotinine 

(ng/mL) 

1 1416 10.87 2.33 2.28 4.10 0.88 

2 938 33.07 115.55 68.19 3.97 2.45 

3 1488 14.85 123.38 24.33 2.15 1.61 

4 1289 27.49 84.93 4.86 1.65 1.19 

5 742 28.96 79.51 94.19 3.61 3.28 

6 936 53.06 65.49 3.43 2.91 0.63 

7 1438 61.59 119.04 71.65 1.91 3.87 

8 1039 51.45 98.37 33.28 1.64 2.42 

9 500 17.10 23.59 1.50 2.46 0.87 

10 700 31.86 38.45 18.86 2.94 1.17 

11 921 36.91 98.02 20.12 1.09 1.15 

Mean  33.38 77.15 31.15 2.58 1.77 

SD  16.41 40.52 32.38 1.01 1.08 

HIV-positive smokers 

2 584 6.50 56.00 34.10 4.70 1.60 

3 13 1.90 75.80 12.20 4.50 1.30 

4 540 12.30 85.40 14.00 5.70 1.40 

5 412 7.20 95.10 22.50 8.40 2.20 

Mean       6.98     78.08               20.70         5.83       1.63 

SD      4.26    16.67               10.00        1.8       0.40 



135 
 

 

 

Boxplot shows distribution of all individuals, median, first quartile below the median, third 

quartiles above the median and outliers in both HIV-positive smokers and HIV-negative 

smokers plasma.    

 

  

Figure 37: Box plots representing the levels of nicotine and its metabolites in 

plasma of HIV-negative and HIV-postive smokers 
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7.4. Discussion 

In this study, we have developed a simple, fast, and sensitive ESI-LC-MS/MS 

analytical method to simultaneously determine the concentrations of nicotine and four of its 

metabolites in plasma samples. This method enables the determination of concentrations of 

nicotine and its metabolites in HIV-positive and HIV-negative smokers. To our knowledge, 

this is the first report demonstrating the application of an ESI-LC-MS/MS method for 

concurrent determination of the concentrations of nicotine and four of its metabolites with a 

sensitivity of <1 ng/mL. Of importance, this is also the first report to show the difference in 

the concentrations of nicotine and its metabolites in HIV-positive from HIV-negative 

smokers.  

In general, LC-MS/MS bioanalytical results are frequently inconsistent because of 

ineffective sample preparation and extraction methods. These problems, however, can be 

eliminated by modifying sample extraction techniques and mass spectrometry parameters 

including MRM transitions. Liquid-liquid and solid-phase extractions are generally the most 

effective approach. However, they are expensive and time consuming [213]. The elimination 

of unwanted water-soluble compounds, such as phosphates and sulfates from plasma, are 

important in electrospray ionization technique. Zinc sulfate and phosphate present in the 

plasma has been shown to cause ion suppression of analytes leading to inconsistent results 

during the ESI analysis [213-215]. In addition to extraction and sample preparation during the 

LC-MS/MS analysis, pH of the reconstitution solution and mobile phase are important factors 

to achieve optimal chromatographic separation, peak resolution, reproducibility, and 

reliability. Furthermore, reconstitution of the solution also plays an important role in the 

ionization of analytes in the electrospray ionization method. By considering all the above array 

of parameters, we have developed a simple and rapid ESI-LC-MS/MS technique to 
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simultaneously estimate nicotine and its four metabolites in plasma by using strong cation 

exchange SPE. In this technique, the use of formic acid and ammoniated methanolic solutions 

for SPE cartridge conditioning and elution, respectively, enabled the generation of clear and 

reliable samples. We found an increased ionization and peak response upon reconstituting in 

acetonitrile: water: formic acid mixture compared to other reconstitution solutions such as 

acetonitrile, methanol, and its mixtures. 

 The system suitability test results showed that the method is consistent and 

reproducible for all analytes. Carry-over test results showed that there is no significant carry-

over to confound results of the next samples analyzed. The assay conditions had adequate 

specificity for nicotine and its metabolites, and no interfering peaks were observed with 

retention times coinciding with the peak of interest. The signal-to-noise ratio of all analytes 

was measured at LLOQ level and found to be >5-fold that of the extracted blank peak area. 

High signal-to-noise ratio suggests a relatively high quality of extraction efficiency and 

selectivity, with minimal plasma endogenous interference. The chromatogram peak response 

and intensity of nicotine and its metabolites were proportional to the concentrations from 

LLOQ to ULOQ with two IS, which strongly suggests that the method is reproducible and 

robust. Moreover, this method was relatively more sensitive than the other methods, because 

The LLOQ (0.53 ng/mL) for nicotine and its metabolites including cotinine, trans 3’-

hydroxycotinine, nornicotine and norcotinine, was 2- to 5-fold higher than other reported 

methods (LLOQ: 2-10 ng/mL) [140, 141, 203, 216]. More importantly, this level of sensitivity 

was obtained with five analytes simultaneously as opposed to the reported methods, in which, 

the methods were developed with 2-3 analytes simultaneously. Generally, the optimization of 
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LLOQ and extraction are difficult using the plasma matrix as opposed to other matrices 

because plasma has more endogenous interferences than many other matrices.  

 The results of the accuracy and precision chromatograms suggest the method is robust, 

precise, and accurate for the analysis of nicotine and its metabolites in the plasma. The 

calibration curve showed good linearity for nicotine and its metabolites over the entire 

calibration range. All previously reported LC-MS/MS methods have used ammonium acetate 

or ammonium formate buffers in their mobile phase systems with a proton adducts in negative 

and positive modes [140, 215]. Such ammoniated buffer mobile phase systems may enhance 

ionization of analytes and clog the peak tubes, pump seals, and precipitate in the flow line of 

the mobile phase. This would lead to an increase in backup pressure in the HPLC column 

causing leakage of the samples. Therefore, the optimization of nicotine and its metabolites in 

a formic acid mobile phase system with a proton adduct [M+H]+ in the positive ion mode is 

considered superior than the other mobile phase. Formic acid-containing mobile phases have 

the advantage over the ammoniated buffer mobile phase systems, because the former mobile 

phase system never becomes obstructed, and maintains a consistent pressure in the HPLC 

column [213]. Second, this mobile phase system is easy to clean owing to lack of precipitation. 

The nicotine and its metabolites were all eluted from the column within the same retention 

time (~2 min) showing a sharp resolution peak. The analytes were separated and quantified 

based on their mass and charge ratio (m/z), which is relatively fast and efficient compared 

with other reported methods [140, 217]. 

 The recovery efficiency of this method is higher than the previous methods [99, 171], 

and the peak response is also reproducible. Previously, we have developed a liquid-liquid 

extraction method for nicotine and its metabolites in astrocytic and monocytic cell lines [99, 
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202]. However, in the present method we used strong cation exchange SPE cartridges for 

plasma sample analysis. Plasma has numerous complex endogenous interfering components 

compared to astrocytes and monocytes matrices. During optimization of the plasma 

extraction, we tested several other SPE techniques using different solvent conditions and 

elution methods such as strong anion SPE and lipophilic-hydrophilic balance SPE. The current 

method is more sensitive than other reported methods [139, 140], and is able to quantify 

nicotine and its metabolites at LLOQ level without any interference, with high reproducibility 

and high accuracy. In the currently described sample preparation technique, all plasma 

samples including controls, standards, and test samples were pretreated with aqueous formic 

acid solution to make them more acidic prior to SPE. Under acidic conditions we found the 

results were consistent without any interference. The nicotine and its four metabolites were 

stable for 48 weeks with three freeze-thaw cycles at -800C and for 5 hours at ambient 

temperature.  

 Using our newly developed LC-MS/MS technique, we analyzed nicotine and its 

metabolites in the plasma of HIV-positive and HIV-negative smokers. These individuals were 

recruited with strict exclusion criteria to reduce the possibility of confounding by other drugs 

or co-morbidities. The exclusion criteria were critical to determine the specific effects of mild-

to-moderate smoking in HIV-positive patients without any interference by antiretroviral 

therapy, other medications, or other substances of abuse. The nicotine level is ~5-fold lower 

in HIV-positive smokers than HIV-negative smokers strongly suggesting that HIV infection 

increases the metabolism of nicotine (Fig. 38). This hypothesis is further strengthened by the 

findings that the levels of nicotine metabolites, cotinine, and nornicotine are relatively higher 

in HIV-positive than HIV-negative smokers. CYP2A6 is known to metabolize nicotine into 
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the major metabolite cotinine and other minor metabolites including nornicotine [218]. 

Cotinine is further metabolized into trans 3’-hydroxycotinine, norcotinine, and other minor 

metabolites by CYP2A6 [127, 219].  
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The remaining mean relative amounts ± SD (ng/mL) of nicotine, cotinine, nornicotine, 

norcotinine and trans 3’-hydroxycotinine found in the plasma of HIV-positive smokers (n=4) 

and HIV-negative smokers plasma (n=11) are shown in parenthesis. The intensity of arrows 

suggests relative contribution and amounts of CYP2A6-mediated pathways for nicotine 

metabolism. The nicotine is mainly metabolized to cotinine followed by trans 3’-

hydroxycotinine. In addition, nicotine is also metabolized by other pathways to nornicotine 

and norcotinine. 

Figure 38: Scheme of nicotine metabolism representing the concentrations of nicotine and 

its metabolites 
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Collectively, these results suggest that nicotine metabolism is enhanced significantly 

in HIV-positive smokers compared with HIV-negative smokers. Enhanced nicotine 

metabolism is known to increase ROS and reactive metabolites leading to increased cell 

toxicity and cancer of the lungs, esophagus, and liver [177]. This may lead to an increased 

risk of cancer in HIV-positive smokers compared to HIV-negative smokers. Indeed, our 

recently published data from these patients showed an increase in oxidative DNA damage in 

the plasma of HIV-positive smokers compared to HIV-negative smokers [209]. We also 

reported enhanced oxidative stress that was correlated with an increase in the viral load in 

HIV-positive smokers compared with HIV-positive non-smokers [209]. Previous reports also 

suggest a role of smoking in increased viral replication and the possible association with 

increased oxidative stress [72, 100, 168].  

7.5. Conclusion 

In conclusion, since the prevalence of smoking is higher in HIV-positive individuals 

than the general population [59] and in turn smoking is associated with increased viral 

replication [69-71], it is important to understand the underlying mechanism of 

smoking/nicotine-mediated HIV replication. This report suggests a possible role of nicotine 

metabolism in oxidative stress-mediated increase in viral replication in HIV-positive smokers. 

However, further studies are necessary to elucidate this mechanism to confirm the role of 

CYP2A6-mediated nicotine metabolism, especially in monocytes/macrophages, in HIV 

replication.  
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CHAPTER 8 

SUMMARY AND FUTURE DIRECTIONS 

8.1. Summary and significance 

Assessment of the mortality rates among AIDS patients has revealed that the risk of 

death is twice as high among smokers in the HIV-infected population compared to the non-

HIV-infected population. There is an evidence from the literature suggesting that smoking is 

associated with decline in CD4 cell counts in the HIV-infected population, despite of the 

higher baseline CD4 cell counts observed among smokers than non-smokers [77]. However, 

the role of smoking in the progression to AIDS is unknown. Recent reports from the literature 

have also demonstrated the toxic effects of the tobacco constituents, nicotine and nicotine-

derived nitrosamine ketones (NNK) in neurons, microglia, and white blood cells, which are 

exposed to the virus or viral proteins [23, 24]. For example, the treatment with NNK to mouse 

microglial cells and in vivo injection of mouse with NNK showed an increase in ROS, as well 

as an increase in the levels of proinflammatory cytokines [23]. However, the mechanism of 

tobacco-mediated toxicity and decreased efficacy of HAART is largely unknown. 

The present study investigated the role of CYPs in tobacco/nicotine-mediated 

oxidative stress in HIV cell models, and their possible link to HIV pathogenesis and 

neuroAIDS. The experiments in specific aim 1 were designed to determine the role of 

CYP2A6 in nicotine metabolism in HIV cell models, SVGA astrocytes (chapter 4). It can be 

noted that the role of CYP2A6 in nicotine metabolism in other HIV model, U937 monocytes 

were earlier performed by Jin et al. 2012. In Specific Aim 2, CSC-mediated CYP induction, 

oxidative stress, and cell death in U937 monocytes and HIV replication in primary 

macrophages were investigated (chapter 5). In Specific Aim 3, the levels of CYP2A6 and 
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antioxidant enzymes (AOE) were determined in blood monocytes isolated from a cohort of 

patients (Healthy, smokers, HIV and HIV smokers) using a cross-sectional ex vivo study 

design (chapter 6). In Specific Aim 4, upon developing a sensitive and robust LC-MS/MS 

method for nicotine and its metabolites, their levels were determined in plasma samples of 

smokers and HIV Smokers from ex vivo study (chapter 7).  

Results from Specific aim 1 showed that nicotine induced CYP1A1 and CYP2A6 at 

both mRNA and protein levels in SVGA astrocytes. Nicotine also increased the production of 

ROS in these cells. The role of CYP2A6 in nicotine metabolism-mediated oxidative stress 

were further demonstrated using a specific CYP2A6 inhibitor, tryptamine. Results from 

Specific aim 2 demonstrated that CSC increases CYP1A1 induction and oxidative stress, 

which were significantly higher than that caused by nicotine. CSC treatment also induced 

caspase-3-mediated apoptosis in U937 monocytes. Finally, CSC treatment enhanced HIV 

replication in HIV-infected primary macrophages as determined by p24 antigen levels. Results 

from Specific aim 3 demonstrated that mild-to-moderate smoking increases viral load in HIV-

infected smokers in ART naïve subjects. In addition, smoking and HIV both independently 

increased oxidative DNA damage in plasma and monocytes. Higher oxidative stress was 

further observed in HIV-infected smokers when compared to other cohorts independently. 

Our results demonstrated that the levels of mRNA of the most antioxidant genes are not altered 

in HIV positive and/or smoker groups compared to HIV-negative non-smokers. As expected, 

the results showed that the levels of CYP2A6 mRNA is increased in HIV negative smokers 

compared to HIV-negative non-smokers However, the level of CYP2A6 mRNA was only 

marginally increased in HIV-positive non-smokers and HIV positive smokers compared to 

HIV-negative non-smokers. Results from Specific aim 4 showed that the nicotine level is ~5-
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fold lower in HIV-positive smokers than HIV-negative smokers strongly suggesting that HIV 

infection increases the metabolism of nicotine. This hypothesis is further strengthened by the 

findings that the levels of nicotine metabolites, cotinine, and nornicotine are relatively higher 

in HIV-positive than HIV-negative smoker.  

8.2. Conclusions and future directions 

The role of oxidative stress as a result of production of ROS, including nitric oxides 

has been implicated in HIV pathogenesis. Similarly, previous literature and our current 

findings demonstrate that smoking and oxidative stress both are independently associated with 

increased HIV replication. Thus, we suggest that smoking-mediated oxidative stress may be 

responsible for increased HIV replication. Since CYP-mediated metabolism of tobacco 

constituents is known to produce reactive oxygen species in the liver, it is reasonable to 

conclude that CYP-mediated pathways contribute to the DNA damage in both plasma and 

monocytes. Our results showing relatively low levels of DNA damage in monocytes suggest 

that CYP-mediated metabolic pathway also exists in monocytes. Our speculation is consistent 

with our earlier observation that although monocytes contain relatively low levels of CYP 

enzymes compared to the liver, the relative level of CYP2A6 in monocytes is much higher 

that other CYP enzymes [190]. Therefore, we suggest that although CYP2A6 in smokers and 

HIV positive non-smokers are not induced, the basal level of CYP2A6 is sufficient to 

metabolize tobacco constituents and endogenous compounds and produce ROS. Furthermore, 

our observation is consistent with the recent finding that CYP2A6-mediated metabolism of 

nicotine produces ROS in monocytes and astrocytes [99], which may be responsible for 

increased DNA damage in monocytes. Our studies also demonstrated an increased metabolism 

of nicotine in HIV positive smokers compared to HIV negative smokers. It is also possible 

that the increased metabolism is due to increased activity of enzyme rather than the actual 
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protein level. An increase in enzyme activity through substrate-mediated enhance stability of 

enzyme is known in the P450 system [192].   

An increase in oxidative stress could be as a result of both, CYP-mediated hepatic 

metabolism of smoking constituents and/or endogenous compounds and lack of induction of 

AOEs. Although we suggest a possible association of CYP and oxidative stress pathways in 

HIV replication, other pathways cannot be excluded. Therefore, there is a need to further 

investigate CYP or alternative pathways in smoking-mediated HIV pathogenesis up on 

treatment with CSC as well as the active constituents of CSC (for e.g. PAH, benzyl 

naphthalene, phenanthrene) in in vitro HIV-infected macrophages as well as in an in vivo HIV-

infected humanized mice model.  

In summary, our in vitro and ex vivo studies have shown the phenomenon of enhanced 

oxidative damage, nicotine metabolism, and HIV replication in HIV-infected smokers. Since 

we employed a cross sectional study design in delineating the above phenomenon, 

furthermore there is an urge to investigate the mechanism delineating the role of CYP-

mediated oxidative stress on cytotoxicity and viral replication. Therefore, an ex vivo study 

following longitudinal design using large number of individuals would help in identifying 

specific targets for CYP pathway to alleviate smoking-mediated HIV pathogenesis and drug 

interactions.  
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