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ABSTRACT

Mobile communication systems have revolutionized in orderto fulfill exponen-

tially increasing data traffic volume due to the introduction of new devices such as smart-

phones and tablets and success of social networking services. Evolving cellular networks

include emerging technologies such as Software-Defined Network (SDN) and Network

Function Virtualization (NFV). SDN is an emerging network architecture that allows dy-

namic and flexible network operations with centralized controller. NFV addresses the

problem of a large and increasing number of hardware appliances and focuses on opti-

mizing the network services themselves. With SDN and NFV, cellular networks are able

to provide more flexible and agile management that can betteralign and support the mo-

bile users.

In this dissertation, we address location management and handover to reduce data

traffic toward the core network and to reduce energy consumption. Location management
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is a key control task in cellular network operations. We propose and develop an efficient

group location management scheme as a virtualized network function for group cellular

applications. The performance improvement is mainly achieved by the virtualized and

separate group management architecture and an efficient dynamic group profiling algo-

rithm. We conduct theoretical analyses of our scheme for signaling costs and performance

gains under diverse traffic conditions. Furthermore, we carry out extensive evaluations us-

ing both real traces and synthetic human mobility data, and we validate the efficiency of

the proposed scheme in both location updates and paging.

Moreover, in order to tackle the issues of mounting deployments and large energy

consumption of base stations, it is integral to devise schemes to improve energy efficiency

in cellular networks. We propose a virtualized network function of cell management on an

SDN architecture. We develop a cell management algorithm onthe architecture that can

effectively control the sleep and awake modes of base stations and perform handover

operations in a cellular network. It provides significant benefits over current cellular

networks that suffer from inflexible management and complexcontrol. Our extensive

trace-driven evaluation results show that the proposed control architecture and the cell

management algorithm achieve significant energy savings, and incur less control message

exchanges, more cells in a sleep mode for longer durations, and less cell status changes

than existing energy saving approaches for cellular networks.
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CHAPTER 1

INTRODUCTION

Cellular network systems is evolving and provide attractive data and communica-

tion services to fulfill a number of requirements and challenges. The data traffic of cellular

networks is significantly increasing with introduction of new devices such as smartphones

and tablets. In addition, the success of social networking services and associated appli-

cations the data traffic volumes in the networks have exploded during the last few years.

In Ericsson’s report, the data traffic is grown 55 percent between 2014 and 2015. In ad-

dition, the total number of mobile subscription is now around 7.3 billion by adding 87

million new subscriptions. Note that actual number of subscribers is around 4.9 billion,

since many have several subscriptions [30]. Additionally,the global number of base sta-

tions predicted to reach up to 4 million by the end of 2015 to cover increased data traffic.

Therefore, the core network will face congestion due to the increased mobile traffic and

the number of base stations as a solution [52].

With increased data traffic and number of subscription, energy efficiency of cel-

lular networks has received remarkable attention recently. A current estimation indicates

that the Information and Communication Technology (ICT) infrastructure causes 3% of

the world wide electricity consumption and 2% of global CO2 emissions [3].

In order to keep up with the traffic growth, the networks need to optimize the cur-

rent resources and also add new devices/technologies. However, current networks contain
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complex and inflexible devices. Furthermore, mobile users expect a high quality and

continuous improvement on services. To ensure quality of users’ experience, cellular op-

erators find promising concepts and evolving to make the networks more agile, efficient

and flexible. This can be achieved through virtualized network functions in LTE (Long

Term Evolution) systems [18, 34], and Network Function Virtualization (NFV) architec-

tures are being proposed [11, 57]. NFV addresses the problems of a large and increasing

number of hardware appliances for individual network functions. By virtualizing net-

work functions to commercial off-the-shelf servers, it canreduce capital and operating

expenditures. Additionally, using Software-Defined Network (SDN) principle, redesign

of the Radio Access Network (RAN) and improvement of cellular core networks can be

addressed to obtain network flexibility and manageability.

In this research, we study on location management scheme forgroup applications

to reduce traffic load to the cellular core network. Locationmanagement is one of the

main operation in cellular networks that keeps track of users’ movement to deliver calls

and data. For the group of users who uses the same application, it is possible to reduce

the number of location update with clustering the users based on their geographic loca-

tion. By reducing the number of location update, we can alleviate a well-known bottle

neck problem on the traffic load to the core network. The grouplocation management

scheme is handled as a virtualized network function in cellular network and improves

group application service. Moreover, another virtualizednetwork function for energy ef-

ficient eNodeB control is discussed. By decoupling the functionality of power control of
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eNodeB, we observe significant improvement on energy consumption in a cellular net-

work. Centralizing the algorithm of cell management, it also greatly simplifies control

over the sleep and awake modes of eNodeB by enabling an agile handover operations.

1.1 Location Management in Cellular Networks

The types of services of cellular networks are also being expanded beyond regular

one-to-one calls. As a major example, Push to Talk over Cellular (PoC) is a service

option for a cellular phone network that allows subscribersto make a call to a group of

users with a single button. PoC service works as a walkie-talkie with an unlimited range.

The connections should be made instantly, with little delay, with all the users in a group.

Currently, only limited versions of the services are available by a few providers [2, 4, 6]

and only for small scale enterprise users. The Open Mobile Alliance [5] is defining PoC

as part of the IP Multimedia Subsystem [81]. Group applications over cellular networks,

such as group audio or video conferencing and stream media broadcasting to a group, are

limited in scale at the moment but will be prevalent in the near future.

The core issue of practical and large scale group call services is the performance.

Here,address an important performance issue for efficient group location management.

Location management is an essential task in cellular mobilenetworks that keeps track

of the movements of individual users and updates a location record in the Home Sub-

scriber Server (HSS). Location management schemes includetwo types of basic opera-

tions, namely i) tracking area update - a report made from a Mobile Node (MN) to the

Mobile Management Entity (MME) when an individual user moves from a Tracking Area
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(TA) to another TA (Location Area or LA in 3G term); and ii) paging - a message made

by the MME to all cells in a TA to find a callee.

Many location management schemes have been proposed for regular one-to-one

calls. In this paper, we call these approaches Individual Location Management (ILM)

schemes. Such examples include [8, 17, 58, 63, 78] in which there is an attempt to make

the location update decision based on a user’s temporal and spatial movement patterns.

However, the ILM approaches pose a substantial overhead of location management when

they are used for a large number of group members and thus, become infeasible for prac-

tical use.

On the other hand, there are severalcluster-basedlocation management schemes

recommended as well, such as [19,38,45,51] where multiple users’ location updates can

be aggregated when they are clustered within a region.1 However, they are still inherently

designed forone-to-onecalls and can’t be directly applied toone-to-manygroup appli-

cations. This is because, for true PoC services, we can’t mandate that all the MNs of

a group application should belong to a single location area and should exhibit the same

mobility pattern all the time, even though some similarity of group members’ mobility

may be temporarily present. For instance, a part of the groupusers may be located in

different cities. Therefore, a proper location managementscheme forgroup applications

is an imminent need, especially to handle many groups with a large number of members

in a scalable manner.
1The authors typically used the word ’group-based’ in those articles. However, we use the word ’cluster-

based’ to refer them, in order to distinguish from the ’group’, a type of applications in this paper.
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Figure 1: Power consumption of cellular network components

1.2 Green Cellular Networks

Energy efficiency of cellular networks has received remarkable attention recently

with exponentially increasing deployments and rising concerns of the harmful effects to

the environment caused by CO2 emissions emitted from base stations. A current estima-

tion indicates that the Information and Communication Technology (ICT) infrastructure

causes 3% of the world wide electricity consumption and 2% of global CO2 emissions.

Moreover, it is observed that the power consumption of 16-20% per year corresponds to

a doubling every 4 to 5 years [3]. Particularly, 60% of the total power consumption of the

cellular networks is caused by base stations [37] as illustrated in Figure 1. It is predicted

that the global number of base stations will reach up to 4 million by the end of 2015 [52].

Instigated by the alarm, several researches were conductedon minimizing base

station energy consumption using improvements in power amplifiers or with load depen-

dent power control. Most energy improvement proposals use the sleep mode of a base

station based on energy-aware cooperation among neighboring base stations. Although,

5



sleep mode can save energy consumption significantly, note that it may cause problems

such as an activation time issue and a ping-pong effect [29].Performance degradation

is experienced during the activation time, and the ping-pong effect that is unnecessary

for on/off oscillations can increase the energy consumption with frequent wake-up pro-

cesses and handover control messages while decreasing the users’ QoS. The problems

intrinsically stem from the sleep mode decision that was made based on myopic informa-

tion of immediate neighboring base stations. The radio access network of LTE or LTE-

Advanced, E-UTRAN (evolved UMTS Terrestrial Radio Access), consists of eNodeBs

that support flexible bandwidth deployments. The eNodeB is acomplex base station (BS)

that communicates with other eNodeBs and core network elements as well. eNodeBs are

responsible for all radio related functions and handover decisions. However, there is no

global, centralized control in the current E-UTRAN.

1.3 Software-Defined Cellular Networks

SDN is an emerging network architecture that allows dynamicand flexible net-

work operations by decoupling the network control plane from the data plane [27]. The

migration of control plan to the logically centralized controller simplifies the network

management and enables new services.

Recently, there has been significant interest in integrating the SDN principles in

current cellular architectures such as 3G Universal MobileTelecommunications System

(UMTS)and 4G LTE [66]. Current cellular network architecture has centralized data flow

and all traffic passes through specialized equipment (e.g.,Packet gateway in LTE). This
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leads to increase the management cost because of the complexity of the devices and raises

scalability problems [52].

Introducing SDN concept to cellular network will provide a complete view of

the whole network by decoupling the control from the data plane. This will allow net-

work equipment to become simpler and reduce the overall infrastructural cost. More-

over, applying SDN to cellular networks can enable simple network management and

give flexible design and operation on the cellular network. Redesign of the radio access

network (RAN) using SDN principles for load balancing and utility optimization is pro-

posed in [35]. Improvement of the scalability and flexibility of cellular core networks

with SDN have been presented [43]. Meanwhile, the concept ofNFV is proposed by a

consortium of service providers [69] to address the problems of a large and increasing

number of hardware appliances for individual network functions. By consolidating and

virtualizing network functions to commercial off-the-shelf servers, it can reduce capital

and operating expenditures.

Another study that gives the centralized control to RAN called cloud RAN (C-

RAN) is presented in [55]. C-RAN centralizes the baseband processing resources into

a pool to solve problems of network deployment, interference, and power consumption.

The centralized control for RAN can support easy upgrade, multi-standard operation and

maximum resource sharing. Additionally, C-RAN offers possibility for energy efficiency

with reduced number of eNodeB sites and low transmission power. Although centralized

control brings benefits to current cellular networks, both [41] and [36] pointed out the

need of the virtualized architecture that virtualizes the base band unit (BBU) functionality
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and services in a centralized BBU pool.

1.4 Contribution of the Dissertation

In this dissertation, we focus on two aspects of cellular networks such as location

management and energy saving on SDN and NFV architecture. the main contributions of

this dissertation are as follows.

• We develop an efficient location management scheme forgroup applicationsin cel-

lular networks. We propose a location management architecture that uses a so called

Group Location Management (GLM) and dynamic group profilingof the members’

geographic information. The group location management service can be augmented

as a virtualized network function [69] either for a 3G or 4G cellular network archi-

tecture. The presence of GLM succinctly simplifies the grouplocation management

task and enables cellular network providers to handle a large number of members

and groups. The group profiling algorithm dynamically updates its group members’

location information with clusters of cells or location areas that can be of arbitrary

shapes and sizes. We have validated the efficiency of the proposed scheme with

theoretical analysis as well as extensive experiments. As for the experiments, we

have used both real traces of human movements and synthetic human mobility data.

Note that our scheme is complementary and beneficial to the traditional one-to-one

call location management, but it is also interoperable withit.

• We propose an architecture of a virtualized network function of cell management
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on a software-defined cellular network, called Siesta (Software-defined energy effi-

cient base station control) for green cellular networks. With the proposed architec-

ture and network-wide information, we then employ a cell management algorithm

that can effectively select a minimal set of eNodeBs that canserve all users without

incurring a ping-pong effect. The ping pong effect is one of the well known prob-

lems in cellular networks that causes unnecessary frequenthandovers. It increases

control messages to the core network and decreases users’ QoS. It also increases the

energy consumption with frequent on-and-off status changes of eNodeBs. Siesta ar-

chitecture reduces the communication overhead among cellular network elements.

Siesta first reduces the control message between network elements due to the move-

ment of the control plane from eNodeB to a Siesta NFV module. Furthermore, the

message exchange necessary for the handover procedure is also decreased com-

pared to the current LTE handover procedure. Through extensive evaluations using

human mobility traces, we show that Siesta cell management scheme achieves sub-

stantial energy savings in a network over an existing state-of-the-art approach. We

also demonstrate the stability of the eNodeB status from various perspectives. Ad-

ditionally, we observed decrease number of eNodeB on and offand handover. Also,

we observe the reduced energy consumption with longer sleepduration.
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1.5 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we give an

overview on the issues of evolution of cellular networks, SDN, and NFV. Chapter 3 re-

view related work dealing with the location management and energy saving with eNodeB

cooperation. Also, the previous studies on cellular networks with SDN and NFV are dis-

cussed. In Chapters 4 and 5, we identify problems of cellularnetworks in regards to

location management and energy efficiency and propose thoseas a virtualized network

function. Finally, Chapter 6 summarizes and concludes thisdissertation and discusses

future research goals.
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CHAPTER 2

BACKGROUND

Cellular network systems have revolutionized communication among people and

provide services to make people connected over mobile networks. The First Generation

(1G) refers to analog cellular technologies and has fulfilled the basic mobile voice. The

Second Generation (2G) denoted initial digital systems andhas introduced capacity and

coverage. Currently, Third Generation (3G) and Fourth Generation (4G) technologies is

evolving to fulfill challenges and expectations comes from significantly increased number

of subscribers and a large amount of data over cellular networks [9].

Evolving cellular networks include emerging technologiessuch as SDN and NFV.

SDN an emerging network architecture that allows dynamic and flexible network oper-

ations by decoupling the control plane from the data plane [27]. Introducing SDN to

cellular networks can enable simple network management andgive flexible design and

operation on the cellular networks. Meanwhile, the conceptof NFV is proposed by a

consortium of service providers [69] to address the problems of a large and increasing

number of hardware appliances for individual network functions. By consolidating and

virtualizing network functions to commercial off-the-shelf servers, it can reduce capital

and operating expenditures.

This chapter provides a high level overview of the evolutionof cellular networks

communication. In addition, we also include the objective and efficiency of SDN and
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Figure 2: Evolution of digital cellular networks

NFV.

2.1 Evolution of Cellular Systems

In order to satisfy the requirements of data traffic and provide various services,

cellular systems developed from the first generation to current LTE advanced networks.

The 1G mobile system used analog transmission for voice services. Compared to 1G

systems, 2G introduced digital multiple access technologies such as Time Division Mul-

tiple Access (TDMA) and Code Division Multiple Access (CDMA). The Global System

for Mobile communications (GSM) was deployed in Europe thatuses TDMA to support

multiple users and provide standard. The main components ofGSM system are Base

Station Subsystem (BSS) that contains Base Transceiver Station (BTS) and Base Station

Controllers (BSC). Also, the system includes Mobile Switching Center (MSC), Visitor

Location Register (VLR), and Home Location Register (HLR) for mobility management
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Figure 3: 2G/3G cellular network architecture [10]

of users. As data transfer increased, elements such as Servicing GPRS (SGSN) and Gate-

way GPRS (GGSN) were added. These elements handled the packet data and called

Packet Switched (PS) core network. In the United States, IS-95 that uses CDMA was

deployed.

The 3G was introduced since the need of providing services independent of the

technology platform and whose network design standards aresame globally. The Inter-

national Telecommunication Union (ITU) defined the demandsfor 3G networks with the

IMT-2000 standard and an organization called 3G partnership Project (3GPP) has con-

tinued the work by defining a mobile system. In Europe the system was called UMTS

and WCDMA was used. The main elements were Base Station (BS, or NodeB), Radio

Network Controller (RNC), and SGSN/GGSN. 3G includes wide-area wireless voice tele-

phony and video calls in a mobile environment. Additionally, High Speed Packet Access

(HSPA) data transmission which able to speed up to 14.4 Mbps on the downlink and 5.8

Mbps on the uplink. The summary of evolution of digital cellular networks is presented

in Figure 2 and the architecture of 2G and 3G are shown in Figure 3 [10].
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Figure 4: 4G (LTE) cellular network architecture

With exponentially increasing user demand and various services, industries pro-

vide 4G, all-IP, mobile communication systems. The main difference between 3G and

4G is that the functionality of RNC and BSC is now distributedto the eNodeB (evolved

NodeB) and gateways. Evolved Packet Core (EPC) is a new, all-IP based mobile core

network for the 4G networks. The EPC provides functionalities that 2G/3G has achieved

through two separate domains: CS for voice and PS for data [10]. Current LTE cellular

architecture of 4G is shown in Figure 4. In LTE networks, a logical group of cells is

called the Tracking Area (TA) and the ID of the TA is broadcastby its eNodeB (similar

to the Base Station in 3G networks). The TA information of an mobile user is tracked by

the MME. The MME is the control node that processes the signaling between the mobile

user and the core network. The location information of the mobile users resides to the

HSS(similar to the HLR in 3G networks). The mobile users can be in two modes: ’idle’
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and ’connected.’ The idle mode means that the mobile user does not have a dedicated

connection to the network, but the mobile user listens to thebroadcast channel. A con-

nected mode means that a mobile user has a dedicated connection to the network and has

voice or data transmission.

Although current cellular networks are providing high quality services for their

subscribers, it is challenging to satisfy all the requirements. The limitations of current

networks are listed as below [52].

• Complex network management: Most of the backhaul devices has lack of common

control interfaces. Configuration and policy enforcement requires a proper amount

of effort.

• Inflexibility: Due to the manually intensive service activation and delivery, imple-

mentation of new service takes weeks or months. Also, introducing new services

takes several months or years since the standardization process is a long lasting

process.

• Complex and expensive network devices: The devices in the core network such

as Packet data network Gateway (PGW) are responsible for many significant data

plane functions.

• Higher cost: The operators do not have flexibility to handle the devices from dif-

ferent vendors. This increases the Capital expenditure (CAPEX) and the manual

configuration increases the Operational expenditure (OPEX).
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Figure 5: Comparison of traditional network and software-defined networking

2.2 Software-Defined Networking

SDN is an emerging network architecture that supports programmable interface

which provides flexibility and agility on the network control management. The SDN

architecture allows dynamic and flexible network operations by decoupling the network

control plane from the data plane [27]. Decoupled control plane is abstracted to inter-

act and handle all the underlying network devices and calledSDN controller. The SDN

controller can run on a commodity server and gives logicallycentralized control. This mi-

gration of control simplifies the network management and enables new services. SDN is

originally designed for fixed networks, but it also gives thebenefits to wireless networks

that have different requirements such as mobility management, efficient protection of the

air interface, and higher quality of service.

Here, we present the various benefits of adaption of SDN concepts wireless net-

works [52].

• Logically centralized controlling: A centralized controlmake decision for control
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plane based on the global view of the network. Compare to the existing mecha-

nisms, the decisions are more accurate, optimum and efficient.

• Flexibility: The controller is able to control any SDN-enabled network component

from any vendor. This allows network operator to mix and match the network

elements from different vendors.

• Higher rate of innovation and opportunity for new services:The network pro-

grammability and common Application Programming Interfaces (APIs) accelerates

business innovation in the networks. The operators are allowed to test various novel

applications for quick innovation.

• More granular network control: Dynamic change on control policies based on the

network behaviors is possible because the flow control policies are applied at a very

granular level.

• Heterogeneous network support: End-to-end communications across heterogeneous

network technologies such as GSM, 3G, and 4G can be provided with flow-based

traffic transport model.

Introducing SDN to cellular networks enables simple network management and

give flexible design and operation on the cellular network with the benefits above. The de-

coupled control plane is illustrated in Figure 5 and compared with traditional network.By
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Figure 6: Control plane and data plane in current cellular networks

applying SDN to cellular network, we bring the benefits of SDNto current cellular net-

works. As presented in Figure 6, both control plane and data plane resides on each eN-

odeB in current cellular networks. Thus, all the control plane management such as ad-

mission control, handover, and resource allocation is controled by each eNodeB. Also, a

set of eNodeBs is involved in order to make decision on network management. Compare

to current networks, Figure 7 illustrates that control plane of each eNodeB is moved to

SDN controller. With migration of control, eNodeB control and network management is

simplified. Furthermore, the controller has centralized view of the network and brings

many benefits such as reduced management cost and agility on new service deployment.

Recently, a number of studies from universities and industries have been involved

to develop and improve cellular network with SDN architecture. Redesign of the RAN

using SDN principles for load balancing and utility optimization is proposed in [35].

Improvement of the scalability and flexibility of cellular core networks with SDN have
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Figure 7: Control plane and data plane in cellular networks with SDN

been presented [43].

2.3 Network Function Virtualization

Meanwhile, the concept of NFV is proposed by a consortium of service providers [69]

to address the problems of a large and increasing number of hardware appliances for indi-

vidual network functions. NFV aims to leverage standard IT virtualization technology to

consolidate many network equipment types onto industry standard high-volume servers,

switches, and storage [32]. By consolidating and virtualizing network functions to com-

mercial off-the-shelf servers, it can reduce capital and operating expenditures. The control

functions in eNodeB that can be virtualized are showned in Figure 8.

Although NFV can be implemented without a SDN being required, the two ap-

proaches can be combined and has potential of greater results. While NFV concentrates
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Figure 8: Cellular networks with virtualized network function

on the services, SDN focuses on the network automation that enables policy-based deci-

sions to orchestrate which network traffic goes where. Thesetwo technologies are the key

to innovate the network to keep pace with the requirements ofmobile users and devices

its connecting [32,69].
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CHAPTER 3

RELATED WORK

Before we discuss our proposed methods, this chapter presents previous works on

individual location management and cluster-based location management. Additionally,

we discuss BS sleep/wakeup schemes and evolving cellular network with SDN and NFV.

Based on the previous works, we point out the problems and insufficient part for the future

cellular networks.

3.1 Related Work of Location Management in Cellular Networks

Location management is necessary in cellular networks in order to keep track

of idle mobile users within the network and forward calls. There are two main tasks in

location management, namely the tracking area update and paging. A tracking area update

is an operation by which a mobile user reports its new location, and paging is initiated by

an eNodeB when an incoming call arrives to find the callee’s location. Once a mobile

user moves to a new TA, a mobile user needs to perform a tracking area update to keep

its location updated in the MME. When the network needs to forward an incoming call

or data to an idle mode mobile user, the MME sends a paging message to all cells in the

mobile users’ last registered TA.

A TA is a group of cells that may be static or dynamic. The number of cells in a TA
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impacts the signaling traffic of the tracking area updates and paging. The higher computa-

tion and separate data storage for each mobile can be caused by dynamic TAs. However,

it can adapt to the mobility and call pattern of the mobile users resulting in reduced sig-

naling traffic. The static TA has been used in most of the current location management

systems, such as GSM, UMTS, and CDMA2000. In LTE, a mobile node maintains a list

of tracking areas that geographically center around the initial location [50]. Since it is

still only for one-to-one calls, it is not readily made efficient for group communications

as it is. On the other hand, LTE provides a flexible architecture for virtualized network

functions.

Many location management schemes have been proposed for regular one-to-one

calls (thus, using an individual based approach) such as [8,17, 58, 63, 78] that attempt to

make the tracking area update decision based on a user’s temporal and spatial movement

patterns. Defining a TA or LA has been studied extensively to improve the performance

of location management. In [22], a method for selecting the optimal set of cells for each

static TA is proposed. Compared to a static TA, techniques for a dynamic TA are proposed

to dynamically adjust the size and shape of the TA for each individual MN. The TA varies

based on the MNs’ movement patterns and reduces the locationmanagement signaling

traffic overhead. The improved performance of dynamically overlapped TAs is shown

in [24,76,77].

A few techniques using algorithms of the neural network are suggested to add in-

telligence in location management systems. In [71], a profile-based scheme is improved
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to reduce the location update cost by combining back-propagation algorithms that imple-

ment the learning process. The location prediction methodsare proposed in [61] based on

the users’ movement history and the current state of the user.

Although these approaches would provide improved locationmanagement for

one-to-one calls, they do not exploit the redundancy of the mobility pattern that may

exist in group call applications. Furthermore, they do not address the significant burden

on a server and the control traffic overhead in the HLR or HSS for group calls that lead to

performance degradation.

Cluster-basedlocation management schemes have been proposed in [19, 38, 45,

51]. There are several extra-steps necessary for such cluster-based management ap-

proaches, including cluster establishment, cluster maintenance, and cluster leader selec-

tion. Since only the cluster leader performs a location update on behalf of other cluster

members, this reduces the cost of tracking area updates. Note that cluster-based location

management approaches can only apply to a cluster of users who share a similar mobility

pattern and cannot be directly used for location managementfor group applications. The

mobility pattern of the mobile nodes may not be the same (nor similar) for all mobile

nodes belonging to a group application.

Despite its crucial need, there has been little work to address the issue ofgroup

applicationsin cellular networks. To the best of our knowledge, our work is the first to

study location management for group applications that aimsto reduce the costs of both

tracking area updates and paging. We introduce the concept of a GLM that employs group
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Figure 9: Studies on energy saving in cellular networks

profile-based location management. GLM architecture is different from group-based pro-

filing architecture, as it is capable of handling profiles of alarge group distributed in a

large area, whereas a group-based scheme can only deal with aprofile within one TA.

3.2 Related Work of eNodeB Cooperation for Energy Saving

The concern on large energy consumption in cellular networks has triggered many

research efforts to reduce eNodeB energy usage. The controlof power in eNodeB is one

of the main methods for energy saving. Limiting power transmission that can reduce both

the amount of interference and energy consumption is discussed in [44]. However, it is

challenging because decreasing the eNodeB transmission power implies a limited impact

on the quality of service. In [72], dynamic power control during a period of low load such

as nighttime is suggested while ensuring full coverage at all times.
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Another dominant energy saving technique for eNodeB is energy-aware cooper-

ation in eNodeBs. Significant fluctuations of traffic load in cellular networks in space

and time due to users’ behavior is considered for eNodeB cooperation. Limited cell size

adjustment called ”cell-breathing” is suggested in [20]. The mobile user is handed off to

the neighboring cells by reducing a cell size through power control if the cell is under

heavy load or interference. Similarly, a more flexible concept called ”Cell zooming” is

presented in [59]. Cells adjust their size according to the network or traffic situation in

order to balance traffic load and reduce the energy consumption as well. Cell zooming

also allows the eNodeB sleep mode for energy saving, while the neighboring cells can

zoom out and help serve the mobile users cooperatively. For the cell zooming process,

both centralized and distributed algorithms have been developed. More on the eNodeB

sleep mode that is based on traffic load is presented in [40,56,67]. The traffic forecasting

technique for the sleep mode control is based on the daily traffic that was studied in [70].

The quality of service (QoS), which is a significant issue in cellular networks, has been

considered with control of the eNodeB sleep mode. In [29], the eNodeB activation and

deactivation policy maximizes multiple object functions of the QoS and energy consump-

tion, and in [21] each eNodeB estimates the distance of its mobile users and switches off

if there is no degradation of the QoS.

Moreover, concept of Self-Organizing Networks (SON) have been introduced in

3GPP standard that enables network management such as optimization and reconfigura-

tion to heal itself in order to reduce costs and improve network performance and flexi-

bility [13]. The concept of SON can be applied to achieve a large number of objectives.
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In [68], different use case for SON are discusses such as loadbalancing, cell outage

management, and management of relays and repeaters. The power efficiency and the

performance of SON techniques are investigated in [53,54].

Recently, heterogeneous network deployment based on smaller cells such as mi-

cro, pico, and femto cells has emerged as a promising technique that can possibly reduce

the energy consumption in cellular networks. In [26], the simulation shows that joint de-

ployment of macro and pico cells can reduce the total energy consumption by up to 60%

compared to a network with macro cells only. Additionally, micro eNodeB deployment

and switching on-and-off schemes of macro and micro eNodeBsare presented in [73].

Most previous studies are based on the predictable traffic variation in space and

time such as higher traffic during the daytime and a lower traffic situation at night-

time [40,56,67,70]. Our work is unique in that we exploit information beyond immediate

neighboring cells which is a global view of the network for better decision on energy

saving. To the best of our knowledge, our work is the first to propose an NFV for a cel-

lular network operation. Using SDN architecture, we could employ a cell management

algorithm that yields the best energy efficiency as well as cell stability.

3.3 Related Work of Cellular Networks with SDN and NFV

Current cellular networks supports a number of subscriberswho has frequent mo-

bility and realtime control and services. In addition, various types of services and larger

amount of data over cellular network presents challenges incellular networks. These fea-

tures bring emerging network architecture, SDN and NFV, to evolving cellular network
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to achieve challenges [12,48].

SDN allows migration of control-related functions to SDN controller and sim-

plifies the network management. Redesign of the RAN using SDNprinciples for load

balancing and utility optimization is proposed in [35]. Improvement of the scalability and

flexibility of cellular core networks with SDN have been presented [43]. NFV is known

as complementary approach to SDN that focuses on optimizingthe network services. The

architecture of virtualized evolved packet core (vEPC) that takes full advantage of NFV

and SDN is presented in [12]. vEPC provides flexibility in network configuration and

management and also accelerates the delivery of new services. Additionally, the concept

of virtualized radio access network (vRAN) that supports centralized radio base station

is introduced in [36]. In thier vRAN architecture, multi-site/multi-standard baseband unit

(MSS-BBU) is introduced for the flexible future cloud-basedRAN structure. The archi-

tecture includes multiple remote radio heads (RRHs) and oneset of MSS-BBUs and a

cluster of RRHs represent a new multi-standard cloud base station. Integration of SDN

and NFV on RAN is suggested in [28]. They pointed out the proposed architecture provies

benefits such as efficient operation, lower power consumption, agile traffic management

and high reliability.

Centralized control to RAN by decoupling BBU and RRH called cloud RAN (C-

RAN) is also presented in [55]. C-RAN centralizes the baseband processing resources

into a pool to solve problems of network deployment, interference, and power consump-

tion. The centralized control for RAN can support easy upgrade, multi-standard operation
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and maximum resource sharing. Additionally, C-RAN offers possibility for energy effi-

ciency with reduced number of eNodeB sites and low transmission power.
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CHAPTER 4

DYNAMIC LOCATION MANAGEMENT SERVICE

In this chapter, we describe the proposed group location management scheme. We

first introduce the concept and role of the virtualized network function for group location

management (GLM). GLM manages the information of the group,group members, and

the corresponding tracking areas with cluster profiles. Then, we discuss a dynamic profile-

based TA generation algorithm. Finally, we demonstrate howthe location management

scheme works with the GLM and the dynamic profiles.

4.1 Virtualized Network Function for Group Location Management

In order to accelerate the performance of group applications and alleviate sig-

naling traffic to/from the MME, we introduce a virtualized network function for group

applications as described in Figure 10. GLM is one of the virtualized network functions

(VNFs) that supports group applications.

Group members are the users of the same group applications and therefore, a mes-

sage to a group should be sent to all the members. They are likely, but not necessarily,

to share common activity areas and mobility patterns. Furthermore, each group is pe-

riodically profiled into clusters according to their geographic similarity by our dynamic

profiling algorithm to economize location management costs. Note that the meaning of

’groups’ used here is different from the one used in [19,38,45,51], where groups indicate
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Figure 10: Virtualized network function for group locationmanagement

a set of nodes that do share the same location area and mobility pattern, irrelevent to group

application call types.

A typical record for a group in GLM contains the description of the group, group

members, and the corresponding location areas with clusterprofiles that are explained

later. The used notations pertaining to the GLM are summarized in Table 1. Assume

Kg is the set of users belonging to groupg, where|Kg| is the number of members in

this group, andmg(∈ Kg) is an MN Id in the group. When a group member roams out

of its current TA,Lg
i , that consists of adjacent cellscgi , the tracking area update will be

performed by a group member to the GLM. Here,i indicates the cluster IDig of group

g. Note that the tracking area update and updated informationare handled by the GLM

without involving the MME.

When an incoming group call arrives, a paging request will besent to the MME

from the GLM. The GLM will send the TA information of the groupwith a paging re-

quest. With the TA information of the group, the MME doesn’t need to lookup the group

members’ tracking area stored in the HSS individually. The detailed processes of location

update and paging for group location management are demonstrated in Section 4.3.
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Table 1: Explanation of notations for group location management

Notation Explanation

g Group Id
Kg Set of group users belonging to groupg
mg MN Id before group profiling,m ∈ K
ig Cluster Id of groupg
mg

i Member Id of clusteri of groupg
P
g
i Profile of clusteri of groupg

Lg
i Index for tracking area for clusteri of

groupg
Ag Set of cells visited by group g
c Cell Id
cgi Cell Id in location areaLg

i of groupg
p̌ Residency probability matrix, size of

which is(|K|+ 1)× |A|
p̌[m, c] Probability that MNm stay in cellc,

wherem ∈ K
p̌[|K|+ 1, c] Summation of probabilities of group

members stay in cellc
p Popularity array

4.2 Dynamic Profiling Algorithm

We propose dynamic profiling algorithm based on Density-Based Spatial Cluster-

ing of Applications with Noise (DBSCAN) [31]. Dynamic profiling algorithm composed

with combination of density-based clustering algorithm and grid-based clustering algo-

rithm. DBSCAN is based on local connectivity and density functions. It discovers clus-

ters of arbitrary shape and handle noise. Additionally, only one scan is needed to discover

clusters. Although DBSCAN generate clusters for static objects, our improved algorithm

considers mobility by using cell residency probability andprofile. Cells which are in the
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Table 2: Comparison of clustering algorithms

Density-based clustering
algorithm (DBSCAN)

Grid-based clustering al-
gorithm (STING)

Profile-based cluster algo-
rithm (dynamic profiling
algorithm)

One scan Once for each grid One scan
Arbitrary shape and size Arbitrary shape and size Arbitrary shape and size
Handle noise Not sensitive to noise Consider noise as a group
No consideration on mo-
bility

No consideration on mo-
bility

Consider mobility

Maximum radius of the
neighborhood and Mini-
mum number of points of
that point

count, mean, s, min, max,
and type of distribution
(normal, uniform, etc.)

Cell-based residency prob-
ability, weight on profile,
and threshold

same LA should be adjacent and minimum number of group members is 1. Furthermore,

we periodically regenerate cluster for mobile users. Table2 shows comparison of exist-

ing clustering algorithms with our suggested algorithm dynamic profiling algorithm. A

conspicuous point of dynamic profiling algorithm is consideration of mobility on users.

In addition, dynamic profiling algorithm can detect a group which has only one member

since noise is also considered as a separate group.

To build clusters, we use member’s movement pattern such as cell residency prob-

ability. Aggregated cells based on the cell residency probability create cluster. The area

which contains members of the same cluster is considered as aone TA. Cell residency

probability is used as an input of dynamic profiling algorithm. In previous group man-

agement schemes, assumption is presented that group is initially defined. In our case,

however, group is not defined. Group members do not know each other or number of

members. In addition, the range and the shape of clusters arevariable. Members have
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Figure 11: ILM location update procedure

regular mobility pattern. However, group does not have mobility pattern. Thus, cluster

mobility pattern is random. We periodically regenerate cluster as designated in dynamic

profiling algorithm. Furthermore, we put more weight on previous profile. This gives

smooth change on the profile.

We now present our dynamic profiling algorithm that clustersadjacent areas into

arbitrarily shaped and sized TAs according to the MNs’ resident popularity in those areas.

We develop the dynamic profiling algorithm by enhancing the DBSCAN that is designed

for static objects, while cellular network users keep roaming without pre-determined mo-

bility areas. Also note that the entire coverage area is naturally partitioned into cells

managed by the deployed base stations. Therefore, we can consider the density on each

cell area rather than the density of each subscriber’s neighborhood as considered in the

DBSCAN. This allows us a significantly lower computational time than in the DBSCAN.
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Figure 12: ILM paging procedure

In our dynamic profiling algorithm, historical mobility, a weight (α), and a thresh-

old (θ), are used for profiling proper clusters that consist of a number of adjacent cell

areas. As presented in Algorithm 1, the dynamic profiling algorithm starts with an ar-

bitrary cell c that has not been visited, and the current popularityp[c] of cell c will be

calculated with the popularity in the last momentp′[c]. The computation of the average

residency probabilityp[c] is

p[c] = α · p′[c] + (1− α) · p̌[|K|+ 1, c] (4.1)

where p̌[|K| + 1, c] is estimated from the residency time of the group users in

this cell area, and weightα is employed to balance the influence of historical popularity

p′[c] and current popularity̌p[|K| + 1, c]. For the sake of smoothing the TA changes, we

suggest putting more weight on the previous popularity.

After that,p[c] is compared with thresholdθ, and if it is larger thanθ, a clusterig
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is formed and all users roaming in this TA belong toig. Furthermore, adjacent neighbors

are queried. If spatial adjacent clusters exist, they will be combined to reduce tracking

area update costs.

The dynamic profiling algorithm requires a little computational time and memory

space. It costsO(|Kg|) time to browse the residency probability for each user, where

|Kg| is the number of users in groupg, thenO(|Ag|) time for traveling every cell area to

cluster the entire coverage area, where|Ag| is the number of cell areas visited by groupg.

Finally, it takesO(1) time to all the neighbors of each cell area, and it maintains amatrix

to record all neighbors for each cell in advance. Consequently, the total time complexity

of the dynamic profiling algorithm isO(max{|Kg|, |Ag|}), where|Kg| is the number of

group members ing and|Ag| is the number of cell areas visited byg. Compared to the

time complexity of the DBSCAN, which isO(|Ag|log|Ag|) using anR∗ tree orO(|Ag|2)

without indexing [31], our algorithm has a smaller time complexity.

On the other hand, the dynamic profiling algorithm occupiesΘ(|Ag|) space for the

neighborhood for each cell area andΘ(|Kg|) space to track each subscriber’s residency

probability. Therefore, the total space complexity of the proposed dynamic profiling al-

gorithm isΘ(max{|Kg|, |Ag|}).

4.3 Group Location Management Procedure

With the assistance of GLM and the dynamic profiling algorithm, the group loca-

tion management can efficiently perform cellular localization with minor changes in cur-

rent cellular networks. The location management of one-to-one calls may not be changed
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Figure 13: Proposed tracking area update with GLM

with this GLM scheme. However, GLM can be of assistance in theMME’s maintaining

the updated location information in an efficient manner using aggregated information.

Our proposed group location management scheme includes three algorithms: a

profiling algorithm, a tracking area update algorithm, and apaging algorithm. A profiling

algorithm is proceeded by GLM in order to partition a profiledarea into non-overlapping

groups of cells that are TAs. This process is presented in Algorithm 1 and arbitrary shaped

and sized TAs are depicted in Figure 13. After the group profiling, TAs can be enlarged or

shrunk by the MNs’ movement and shape can be changed as well. The GLM also assigns

a unique Id for each TA and the TA Id, and profiles of the group are periodically broadcast

from the BS to the MNs as described in Algorithm 2.

The procedure of the group location management tracking area update is shown
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Figure 14: Proposed paging with GLM

in Algorithm 3. Compared to the tracking area update of the ILM, the GLM shows a

less number of tracking area updates. In Figure 11, there aretwo different tracking area

updates, since there are two different MNs’ TA boundary crossings. However, not all

the TA boundary crossings generate location updates in GLM tracking area update. In

Figure 13, there are two different movements, an MNm1
1, which is across the boundary

from L1 to L2 andm1
2, which is across the boundary fromL2 to L3. Whenever the MNs

sense a TA change, the MNs check whether a new TA Id is in the profile of the group or

not. In this example, only one tracking area update fromm1
2 is performed since the new

TA Id of m1
1, TA2, is already in the profile of group Id 1. Then the tracking areaupdate

message for TA3 is sent to the GLM. The GLM responds with a confirmation message to

the MN who just moved intoL3.
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Figure 15: Sequence diagram for ILM tracking area update

Additionally, the number of paging messages is also reducedwith the group lo-

cation management scheme. As described in Figure 12, ILM’s paging requires two indi-

vidual paging messages in order to send two different calls even though the callees are

in the same TA, while we observe that GLM sends a paging message once for all the

group members in Figure 14. In the figure, a group call is initiated to members of group

1, the call travels through the GLM and paging area determined by the group profile of

group 1. The GLM simplifies the paging process and reduces thetraffic to the MME. Fur-

thermore, the size of the paging area and delay can be reducedby simultaneously paging

the last updated TA for each cluster. The procedure of this paging scheme is shown in

Algorithm 4.
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Figure 16: Sequence diagram for ILM paging

4.4 Benefits of Group Location Management

The benefits of our proposed group location management scheme are two fold.

First, movements outside of a tracking area are reported to the GLM instead of the MME,

which diminishes the overhead of control traffic to/from theMME and the database

lookup operation [46, 64]. This alleviates the performanceproblem of the HLRs and

VLRs in the GSM, UMTS, and CDMA2000 cellular networks [23], and MMEs in the

LTE [50]. Second, the centralized information on the GLM makes it possible to perform

dynamic profiling of a group rather than individuals, and this leads to fewer tracking area

updates and paging costs, as analyzed in Section 4.5.

In order to elucidate how the interactions and order of processes are different

between ILM and GLM, we describe both ILM and GLM with sequence diagrams. While

ILM simply checks the new TA Id with the previous TA Id to make the decision for a
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Figure 17: Sequence diagram for GLM tracking area update

tracking area update, GLM compares the new TA Id with the profile of the group in which

the mobile user belongs. As shown in Figure 15, every mobile user needs to perform a

tracking area update even though mobile users are in the samegroup; however, Figure 17

shows that GLM reduces the number of tracking area updates byconfirming the group

profile. Paging also takes benefits. Compared to the ILM in Figure 16 that sends a paging

message to each mobile user, the GLM in Figure 18 sends a paging message only once

for all the members of the group since the paging messages processed by the TA Id. The

GLM enables this by checking the TA Id in periodically updated group profiles so that

there can be reduced interaction to the MME.
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Figure 18: Sequence diagram for GLM paging
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Algorithm 1 Dynamic profiling algorithm

input Residency probability matrix̌p, popularity
arrayp, α, threshold θ
output cell areas in each cluster; group user Ids in
each cluster
for every usermg ∈ Kg

Cumulatep̌[m, c] for cell areac in p̌[(|K|+ 1), c];
end for
for each cell areac that has not been visited

markc as visited;
calculatep[c] = α× p[c] + (1− α)× p̌[(|K|+ 1), c];
if p[c] > θ

construct a new clusterig;
put all spacial adjacent cells in a new set
namedNeighbor
for each cell areab in Neighbor andp[b] > θ;

if b hasn’t been marked as visited
markb that it belongs to clusterig;
mark users inb as members ofig;
markb asvisited;

elseexpand clusterig with the cluster
which cell areab belongs to

end if
else for

end if
end for
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Algorithm 2 Profiling

input group Idg, member Idmg, residency probability
matrix p̌, popularity arrayp,
output Clusters with assigned Idig, profile of groupPg

i

Calculate profiled clusters using Dynamic Profiling
Algorithm 1
for every cluster

assign cluster Idig;
end for
Broadcast cluster Idig and profile of groupPg

i periodically
from eNodeB to MNs

Algorithm 3 Tracking area update

input new clusterig, profile of groupPg
i

output updated profile of groupPg
i

if mg
i moves or turns phone on

mg
i listensig, profile of groupPg

i ;
if ig is not included inPg

i

mg
i performs tracking area update to GLM;

else
no tracking area update;

end if
end for

Algorithm 4 Paging

input group Idg
output every cells inPg

i

Get profile of groupg from GLM
for everyig in P

g
i

for every cell areac in ig in P
g
i

perform paging simultaneously through MME;
end for

end for
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4.5 Analysis for Signaling Traffic Overhead Analysis

In this section, we illustrate the possible savings of our GLM in signaling traf-

fic overhead and average paging delay by comparing them with atypical ILM through

theoretical analysis. Notations used in this section are summarized in Table 3.

We first show the benefit of our scheme in traffic overhead by analytically compar-

ing the total cost of our GLM with that of a typical ILM. Here, the total cost of a location

management scheme is defined as the signaling traffic overhead that is the summation of

the tracking area update and paging costs. In addition, as widely accepted in previous

research, the tracking area update cost is in proportion to the number of the TA boundary

crossings, while the paging cost is in proportion to the sizeof the TAs.

Suppose the tracking area update cost for each TA boundary crossing isCLU and

the unit cost for paging a single cell TA isCP . Moreover, assume that for an individual

mobile userm, its TA residency timetm, that is the time interval between two bound-

ary crossings, follows Gamma distribution, with density functionftm(·), mean1/λm, and

varianceVm; and the time interval between two group callstg follows exponential distri-

bution with mean1/λg [49]. Let us denotePrm(x) as the probability ofx tracking area

updates for group memberm between two group calls, then we have the expectation for

the total number of tracking area updates/boundary crossings per call arrival using ILM

as

E(x) =
∑

m∈K

∑

x∈(0,∞)

x · Prm(x) (4.2)
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where

Prm(x) =







1− λm

λg
[1− f ∗

tm
(λg)], x = 0

λm

λg
[1− f ∗

tm
(λg)]

2[f ∗
tm
(λg)]

x−1, x > 0
(4.3)

f ∗
tm
(·) is the Laplace-Stieltjes Transform of Gamma random variabletm with mean

1/λm and varianceVm [49], and it can be expressed as:

f ∗
tm
(s) = (

λmγ

s+ λmγ
)γ , where γ =

1

Vmλ2
m

(4.4)

Therefore, from Equations (4.2) and (4.3), the expected number of tracking area

updates between two group calls for ILM tracking area updates is

E(K) =
∑

m∈K

λm

λg

(4.5)

Meanwhile, the paging cost for ILM is

∑

m∈K

Sm · CP (4.6)

whereSm is the size of the TA that the mobile userm is located in. Therefore, the total

cost per call arrival for ILM is

∑

m∈K

λm

λg

· CLU +
∑

m∈K

Sm · CP (4.7)

On the other hand, consider the simplest GLM that the TAs for agroup are deter-

mined by simply combining adjacent TAs for each group member. Therefore, the size of

the group TAs is

⋃

m∈K

Sm (4.8)
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Figure 19: Comparison of Total Cost Consumed by ILM and GLM with Varied TA Over-
lap Ratio and Increased Residency Time∆

Notice that:
⋃

m∈K

Sm ≤
∑

m∈K

Sm (4.9)

Only if Sm1

⋂

Sm2
= ∅, wherem1 6= m2,

⋃

m∈K Sm =
∑

m∈K Sm. Whereas

in group applications scenarios, the MNs from one group usually have some common

mobility patterns, e.g., activity area, that results inSm1

⋂

Sm2
6= ∅, wherem1 6= m2.

Therefore, the paging cost for GLM is smaller than that for ILM

⋃

m∈K

Sm · CP <
∑

m∈K

Sm · CP (4.10)

Furthermore, it is easy to derive that:

⋃

m∈K,

Sm ≥ ∀m ∈ K,Sm (4.11)

which means that the combined TAs contain TAs computed by ILM. Thus, we can

derive that the residency time in the combined TAs ist′m = tm + ∆m, where∆m ≥ 0
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is the residency time form in adjacent cellcijl , wherecijl ∈ L′
j , andcijl 6∈ Lj . Then the

average residency rate form is

λ′
m ≤ λm (4.12)

For the sake of simplicity, assume the residency time for a mobile userm in com-

bined TAs follows Gamma distribution with mean1/λ′
m and varianceV ′

m. Then the ex-

pected number of boundary crossings is

E ′(x) =
∑

m∈K

∑

x∈(0,∞)

x · Pr′m(x) =
∑

m∈K

λ′
m

λg

(4.13)

where

Pr′m(x) =







1− λ′

m

λg
[1− f ∗

t′m
(λg)], x = 0

λ′

m

λg
[1− f ∗

t′m
(λg)]

2[f ∗
t′m
(λg)]

x−1, x > 0
(4.14)

As λ′
m ≤ λm,

E ′(x) ≤ E(x) (4.15)

Assumingλg = 20 min, λm = 5 min, and the ratio ofCLU to CP is 3, the total

cost is compared in Figure 19. As shown in Figure 19, GLM can save up to53% of the

total cost by reducing the expected number of boundary crossings and the paging cost and

an outperform ILM in signaling traffic overhead.

4.6 Analysis for Average Delay

Another benefit of our proposed GLM is that it can reduce the average delay when

group calls come. Intuitively, each group member is paged one by one in consecutive
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Figure 20: State transition diagram for paging requests queue in a MME using ILM

order using ILM; while all the group members that are locatedin the same TA can be

paged at the same time by broadcasting the group Id using GLM.By doing these, GLM

significantly cuts the average delay for group calls. In thissection, we compare the aver-

age delay between a typical ILM and our proposed GLM and present the possible delay

reduction by utilizing our GLM.

As assumed in section 4.5, the time interval between two group callstg follows

exponential distribution with mean1/λg. For simplicity, we only consider the average

delay ofκ out of |K| group members that are located in the same tracking area.

When a paging request arrives to an MME, it will be put at the end of the pag-

ing request queue. We assume that the MME processes paging requests according to

their sequence in the queue, and only one paging request is processed during a time unit.

Therefore, the newly arrived paging request will be severedafter all the requests that ar-

rived previously are processed [80]. Furthermore, due to the size limitation of the MME’s

memory, perhaps the maximum length of a paging request queueis n.

Without GLM, each group member will be paged in consecutive order according
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y(i, j)ILM =



































Poisson(λg, ε, 0), i = j + 1
Poisson(λg, ε,

j−i

κ
), 0 = i < j < n, mod(j − i, κ) = 0

Poisson(λg, ε,
j−i+1

κ
), 0 < i < j < n, mod(j − i+ 1, κ) = 0

1−
∑⌈ j−i−1

κ
⌉

w=0 Poisson(λg, ε, w), i = 0, j = n

1−
∑⌈ j−i

κ
⌉

w=0 Poisson(λg, ε, w), 0 ≤ i < j = n
0, others

(4.16)

y(i, j)GLM =































Poisson(λg, ε, 0), i = j + 1
Poisson(λg, ε, j − i), 0 = i < j < n
Poisson(λg, ε, j − i+ 1), 0 < i < j < n

1−
∑w=j−i

0 Poisson(λg, ε, w), i = 0, j = n

1−
∑w=j−i−1

0 Poisson(λg, ε, w), 0 ≤ i < j = n
0, others

(4.17)

to their Ids. So when a group call arrives,κ individual paging requests will be added into

the paging request queue. Since the group calls’ arrival is assumed as a Poisson Process,

with mean arrival rate ofλg, the probability that there arew arrived group calls, which

result inw · κ paging requests in any time durationε is

Poisson(λg, ε, w) =
(λgε)

we−λgε

w!
(4.18)

Let us denoteϕi as the probability that there arei paging requests in the queue; and

that the transition matrixYILM to describes the state transition probability between states.

Each elementyILM(i, j) in YILM represents the probability that the number of requests in

the queue changes fromi to j. We show the state transition diagram in Figure 20. Each

node in Figure 20 indicates a state that isi request in the queue. The directed link from

nodei to j represents there is a potential state transition from statei andj. Especially, the

labely(i, j) beside each link represents the transition probability of state transiting from
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Figure 21: State transition diagram for paging requests queue in an MME using GLM

i to j. We summarize the transition probabilityyILM(i, j) in Equations (4.19) and (4.16).

y(i, i)ILM =







































Poisson(λg, ε, 0), i = 0

Poisson(λg, ε, 1), 0 < i < n

κ = 1

1− Poisson(λg, ε, 0), i = n

0, others

(4.19)

Denote the probability vectorΦ as:

Φ = [ϕ0, ϕ1, . . . , ϕn]

where
n

∑

i=0

ϕi = 1 (4.20)

When the queue system is stable, we have

Φ · YILM = Φ (4.21)

whereYILM is the transition matrix for a queueing system in an MME with an ILM.
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Figure 22: Number of requests in the queue with varied numberof group members

By solving Equations (4.20) and (4.21) and obtaining the probability vectorΦ, we

can estimate the number of requests in the queue as:

n
∑

i=0

i · ϕi (4.22)

On the other hand, when using our GLM, an MME pages the group members by

using the group Id instead of the individual mobile user Ids,and the paging process of the

mobile users in one group can be completed at the same time. Asa result, we present the

state transition diagram in Figure 21 and the transition probability using GLMyGLM(a, b)

in Equations (4.23) and (4.17).

y(i, i)GLM =



























Poisson(λg, ε, 0), i = 0

Poisson(λg, ε, 1), 0 < i < n

1− Poisson(λg, ε, 0), i = n

0, others

(4.23)

We can compute probability vectorΦ by solving Equations (4.24) and (4.25) and

estimate the number of requests in the queue using Equation (4.26).
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Figure 23: Number of requests in the queue with varied average call rate

n
∑

i=0

ϕi = 1 (4.24)

Φ · YGLM = Φ (4.25)

whereYGLM is the transition matrix for a queueing system of an MME usingGLM.

LILM =

n
∑

i=0

i · ϕi (4.26)

Assume a group call arrives every two time units on average, and the MME com-

pletes the processing of each paging request in a time unit. In addition, the maximum

queue length is set to20. The average number of requests in the paging request queue for

the MMEs using both ILM and GLM are compared in Figure 22. As shown in this figure,

when the number of group members increases, more requests will be generated and stay

in the queue of an MME using ILM, which indicates a longer waiting time. However,

this does not impact a queue of an MME using GLM. We also examine the impact of the

52



average group call arrival frequency on the number of requests in the queue for an MME

using both ILM and GLM when the number of group members is fixedto 10 in Figure 23.

As depicted in Figure 23, when group calls arrive around every 3 time units, the queue

in an MME using an ILM will be fully occupied, so that newly arrived requests will be

dropped, while the queue in an MME using GLM can still handle paging requests even

when the group calls arrive every time unit.

4.7 Evaluations with both Real Data and Data from Mobility Model

In this section, we evaluate the performance of our locationmanagement scheme

with both real traces of human movement [7] and synthetic data from the human mobility

model. For the human mobility model, we use a SLAW (Self-similar Least Action Walk)

model [47] that generates the realistic synthetic walk traces. The SLAW expresses the

regularity, as well as the spontaneity trip patterns, in thedaily mobility of humans. The

main heuristic algorithm called the LATP (Least Action TripPlanning) generates heavy-

tail flights on top of fractal waypoints. People plan their trips over known destinations

(view waypoints as destinations) in a gap-preserving manner where they visit the nearby

destinations first before visiting farther destinations. We focus on observing the number

of tracking area updates and paging areas, in order to investigate the impact of profiling

and weight on the profile. In addition, we also observe the influence of self-similarity in

the users’ movement patterns for location management.
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Figure 24: Data analysis for real trace
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Figure 25: Data analysis for SLAW data

4.7.1 Data sets

The users move around in a 15000 by 15000 meter area that can berepresentative

of a large campus or city. The entire topology consists of 500cells. Detailed settings for

both data are shown in Table 4.

For the SLAW data, we set 5000 waypoints where the users selected several points
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Figure 26: Comparison of number of tracking area updates (α = 0.9,θ = 0.3,h = 0.75)
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Figure 27: Comparison of the sizes of paging area (α = 0.9,θ = 0.3,h = 0.75)

to pause during their movements. The pause time followed truncated power law distribu-

tion in the range of 30 seconds to a maximum of 6 hours.

From the real trace and SLAW data, we have several observations. We observed

that the users cross the cell boundary frequently; however,movement occurs in a small

number of cells. From the real trace, 50 percent of the users visited fewer than 10 cells

and 80 percent of them visited fewer than 20 cells. From the SLAW data, 70 percent of the
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Figure 28: Impact of the GLM parameters on number of trackingarea updates (Real trace)
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Figure 29: Impact of the GLM parameters on the size of paging area (Real trace)

users traveled within 10 cells and 95 percent of them traveled within 20 cells. However,

the average number of cell changes for all users in a day was 58times for the real trace

and 71 times for the SLAW data. Additionally, from the numberof cell changes, we

determined the time intervals of group profiling as 15 minutes for the real trace and 30

minutes for the SLAW data.
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Figure 30: Impact of the GLM parameters on the number of tracking area updates (SLAW
data)

4.7.2 Experiments

In this subsection, we discuss the experimental results obtained from the varied

parameters to the number of tracking area updates and the size of the paging area. First,

we compare our GLM with both spatial quantization (SQ) [65] and temporal quantization

(TQ) [65]. SQ groups the spatial adjacent cells into a cluster and performs tracking area

updates at the cluster level. TQ groups the set of consecutive cells visited by the MNs

and reports patterned movement to the network. Compared to our result, SQ showed

very similar results to our algorithm with a high threshold that generated a small TA.

TQ showed a better performance at the beginning, but it reached a similar amount of

tracking area updates as time went on. With real trace, the cumulated average number of

tracking area updates of the GLM showed a similar result to TQ, which is described in

Figure 26(a), and the GLM showed a better result with the SLAWdata in Figure 26(b).

In addition, the size of the paging area of the GLM was compared with both SQ and TQ
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Figure 31: Impact of the GLM parameters on the size of paging area (SLAW data)

in Figures 27(a) and 27(b), and those showed that the GLM has asmaller look up area for

both the real trace and synthetic data.

Next, we took a closer look at the impact of weight (α) and threshold (θ) on the

GLM that is depicted in Figures 28, 29, 30, and 31. We observedthat using a history

of the users’ movements resulted in better performance in a low number of tracking area

updates and a smaller size of the paging area from Figures 28(a), 29(a), 30(a), and 31(a),

as well. Impact ofθ is shown in Figure 28(b), 29(b), 30(b), and 31(b). Since the low-θ

generated a smaller TA, the GLM performed the smallest number of location updates with

the low-θ. In other words, we observed that the size of the paging area was the largest with

the low-θ. While the difference in the size of the paging area was smaller, the difference

in the number of tracking area updates was larger among varied θ. Furthermore, the cost

of tracking area updates was three times larger than the costof the paging area [75,79,80].

From this observation, we can infer that the total cost of location management is lower

for low-θ with our experiment’s settings.
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Figure 32: Impact of data characteristic using varied hurstparameters (α = 0.9,θ = 0.5,
SLAW data)

Figure 33: Worst and best cases of paging: Right before and after dynamic profiling

We also varied one of the characteristics of the user’s movements self-similarity

that is the hurst parameter (0.5< h< 1.0) in [47]. The hurst parameter controls the degree

of self-similarity of the user’s movement patterns. We observed that the number of track-

ing area updates was decreasing while the self-similarity was increasing in Figure 32(a).

This is because our method considered the geographical information while we profiled

the MN’s movement.

Finally, we examined the paging success rate with variedα and θ. Figure 33

depicts the best case and worst case paging scenarios. In oursimulation, since we have

the data that reports the users’ locations every 30 seconds,the best case paging was 30
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seconds later than the cluster regeneration and the worst case paging was 30 seconds

before the cluster regeneration. Table 5 shows the average paging success rate for each

threshold. We observedθ between 0.3 and 0.5 showed a high success rate. Also, we

observed that the paging success rate was higher while we used higherα in order to give

more incentive on the history of the users’ movement patterns.

4.7.3 Cost evaluation for location management

In this section, we evaluate the location management cost that consists of two

components: the tracking area update cost and paging cost. Also, we observe the effect

of the hurst parameter that can vary the self-similarity of the mobile users’ movement

pattern on the cost of location management.

In order to study the location management cost and understand factors that can

impact the cost, we used the average number of tracking area updates and the size of

the paging area that we obtained in section 4.7.2. From the result of section 4.7.2, we

already know that both the tracking area update cost and paging cost can be effected by

the size of the TAs and the self-similarity of the mobile user’s movement. The mobile

user’s movement can be classified as below.

• M cell
m : average number of movements of userm across cell boundary

• MTA
m : average number of movements of userm across the TA boundary

• MP
m: average number of movements of userm across the TA boundary within a

group profile
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Figure 34: Total cost with varied threshold

An mobile user will not perform a tracking area update for a cell boundary cross-

ing,M cell
m and a TA boundary crossing within a group profile,MP

m. Our expected average

number of location updates can be presented asMTA
m -MP

m. The number of tracking area

updates is considerably related to the self-similarity of the mobile user’s movement and

size of the TA. LetSm(θ) be a size of the TA wherem is located. Then, we can describe

the total cost of location management as below.

CTotal =
∑

m∈K

(MTA
m −MP

m) ∗ CLU +
∑

m∈K

Sm(θ) ∗ CP (4.27)

We first observed the location management cost of the real data and SLAW data.

Figure 34(a) depicts the total cost with real trace and Figure 34(b) shows the total cost

with SLAW data. The lowest total cost is shown with threshold0.5 in real trace and 0.3 in

the SLAW data. From this result, we recognized the effect of the size of the TA,Sm(θ),

on the location management cost.

However, the location management cost can be effected by self-similarity. We
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Figure 35: Total Cost with varied Hurst parameter values (h)

evaluated the total cost with the data that varied the hurst parameter on the SLAW data.

In Figure 35, we observed that the total cost is lower when we have higher self-similarity

in the users’ movement patterns. Additionally, threshold 0.3 has the lowest total cost for

hurst 0.65 and 0.75, but threshold 0.5 shows the lowest totalcost for hurst 0.85. Thus,

we suggest the range of thresholdθ that decides the size of the TA rather than an optimal

threshold.

4.8 Summary

The cellular networks are evolving with NFV architecture. We proposed a group

location management scheme as a virtualized network function in cellular networks for an

improved group application service. The presence of the virtualized group management

function efficiently facilitates the group location management task and enables a provider
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to handle a large number of members and groups that otherwisewould be impossible

in practice.The group profiling algorithm dynamically updates its group members’ loca-

tions information with clusters of cells or tracking areas that can be of arbitrary shapes.

We validated the efficiency of the proposed scheme with theoretical analyses as well as

experiments. The theoretical analyses showed the total signaling traffic cost and signif-

icant reduction of average delay. As for the experiments, weused both real traces of

human movements and synthetic human mobility data for the tracking area update and

paging costs. Moreover, we investigated the impact of the parameter that describes the

self-similarity of the human walk and suggested the range ofthe threshold that decides

the size of the TA. To the best of our knowledge, our work is thefirst to address the issue

of location management for group applications.

There are related challenges that need to be addressed in thefuture. The benefit

of the proposed architecture can be further substantiated with the development and eval-

uation of a group call signaling protocol that we plan to address in the near future. Also,

there is no human group mobility model at the moment, and it would be useful for eval-

uations of schemes for group applications. That will also enable us to perform a detailed

theoretical analysis of the proposed group location management scheme.
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Table 3: Explanation of additional notations used in analysis

Notation Explanation

ui
j Clusterj in groupi

CP Unit cost of paging a single cell
CLU Unit cost of a single tracking area update

operation
Prm(x) Probability ofx numbers of boundary

crossings for a mobile userm when using ILM
Pr′m(x) Probability ofx numbers of boundary

crossings for a mobile userm when using GLM
Sm Size of TA where a mobile userm is located
λg Average group call rate
tg Time interval between two group calls that

follows Poisson distribution
tm TA residency time for a mobile userm that

follows Gamma distibution
λm Average cell residency rate for a mobile userm,

which is also the mean value oftm
Vm Variance oftm
ftm(·) Density function oftm
f ∗
tm
(·) Laplace-Stieltjes Transformation of Gamma

random variabletm
κ Number of group members in an TA
n Maximum length of the paging request

queue
ϕi Probability that there arei paging requests

in the queue
YILM Transition matrix for paging process using
YGLM ILM/GLM scheme
y(i, j)ILM/ Element in matrixYILM /YGLM that
y(i, j)GLM represents the probability that the number

of requests in the queue changes fromi to j
Φ Set ofϕi, whereϕi is the probability that

there arei paging requests in the queue,
andi ∈ [0, n]
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Table 4: Data sets used

Parameters Real Trace [7] SLAW Data [47]

Number of users 39 100
Duration 10 hours 24 hours

Interval of data 30 seconds 60 seconds
Subgroup every 15 minutes every 30 minutes

Regeneration

Table 5: Impact of threshold on average paging success rate

Real Trace SLAW Data
Threshold Best Worst Best Worst

0.3 0.8910 0.8821 0.9166 0.9141
0.4 0.9038 0.8962 0.9244 0.9231
0.5 0.8949 0.8840 0.9167 0.9141
0.7 0.8853 0.8763 0.8654 0.8558
0.8 0.8821 0.8705 0.8545 0.8429
0.9 0.8833 0.8712 0.8494 0.8397
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CHAPTER 5

ENODEB CONTROL WITH SDN AND NVF FOR ENERGY SAVING

Limitations of cellular networks arise from vendor-specific configuration inter-

faces and communications through complex control plane protocols [43]. As shown in

Figure 36, a Radio Resource Control (RRC) such as mobility management, paging con-

trol, and security management are currently included in each eNodeB operation [42].

An emerging network architecture, SDN, simplifies network management and en-

ables researchers to innovate networking and communication by decoupling the control

plane from the data plane. By introducing the concept of SDN into cellular networks,

the control plane of eNodeB moves to a separated controller to enable global control and

efficient management in cellular networks. We suggest decoupling the network function

that focuses on optimizing energy consumption of eNodeB.

In this section, we present our proposed architecture, Siesta, in cellular networks

and cell management algorithms for energy efficient software-defined eNodeB control.

5.1 Siesta Architecture

We note that our proposed architecture is based on LTE or LTE-Advanced. The

eNodeB in LTE and LTE-Advanced is responsible for radio resource allocation, handover,

and paging control. [43] discusses the lack of central control of eNodeBs results in ineffi-

cient radio resource control.
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Figure 36: eNodeB (LTE, LTE-A) protocol stack with combinedcontrol and data planes

We suggest to virtualize the network function of the eNodeB power control with

placing Siesta above the network controller. The Siesta module handles the eNodeB

power control decisions such as sleep and wake-up modes, andassists user mobility and

handover process. The detailed functionality of the Siestain Figure 37 is as follows:

a) eNodeB power control: The eNodeB power mode is defined by the Siesta through a

cell operation algorithm. For power mode decisions, the history of previous power con-

sumption and network elements information is considered. The energy-aware cell man-

agement algorithm gives a decision on the eNodeB status and user coverage. The detailed

algorithm is presented in Section 5.4.

b) Mobility management: Depending on the eNodeB status decision, some of the users
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Figure 37: Siesta, a virtualized network function on SDN

will need to perform a handover. Mobility management includes establishment, configu-

ration, and a radio bearer maintenance between eNodeB and user.

Other RRC and information remains in the controller such as the establishment of

the RRC connection and security functions. The Siesta communicates with the controller

to obtain the network-wide view of the cellular network.

Figure 38 shows the view of the cellular network with Siesta.Compared to the

current LTE cellular network architecture illustrated in Figure 39, a controller with Siesta

is added without changing the core network. The controller is mainly responsible for

management of eNodeBs, users, and mobility information. With migrating the RRC from

eNodeB to the controller, it simplifies the role of eNodeB andmakes it easier to innovate

in resource allocation and management. Figures 40 and 41 illustrate the differences in

control and data flows between network elements due to the changed element in charge

of the RRC. The major difference is the removed control planeamong eNodeBs, such as
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an inter-handover and paging, since the eNodeBs are now mainly responsible for the data

plane. Information handled by Siesta through the controller is as follows:

• Set of eNodeBs with idi: {ei|i = 1, ..., k}

• Traffic load ofei: T i
curr,current traffic,T i

min, minimum threshold ofei, T i
max, maxi-

mum threshold ofei.

• Users’ spatial information: idi of current serving eNodeB and neighbor eNodeBs

for each user.

• Total energy consumption of a network in durationτ : P (τ)

The necessary global information includes the traffic load and coverage range in-

formation of each eNodeB and spatial information of the users. The information of current

and possible serving eNodeB will be used to identify user coverage for different eNodeB

status. With network-wide information and virtualized control, the network with Siesta

can simplify the management of eNodeBs.

5.2 Energy Control with Siesta

The operation of eNodeB can be divided into several mode: sleep mode, when no

user is served and eNodeB is in sleep; active mode, when the eNodeB serves the users;

increased mode when the eNodeB supports more users for theirneighbor eNodeBs. Let

us denote the power consumption of eNodeBs byPsl, Pac, andPin respectively. We use

the following power consumption model for the different modes of eNodeB. The active

mode power model is simplified from [14]. The power level of eNodeBi is determined

by
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Figure 38: Architecture of current LTE cellular networks

pi =















Pac +∆p ·Nin · Pt · C, increased mode;

Nsector · Pt · C, active mode;

Psl, sleep mode.

(5.1)

whereNsector represents the number of sector of eNodeB and number of power

amplifier per sector is assumed as a constant.Pt presents the transmission power and

the energy for cooling and power supply is simplified as a constant valueC. ∆p is the

percentage of power increase to cover more users andNin is the number of sector that in-

creased power in increase mode. We assumed the linear power increase in our evaluation

from the observation of [16] for both active and increased mode.

Our objective is to minimize energy consumption of a networkby coverage area

optimization with requirement of covering all users. Consider a cellular network with
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Figure 39: Architecture of Siesta

k eNodeBs andn number of users. Siesta computes the coverage optimizationeveryτ

times. While the current mobile users select their target eNodeB based on the signal

strength from the eNodeBs, Siesta determines the user coverage with a set of selected

eNodeBs in our proposed method.

Let us denoteU as a set of usersU = {u1, u2, ..., un}, andE as a set of eNodeBs

E = {e1, e2, ..., ek}. The Siesta will optimize the association between eNodeB and users

everyτ period. The energy consumption ofk number of eNodeBs can be expressed as:

P (τ) =
k

∑

i=1

pi(τ) · ai(τ) · τ (5.2)

Here,pi is the power consumption of eNodeBi, andai is an indication function

that is set to 1 when eNodeBi is in active or increased mode at theτ duration; otherwise,

ai is 0. Note that sleep mode is also considered as on because it consumes a certain
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Figure 40: Control and data flows among network elements of current LTE cellular net-
works

amount of energy,Psl.Therefore,ai can be expressed as:

ai(τ) =

{

1, eNodeBi is on;

0, Otherwise.
(5.3)

During an eNodeB status update, Siesta will consider the number of users under

the eNodeBs and select eNodeBs and their status according tothe cardinality of each

eNodeB. Then we have the set of selected eNodeBsE ′ = {e1, e2, ..., ek}

minP (τ),

subject to
∑

u∈U

uj = n,

ai∈E′ ∈ {0, 1}E ′ ⊆ E.

(5.4)

Here,uj indicates the userj that equals 1 when the user has an association with a

certain eNodeB at theτ duration; otherwise,uj equals 0.
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Figure 41: Control and data flows among network elements of Siesta

uj(τ) =

{

1, userj is associatedwith an eNodeB;

0, Otherwise.
(5.5)

5.3 Energy-aware Cell Management Algorithm in Siesta

We now present our energy-aware cell management algorithm that gives a better

decision on handover and eNodeB status for energy saving. Inour proposed algorithm, the

Siesta will find out the serving eNodeB for each user. Also, with centralized information

in the controller, we check the users’ spatial distributionand the status of the eNodeBs

beyond the surrounding neighbor eNodeBs to maximize the sleeping eNodeB.

We develop our algorithm by applying the set cover problem. Since the set cover

problem is known as an NP-hard problem, we developed a heuristic algorithm based

on [25] that can minimize the set of active eNodeBs. Our proposed cell management
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Table 6: Explanation of Notations used in Cell Management Algorithm

Notation Explanation

ei eNodeBs with idi
uj Users with idj
E Set of eNodeBs,E = {e1, e2, ..., ek}
U Set of users,U = {u1, u2, ..., un}
E ′ Set of active eNodeBs
T i
curr Current traffic of eNodeBi

T i
min Minimum traffic threshold of eNodeBi

T i
max Maximum traffic threshold of eNodeBi

pi Energy consumption of eNodeBi
ai Indication function of eNodeBi status
cj Indication function for association between userj

and eNodeB
P (t) The total energy consumption at timet

algorithm includes two parts: initialization and decisionmaking. Initialization algorithm

checks current status of eNodeB and identifies covered usersfor each eNodeB to initi-

ate cell management algorithm. Decision making part decidethe mode for eNodeB such

as sleep, active, and increased. The notations used in cell management algorithm is ex-

plained in Table 6.

Cell management algorithm initiated by change of the current current status of

eNodeBs and users as described in algorithm 5. When a certaineNodeB reaches thresh-

old T i
min or T i

max, Siesta identifies the covered users for each eNodeB,ei, with different

statuses such as the power increased mode, active mode, and sleep mode.

For example, if the set of covered users of eNodeBa, b, andc is

ea = {u1, u2, ..., uq}
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Algorithm 5 Initialization of cell management

input user setU = {u1, u2, ..., un}, eNodeB setE = {e1,
e2, ..., ek}, traffic thresholdsT i

curr, T
i
min, andT i

max

output a set of selected eNodeBs to be active,E ′

if (∃ T i
curr ≤ T i

min) or (∃ T i
curr ≥ T i

max) then
E ′ ← ∅;
identify covered users for eachei with different status;
sortE in descending order according to number of
covered users;

end if
return sorted eNodeB set,E

eb = {u1, u2, ..., up}

ec = {u1, u2, ..., ur}

Then, sort the eNodeB set in descending order according to the cardinality of each

status. The cardinality of the eNodeBs is|eb| = p, |ea| = q, |ec| = r with p ≤ q ≤ r. The

sorted eNodeB set is

Esorted = {(eb, ea, ec)}

From the returned sorted set of eNodeBs, algorithm 6 selectsan eNodeB that has

the highest number of uncovered users and add to the setE ′. We repeat this step until

all the users in the setU are covered by setE ′. However, if all the users under a certain

eNodeB are covered by other sets then we remove the eNodeB from the selected setE ′.

The cost of covering users can be expressed as:

ci = w(ei)/|ei ∩ R| (5.6)
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Algorithm 6 Energy-aware cell management

input sorted eNodeB set,E
output a set of selected eNodeBs to be active,E ′

while E ′ does not cover all users inU
select aei with the highest number of
uncovered users;
E ′ ← E ′ ∪ ei;
if all users underei covered by other setsthen

remove the setei fromE ′;
end if
calculate cost forci = w(ei)/|ei ∩ R|;

end while
return a set of selected eNodeBs,E ′

wherew(ei) is the weight of the eNodeBi andR is the set of users that are

uncovered whenei is picked. The weight of eNodeB,w(ei), can vary according to the

type and power level of eNobeB.

Finally, the algorithm returns the minimum set of active eNodeBs,E ′, that covers

all the users. We achieve our goal that minimizes the power consumption with a min-

imum set of active eNodeBs in a cellular network through the Siesta energy-aware cell

management algorithm.

We have extended our energy-aware cell management algorithm with recogniz-

ing the eNodeB sectorized antenna. Our proposed sector-based cell management algo-

rithm described in algorithm 7 has considered 3 sector macroeNodeB based on the study

of [14]. With sector-based cell management algorithm we aimto decrease the unnecessary

use of energy from the sector where no users are laid over.
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Algorithm 7 Sector-based cell management

input sorted eNodeB set,E
output a set of selected eNodeBs to be active,E ′

while E ′ does not cover all users inU
select aei with the highest number of uncovered
users;
define the sector information(ID) for each user
underei based on users’ spatial information;
E ′ ← E ′ ∪ ei(s1, s2, s3);
if all users underei covered by other setsthen

remove the setei fromE ′;
end if
calculate cost forci = w(ei)/|ei ∩ R|;

end while
return a set of selected eNodeBs,E ′

This algorithm also uses the sorted eNodeB set that is a returned value from al-

gorithm 5 as a input and select aei according to the number of uncovered users until all

the users are covered. For sector-based cell management, the Siesta defines the sector

ID for each user underei based on users’ spatial information. The important part of the

algorithm is that theei includes sector status information to add to the setE ′ as following.

E ′ ← E ′ ∪ ei(s1, s2, s3) (5.7)

wheres1, s2, ands3 indicates the three sector status that equals 1 when the sector

of ei is active; otherwise, the sector status equals 0.

As for the complexity of our proposed algorithm, it costsO(n) time to determine

whether all the users in setU are covered or not, where|U | is equal ton. A minimum
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subsetE ′ can be found inO(log k), where there isk number of eNodeBs in setE. Con-

sequently, the total time complexity of our algorithm isO(n log k).
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5.4 Siesta Cell Management

(a) SLAKE [60] (b) Cell zooming [59]

(c) Relax [33] (d) Siesta

Figure 42: Existing eNodeB sleep and wake-up schemes for energy saving (solid line:
control plane, dotted line: control message exchange for eNodeB sleep)

A global view of cellular networks provides benefits not onlyin power saving but

also in a control procedure. First, we describe the advantage in the control message ex-

change for RAN. Then, the reduced control message for the core network during the han-

dover procedure are compare to the current LTE cellular networks is illustrated. Finally,

we present the energy saving scenario that increases the number of sleeping eNodeBs

with the view beyond the neighbor eNodeBs.

79



0 2 4 6 8
0

5

10

15

20

25

30

35

Number of neighbor eNodeB

N
um

be
r 

of
 m

es
sa

ge
s 

(d
ur

in
g 

T on
+

 T
of

f)

 

 

Cell zooming−D
Cell zooming−C
Relax
Siesta

(a)Control message exchange (b)Comparison of message exchange

Figure 43: Control message of Siesta for eNodeB status change

5.4.1 Control Message Comparison

We first explain the control message exchanges of prior eNodeB sleep and wake-

up algorithms. Then we compare the number of message exchange with Siesta during the

transition of eNodeB status.

Description of previous studies: A distributed algorithmSLAKE[60] that communicates

with the only neighbors for eNodeB’s switch on-and-off and zooming is illustrated in

Figure 42(a). In this algorithm, each eNodeB has an RRC procedure so that the decision

for the sleep and wake-up mode is made by eNodeB itself after contact with its neighbor

nodes. Similarly, distributed schemes are proposed in [40,67]. Although these methods

suggest different algorithms, the eNodeB still needs to contact all neighbors for a deci-

sion. A centralized algorithmCell Zooming[59] that introduces a new component and

corresponding functionalities is described in Figure 42(b). For central control there is a
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cell zooming server that stores network information such asuser requirements and chan-

nel state information. The cell zooming server uses this information in order to make

a decision for network operations such as eNodeB cooperation. Despite the support of

the server, the eNodeB needs to exchange the control messagewith neighbors since RRC

management remains in each eNodeB. Another method in Figure42(c) that uses relay

stations and reduces the power instead of putting the eNodeBin sleep mode, namedRe-

lax is presented in [33]. In this method, they use the information of each user such as the

distance from a certain eNodeB to the users and energy consumption between a certain

eNodeB and users. In order to reduce the coverage of eNodeB which has low traffic, they

place relay stations (small cells) to cover the remaining users. Placement of relay stations

also causes communication overhead among eNodeB and the relation stations.

In Siesta, Figure 42(d), RRC is moved from eNodeB to the controller and Siesta,

and eNodeBs have been simplified. The decision for eNodeBs status is made by Siesta

and the control messages among eNodeBs are removed.

Control message during transition time: Control messages among Siesta, eNodeB, and

user are described in Figure 43(a). Users and eNodeBs updatetheir status periodically,

and the transition phase starts when the eNodeB receives a request from the Siesta. As

described in the figure,ton holds the time from traffic active request to the time that the

eNodeB completely reaches the active mode.toff means the duration from the sleep

request to a complete sleep mode.

Now, we observe the number of message exchanges while the transition time

ton + toff for the eNodeB status changes. We assume that all messages provide the same
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Figure 44: Handover procedure with Seista

overhead even if the message exchange occurs between different network elements. For

example, the message between eNodeB and its neighbor and themessage between Siesta

and eNodeB are considered as the same. The number of control message exchange is

described in Figure 43(b) by comparing previous schemes in Figure 42. Existing schemes

show growth in the number of message exchanges while the number of neighboring eN-

odeBs increase. Relax shows the most rapid increase becausethe number of users is

considered in order to optimize the placement of the relay station. Here, relay stations are

considered as eNodeBs, and the total number of users followed the example in [33] since

we do not consider the number of users in analysis. Siesta shows the lowest number of

message exchanges since the control messages are not exchanged between eNodeBs as

described in Figure 42(d). Thus, Siesta isn’t effected by the number of neighbor nodes.
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Figure 45: Scenario: Initial step

5.4.2 Handover Procedure with Siesta

The benefit of Siesta is also revealed in the handover procedure. Figure 44 il-

lustrates the handover procedure in Siesta through the controller. Whenever the eNodeB

encounters the threshold, Siesta decides whether the eNodeB changes the status or not.

Suppose the decision is made to change the source-eNodeB (S-eNodeB) status. When

Siesta sends the status change request to S-eNodeB, the users covered by S-eNodeB will

receive the information. Then, the handover procedure starts.

The procedure can be described in three phases:

Phase1: Inform decision to access network S-eNodeB sends the request message for a

handover to Siesta. Siesta determines the new target eNodeBfor each user and informs

the handover decision to the target-eNodeB (T-eNodeB).

Phase2: Handover between S-eNodeB and T-eNodeB The handover command transfer

to the user through the S-eNodeB and the user will response tothe T-eNodeB with a
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Figure 46: Scenario without centralized view

confirmation message. The T-eNodeB notifies handover to Siesta.

Phase3: Report handover completion to the core network elements Siesta will forward

the relocation complete message to both source MME and target MME while allowing

the resource release from the S-eNodeB.

Compare to the traditional LTE handover procedure [74], thetotal number of mes-

sage exchange is reduced and the message to MME is significantly decreased.

5.4.3 Energy Saving Scenario

The global view of Siesta enables selecting the minimum set of active eNodeBs.

Figure 47 illustrates the scenario that information beyondthe neighbors empowers a re-

duction in the total energy consumption.

Supposee1, e2, e3, ande4 has low traffic with a nighttime traffic decrease. The

e5 also has low traffic ande6 ande7 have high traffic ande6 cannot support more users.
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Figure 47: Energy saving scenario with Siesta

The e8, e9, ande10 have medium traffic. Note that the users are described asUE in

Figure 46(a), and the users will be supported by the eNodeB which provides higher signal

strength.

Let’s assumee1 reaches a minimum threshold with lowest traffic and the traffic

of e2, e3, ande4 is close to the minimum threshold as described in Figure 46(a). Then

as illustrated in Figure 47(b) Siesta will calculate power consumptionP1 with the ex-

pected cell operation algorithm to reselect eNodeBs.P1 includes the sleep mode energy

consumption ofe1 and the increased mode ofe2, e3, ande7. In terms of handover,UE1

andUE2 are covered bye7, UE3 andUE4 are covered bye2, andUE5 is covered bye3.

However, Siesta considers beyond the neighbors’ status as illustrated in Figure 47. Siesta

knows thate2, e3, ande4 are close to the minimum threshold with low traffic ande8, e9,

ande10 can support the users frome2, e3, ande4, as well. If all of users undere2, e3, and

e4 can be covered by other eNodeBs, Siesta calculates power consumptionP2 for e2, e3,
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Figure 48: Architecture of LTE-Sim (Current LTE networks)

ande4 sleep. Finally, Siesta compares the power consumptionP1 andP2, then makes the

decision to sleepe2, e3, ande4 sinceP2 is smaller thanP1 as shown in Figure 47(c).

Here, if Siesta does not consider the neighbors’ status ofe1 thene1 will go to sleep

and other neighbors need to stay in active mode with increased traffic to take care of the

users frome1. However, with a global view of the network, some eNodeBs stay in active

mode if they have a possibility to make more eNodeBs sleep. Moreover,e5 gains a greater

possibility for the sleep mode by increasing the power ofe1.

5.5 Evaluations with LTE Simulator

We have conducted evaluations to assess the performance of Siesta cell operation

algorithm using a simulator called LTE-Sim [62] as well as trace-driven simulation. With

LTE-sim, we have compared Siesta with current LTE network. Also, performance of

Siesta is compared with a existing distributed algorithm [60] that is a representative sleep
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Figure 49: Architecture of SD-LTE-Sim (LTE-Sim with SDN architecture and Siesta)

and wake-up algorithm among various distributed control algorithms.

In order to compare the performance of Siesta cell operationalgorithm with cur-

rent LTE network, we have used a LTE network simulator named LTE-Sim. The simulator

is a open source framework to simulate LTE networks and supports multi-cell environ-

ments, user mobility, handover procedures and frequency reuse techniques. As described

in Figure 48, three network nodes are modeled: UE, eNodeB, and MME/GW. The net-

works nodes are controlled by one of the main componentsNetworkManager.

Table 7: Simulator Setting

Parameter Value

Cells Macro cells (varied)
User mobility model Random direction

Duplex mode Frequency division duplex (FDD)
Scheduler Proportional fair (PF)

Delay 0.1 ms

The NetworkManageralso handles the users handover procedure and updates
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(a) Varied number of users (b) Varied number of eNodeBs

Figure 50: Average number of active BS/eNodeBs (Upper surface: LTE-Sim with
sleep/wakeup, Lower surface: SD-LTE-Sim)

users position. The random direction mobility model is usedto simulate users’ mobility.

The handover decisions for each user are carried out by handover manager and performs

based on the signal strength. More detailed simulation setting is shown in Table 7. For

simulation, we have extended LTE-Sim. Figure 48 illustrates that handover decision is

made by eNodeBs in current LTE network. We implemented Siesta on LTE-Sim at the

NetworkManagerlevel and namedSD-LTE-Simto provide global view of the network.

The operations for sleep, wakeup, and handover is now controlled by Siesta as described

in Figure 49. Additionally, energy saving based on eNodeB sleep/wakeup and users’ han-

dover is monitored and controlled bySD-LTE-Sim. While observing the performance of

Siesta, LTE-Sim that presents current cellular network andSD-LTE-Simare compared.

First, we observed the number of active eNodeBs with varied number of eNodeBs

and varied number of users under each eNodeB over time. Figure 50(a) shows the results

with varied number of eNodeBs with fixed number of users per eNodeB over time. Here,
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(a) Varied number of users (b) Varied number of eNodeBs

Figure 51: Average number of handover (Upper surface: LTE-Sim with sleep/wakeup,
Lower surface: SD-LTE-Sim)

we observe less number of active eNodeBs fromSD-LTE-Simsince we have global view

of the network. In Figure 50(b) that varies number of eNodeBs, we also observe more

reduced number of active eNodeBs while we increase the number of eNodeBs inSD-

LTE-Sim. From this result, we found that Siesta produces better operation for larger area

coverage.

Next, the number of handover is observed over time with varied number of users

and varied number of eNodeBs. From both results from varied number of users and

eNodeBs, we found the reduced number of handover withSD-LTE-Simas illustrated in

Figure 51. Additionally, the number of handover reduces more while the size of the

network increases.

Finally, the total energy consumption is considered with different size of the net-

work and users. The Figure 52 presents thatSD-LTE-Simsaves energy compare to the

simple sleep/wakeup scheme.
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Figure 52: Comparison of total energy consumption between LTE-Sim (with
sleep/wakeup) and SD-LTE-Sim (Designated number of user under each eNodeB)

With LTE simulator, LTE-Sim, we found that Siesta provides better control on the

eNodeB status and users’ handover so that we can save energy on the network.

5.6 Evaluations with Trace-Driven Simulation Results

We have evaluated the performance of our energy-aware cell operation algorithm

on the larger size of the network and to observe the status of the network with real traces of

human movement collected from 3 different sites. We consider the users move around in

a202 km area that can be representative of a large campus or city and eNodeBs are placed

in a grid manner. The base eNodeB coverage range in the evaluation has a 1km radius as

a macro eNodeB. Specific power consumption and transition time of an on-and-off mode

follows [1].

For user movement data, we used real trace [7] from three sites: New York, Or-

lando, and NCSU. The total duration of user mobility is 12 hours and the interval of
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Table 8: Data sets used (Real traces)

Trace Site New York Orlando NCSU

Number of users 39 41 35
Total visited cells 72 cells 30 cells 45 cells

location information is 30 seconds. The number of users is 39in New York, 41 in Or-

lando, and 35 in NCSU. The total number of visited cells for each site is 72 cells in New

York, 30 cells in Orlando, and 45 cells in NCSU. Since the number of users of the traces

is relatively small, we assume all cells are initially active with the same level of static

users in each cell. The number of users and the total number ofvisited cells for each site

are described in Table 8. Since the number of users of the traces is relatively small, we

assume all cells are initially active with the same level of static users in each cell. Then,

user mobility is introduced from the human mobility traces creating dynamics of each

cell.

We have conducted evaluations of our energy-aware cell operation algorithm and

have compared its performance with a distributed algorithmthat is a representative sleep

and wake-up algorithm among various distributed control algorithms. In this algorithm,

every active eNodeB makes its own decision independently.

We first observe the effectiveness of Siesta in terms of cell energy saving. We

monitored the eNodeB sleep and awake status over time and compared the difference

between a distributed algorithm and Siesta. Here, we present the results for the New

York trace only due to space limitations. However, other traces exhibit similar patterns.

In Figures 53 and 54, a yellow cell means that its cell range isincreased, a green cell
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Figure 53: eNodeB sleep and awake status over time with a distributed algorithm

indicates that the eNodeB is active, and a blue cell denotes that the eNodeB is in sleep

mode. In the comparison between Figure 53 and Figure 54, it isclearly observed that

Siesta enables more eNodeBs to be in a sleep mode and less to beactive while covering all

the same users. By intelligently increasing a few eNodeBs’ cell coverage, the neighboring

cells find a greater possibility to sleep. The results with sector-based algorithm is shown

in Figure 55

We now directly measure and compare the energy efficiency with respect to the

achieved sleep time, the time spent in state transitions, and the total energy consumption
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Figure 54: eNodeB sleep and awake status over time with Siesta - more sleep eNodeBs
are achieved saving energy

of the network. We compared the sleep durations in each hour of data where the sleep

duration for most of the eNodeBs with Siesta is longer than the distributed cell-zooming

algorithm. The longer sleep instances also lead to less eNodeB mode transitions and lower

energy consumption.

Figure 56 shows the cumulative state transition time where the value for each

transition time between modes is set as 17µs following [1], and the transition includes all

changes to reach the new state such as active to sleep or active to increase. The cumulative

transition time exposes the longer sleep instances withoutfrequent status changes that
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Figure 55: eNodeB sector-based sleep and awake status over time with Siesta

indicate the stability in the network operation and energy saving. Figure 57 depicts that

the number of handovers also decreased with Siesta. This reduced number of handovers

correlates closely with the reduced number on mode changes.With this reduced status

change rate, eNodeB can stay in the sleep mode longer. The total energy consumption

is shown in Figure 58 comparing Siesta with the one without sleep and awake scheme

and the distributed cell-zooming scheme. The energy consumption of Siesta is clearly the

lowest with all three traces.
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Figure 56: Comparison of eNodeB benefits over time on transition time
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Figure 57: Comparison of eNodeB benefits over time on number of handovers
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Figure 58: Comparison of energy saving
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Figure 59: Comparison of eNodeB status stability over time with % of Sleep eNodeBs
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Table 9: Coefficient of variation of the number of sleep eNodeBs

New York Orlando NCSU

Distributed 36.6251 52.6345 43.0649
Siesta 10.2225 6.7843 6.1734

Next, we evaluate the variations of eNodeB status changes for eNodeB status sta-

bility. A smaller variation in eNodeB’s on-and-off status change indicates a lower proba-

bility of the ping-pong effect that is a well-known problem in cellular networks. The ping-

pong effect can increase the energy consumption with frequent on-and-off of eNodeBs.

It also causes frequent handovers that increase control messages to the core network and

decrease the users’ QoS. Table 9 shows the coefficient of variation on the number of

asleep eNodeBs, and Siesta is far more stable than a distributed cell-zooming approach.

To investigate the performance of Siesta in detail, the percentage of asleep eNodeBs over

time is shown in Figure 59. The percentage of sleep eNodeBs prominently fluctuates in a

distributed cell-zooming scheme. Meanwhile, Siesta displays a stable behavior over time,

as the virtualized cell management function uses a global view of the network and selects

the cells to be active where more users reside. That is, the cells considered as hot spots

will be in an increased or active mode. Moreover, the number of eNodeB status changes

in Figure 60 also shows in a smaller number and in stable change rate with Siesta.

In summary, the proposed Siesta leads to a greater number of eNodeBs in sleep

and for a longer duration than a state-of-the-art cell-zooming algorithm. Siesta also yields

greater status stability as well as energy savings for the whole cellular network.
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Figure 60: Comparison of eNodeB status stability over time with eNodeB status change

5.7 Summary

We have proposed Siesta (Software-defined energy efficient base station control)

that is a novel NFV of the cell management communicate with SDN controler. Siesta

provides significant benefits over the current cellular networks that suffer from inflexible

management and complex control. Through the eNodeB power control architecture and

the proposed algorithm, Siesta greatly improves energy efficiency in a cellular network

yielding the higher number of eNodeBs in a sleep mode as well as the longer sleep dura-

tions compared with other existing energy efficient techniques. The cell management ar-

chitecture and procedure also greatly simplify the controlover the sleep and awake modes

of eNodeBs and enable an agile handover operations. Siesta exhibits desirable operational

features of stability such as less control message exchanges, less eNodeB status changes,

and less handovers. We have validated the results through both LTE cellular network

simulator that improved with SDN architecture and extensive trace-driven evaluations for

98



observation on the larger network.
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CHAPTER 6

SUMMARY

The ubiquity of mobile telephony is rapidly expanding, especially with the pop-

ularity of smartphones in recent years. As data traffic and the number of subscribers

increase, there are a number of different challenges and requirements the mobile network

need to e able to handle. Moreover, the expectation on quality and services brings more

challenges to cellular operators and make cellular networks keep evolving. The agility,

flexibility, and manageability of the network can be achieved with SDN and NFV in

cellular networks. This dissertation specifically focusedon functionality of location man-

agement and energy efficiency in cellular systems that can bevirtualized. Furthermore,

SDN gives a centralized view of the network and brings betterresults.

First of all, we proposed a group location management schemeas a virtualized

network function in cellular networks for an improved groupapplication service. The

presence of the virtualized group management function efficiently facilitates the group

location management task and enables a provider to handle a large number of members

and groups that otherwise would be impossible in practice. The group profiling algorithm

dynamically updates its group members’ locations information with clusters of cells or

tracking areas that can be of arbitrary shapes. We validatedthe efficiency of the proposed

scheme with theoretical analyses as well as experiments. The theoretical analyses showed

100



the total signaling traffic cost and significant reduction ofaverage delay. As for the ex-

periments, we used both real traces of human movements and synthetic human mobility

data for the tracking area update and paging costs. Moreover, we investigated the impact

of the parameter that describes the self-similarity of the human walk and suggested the

range of the threshold that decides the size of the TA. To the best of our knowledge, our

work is the first to address the issue of location management for group applications.

For the location management, there are related challenges that need to be ad-

dressed in the future. The benefit of the proposed architecture can be further substantiated

with the development and evaluation of a group call signaling protocol that we plan to ad-

dress in the near future. Also, there is no human group mobility model at the moment, and

it would be useful for evaluations of schemes for group applications. That will also enable

us to perform a detailed theoretical analysis of the proposed group location management

scheme.

Secondly, we have proposed Siesta (Software-defined energyefficient base sta-

tion control) that is a novel network function virtualization (NFV) of the cell manage-

ment. Siesta provides significant benefits over the current cellular networks that suffer

from inflexible management and complex control. Through theeNodeB power control

architecture and the proposed algorithm, Siesta greatly improves energy efficiency in a

cellular network yielding the higher number of eNodeBs in a sleep mode as well as the

longer sleep durations compared with other existing energyefficient techniques. The cell

management architecture and procedure also greatly simplify the control over the sleep

and awake modes of eNodeBs and enable an agile handover operations. Siesta exhibits
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desirable operational features of stability such as less control message exchanges, less eN-

odeB status changes, and less handovers. We have validated the results through extensive

trace-driven evaluations.
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CHAPTER 7

FUTURE WORK

Mobile access networks will experience significant challenges on data rates, user

coverage in hot spots with low latency, and energy consumption. The number of subscrip-

tions exceeds the population in many countries and expect toreach 7.7 billion globally

by 2021 [30]. Also, the Internet of Things (IoT) is contributing to increase mobile traffic

with smart devices and wearable devices. To address challenges, 5G has already emerged

as a key method regarding the expanded connectivity and targeting commercialization in

2020.

The challenges and requirements for 5G mobile systems are outlined as follows [39].

• Data rate and latency: 5G networks are envisioned to enable an experienced data

rate of 300 Mbps and 60 Mbps in downlink and uplink, respectively.

• Multiple radio access technologies: Existing RAN, including GSM, HSPA+, and

LTE will continue to evolve to provide a superior system performance.

• Network-assisted Device-to-device(D2D) communication:D2D communication in

cellular networks is defined as direct communication between two mobile users

without traversing the BS or core network.

• Energy-efficient communication: Improve the energy efficiency of the battery con-

strained wireless devices.
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Figure 61: Architecture of future cellular networks

In detail, D2D communications was initially proposed in cellular networks as a

new paradigm for enhancing network performance. The emergence of new applications

such as content distribution and location-aware advertisement introduced new user cases

for D2D communications in cellular networks [15].

Furthermore, one of the main challenges in future wireless networks is to improve

the energy efficiency. A study estimating the energy consumed by mobile networks in

Sweden shows that over the past 6 years, data traffic increased over 13 times while energy

consumption grew by around 40 percent [30].

Based on our studies and the challenges of future networks, further development

can be continued on the virtualizing control functions of eNodeB. As described in Fig-

ure 61, radio resource control, configuration, and securityalso can be developed as VNFs.
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This can simplify the role of eNodeBs in the network and provide flexibility on manage-

ment. In addition, we also can extend and improve our work with user-centric concept

for heterogeneous deployment on RAN. For example, the eNodeB control can be done

based on users’ needs. Our current work shows that eNodeBs are active and perform

sleep and wakeup based on current traffic. However, eNodeB can be turned on whenever

users’ needs exist with user-centric concept. VNF of power control can handle various

size of eNodeBs such as macro cell, pico/micro cell and femtocell with global view of

the network and offer energy saving and better QoS to users.
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