
IMPROVING TRANSACTION ACCEPTANCE OF INCOHERENT UPDATES USING

DYNAMIC MERGING IN A RELATIONAL DATABASE

A THESIS IN

Computer Science

Presented to the Faculty of the University
of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
RYAN LINNEMAN

B.S., DeVry University-Kansas City, 2008
B.A., University of Missouri-Kansas City, 2011

Kansas City, Missouri
2015

IMPROVING TRANSACTION ACCEPTANCE OF INCOHERENT UPDATES USING DYNAMIC

MERGING IN A RELATIONAL DATABASE

Ryan Linneman, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2015

ABSTRACT

Despite its tenure, mobile computing continues to move to the forefront of technology and busi-

ness. This ever expansive field holds no shortages of opportunity for either party. Its benefits and

demand are abundant but it is not without its challenges. Maintaining both data consistency and avail-

ability is one of the most challenging prospects for mobile computing. These difficulties are exacerbated

by the unique ability of mobile platforms to disconnect for extended periods of time while continuing to

function normally. Data collected and modified while in such a state poses considerable risk of abandon

as there exists no static algorithm to determine that it is consistent when integrated back to the server.

This thesis proposes a mechanism to improve transaction acceptance without sacrificing con-

sistency of the related data on both the client and server. Particular consideration is placed towards

honoring data which a client may produce or modify while in a disconnected state. The underlying

framework leverages merging strategies to resolve conflicts in data using a custom tiered dynamic

merge granularity. The merge process is aided by a custom lock promotion scheme applied in the ap-

plication layer at the server. The improved incoherence resolution process is then examined for impacts

to the fate of such transactions and related bandwidth utilization.

iii

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engineering, have

examined a thesis entitled “Improving Transaction Acceptance of Incoherent Updates Using Dynamic

Merging In a Relational Database” presented by Ryan Linneman, candidate for the Master of Science

degree, and certify that in their opinion, it is worthy of acceptance.

Supervisory Committee

Vijay Kumar, Ph.D.

School of Computing and Engineering

Appie van de Liefvoort, Ph.D.

School of Computing and Engineering

Praveen Rao, Ph.D.

School of Computing and Engineering

iv

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

Chapter

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Optimistic Concurrency . 2

1.1.2 Pessimistic Concurrency . 2

1.1.3 Why Optimistic . 3

1.2 Problem Statement . 4

1.3 Outline . 6

2. RELATED WORK . 8

2.1 Cache Concurrency . 8

2.1.1 Invalidation Report . 8

2.1.2 Optimistic Concurrency Control with Update TimeStamp 9

2.1.3 Probability-Based Callback . 10

2.1.4 Adaptive Energy Efficient Cache Invalidation Scheme 11

2.1.5 Distributed Cache Invalidation Mechanism 11

2.1.6 Cooperative Approach to Cache Consistency 12

2.1.7 Extended LRU . 12

2.1.8 Fast Wireless Data Access Scheme . 13

2.1.9 Eventual consistency . 13

2.2 Interpretation . 14

2.2.1 Challenging Conventional Notions of Isolation and Consistency 14

3. APPROACH . 15

v

3.1 ACID Compliance . 15

3.1.1 Durability . 16

3.1.2 Atomicity . 16

3.1.3 Consistency . 17

3.1.4 Isolation . 18

3.2 Applying ACID to Naively-Optimistic Transactions 19

3.2.1 Constraining Facets . 19

3.2.2 Leveraging Hybrid Locking . 20

3.3 Negotiating State After Divergence . 22

3.3.1 Client Side . 22

3.3.2 Server Side . 24

4. IMPLEMENTATION . 30

4.1 Client Implementation . 31

4.1.1 Extensions . 31

4.1.2 Client Application . 33

4.2 Server . 37

4.2.1 Web API 2 . 37

4.2.2 Authentication Controller . 38

4.2.3 Jobs Controller . 38

4.2.4 Assets Controller . 38

4.2.5 Offline Controller . 39

4.3 Server Framework . 39

4.3.1 Change Set Processor . 39

4.3.2 Merging . 43

5. EVALUATION . 49

5.1 Property Proxies . 49

5.2 Change Set Acceptance . 52

5.2.1 Metrics Captured . 54

5.2.2 Metrics Computed . 55

5.2.3 Test Change Set Acceptance in the Face of Conflicts 55

5.2.4 Pessimistic Opt-in . 68

vi

6. CONCLUSION . 70

6.1 Property Merge Enhancements . 70

6.2 Data Access Layer Considerations . 71

Appendix

A. CLIENT API DOCUMENTATION . 72

B. CLIENT CODE . 87

B.1 Application Space . 87

B.2 Job Facilities . 99

B.3 Authentication . 113

B.4 Assets . 118

C. SERVER CODE . 126

C.1 Change Set Code . 126

C.2 Business DAL Scafold . 143

C.3 Merge . 155

D. PROPERTY PERFORMANCE DATA . 188

REFERENCES . 204

VITA . 207

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Relationship of optimism, pessimism, conflicts and availability 3

1.2 Pessimistic ambivalence to incoherence . 5

1.3 Optimistic update incoherence . 5

3.1 TA Lifetime Events . 21

3.2 High Level Overview of Process . 23

3.3 Client Negotiation Cycle . 25

3.4 Server processing . 28

4.1 Client Technology Stack . 33

4.2 Server Technology Stack . 37

4.3 Server Packaging Overview . 38

4.4 MergeAction<T> public interface . 44

4.5 MergeableAttribute public interface . 46

5.1 Property Access Performance . 51

5.2 Scenario 0 . 57

5.3 Scenario 1 . 58

5.4 Scenario 2 . 59

5.5 Scenario 3 . 60

5.6 Scenario 4 . 61

5.7 Scenario 5 . 62

5.8 Scenario 6 . 63

5.9 Scenario 7 . 64

5.10 Scenario 8 . 65

viii

5.11 Scenario 9 . 66

5.12 Scenario 10 . 67

5.13 Acceptance to Conflict Comparison . 68

ix

LIST OF TABLES

Table Page

3.1 Proper States of a Data Item . 16

3.2 Lookup of b meaning . 26

3.3 Formal Data State Definitions . 27

3.4 Terms Quick Reference . 29

4.1 Example cache partitioning in client. 34

4.2 Classifications of Divergent Data . 43

4.3 Implications of Values Present and Absent in MergeAction 45

4.4 Merge Result Bit Field Flags . 48

5.1 Scenario 0 Details . 57

5.2 Scenario 1 Details . 58

5.3 Scenario 2 Details . 59

5.4 Scenario 3 Details . 60

5.5 Scenario 4 Details . 61

5.6 Scenario 5 Details . 62

5.7 Scenario 6 Details . 63

5.8 Scenario 7 Details . 64

5.9 Scenario 8 Details . 65

5.10 Scenario 9 Details . 66

5.11 Scenario 10 Details . 67

5.12 Pessimistic Lock Test Details . 69

D.1 Property Performance Data . 188

x

CHAPTER 1

INTRODUCTION

Caching data locally is a proven means of reducing run time dependencies in a system and

enabling disconnected processing. As technology progresses, the complexity of cache implementation

grows with it. Now that mobile computing is coming of age, it’s plain to see how this holds true. Main-

taining both data consistency and availability is no minor feat in the field of mobile computing and these

opportunities continue to demand attention.

1.1 Motivation

Mobile computing fundamentally changes the landscape of cache design and management. It

brings a smattering of new technical constraints into the fold such as limited client side computational

capability, limited power availability, limited storage space, limited bandwidth, and the somewhat novel

constraints of location dependencies, dynamic routing, and non-deterministic host availability [3, 4, 5,

6, 11, 12, 13, 17].

Significant effort has been invested in understanding these new constraints, how they relate

to one another, and what can be done to mitigate any negative consequences each may have to the

overall performance of a system. Some of these efforts will be reviewed in detail in the following chapter.

Though, the net objective of these works consistently presents as one of reducing the occurrence of

attempts to utilize historical, or stale, versions of data, be it for read or for write access. Furthermore,

these works agree that an affinity for optimistic concurrency (OC) control mechanisms yields better

performance than pessimistic concurrency (PC) alternatives, particularly for mobile environments.

The gains from OC measures are predominately yielded in lighter bandwidth consumption, and

in turn, slower power depletion on the mobile unit. These gains result largely due to a reduced need

to keep the radio tuner(s) of the device active. Considering the magnitude of the costs required to

maintain a connection with a mobile unit, it is clear to see why stateless and OC models excel in mobile

1

UPDATE dbo.Employee
SET name = @p0

,modifiedOn = @now
WHERE employeeId = @p0

AND modifiedOn = @p1

Listing 1.1: Optimistic update with incoherence dectection and prevention.

environments. Since an OC model late binds its ability to successfully commit a transaction, the need to

keep real-time state of all data relevant to the transaction is bypassed. In addition, OC tends to support

higher degrees of parallelism and result in fewer messages exchanged [14].

1.1.1 Optimistic Concurrency

OC works by applying time stamps, row version numbers, or a modified date-time field to

records. Regardless of the field type, its value must be universally distinct over the life of the record

and all updates must produce a new value for the field. Adhering to these constraints guarantees con-

sistency in OC. Repeatition in the OC field for a particular record implies that record has returned to a

previous state at a later point. This is at issue with any updates which occurred between the restoring

version and the current version. Any version in that window is nondescript as it simultaneously de-

scribes both a historical value and a future value, which may never occur. Furthermore, if a client has

a cached copy of the record which represents the restoring version, their cache has implicitly changed

state from invalid to valid which could cause confusion. Updates against this model seeking to detect

incoherence would look like that of listing 1.1.

This form of OC works by hiding the current version from the stale version when the stale

version tries to update [7]. By simply looking at the number of rows affected by a given operation, it is

easy to see that the record sought after is either removed or updated since last read.

1.1.2 Pessimistic Concurrency

PC works through applying a lock to items. Locks can be read, read-write, write, exclusive,

shared, or any other variation the developer cares to code or is obliged to code per software require-

ments. Locks may be placed in-line or may be placed in a stand alone environment. A common

approach is to place them in-line. Using the in-line approach, attributes are added to a tuple (fields to

a table) which provide the functionality on the items to be locked with the id of the lock or holder. PC

2

UPDATE dbo.Employee
SET name = @p2
WHERE employeeId = @p0

AND lockId = @p1

Listing 1.2: Pessimistic update honoring in line lock.

naturally works well for conflict prevention by eliminating it altogether. Common filter clauses take a

form such as that used in listing 1.2.

1.1.3 Why Optimistic

Firstly, it should be understood that OC and PC in concurrency are not mutually exclusive

across the scope of a solution and may even cooperate at an item level. For a particular subset of

the entire problem domain of concurrency control, they are applied mutually exclusive. However, it is

entirely feasible that one component of the concurrency management system may function in one mode

while a sibling component may operate in the other as is the case in [6]. It is also possible to apply them

in tandem on an individual item to reduce communication costs as will be shown.

Pessimistic

O
p
ti
m
is
ti
c

Fig. 1.1: How optimism and pes-
simism affect conflicts and availability
of data.

As illustrated in Fig.1.1, the implications of each model

share a relationship. As an implementation drifts into more PC,

it becomes less available but also has fewer conflicts. While ad-

vancing in the OC spectrum yields higher availability but comes

with the added cost of more conflicts. In the world of ubiqui-

tous computing, the dominate motivating feature is availability.

Point in case, this feature is implied by the name. When dis-

cussing mobile computing, it should be implied that where pos-

sible, availability assumes priority.

This is not to say that availability is the end all however.

If the data is untrustworthy then it has no meaning when it is

available. Thus, the urge to make data available must be bridled with consistency. This directly corre-

lates with a desire to move back towards the PC end in the figure to reduce potential conflicts. Balancing

the requirements along these two traits exemplifies the need for robust concurrency control tailored to

its application. The delicate balance in trade offs between availability and consistency paired with the

similar parity of trade offs in mobile constraints serves to illuminate the scope of challenges addressed

3

in the works cited.

In discussing mobile platforms, it is intuitive that OC garner favor as it produces higher levels

availability over PC. The core challenges begin to surface when attempting to enforce consistency over

these models at the client level in order to retain integrity and value of the data.

1.2 Problem Statement

These relationships appear to coalesce nicely to justify and simplify what goes into designing

an efficient cache implementation for a mobile environment. However, caching in general suffers from

an intrinsic flaw of incoherence.

PC suffers incoherence differently than OC. They both suffer this imperfection but PC is some-

what shielded from it. As illustrated in Fig. 1.2, after a transaction reads a value, another process may

lock, update, and release it. Consequently, from the completion of t3 to the completion of t4, c2 operates

in an incoherent state. The impact is mitigated by the fact that in order to write, a lock must be acquired.

Acquiring the lock frequently includes an implicit read [7] of the data as shown. Note how t4 requests a

lock x and receives back x′. This effectively voids the incoherence and guarantees integrity of the write.

Thus, c2 is aware that it was incoherent but it does not matter since c2 now has a lock with exclusive

write access and has not yet written to x.

On the other hand, OC strategies prove particularly susceptible. The rather inane depiction

in Fig.1.3 demonstrates the idiosyncratic relationship between OC schemes and incoherence. In this

sequence, Once s accepts write x′ from c1, c2 is unconsciously operating with stale data.1 The im-

portant take away from this trivial exercise is that the data read in t1 can change at any time once a

transaction completes. This means that if the transaction completes before streaming data back to the

requester, as is frequently the case in environments like web services, the data may be stale by the

time it is received by the requester. Thus, there really is no point in time at which c2, or c1 for that matter,

can genuinely trust the data from s is authoritative until its next access. Here, incoherence results in

implicitly fickle data in the local cache for mutable data. This flows as a direct result of the isolation

tenant of ACID compliance for a traditional relational (RDBMS) or graph database, and of the inherent

isolation witnessed in columnar, document-centric, and key-value stores. This also explains why the

data of the OC environment for each Client is intrinsically unreliable and why OC bears an elevated

rate of transaction rollbacks over its PC counterpart.
1t2 could just as easily come before t1, or even concurrently with t1 since they are both reading.

4

Incoherence
realized

t5

t1

t3

t4

t2

c2:Clientc1:Client s:Server

release x''

write x''

lock x
x'

x''
edit

release x'

x'
edit

x
read x

write x'

lock x
x

Fig. 1.2: Pessimistic ambivalence to incoherence

t2

t3

t4

t1

c2:Clientc1:Client s:Server

write x"
fail:incoherent

handle
failure

x"
edit

read x
x

write x'

x'
edit

read x
x

Fig. 1.3: Optimistic update incoherence

5

The volume of effort spent in mitigating the issues around weak consistency for read operations

of OC models for mobile settings is entirely understandable. Given the ever growing prominence of mo-

bile computing, usage of stale data poses significant potential for losses in productivity and expense.

Furthermore, as demonstrated above, attempts to utilize stale data are an eventuality which must be

accounted for. As such, the boilerplate response to an attempted update using incoherent data pro-

duces a transaction rollback. This behavior is of particular interest as the data may be temporal or

location dependent and consequently costly or not possible to reacquire. This has obvious immediate

costs but also buried costs in the form of influences on future schedules.

Though the attempted invalid update is guaranteed over time, PC locking is reserved for critical

data points as the availability of data tends to trump its consistency. If transactions are rejected as a

result of the OC scheme, the loss of the transactions represents an often acceptable2, yet preventable,

loss.

This leads to the premise of this thesis. Over time, rejections due to technical constraints

imposed by the OC scheme will grow. Effort is made now to alleviate the accepted losses through

enabling a higher level of acceptance by loosening the definition of incoherence within the application.

1.3 Outline

This thesis presents a solution to the preventable loss of optimistic caching models when bring-

ing data back online without impacting the underlying caching architecture. Where the literature em-

phasizes prevention of stale writes, here the objective is to provide a more robust means of handling

their unavoidable occurrence. Special consideration is given to the scenarios in which long term offline

storage is sought to be reconciled, as this is near universally the area in which the caching models

reviewed break down. The only two covered in the related works which may not entirely choke on such

updates are covered in [1] and [15].

Leveraging shadow copy, OC to PC lock promotion, and record level data merging in a tradi-

tional relational database, it is shown that it is possible to improve the acceptance rate of transactions

while maintaining coherence of each item, and in turn, consistency across the application as a whole.

Support for multiple merge strategies as well as variable levels of merge granularity are used

to inflate the size of the reconcilable data set. A real world application serves as the basis for the proof
2While the loss is certainly undesirable, it is assumed to be acceptable. If the loss were unacceptable, the system should not

have been built in such a way as to permit this behavior. In such a circumstance, this behavior would constitute a defect in the
software in need corrective action.

6

of concept in implementation.

The effectiveness of dynamic merge granularity is vetted via tests cases. These tests are exer-

cised using a variety of permutations of each merge strategy and granularity to provide perspective as to

the performance implications of each model after a long term offline state as well as the improvements

possible by exercising tiered dynamic merge granularity as a whole.

The rest of this thesis is organized as follows. Chapter 2 reviews related work in maintaining

cache consistency in wireless networks and distributed systems. Chapter 3 calibrates the reader’s per-

spective of an update request with the implications of accepting stale data. Then, the above approach

to handle such request is expanded. Chapter 4 further expands upon the approach, offering an imple-

mentation to support it. Chapter 5 reviews findings from excising the work in the chapter 4. Finally,

chapter 6 provides a brief synopsis of the work and concludes this thesis.

7

CHAPTER 2

RELATED WORK

A worthwhile level of effort has been invested in exploring the nuances to cache management

in the mobile domain. This section explores inroads which have already been made.

2.1 Cache Concurrency

Cache concurrency is synonymous with cache invalidation and has been well researched in

traditional environments. Such research has produced multiple variants of cache consistency including

strong-, weak-, eventual-, delta-, probabilistic-, and probabilistic delta-consistency. Mobile computing

has elevated the urgency to improve the schemes over the years. Each of the works presented here

targets a distinct facet of the mobile conundrum with some overlap in between.

2.1.1 Invalidation Report

Invalidation Report (IR) was originally developed in [2] and has been cited, used, and extended

extensively since its inception. This method of cache invalidation works by pushing more coarsely

grained detail about updated information than had previously been exercised. Specifically, instead

of invalidating a single item, the message to invalidate an item includes information about additional

records which may be of interest to the intended recipient such as identifiers and timestamps of other

items. This method has proven useful to so many, in part because consistency is assured to variable

degrees and query and data availability is at most one IR transmission interval away. Furthermore, it

mitigates cache maintenance protocol overhead by reducing the volume of request needed to assert

validity.

IR supports synchronous and asynchronous flavors. The asynchronous mode is more akin to

the legacy invalidation message as it is broadcast on update and is generally used to obtain some form

of strong or delta consistency. In synchronous operation, the IR are batched for bulk delivery at a time

8

to be determined later and clients block on cache misses due to invalidation until receiving the next

IR. Synchronous mode is generally used to obtain some level of cache consistency less than strong

consistency yet stronger than weak consistency.

2.1.2 Optimistic Concurrency Control with Update TimeStamp

The Optimistic Concurrency Control with Update TimeStamp (OCC-UTS) described in [11] is

a hybrid approach which seeks to mitigate the up-link requirements by offsetting them with the broad-

cast capabilities of the mobile network. This is a stateless, backward validation protocol. A standard

backward validation scheme evaluates the read sets of transactions to the write sets of other transac-

tions [11, 8]. OCC-UTS is only a tweak to such validation so that rather than relying on inspection of

a change set within each transaction and collisions between them, the serializability determining factor

is the timestamp of the transaction. The logic for this protocol is split into two domains. One for server

and the other for client.

As far as the client is concerned, its logic is not all that dissimilar from a conventional request

based transaction manager. The client is weighted more heavily on the passive spectrum. When

attempting to update, the client will issue a transaction to the server and wait for a yay or nay response

back. Once received, if the result is in the affirmative, the client will commit the transaction locally and

resume normal operation. If, however, the result is negative, the client will abort its local transaction

and invalidate its cache. This guarantees that a subsequent attempt of similar nature will reacquire the

data necessary to facilitate the transaction, thus increasing the likelihood that it will succeed.

The server balances the client’s passive behavior by giving more credence to the active end

of the spectrum. The server logic emphasizes creating the IR. The IR is constructed by examining the

timestamp of update transactions and the updated items. If the timestamp for the update of the data

item falls within the update window, then it is added to the potential IR queue. If there exists any active

transaction referencing the data item then the record is added to the pending IR. When the window

elapses, the IR is broadcast rather than issued to specific hosts. In this way, majority of the heavy lifting

for transaction processing is offloaded from the server to the clients performing the updates.

This protocol is robust enough to function independent of cache availability on each local client.

This means that the protocol supports a heterogeneous cache availability environment [11]. The pri-

mary difference resides in the client processing in that it can bypass all cache references without chang-

ing its execution model. Regardless of the mode of operation of the client, the server’s execution re-

9

mains immutable.

2.1.3 Probability-Based Callback

Where OCC-UTS emphasizes minimizing communication, Probability-Based Callback (pCB)

targets communication and query latency with added value placed on its ability to adapt to heteroge-

neous networks prominent in mobile networks [16]. This protocol is predicated on the notion that the

communication cost and the access delay are adjustable and that they may be adjusted to fall within ac-

cepted values of the standard Callback (CB) and Push schemes. The valuable ability to make this claim

comes at the significant cost of converting the server behavior on update to become non-deterministic.

Consequently, this scheme is not independently strongly consistent. Strong consistency under this

scheme requires implementing locks at the application layer to prevent dirty reads and inconsistent up-

dates [16]. The authors intentionally neglected this aspect, making the assumption that this behavior is

likely to be implemented in the application layer any way.

Another important assumption made by this scheme is that the communication channel band-

widths in mobile networks are asynchronous, and that the down-link has greater bandwidth than the

up-link. This protocol will evaluate the communication costs of each up and down link control message,

the down link data transmission, and the latency cost for control and data messages independently. The

probability that an item becomes marked as invalid is exponentially weighted by its data communication

cost. The cheaper it cost, the more likely it is to be flagged as invalid after an update. When an item is

marked as invalid, the probability that it will be toggled back to valid is exponentially tied to the control

costs on both the down and up-link channels. Thus the more expensive the control costs become for

the item, the more likely it is to remain marked invalid so that when the IR is issued, the clients using it

need fewer control messages to keep it in sync. This model is very effective in mitigating costs asso-

ciated with transactions in mobile space and can easily self adjust to workload as the day progresses

and load shifts when people move. One of the more difficult things to adjust to is the indeterminate

nature of the IR which are issued. It is clear that in order to retain strong cache consistency, more must

be done to resolve the indeterminacy in the update procedure or risk lost updates and other artifacts of

lack of governance.

10

2.1.4 Adaptive Energy Efficient Cache Invalidation Scheme

Adaptive Energy Efficient Cache Invalidation Scheme (AEECIS) is a newer approach discussed

in [12]. This scheme is adaptive to current time constraints, volume of clients requesting updated data,

sensitive to bandwidth consumption and connection counts with the primary objective being energy

efficiency in the mobile unit (MU) facilitated by optimizing the time it spends with the tuner active. It is

important to note that this is a stateful scheme since it is conscious of the volume of users requesting

data as well as the data items being requested.

In this scheme, the server operates in one of three modes: slow, fast, and super-fast. While

in slow mode, the server IR being broadcast are limited to coarsely grained group identifiers. This is

a consequence of low request volume. Since the server can quite clearly tell that there are not many

incoming requests for updated data, it is more efficient to transmit everything in larger blocks so that the

consumer may make fewer requests and the channel is not congested with an excess of similar data

for others requesting the same data.

At some point, the request volume will pick up within a specific time interval. At such time,

the server will promote to fast mode. When it makes this step, the grain of the IR is refined, but is

still only transmitting invalidation identifiers. This allows clients to retain their cache validation and

invoke requests for only the select items which have decayed. Finally, if the server has detected a

significant hike in the request volume, it will jump up to super-fast mode. In this mode, the server will

be transmitting complete objects as opposed to just their identifiers. This helps to allow the large scale

usage of a specific data item while eliminating the need for the MU to individually request it. Eventually,

the workload will subside and begin to decay again. As this occurs, the server will begin stepping

backward, from super-fast to fast mode, then landing back to slow. This scheme was shown to be very

effective in stably being the most efficient when pitted against widely used schemes [12].

2.1.5 Distributed Cache Invalidation Mechanism

In [6], a means of maintaining cache consistency in mobile ad hoc networks (MANETs) named

Distributed Cache Invalidation Mechanism (DCIM) is presented. This is described as a client adaptive

time-to-live (TTL) based pull scheme, similar to the natural client server architecture which dominates

the internet today. Its objective is to statelessly improve the efficiency of cache updates within. Inside

the MANET the model architecture resembles that of a content delivery network (CDN) and the concept

is actually quite similar. Moving the data closer to the requesting nodes reduces the volume of hops to

11

acquire the data and in turn the latency to satisfy a query. Having the data available within the MANET

has the added advantage of each client node not needing to establish a connection back to the server.

Another benefit and distinction from CDN’s is that every node within the MANET may provide content as

a content node (CN). Again, significantly reducing the necessary number of hops for peers to acquire

data.

Moreover, DCIM introduces a custom cache invalidation procedure to ensure content within the

MANET is up to date. In DCIM, CN’s opportunistically use time-to-live (TTL) values to derive update

patterns and predict invalidation schedules for data which they are indexing. When communicating with

the server to update local content, the CN also injects administration messages for the server which

significantly reduces the requirements of the CN for connecting to the source server.

2.1.6 Cooperative Approach to Cache Consistency

This method, presented in [18], is a hybrid push-pull IR based cache consistency approach

designed for wireless mesh networks (WMN). In this approach there are four classes of entity; server,

gateway, router, and client. Servers are stateful, retaining a list of networks, not clients, which are

caching specific items. Upon update, the server issues IR to the the gateway(s) of relevant WMNs

predicated on its own cache placement model. Within a WMN, the gateway(s) own all IR and buffer

them to avoid network congestion. The IR are periodically issued from the gateway through the routers,

also known as MAPs, determined by elapsed time since last issue or optimal network packet size.

When issued, the MAPs process and forward the IR to all clients directly connected. Upon receipt of

an IR, clients and MAPs process the IR, invalidating its local cache as necessary. Since clients may

be offline, they may miss IR. If a client misses an IR, it can request a resend. IR which are re-issued

may come from the gateway or the client’s MAP. When any node receives a request for an IR, if the IR

is known to the node, the node will send it. However, if the node does not have the requested IR, it will

discard the request if another request for the same IR is pending at that node. When the IR requested

has not been requested previously, the request will be placed in a pending queue and forwarded up

stream.

2.1.7 Extended LRU

Extended LRU (E-LRU) [9] is an interesting and simple yet effective revision to the time tested

least recently used (LRU) cache eviction policy. As the author points out, LRU is a simple scheme but

12

often ineffective because it does not consider enough inputs and because other studies cited in that

work have shown object cache volume to perform object cache size consistently.

This technique partitions the cache into two tiers before applying the LRU principle. First Items

which have experienced only one request are given greater priority for eviction over items with more

than one. These items are treated with LRU directly. Next, items with more than one reference are

inspected for the inter arrival time of their two most recent accesses. Whatever item has the greatest

inter arrival time is elected for eviction.

Furthermore, as object cache size impacts cache performance, only items of size no greater

than half the total cache size are permitted entry.

2.1.8 Fast Wireless Data Access Scheme

Fast Wireless Data Access Scheme (FW-DAS) [10] is a revised pairing of Poll Each Read

(PER) and CallBack (CB). In this method, the network is bisected into the last hop between the mobile

unit (MU) and the base station (BS) and the wired route between BS and the application server (AS).

Caches are created on each MU and a larger cache exists on the BS.

Within the mobile space, the MU cache uses PER to invalidate its local data. This ensures that

MU is spending a minimal amount of time tuned into the BS for cache maintenance. Alternatively, the

BS is using CB to ensure data is available with minimal latency.

In this setup, the AS is stateful so as to know what BS to notify when updates to an object

occur. The BS is at least semi-stateful as both the BS and AS keep tabs on the popularity of items.

Knowing the popularity of an item serves to improve latency by allowing both nodes to be proactive in

deciding if a data item should be included as a part of the standard control messages in use.

2.1.9 Eventual consistency

Eventual consistency [15] is a form of weak consistency which guarantees that in the absence

of changes to data, all nodes participating will eventually hold the same state. The point in time at which

such a state could be achieved is non-deterministic and in practice does not happen at a system level

in large scale deployments. Individual data items however, will certainly become consistent over time

as the delay between their writes grows.

Limiting the system with this constraint allows for the refinement of cache granularity and offers

a few variations in other rules which may be applied to obtain styles of consistency conducive to specific

13

applications. Specifically, eventual consistency comments on the notions of causal-, read-your-writes-,

session-, monotonic read-, and monotonic write-consistency. This work also points out that this guar-

antee does not preclude combining the logic used in these modes. Furthermore, these modes only

outline rules governing how queries are to be processed, not the behavior or changes in the constraints

of the system.

2.2 Interpretation

Thus far, emphasis has been placed on the myriad of cache concurrency forms available.

These mechanisms for cache management serve to highlight the varying opportunities in distributed

data. As this thesis intends to improve the acceptance rate of transactions executed under erroneously

optimistic settings, focus will now be turned from cache strategies to evaluate other relevant propositions

in this area.

2.2.1 Challenging Conventional Notions of Isolation and Consistency

Till now, the literature has worked toward achieving a consistent state amongst distributed

nodes via some form of communicating shared state between all relevant parties. This communication

results in costly overhead and, as a matter of consequence, markedly reduced concurrency in standard

modes of operation. Invariant confluence [1] (I-confluence) elects to outright side step this overhead

where possible. The insight here is that conventional database isolation mechanisms operate on a

strictly read/write operation evaluation and a more macro view which considers the requirements and

behaviors of a system is preferred. Using this approach it is possible to materially reduce the overhead

costs incurred by coordination between nodes and between operations, often eliminating it.

I-confluence asserts that “coordination can only be avoided if all local commit decisions are

globally valid. [1]” Where it occurs that commit decisions are not globally valid, coordination must be

exercised to determine the proper course of action. At the time of this writing, there does not yet

commercially exist any query plan estimator capable of evaluating the satisfiability on a per query basis

in real time. However, using static analysis of a relational database’s schema and knowledge of the

invariants of the software system at large, I-confluence was shown to be viable, practical, minimally

sufficient to ensure isolation, and capable of satisfying the needs of concurrency control while all but

obviating it.

14

CHAPTER 3

APPROACH

Many issues in caching arise from the concern of the usage of stale data. The existing works’

emphasis is on preventing stale cache. The effectiveness of all of them deteriorate directly propor-

tionally to the duration for which a mobile unit and its cached data are offline. This thesis approaches

the issue of stale writes from an alternative angle and moves to resolve conflicting updates. In the

same way which PC works to preempt conflicts and OC moves to resolve them, the approach here is

to resolve the occurrence when it does surface.

3.1 ACID Compliance

If a transaction is to have any value it must be ACID (Atomicity, Consistency, Isolation, and

Durability) compliant, or at least observe the properties of ACID as in the context of [1]. This compliance

is what gives transactions the ability to provide the reliability and predictability required by businesses.

Achieving this compliance can be challenging enough in its own right, however introduce the need to

support intermittent connectivity and a very challenging problem is presented. Specifically, how does

one continue to assert ACID compliance in a system while not only its data, but also its operational

context is completely isolated (offline)? This question is relevant despite knowledge or predictability of

the occurrence or duration of such isolation.

Remaining functional at all times is the objective of mobility and caching is the tool to enable it.

However, as previously demonstrated, no data in cache may be considered as trustworthy so long as

it is externally mutable. Clearly this has ramifications to the ACID properties of business or application

level transactions which operate beyond the bounds of raw system level transactions as illustrated in

figures 1.2 and 1.3. To better understand the approach, it’s best to have a clear understanding of what

those implications are.

15

State Description

Current Values on an item accurately reflect the presently persisted values in the
database.

Stale Values on an item do not reflect the persisted state in the database but do reflect
values which were persisted at a earlier point in time.

DNE Values on an item do not reflect the persisted values in the database and do not
reflect values persisted at a earlier point in time.

Table 3.1: Proper States of a Data Item

3.1.1 Durability

For online systems, durability is a trivial responsibility to manage. The fact that the DB guar-

antees durability and is also the source of truth eliminates durability as a concern. For offline systems,

a similar situation ensues. The primary difference between the two being that the local persistence

environment does not necessarily guarantee durability. If it does not, the developer(s) must provide the

durability in the application when interacting with the persistence environment.

Durability varies and frequently must be considered across both local and origin persistence

environments for intermittently connected systems. In practice, it is common to disregard offline dura-

bility constraints and only worry about durability when the application restores online status. This stems

from the notion that in spite of a client moving to an offline state frequently, it will also be online fre-

quently as well. It is assumed that work lost (if any) is of minimal regard due to the regularity of restoring

online state. This behavior coupled with the mobile constraints outlined in the introduction often justify

passive attention to the mobile persistence layer.

3.1.2 Atomicity

By definition, the action or collection of actions taken either complete in whole or never hap-

pened. Atomicity is frequently and easily relegated up the software environment stack to the database

(DB). However, when discussing isolation, it will be demonstrated that where concurrency exists it must

be managed otherwise there can be no atomicity. The reason for this is one of dirty reads and hidden

updates and a disconnect of the in-memory or locally cached objects (CO) from the DB state. An object

read from the DB through a transaction will represent one of those presented in table 3.1.

When the CO is initialized from the DB it represents the current state. Once modified locally,

it represents the DNE (Does Not Exist) state. Once the modified version is saved it represents the

16

current state again. If other instances exist then they represent the stale state until such time as they

are reinitialized from the DB. If an attempt to update the DB with a modified version fails, then the CO

remains in the DNE state. Note that there is no future state. This is an artifact of atomicity as the state

either exists or it does not in the lineage of the data item represented by CO. The future state may be

resolved as such only after it has become the current state. It’s useful to understand this in the context

of mobile and distributed computing as there are many possible concurrent futures unfolding at any

given time for a data item yet only one may constitute the next state of the the object. Thus, if an update

fails, at no point in its history has the data item ever held the state represented by CO, as such it does

not exist.

3.1.3 Consistency

Consistency is what ACID is all about. All other properties make consistency possible and con-

sistency is the collective objective of the ACID properties of a DB. Another way to phrase consistency

is precision. Regardless of the accuracy of data in the DB, it must be precise, never wavering. It is

up to the business rules of the system and its users to determine the accuracy of the data. However,

regardless of how faulty the data is, it must always give the same values when requested. The DB is a

tool of precision, the applications built around the DB are tools of accuracy. They facilitate the business

rules and user experience around managing data within the DB but the DB always remains the steward

of the data and must always present it consistently.

The motivation behind consistency is source of truth. In standard DB models, this is easy to

assert and understand because the DB is the source of truth. However, in an intermittently connected

or distributed environment any one client may have multiple sources of truth. Identifying which is the

legitimate source of truth can be tricky and may fluctuate with business rules. As a result, source of

truth becomes subjective and implementation specific. In a mobile device, the source of truth may be

one of

• local cache

• resolved through Location Dependent Query (LDQ)

• a static DB requiring connection for re-query of the truth at each request

In any case, the question of which one represents the latest and most legitimate truth is always signifi-

cant. While online, the answer is trivial. Simply return to the origin of the data and re-request. The fact

17

that the data has already been requested from that origin implies a trust from the client to the origin that

the client believes the origin to be the source of truth. While offline, the answer is also simple, there is

either none or the local cache is the source of truth. Assuming there is a local cache and it is muta-

ble while the environment is offline, when the application comes back online after the cache has been

modified, should it be considered the source of truth or the actual origin? What if the origin record has

been updated by another consumer while offline, causing the local cache to diverge from the origin?

Optimistically using a version or last modified timestamp is commonly used to answer these questions

and resolve the latest and greatest. If content is cached locally, the system can continue to work just

as if they were online, the draw back is that it may lose work due to irreconcilable conflicts when the

system comes back online due to this divergence. Of course this can be remedied with concurrency

management which brings up the topic of Isolation.

3.1.4 Isolation

Where concurrency exists isolation must be evaluated. If isolation does not exist, atomicity and

consistency can not be guaranteed. Concurrency is implicit when discussing isolation because in the

absence of concurrency everything is isolated. In practice, there are two ways to address concurrency

conflicts; prevention and resolution.

Prevention is very basic and a simple approach to understand. In PC, indeterminacy is pre-

vented by disallowing concurrent edits. Since concurrency is removed from the system, everything

becomes isolated. The problem with prevention is obvious, particularly for mobile platforms, as the

availability of data is bottlenecked. If there is no concurrency, the bandwidth of the system is materially

impeded and resource utilization is significantly reduced. The term pessimistic is used to describe this

behavior as it stems from the assumption that if one does not proactively reserve its intent to have

exclusive access, then it will be unable to obtain that access later when it becomes necessary.

Alternatively, if a resolution approach is taken, the point in time at which the CO is saved

is when control measures kick into effect. A resolution model must detect conflicting changes to a

record which has been modified since read. As a result, conflict resolution is where things can become

very obfuscated. There are many common patterns to detect and resolve such conflicts to achieve

concurrent edits. Conflict resolution methods are lumped together under the umbrella term optimistic.

A common and easily understood example for developers is in source control management

systems. Multiple developers frequently work on the same files and must merge changes to ensure

18

integrity of the source files. The same behavior applies and is sought here. Depending on the business

rules of the system, this may be automated or require user intervention. In either case the record would

reflect both changes because the data was disjoint or only the immediate predecessor’s written values

because the data manipulated was irreconcilable. In addition to the business rules, it is also important

to consider that technical and performance constraints of the system have tremendous influence on the

concurrency model to use.

Since pessimistic locking is all about conflict prevention, it is best reserved for scenarios where

the expectation or risk of conflict and rollback are high. Conversely, optimistic locking is well suited for

high concurrency, low risk updates. Low risk being the risk of conflict or the cost of loosing the data

being low. Excellent scenarios for this model include read-optimized environments or well partitioned

data. The partitioning clause here is what makes todays NoSQL stores so useful for distributed envi-

ronments. For a mobile platform or other platform which is intermittently connected another approach

is required.

3.2 Applying ACID to Naively-Optimistic Transactions

A transaction in the DB begins only after a connection to the DB is established. However, it

is commonly understood that best practice is to keep transactions as short lived as possible to limit

resource contention. To facilitate this, the CO is modified prior to connecting to the DB. Therefore,

the only time the DB is in use is during the connect, update, and commit/abort phases of the object

life-cycle. Deductively, the CO is modified before the DB transaction begins.

With respect to the sequence of events leading to an update on a given data item, it could be

argued that the transaction begins when the object is initialized from the DB or when it begins to be

modified. For the sake of system integrity, it is more practical to assume the former marks the beginning

of the transaction. To accept the latter implies that the data being written was not read within the same

transaction which creates an opportunity for conflicting updates. However, in practice, this distinction is

semantically null for OC.

3.2.1 Constraining Facets

To assume reading an object from the DB marks the beginning of the application transaction

TA simplifies the thinking about the problem of its concurrency. To adopt this position allows that TA

begins as a parent transaction to all subsequent DB transactions (TD) in its domain, including the initial

19

read to the final write of a given data item. In this way, despite the presence or absence of failures to

commit, TA := {TD1, TD2, ..., TDn} remains an isolated, atomic unit. This gives rise to the first invariant

constraint and assumption made in this solution. For every TD under the supervision of TA, it is always

true that the success of TD implies the success of TA. More formally � (TD =⇒ TA) where TD ∈ TA.

In addition, any transaction TX operating in the system must operate under the supervision of some TA

and therefore be a TD. At this time, it is worth pointing out that TA is conceptual in nature, thus, it is

possible that TD ≡ TA.

Violations of this relationship result in incoherence anomalies as multiple TD witness interme-

diate state of TA for which TD /∈ TA when they transgress their isolation boundaries. However, TA

represents a potentially long running process and it may require updated data to complete its target

objective. As such, TA is viewed similarly to the states of a data item outlined in table 3.1. To elaborate,

TA may be viewed more akin a method of check pointing in that, if a TDi+1 fails, the state of TDi remains

the current state of TA. This also ensures that at any given time, if TA should fail to complete after a TDj

has completed, the relationship TD =⇒ TA holds from the perspective of the DB. Consequently, to the

DB, all TA are always in a completed state, eliminating contention between them as their observable

state is always consistent. This has the added benefit that TA is technically permitted to never end or

may even fail (which would violate TD =⇒ TA) as from the outside looking in, view of TA is always

completed.

Figure 3.1 graphically represents this concept. The dithered TA represent previously publicly

visible state. The dotted lines are paths which would have been taken had the underlying TDi been

successful in committing. The dotted line from TA to TDi+1 shows that TDi+1 was the next state of TA

but TA rolled back to its last known consistent state of TDi upon the failing of TDi+1.

3.2.2 Leveraging Hybrid Locking

Applying these observations in a real world example is complex but yields a solution to allow

for maximum concurrency where the bounds of conflict prevention cannot be known or enforced in

advance. As previously noted, OC and PC locking should not be considered as mutually exclusive and

the following illustrates why.

A hybrid model of OC and PC works well to bridge and garner the strengths of each. In this

hybrid model, both version and locking information is used. If applying the locks in line as was done

back in listing 1.2, a simple update would like the one in listing 3.1.

20

Di+1TDiTDi-1T

Di¬T

AT

Di-2T

ATAT

Fig. 3.1: TA Lifetime Events

UPDATE dbo.Employee
SET Name = @p0
WHERE EmployeeId = @p1

AND version = @version -- I have optimistic lock
AND (lock_id IS NULL -- noone holds exclusive access

OR lock_id = @lock_id) -- I hold exclusive access

Listing 3.1: An optimistic-pessimistic hybrid update query.

Through this query model, the optimistic model is ignorant of anything special with another

potentially competing lock type. An observed behavior to using this model is that OC locks may be

promoted to PC but the inverse does not hold. One way to consider this is any process which reads

a dbo.Employee implicitly obtained an OC lock since the version is known and current. The acts of

applying and releasing PC locks from the record involve writes to the record which in turn provoke

new version identities. Simply by acquiring a PC lock, all outstanding OC locks are cleared. Any new

consumers which read the record now read it with the pessimistic lock applied and now give precedence

to the PC form.

A PC lock may not be demoted because all implicitly obtained OC locks were invalidated

through its acquisition. To demote to the OC form implies the version is rolled back, which effectively

restores all previously cleared OC locks and violates the assumption of OC that a version identity is

unique in time. Also, demotion would mean that the version generated when a PC lock was obtained

never existed. Consequently, any clients consuming that version (at least one, the one which acquired

it) are consuming an inconsistent, non durable state of the object from a system which should be ACID

compliant.

21

One significant advantage this hybrid model offers over either one independently is particularly

useful in mobile and distributed settings. Specifically, it allows for greater concurrency of data by using

the normal OC mechanism most of the time. However, when greater governance is necessary, a data

item under such control may have access throttled back to a serial model. In a mobile scenario where

access is being made via the costly cell channels, the requests to acquire and release the PC lock are

obviated unless absolutely necessary.

In the end, in order to support transactions in an environment which experiences intermittent

connectivity intentionally, locks may be leveraged to provide isolation which in turn allows the host

system to satisfy ACID compliance. However, locking alone does not provide ACID compliance and

each property is impacted by a loss in connectivity. Thus, achieving ACID compliance requires through

planning prior to implementation within a mobile platform.

3.3 Negotiating State After Divergence

Once connectivity is re-established yet before the application is fully brought online, it is nec-

essary to perform a concurrency check with the origin. This is similar in concept to the act of bringing

a DB online in that the DB must process its logs to restore its last consistent state before it terminated.

Since offline changes result in two sources of truth for a given data item, the client and server must

negotiate to reach a consensus as to what constitutes the actual current state of the data item. Table

3.4 at the end of this section provides quick reference in interpreting the negotiation process described

below. Figure 3.2 offers a cursory high level overview from the client.

3.3.1 Client Side

In order to establish the terms of negotiation preparations must be made. This step starts

before the client moves into an offline state and is not particularly interesting in the scope of negotiation

but is crucial to ensure the client remains efficacious while offline. Simply put, data must be cached

locally so as to be made available while offline. Furthermore, as the client will be offline, a rather

inflated dataset is needed to be available for the client to operate on. This implies a form of partitioning

is necessary. The online partition of data cached will be denoted as p. Locally the partitioning scheme

used to produce p is irrelevant.

Once necessary data is cached, the client is able to detach from the network and roam inde-

pendently. At this point, the cache is logically partitioned into two regions. A source of truth segment,

22

scheme is
arbitrary

Isolation
Boundaries

set online

negotiate
state

move
online

edit

set offline

cache
out

Fig. 3.2: High Level Overview of Process

denoted as >, and a sandbox area denoted as ⊥. While in the offline state, any item modified by the

client is shadow copied from > into ⊥ for manipulation. In this way, > emulates the DB from an online

state and ⊥ assumes the responsibility of local cache to the application. These views of responsibility

are somewhat superficial however. Independently, each is not particularly useful. Combined, they are

more appropriately viewed as the inner workings of a transaction which executes within the DB. For the

remainder of the client’s offline state ⊥ will be leveraged as the source of truth for data items which it

retains. Beyond the local cache management, the application’s offline functionality is indistinct from the

online state.

Partitioning the cache primed the terms of the state negotiation to follow. In the client domain,

attempting to return to an online state does not depart much from its standard operation either. The

main difference is in the steps taken prior to denoting that the client is indeed online.

When restoring connectivity, the client iterates over all items recorded in ⊥. If ⊥ is empty,

then there is no work to restore and the client simply invalidates its cache1 and marks itself as online.

However, assuming ⊥ 66= Ø, each item in ⊥ is paired with its source from > and appended as a tuple

with its corresponding action to the change set ∆ := {D1, D2, ..., Dn}; where D := {d1, d2, ..., dn} and

1This could be satisfied by one of many options such as those from the previous chapter. As the interest here is in a partition
of data, it is assumed that the volume of data is large enough to discredit the validity of anything more than simple invalidation.

23

di represents a discrete field from data item D. Items which are new are marked as such and have no

corresponding > value. Deletes are complementary, having no ⊥ within ∆. Items in > which were not

in ⊥ just wait in the cache for further direction. Compiling the change set is a basic join operation and

simply results in a scalar message defined as m := {p, s, b,∆} where s signifies the state of negotiation

and b is to be defined later. In this initial message s = initial. This message may then be relayed to

the server for processing as a single request, minimizing the overhead of communication costs.

The server processes the change set and yields a result back to the client. The result returned

is also of type m and identified as m′. For responses, m′ specifies the server’s state of the client’s

request, where s′ ∈ {conflicting, accepted, error} and b remains to be defined.

The properties of ∆′ differ from the version sent by the client. In the response, ∆′ consists of

update, new, and delete instructions, the same as ∆ except all records in ∆′ reflect the server’s current

state of the items submitted in ∆. Receiving ∆′ is outlined as follows.

For each D′ in ∆′ if D′ ∈ ∆′
delete, remove D from >. If D′ ∈ ∆′

insert, add D′ to >. If D′ ∈

∆′
update, update D> to reflect D′ and add D′ to a collection to be reconciled later. Since all items D in

∆ leverage ⊥ as their individual source of truth, isolation is preserved on round trips during negotiation.

Now that > reflects the server’s known state for the items in question, > may be used for comparison

to reconcile outstanding conflicts which the server was unable to handle. At this point, > reflects a

mingling of object state for items read when p was cached and the most current known state of items in

p for which the user is attempting to modify. ⊥ has seen no changes.

Armed with comprehensive knowledge of the data in p, the user may reconcile conflicts beyond

the domain of the system to automatically resolve. Through the act for reconciling, ⊥ will be modified

to reflect the user’s intent in light of changes made remotely. Figure 3.3 provides a visual formalization

of the process described above.

3.3.2 Server Side

In this approach, the server is responsible to persist or advise the client, but not both. There is

one exception to this which involves governance of isolation and the hybrid approach to locking outlined

above. In select cases, it may be desirable to throttle back access to data while negotiating state

changes for extended offline durations. Specifically, if the data being updated sees frequent updates

and the incoming change set is critical or if the the data submitted from the client is sufficiently large, it

may prove advantageous to shut down concurrency to a serial model. In such settings, the p itself may

24

set online

drop
⊤,⊥

report
error

Submit
Changes

user
reconcile

add for
reconcile

update
⊤ with ⊤'

move
next

iterate
⊤'

receive
message

[cancel]

[done]

[∃λ]

[∄λ]

[s'∈{locked,error}]

[s'꞊accepted]

[s'꞊conflict]

m'

Fig. 3.3: Client Negotiation Cycle

25

Direction b = true b = false b = discretionary

Client to Server Client desires PC
lock

Client desires
release PC lock

Server decides
acquisition

Server to Client Client holds PC lock PC lock exists but
not held by client

No PC lock exists

Table 3.2: Lookup of b meaning

be PC locked to eliminate conflicting updates as a potential source of failure for future requests. This is

where the b value of m comes into play.

For a given message m defined above, b indicates a desire to effect change in the PC struc-

ture of p and is defined as b ∈ {discretionary, true, false}. See table 3.2 for detailed explanation of

interpretation of these values. Violation of the server’s persistence clause may occur if b = true and

there is no PC lock on p, or when b = false and the requester holds a PC lock on p. In the event that

b = discretionary the server shall elect a path reflecting b ∈ {true, false} determined by some variable

factor such as the size of the message.

When a message m arrives at the server, the server first inspects b. If b = discretionary and

the message size breaches some threshold, |m| ≥ ε, the server will assume b = true. If b = true, a

PC lock is attempted. If a lock cannot be acquired, either due to error or another process holds such a

lock on p, the request is terminated, returning s′ = error, including details about the cause and setting

b′ appropriately. If no lock is to be granted, the system checks if another process holds a PC lock on

p. If one is found and the lock holder does not match the requester, the request is terminated as above

with b′ = false. If the requester holds the lock, b′ = true and if no PC lock has been applied to p then

b′ = discretionary.

Once preliminaries are out of the way, the server moves on to reconciliation. Reconciliation is

performed using a three way merge between the original value determined by d>, the requested value

from d⊥ and the current value of the field from the record in the DB identified as d′.

The merge is fairly basic but may be improved through the framework provided in the next

chapter on implementation. For context, and example implementation is described here. During merge,

all manipulation is done on D′⊥. D′⊥is seeded as D′> then has changes from D⊥ played atop it. D′⊥

may be D⊥, however, in the interest of performance, D′⊥ could be an instance of D′ distinct from D′.

If a conflict is found, the change set will be rejected. If D′⊥ 6= D′ then dropping the changes simply

requires updating pointers and does not involve any database activity. When a change set is rejected,

26

State Implication Rule Conflict

Current noop d⊥ = d′> no

Stale n/a d> 6= d′> depends on d⊥ and d′>

DNE next value d> = d′> and d⊥ 6= d′> no

DNE divergent d> 6= d′>and d⊥ 6= d′> yes

Table 3.3: Formal object state definitions

the current DB values are fed back to the client. IfD′⊥ 6≡ D′ then D′⊥should be pre-seeded from D′ so

that values absent from D⊥ which exist in D′> carry forward. This allows for optimizations in the data

sent by the client by eliminating the need to send unmodified data up stream.2

Prior to invoking the custom framework, a remedial field by field evaluation is done. After all d⊥

are cloned onto d′⊥ they are evaluated in the following manner. If the new value does not match the

current (d′⊥ 6= d′>) then the current value is compared to the original (d′> = d>). If the the current value

matches the original, then the value is a regular optimistic update and constitutes normal behavior. If

the current value matches neither the new nor the original value, then the field is identified as a conflict

(λ) and the framework will attempt to address it using some method f
(
D′⊥, d>, d′>, d⊥

)
. If f is able to

resolve the conflict, then it is cleared and no further special consideration is given to the item. This can

be more formally described as

λ := d′> /∈
{
d>, d⊥

}
∧ ¬f

(
D′⊥, d>, d′>, d⊥

)
and dictates the nature of the record in the change set. To more clearly associate these rules to the

states of an object outlined in table 3.1, table 3.3 is offered.

After reconciliation, if conflicts were present (∃λ), ∆′ is then compiled and shipped back to the

client providing details as to the current state of items submitted and all conflicts found. If there were

no conflicts the change set is committed to the DB. In addition, if a PC lock is currently held on p by the

requester, the lock is released regardless of the value of b.

Changes are submitted in bulk. Since users are to be able to work while offline, the assumption

is that multiple items are edited while offline Thus, it stands to reason that all changes are related and

should be processed as an atomic action. Consequently change sets are submitted for updates to the

2This also supports backward compatibility as legacy, incongruent, schema for D′ may continue to submit and receive state
from the application. Something incredibly useful given the pace of software development and growth of mobile access.

27

release
lock

check
PC lock p

Wrap Up
Changeset Processing

iterate
Δ

send
error

acquire
PC lock

Preliminaries

send
success

assemble
λ ∪ ⊤'

send
report

reject
changes

commit
changes

move
next

receive
message

merge
⊤,⊤',⊥

delete ⊤'

mark
conflict ⊤

read ⊤'

create ⊥

noop
delete

[∄ lock]

[∃ lock]

[∃ lock ∧ lock_id ≠ requestor]

[∄]

[pass]
[|m| < ε]

[b꞊discretionary]

[b꞊false]

[fail]
[|m| ≥ ε]

[b꞊true]

[∄λ]

[∃λ]

[done]

m

[∄λ]

[∃λ]

[∃⊥]

[∄⊥]

[∃⊥] [∄⊥]

[∄⊤']

[∃⊤']

[∃⊤]

[∄⊤]

Fig. 3.4: Server processing

28

Term Description

p A partition of data.

m A message communicating state between client and server.

b A flag indicating desire to have PC used or that PC is in use.

s the state of negotiation.

> Original value.

⊥ Modified value.

∆ A change set communicating changes between client and server.

D A data item within a change set.

d A discrete property for a data item.
′ Server knowledge.

λ Conflicting changes.

Table 3.4: Terms Quick Reference

server to be processed as a script of changes to be applied.

Note that the signature of f takes the destination object, the original value, current value, and

next value. By the time f is used, D′⊥ contains all values as they would be persisted at that moment.

This provides one critical piece to the chain which is validation. Rather than blindly accepting values

based upon some simplistic hard coded scheme such as last-write-wins or all dirty writes are rejected,

business logic may be introduced and the object validated prior to persistence. The system is ignorant to

this as any validation error is simply picked up as a conflict in the reconciliation processes. This results

from the notion that only valid data was permitted to be persisted in the first place, thus attempting to

merge from a valid to an invalid state likely indicates that a conflict occurred. This also permits that

new values may be vetted against more than merely last, current, and next. The proverbial door is

opened to opportunities for merge strategies which include concepts such as variance, percentages,

and tolerance across the state of the object as it will be. In short, intelligent automated merge strategies

are possible which may be tailored to a particular purpose. This facet of this approach is what drives

the work in general and enables improved conflict resolution strategies.

29

CHAPTER 4

IMPLEMENTATION

As alluded to in the introduction, the code in this sample is based on the needs of a real world

project. The unique needs of this project specifically entail:

• Offline editing of shared data.

• Re-integration of maximum edits with minimal loss of data by any party involved.

• Streamlined work flow for re-integration.

In the project motivating this work, users were expected to survey, measure, and report on assets in the

field. These assets may be in remote or poorly connected locations such as sub-basements and high-

rise roof tops or regions with no mobile access which often times were under construction. Naturally,

they would lack amenities which provide strong network connectivity yet users were still expected to

record data within the system from these areas. To further complicate the expected use cases, users are

expected to share work. It is unknown in advance what users will touch which records in the database

and many may share updates. For example, if two users inspect the same piece of equipment, one may

capture details such as serial number, make, and model while the other user may capture details such

as voltage, current, and load and capacity. All details are recorded to the same data row but updates

between the two should remain in tact. In some respects, providing a more aptly normalized form of the

data could circumvent some of the issues encountered here, but then in the real world, such changes

to an existing system are often met with strong reserve.

This proof of concept takes the requirements further by providing deterministic yet variable

conflict resolution strategies to increase the volume of accepted transactions without imposing micro-

management of the data to the end user where possible. This sample implementation is split into two

core domains between the client application and server component. The technology leveraged in this

solution demonstrates the occasionally connected clients ability to self heal under the self-actuated lock

30

promotion scheme outlined in chapter 3.

4.1 Client Implementation

The client is an HTML5 web application built on AngularJS 1.4.7 and leverages the following

extensions to Angular:

• AngularJS Animate

• Angular UI Router

• Angular UI Bootstrap

• angular-moment

• angular-toastr

At its core, AngularJS is a dependency injection framework designed to enable domain driven devel-

opment using an MV* style pattern on an HTML5 compatible browser. This perspective enables the

declaration of non-HTML elements within a web page to be properly interpreted to by the browser and

rendered as regular HTML code. Using customized elements, attributes, and CSS classes, one is able

to inject new semantics into the development of a web page. This allows for a more focused develop-

ment effort on the reasoning behind the code and less effort is spent reconciling the application code

to the browser.

Each extension to the tool provides specific functionality and is meant to fill some gap in the

bridge between application development and the content viewed by a user of the product.

4.1.1 Extensions

AngularJS Animate

The Animate extension provides hooks into the document object model (DOM) for applying

visual transitions in the document as it evolves over time. Advancements in web development have

moved focus from many disparate pages linked together though HTML into a more consolidated view

termed Single Page Application or SPA. Providing feedback to a user is always an important aspect of

development as it gives an application a responsive feel and more intuition to a user of the tool. Pushing

a web browser to remain resident in a page for a longer period of time removes a type of feedback the

31

user is historically accustomed to in that they lack the experience of leaving a page when moving to

the next. The Animate package provides the means to supplement this legacy experience with a more

modern, interactive one.

The animate package exposes hooks in the form of HTML attributes and CSS classes to inter-

cept changes in the DOM and apply CSS3 transitions to the changes detected.

Angular UI Router

The normal navigation pattern used in AngularJS, as with many other SPA frameworks, is done

through URL mapping. As with any HTML SPA site, the SPA lives where the ’#’ character in the URL

begins. Everything after the hash represents a unique resource within the SPA. Mapping the last half

of the path to pages within the SPA allows for the SPA framework to intercept and redirect the content

on the page while remaining at the root page of the application. The UI Router project takes this a step

further by converting from URL mapping to state mapping.

URL routing is useful as it allows for linking into an application past the landing page, however,

inputs into the target zone may be cumbersome to resolve as they must be translated from the URL

into stateful objects within the application. The UI Router assumes the responsibility of this translation

so that the developer may focus efforts on the destination itself and less on how to get there.

Angular UI Bootstrap

The UI Bootstrap extension is a port of the well known interactive parts of Twitter Bootstrap

into the Angular way of doing things. Bootstrap is built using jQuery which is a robust framework

which abstracts out the browser specific methods of performing activities into a single unified API. It

also provides an extensive suite of utilities which extend the JavaScript language through prototype

inheritance. However, jQuery is focused on the DOM and its manipulation, where Angular is focused

on the application and its behaviors. Angular uses a more lightweight form of jQuery for achieve the

same browser abstraction but without the bloat of focus on the DOM. With this in mind, the UI Bootstrap

extension seeks to provide all the functionality of Bootstrap with the same change in emphasis.

Other Extensions

Angular Moment and Angular Toastr are also ports of well established plugins. Moment is a

library centered around the rendering of points in time which provides a more friendly, human readable

32

Portal Client

Browser (Chrome, Firefox, ...)

IndexedDB
AngularJS 1.47

JavaScript/ECMA Script

Fig. 4.1: Client Technology Stack

form of a date. For instance, instead of saying “This job was checked out at 2015-11-01 09:12.09365”

moment will render “This job was checked out 16 minutes ago.” Angular Moment allows for this behavior

in a declarative way such that by simply decorating our time with an attribute, Angular will assume

responsibility for the conversion and no further back end coding is required on the part of the developer.

Angular Toastr is a port of the well known toastr javascript framework built on jQuery and

provides a friendly, unobtrusive pop up notification system.

4.1.2 Client Application

The documentation for the client documentation is given in appendix A. The full functional code

is available in appendix B. Figure 4.1 provides a high level overview of the technologies used on the

client. Development of the application was performed in Google Chrome version 47 as well as Firefox

42 (Windows, Linux, and Android variant of each included). The site should function with Safari and

Opera as well. Internet Explorer 8+ has an issue with the IndexedDB shim used to enable Safari and

Opera which was not addressed. The Android native browser based on Chrome has known issues

with offline storage and has also been deprecated by Google in favor of their more complete Chrome

browser. As such, no effort was invested in this browser.

The client application is a simple collection of static basic .HTML, .js, and .css files. It is built

specifically to empower offline editing of data and the reintegration of that data back at the server

in a deterministic fashion. It uses HTML5 application caching provided by the browser to make the

application completely available while offline. To ensure data is available as well, it leverages the

IndexedDB web storage standard to allow potentially significant blocks of data to be replicated locally.

33

Cache Store name Description

> asset Always represents last witnessed state at server.

⊥ asset_shadow Always represents most recent version modified by user.

Table 4.1: Example cache partitioning in client.

In the original project, a single job may have upwards of 5000 assets and each asset may have up to

3 forms to populate with each form containing up to 90 fields. That makes for an upper bound total of

approx 1.35M fields required to be available locally on the client.1 If a user checked out several jobs,

the data volume would not fit in the standards sizes available to most modern browsers. Hence, the

use of IndexedDB as the storage standard to garner larger storage capacity.

The client operates in two modes, online and offline. The mode is largely transparent to the

end user and is mostly independent of the the hosting device’s connectivity status. Rather than the

client itself being the online/offline determining factor, the status of the job in view dictates the mode

of the application. This follows as a consequence of a reactive nature of the application. Specifically,

when a user will leave for the field to visit a job site, the user proactively checks out a job. This places

the job in an offline state independent of the hosting device and ensures that the user is able to work

on the data as it was when he or she left the office. This effectively marks the begin of transaction for

the clients work. The client is viewed as reactionary in this model as it does not proactively acquire and

cache data locally. This enforces a naturally online state for the client for all data no expected to be

manipulated remotely.

On checkout of a job, data flows into the IndexedDB local store and constitutes the > portion

of the local cache. Items are read from this source to be edited while offline. Once an item is edited,

the saved version is not written back to the > but is instead directed to the ⊥ region of cache which is

implemented in IndexedDB as the same table name with a postfix of “_shadow”. See table 4.1 for an

example. Once an item exists in the ⊥ region, it is always read from there when presented to the user.

The > region for the item is only accessed when submitting to or receiving changes from the server or

when providing context for the user to reconcile data which the server is unable to.

For practical purposes, this implementation is restricted to only the two primary forms of entity

utilized, Job and Asset. This allowed for less effort to be invested in the unnecessary comprehensive

feature set exposed in the client while still enabling practical demonstration of the components relevant

1While 1.35M fields may be made available locally users only interface with and modify a small sub set of these per change
set. However, all must be made available as it is unknown in advance what those records are.

34

to this thesis. Consequently, the client component is significantly stripped down in terms of required

API. There are three core components to the client. In Angular speak, they are the job service, offline

service, and the asset controller. The services are responsible for shepherding the data two and from

the proper sources. The controller hosts the data for the user to edit.

Client Services

The job service speaks with the server for online data and the offline service for offline data.

It also knows how to interpret a subset of data from a job for proper routing of its data and the assets

attached to it. The primary API methods of this object include:

Abandon drops all locally cached data for a job. May be used directly by the end user to cancel work

and return the job to an online state. Also leveraged by the check in method to clean up

after successfully pushing changes to the server.

Check in compiles a CS as prescribed in chapter 3 and submits it to the server then listens for the

server’s response. If the server responds with an HTTP status code 204 (no content), the

check in was successful and the method calls to abandon to cleanup local data and return

to an online state. If the server responds with an HTTP status code of 409 (conflict), this

means that conflicts were detected which the server could not reconcile or that the job

the user attempted to check in was locked by another user. Should the job be locked by

another user, there is no content in the response from the server, otherwise, a CS was

returned as prescribed in chapter 3. The client then imports the accompanying CS into the

> portion of the local cache and moves the job to a reconciliation state. Future accesses

to the job’s assets will now pull data from > and from ⊥ for the user to reconcile changes.

Check out obtains an initialization CS from the server and imports it into the > segment of the cache

then moves the job into an offline state.

Get all gets all jobs that it can, online and offline. The method by which it renders them is some-

what counter intuitive but makes for more accurate representation of data to the user.

Specifically, jobs which are offline are “merged” with their online state if found in both

queries. This is the only method which blends data in this way and is useful in that it en-

ables the client to render the current information for the job (such as locked status) while

maintaining its isolation from the online state.

35

Get asset* exposes assets to the client. As assets are children to jobs and job state dictates the

online/offline status, the job service exposes the assets as well. This allows the job service

to properly route queries based on the state of the job. While the job is online, all traffic is

direct routed to the server through standard HTTP AJAX requests. While in offline mode

however, this service routes queries to IndexedDB through the offline service.

Offline Service

The offline service’s sole responsibility is interfacing with local cache and is implemented atop

IndexedDB. This service exposes all data in the local cache using the pattern of promises. All updates

and queries issued to this service are tiered. An initial query is issued to the ⊥ segment. If the item

is not found there or if all items are requested, another query is issued to the > region. If all items

are requested, the ⊥ results are merged with the > results and where a collision exists on the identity

of records, the ⊥ version is selected. Each query has the capability to bypass this behavior through

a suppressShadow boolean argument. If the argument is explicitly true, then the bubble behavior is

suppressed. This enables direct queries and updates to access explicit shadow regions of cache and

the return results from a failed check in request to update >.

Web storage is a still new topic and no set standard has been established as the de facto

standard. The two main versions available today are IndexedDB and WebSQL. WebSQL has been

semi-cut from the running by the W3C though. W3C prefers to have a minimum of two options of

implementation for any standard it puts forth. Unfortunately for WebSQL, all major browsers have

essentially simply imported SQLite into their browsers to add the missing functionality. Consequently,

there is really only one implementation available and thus the W3C has placed a hold on progressing

the WebSQL standard until such time as another option becomes available. After several years of being

in a holding pattern, the W3C decided to simply move on and elect IndexedDB as the standard with

their backing.

Since the W3C moved to back IndexedDB, it has seen some growth in its acceptance, however,

it is still not fully supported across all browsers. However, all major browsers support at least one of

the two of WebSQL and IndexedDB. As such, a polyfill has been written to expose the IndexedDB API

over a WebSQL back end. All of these factors combine to justify this clients implementation of offline

caching using IndexedDB.

36

Portal Server

Database (MS SQLSERVER 2014)

.NET 4.5

Entity FrameworkWeb API 2Unity

IIS8

Fig. 4.2: Server Technology Stack

4.2 Server

The server component is built on ASP.NET using the Web API 2 framework. The server doc-

umentation is available in appendix ?? while the full source is in appendix C. Figure 4.2 provides an

overview of the technologies used in the server’s development while figure 4.3 shows the core areas of

the system with their intrasolution dependencies and accompanying role fulfilled.

As discussed in chapter 3, the client transaction is independent of the server. This aspect of

the client permits the server to run in a stateless manner and allows that the fate of the, potentially

many, client transactions be independent of the server’s overall state. In turn, this ensures that the

client may operate in a transactional mode and the server need not be burdened with anything more

than its core function of data access and maintenance. This nature is apparent in the overall design of

this implementation. While the server is built on ASP.NET, it actually uses very little code in dealing with

anything other than the data.

4.2.1 Web API 2

The Web API 2 standard is a simple REST-ful service layer exposed over the standard HTTP

protocol. Thus, any library which supports the very well established HTTP protocol supports the Web

API 2 standard. In this framework, a collection of API controllers are provided to expose data to the

client.though HTTP requests. The controllers in this sample are limited to minimal functionality to meet

the needs of this proof of concept.

37

Rel.Data.Ef6

Data access layer for
Rel.Data implemented
over Entity Framework 6

Rel.Data

Core data model and
business logic

ThesisPortal

REST-ful services and
client application

Rel.Merge

Merging facilities for
entities

Fig. 4.3: Server Packaging Overview

4.2.2 Authentication Controller

Being a proof of concept, the authentication requirements by this system are very narrow in

scope. The only authentication required at this time is that the server know who the user is in order to

manage any pessimistic lock the user may be using. This controller is limited to functions to log a user

into the system, out of the system, and to identify the user.

Authentication is provided using traditional forms based authentication predicated on an au-

thentication HTTP cookie which the browser manages. In a SPA, it can be a challenge to reconcile the

authenticated user with the server, as such, the Identify() method is provided to allow the client to

query the server for the user credentials mapped to the authentication token cookie in the browser. If

the user is logged in but the application lost track of the authenticated user via some behavior such as

refreshing the page, the system is able to reestablish the user’s session via a query to this method. If

the user is not logged in, this method simply returns a standard HTTP 401 unauthorized status code.

4.2.3 Jobs Controller

The jobs controller is the root hub for entry into the product. This controller provides methods to

query jobs which the user is assigned to and to get a single job. For the purposes of this implementation,

no further access is required as the job is read only to the client.

4.2.4 Assets Controller

This controller is slightly more robust than the jobs controller as it provides methods to get

assets organized by a per-defined category such as an assigned service area, all assets on a job, and

38

to update an asset. In this sample implementation, editing is intended to be conducted offline. However,

in order to easily produce conflicts in the system to examine reconciliation, the ability to update an asset

while online is provided. This simply eliminates the need to checkout a job and make changes while

exploring the behavior of the reconciliation process.

4.2.5 Offline Controller

The offline controller is lean and serves only to expose a REST endpoint for the underlying CS

processing architecture. It is responsible for governing communication of the CS’s and results of CS

requests with the client.

4.3 Server Framework

CS’s are processed on the server through a framework which operates under the constraints

outlined in chapter 3. The framework itself is described here.

4.3.1 Change Set Processor

The ChangeSetProcessor accepts requests for batch operations and translates them into data

domain operations. When the data layer reports issues with the data, the processor attempts to recon-

cile them and possibly retry the update. This class exposes only two endpoints which represent the lion

share of API into the server.

The read endpoint to the framework is the BuildInitialChangeSet method. This method

simply reads a partition of data and returns the data items within the partition in CS form. Each item

in the resulting CS are flagged as initialization changes which indicate that the recipient should create

or set the local cache to hold each item there in. This is in effect simply a batch query method. It is

worth noting here that there are no side effect artifacts generated by invoking this method as the server

is genuinely stateless with respect to its clients.

The write end point is Process. This end point accepts a CS, partition identifier, and a boolean

flag to indicate if the system should provide an exclusive PC lock on the partition if the CS fails to be

accepted. In a real world implementation, the partition should be implicit and contained within the CS

while the partition management would be delegated to a fellow handler. For the sake of expediency this

aspect was intentionally not re-factored into this implementation.

39

Once a CS is received for processing, the first action taken is to replay the actions of the CS

into a CS (CSDAL) which is understood by the underlying data access layer (DAL). In this case, Entity

Framework 6 (EF) is the underlying provider and the Rel.Data.Ef6 library package in figure 4.3 provides

an implementation of the Rel.Data.IDataContext interface to facilitate the activity.

Once the CSDAL has been prepared it is validated. If validation errors are found, the system

will throw a standard validation exception error message; otherwise, it progresses normally to the next

step. Once the CSDAL is prepared and validated, a transaction is started. Late binding the transaction

in this way helps to minimize resource contention as the CS is potentially large and may take some

time to process. Once in this transaction, a query is invoked to read the header of the partition being

updated, the job. The job is then inspected for PC lock status. If the job is locked by another user, the

CS is immediately aborted with an error in the form of a Rel.Data.PessimisticConcurrencyException

being thrown. If the job is exclusively locked by the authenticated user, or the job is not locked by any

user, the DAL then executes its CSDAL.

When the underlying DB accepts the CSDAL the system simply commits the transaction. On

success but before returning to the caller, the process will inspect the PC status once more. If the

authenticated user holds the PC lock, the it will be released before returning a successful status to

the caller. If, on the other hand, OC conflicts were detected when executing CSDAL, the DAL throws a

Rel.Data.ConcurrencyException. The processors listens for this error and handles it distinctly. Upon

receiving an error of this class, the processor will first abort the current transaction. Rolling back is

important as the CSDAL is only partially written. To not do so would cause the transaction to no longer

be atomic or isolated.

After managing the transaction, the CSDAL is dropped. Since the CS was rejected by the DAL,

at least one item in the CS has been modified since being read. As such, the entire CS will need to

be checked for which item or items are in conflict. Do do so, the DAL will need to expose the proper

items, not the ones which were setup in the CSDAL. Consequently, the current state of the CSDAL holds

no value any longer. Thus, it is simply dropped before proceeding. If the job is not already locked by

the current user but should be, as determined by the CS size (|m| ≥ ε,) or the user request flag (b), the

system attempts to lock the job from within a new transaction. If this step fails, the system aborts the

transaction and throws a PessimisticConcurrencyException; otherwise, it proceeds to redress the CS. It

is important to note that any manipulation to the PC lock is always done in an independent transaction,

never in-line with other changes. This design is intentional as it helps to prevent deadlock scenarios

40

and keeps changes as minuscule as possible, a very important trait since dealing with bulk changes is

slow.

CS rejection may occur due to one of three expected causes. The first two have already been

established as a conflict in the PC lock and OC conflict of one or more CS items. The other expected

cause of CS rejection could be a violation of DAL constraints such as foreign key integrity or attempting

to assign a null value where it is not permissible or some other form of business invalidation. These

types of errors are assumed to have been previously addressed by the calling code as typical business

logic validation. These type of error are mentioned here only to establish their consideration and inten-

tional dismissal from scope as well as why. However, the interfacing with the validation subsystem is

plumbed and used in this sample.

At this point it is possible to skip straight to section Reconciliation Change Sets and the ap-

proach would be satisfied. However, the fruit of this approach lies not in what it does but in what it

enables. Namely, using this approach, the server is able to accept transactions which it would other-

wise be required to reject. The Merging section elucidates a mechanism to leverage this approach for

more favorable outcomes to transactions more often.

Redressing Rejected Change Sets

By now, the initial change transaction has been closed. If closed due to pessimistic concurrency

the system simply allows this exception to bubble out to the caller. In this way, the caller can elect

special behaviors for this unique error condition. If the change transaction were closed for concurrency

exceptions, the processor moves into the redress phase. In this phase, the submitted CS is inspected

and compared to the existing state for each item it contains. Items from the CS are paired with entities

read from the DB and handed off to a sub system to attempt to resolve any outstanding conflicts.

In this solution, all access to individual entities is done through a repository pattern. The im-

plementations of the repositories here are provided in the Rel.Data.Ef6 package by the Rel.Data.

Ef6.DbRepository<TEntity, TKey> class. The repository interface supports two forms of query. It

implements IQueryable<T> and provides a GetAll() method which returns an IQueryable<T> object.

Any queries exercised against the GetAll() method will execute against the DB. All queries run against

the repository directly will execute against the local cache of the repository.

To resolve conflicts, the server first starts a new transaction and pulls the current state of all

items in the CS from the DB into the local cache of each repository type used in the CS. To do so, it

41

first empties each local cache to discard the CS entities which need to be evaluated. This ensures that

there are no errant cache hits while trying to redress each item. Next it executes a query against the

GetAll() method to pull items of the given type present in the CS. All queries for caching are performed

in a single transaction. Pushing these queries into their own transaction serves two purposes. First, it

permits interleave in the processing of CS. Secondly, it ensures that the act of redressing a complete

CS is done against a single coherent view of the data in the DB, ensuring the isolation property of the

overarching business transaction is maintained. After all items are cached, the transaction is closed

and the work of redressing commences.

In order to redress divergent changes of items in the CS, the processor iterates over each item

in the CS. In this implementation, the concept of a conflicting create operation is rejected. Consequently,

there is no need to iterate the repository directly as there can be no item in the repository which is not

in the CS. For each item in the CS which is not a create operation, the current item is queried from the

repository cache. If the item is not found, the item was deleted and will be handled under the special

case logic for hidden delete. Found or not, the result of the cache query is joined with the CS item and

the pair is handed off to an Rel.Data.Bulk.IConflictResolver.

This solution provides two implementations of the conflict resolver:

• Rel.Data.Bulk.RejectConcurrentEditsConflictResolver

• Rel.Data.Bulk.MergeConcurrentEditsConflictResolver

The no op resolver simply rejects all conflicts, exhibiting the the same behavior as a system using

normal OC with no augmentation. Alternatively, the merge implementation integrates with the merge

framework provided by the Rel.Merge package identified in figure 4.3 and is covered in section 4.3.2.

When a CS has completed successfully, if the partition updated has an exclusive lock applied

to it, the lock is released. Again, this occurs in its own transaction to minimize potential for dead locks.

Also, the system verifies the authenticated user holds the exclusive lock before releasing as it is possible

that the CS was accepted under OC lock and before the PC transaction ran, another user acquired a

PC lock.

Reconciliation Change Sets

Any CS which is unable to commit and is in a rejected status warrants a reconciliation CS (CSr)

be issued to the client. The CSr contains the current state of all items submitted in the initial CS. The

42

Classification Description

Hidden Delete The item was deleted from the database after being read from
the database.

Dirty Delete The item has been modified in the database after being read and
is marked for deletion in a change set.

Dirty Write The item has been modified in the database after being read and
is marked for update in a change set.

Optimistic Write The item has not been modified in the database after being read
and is marked for update in a change set.

Table 4.2: Classifications of Divergent Data

client is then able to use this new CSr to generate a new CS for subsequent submission.

Compiling a CSr is a fairly remedial task. When the system elects to generate such a CS, it

begins by rejecting all changes in the data context. This ensures that all items in the new CS reflect

the snapshot of data from the DB. The system then iterates over all items in the data context and the

original CS. The union of the the items of both sets forms the new CSr. This CSr precisely mirrors the

CS submitted by the client to the server in terms of the actions requested, except the net result of the

actions of CSr will result in the client’s > cache reflecting the snapshot from the DB.

4.3.2 Merging

Using a framework built on .NET class attribute decoration, rules are applied to allow accept-

able amounts of fluctuations in the data which permits relaxation of the definition of incoherent without

sacrificing the rigor of its application. This framework supports the three classes of divergent data and

four classes of merge operation described in table 4.2. to enhance the check-in process. The Rel.Merge

library is small and is focused on the objective of inspecting multiple objects in order to determine a sin-

gle coherent view of them. This library allows for easily extending any object with new semantics for

OC conflict resolution as well as seamlessly adding new rules to the system. It starts at design time,

while planning the caching and merging strategies of the solution. Classes are decorated with class

and property attributes which derive from Rel.Merge.Strategies.MergeableAttribute. An example

implementation of class decoration and attribute usage is given in listing 4.1. The MergeableAttribute

serves as the base sentinel for opting into this OC conflict resolution model. It exposes a single method

Merge<T> which takes a single MergeAction<T> as its argument See figure 4.4 for a summary of its

public signature. The merge action doubles as the result of the operation which helps in performance

43

//[DirtyDelete]
//[HiddenDelete]
[LastWriteWins(false)]
public class Asset
{

public int Id { get; set; }

public int JobId { get; set; }

//[DecaySpanMergeable("0.00:00:00.3", "0.00:00:00.3")]
//[StepMergeable(true, 0.3)]
//[LastWriteWins]
public double? MaximumAndMinimumDecay { get; set; }

//[DecaySpanMergeable("0.00:00:00.3", "0.00:00:00.3")]
//[StepMergeable(true, 0.2)]
public double? MaxMinDecayWithStepAndTol { get; set; }

public double MinimumDecay { get; set; }
}

Listing 4.1: Example class decoration for merging.

Rel.Merge::MergeAction<T>

+BFIM r : T
+CFIM r : T
+AFIM r : T
+MergeKind r : T
+ResolvedValue: r T
+Resolved t: Boolean
+Resolve(MergeKind, T)

Fig. 4.4: MergeAction<T> public interface

as well as clarity of code. By reusing the same object, it is possible to provide tiered merge strategies

as the one object contains sufficient information to see the following.

• Where the item came from (BFIM)

• Where the item is going (AFIM)

• What the item is (CFIM or Current)

• The kind of conflict which is being resolved (see table 4.2)

• If the item has been resolved

44

Has Value
BFIM CFIM AFIM Implication Is Conflict?

Yes Yes Yes Standard OC Update Maybe

Yes Yes No Standard OC Delete Maybe

Yes No Yes Hidden Delete Guaranteed

Yes No No Hidden and Dirty Delete Guaranteed

No Yes Yes Not possible. No BFIM indicates create operation N/A

No Yes No Not possible, entity was not in CS N/A

No No Yes Standard Create Operation No

No No No Not possible. No BFIM indicates create operation N/A

Table 4.3: Implications of Values Present and Absent in MergeAction

• What the proper course of action to resolve the conflict is, if any need be taken by the calling

context

The presence of BFIM, CFIM, and AFIM combine in interesting ways and table 4.3 provides a summary

of interpretation for them. The merge framework refines the granularity of a commit from a row, block,

tuple, set, or entity level to a field or value level. As such, every value of every item in the CS is

inspected for consistency and ability to merge2. In situations where a CS is large, this could be a very

costly process. To abate performance concerns, this library provides some unique facilities in this area

which are justified in the following chapter over evaluation.

Invoking Merge

The Rel.Merge framework’s entry point is a single type Rel.Merge.MergeOperation with a

single method IMergeResolution<T> Merge<T>(MergeKind, T, T, T). See figure 4.5 for public inter-

face definition. This method takes inputs reflecting the MergeAction<T> above and returns a resolution

object containing the resolved value and an indicator as to whether the resolution was successful as

well as the action needed, if any, to be taken by the calling code. This type and method serves one

purpose which is to scaffold a pseudo proxy type for merging and execute it. However, the proxy which

gets generated is different in nature than those typically used.3 The proxies generated here are wholly

owned and managed by the Common Language Runtime (CLR) environment, guaranteed to be single-

2All items and values are tried until any one is found to not be mergeable. If any are not mergeable, the system immediately
stops merging.

3This solution does use traditional dynamic proxies as the Entity Framework 6 and serialization assemblies use them for their
needs.

45

Rel.Merge.Strategies::MergeableAttribu

~Merge<TValue>(MergeAction<TValue

Fig. 4.5: MergeableAttribute public interface

ton definitions, and mapped purely on the type which is proxied as the generic T argument without the

need for lookup. The only limitation of these proxies is that the properties to be proxied on the given type

support both read and write operations. The actual proxy is the Rel.Merge.MergeOperation<T> class,

not to be confused with the Rel.Merge.MergeOperation class mentioned previously. The motivation of

the naming convention is intentionally obscured as the non-generic version is the public surface area

and should be viewed as the underlying generic version which is internal to the library only. This proxy

via generic form is distinct from the traditional proxy implementations because it does not inherit and

override. Rather, it wraps access to the properties dynamically through compiled LINQ expressions.

This implementation’s performance is on par with the conventional native proxy and is reviewed for

performance in chapter 5.

The merge starts with the call to the Merge method of the MergeOperation class. This method

creates an instance of MergeOperation<T> and hands its the arguments down. The complex work

occurs here, when the type is instantiated. This type has a static constructor which performs all the

initialization for the dynamic proxy generation. Leveraging statics in the generic definition and the static

constructor creates a code path by which CLR does all the heavy lifting of maintenance of the proxies.

This also establishes the one time load and initialization of the types in a lazy loaded fashion. The only

down side is that this type is not self healing as it can never be unloaded without restarting the process.

In practice, this shows to be a negligible penalty. When this type is created, the constructor inspects

the generic argument T for class level attributes and properties. The property inspection constitutes the

dirty work of this process.

Property Merge

Step one of the property inspection seeks out fields used in optimistic concurrency check. This

solution only supports a time stamp field but it will not take much work to extend this into other forms

of concurrency checking. If no OC control fields are found then the type initializes to a chaos mode in

which everything is always last write wins. This behavior mirrors that of any system which does not use

concurrency control. Assuming OC fields are present they must be readable or an exception is thrown

46

as this is considered developer error. These fields are then wrapped with a special lambda expression

which compiles to a function which evaluates the equality of these fields between two instances of the

given type. This method is then saved off to a static field in the class for later consumption.

Next, all non-OC but control fields are identified. These would be fields which should not be

merged and should be treated as read only. This includes identity fields and complex properties used

for activities like navigation. These fields are partitioned from the remaining fields and stowed away,

they do not participate in merge.4

The third kind of property inspection partitions all remaining properties into those decorated for

merge and those which are not. Those which lack any sort of merge attribute get implicitly decorated

with a Rel.Merge.Strategies.LastWriteWinsMergeableAttribute which is configured as follows. If

any property of the given type is decorated with a merge attribute, the implicit attribute is configured

such that last write always wins. If, however, no merge attributes exist in the type, the implicit attribute is

configured to reject all writes. The motivation for this behavior is that the presence of merge attributes

implies that the developer has considered merge for the given entity type. Since it has been considered,

the absence of an explicit attribute for a given property must be deliberate. In such a case, if the implicit

attribute took on a behavior of rejecting writes, the attributes which had been explicitly applied would

never work as at least one property would always fail to merge. Thus, while somewhat counterintuitive in

description here, the behavior when consuming the framework is actually the behavior of least surprise.

Finally, all properties which are not control properties now have associated merge attributes. LINQ

expressions are now created and compiled to invoke the attributes for later merging.

The ability to merge is determined by the result of a call to the Merge(MergeAction<TValue>)

method of the MergeableAttribute class. If successful, the request’s result will be set to a MergeActionResult

(see table 4.4 for a listing of values) with the Resolved bit set (an odd integer value). This is a bit

oriented field which may contain multiple values, though only the resolve with one other should pass a

sanity check. If any action is need to be taken by the caller, an additional bit field will be set to signal the

necessary behavior. The classifications of merge are supported and handled independently. Items of

a hidden delete or dirty delete nature lack a critical component for merge, specifically the CFIM or the

AFIM respectively. Therefore, the properties of these kinds of merges have no basis of comparison. As

such, the property level merge described below is bypassed for these and only the top level type based

merge is performed. For items of the OC update or dirty update nature, the following process is used.

4These fields are assumed to be managed by the calling context as it knows their true purpose.

47

Result Mask Indication

Unresolved 0x00 Mere was unsuccessful.

Resolved 0x01 Merge was successful and no further action is needed by the
caller.

Delete 0x02 Merge result must be deleted from the database to complete the
merge.

Create 0x04 Merge result must be created in the database.

Update 0x08 Merge result must be marked as an update.

Table 4.4: Merge Result Bit Field Flags

Before beginning the costly task of property merge, the first step calls the OC comparator

function defined above, passing in the BFIM and the CFIM of the merge action. If this function returns

true, the item constitutes standard OC behavior with a current entity. As such, the operation is assumed

proper, not needing to be merged. Thus, a merge result is immediately returned with only the resolved

bit set. If this function should return false however, the merge is invoked at the object level and pushed

to the property level. If all mergeable properties merge successfully, the type is implicitly merged

successfully. To avoid issues of inconsistent merges at the property level, a special property wrapper

merge is used. This wrapper uses a callback to actually execute the merge. Only if all properties

can merge, is the callback executed to apply the changes. If not all properties merge, the callback is

ignored and the type is inspected for a MergeableAttribute. If one is available on the class definition

as a whole, it is tried and its result is used instead.

After merging, if all items in the CS successfully merged they are all validated again. Since data

may have changed on these items, the merge could have produced invalid objects. Before attempting

to talk with the DB again, all items are validated to reduce the DB transaction duration. If all new states

are valid, a new transaction is started. In this third5 transaction, the merged CSDALis attempted. If

successful the transaction is committed and the resulting code flow is the same as if the initial attempt

had been accepted and the approach is complete. If this attempt fails, either due to validation or

concurrency, a reconciliation CS is compiled to be sent back to the client.

5This may be the fourth transaction, depending on whether a PC lock was acquired in this processing session.

48

CHAPTER 5

EVALUATION

Testing of this approach and performance evaluation is not easy to conduct as the process is

designed to be user centric. However, several tests have been developed to provide perspective on the

overall performance and are reviewed here.

5.1 Property Proxies

When considering the performance of this approach, if N represents the number of items in

a change set, and Pi represents the number of fields for a given item i, then the approach ranges

between Ω (N) and O
(

6N +
∑N

i=1 Pi

)
for an accepted CS and O

(
8N +

∑N
i=1 Pi

)
for a rejected one.

The lower bound originates from the best case scenario where a CS is accepted in whole on the first

attempt to save it as fully OC clean. OC clean meaning all items have not been modified since being

read. The worst case scenario represents a CS requiring merging where all entities contained therein

have been modified and none have been deleted. For the worst case scenario, 6N contains:

• The initial attempted save

• Flush of cache

• Enumeration of CS to build cache query

• Processing of cache query

• Translation of cache items to a dictionary for O(1) lookup

• The enumeration of all items in the CS to join with cache lookup

• The final type level merge after the last property merge fails

The summation represents the field level merges required per item. There are other factors not ac-

counted for in these formula including another O(N) for the the DAL enumeration of CSDAL to effect the

49

changes and various other constants regarding control flow and the O(1) operations for PC lock main-

tenance. While relevant, these metrics have little bearing on the over all performance or are negated by

the fact that they have fixed costs. The rejected worst case adds another O(2N) for the reconciliation

change set generation.

As O highlights, the dominate operation of this implementation while merging is the field level

merge operation. Merge is implemented so as to be generic in its application and attempt to merge

any object type it is given. This allows for the most reuse of the framework. In a CS which is large, the

merge may be called many times. Taking into consideration the worst case scenario from above where

there are 1.3M fields to potentially merge1, the performance of this operation is critical.

In the .NET framework, reflection is, and has traditionally been, used to acquire details from an

object when the properties and methods of it cannot be known at design or compile time. Unfortunately,

the reflection framework has a reputation for being slow. In the context of refining merge operations,

this poses significant concern to the overall performance of this system. A common place practice to

avoid redundant reflection is to produce dynamic assemblies which expose dynamic proxy data types

that wrap the target objects, extend it with some specific functionality, and link it back into the framework

which generated it. These dynamic assemblies are compiled and thus performance for them is on par

with the native code written by a developer. However, this approach has several limitations, the more

salient of which include:

• Classes must be inheritable

• Properties and methods must be overridable to be proxied

• Fields cannot be proxied as they can not be overridden2

In practice, it is best to write code which is explicit and unambiguous. Decorating a class member as

virtual implies that the object is meant to be inherited and overridden. When using dynamic proxies,

the intent of overriding can become obfuscated as it is unclear as to whether the property is overridable

for the purpose of proxy or because it is meant to be overridden by the developer. Furthermore, the

business of generating dynamic proxies can be somewhat cumbersome and a map between type and

proxy type must be maintained. For these reasons, the Rel.Merge library avoids dynamic proxies and

assemblies in the conventional sense and a different approach to this problem is used.
1While academically this is true, the scenario which spawned this work only touches a fraction of those in a single change set.
2The implementation here doe not proxy fields either, however, extending it do so is a trivial task.

50

Native Derived Lambda Reflection
(a) Number of Operations

Native

Derived
Lambda

Reflection

(b) Time per Operation

Fig. 5.1: Runtime performance of property read methods.

This implementation uses a unique approach to solve the problem of performance on read and

write operations of an object. A pertinent difference between the requirements of the merge framework

and other frameworks which use dynamic proxies is that the objects this framework uses are given

to it. The framework does not return instances of them. This enables the system to not worry about

inheritance of its proxies for external consumption. As such, the proxy is closed to the outside behind

the Rel.Merge.MergeOperation type. Leveraging these key characteristics of the system, the imple-

mentation uses compiled dynamically generated lambda expressions. Since the expressions become

compiled, they become native code which puts them on par with the conventional proxy approach. The

generation and concept here is similar to that of dynamic assembly and proxy without the microman-

agement of the .NET AppDomain or explicit assembly. Using the compiled expressions, .NET assumes

responsibility for the management of the dynamic type information.

To evaluate the effectiveness of this solution, several tests were conducted on performance

of this distinct trait. Figure 5.1 presents the findings in graphical form. The data given represents

the volume of read operations which are possible within a one second interval under each method

presented above as well as relative comparison of the time taken to complete one read operation.

Table D.1 of appendix D provides the raw numerical values resulting from running the tests repeatedly

over a 30 minute window. Each iteration is run for one second at a time, and a count of read operations

which occurred in that window was captured.

Native property read is what the developer would typically write if the type is design time known.

An example of its usage is

value = obj.Property

Override method involves derived types and is what the net result of a dynamic assembly outputs.

51

However, the discrepancy in performance results from the override which calls to the base

implementation. An example of its usage is

value = derivedObj.Property

Lambda expressions are compiled to native code and the intermediate language (IL) code gener-

ated is nearly identical to that of override. The lambda can be expressed in C# as

lambda = obj => obj.Property

An example of its usage is

value = lambda(obj)

Reflection is implemented by acquiring the get method of a property as the following C# code does

reflected = obj
.GetType()
.GetProperty(Property)
.GetGetMethod()

An example of its usage is

value = (type)reflected.invoke(obj, null)

5.2 Change Set Acceptance

A comparison of the accepted (committed) to the returned or rejected (rolled back) CS under

the approach from chapter 3 is presented here. Testing followed the basic pattern of multiple users

concurrently producing a CS from known data and attempting to commit it. Every test is run in parallel

between the merge framework outlined in chapter 4 and standard OC control which rejects concurrent

updates outright. Each strategy for conflict resolution operates on an independent partition of data.

While the item types are the same between them, there are no overlapping records to pose conflicts.

The only interference they can give each other is by way of DB level table locks applied during create,

update, and delete operations. In the context of this exercise this relationship works to the advantage

of these tests since, from an algorithmic stance, they do not influence each other but the load imposed

between them forces resource contention in processing. This has the added benefit of greater simulated

load without impacting the code control flow. Each test iteration is repeated with five minute runtime

intervals under the constraints outlined as follows.

.NET performance counters were injected into the code to capture to following details per con-

flict resolution strategy:

52

• Total number of CS accepted into the DB

• Total number of CS redressed

• Total number of CS returned

• Total number of CS aborted

• Total number of items accepted

• Total number of items redressed

• Total number of items returned

• Total number of items aborted

• Average number of items per CS with a sampling period of 5 seconds

The variations in test fell along the following inputs:

• Initial test pool item count

• Minimal CS item count

• Maximal CS item count

• Percent chance the user would request an explicit PC lock under the approach outlined in chapter

3

• Percent chance that a conflict is guaranteed for the initial save of CS

• Percent chance an item would be deleted

• Percent chance a CS would introduce new items to the pool

For the purposes of testing, the items test pool is intentionally repressed in volume to increase the

natural chance of conflicts under the normal on line control flow as it is the conflicting scenarios which

are of interest here. In the absence of conflicts, the approach above is moot.

The user count is also deliberately inhibited to a maximum of five concurrent users selected at

random to work a resource pool. Considering the intended use case, the assumption is made that there

will not be a large contingent of users attempting to concurrently submit bulk change sets on the same

partition of data. Furthermore, the underlying EF DAL used in this sample, while capable, is not terribly

53

efficient at processing large CS. As such, the user load can not creep too high with the CS in tow or

the workload becomes unreasonable for both the test server and the DB. In a production setting, this

issue can be remedied with detailed evaluation of the query and command batches necessary for the

application. Such requirements are not necessary at this time for validating the concept so the artificial

constraint is used instead.

Though these tests are emulating multiple users concurrently accessing the data, there are no

guarantees as to when their CS may overlap in the correct sequence so as to produce a conflict. To

increase the chances of a conflict, an optional setting is used to determine a lower bound probability

that a conflict will be generated for any given CS. The conflict is forced by modifying the time stamp

value of the BFIM of an item in the CS, thus making the item appear as though it represents an earlier

version. Since it only takes one item to be in conflict to cause the entire CS to be in conflict, this change

suffices. Also, this is an efficient way to impose a conflict which most naturally simulates the target

domain.

To generate a CS for testing, the desired size between the input minimum and maximum is

calculated first. A query is then executed to pull that many items into view. This query orders the items

by an arbitrary field which is modified with a random value on success. This helps to randomize the

items selected for non-deterministic outcomes and collisions. Once the items are available, they are

enumerated and converted into change items which are marked as dirty for update or delete determined

by the configured input. Next, the decision to create new items is made, satisfied, and the union of the

result with existing CS items is returned. Finally, the last decision made before invoking the actual test

performs the random conflict enforcement.

Similarly to the lower bound for conflicts, another parameter is used to determine an upper

bound probability that the user will make a formal request for PC locking in the event of failure. This

user opt-in for PC locking may be disabled by initializing the Required PC % input parameter to zero.

However, doing so will not preclude the server from electing to lock in the event of CS rejection and

message size verification.

5.2.1 Metrics Captured

Total reports the total number of change sets encountered.

Accepted reports the number of change sets which have been accepted and integrated into the DB.

54

Returned reports the number of change sets which have failed to be redressed and generated a

return reconciliation change set.

Aborted reports the number of change sets which were abandoned without attempting to execute

them due to a conflicting pessimistic lock.

Redressed reports the number of change sets which were redressed then accepted.3

Total# reports the number of items in all change sets encountered.

Average# reports the average number of items per change set through the course of the entire run.

Accepted# reports the number of items in all change sets which were accepted.

Returned# reports the number of items in all change sets which were returned.

Aborted# reports the number of items in all change sets which were abandoned.

Redressed# reports the number of items in all change sets which were redressed.

5.2.2 Metrics Computed

Acceptance is the dominate target metric in this work and is the basic ratio of accepted change sets

over the total number of change sets processed.

Rejection is the secondary target metric in this work and is the basic ratio of items returned over the

total item count.

5.2.3 Test Change Set Acceptance in the Face of Conflicts

To test the behavior of the approach in the presence of conflicts, a series of tests were con-

ducted with increasing commonality of conflicts in each iteration. The following series of tables and

graphics illustrate the ability of this approach to achieve near last write wins CS acceptance while re-

taining concurrency control over the data. The tests conducted were organized such that the changes

imposed on data items resulted in valid items. This eliminates user error as a factor in the inspection

of the quality of the approach. In addition, existential changes were permitted to data to vet the overall

behavior of the system but dirty and hidden deletes did not force conflicts. This was done to allow

organized steps in conflict escalation and ensure that the natural occurrence of conflicts did not over
3Redressed is a subset of accepted.

55

inflate the conflict ratio in consecutive test iterations. Furthermore, the type is designed this way to

closely emulate a last write wins policy. The final goal that these tests demonstrate is that the tolerance

in concurrency is fully customizable and can be on par with last write wins without opt-ing for it entirely.

Table (a) of each scenario detail offers the input configuration using the parameters outlined

above. Each (b) table offers a summary of the pertinent attributes of each run necessary to understand

the potency of each method and how it fairs relative to the other under the given environment. Metrics

on both CS and the items within the CS are provided as they are distinct notions and one does not

necessarily imply detail about the other. For example, in scenario 1, the acceptance rate and total

CS processed of the baseline OC approach is higher than that of the approach above, however, the

approach above processed 318 more items. Independently, they would be merely interesting details.

However, the combination of these data points informs that the approach should be expected to be in

conflict more often, and indeed it is.

The process begins with the a bottom case light load and is intended to gain perspective of

the overall approach as iterations progress. In this first round, the guarantee of conflict and likelihood

of PC inputs are both zero percent. Consequently, the performance of each is commensurate with the

other. This is a direct consequence of the nature of the approach in that the default mode of operation

functions as one of standard OC behavior.

With respect to auditing the approach’s impact to the downstream bandwidth, both flavors pre-

sented here utilize a higher volume than a traditional model would. In a traditional model, the down-

stream bandwidth would be limited to the rejection status and possibly a message explaining the reason

for rejection. In the results presented here, both the baseline and approach double the update request

as a query operation in the event of CS rejection. The response is naturally exaggerated in size as a

result. Determining downstream bandwidth impact is done through the Rejection metric. The value pre-

sented for this metric actually constitutes an expected one to one request to response situation. Thus,

in scenario 1 where the baseline rejected 3.17% and the approach rejected 5.23% of the items each

received, it can be said that the approach behaved 65.12% less efficiently than the baseline and that

5.23% of all items it receives will result in downstream traffic being generated with magnitude approx-

imately equal to the incoming request. In contrast, the results of scenario 10 demonstrate the overall

downstream bandwidth impact of the approach to be 98.65% better than the baseline.

In reviewing the fate of the items within each change set, Clean refers to the item being ac-

cepted on the initial commit attempt with no conflicts at all. Any item which is accepted into the DB

56

coming from the RejectConcurrentEditsConflictResolver may only be accepted when clean.

Scenario 0

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 0%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 96.83% 94.77% -2.13%

Rejection 3.17% 5.23% 65.12%

Total 1,863 1,855 -0.43%

Accepted 1,804 1,758 -2.55%

Conflicts 59 137 132.20%

Actual Conflict % 3.17% 7.39% 133.20%

Returned 59 96 62.71%

Aborted 0 1 -

Redressed 0 40 -

Average 37.984 38.457 1.24%

Total 70,641 70,959 0.45%

Accepted 68,344 67,107 -1.81%

Returned 2,297 3,805 65.65%

Aborted 0 1 -

Redressed 0 1,561 -

(b) Result Metrics

Table 5.1: Scenario 0 Details

0.0

100.0

90.0

94.77

96.83

Baseline ApproachBaseline Approach

(a) Change Set Acceptance

0.0

3.17

5.23

BaselineApproach

(b) % Items Returned

Clean
Return

(c) Relative Fate of Base-
line Sets

Clean

Return
Redress

(d) Relative Fate of Ap-
proach Sets

Fig. 5.2: Scenario 0

57

Scenario 1

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 10%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 83.62% 92.60% 10.74%

Rejection 16.38% 7.40% -54.81%

Total 1,416 1,418 0.14%

Accepted 1,184 1,313 10.90%

Conflicts 232 279 20.26%

Actual Conflict % 16.38% 19.68% 20.09%

Returned 232 105 -54.74%

Aborted 0 0 0.00%

Redressed 0 174 -

Average 38.029 38.144 0.30%

Total 53,909 54,208 0.55%

Accepted 44,822 49,903 11.34%

Returned 9,087 4,305 -52.62%

Aborted 0 0 0.00%

Redressed 0 6,681 -

(b) Result Metrics

Table 5.2: Scenario 1 Details

0.0

100.0

80.0

83.62

92.6

BaselineApproach ApproachBaseline
(a) Change Set Acceptance

0.0

7.4

16.38

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of Baseline
Sets

Clean

Return

Redress

(d) Relative Fate of Approach
Sets

Fig. 5.3: Scenario 1

58

Scenario 2

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 20%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 73.22% 93.15% 27.22%

Rejection 26.78% 6.85% -74.42%

Total 1,318 1,328 0.76%

Accepted 965 1,237 28.19%

Conflicts 353 394 11.61%

Actual Conflict % 26.78% 29.67% 10.77%

Returned 353 91 -74.22%

Aborted 0 0 0.00%

Redressed 0 303 -

Average 37.785 37.410 -0.99%

Total 49,263 49,307 0.09%

Accepted 35,849 45,818 27.81%

Returned 13,414 3,489 -73.99%

Aborted 0 0 0.00%

Redressed 0 11,400 -

(b) Result Metrics

Table 5.3: Scenario 2 Details

0.0

73.22

93.15

Baseline Approach
(a) Change Set Acceptance

0.0

6.85

26.78

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of
Baseline Sets

Clean

Return
Redress

(d) Relative Fate of Ap-
proach Sets

Fig. 5.4: Scenario 2

59

Scenario 3

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 30%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 64.25% 92.85% 44.50%

Rejection 35.75% 7.15% -79.99%

Total 1,228 12,30 0.16%

Accepted 789 1,142 44.74%

Conflicts 439 443 0.91%

Actual Conflict % 35.75% 36.02% 0.75%

Returned 439 88 -79.95%

Aborted 0 0 0.00%

Redressed 0 355 -

Average 38.396 37.999 -1.04%

Total 46,683 46,438 -0.52%

Accepted 30,100 42,909 42.55%

Returned 16,583 3,529 -78.72%

Aborted 0 0 0.00%

Redressed 0 13,413 -

(b) Result Metrics

Table 5.4: Scenario 3 Details

0.0

64.25

92.85

Baseline Approach
(a) Change Set Acceptance

0.0
7.15

35.75

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of
Baseline Sets

Clean

ReturnRedress

(d) Relative Fate of Ap-
proach Sets

Fig. 5.5: Scenario 3

60

Scenario 4

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 40%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 58.93% 94.68% 60.65%

Rejection 41.07% 5.32% -87.04%

Total 974 1,127 15.71%

Accepted 574 1,067 85.89%

Conflicts 400 541 35.25%

Actual Conflict % 41.07% 48.00% 16.89%

Returned 400 60 -85.00%

Aborted 0 0 0.00%

Redressed 0 481 -

Average 37.903 38.471 1.50%

Total 36,813 43,404 17.90%

Accepted 21,759 40,973 88.30%

Returned 15,054 2,431 -83.85%

Aborted 0 0 0.00%

Redressed 0 19,380 -

(b) Metrics

Table 5.5: Scenario 4 Details

0.0

58.93

94.68

Baseline Approach
(a) Change Set Acceptance

0.0
5.32

41.07

Baseline Approach
(b) % Items Returned

Clean

Return
(c) Relative Fate of
Baseline Sets

Clean

Return

Redressed
(d) Relative Fate of Ap-
proach Sets

Fig. 5.6: Scenario 4

61

Scenario 5

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 50%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 46.54% 96.14% 106.56%

Rejection 53.46% 3.86% -92.78%

Total 593 1,192 101.01%

Accepted 276 1,146 315.22%

Conflicts 317 662 108.83%

Actual Conflict % 53.46% 55.54% 3.89%

Returned 317 46 -85.49%

Aborted 0 0 0.00%

Redressed 0 616 -

Average 37.580 38.081 1.33%

Total 22,076 45,211 104.80%

Accepted 10,340 43,309 318.85%

Returned 11,736 1,902 -83.79%

Aborted 0 0 0.00%

Redressed 0 23,146 -

(b) Metrics

Table 5.6: Scenario 5 Details

0.0

46.54

96.14

Baseline Approach
(a) Change Set Acceptance

3.86

53.46

Baseline Approach
(b) % Items Returned

Clean

Return
(c) Relative Fate of
Baseline Sets

Clean

Return

Redress
(d) Relative Fate of Ap-
proach Sets

Fig. 5.7: Scenario 5

62

Scenario 6

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 60%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 39.41% 96.50% 144.85%

Rejection 60.59% 3.50% -94.23%

Total 1,228 1,230 0.16%

Accepted 484 1,187 145.25%

Conflicts 744 789 6.05%

Actual Conflict % 60.59% 64.15% 5.88%

Returned 744 43 -94.22%

Aborted 0 0 0.00%

Redressed 0 746 -

Average 37.952 37.653 -0.79%

Total 46,400 46,263 -0.30%

Accepted 18,127 44,565 145.85%

Returned 28,273 1,698 -93.99%

Aborted 0 0 0.00%

Redressed 0 28,325 -

(b) Metrics

Table 5.7: Scenario 6 Details

0.0

39.41

96.5

Baseline Approach
(a) Change Set Acceptance

3.5

60.59

Baseline Approach
(b) % Items Returned

Clean

Return
(c) Relative Fate of
Baseline Sets

CleanReturn

Redress

(d) Relative Fate of
Approach Sets

Fig. 5.8: Scenario 6

63

Scenario 7

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 70%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 29.90% 98.51% 229.51%

Rejection 70.10% 1.49% -97.88%

Total 873 874 0.11%

Accepted 261 861 229.89%

Conflicts 612 613 0.16%

Actual Conflict % 70.10% 70.14% 0.05%

Returned 611 13 -97.87%

Aborted 1 0 -100.00%

Redressed 0 600 -

Average 38.137 37.841 -0.78%

Total 33,179 33,437 0.78%

Accepted 9,911 32,957 232.53%

Returned 23,235 480 -97.93%

Aborted 0 0 0.00%

Redressed 0 23,027 -

(b) Metrics

Table 5.8: Scenario 7 Details

0.0

29.9

98.51

Baseline Approach
(a) Change Set Acceptance

1.49

70.1

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of
Baseline Sets

CleanReturn

Redress

(d) Relative Fate of
Approach Sets

Fig. 5.9: Scenario 7

64

Scenario 8

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 80%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 19.42% 97.63% 402.63%

Rejection 80.58% 2.37% -97.06%

Total 1,179 1,180 0.08%

Accepted 229 1,152 403.06%

Conflicts 950 981 3.26%

Actual Conflict % 80.58% 83.14% 3.18%

Returned 950 28 -97.05%

Aborted 0 0 0.00%

Redressed 0 953 -

Average 37.564 38.735 3.12%

Total 44,049 45,309 2.86%

Accepted 8,760 44,152 404.02%

Returned 35,289 1,157 -96.72%

Aborted 0 0 0.00%

Redressed 0 36,567 -

(b) Metrics

Table 5.9: Scenario 8 Details

0.0
19.42

97.63

Baseline Approach
(a) Change Set Acceptance

2.37

80.58

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of Base-
line Sets

Clean

Return

Redress

(d) Relative Fate of Ap-
proach Sets

Fig. 5.10: Scenario 8

65

Scenario 9

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 90%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 10.77% 98.25% 812.21%

Rejection 89.23% 1.75% -98.04%

Total 1,142 1,143 0.09%

Accepted 123 1,123 813.01%

Conflicts 1,019 1,040 2.06%

Actual Conflict % 89.23% 90.99% 1.97%

Returned 1,019 20 -98.04%

Aborted 0 0 0.00%

Redressed 0 1020 -

Average 37.781 38.324 1.44%

Total 43,055 43,360 0.71%

Accepted 4,795 42,571 787.82%

Returned 38,260 789 -97.94%

Aborted 0 0 0.00%

Redressed 0 38,722 -

(b) Metrics

Table 5.10: Scenario 9 Details

10.77

98.25

Baseline Approach
(a) Change Set Acceptance

1.75

89.23

Baseline Approach
(b) % Items Returned

Clean

Return

(c) Relative Fate of Baseline
Sets

Clean
Return

Redress

(d) Relative Fate of Approach
Sets

Fig. 5.11: Scenario 9

66

Scenario 10

Parameter Value

Initial Pool 500

Minimum Size 25

Maximum Size 50

Guarantee% 100%

PC% 0%

Delete% 0.5%

Create% 30%

(a) Input Configuration

Metric Baseline Approach ∆%

Acceptance 0.00% 98.65% -

Rejection 100.00% 1.35% -98.65%

Total 1,186 1,187 0.08%

Accepted 0 1,171 -

Conflicts 1,186 1,187 0.08%

Actual Conflict % 100.00% 100.00% 0.00%

Returned 1,186 16 -98.65%

Aborted 0 0 0.00%

Redressed 0 1,171 -

Average 37.590 38.015 1.13%

Total 44,357 44,511 0.35%

Accepted 0 43,913 -

Returned 44,357 598 -98.65%

Aborted 0 0 0.00%

Redressed 0 43,913 -

(b) Metrics

Table 5.11: Scenario 10 Details

0.0

98.65

Baseline Approach
(a) Change Set Acceptance

1.35

100.0

Baseline Approach
(b) % Items Returned

Return

(c) Relative Fate of Base-
line Sets

Redress Return

(d) Relative Fate of Approach
Sets

Fig. 5.12: Scenario 10

67

Baseline

Approach

0 8.25% 18.64% 28.99% 36.56% 45.74% 55.11% 63.72% 72.66% 82.05% 90.39% 100%
0.0

20.0

40.0

60.0

80.0

100.0

Fig. 5.13: Comparison of acceptance rates to conflict probability

The acceptance rates from the tests above were compiled into figure 5.13. The figure uses the

median Conflict % with the associated Acceptance metric to illustrate more clearly how the approach

fairs in scenarios where the expectation of conflicts is high. As the figure shows, the approach above

can achieve near last write wins acceptance of change sets by relaxing the definition of coherence

without compromising on strict consistency or sacrificing concurrency control.

5.2.4 Pessimistic Opt-in

In a situation where the data to be updated sees frequent modifications, it may be useful to

halt concurrency temporarily while a critical body of work is accommodated. To test such a scenario,

the following test was designed based on the provider-consumer pattern. The tests leveraged in the

previous section are set to run on small data sets with 25 users concurrently participating. Another

test is run, emulating a single user. The single user test is profiled for individual success rates and

the worker pool from above, while offered for reference is disregarded as it is already known that once

the lock is applied, all others immediately cease to be able to operate. Per the configuration in table

5.12a, the locker user makes two passes at the data. The first round is configured for 100% conflict

guarantee and 100% chance to acquire a PC lock while using the RejectConcurrentEditsConflictRe-

solver to guarantee the CS rejects completely. If the first round rejected properly, the user immediately

submits a new CS, this time with 0% conflict guarantee and 0% chance to acquire a lock on failure and

still uses the RejectConcurrentEditsConflictResolver. Four performance counters are used to capture

the success rates of the locking process. Two count attempts, one before the first request, and one

before the second. Two more count the successes of the requests. As the results in table 5.12a clearly

demonstrate, this process was 100% effective is guaranteeing the locking process ensured success of

the second write attempt.

68

Parameter Value

Initial Pool 10

Minimum Size 10

Maximum Size 11

Guarantee% (worker) 0%

Guarantee% (locker) 100%, 0%

PC% (worker) 0%

PC% (locker) 100%, 0%

Delete% 0%

Create% 0%

(a) Input Configuration

Metric Approach

Acceptance 3.40%

Rejection 95.24%

Total 62,397

Accepted 2,123

Conflicts 59,427

Actual Conflict % 95.24%

Returned 12,829

Aborted 46,985

Redressed 0

Average 10

Total 615,500

Accepted 21,230

Returned 128,290

Aborted 46,598

Redressed 0

(b) Metrics for 25 Workers

Metric Count

First Round Attempts 3,954

First Round Successes 3,954

Second Round Attempts 3,954

Second Round Success 3,954

Comprehensive Success Rate 100%

(c) Metrics for Locker

Table 5.12: Pessimistic Lock Test Details

69

CHAPTER 6

CONCLUSION

The approach presented in this work leans on tried and true patterns of establishing optimistic

concurrency control coupled with optional lock escalation to provide guarantees as to the determinate

nature of conventionally conflicting transactions. A generic means of promoting any generic POCO

(plain old common object) as a virtually conflict free data type within the confines of a custom tailored

transaction control was presented. The composition of both features as a single solution presents op-

portunities in the world of off line data processing which are traditionally pigeonholed by constraints of

coherence and difficult to manage. The small surface area, extensibility, unobtrusive and passive qual-

ities of the merge framework provided make it suitable for a broad domain of semantic data processing

applications.

6.1 Property Merge Enhancements

The source code in this project has taken into account the issue of boxing and unboxing of

value types. In the .NET framework, value based types are passed by value on the stack, however,

methods which accept arguments of type System.Object will incur a boxing operation when passed a

value type. This boxing operation will wrap the value with a reference type object and place the object

in the heap. Future references to the object will acquire the item from the heap and unbox it back to

a value type where it will be copied into the stack at the memory location of the local variable using

it. These operations, while small, can become very expensive cumulatively. One area of the property

merge which has not fully resolved this issue is in the Rel.Merge.Strategies.MergeableAttribute’s Merge

method and its descendants.

The Merge method signature is a generic method so it will not incur boxing operations, however,

there is no mechanism currently to get the properly types value of the argument without up-casting it to

an object which incurs the boxing operations. Being that this is called on property merges, this should

70

be addressed.

6.2 Data Access Layer Considerations

This project has wholly segregated the responsibility of data access out of its core functionality

for portability. The DAL itself is very basic. Building a more elaborate DAL atop a RDBMS back-end

may prove to have challenges, namely in the way of deadlock considerations. It works fine in this

example implementation to place the PC lock in-line on the partition, but in a more complex system,

it would be advantageous to port the PC lock to its own segment of the system to with specialized

wrappers. Furthermore, the EF library’s pattern of single command single entity works well for general

use, but as stated previously makes for a very poor performing batch update system. Any DAL seeking

to incorporate large change sets into its core functionality should invest effort up front in modeling the

data domain and DAL to accommodate such behaviors.

71

APPENDIX A

CLIENT API DOCUMENTATION

72

API Documentation / app / authenticationService

authenticationService
service in module app

Description
Manages communication with the server regarding authentication information. This service is also responsible to

handling offline user authentication.

Methods

73

API Documentation / app / jobService

jobService
service in module app

Description
Exposes features oriented on Jobs.

Methods

74

75

76

77

API Documentation / app / LoginController

LoginController
service in module app

Description
Oversees the login process.

In this demonstration, the authentication is limited to only notifying the server what the active username is. We

are not interested in a full blown user account or profile and passwords.

Methods

78

API Documentation / app / loginService

loginService
service in module app

Description
Acquires credentials to submit for authentication.

Methods

79

API Documentation / app / offlineStore

offlineStore
service in module app

Description
Encapsulates the offline store and shadow copy functionality. When interpreting methods within the offline store:

TOP refers to the original values placed in the store.

BOTTOM refers to the modified values in the store.

In the store, unless specified otherwise, BOTTOM always supersedes TOP in read operations.

Methods

80

81

82

API Documentation / app / principal

principal
service in module app

Description
Manages the authenticated user credentials.

Methods

83

API Documentation / app / utils

utils
service in module app

Description
Provides common utility methods.

Methods

84

85

86

APPENDIX B

CLIENT CODE

Core client code presented below.

B.1 Application Space

(function () {
’use strict’;

/**
* @ngdoc overview
* @name app
* @description
*
* Proof of Concept
*/

angular.module(’app’, [
’ngAnimate’,
’ngSanitize’,

’ui.router’,
’ui.bootstrap’,

’toastr’,
’angularMoment’,
’indexedDB’

]);
angular.module(’app’).run(function ($rootScope) {

$rootScope.$on("$stateChangeError", console.log.bind(console));
});

})();

Listing B.1: app.js

(function () {
’use strict’;

87

angular.module(’app’).config(function (toastrConfig) {
angular.extend(toastrConfig, {

positionClass: ’toast-bottom-center’
});

});

angular.module(’app’).config(function ($logProvider) {
$logProvider.debugEnabled(true);

});

angular.module(’app’).filter(’numeric’, function() {
return function(input) {

return parseInt(input, 10);
};

});
})();

Listing B.2: config.js

(function () {
’use strict’;

var shadow = ’_shadow’,
isShadow = new RegExp(shadow + ’$’);

angular.module(’app’).config(function ($indexedDBProvider) {
$indexedDBProvider

.connection(’thesis’)

.upgradeDatabase(1, function (event, db, tx) {
createAndShadowCopy(db, ’job’, { keyPath: ’id’ }, [

[’name_idx’, ’name’, { unique: false }]
]);
createAndShadowCopy(db, ’asset’, { keyPath: ’id’ }, [

[’jobId, serviceArea’, [’jobId’, ’serviceArea’], {
unique: false }],

[’jobId’, ’jobId’, { unique: false }]
]);

});

function createAndShadowCopy(db, storeName, optionalParams, indices) {
var objectStore = db.createObjectStore(storeName, optionalParams);
for (var i = 0; i < indices.length; i += 1) {

objectStore.createIndex.apply(objectStore, indices[i]);
}

if (!isShadow.test(storeName)) {
createAndShadowCopy(db, storeName + shadow, optionalParams, indices);

}
}

88

});

/**
* @ngdoc object
* @name app.offlineStore
* @description
*
* Encapsulates the offline store and shadow copy functionality.
* When interpreting methods within the offline store:
* * TOP refers to the original values placed in the store.
* * BOTTOM refers to the modified values in the store.
*
* In the store, unless specified otherwise, BOTTOM always
* supersedes TOP in read operations.
*/

angular.module(’app’).factory(’offlineStore’, offlineStore);

function offlineStore($q, $log, $indexedDB, utils) {
var enabled = checkEnabled(),

disabled = $q.reject(’offline storage is unavailable’),
svc = {

get: get,
query: query,
getByIndex: getByIndex,
put: put,
getAll: getAll,
track: track,
purge: purgeByIndex,
purgeById: purgeById

};

return svc;

/**
* @ngdoc function
* @name app.offlineStore#get
* @methodOf app.offlineStore
* @description
*
* Gets an item from the store.
*
* @param {string} type The type of object/store to pull from.
* @param {string} id The identity of the item.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, yields an item
* from the store or rejects when not found.
*/

function get(type, id, suppressShadow) {
if (!enabled) { return disabled; }
var promise =

suppressShadow === true ?
$q.reject() :
get(type + shadow, id, true);

89

return promise
.then(null, function () {

return openStore(type, _get(id));
});

}

/**
* @ngdoc function
* @name app.offlineStore#query
* @methodOf app.offlineStore
* @description
*
* Gets zero or more items from the store.
*
* @param {string} type The type of object/store to pull from.
* @param {function} callback A callback which receives a store
* and returns a {Q} of items from the store.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, yields all
* items from the store which satisfy the query.
*/

function query(type, callback, suppressShadow) {
if (!enabled) { return disabled; }
var promise =

suppressShadow === true ?
$q.when([]) :
getAll(type + shadow, callback, true);

return promise
.then(function (pred) {

return openStore(type, callback)
.then(function (a) { return pred.concat(a); });

});
}

/**
* @ngdoc function
* @name app.offlineStore#getAll
* @methodOf app.offlineStore
* @description
*
* Gets all items from the store.
*
* @param {string} type The type of object/store to pull from.
* @param {string=} keyPath The key property to resolve
* identity of items from.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, yields all
* items from the store.
*/

function getAll(type, keyPath, suppressShadow) {
if (!enabled) { return disabled; }

90

var promise =
suppressShadow === true ?
$q.when([]) :
getAll(type + shadow, keyPath, true);

return promise
.then(function (pred) {

return openStore(type, function (store) {
return store.getAll()

.then(utils.concatResults(pred, keyPath));
});

});
}

/**
* @ngdoc function
* @name app.offlineStore#getByIndex
* @methodOf app.offlineStore
* @description
*
* Gets all items from the ‘type‘ store using a the specified
* ‘index‘ for query and which satisfy the given ‘filter‘.
* Returns a promise wrapping the query of all items in the
* specified type store with a matching index. Items will be
* returned from both shadow copy and original values regions.
* Each item will exist only once, if it exists in the shadow
* copy region, the shadow will be returned. Otherwise, the
* original values are yielded.
*
* @param {string} type The type of object/store to pull from.
* @param {string} index The index name to crawl.
* @param {string=} keyPath The key property to resolve
* identity of items from.
* @param {function=} filter A callback to filter the results.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, yields all
* items from the store discovered by ‘index‘ passing the
* specified ‘filter‘ and found distinct by ‘keyPath‘.
*/

function getByIndex(type, index, keyPath, filter, suppressShadow) {
if (!enabled) { return disabled; }
var promise =

suppressShadow === true ?
$q.when([]) :
getByIndex(type + shadow, index, keyPath, filter, true);

$log.debug(’getByIndex’, arguments);
return promise

.then(function (pred) {
return openStore(type, _getByIndex(index, _filter(filter)))

.then(function (p) {
return utils.concatResults(pred, keyPath)(p);

});
});

91

}

/**
* @ngdoc function
* @name app.offlineStore#purgeById
* @methodOf app.offlineStore
* @description
*
* Removes a specific item from the store.
*
* @param {string} type The type of object/store to purge from.
* @param {object} id The identity of the object.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, signifies
* completion of the purge.
*/

function purgeById(type, id, suppressShadow) {
if (!enabled) { return disabled; }
var promise =

suppressShadow === true ?
$q.when() :
purgeById(type + shadow, id, true);

return promise
.finally(openAndDeleteStoreById(type, id));

//.catch(angular.noop);
}

/**
* @ngdoc function
* @name app.offlineStore#purgeByIndex
* @methodOf app.offlineStore
* @description
*
* Removes all items from the store where the given ‘dbIndex‘
* equals the specified ‘dbIndexValue‘.
*
* @param {string} type The type of object/store to purge from.
* @param {string} dbIndex The index to crawl.
* @param {*} dbIndexValue The value to find.
* @param {string} [keyPath=’id’] The identity property of the
* items to be deleted.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, signifies
* completion of the purge.
*/

function purgeByIndex(type, dbIndex, dbIndexValue, keyPath, suppressShadow) {
if (!enabled) { return disabled; }
var promise =

suppressShadow === true ?
$q.when() :
purgeByIndex(type + shadow, dbIndex, dbIndexValue, keyPath, true);

92

return promise.finally(openAndDeleteStore(type, dbIndex, dbIndexValue,
keyPath));

}

/**
* @ngdoc function
* @name app.offlineStore#put
* @methodOf app.offlineStore
* @description
*
* Insert or update one or more items in the store.
*
* @param {string} type The type of object/store of the items.
* @param {object|array} items The items to be placed in the store.
* @param {boolean=} suppressShadow ‘true‘ to suppress the
* shadow copy logic.
* @returns {Q} A promise which, when resolved, signifies the
* successful completion of the insert or update operation.
*/

function put(type, items, suppressShadow) {
if (!enabled) { return disabled; }
if (suppressShadow !== true) {

type = type + shadow;
}

return openStore(type, function (store) {
return store.upsert(items);

});
}

function openAndDeleteStore(storeName, dbIndex, dbIndexValue, keyPath) {
return function () {

return openStore(storeName, function (store) {
var find = store.query().$eq(dbIndexValue).$index(dbIndex);
return store.eachWhere(find).then(function (a) { return

deleteThese(a, keyPath, store); });
});

};
}

function openAndDeleteStoreById(storeName, itemKey) {
return function () {

return openStore(storeName, function (store) {
return store.delete(itemKey);

});
};

}

function deleteThese(a, keyPath, store) {

93

var keys = a.map(function (e) { return e[keyPath]; });
return $q.all(keys.map(store.delete, store));

}

function track(type, items) {
return openStore(type, function (store) {

return store.upsert(items);
});

}

function _get(id) { return function (store) { return store.find(id); }; }

function _select(a) { return a; }

function _filter(filterFn) {
return function (a) {

var results = a.filter(filterFn);
$log.debug(’_filter %o -> %o’, arguments, results);
return results;

};
}

function _getByIndex(index, filter) {
return function (store) {

return store.eachBy(index).then(filter);
};

}

function logError(e) {
$log.log(e, e);
return $q.reject(e);

}

function openStore(name, callback) {
var promise;
if (angular.isFunction(name)) {

callback = name;
name = ’job’;

} else {
name = name || ’job’;

}

try {
promise = $indexedDB.openStore(name, callback);

} catch (e) {
return $q.reject(e);

94

}

return promise;
}

function checkEnabled() {
return true;//TODO

}
}

})();

Listing B.3: common/indexeddb.config.js

(function () {
’use strict’;

angular.module(’app’).factory(’utils’, utils);

/**
* @ngdoc object
* @name app.utils
* @description
*
* Provides common utility methods.
*/

function utils($uibModal) {
var service = {

findById: findById,
fixObjGraph: fixObjGraph,
confirm: confirm,
concatDistinct: concatDistinct,
concatResults: concatResults,
coerceToInt: coerceToInt,
indexArray: indexArray

};
return service;

/**
* @ngdoc function
* @name app.utils#coerceToInt
* @methodOf app.utils
* @description
*
* Converts a value to an integer.
*
* @param {*} value The value to coerce to numeric.
* @returns {number} The integer represented by value or 0.
*/

function coerceToInt(value) {

95

return ~~value;
}

/**
* @ngdoc function
* @name app.utils#findById
* @methodOf app.utils
* @description
*
* Finds an object in an array by an arbitrary index value.
*
* @param {array} array The Array object to search.
* @param {string} keyValue The identity value sought.
* @param {string} [keyPath=’id’] The property containing the key value.
* @returns {object} The object identified by the given id.
*/

function findById(array, id, keyPath) {
keyPath = keyPath || ’id’;
for (var i = array.length; i--;) {

if (array[i][keyPath] === id) {
return array[i];

}
}

}

/**
* @ngdoc function
* @name app:utils#indexArray
* @methodOf app.utils
* @description
*
* Indexes an array on an arbitrary property.
*
* @param {array} array The array to index.
* @param {string} [key=’id’] The property containing the index value.
* @returns {object} An index object of the array.
*/

function indexArray(array, key) {
return array.reduce(function (p, c, i) {

p[c[key]] = c;
return p;

}, {});
}

/**
* @ngdoc function
* @name app.utils#concatDistinct
* @methodOf app.utils

96

* @description
*
* Concatenates file to rank, ensuring that only one item with
* an arbitrary key value exists in the resulting array. If
* items ‘A‘ and ‘B‘ have key value ‘x‘ the item elected into
* the resultant array is computed as follows:
*
* * If ‘A‘ and ‘B‘ are both in ‘rank‘, which ever appears last
* is taken.
* * If ‘A‘ is in ‘rank‘ and ‘B‘ is in ‘file‘, ‘A‘ is taken.
* * If ‘A‘ and ‘B‘ are both in ‘file‘, which ever appears
* first is taken.
*
* @param {array} rank An array of values.
* @param {array} file An array of values.
* @param {string} [key=’id’] An optional keyPath to use in
* indexing the arrays.
* @returns {array} An array containing all elements resolved
* as distinct on the specified key.
*/

function concatDistinct(rank, file, key) {
var index = indexArray(rank, key);

return rank
.concat(file.filter(function (e, i, a) {

return !index.hasOwnProperty(e[key]);
}));

}

/**
* @ngdoc function
* @name app.utils#concatResults
* @methodOf app.utils
* @description
*
* Wraps {@link app.utils#methods_concatDistinct concatDistinct}
* as a delegate for convenience in ‘Q‘ chaining.
*
* @example query.find().then(concatResults(previousQueryResults, ’id’));
*
* @param {array} pred Predecessor query results. Will be used
* as the rank value in concatDistinct.
* @param {string} [keyPath] Indexing property of both arrays.
*/

function concatResults(pred, keyPath) {
return function (r) {

return concatDistinct(asArray(pred), asArray(r), keyPath);
};

}
function asArray(e) { return angular.isArray(e) ? e : []; }

97

/**
* @ngdoc function
* @name app.utils#confirm
* @methodOf app.utils
* @description
*
* Presents an OK/Cancel dialog prompt.
*
* @param {string} question The question to prompt with.
* @returns {Q} A promise which resolves when OK is chosen, or
* rejects if canceled.
*/

function confirm(question) {
var inst = $uibModal.open({

animation: true,
template: ’<div class="modal-header">’ +

’ <h2>Confirm</h2>’ +
’</div>’ +
’<div class="modal-body">’ +
’ <p>’ + question + ’</p>’ +
’</div>’ +
’<div class="modal-footer">’ +
’ <div>’ +
’ <button data-ng-click="vm.close()" class="btn btn-

default">OK</button>’ +
’ <button data-ng-click="vm.dismiss()" class="btn btn-

default">Cancel</button>’ +
’ </div>’ +
’</div>’,

controllerAs: ’vm’,
controller: function (close, dismiss) {

this.close = close;
this.dismiss = dismiss;

},
size: ’sm’,
backdrop: ’static’,
resolve: {

close: function () {
return function () {

return inst.close.apply(inst, arguments);
};

},
dismiss: function () {

return function () {
return inst.dismiss.apply(inst, arguments);

};
}

}
});

return inst.result;
}

98

/**
* @ngdoc function
* @name app.utils#fixObjGraph
* @methodOf app.utils
* @description
*
* Restores a deserialized object graph which used the $id,
* $ref, and $values attribute convention to serialize cycles.
*
* @param {object} graph The root of the deserialized graph.
* @param {object} [indices={}] A pre-seeded index of $refs
* located in graph
* @returns {object} The corrected object graph.
*/

function fixObjGraph(graph, indices) {
indices = indices || {};

if (!graph || typeof graph === ’string’) { return graph; }

if (graph.hasOwnProperty(’$ref’)) {
return indices[graph.$ref];

}

if (graph.hasOwnProperty(’$id’)) {
if (graph.hasOwnProperty(’$values’)) {

graph = indices[graph.$id] = graph.$values;
} else {

indices[graph.$id] = graph;
delete graph.$id;

}
}

for (var member in graph) {
if (graph.hasOwnProperty(member)) {

graph[member] = fixObjGraph(graph[member], indices);
}

}

return graph;
}

}
})();

Listing B.4: common/utils.js

B.2 Job Facilities

(function () {
’use strict’;

99

var componentId = ’CheckoutController’;
angular.module(’app’).controller(componentId, CheckoutController);

function CheckoutController(action, job, identity, $state, utils, jobService,
toastr) {
var vm = angular.extend(this, job, {

error: null,

locked: jobService.isLocked(job),
lockedByOther: jobService.lockedByOther(job, identity),
lockedByMe: jobService.lockedByMe(job, identity)

});

assertJobStatusAndAction(vm, action);

function goHome() {
$state.go(’job.details’);

}

function reconcile() {
// a state yet to be defined
goHome();

}

function abandon() {
return utils.confirm(’One last time... Are you sure you want to do this?’)

.then(
function () {

return jobService.abandon(job)
.then(function () {

toastr.info(’Job wiped from offline storage.’, job.
name);

goHome();
});

}, angular.noop);
}

function checkout() {
if (vm.lockedByOther) {

utils
.confirm(’This job is currently locked by ’ + job.lockedBy +

’. You have an increased chance of conflicts if you continue. Click OK to accept the
risk and checkout, or Cancel to cancel.’)

.then(function () { proceedWithCheckout(job); }, angular.noop);
} else {

proceedWithCheckout();
}

}

100

function proceedWithCheckout() {
jobService

.checkout(job)

.then(function () {
toastr.info(’Job checked out locally’, job.name);
goHome();

}, function (e) {
if (/locked by user/.test(e.exceptionMessage)) {

toastr.warning(e.exceptionMessage, job.name);
} else {

toastr.error(’An error was encountered while attempting to
check out this job.’, job.name);

}
});

}

function checkin() {
jobService

.checkin(job)

.then(function (_) {
toastr.success("Your changes have been successfully checked in.");
goHome();

}, function (e) {
if (e.staus === 400) {

if (/locked by user/.test(e.data.exceptionMessage)) {
toastr.error(e.data.exceptionMessage, job.name);

}
else if (e.message === ’conflict’) {

return utils.confirm(’One or more of your changes
conflicts with changes already accepted at the server.

Please reconcile your changes and resubmit.’)
.then(reconcile, goHome);

}
} else {

toastr.error(’There was an error submitting your changes.’, ’
Unable to check in’);

}
});

}

function assertJobStatusAndAction(vm, action) {

if (action === ’checkin’) {
vm.checkin = checkin;
if (!job.offline) {

toastr.info("Job is not checked out.", job.name);
goHome();

}
} else if (action === ’checkout’) {

vm.checkout = checkout;
if (job.offline) {

101

toastr.info("Job is already checked out.", job.name);
goHome();

}
} else if (action === ’abandon’) {

vm.abandon = abandon;
if (!job.offline) {

toastr.info("Job is not checked out.", job.name);
goHome();

}
} else {

throw ’invalid action’;
}

}
}

})();

Listing B.5: jobs/job.checkout.js

(function () {
’use strict’;

var componentId = ’jobService’;

angular.module(’app’).factory(’jobService’, jobService);

function jobService($log, $q, $http, offlineStore, utils, toastr, principal) {
var __reportedOffline = false,

__reportedOnline = false,
/**
* @ngdoc object
* @name app.jobService
* @description
*
* Exposes features oriented on Jobs.
*/

service = {
abandon: abandon,
checkin: checkin,
checkout: checkout,
getAll: getAll,
getById: getById,
isLocked: isLocked,

lockedByMe: lockedByMe,
lockedByOther: lockedByOther,

/*** Asset Utilities ***/
getAssetAreas: getAssetAreas,
getAssetByJobAndId: getAssetByJobAndId,
getAssets: getAssets,
save: save

};

return service;

102

/**
* @ngdoc function
* @name app.jobService#abandon
* @methodOf app.jobService
* @description
*
* Drops all local changes and restores the job specified to an
* online state.
*
* @param {Job} job The job to abandon offline changes from.
* @returns {Q} A promise which, when resolved, signifies
* successful removal of all offline data for the job specified.
*/

function abandon(job) {
if (!job) { return $q.reject(’Job is required’); }
if (!job.offline) { return $q.reject(’job is offline’); }

// job was available locally so begin deleting all associated
// data, working our way back up to delete the job last. This
// way if there are any issues encountered, we don’t end up with
// a job partially on- and registered as fully off-line.
return offlineStore.purge(’asset’, ’jobId’, job.id, ’id’)

.then(function () { return offlineStore.purgeById(’job’, job.id); })

.finally(clearOfflineStatus(job))

.catch(handleOfflineError);
}

/**
* @ngdoc function
* @name app.jobService#checkin
* @methodOf app.jobService
* @description
*
* Assembles a change set of offline changes for a job and
* submits them for processing at the server. If successful,
* the job specified is returned to an online state.
*
*
*
* @param {Job} job The job to check in offline changes from.
* @returns {Q} A promise which, when resolved, signifies
* successful completion of a check in operation and subsequent
* local cleanup of the offline store.
*/

function checkin(job) {
if (!job) { return $q.reject(’Job is required’); }

return compileChangeset(job)
.then(function (changeSet) { return { partitionId: job.id,

claimPartition: null, changeSet: changeSet }; })
.then(sendChanges)
.then(function (upd) {

// successful check in so abandon local changes as
// this job is now back online.
return abandon(job);

}, function (j) {

103

job.reconcile = true;
offlineStore.put(’job’, job, true);
return $q.reject(job);

});
}

/**
* @ngdoc function
* @name app.jobService#checkout
* @methodOf app.jobService
* @description
*
* Acquires a partition of data for offline processing.
*
* @param {Job} job The job to check out.
* @returns {Q} A promise which, when resolved, signifies
* successful completion of a check out operation in whole.
*/

function checkout(job) {
if (!job) { return $q.reject(’Job is required’); }

var j = angular.copy(job);
j.offline = true;
j.offlineSince = new Date();

return getAssets(job)
.then(function (r) {

return offlineStore.track(’asset’, r)
.then(function () {

offlineStore.track(’job’, j);
}, rethrowOfflineError)
.then(function () {

return angular.extend(job, j);
}, rethrowOfflineError);

}, rethrowOfflineError);
}

/**
* @ngdoc function
* @name app.jobService#getAll
* @methodOf app.jobService
* @description
*
* List all jobs available to the application.
*
* @param {boolean=} [remoteTruth=undefined] A flag to indicate
* how offline and online changes should be treated. If ‘true‘
* is specified, then online results will be yielded with only
* flags indicating the offline status of the job. This is in
* contrast to returning offline results where the user may not
* see any changes which have been made. The ‘true‘ behavior is
* useful to render the project listing with information such
* as pessimistic locks applied since checkout.
*
* @returns {Q} A promise which, when resolved, yields the list

104

* of all jobs currently available to the application.
*/

function getAll(remoteTruth) {
var offlinePromise,

onlinePromise;

offlinePromise = offlineStore.getAll(’job’)
.then(null, handleOfflineError);

onlinePromise = $http.get(’/api/jobs’)
.then(selectAndFixResponseData, handleOnlineError);

return $q.all([offlinePromise, onlinePromise])
.then(function (results) {

return mergeResults(results[0], results[1], remoteTruth === true);
});

}

/**
* @ngdoc function
* @name app.jobService#getById
* @methodOf app.jobService
* @description
*
* Get a specific job (online or offline) by id.
*
* @param {number} id The identity of the job to acquire.
* @returns {Q} A promise which, when resolved, yields the ‘Job‘
* requested. Or rejects with an error or not found.
*/

function getById(id) {
if (!id) { return $q.reject(’Job ID is required’); }

return offlineStore.get(’job’, id)
.catch(function (e) { // cache miss

return $http.get(’/api/jobs/’ + id)
.then(selectAndFixResponseData);

});
}

/**
* @ngdoc function
* @name app.jobService#isLocked
* @methodOf app.jobService
* @description
*
* Interprets the locked status of a job.
*
* @param {Job} job The job to inspect.
* @returns {boolean} ‘true‘ if the ‘job‘ is locked; otherwise,
* ‘false‘.
*/

function isLocked(job) {
if (!job) { return $q.reject(’Job is required’); }

105

return !!job.lockedBy;
}

/**
* @ngdoc function
* @name app.jobService#lockedByMe
* @methodOf app.jobService
* @description
*
* Interprets the locked status of a job to determine if the
* identity specified holds a pessimistic lock on the given job.
*
* @param {Job} job The job to inspect.
* @param {Identity} identity The identity of a user to test.
* @returns {boolean} ‘true‘ if the ‘job‘ is locked by the
* specified ‘identity‘; otherwise, ‘false‘.
*/

function lockedByMe(job, identity) {
return !!job.lockedBy && job.lockedBy === identity.username;

}

/**
* @ngdoc function
* @name app.jobService#lockedByOther
* @methodOf app.jobService
* @description
*
* Interprets the locked status of a job to determine if the
* identity specified does not hold the pessimistic lock on the
* given job.
*
* @param {Job} job The job to inspect.
* @param {Identity} identity The identity of a user to test.
* @returns {boolean} ‘true‘ if the ‘job‘ is locked and not by
* the specified ‘identity‘; otherwise, ‘false‘.
*/

function lockedByOther(job, identity) {
if (angular.isString(job)) {

job = { lockedBy: job };
}

if (angular.isString(identity)) {
identity = { username: identity };

}
return !!job.lockedBy && job.lockedBy !== identity.username;

}

/**
* @ngdoc function
* @name app.jobService#getAssetAreas
* @methodOf app.jobService
* @description
*
* Gets all known asset areas for the given job.
*

106

* @param {Job} job The job to find asset areas for.
* @returns {Q} A promise which, when resolved, yields an Array
* of distinct strings representing the known asset areas.
*/

function getAssetAreas(job) {
if (job.offline) {

return offlineStore.query(’asset’, function (store) {
var query = store

.query()

.$index(’jobId, serviceArea’)

.$asc(true);
return store.eachWhere(query).then(function (a) {

return a.filter(function (i) { return i.jobId === job.id; });
});

}).then(function (a) {
var r = [];
a.reduce(function (p, c, i) {

var v = c.serviceArea;
if (!p.hasOwnProperty(v)) {

r.push(c.serviceArea);
p[v] = c;

}
return p;

}, {});

return r;
});

}

return $http({
url: ’/api/assets/areas’,
params: { jobId: job.id },
paramSerializer: ’$httpParamSerializerJQLike’

})
.then(selectAndFixResponseData);

}

/**
* @ngdoc function
* @name app.jobService#getAssetByJobAndId
* @methodOf app.jobService
* @description
*
* Gets an asset (online or offline) by the job status and
* assetId.
*
* @param {Job} job The job containing the asset specified.
* @returns {Q} A promise which, when resolved, yields the
* asset requested, or rejects on not found or error.
*/

function getAssetByJobAndId(job, assetId) {
if (job.offline) {

return offlineStore.get(’asset’, assetId);
}

107

return $http({
url: ’/api/asset’,
params: { jobId: job.id, assetId: assetId },
paramSerializer: ’$httpParamSerializerJQLike’

}).then(selectAndFixResponseData, function (e) {
$log.error("failed getting asset " + assetId + " in job " + job.id, e)

;
});

}

/**
* @ngdoc function
* @name app.jobService#getAssetByJobAndId
* @methodOf app.jobService
* @description
*
* Gets all assets by the id and offline status of the given
* job.
*
* @param {Job} job The job containing the assets to process.
* @returns {Q} A promise which, when resolved, yields an Array
* of all assets currently available to the requested ‘Job‘.
*/

function getAssets(job, areaFilter, suppressShadow) {
if (job.offline) {

if (areaFilter) {
return offlineStore.getByIndex(’asset’, ’jobId, serviceArea’, ’id’

, function (a) {
return job.id === a.jobId && a.serviceArea === areaFilter;

});
} else {

return offlineStore.getAll(’asset’, suppressShadow);
}

}
return $http({

url: ’/api/assets’,
params: { jobId: job.id, area: areaFilter },
paramSerializer: ’$httpParamSerializerJQLike’

})
.then(selectAndFixResponseData);

}

function save(job, asset) {
if (job.offline) {

return offlineStore.put(’asset’, asset)
.then(function () { return asset; }, function (e) {

$log.error(’error while saving asset.’, e);
return $q.reject(e);

});
}

return $http.put(’/api/asset’, asset)
.then(selectAndFixResponseData, rethrowOnlineError);

}

108

function handleOfflineError(e) {
if (!__reportedOffline && e && angular.isString(e) && /unavailable/.test(e

)) {
toastr.warning(’Offline storage is unavailable.’);
__reportedOffline = true;

}
$log.error(’jobService offline error:’, e);

}
function rethrowOfflineError(e) {

handleOfflineError(e);
return $q.reject(e);

}
function rethrowOnlineError(e) {

handleOnlineError(e);
return $q.reject(e);

}
function handleOnlineError(e) {

if (!__reportedOnline && e && e.status === -1) {
toastr.warning(’Online storage is unavailable.’);
__reportedOnline = true;

}
if (e.status === 400) {

toastr.warning(e.data.message, e.statusText);
return e.data;

}
$log.error(’jobService online error:’, e);

}

function reconcile(changeset) {
return changeset;

}

function pickCurrentFromChangeSetItem(csi) {
return csi.afim;

}

function handleChangeSetError(e) {
if (e.status === 400) {

$q.reject("Changeset is invalid. " + JSON.stringify(
selectAndFixResponseData(e)));

} else if (e.status === 409) {
toastr.warning("Conflicts were detected. Please review your changes

and re-submit",’Check in’);
var changeset = selectAndFixResponseData(e);
var assets = changeset.assets.map(pickCurrentFromChangeSetItem);
return offlineStore

.put(’asset’, assets, true)

.then(function () {
changeset.job.reconcile = true;

109

return $q.reject(offlineStore.track(changeset.job));
});

} else {
return $q.reject(e);

}
}

function createChangeItems(a) {
return a[1].map(join(a[0]));

}
function join(inner) {

return function (outer) {
var bfim = utils.findById(inner, outer.id);
var item = { bfim: bfim, afim: outer, action: ’update’ };
$log.debug(’submitting change item ’, item);
return item;

};
}
function filterToJob(job) {

return function (a) {
return a.filter(function (b) { return b.jobId === job.id; });

};
}
function compileChangeset(job) {

return $q.all([
offlineStore.getAll(’asset’, ’id’, true).then(filterToJob(job)),
offlineStore.getAll(’asset_shadow’, ’id’, true).then(filterToJob(job))

])

//offlineStore.getByIndex(’asset’, ’jobId’, function (a) { return a.
jobId === job.id; }, true),

//offlineStore.getByIndex(’asset_shadow’, ’jobId’, function (a) {
return a.jobId === job.id; })])

.then(createChangeItems)

.then(function (changes) {
changes.prototype = Array.prototype;
return { assets: changes };

});
}

function sendChanges(changeset) {
return $http.post(’/api/offline/checkin’, changeset)

.then(selectAndFixResponseData, handleChangeSetError);
}

function clearOfflineStatus(job) {
return function () {

delete job.offline;
delete job.offlineSince;
delete job.reconcile;
return job;

};
}

110

// { offlineError: e, onlineError: e, offline: data, online: data }
function mergeResults(offline, online, favorOnline) {

if (!angular.isArray(offline) && !angular.isArray(online)) {
$log.error(’Unable to access either online or offline data’);
return $q.reject(’No offline data available and unable to access

online store’);
}

offline = angular.isArray(offline) ? offline : [];
online = angular.isArray(online) ? online : [];
offline.unshift.apply(offline, online);// merge both arrays into one
var keys = {};

// build an index of keys
for (var i = 0; i < offline.length; i += 1) {

if (keys.hasOwnProperty(offline[i].id)) {
var orig = keys[offline[i].id];
// overwriting all properties or just pulling in offline status
if (favorOnline) {

orig.offline = offline[i].offline;
orig.offlineSince = offline[i].offlineSince;

} else {
angular.extend(orig, offline[i]);

}
offline.splice(i, 1);
i -= 1;

} else {
keys[offline[i].id] = offline[i];

}
}

return offline;
}

function selectAndFixResponseData(response) {
return utils.fixObjGraph(response.data);

}
}

})();

Listing B.6: jobs/job.service.js

(function () {
’use strict’;

angular.module(’app’).config(function ($stateProvider, $urlRouterProvider) {
$urlRouterProvider.otherwise(’/jobs’);

$stateProvider
.state(’jobs’, {

111

url: ’/jobs’,
abstract: true,
templateUrl: ’/app/jobs/jobs.html’,
controllerAs: ’vm’,
controller: function ($state, $scope, toastr, jobService) {

jobService.getAll(true).then(function (jobs) {
$scope.jobs = jobs;
return jobs;

}, function (e) {
toastr.error(’An error occured while getting jobs.’, ’Error’,

e);
});

},
resolve: {

identity: function (principal) { return principal.identity(); }
},

})
.state(’jobs.list’, {

url: ’’,
templateUrl: ’/app/jobs/jobs.list.html’

})

.state(’job’, {
url: ’/jobs/{jobId:[0-9]+}’,
abstract: true,
templateUrl: ’/app/jobs/job.layout.html’,
controllerAs: ’vm’,
controller: function (job, identity, $scope, jobService) {

var vm = this;
$scope.job = job;

updateLockedBy(vm, job, jobService, identity);
$scope.$watch(’job.lockedBy’, function () {

updateLockedBy(vm, job, jobService, identity);
});

},
resolve: {

identity: function (principal) { return principal.identity(); },
job: function ($q, $stateParams, $state, jobService, utils) {

var jobId = utils.coerceToInt($stateParams.jobId);
if (!jobId) { return $q.reject(’job id is required.’); }

if ($state.job && $state.job.id === jobId) { return $q.when(
$state.job); }

return jobService.getById(jobId).then(function (job) { return
($state.job = job); });

}
},

}).state(’job.details’, {
url: ’’,
templateUrl: ’/app/jobs/job.details.html’,
controllerAs: ’vm’,
controller: function (job, identity, jobService) {

var vm = angular.extend(this, job, {

112

error: null
});
updateLockedBy(vm, job, jobService, identity);

}
}).state(’job.checkout’, {

url: ’/checkout’,
templateUrl: ’/app/jobs/job.checkout.html’,
controllerAs: ’vm’,
controller: ’CheckoutController’,
resolve: {

action: function () { return ’checkout’; }
}

}).state(’job.checkin’, {
url: ’/checkin’,
templateUrl: ’/app/jobs/job.checkin.html’,
controllerAs: ’vm’,
controller: ’CheckoutController’,
resolve: {

action: function () { return ’checkin’; }
}

}).state(’job.abandon’, {
url: ’/abandon’,
templateUrl: ’/app/jobs/job.abandon.html’,
controllerAs: ’vm’,
controller: ’CheckoutController’,
resolve: {

action: function () { return ’abandon’; }
}

});

function updateLockedBy(vm, job, jobService, identity) {
vm.isLocked = jobService.isLocked(job);
vm.lockedByOther = jobService.lockedByOther(job, identity);
vm.lockedByMe = jobService.lockedByMe(job, identity);

}

});
})();

Listing B.7: jobs/jobs.js

B.3 Authentication

(function () {
’use strict’;

var componentId = ’authenticationService’;

angular.module(’app’).factory(componentId, authenticationService);

/**
* @ngdoc object
* @name app.authenticationService

113

* @description
*
* Manages communication with the server regarding authentication
* information. This service is also responsible to handling
* offline user authentication.
*/

function authenticationService($q, $timeout, $http, $log) {
var service = {

identify: identify,
login: login,
logoff: logoff

};

return service;

/**
* @ngdoc method
* @name app.authenticationService#identify
* @methodOf app.authenticationService
* @description
*
* Pings the server with a request for credential information
* as the server knows. The end point of this request is
* authenticated, so, if the browser submits an existing auth
* cookie back with this request, the result will be the
* authenticated username for the auth cookie used. This
* empowers session continuation between browser reloads.
*
* @param {string} username The username to login under.

*/
function identify() {

return $http
.get(’api/auth/identify’)
.then(function (response) {

$log.debug(response);
return { username: response.data, authenticated: true };

}, function (response) {
$log.debug(response);
return $q.reject(response);

});
}

function login(credentials) {
return $http.post(’api/auth/in’, credentials)
.then(function (r) {

return (r.data === true) ?
{ username: credentials.username, authenticated: true } :
$q.reject(credentials);

}, function (e) {
// operating offline??
if (e.status === -1) {

return { username: credentials.username, authenticated: true };
}
return $q.reject(e);

});

114

}

function logoff() {
return $http.post(’api/auth/out’);

}
}

})();

Listing B.8: auth/authentication.service.js

(function () {
’use strict’;

var componentId = ’LoginController’;

angular.module(’app’).controller(componentId, LoginController);

/**
* @ngdoc controller
* @name app.LoginController
* @description
*
* Oversees the login process.
*
* In this demonstration, the authentication is limited to only
* notifying the server what the active username is. We are not
* interested in a full blown user account or profile and passwords.
*/

function LoginController($q, authenticationService, toastr, username, close) {
var vm = angular.extend(this, {

username: username,
login: login

});

authenticationService
.identify()
.then(sayHi)
.then(close);

/**
* @ngdoc method
* @name app.LoginController#login
* @methodOf app.LoginController
* @description
*
* Attempts to login through the
* {@link app.authenticationService authenticationService} and
* close on success.
*
* @param {string} username The username to login under.

*/
function login(username) {

return authenticationService

115

.login({ username: username })

.then(sayHi)

.then(close);
}

function sayHi(u) {
toastr.success(’Welcome ’ + u.username);
return u;

}
}

})();

Listing B.9: auth/login.js

(function () {
’use strict’;

var componentId = ’loginService’;

angular.module(’app’).factory(componentId, loginService);

/**
* @ngdoc object
* @name app.loginService
* @description
*
* Acquires credentials to submit for authentication.
*/

function loginService($q, $uibModal) {
var service = {

login: prompt
};

return service;

/**
* @ngdoc object
* @name app.loginService#login
* @methodOf app.loginService
* @description
*
* Acquires credentials to submit for authentication.
*
* This implementation uses Bootstrap to present a modal login
* dialog prompt.
*
* @param {object} [seed] Provides seed values to the user
* credential acquisition process.
*
* @returns {Q} A promise which resolves with authenticated
* user credentials.
*/

function prompt(seed) {
var inst = $uibModal.open({

animation: true,

116

templateUrl: ’/app/auth/login.html’,
controller: ’LoginController as vm’,
size: ’sm’,
backdrop: ’static’,
resolve: {

username: function () {
return ((seed || {}).username || ’guest’);

},
close: function () {

return function () {
return inst.close.apply(inst, arguments);

};
}

}
});

return inst.result;
}

}
})();

Listing B.10: auth/login.service.js

(function () {
’use strict’;

var componentId = ’principal’,
_identity = void 0;

angular.module(’app’).factory(componentId, principal);

/**
* @ngdoc object
* @name app.principal
* @description
*
* Manages the authenticated user credentials.
*/

function principal($q, loginService) {
var service = {

identity: identity
};

return service;

/**
* @ngdoc function
* @name app.principal#identity
* @methodOf app.principal
* @description
*
* Get the authenticated user credentials.
*

117

* @param {boolean=} [flush=undefined] Flags principal to drop
* cached credentials and acquire new credentials from the
* loginService.
*/

function identity(flush) {
if (flush === true) { _identity = void 0; }

return _identity || (_identity = loginService
.login({ username: ’guest’ })
.then(setIdentity));

}

function setIdentity(identity) {
return (_identity = $q.when(identity));

}
}

})();

Listing B.11: auth/principal.js

B.4 Assets

(function () {
’use strict’;

angular.module(’app’).config(function ($stateProvider, $urlRouterProvider) {
$urlRouterProvider.otherwise(’/jobs’);

$stateProvider.state(’job.assets’, {
url: ’/assets’,
abstract: true,
views: {

’sidebar@job’: {
templateUrl: ’/app/assets/assets.sidebar.html’,
controllerAs: ’vma’,
controller: ’AssetMruController’

},
’’: { template: ’<ui-view/>’ }

},

resolve: {
identity: function (principal) { return principal.identity(); },
//mru: function ($q) { return $q.when([{ id: 123, prefix: ’AHU’, rank:

9, area: ’basement’ }]); }
},

}).state(’job.assets.list’, {
url: ’’,
views: {

’’: {
templateUrl: ’/app/assets/assets.list.html’,
controller: ’AssetsListController’,

118

controllerAs: ’vm’,
},

},
})

.state(’job.asset’, {
url: ’/assets/{assetId:[0-9]+}’,
abstract: true,
views: {

’sidebar@job’: {
templateUrl: ’/app/assets/assets.sidebar.html’,
controllerAs: ’vma’,
controller: ’AssetMruController’

},
’’: { template: ’<ui-view/>’ }

},

resolve: {
identity: function (principal) { return principal.identity(); },
asset: function (job, $q, $state, $stateParams, jobService, utils,

assetMruService) {
var assetId = utils.coerceToInt($stateParams.assetId);
if (!assetId) { return $q.reject(’Asset id is required.’); }

if ($state.asset && $state.asset.id === assetId) {
assetMruService.push($state.asset, job);
return $q.when($state.asset);

}

return jobService.getAssetByJobAndId(job, assetId).then(function (
asset) {
if (!asset) { return $q.reject(’asset not found’); }
assetMruService.push(asset, job);
return ($state.asset = asset);

});
}

},
})
.state(’job.asset.details’, {

url: ’’,
templateUrl: ’/app/assets/asset.details.html’,
controllerAs: ’vm’,
controller: ’AssetDetailsController’

});
});

})();

Listing B.12: asets/assets/js

(function () {

119

’use strict’;

var componentId = ’AssetDetailsController’;

angular.module(’app’).controller(componentId, AssetDetailsController);

function AssetDetailsController(job, asset, $log, $state, $scope, toastr,
jobService, offlineStore, utils) {
var vm = angular.extend(this, {

submit: submit,
reset: resetForm,
reconcile: false

});

if (job.reconcile === true) {
vm.reconcile = true;
offlineStore

.get(’asset’, asset.id, true)

.then(function (_) { $scope.current = _; });
}
$scope.asset = angular.copy(asset);

function goHome(msg, whereFrom) {
toastr.error(msg, whereFrom || ’Asset Details’);
$state.go(’job.assets’);

}

function submit(userForm, editedAsset) {
delete editedAsset.job;
if (vm.reconcile) {

if($scope.current){
editedAsset.rowVersion = $scope.current.rowVersion;

}

}
jobService

.save(job, editedAsset)

.then(function (result) {
angular.extend(asset, result);
$scope.asset = angular.copy(asset);
userForm.$setPristine();
toastr.success(’Changes saved.’, ’Asset Details’);

}, function (e) {
//toastr.error(’Error while saving’, ’Asset Details’);

});
}

function resetForm(userForm, editedAsset) {
angular.extend(editedAsset, asset);
userForm.$rollbackViewValue();
userForm.$setPristine();

120

}
}

})();

Listing B.13: assets/asset.details.js

(function () {
’use strict’;

var componentId = ’assetMruService’, s_mru = {};

angular
.module(’app’).factory(componentId, assetMruService)
.controller(’AssetMruController’, function (job, assetMruService) {

var vm = angular.extend(this, {
mru: assetMruService.mru(job)

});
});

function assetMruService(utils) {
var service = {

mru: function (job) { return (s_mru[job.id] || (s_mru[job.id] = [])); },
push: function (asset, job) { return push(asset, job, service.mru(job)); }

};

return service;

function push(asset, job, mru) {
var known = utils.findById(mru, asset.id);
if (known) {

mru.splice(mru.indexOf(known), 1);
}
mru.unshift(asset);

return asset;
}

}
})();

Listing B.14: assets/asset.mru.js

(function () {
’use strict’;

var componentId = ’AssetsListController’, s_mru = {};

angular.module(’app’).controller(’AssetsListController’, AssetsListController);

function AssetsListController(job, $state, $scope, jobService, toastr) {
var vm = angular.extend(this, {

assetAreas: [],
jobId: job.id,

121

haveSearched: false,
noAssetsAssigned: false,

chosenArea: null
});

$scope.$watch(’vm.chosenArea’, findAssets);

jobService
.getAssetAreas(job)
.then(function (_) {

vm.assetAreas = _;
if (!(_ && _.length)) {

// event empty string asset area will be returned, if there
// are no areas found, there are no assets to search on.
vm.noAssetsAssigned = true;

}
}, function (e) {

returnToJob(’Error while attempting to load asset areas.’);
});

function findAssets() {
if (!!vm.chosenArea) {

jobService.getAssets(job, vm.chosenArea)
.then(function (assets) {

vm.haveSearched = true;
vm.assets = assets;
if (!assets) {

vm.noAssetsAssigned = true;
}

}, function (e) {
returnToJob(’Unable to get assets’);

});
}

}

function returnToJob(reason) {
toastr.error(reason, ’Assets’);
$state.go(’job.details’);

}
}

})();

Listing B.15: assets/assets.list.js

(function () {
’use strict’;

angular.module(’app’).config(function ($stateProvider, $urlRouterProvider) {

$stateProvider
.state(’assets’, {

abstract: true,

122

url: ’/{jobId:[0-9]+}/assets’,
templateUrl: ’/app/assets/assets.html’,
controllerAs: ’vm’,
controller: function (areas, mru, assetsService, jobsService, $log,

$scope, $stateParams) {
var vm = angular.extend(this, {

job: null,
assets: [],
areas: areas,
mru: mru,
offline: null,
name:assetsService.name

});

jobsService.byId($stateParams.jobId).then(function (job) {
vm.job = job;
vm.offline = job.offline;

});

$scope.$watch(’vm.assetType’, findAssets);
$scope.$watch(’vm.assetArea’, findAssets);

function findAssets() {
if (!!vm.assetType || !!vm.assetArea) {

assetsService.byJobTypeArea(vm.job, vm.assetType, vm.
assetArea).then(function (assets) {
vm.assets = assets;

}, function (e) {
$log.error(’Unable to get assets’, e);

});
}

}
},
resolve: {

identity: function (principal) {
return principal.identity();

},
areas: function (assetsService, $stateParams) {

return assetsService.allAreas($stateParams.jobId);
},
mru: function () { return [];}
//assets: function ($stateParams, assetsService) {
// return assetsService.byJobIdAndParent($stateParams.jobId);
//},

}
})

.state(’assets.list’, {
url: ’’,
views: {

’filter’: {
templateUrl: ’/app/assets/assets.filter.html’,

},
’list’: {

templateUrl: ’/app/assets/assets.list.html’,

123

}
}

})
.state(’assets.detail’, {

url: ’/{assetId:[0-9]+}’,
templateUrl: ’/app/assets/assets.detail.html’,
controller: function (mru, utils, assetsService, $stateParams) {

var vm = angular.extend(this, {
name: assetsService.name,
asset:null

});

activate($stateParams.assetId, $stateParams.jobId);

// check for recently used local version
function activate(assetId, jobId) {

var asset = utils.findById(mru, assetId);
if (asset) {

var i = mru.indexOf(asset);
mru.splice(i, 1);
mru.unshift(asset);

return angular.extend(vm, asset, { asset: asset });
}

return assetsService
.byJobAndId(jobId, assetId)
.then(function (asset) {

mru.unshift(asset);
angular.extend(vm, asset, { asset: asset });

});
}

}
});

});

})();

Listing B.16: assets/assets.route.config.js

(function () {
’use strict’;

var componentId = ’AssetSidebarController’;

angular.module(’app’).controller(componentId, AssetSidebarController);

function AssetSidebarController($stateParams, $q, jobService, $log) {
var vm = angular.extend(this, {

jobName: ’’,
jobId: NaN

});

124

vm.jobId = resolveJobId($stateParams, $q);
jobService.getById(vm.jobId)
.then(function (job) {

vm.jobName = job.name;
}, function (e) {

$log.warning(’Error while getting job for asset sidebar nav’, e);
});

}

// resolves a job id from route state parameters
function resolveJobId($stateParams, $q) {

var jobId = $stateParams.jobId;
if (angular.isNumber(jobId)) {

return jobId;
} else if (!jobId) {

$q.reject(’jobId is required’);
} else if (angular.isString(jobId)) {

return parseInt(jobId);
}
return $q.reject(’Invalid job id.’ + jobId);

}
})();

Listing B.17: assets/assets.sidebar.js

125

APPENDIX C

SERVER CODE

The following represents of core functional code to the approach above.

C.1 Change Set Code

namespace Rel.Data.Bulk
{

/// <summary>
/// Denotes the intended behavior when processing a <see cref="T:Rel.Data.Bulk.

ChangeItem"/>.
/// </summary>
public enum ChangeAction
{

/// <summary>
/// Identifies that a change is meant to initialize a
/// domain. Only used when sending changes to client to
/// establish baseline entity states.
/// </summary>
Initialize,

/// <summary>
/// Specifies the change is meant to create a new entity.
/// Requires AFIM
/// </summary>
Create,

/// <summary>
/// Specifies the change is meant to update an entity.
/// Requires BFIM and AFIM.
/// </summary>
Update,

/// <summary>
/// Specifies the change is meant to delete an entity.
/// Requires BFIM.
/// </summary>
Delete,

}
}

Listing C.1: src/Rel.Data/Bulk/ChangeAction.cs

126

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Rel.Data.Bulk
{

/// <summary>
/// Serves as a common ancestor for generic implementation such
/// that a single collection may contain multiple change item
/// generic types.
/// </summary>
[CustomValidation(typeof(ChangeValidator), "SanityCheck")]
public abstract class ChangeItem
{

private ICollection<ValidationResult> _validationResults =
new List<ValidationResult>();

/// <summary>
/// Gets or sets the action intended to result from this change.
/// </summary>
/// <value>The action.</value>
public ChangeAction Action { get; set; }

/// <summary>
/// Gets the validation results of this change.
/// </summary>
/// <value>The validation results.</value>
protected internal ICollection<ValidationResult> ValidationResults
{ get { return _validationResults; } }

/// <summary>
/// Gets the type of the entity.
/// </summary>
/// <returns></returns>
public abstract Type GetEntityType();

/// <summary>
/// Gets the after completion image of this change.
/// </summary>
/// <returns></returns>
internal abstract object GetAFIM();

/// <summary>
/// Gets the before completion image of this change..
/// </summary>
/// <returns></returns>
internal abstract object GetBFIM();

}

/// <summary>
/// Provides concrete instancing for generic change items. This
/// generic version makes client communication simple by
/// strongly enforcing an endpoint for data of type TEntity in a <see cref="

ChangeSet"/>.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>

127

public class ChangeItem<TEntity> : ChangeItem
{

internal static readonly IEnumerable<ChangeItem<TEntity>> Empty = new
ChangeItem<TEntity>[0];

/// <summary>
/// Initializes a new instance of the
/// <see cref="ChangeItem{TEntity}"/> class.
/// </summary>
public ChangeItem()
{
}

/// <summary>
/// Initializes a new instance of the
/// <see cref="ChangeItem{TEntity}"/> class.
/// </summary>
/// <param name="bfim">The bfim.</param>
/// <param name="afim">The afim.</param>
public ChangeItem(TEntity bfim, TEntity afim)
{

BFIM = bfim;
AFIM = afim;

}

/// <summary>
/// Initializes a new instance of the
/// <see cref="ChangeItem{TEntity}"/> class.
/// </summary>
/// <param name="action">The action.</param>
/// <param name="bfim">The bfim.</param>
/// <param name="afim">The afim.</param>
public ChangeItem(ChangeAction action, TEntity bfim, TEntity afim)

: this(bfim, afim)
{

Action = action;
}

/// <summary>
/// Gets or sets the after image of this change.
/// </summary>
/// <value>The after image.</value>
public TEntity AFIM { get; set; }

/// <summary>
/// Gets or sets the before image of this change.
/// </summary>
/// <value>The before image.</value>
public TEntity BFIM { get; set; }

/// <summary>
/// Gets the type of the entity.
/// </summary>
/// <returns>
/// The type of entity associated with this change.
/// </returns>

128

public override Type GetEntityType()
{

return typeof(TEntity);
}

/// <summary>
/// Gets the after completion image of this change.
/// </summary>
/// <returns></returns>
internal override object GetAFIM()
{

return AFIM;
}

/// <summary>
/// Gets the before completion image of this change..
/// </summary>
/// <returns></returns>
internal override object GetBFIM()
{

return BFIM;
}

}
}

Listing C.2: src/Rel.Data/Bulk/ChangeItem.cs

using Rel.Data.Models;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Rel.Data.Bulk
{

/// <summary>
/// Curries a series of actions to be performed as an atomic action.
/// </summary>
public class ChangeSet //: IEnumerable<ChangeItem>
{

/// <summary>
/// ChangeSet’s flavor of <see langword="null"/>.
/// </summary>
internal static readonly ChangeSet Empty = new ChangeSet();

/// <summary>
/// Initializes a new instance of the
/// <see cref="ChangeSet"/> class.
/// </summary>
public ChangeSet()
{

Assets = new List<ChangeItem<Asset>>();
}

/// <summary>
/// Gets or sets the assets.
/// </summary>

129

/// <value>The assets.</value>
public List<ChangeItem<Asset>> Assets { get; set; }

/// <summary>
/// Gets a value indicating whether this instance is empty.
/// </summary>
/// <value>
/// <see langword="true"/> if this instance is empty;
/// otherwise, <see langword="false"/>.
/// </value>
public bool IsEmpty { get { return Assets == null || Assets.Count == 0; } }

/// <summary>
/// Gets the total number of items in this change set.
/// </summary>
/// <value>The total items count.</value>
/// <remarks>
/// The current implementation is limited to only one real
/// underlying type of
/// <see cref="T:Rel.Data.Models.Asset"/>. This property
/// will prove more useful as the project grows over time
/// and additional entity types are added with support for
/// bulk update.
/// </remarks>
[Range(1, int.MaxValue)]
public long TotalItemsCount { get { return Assets.Count; } }

}
}

Listing C.3: src/Rel.Data/Bulk/ChangeSet.cs

using Rel.Data.Configuration;
using Rel.Data.Diagnostics;
using Rel.Data.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Transactions;

namespace Rel.Data.Bulk
{

/// <summary>
/// Manages integration of a collection of changes
/// into an <see cref="Rel.Data.IDataContext"/>.
/// </summary>
public class ChangeSetProcessor
{

private readonly IDataContext _db;
private readonly bool _disableResolution = false;
private readonly IConflictResolver _resolver;
private readonly string _resolverName;

/// <summary>
/// Initializes a new instance of the

130

/// <see cref="ChangeSetProcessor"/> class.
/// </summary>
/// <param name="context">The data context.</param>
/// <param name="conflictResolver">The conflict resolver.</param>
public ChangeSetProcessor(IDataContext context, IConflictResolver

conflictResolver)
{

_db = context;
_resolver = conflictResolver;
_resolverName = conflictResolver.GetType().Name;
if (conflictResolver is RejectConcurrentEditsConflictResolver)

_disableResolution = true;
}

/// <summary>
/// Builds the initial change set which a client will build
/// changes from.
/// </summary>
/// <param name="partitionId">The partition identifier.</param>
/// <returns>
/// A change set where every item is marked as Initialize.
/// </returns>
public ChangeSet BuildInitialChangeSet(int partitionId)
{

var cs = new ChangeSet();
cs.Assets = _db

.Assets

.GetAll()

.Where(_ => _.JobId == partitionId)

.ToList()

.Select(_ => new ChangeItem<Asset>(null, _) { Action = ChangeAction.
Initialize })

.ToList();

return cs;
}

/// <summary>
/// Processes the specified change set under the given
/// partition id.
/// </summary>
/// <param name="partitionId">The partition identifier.</param>
/// <param name="claimIt">
/// Set to <see langword="true"/> to indicate desire to
/// claim exclusive access to the partition if unable to
/// commit in a single optimistic concurrency control update.
/// </param>
/// <param name="changeSet">The change set.</param>
/// <returns>
/// ChangeSet.Empty if the change set was accepted;
/// otherwise, a new change set is returned containing a
/// "migration script" for the submitter to bring their
/// local data current with the remote version for the items submitted.
/// </returns>
/// <exception cref="System.ArgumentNullException">
/// changeSet

131

/// </exception>
/// <exception cref="EntityNotFoundException"></exception>
/// <exception cref="ConcurrencyException"></exception>
public ChangeSet Process(int partitionId, bool claimIt, ChangeSet changeSet)
{

if (changeSet == null)
throw new ArgumentNullException("changeSet");

var result = ChangeSet.Empty;
using (var perfScope = new ChangeSetPerformanceScope(_resolverName,

changeSet))
{

using (perfScope.TimeReplay())
Replay(changeSet);

if (!_db.Validate())
throw Error.InvalidData(changeSet, false);

bool accepted;

using (perfScope.TimeSave())
accepted = Apply(partitionId, claimIt, changeSet);

if (accepted)
{

perfScope.Complete();
}
else
{

using (perfScope.TimeRedress())
{

bool resolved = false;
using (perfScope.TimeCacheBuilding())

FlushAndReCache();
using (perfScope.TimeResolve())

resolved = ResolveConflicts(changeSet);

if (resolved)
{

if (!_db.Validate())
throw Error.InvalidData(changeSet, true);

using (perfScope.TimeSave())
accepted = Apply(partitionId, claimIt, changeSet);

if (accepted)
{

perfScope.Complete();
return result;

}
}

result = BuildReconciliationChangeSet(changeSet);
}

}
}

132

return result;
}

private bool Apply(int partitionId, bool claimIt, ChangeSet changeSet)
{

ILock @lock;
bool accepted = false;

using (var scope = new TransactionScope(TransactionScopeOption.RequiresNew
))

{
@lock = _db.Jobs.GetAll().Where(_ => _.Id == partitionId).

SingleOrDefault();

if (@lock == null)
throw new EntityNotFoundException();

if (@lock.Status == LockStatus.Closed)
{

_db.RejectChanges();
throw Error.PessimisticLock();

}

try
{

_db.AcceptChanges();
scope.Complete();
accepted = true;

}
catch (ConcurrencyException)
{

// normal OC update failed, claim partition if
// necessary then fall back to reconciliation.

}
}

if (accepted)
{

if (@lock.Status == LockStatus.Exclusive)
{

@lock.Open();
_db.AcceptChanges();

}
}
else
{

_db.RejectChanges();

if (@lock.Status == LockStatus.Open &&
(claimIt ||
IsOfSufficientSize(changeSet)))

{
using (var scope = new TransactionScope(TransactionScopeOption.

RequiresNew))
{

133

try
{

@lock.Close();
_db.AcceptChanges();
scope.Complete();

}
catch (ConcurrencyException)
{

throw Error.PessimisticLock();
}

}
}

}
return accepted;

}

/// <summary>
/// Builds the reconciliation change set.
/// </summary>
/// <param name="changeSet">
/// The change set containing unresolvable conflict(s).
/// </param>
/// <returns>
/// A reconciliation change set fit for client consumption.
/// </returns>
private ChangeSet BuildReconciliationChangeSet(ChangeSet changeSet)
{

var reconcile = new ChangeSet();

reconcile.Assets = CreateReconcileChangeCollection(_db.Assets, changeSet.
Assets);

return reconcile;
}

/// <summary>
/// Creates a primary key join filter expression.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="keySelector">The key selector.</param>
/// <param name="keys">The keys.</param>
/// <returns>
/// A LINQ expression which will filter on a known
/// collection of primary key values.
/// </returns>
/// <remarks>
/// Note that this builds and returns a LINQ expression, not
/// a function. This is necessary for the LINQ to SQL
/// provider (or any other provider which may intelligently
/// bridge languages) to translate a LINQ query to SQL query.
/// </remarks>
private Expression<Func<TEntity, bool>> CreateJoinFilter<TEntity, TKey>(

Expression<Func<TEntity, TKey>> keySelector, IEnumerable<TKey> keys)
{

var lparams = Expression.Parameter(typeof(TEntity), "e");

134

return Expression.Lambda<Func<TEntity, bool>>(
Expression.Call(

typeof(Enumerable),
"Contains",
new[] { typeof(TKey) },
new Expression[] { Expression.Constant(keys, typeof(IEnumerable<

TKey>)), Expression.Invoke(keySelector, lparams) }
),
lparams
);

}

/// <summary>
/// Creates a collection of changes to be applied remotely
/// for reconciliation.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <param name="changes">The changes.</param>
/// <returns>
/// A collection of changes necessary to bring the submitter
/// of the changes which failed to current for all items submitted.
/// </returns>
private List<ChangeItem<TEntity>> CreateReconcileChangeCollection<TEntity,

TKey>(IRepository<TEntity, TKey> repository, IEnumerable<ChangeItem<
TEntity>> changes)

{
List<ChangeItem<TEntity>> reconcile = new List<ChangeItem<TEntity>>();
foreach (var change in changes)
{

if (change.Action == ChangeAction.Create)
// for the time being, create is not capable of
// conflict or reconciliation
continue;

var updateTo = repository.GetById(repository.GetId(change.BFIM));

if (updateTo == null)
{

reconcile.Add(new ChangeItem<TEntity>(change.BFIM, default(TEntity
))

{
Action = ChangeAction.Delete

});
}
else
{

reconcile.Add(new ChangeItem<TEntity>(change.BFIM, updateTo)
{

Action = ChangeAction.Update
});

}
}

return reconcile;

135

}

private void FlushAndReCache()
{

// get rid of all change set changes in the local cache
// and pull down fresh copies of cache items.
using (var scope = new TransactionScope(TransactionScopeOption.RequiresNew

))
{

FlushAndReCache(_db.Assets);
scope.Complete();

}
}

/// <summary>
/// Flushes the local cache of the given repository and
/// re-queries the GetAll() method to load up fresh copies
/// of data.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <remarks>
/// This method is necessary as the initial attempt to
/// submit a change set is not proactive in fetching items
/// from the underlying data store. This is predicated on
/// the assumption that majority of change set submissions
/// should succeed on their initial pass and be "clean".
/// Since the items are not preloaded, the local data cache
/// does not actually know the current state of any items it holds.
/// <para>
/// This method will record the identities of all items it
/// holds locally, empty the local cache, then query the
/// underlying data store for all identities previously witnessed.
/// </para>
/// </remarks>
private void FlushAndReCache<TEntity, TKey>(IRepository<TEntity, TKey>

repository)
{

var ids = repository.Select(repository.GetId).ToArray();
repository.Flush();
var e = CreateJoinFilter(repository.KeySelector, ids);
repository.GetAll().Where(e.Compile()).ToList();

}

/// <summary>
/// Determines whether the change set is of sufficient size
/// to warrant attempting exclusive access.
/// </summary>
/// <param name="changeSet">The change set.</param>
/// <returns></returns>
private bool IsOfSufficientSize(ChangeSet changeSet)
{

var threshold = DataConfigurationSection.Default.ChangeSets.LockThreshold;
if (threshold > 0 && changeSet.TotalItemsCount >= threshold)

return true;

136

return false;
}

/// <summary>
/// Replays actions recorded in a change set on a repository.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <param name="changes">The changes.</param>
/// <exception cref="System.InvalidOperationException">
/// Initialize action only supported on client. or Invalid
/// change action.
/// </exception>
/// <exception cref="System.NotImplementedException"></exception>
private void ProcessActions<TEntity, TKey>(IRepository<TEntity, TKey>

repository, IEnumerable<ChangeItem<TEntity>> changes)
{

foreach (var item in changes)
{

switch (item.Action)
{

case ChangeAction.Initialize:
throw new InvalidOperationException("Initialize action only

supported on client.");
case ChangeAction.Create:

repository.Create(item.AFIM);
break;

case ChangeAction.Update:
repository.Update(item.AFIM);
break;

case ChangeAction.Delete:
repository.Delete(item.BFIM);
break;

default:
throw new InvalidOperationException("Invalid change action.");

}
}

}

private void Replay(ChangeSet changeSet)
{

ProcessActions(_db.Assets, changeSet.Assets);
}

/// <summary>
/// Attempts to resolve all conflicts in the change set given.
/// </summary>
/// <param name="changeSet">The change set.</param>
/// <returns>
/// <see langword="true"/> if all conflicts were resolved;
/// otherwise, <see langword="false"/>.

137

/// </returns>
private bool ResolveConflicts(ChangeSet changeSet)
{

if (_disableResolution) return false;
var lookup = _db.Assets.ToDictionary(_ => _.Id);

// attempt to resolve all conflicts
bool isClean = changeSet.Assets.All(_ =>

_resolver.Resolve(_db.Assets, _, lookup));
return isClean;

}
}

}

Listing C.4: src/Rel.Data/Bulk/ChangeSetProcessor.cs

using System.ComponentModel.DataAnnotations;

namespace Rel.Data.Bulk
{

/// <summary>
/// Inspects that a change is well formed. The change may still
/// result in invalid data when applied.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
public static class ChangeValidator
{

/// <summary>
/// Provides a basic sanity check that a change item is well formed.
/// </summary>
/// <param name="item">The item.</param>
/// <param name="context">The context.</param>
/// <returns>
/// <see cref="P:System.ComponentModel.DataAnnotations.ValidationResult.

Success"/>
/// if the change is valid; otherwise, a ValidationResult
/// denoting the reason the change failed validation.
/// </returns>
public static ValidationResult SanityCheck(ChangeItem item, ValidationContext

context)
{

switch (item.Action)
{

case ChangeAction.Create:
if (item.GetBFIM() != null)

return new ValidationResult("BFIM not permitted for new
entries.", new[] { "BFIM" });

if (item.GetAFIM() == null)
return new ValidationResult("AFIM required for new entries.",

new[] { "AFIM" });
break;

case ChangeAction.Update:
if (item.GetBFIM() == null)

138

return new ValidationResult("BFIM required for update entries.
", new[] { "BFIM" });

if (item.GetAFIM() == null)
return new ValidationResult("AFIM required for update entries.

", new[] { "AFIM" });
break;

case ChangeAction.Delete:
if (item.GetBFIM() == null)

return new ValidationResult("BFIM required for new entries.",
new[] { "BFIM" });

if (item.GetAFIM() != null)
return new ValidationResult("AFIM not permitted for new

entries.", new[] { "AFIM" });
break;

default:
return new ValidationResult("Invalid change action", new[] { "

Action" });
}

return ValidationResult.Success;
}

}
}

Listing C.5: src/Rel.Data/Bulk/ChangeValidator.cs

using System.Collections.Generic;

namespace Rel.Data.Bulk
{

/// <summary>
/// Identifies a concurrent, conflicting update resolution
/// strategy provider.
/// </summary>
public interface IConflictResolver
{

/// <summary>
/// Attempts to resolve a conflict by inspecting the past,
/// current, and divergent state of an entity.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <param name="change">The change.</param>
/// <param name="index">
/// The index into repository for O(1) lookup.
/// </param>
/// <returns></returns>
bool Resolve<TEntity, TKey>(IRepository<TEntity, TKey> repository, ChangeItem<

TEntity> change, IDictionary<TKey, TEntity> index);
}

139

}

Listing C.6: src/Rel.Data/Bulk/IConflictResolver.cs

using Rel.Merge;
using System;
using System.Collections.Generic;
using System.Linq;

namespace Rel.Data.Bulk
{

/// <summary>
/// Resolves conflicting writes using merge strategies.
/// </summary>
/// <remarks>
/// Logic considerations
///
/// | HAS VALUE |
/// # | BFIM | Current | AFIM | Represents
/// --+------+---------+---
/// 0 | T | T | T | normal OCC update
/// 1 | T | T | F | normal OCC delete
/// 2 | T | F | T | dirty deleted OCC update
/// 3 | T | F | F | dirty deleted OCC delete
/// 4 | F | T | T | dirty created OCC create [1]
/// 5 | F | T | F | n/a [2]
/// 6 | F | F | T | Normal create
/// 7 | F | F | F | n/a [2]
///
/// [1] Not considered as possible in this version as no active
/// logic is given for how to find a possible collision between
/// entities beyond ID value. The ID value will never collide
/// because all IRepository{,}.Create calls replace any current
/// value for the ID with a new one upon save.
///
/// [2] Not considered as possible in this version as if there
/// is BFIM and no AFIM in a change, then there is nothing to
/// map the change back to a specific entity.
/// </remarks>
public class MergeConcurrentEditsConflictResolver : IConflictResolver
{

private readonly IMergeProvider _merge;

/// <summary>
/// Initializes a new instance of the <see
/// cref="MergeConcurrentEditsConflictResolver"/> class.
/// </summary>
/// <param name="merge">The merge provider.</param>
public MergeConcurrentEditsConflictResolver(IMergeProvider merge)
{

_merge = merge;
}

/// <summary>
/// Attempts to resolve a conflict by inspecting the past,

140

/// current, and divergent state of an entity.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <param name="change">The change.</param>
/// <returns>
/// <see langword="true"/> if successfully resolved conflict
/// with merge; otherwise, <see langword="false"/>.
/// </returns>
public bool Resolve<TEntity, TKey>(IRepository<TEntity, TKey> repository,

ChangeItem<TEntity> change, IDictionary<TKey,TEntity> index)
{

var action = change.Action;
TKey id;
TEntity current;
switch (action)
{

case ChangeAction.Create:
id = repository.GetId(change.AFIM);
repository.Create(change.AFIM);
return true;

case ChangeAction.Update:
case ChangeAction.Delete:

var kind = MergeKind.Auto;
id = repository.GetId(change.BFIM);
if (!index.TryGetValue(id, out current))
{

//kind = MergeKind.HiddenDelete;
//current = repository.GetById(id);

}
var resolution = _merge.Merge(kind, change.BFIM, current, change.

AFIM);

if (resolution.IsResolved())
{ // merge approved of delete

ReflectMergeInRepo(repository, change, current, resolution);
return true;

}
break;

default:
break;

}

return false;
}

/// <summary>
/// Reflects the merge in repo.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>

141

/// <param name="change">The change.</param>
/// <param name="resolution">The resolution.</param>
/// <exception cref="System.InvalidOperationException"></exception>
private void ReflectMergeInRepo<TEntity, TKey>(IRepository<TEntity, TKey>

repository, ChangeItem<TEntity> change, TEntity current, IMergeResolution<
TEntity> resolution)

{
switch (resolution.Result)
{

case MergeActionResult.Resolved:
// absence of modifiers denotes the merge is wholly
// resolved by the resolution framework and does not
// need any action taken from the operational context.
break;

case MergeActionResult.Delete:
repository.Delete(current);
break;

case MergeActionResult.Create:
repository.Create(resolution.ResolvedValue);
break;

case MergeActionResult.Update:
repository.Update(resolution.ResolvedValue);
break;

case MergeActionResult.Unresolved:
default:

throw new InvalidOperationException();
}

}
}

}

Listing C.7: src/Rel.Data/Bulk/MergeConcurrentEditsConflictResolver.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Rel.Data.Bulk
{

/// <summary>
/// Precludes concurrent edits of data. All updates must be
/// performed on current values.
/// </summary>
public sealed class RejectConcurrentEditsConflictResolver: IConflictResolver
{

/// <summary>
/// Rejects all concurrent updates.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>

142

/// <typeparam name="TKey">The type of the key.</typeparam>
/// <param name="repository">The repository.</param>
/// <param name="change">The change.</param>
/// <returns><see langword="false"/> always.</returns>
public bool Resolve<TEntity, TKey>(IRepository<TEntity, TKey> repository,

ChangeItem<TEntity> change, IDictionary<TKey, TEntity> index)
{

return false;
}

}
}

Listing C.8: src/Rel.Data/Bulk/RejectConcurrentEditsConflictResolver.cs

C.2 Business DAL Scafold

using Rel.Data.Models;
using System;

namespace Rel.Data
{

/// <summary>
/// Represents a composite data store for Thesis Portal entities.
/// </summary>
public interface IDataContext

: IDisposable
{

/// <summary>
/// Gets the asset repository.
/// </summary>
/// <value>The assets.</value>
IRepository<Asset, int> Assets { get; }

/// <summary>
/// Gets the job repository.
/// </summary>
/// <value>The jobs.</value>
IRepository<Job, int> Jobs { get; }

/// <summary>
/// <para>
/// Attempts to push any changes made in this data context
/// since the last time it communicated with the
/// underlying data store to persisted storage.
/// </para>
/// <para>
/// Any error preventing a complete commit of the changes
/// within throws an exception.
/// </para>
/// </summary>
void AcceptChanges();

/// <summary>
/// Undoes any changes made in this data context since the

143

/// last time it communicated with the underlying data store.
/// </summary>
void RejectChanges();

/// <summary>
/// Validates changes in this data context.
/// </summary>
/// <returns>
/// <see langword="true"/> if valid; otherwise, false.
/// </returns>
bool Validate();

}
}

Listing C.9: src/Rel.Data/IDataContext.cs

namespace Rel.Data
{

/// <summary>
/// Represents a pessimistically lockable data block.
/// </summary>
public interface ILock
{

/// <summary>
/// Gets the current status of this lock.
/// </summary>
/// <value>The status.</value>
LockStatus Status { get; }

/// <summary>
/// Attempts migrate access from Open to Exclusive.
/// </summary>
/// <returns>The final state of the lock.</returns>
LockStatus Close();

/// <summary>
/// Attempts to release this lock from Exclusive to Open status.
/// </summary>
/// <returns>The final state of the lock.</returns>
LockStatus Open();

}
}

Listing C.10: src/Rel.Data/ILock.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;

namespace Rel.Data
{

/// <summary>
/// Represents a local cache and interface to an underlying data

144

/// store of TEntity types.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
public interface IRepository<TEntity, TKey> : IEnumerable<TEntity>, IQueryable<

TEntity>
{

/// <summary>
/// Gets an expression which, when compiled and run, yields
/// the primary key to entities of type TEntity.
/// </summary>
/// <value>The key selector.</value>
Expression<Func<TEntity, TKey>> KeySelector { get; }

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for creation when the parent data context
/// has changes on it accepted.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity Create(TEntity entity);

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for deletion when the parent data context
/// has changes on it accepted.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity Delete(TEntity entity);

/// <summary>
/// Flushes the local cache of this repository instance.
/// </summary>
void Flush();

/// <summary>
/// Gets a queryable which may be used to access all
/// entities contained in the underlying repository which
/// may not yet be cached locally.
/// </summary>
/// <returns>A queryable to the underlying data store.</returns>
IQueryable<TEntity> GetAll();

/// <summary>
/// Gets an entity by its id.
/// </summary>
/// <param name="id">The identifier.</param>
/// <returns>

145

/// The entity with the given id (possibly a proxy instance)
/// or <see langword="null"/>.
/// </returns>
TEntity GetById(TKey id);

/// <summary>
/// Gets the primary key from the given entity.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>The primary key of the given entity.</returns>
TKey GetId(TEntity entity);

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for update when the parent data context has
/// changes on it accepted.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity Update(TEntity entity);

}
}

Listing C.11: src/Rel.Data/IRepository.cs

using System;

namespace Rel.Data
{

/// <summary>
/// Identifies the various states of a lock.
/// </summary>
[Flags]
public enum LockStatus
{

/// <summary>
/// No lock is held.
/// </summary>
Open = 0x00000000,

/// <summary>
/// A lock is held.
/// </summary>
Closed = 0x00000001,

/// <summary>
/// The current user holds the lock.
/// </summary>
Exclusive = 0x00000003

}

146

}

Listing C.12: src/Rel.Data/LockStatus.cs

using Rel.Merge.Strategies;
using System.ComponentModel.DataAnnotations;

namespace Rel.Data.Models
{

//[DirtyDelete]
//[HiddenDelete]
[LastWriteWins(false)]
public class Asset
{

public int Id { get; set; }

public int JobId { get; set; }

//[DecaySpanMergeable("0.00:00:00.3", "0.00:00:00.3")]
//[StepMergeable(true, 0.3)]
//[LastWriteWins]
public double? MaximumAndMinimumDecay { get; set; }

//[DecaySpanMergeable("0.00:00:00.3", "0.00:00:00.3")]
//[StepMergeable(true, 0.2)]
public double? MaxMinDecayWithStepAndTol { get; set; }

public double MinimumDecay { get; set; }

[StepMergeable(0, 50, InclusiveLBound = false, InclusiveUBound = true)]
public double? MonotonicTolerance { get; set; }

//[LastWriteWins]
public string Name { get; set; }

[StepMergeable(true, 0.1, InclusiveLBound = true, InclusiveUBound = true)]
public double? PercentTolerance { get; set; }

[Timestamp]
public byte[] RowVersion { get; set; }

public string ServiceArea { get; set; }

[StepMergeable(50, InclusiveLBound = true, InclusiveUBound = true)]
public double? StaticTolerance { get; set; }

}
}

Listing C.13: src/Rel.Data/Models/Asset.cs

using System;
using System.Data.Entity;
using System.Linq;
using System.Linq.Expressions;

147

namespace Rel.Data.Ef6
{

/// <summary>
/// Exposes an EF DbSet as a
/// <see cref="T:Rel.Data.IRepository"/>. Queries directly on
/// DbRepository are *local only*.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TKey">The type of the key.</typeparam>
/// <remarks>
/// <note type="note">All direct queries access the local store,
/// not the traditional EF Linq-SQL provider.</note>
/// <para>
/// To access the EF Linq-SQL provider, use the
/// <see cref="M:GetAll()"/> method.
/// </para>
/// </remarks>
internal class DbRepository<TEntity, TKey>

: IRepository<TEntity, TKey> where TEntity : class
{

private readonly Func<TEntity, TKey> _compiledKeySelector;
private readonly DbSet<TEntity> _dbSet;
private readonly Expression<Func<TEntity, TKey>> _keySelector;
private readonly IQueryable<TEntity> _queryable;
private DbContext _context;

/// <summary>
/// Initializes a new instance of the
/// <see cref="DbRepository{TEntity, TKey}"/> class.
/// </summary>
/// <param name="context">The context.</param>
/// <param name="dbSet">The database set.</param>
/// <param name="keySelector">The key selector.</param>
/// <exception cref="System.ArgumentNullException">
/// context or dbSet or keySelector
/// </exception>
public DbRepository(DbContext context, DbSet<TEntity> dbSet, Expression<Func<

TEntity, TKey>> keySelector)
{

if (context == null)
throw new ArgumentNullException("context");

if (dbSet == null)
throw new ArgumentNullException("dbSet");

if (keySelector == null)
throw new ArgumentNullException("keySelector");

_context = context;
_dbSet = dbSet;
_queryable = dbSet.Local.AsQueryable();
_keySelector = keySelector;
_compiledKeySelector = keySelector.Compile();

}

/// <summary>
/// Gets the type of the element(s) that are returned when

148

/// the expression tree associated with this instance of
/// <see cref="T:System.Linq.IQueryable"/> is executed.
/// </summary>
Type IQueryable.ElementType
{

get { return _queryable.ElementType; }
}

/// <summary>
/// Gets the expression tree that is associated with the
/// instance of <see cref="T:System.Linq.IQueryable"/>.
/// </summary>
Expression IQueryable.Expression
{

get { return _queryable.Expression; }
}

/// <summary>
/// Gets the query provider that is associated with this
/// data source.
/// </summary>
IQueryProvider IQueryable.Provider
{

get { return _queryable.Provider; }
}

/// <summary>
/// Gets an expression which, when compiled and run, yields
/// the primary key to entities of type TEntity.
/// </summary>
/// <value>The key selector.</value>
Expression<Func<TEntity, TKey>> IRepository<TEntity, TKey>.KeySelector { get {

return _keySelector; } }

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for creation when the parent data context
/// has changes on it accepted.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity IRepository<TEntity, TKey>.Create(TEntity entity)
{

var e = _context.Entry(entity);
e.State = EntityState.Added;
return e.Entity;

}

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for deletion when the parent data context
/// has changes on it accepted.
/// </summary>

149

/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity IRepository<TEntity, TKey>.Delete(TEntity entity)
{

var e = _context.Entry(entity);
e.State = EntityState.Deleted;
return e.Entity;

}

/// <summary>
/// Flushes the local cache of this repository instance.
/// </summary>
void IRepository<TEntity, TKey>.Flush()
{

foreach (var item in _dbSet.Local.ToArray())
{

_context.Entry(item).State = EntityState.Detached;
}

}

/// <summary>
/// Gets a queryable which may be used to access all
/// entities contained in the underlying repository which
/// may not yet be cached locally.
/// </summary>
/// <returns>A queryable to the underlying data store.</returns>
IQueryable<TEntity> IRepository<TEntity, TKey>.GetAll()
{

return _dbSet;
}

/// <summary>
/// Gets an entity by its id.
/// </summary>
/// <param name="id">The identifier.</param>
/// <returns>
/// The entity with the given id (possibly a proxy instance)
/// or <see langword="null"/>.
/// </returns>
TEntity IRepository<TEntity, TKey>.GetById(TKey id)
{

var selector = BuildSelectorFor(id);
TEntity result;
try
{

result = _dbSet.Local.AsQueryable().SingleOrDefault(selector);
result = result ?? _dbSet.SingleOrDefault(selector);
return result;

}
catch (InvalidOperationException)
{

System.Diagnostics.Trace.TraceError("Caught duplicate exception id",
id);

150

throw;
}

}

/// <summary>
/// Gets the primary key from the given entity.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>The primary key of the given entity.</returns>
TKey IRepository<TEntity, TKey>.GetId(TEntity entity)
{

return _compiledKeySelector(entity);
}

/// <summary>
/// Adds the specified entity to this repository and places
/// it in queue for update when the parent data context has
/// changes on it accepted.
/// </summary>
/// <param name="entity">The entity.</param>
/// <returns>
/// The entity given or a potential proxy instance for
/// interfacing with underlying framework.
/// </returns>
TEntity IRepository<TEntity, TKey>.Update(TEntity entity)
{

var e = _context.Entry(entity);
e.State = EntityState.Modified;

return e.Entity;
}

/// <summary>
/// Returns an enumerator that iterates through the collection.
/// </summary>
/// <returns>
/// A
/// <see cref="T:System.Collections.Generic.IEnumerator‘1"/>
/// that can be used to iterate through the collection.
/// </returns>
System.Collections.Generic.IEnumerator<TEntity> System.Collections.Generic.

IEnumerable<TEntity>.GetEnumerator()
{

return _queryable.GetEnumerator();
}

/// <summary>
/// Returns an enumerator that iterates through a collection.
/// </summary>
/// <returns>
/// An <see cref="T:System.Collections.IEnumerator"/> object
/// that can be used to iterate through the collection.
/// </returns>
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{

return _queryable.GetEnumerator();

151

}

/// <summary>
/// Builds the selector for.
/// </summary>
/// <param name="id">The identifier.</param>
/// <returns></returns>
private Expression<Func<TEntity, bool>> BuildSelectorFor(TKey id)
{

var eq = Expression.Equal(_keySelector.Body, Expression.Constant(id));
return Expression.Lambda<Func<TEntity, bool>>(eq, _keySelector.Parameters)

;
}

}
}

Listing C.14: src/Rel.Data.Ef6/DbRepository.cs

using Rel.Data.Models;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration.Conventions;
using System.Linq;

namespace Rel.Data.Ef6
{

/// <summary>
/// Exposes an EF6 <see cref="T:System.Data.Entity.DbContext"/>
/// as a <see cref="T:Rel.Data.IDataContext"/> to allow for
/// simple replacement of the underlying data persistence layer.
/// </summary>
public class TpContext

: DbContext, IDataContext
{

private readonly DbRepository<Asset, int> _assets;
private readonly DbRepository<Job, int> _jobs;

/// <summary>
/// Initializes a new instance of the
/// <see cref="TpContext"/> class.
/// </summary>
public TpContext()

: base("TpContext")
{

Configuration.LazyLoadingEnabled = false;

_assets = new DbRepository<Asset, int>(this, Assets, _ => _.Id);
_jobs = new DbRepository<Job, int>(this, Jobs, _ => _.Id);

}

/// <summary>
/// Gets the asset repository.
/// </summary>
/// <value>The assets.</value>
public DbSet<Asset> Assets { get; set; }

152

/// <summary>
/// Gets the asset repository.
/// </summary>
/// <value>The assets.</value>
IRepository<Asset, int> IDataContext.Assets
{

get { return _assets; }
}

/// <summary>
/// Gets the job repository.
/// </summary>
/// <value>The jobs.</value>
IRepository<Job, int> IDataContext.Jobs
{

get { return _jobs; }
}

/// <summary>
/// Gets the job repository.
/// </summary>
/// <value>The jobs.</value>
public DbSet<Job> Jobs { get; set; }

/// <summary>
/// <para>
/// Attempts to push any changes made in this data context
/// since the last time it communicated with the
/// underlying data store to persisted storage.
/// </para>
/// <para>
/// Any error preventing a complete commit of the changes
/// within throws an exception.
/// </para>
/// </summary>
void IDataContext.AcceptChanges()
{

SaveChanges();
}

/// <summary>
/// Undoes any changes made in this data context since the
/// last time it communicated with the underlying data store.
/// </summary>
void IDataContext.RejectChanges()
{

this.RejectChanges();
}

/// <summary>
/// Validates changes in this data context.
/// </summary>
/// <returns>
/// <see langword="true"/> if valid; otherwise, false.
/// </returns>

153

bool IDataContext.Validate()
{

return !GetValidationErrors().Any();
}

/// <summary>
/// Saves all changes made in this context to the underlying database.
/// </summary>
/// <returns>
/// The number of state entries written to the underlying
/// database. This can include state entries for entities
/// and/or relationships. Relationship state entries are
/// created for many-to-many relationships and relationships
/// where there is no foreign key property included in the
/// entity class (often referred to as independent associations).
/// </returns>
/// <exception cref="ConcurrencyException">
/// Dirty writes detected.
/// </exception>
public override int SaveChanges()
{

var errors = GetValidationErrors();
if (!errors.Any())
{

try
{

return base.SaveChanges();
}
catch (System.Data.Entity.Infrastructure.DbUpdateConcurrencyException

ex)
{

throw new ConcurrencyException("Dirty writes detected.", ex);
}

}
else
{

throw new ValidationException();
}

}

/// <summary>
/// Calls the protected Dispose method.
/// </summary>
void System.IDisposable.Dispose()
{

this.Dispose();
}

/// <summary>
/// This method is called when the model for a derived
/// context has been initialized, but before the model has
/// been locked down and used to initialize the context. The
/// default implementation of this method does nothing, but
/// it can be overridden in a derived class such that the
/// model can be further configured before it is locked down.
/// </summary>

154

/// <param name="modelBuilder">
/// The builder that defines the model for the context being created.
/// </param>
/// <remarks>
/// Typically, this method is called only once when the
/// first instance of a derived context is created. The
/// model for that context is then cached and is for all
/// further instances of the context in the app domain. This
/// caching can be disabled by setting the ModelCaching
/// property on the given ModelBuidler, but note that this
/// can seriously degrade performance. More control over
/// caching is provided through use of the DbModelBuilder
/// and DbContextFactory classes directly.
/// </remarks>
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{

base.OnModelCreating(modelBuilder);
modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
modelBuilder.Conventions.Remove<ManyToManyCascadeDeleteConvention>();

modelBuilder
.ConfigureJobs()
.ConfigureAssets();

}

/// <summary>
/// Undoes any changes made in this data context since the
/// last time it communicated with the underlying data store.
/// </summary>
private void RejectChanges()
{

foreach (var entry in ChangeTracker.Entries())
{

if (entry.State == EntityState.Added)
{

entry.State = EntityState.Detached;
}
else
{

entry.State = EntityState.Unchanged;
}

}
}

}
}

Listing C.15: src/Rel.Data.Ef6/TpContext.cs

C.3 Merge

namespace Rel.Merge
{

/// <summary>
/// Stubs the core purpose of IMergeResolution{} for internal

155

/// communication and state sharing.
/// </summary>
/// <typeparam name="T"></typeparam>
internal class BasicMergeResolution<T>

: IMergeResolution<T>
{

private MergeActionResult _result;
private T _value;

/// <summary>
/// Initializes a new instance of the
/// <see cref="BasicMergeResolution{T}"/> class.
/// </summary>
/// <param name="result">The result.</param>
/// <param name="value">The value.</param>
public BasicMergeResolution(MergeActionResult result, T value)
{

_result = result;
_value = value;

}

/// <summary>
/// Gets the resolved value.
/// </summary>
/// <value>The resolved value.</value>
public T ResolvedValue
{

get { return _value; }
}

/// <summary>
/// Gets the result.
/// </summary>
/// <value>The result.</value>
public MergeActionResult Result
{

get { return _result; }
}

}
}

Listing C.16: src/Rel.Merge/BasicMergeResolution.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Rel.Merge
{

/// <summary>
/// Identifies an object which can merge arbitrary objects with
/// minimal boxing.
/// </summary>

156

public interface IMergeProvider
{

/// <summary>
/// Merges the given entities understanding the intent of the
/// merge by the kind specified.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <param name="kind">The kind of merge.</param>
/// <param name="before">The before image.</param>
/// <param name="current">The current image.</param>
/// <param name="after">The after image.</param>
/// <returns>A resolution for the merge request.</returns>
IMergeResolution<TEntity> Merge<TEntity>(MergeKind kind, TEntity before,

TEntity current, TEntity after);
}

}

Listing C.17: src/Rel.Merge/IMergeProvider.cs

using System;

namespace Rel.Merge
{

/// <summary>
/// Identifies the result a merge operation.
/// </summary>
/// <typeparam name="TResolved">The type of the resolved.</typeparam>
public interface IMergeResolution<TResolved>
{

/// <summary>
/// Gets the resolved value.
/// </summary>
/// <value>The resolved value.</value>
TResolved ResolvedValue { get; }

/// <summary>
/// Gets the result.
/// </summary>
/// <value>The result.</value>
MergeActionResult Result { get; }

}

/// <summary>
/// Simple convenience helpers to avoid having to implement on any

IMergeResolution{}.
/// </summary>
public static class MergeResolutionExtension
{

/// <summary>
/// Determines whether this instance is resolved.
/// </summary>
/// <typeparam name="TResolved">The type of the resolved.</typeparam>
/// <param name="resolution">The resolution.</param>
/// <returns>
/// <see langword="true"/> if this instance has resolved;

157

/// otherwise, <see langword="false"/>.
/// </returns>
public static bool IsResolved<TResolved>(this IMergeResolution<TResolved>

resolution)
{

return resolution.Result.HasFlag(MergeActionResult.Resolved);
}

}
}

Listing C.18: src/Rel.Merge/IMergeResolution.cs

using System;

namespace Rel.Merge
{

/// <summary>
/// Communicates steps in the merge process to individual merge implementations.
/// </summary>
/// <typeparam name="TValue">The type of the value.</typeparam>
public class MergeAction<TValue>
{

private readonly TValue _bfim, _cfim, _afim;
private readonly MergeKind _kind;
private TValue _resolvedValue;
private MergeActionResult? _result;

/// <summary>
/// Initializes a new instance of the
/// <see cref="MergeAction{TValue}"/> class.
/// </summary>
/// <param name="kind">The kind of merge.</param>
/// <param name="bfim">
/// The before image, shared base state between cfim and afim.
/// </param>
/// <param name="cfim">The current image.</param>
/// <param name="afim">
/// The after image attempting to overwrite cfim.
/// </param>
public MergeAction(MergeKind kind, TValue bfim, TValue cfim, TValue afim)
{

_kind = kind;
_bfim = bfim;
_cfim = cfim;
_afim = afim;
_resolvedValue = default(TValue);
_result = null;

}

/// <summary>
/// Gets the after image.
/// </summary>
/// <value>The after image.</value>
public TValue AFIM { get { return _afim; } }

158

/// <summary>
/// Gets the before image.
/// </summary>
/// <value>The before image.</value>
public TValue BFIM { get { return _bfim; } }

/// <summary>
/// Gets the current image.
/// </summary>
/// <value>The current image.</value>
public TValue CFIM { get { return _cfim; } }

/// <summary>
/// Gets the kind of merge.
/// </summary>
/// <value>The kind of merge.</value>
public MergeKind Kind { get { return _kind; } }

/// <summary>
/// Gets a value indicating whether this
/// <see cref="MergeAction{TValue}"/> is resolved.
/// </summary>
/// <value>
/// <see langword="true"/> if resolved; otherwise, <see langword="false"/>.
/// </value>
public bool Resolved
{

get
{

return _result.HasValue &&
_result.Value.HasFlag(MergeActionResult.Resolved);

}
}

/// <summary>
/// Gets the value this action resolved to.
/// </summary>
/// <value>The resolved value.</value>
public TValue ResolvedValue { get { return _resolvedValue; } }

/// <summary>
/// Gets the result an attempt to merge on this action.
/// </summary>
/// <value>The result.</value>
public MergeActionResult Result
{

get
{

return
_result ??
MergeActionResult.Unresolved;

}
}

/// <summary>
/// Resolves using the specified result and value.

159

/// </summary>
/// <param name="result">The result.</param>
/// <param name="resolveWith">The resolve with.</param>
/// <exception cref="System.ArgumentException">
/// Cannot resolve with Unresolved.;result
/// </exception>
/// <exception cref="System.InvalidOperationException">
/// Already resolved.
/// </exception>
public void Resolve(MergeActionResult result, TValue resolveWith)
{

if (!result.HasFlag(MergeActionResult.Resolved))
throw new ArgumentException("Cannot resolve with Unresolved.", "result

");

if (_result.HasValue)
throw new InvalidOperationException("Already resolved.");

_result = result;
_resolvedValue = resolveWith;

}
}

}

Listing C.19: src/Rel.Merge/MergeAction.cs

using System;

namespace Rel.Merge
{

/// <summary>
/// Identifies action taken in response to a merge operation.
/// </summary>
[Flags]
public enum MergeActionResult
{

/// <summary>
/// No action taken, merge cannot be resolved.
/// </summary>
Unresolved = 0x00000000,

/// <summary>
/// Identifies that the action was resolved. If no sibling
/// accent states appear with this state, the merge is
/// resolve through NOOP.
/// </summary>
Resolved = 0x00000001,

/// <summary>
/// Merge is resolved by deletion.
/// </summary>
Delete = 0x00000003,

/// <summary>
/// Merge is resolved by creation.

160

/// </summary>
Create = 0x00000005,

/// <summary>
/// Merge is resolved by update to existing state.
/// </summary>
Update = 0x00000009

}
}

Listing C.20: src/Rel.Merge/MergeActionResult.cs

namespace Rel.Merge
{

/// <summary>
/// Identify the reason for invocation of a merge action.
/// </summary>
public enum MergeKind
{

/// <summary>
/// Let merge decide the kind of operation based upon
/// bfim,cfim,and afim.
/// </summary>
Auto = 0,

/// <summary>
/// The action is attempting to resolve a conflicting update.
/// </summary>
ConflictingUpdate,

/// <summary>
/// The action is attempting to reconcile a new write
/// (delete or update) with a delete which has previously
/// been committed.
/// </summary>
HiddenDelete,

/// <summary>
/// The action is attempting to resolve a previously
/// committed change with a new delete action.
/// </summary>
DirtyDelete

}
}

Listing C.21: src/Rel.Merge/MergeKind.cs

using Rel.Merge.Strategies;
using System;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;

161

namespace Rel.Merge
{

/// <summary>
/// Repents a merge operation.
/// </summary>
public class MergeOperation : IMergeProvider
{

/// <summary>
/// Performs a merge of the specified kind.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <param name="kind">The kind.</param>
/// <param name="before">The before.</param>
/// <param name="current">The current.</param>
/// <param name="after">The after.</param>
/// <returns></returns>
public IMergeResolution<TEntity> Merge<TEntity>(MergeKind kind, TEntity before

, TEntity current, TEntity after)
{

MergeOperation<TEntity> op;

op = new MergeOperation<TEntity>(before, current, after);

var result = op.Merge();
bool resolved = result.IsResolved();
return result;

}
}

/// <summary>
/// Encapsulates the merge API behind a concrete type which
/// caches merge resolution strategies by the entity type.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
internal class MergeOperation<TEntity>
{

private static readonly CloneMethod[] s_cloneProps;

/// <summary>
/// Tests that the BFIM of a conflict is current with the
/// Current state.
/// </summary>
private static readonly CurrentStateCheck s_isCurrent;

/// <summary>
/// The dynamic merge implementation used.
/// </summary>
private static readonly Func<MergeOperation<TEntity>, IMergeResolution<TEntity

>> s_mergeImpl;

/// <summary>
/// Invokes the merge on all properties which are not
/// control properties.
/// </summary>
private static readonly PropertyMergeMethod[] s_propertyMerges;

162

private static readonly MergeableAttribute[] s_typeAttr;
private TEntity _afim;
private TEntity _bfim;
private TEntity _current;

/// <summary>
/// Initializes the <see cref="MergeOperation{TEntity}"/> class.
/// </summary>
static MergeOperation()
{

var type = typeof(TEntity);
var props = type.GetProperties();

if (InitCc(type, props, out s_mergeImpl, ref s_isCurrent))
{

InitMerge(type, props, ref s_propertyMerges, ref s_typeAttr, ref
s_cloneProps);

}
}

/// <summary>
/// Initializes a new instance of the
/// <see cref="MergeOperation{TEntity}"/> class.
/// </summary>
/// <param name="before">The before image.</param>
/// <param name="current">The current image.</param>
/// <param name="after">The after image.</param>
public MergeOperation(TEntity before, TEntity current, TEntity after)
{

_bfim = before;
_current = current;
_afim = after;

}

/// <summary>
/// Clones data from src to dest.
/// </summary>
/// <param name="src">The source.</param>
/// <param name="dest">The destination.</param>
private delegate void CloneMethod(TEntity src, TEntity dest);

/// <summary>
/// Signature of concurrency checking implementations.
/// </summary>
/// <param name="bfim">The before image.</param>
/// <param name="current">The current image.</param>
/// <returns></returns>
private delegate bool CurrentStateCheck(TEntity bfim, TEntity current);

/// <summary>
/// Signature of property level merging.
/// </summary>
/// <param name="before">The before image.</param>
/// <param name="current">The current image.</param>
/// <param name="after">The after image.</param>
/// <returns></returns>

163

private delegate PendingMergeResolution PropertyMergeMethod(TEntity before,
TEntity current, TEntity after);

/// <summary>
/// Signature for class level merging.
/// </summary>
/// <param name="kind">The kind of merge resolved by <see cref="M:

ControlledMerge"/>.</param>
/// <param name="mop">The merge operation.</param>
/// <returns></returns>
private delegate IMergeResolution<TEntity> TypeMergeMethod(MergeKind kind,

MergeOperation<TEntity> mop);

/// <summary>
/// Gets the final after image resultant from this merge operation.
/// </summary>
/// <value>The final after image value..</value>
public TEntity AFIM { get { return _afim; } }

/// <summary>
/// Determines if two OCCUTS values match.
/// </summary>
/// <param name="cc1">The CC1.</param>
/// <param name="cc2">The CC2.</param>
/// <returns>
/// <see langword="true"/> if the time stamps match;
/// otherwise, <see langword="false"/>.
/// </returns>
internal static bool TimestampIsCurrentChecker(byte[] cc1, byte[] cc2)
{

if (cc1 == null)
{

return cc2 == null;
}
else if (cc2 == null)
{

return cc1 == null;
}
else if (object.ReferenceEquals(cc1, cc2))
{

return true;
}
else if (cc1.Length != cc2.Length)
{

return false;
}
else if (cc1.Length == 8)
{

// unrolled loop evaluation for performance as this
// method should see a lot of mileage
return

cc1[0] == cc2[0] &&
cc1[1] == cc2[1] &&
cc1[2] == cc2[2] &&
cc1[3] == cc2[3] &&
cc1[4] == cc2[4] &&

164

cc1[5] == cc2[5] &&
cc1[6] == cc2[6] &&
cc1[7] == cc2[7];

}
else
{

return cc1.SequenceEqual(cc2);
}

}

/// <summary>
/// Performs the merge operation.
/// </summary>
internal IMergeResolution<TEntity> Merge()
{

return s_mergeImpl(this);
}

/// <summary>
/// Effectively last write wins. "Merge" where TEntity does
/// not participate in optimistic concurrency control.
/// </summary>
/// <returns><see langword="true"/> always.</returns>
/// <remarks>
/// An entity which does not participate in concurrency
/// control is implicitly last write wins which mirrors
/// regular RDBMS behavior.
/// </remarks>
private static IMergeResolution<TEntity> ChaoticMerge(MergeOperation<TEntity>

op)
{

return Resolve(MergeActionResult.Resolved, op.AFIM);
}

/// <summary>
/// Clones the non-control properties.
/// </summary>
/// <param name="src">The source.</param>
/// <param name="dest">The destination.</param>
private static void CloneNonControl(TEntity src, TEntity dest)
{

for (int i = s_cloneProps.Length; i-- > 0;)
{

s_cloneProps[i](src, dest);
}

}

/// <summary>
/// The concurrency controlled merge implementation.
/// </summary>
/// <param name="op">The merge operation invoking merge.</param>
/// <returns>
/// <see langword="true"/> if merge was successful;
/// otherwise, <see langword="false"/>.
/// </returns>

165

private static IMergeResolution<TEntity> ControlledMerge(MergeOperation<
TEntity> op)

{
var bfim = op._bfim;

// should we already be aware of it? no? this is new,
// implies no conflict is possible (in this version at least)
if (bfim == null)

return Resolve(MergeActionResult.Create, op.AFIM);

var cfim = op._current;

// did someone else already delete this while bfim was
// offline? yes? handle as special case since property
// merge strategies have no basis for comparison
if (cfim == null)

return MergeByType(MergeKind.HiddenDelete, op);

// is this normal optimistic write behavior? yes? then why
// waste time fancy dancing?
if (s_isCurrent(bfim, cfim))

return Resolve(MergeActionResult.Resolved, op._afim);

var afim = op._afim;

// are we trying to delete someone else’s work? yes?
// handle as special case since the afim cannot be used
// for comparison and the other writer presumably worked
// from bfim to get to current.
if (afim == null)

return MergeByType(MergeKind.DirtyDelete, op);

// finally, we have work todo. This is a legitimate
// conflicting update
return MergeByType(MergeKind.ConflictingUpdate, op);

}

/// <summary>
/// Creates a pre-compiled wrapper to clone data between two entities.
/// </summary>
/// <param name="property">The property.</param>
/// <returns>
/// A precompiled method which will clone values from one
/// entity to another for the property given.
/// </returns>
private static CloneMethod CreateCloneWrapper(PropertyInfo property)
{

var type = typeof(TEntity);
var src = Expression.Parameter(typeof(TEntity));
var dest = Expression.Parameter(typeof(TEntity));

var expr = Expression
.Lambda<CloneMethod>(

Expression.Call(
dest,
property.GetSetMethod(),

166

Expression.Call(
src,
property.GetGetMethod())

),
src, dest);

return expr.Compile();
}

/// <summary>
/// Creates a precompiled wrapper to evaluate whether two
/// entities share the same timestamp value for optimistic
/// concurrency control.
/// </summary>
/// <param name="ccProperty">The cc property.</param>
/// <returns></returns>
/// <exception cref="MergeException">
/// Timestamp field must be readable. or Timestamp
/// attributed fields must be of type byte[].
/// </exception>
private static CurrentStateCheck CreateOccUtsCurrencyChecker(PropertyInfo

ccProperty)
{

// current version only support Timestamp concurrency
// evaluation. A future revision may support the
// System.ComponentModel.DataAnnotations.ConcurrencyCheckAttribute
// as well.

if (!ccProperty.CanRead)
{

throw new MergeException("Timestamp field must be readable.");
}

if (ccProperty.PropertyType != typeof(byte[]))
{

throw new MergeException("Timestamp attributed fields must be of type
byte[].");

}

var fGet = PropertyWrapper.CreatePropertyGetter<TEntity, byte[]>(
ccProperty);

return (TEntity a, TEntity b) => TimestampIsCurrentChecker(fGet(a), fGet(b
));

}

/// <summary>
/// Initializes the concurrency control domain for the given type.
/// </summary>
/// <param name="type">The type.</param>
/// <param name="properties">The properties.</param>
/// <param name="merge">The merge.</param>
/// <param name="IsCurrent">The is current.</param>
/// <returns>
/// <see langword="true"/> if the domain is controlled;
/// otherwise, <see langword="false"/>.
/// </returns>

167

/// <exception cref="System.InvalidOperationException">
/// Only one timestamp property is permitted per type.
/// </exception>
private static bool InitCc(Type type, PropertyInfo[] properties, out Func<

MergeOperation<TEntity>, IMergeResolution<TEntity>> merge, ref
CurrentStateCheck IsCurrent)

{
// current version only supports Timestamp concurrency
// evaluation. A future revision may support the
// System.ComponentModel.DataAnnotations.ConcurrencyCheckAttribute
// as well.
PropertyInfo ccProperty;

try
{

// in a future revision, extend this with inspection
// for
// System.ComponentModel.DataAnnotations.ConcurrencyCheckAttribute
// and return a method which looks like (a,b)=>AllCcProps.All(_=>_(a,b

));
ccProperty = properties

.Where(_ => _.GetCustomAttributes(true).OfType<System.
ComponentModel.DataAnnotations.TimestampAttribute>().Any())

.SingleOrDefault();
}
catch (InvalidOperationException)
{

throw new InvalidOperationException("Only one timestamp property is
permitted per type.");

}

// in the absence CC, there exists no possibility of
// conflict / detection.
if (ccProperty == null)
{

merge = ChaoticMerge;
return false;

}

IsCurrent = CreateOccUtsCurrencyChecker(ccProperty);
merge = ControlledMerge;

return true;
}

/// <summary>
/// Initializes the merge domain of this class.
/// </summary>
/// <param name="type">The type to merge on.</param>
/// <param name="properties">
/// The properties of the given type.
/// </param>
/// <param name="propertyMerges">
/// A collection of property wrappers which will perform the
/// merge of data from one entity to the next.
/// </param>

168

/// <param name="typeMergeAttr">
/// The mergeable attributes applied to the type given.
/// </param>
/// <param name="cloneProps">
/// A collection of property wrappers to move data between
/// entities for all but control fields.
/// </param>
private static void InitMerge(Type type, PropertyInfo[] properties,

ref PropertyMergeMethod[] propertyMerges,
ref MergeableAttribute[] typeMergeAttr,
ref CloneMethod[] cloneProps)

{
typeMergeAttr = type.GetCustomAttributes<MergeableAttribute>(false).

ToArray();

var controlProps = properties.Where(IsControlProperty).ToArray();
var mergedProps = properties.Where(IsMergedProperty).ToArray();
var unmergedProps = properties

.Except(controlProps)

.Except(mergedProps).ToArray();

LastWriteWinsAttribute unmergedPropertyDefault = null;
if (typeMergeAttr.Length == 0)
{

// type defaults to reject
typeMergeAttr = new[] { new LastWriteWinsAttribute(false) };

unmergedPropertyDefault = new LastWriteWinsAttribute(mergedProps.
Length > 0);

}
else
{

unmergedPropertyDefault = new LastWriteWinsAttribute(false);
}

if (mergedProps.Length == 0)
{

propertyMerges = new PropertyMergeMethod[] { NeverMerge };
}
else
{

var p = mergedProps
.Select(_ => WrapProperty(_, _.GetCustomAttributes<

MergeableAttribute>(false).ToArray()))
.Union(unmergedProps.Select(_ => WrapProperty(_,

unmergedPropertyDefault)))
.ToArray();

propertyMerges = p.ToArray();
}

cloneProps = properties.Except(controlProps)
.Select(CreateCloneWrapper)
.ToArray();

}

169

/// <summary>
/// Determines whether the property given is a control
/// property. That is, a key field or a concurrency control field.
/// </summary>
/// <param name="property">The property.</param>
/// <returns>
/// <see langword="true"/> if the given property is a
/// controlled field.
/// </returns>
private static bool IsControlProperty(PropertyInfo property)
{

var controlMembers = property
.GetCustomAttributes(typeof(KeyAttribute), true)
.Union(
property.GetCustomAttributes<ConcurrencyCheckAttribute>(true))
.Union(
property.GetCustomAttributes<TimestampAttribute>(true));

return controlMembers.Any();
}

/// <summary>
/// Determines whether the given propert is a merged
/// property. That is, will participate in verifying the
/// validity of data resulting from dirty writes.
/// </summary>
/// <param name="property">The property.</param>
/// <returns>
/// <see langword="true"/> if the property participates in
/// merge; otherwise, <see langword="false"/>.
/// </returns>
private static bool IsMergedProperty(PropertyInfo property)
{

if (!property.GetCustomAttributes<MergeableAttribute>(false).Any())
return false;

if (IsControlProperty(property))
{

System.Diagnostics.Trace.TraceWarning("Merge attributes on property
{0} of type {1} will be ignored due to control attributes applied.
",
property.Name, property.DeclaringType.FullName);

return false;
}
return true;

}

/// <summary>
/// Merges all mergeable properties.
/// </summary>
/// <param name="kind">
/// The kind of merge operation; only here for signature compliance..
/// </param>
/// <param name="op">The merge operation.</param>
/// <returns>
/// A merge resolution which reports as resolved if all
/// merged properties could be merged; otherwise, unresolvable.

170

/// </returns>
private static IMergeResolution<TEntity> MergeAllProperties(MergeKind kind,

MergeOperation<TEntity> op)
{

// the result are cached and processed after so that the
// parent type merge can process clean data should the
// property merge fail.
var results = new PendingMergeResolution[s_propertyMerges.Length];
for (int i = results.Length; i-- > 0;)
{

var result = s_propertyMerges[i](op._bfim, op._current, op._afim);
if (!result.CanResolve)

return Resolve(MergeActionResult.Unresolved, op._current);
results[i] = result;

}

for (int i = results.Length; i-- > 0;)
{

results[i].Commit();
}
return Resolve(MergeActionResult.Update, op._current);

}

/// <summary>
/// Entry into merge on the given entity.
/// </summary>
/// <param name="mergeKind">Kind of the merge.</param>
/// <param name="op">The merge operation.</param>
/// <returns>
/// A merge resolution which reports as resolved if all
/// merged properties could be merged; otherwise, unresolvable.
/// </returns>
private static IMergeResolution<TEntity> MergeByType(MergeKind mergeKind,

MergeOperation<TEntity> op)
{

if (mergeKind == MergeKind.ConflictingUpdate)
{

// finally, we’ve work to do! This is a dirty update
// request and does warrant merging. start with the
// most fine grain merge possible
var test = MergeAllProperties(MergeKind.ConflictingUpdate, op);

if (test.IsResolved())
{

return test;
}

}

var resolution = MergeType(mergeKind, op);
var isResolved = resolution.IsResolved();
return resolution;

}

/// <summary>
/// Performs the actual type level merge.
/// </summary>

171

/// <param name="kind">The kind.</param>
/// <param name="mop">The mop.</param>
/// <returns>
/// A merge resolution which reports as resolved if all
/// merged properties could be merged; otherwise, unresolvable.
/// </returns>
private static IMergeResolution<TEntity> MergeType(MergeKind kind,

MergeOperation<TEntity> mop)
{

TEntity result = default(TEntity);
var action = new MergeAction<TEntity>(kind, mop._bfim, mop._current, mop.

_afim);
for (int i = s_typeAttr.Length; i-- > 0;)
{

s_typeAttr[i].Merge(action);
if (action.Resolved)
{

if (mop._current != null && !object.ReferenceEquals(action.
ResolvedValue, mop._current))

{
CloneNonControl(mop._afim, mop._current);
result = mop._current;

}
else
{

result = mop._afim;
}
break;

}
}

return Resolve(action.Result, result);
}

/// <summary>
/// A property merge implementation which always rejects.
/// </summary>
/// <param name="bfim">The bfim.</param>
/// <param name="current">The current.</param>
/// <param name="afim">The afim.</param>
/// <returns><see langword="false"/></returns>
private static PendingMergeResolution NeverMerge(TEntity bfim, TEntity current

, TEntity afim)
{

return new PendingMergeResolution(MergeActionResult.Unresolved, Noop);
}

/// <summary>
/// Convenience no operation method.
/// </summary>
private static void Noop()
{
}

/// <summary>
/// Produces an IMergeResolution{} using the resolution and

172

/// value given.
/// </summary>
/// <param name="result">The result.</param>
/// <param name="tEntity">The t entity.</param>
/// <returns>A completed merge resoution.</returns>
private static IMergeResolution<TEntity> Resolve(MergeActionResult result,

TEntity tEntity)
{

return new BasicMergeResolution<TEntity>(result, tEntity);
}

/// <summary>
/// Wraps the specified property with a merge acceptor
/// </summary>
/// <param name="prop">The property.</param>
/// <param name="attrs">The merge attributes.</param>
/// <returns>Accessor methods to the property merge.</returns>
/// <exception cref="System.ArgumentException">
/// attrs must contain at least one mergeable attribute to wrap.
/// </exception>
private static PropertyMergeMethod WrapProperty(PropertyInfo prop, params

MergeableAttribute[] attrs)
{

if (attrs == null || attrs.Length == 0)
throw new ArgumentException("attrs must contain at least one mergeable

attribute to wrap.");

var w = typeof(MergePropertyWrapper<,>).MakeGenericType(prop.DeclaringType
, prop.PropertyType);

var wrapper = Activator.CreateInstance(w, new object[] { prop, attrs },
null);

var kind = Expression.Constant(MergeKind.ConflictingUpdate); //Expression.
Parameter(typeof(MergeKind));

var b = Expression.Parameter(prop.DeclaringType);
var c = Expression.Parameter(prop.DeclaringType);
var a = Expression.Parameter(prop.DeclaringType);

var exec = Expression.Lambda<PropertyMergeMethod>(
Expression.Call(
Expression.Constant(wrapper),
w.GetMethod("Merge"),
kind, b, c, a),
/*kind,*/ b, c, a);

return exec.Compile();
}

}
}

Listing C.22: src/Rel.Merge/MergeOperation.cs

using System;
using System.Linq;
using System.Reflection;

173

namespace Rel.Merge
{

/// <summary>
/// A wrapper for properties which are mergeable.
/// </summary>
/// <typeparam name="TEntity">The type of the entity.</typeparam>
/// <typeparam name="TProperty">The type of the property.</typeparam>
internal class MergePropertyWrapper<TEntity, TProperty>

: PropertyWrapper<TEntity, TProperty>
{

private Strategies.MergeableAttribute[] mattrs;

/// <summary>
/// Initializes a new instance of the
/// <see cref="MergePropertyWrapper{TEntity, TProperty}"/> class.
/// </summary>
/// <param name="info">The information.</param>
/// <param name="mattrs">The merge attributes.</param>
public MergePropertyWrapper(PropertyInfo info,

Strategies.MergeableAttribute[] mattrs)
: base(info)

{
this.mattrs = mattrs;

}

/// <summary>
/// Merges the specified entities.
/// </summary>
/// <param name="kind">
/// The kind of merge operation being attempted. Here for
/// signature compliance.
/// </param>
/// <param name="baseValue">The base value.</param>
/// <param name="current">The current.</param>
/// <param name="modifiedValue">The modified value.</param>
/// <returns>An intermediate result with a commit callback.</returns>
public PendingMergeResolution Merge(MergeKind kind,

TEntity baseValue,
TEntity current,
TEntity modifiedValue)

{
TProperty

b = Get(baseValue),
c = Get(current),
n = Get(modifiedValue);

var action = new MergeAction<TProperty>(kind, b, c, n);

if (current == null)
current = modifiedValue;

mattrs.FirstOrDefault(_ =>
{

_.Merge(action);
return action.Resolved;

});

174

if (action.Resolved)
return new PendingMergeResolution(action.Result,

new Action(() => Set(current, Get(modifiedValue))));

return new PendingMergeResolution(action.Result, Noop);
}

/// <summary>
/// Convenience no operation method.
/// </summary>
private static void Noop()
{
}

}
}

Listing C.23: src/Rel.Merge/MergePropertyWrapper.cs

using System;

namespace Rel.Merge
{

/// <summary>
/// ***internal use only*** An intermediate result which
/// communicates state of child merge operations with a
/// callback to apply them. Use the callback to ensure that all
/// sibling merges are able to resolve before any of them
/// resolve. This keeps the parent merge pristine until such
/// time as it abandons or commits the merge. Pseudo
/// transactional behavior.
/// </summary>
/// <remarks>
/// <para>
/// <note type="note">***THIS IS A VALUE TYPE***</note> to
/// alleviate GC pressure. This will be invoked for each property
/// of each entity which gets merged. As such, this could see
/// many very small lifetimes.
/// </para>
/// </remarks>
internal struct PendingMergeResolution
{

/// <summary>
/// The commit callback to execute the resolution.
/// </summary>
public readonly Action Commit;

private readonly MergeActionResult _result;

/// <summary>
/// Initializes a new instance of the <see
/// cref="PendingMergeResolution"/> struct.
/// </summary>
/// <param name="result">The result.</param>
/// <param name="commit">The commit.</param>

175

public PendingMergeResolution(MergeActionResult result, Action commit)
{

_result = result;
Commit = commit;

}

/// <summary>
/// Gets a value indicating whether this instance can resolve.
/// </summary>
/// <value>
/// <see langword="true"/> if this instance can resolve;
/// otherwise, <see langword="false"/>.
/// </value>
public bool CanResolve { get { return _result.HasFlag(MergeActionResult.

Resolved); } }
}

}

Listing C.24: src/Rel.Merge/PendingMergeResolution.cs

using System;
using System.Linq.Expressions;
using System.Reflection;

namespace Rel.Merge
{

/// <summary>
/// A base class for generating compiled get/set accessors for
/// runtime resolved properties.
/// </summary>
public abstract class PropertyWrapper
{

/// <summary>
/// Creates the specified information.
/// </summary>
/// <typeparam name="TClass">The type of the class.</typeparam>
/// <typeparam name="TProp">The type of the property.</typeparam>
/// <param name="info">The information.</param>
/// <returns></returns>
public static PropertyWrapper<TClass, TProp> Create<TClass, TProp>(

PropertyInfo info)
{

return new PropertyWrapper<TClass, TProp>(info);
}

/// <summary>
/// Creates a property getter.
/// </summary>
/// <typeparam name="TProp">The type of the value.</typeparam>
/// <param name="property">The property to wrap.</param>
/// <returns>
/// A function which wraps the get method of an arbitrary
/// property with a native compiled function.
/// </returns>
/// <remarks>

176

/// This is for performance gains in runtime resolved property
/// accessors. This method circumvents the System.Reflection
/// namespace performance penalties and overhead of explicit
/// dynamic proxy class and assembly generation with the
/// System.Reflection.Emit namespace. Benchmarks for property
/// retrieval via native, compiled lambda expression, and via
/// reflection invocation measured in mm:ss.fffffff and given below.
///
/// Native: e.Prop
/// Lambda: e => e.prop
/// Reflection: propGetter.Invoke(e, null)
///
/// Iterations | Native | Lambda | Reflection
/// ------------+---------------+---------------+--------------
/// 1000 | 00:00.0005833 | 00:00.0000617 | 00:00.0003298
/// 10000 | 00:00.0004251 | 00:00.0006168 | 00:00.0031853
/// 100000 | 00:00.0083098 | 00:00.0056037 | 00:00.0442952
/// 1000000 | 00:00.0355637 | 00:00.0536704 | 00:00.3333400
/// 10000000 | 00:00.3717554 | 00:00.5645168 | 00:03.0993979
/// 100000000 | 00:03.6002561 | 00:05.3618157 | 00:31.0219926
/// 1000000000 | 00:35.2922689 | 00:53.7391055 | 05:10.4827815
/// </remarks>
public static Func<TClass, TProp> CreatePropertyGetter<TClass, TProp>(

PropertyInfo property)
{

var p = Expression.Parameter(typeof(TClass));

var expr = Expression.Lambda<Func<TClass, TProp>>(
Expression.Call(
p,
property.GetGetMethod()),
p);

return expr.Compile();
}

/// <summary>
/// Creates a property setter.
/// </summary>
/// <typeparam name="TProp">The type of the value.</typeparam>
/// <param name="ccProperty">The cc property.</param>
/// <returns></returns>
public static Action<TClass, TProp> CreatePropertySetter<TClass, TProp>(

PropertyInfo property)
{

var pe = Expression.Parameter(typeof(TClass));
var pv = Expression.Parameter(typeof(TProp));

var expr = Expression.Lambda<Action<TClass, TProp>>(
Expression.Call(
pe,
property.GetSetMethod(),
new[] { pv }),
pe, pv);

return expr.Compile();

177

}
}

/// <summary>
/// A typed implementation of the property wrapper to avoid
/// repeated un-/boxing operations for value types.
/// </summary>
/// <typeparam name="TClass">The type of the class.</typeparam>
/// <typeparam name="TProp">The type of the property.</typeparam>
public class PropertyWrapper<TClass, TProp>

: PropertyWrapper
{

private readonly Func<TClass, TProp> _getter;
private readonly string _name;
private readonly Action<TClass, TProp> _setter;

/// <summary>
/// Initializes a new instance of the <see
/// cref="PropertyWrapper{TClass, TProp}"/> class.
/// </summary>
/// <param name="info">The information.</param>
public PropertyWrapper(PropertyInfo info)
{

_name = info.Name;
if (info.CanRead)
{

_getter = CreatePropertyGetter<TClass, TProp>(info);
}
if (info.CanWrite)

_setter = CreatePropertySetter<TClass, TProp>(info);
}

/// <summary>
/// Gets the value stored at the wrapped property from the
/// specified object.
/// </summary>
/// <param name="obj">The object.</param>
/// <returns>The property value of obj.</returns>
public TProp Get(TClass obj)
{

return _getter(obj);
}

/// <summary>
/// Sets the given value to the wrapped property on the
/// specified object.
/// </summary>
/// <param name="obj">The object.</param>
/// <param name="value">The value.</param>
/// <returns>
/// <paramref name="obj"/> for convenience in chaining if so desired.
/// </returns>
/// <example>
/// <c>Assert.AreEqual(100, propertyWrapper.Set(ent, 100).Property);</c>
/// </example>
public TClass Set(TClass obj, TProp value)

178

{
_setter(obj, value);
return obj;

}
}

}

Listing C.25: src/Rel.Merge/PropertyWrapper.cs

using System;

namespace Rel.Merge.Strategies
{

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public sealed class DirtyDelete : MergeableAttribute
{

protected internal override void Merge<TValue>(MergeAction<TValue> request)
{

if (request.Kind == MergeKind.DirtyDelete)
{

if (object.Equals(default(TValue), request.CFIM))
{

//System.Diagnostics.Trace.TraceInformation("Dirty NOOP Delete");
request.Resolve(MergeActionResult.Resolved, default(TValue));

}
else
{

//System.Diagnostics.Trace.TraceInformation("Dirty Delete -- >
Approved");

request.Resolve(MergeActionResult.Delete, request.CFIM);
}

}
}

}
}

Listing C.26: src/Rel.Merge/Strategies/DirtyDelete.cs

using System;

namespace Rel.Merge.Strategies
{

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public sealed class HiddenDelete : MergeableAttribute
{

protected internal override void Merge<TValue>(MergeAction<TValue> request)
{

if (request.Kind == MergeKind.HiddenDelete)
{

if (object.Equals(default(TValue), request.AFIM))
{

//System.Diagnostics.Trace.TraceInformation("Hidden NOOP Delete");
// noop delete
request.Resolve(MergeActionResult.Resolved, default(TValue));

179

}
else
{

//System.Diagnostics.Trace.TraceInformation("Hidden Delete -->
Create");

request.Resolve(MergeActionResult.Create, request.AFIM);
}

}
}

}
}

Listing C.27: src/Rel.Merge/Strategies/HiddenDelete.cs

using System;

namespace Rel.Merge.Strategies
{

/// <summary>
/// Resolves conflicts by always forcing the new value on the
/// old value. May be applied to both classes and properties.
/// </summary>
[AttributeUsage(AttributeTargets.Property | AttributeTargets.Class, AllowMultiple

= false)]
public sealed class LastWriteWinsAttribute

: MergeableAttribute
{

private readonly bool _doesLastWriteWin;

/// <summary>
/// Initializes a new instance of the
/// <see cref="LastWriteWinsAttribute"/> class.
/// </summary>
public LastWriteWinsAttribute()

: this(true)
{
}

/// <summary>
/// Initializes a new instance of the
/// <see cref="LastWriteWinsAttribute"/> class.
/// </summary>
/// <param name="doesLastWriteWin">
/// if set to <see langword="true"/> will operate with last
/// write wins logic. If <see langword="false"/> concurrent
/// writes are rejected. <note type="note">Defaults to <see langword="true

"/>.</note>
/// </param>
public LastWriteWinsAttribute(bool doesLastWriteWin)
{

_doesLastWriteWin = doesLastWriteWin;
}

/// <summary>
/// Gets a value indicating whether the application of this

180

/// attribute actually results in a last write win or last
/// write reject.
/// </summary>
/// <value>
/// <see langword="true"/> if the last write should win;
/// otherwise, <see langword="false"/>.
/// </value>
public bool DoesLastWriteWin { get { return _doesLastWriteWin; } }

/// <summary>
/// Merges the values given into the modified value.
/// </summary>
/// <typeparam name="TValue">The type of the value.</typeparam>
/// <param name="baseValue">The base value.</param>
/// <param name="current">The current.</param>
/// <param name="modified">The modified.</param>
/// <returns>
/// <see langword="true"/> if merge was successful;
/// otherwise, <see langword="false"/>.
/// </returns>
protected internal override void Merge<TValue>(MergeAction<TValue> request)
{

if (!_doesLastWriteWin)
return;

switch (request.Kind)
{

case MergeKind.Auto:
throw new NotSupportedException();

case MergeKind.ConflictingUpdate:
request.Resolve(MergeActionResult.Update, request.AFIM);
break;

case MergeKind.HiddenDelete:
if (request.AFIM != null)
{

request.Resolve(MergeActionResult.Create, request.AFIM);
}
else
{

// noop resolution
request.Resolve(MergeActionResult.Resolved, default(TValue));

}
break;

case MergeKind.DirtyDelete:
request.Resolve(MergeActionResult.Delete, request.CFIM);
break;

default:
throw new ArgumentException("request.Kind");

}
}

}

181

}

Listing C.28: src/Rel.Merge/Strategies/LastWriteWinsAttribute.cs

using System;

namespace Rel.Merge.Strategies
{

/// <summary>
/// The base class for class and property decoration for merging.
/// </summary>
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Property, AllowMultiple

= true)]
public abstract class MergeableAttribute

: Attribute
{

/// <summary>
/// Initializes a new instance of the
/// <see cref="MergeableAttribute"/> class.
/// </summary>
protected MergeableAttribute()
{
}

/// <summary>
/// Merges the values given into the modified value.
/// </summary>
/// <typeparam name="TValue">The type of the value.</typeparam>
/// <param name="request">The request.</param>
protected internal abstract void Merge<TValue>(MergeAction<TValue> request);

}
}

Listing C.29: src/Rel.Merge/Strategies/MergeableAttribute.cs

using System;

namespace Rel.Merge.Strategies
{

/// <summary>
/// Base implementation of merge attributes which should be
/// applied to numeric only field.
/// </summary>
[AttributeUsage(AttributeTargets.Property)]
public abstract class NumericMergeableAttribute : MergeableAttribute
{

/// <summary>
/// Merges the values given into the modified value.
/// </summary>
/// <typeparam name="TValue">The type of the value.</typeparam>
/// <param name="request">The request.</param>
/// <exception cref="System.InvalidOperationException">
/// Property attributes should only be called during
/// conflicting updates.

182

/// </exception>
protected internal override void Merge<TValue>(MergeAction<TValue> request)
{

if (request.Kind != MergeKind.ConflictingUpdate)
throw new InvalidOperationException("Property attributes should only

be called during conflicting updates.");
}

/// <summary>
/// Converts the value to the specified output as double.
/// </summary>
/// <param name="src">The input value.</param>
/// <param name="dest">The output value.</param>
/// <returns>
/// <see langword="true"/> if translation was successful;
/// otherwise, <see langword="false"/>.
/// </returns>
protected virtual bool Coherse(object src, out double dest)
{

dest = 0;

if (src != null)
{

dest = Convert.ToDouble(src);
return true;

}
return false;

}
}

}

Listing C.30: src/Rel.Merge/Strategies/NumericMergeableAttribute.cs

using System;

namespace Rel.Merge.Strategies
{

/// <summary>
/// Allows for specifying limits to quantity and monotonicity of
/// change permissible during merge operations.
/// </summary>
[AttributeUsage(AttributeTargets.Property, AllowMultiple = true, Inherited = false

)]
public class StepMergeableAttribute : NumericMergeableAttribute
{

private readonly Func<double, double, bool> _accept;
private readonly double _lbound, _ubound;

/// <summary>
/// Initializes a new instance of the
/// <see cref="StepMergeableAttribute"/> class.
/// </summary>
/// <param name="isPercent">
/// If set to <see langword="true"/> bounding values are
/// taken as percentages and the change is calculated as a

183

/// percent change.
/// </param>
/// <param name="lbound">The lower bound of change.</param>
/// <param name="ubound">The upper bound of change.</param>
/// <exception cref="System.ArgumentException">
/// lbound must be less than ubound;lbound,ubound
/// </exception>
public StepMergeableAttribute(bool isPercent, double lbound, double ubound)

: base()
{

if (lbound > ubound)
throw new ArgumentException("lbound must be less than ubound", "lbound

,ubound");
_lbound = lbound;
_ubound = ubound;

if (isPercent)
{

_accept = AcceptPercent;
}
else
{

_accept = AcceptMagnitude;
}

}

/// <summary>
/// Initializes a new instance of the
/// <see cref="StepMergeableAttribute"/> class.
/// </summary>
/// <param name="lbound">The lower bound of change.</param>
/// <param name="ubound">The upper bound of change.</param>
public StepMergeableAttribute(double lbound, double ubound)

: this(false, lbound, ubound)
{
}

/// <summary>
/// Initializes a new instance of the
/// <see cref="StepMergeableAttribute"/> class using
/// plus/minus <paramref name="step"/> for the bounds.
/// </summary>
/// <param name="step">The step size permissible.</param>
public StepMergeableAttribute(double step)

: this(false, step)
{
}

/// <summary>
/// Initializes a new instance of the
/// <see cref="StepMergeableAttribute"/> class using
/// plus/minus <paramref name="step"/> for the bounds.
/// </summary>
/// <param name="isPercent">
/// if set to <see langword="true"/> bounding values are
/// taken as percentages of change and the change is

184

/// calculated by (current-afim) / (current+afim).
/// </param>
/// <param name="step">The step.</param>
public StepMergeableAttribute(bool isPercent, double step)

: this(isPercent, -Math.Abs(step), Math.Abs(step))
{
}

/// <summary>
/// Gets or sets a value indicating whether divide by zero
/// should reject or resolve.
/// </summary>
/// <value>
/// <see langword="true"/> if divide by zero should resolve;
/// otherwise, <see langword="false"/>.
/// </value>
public bool DivideByZeroOk { get; set; }

/// <summary>
/// Gets or sets a value indicating whether lower bound is
/// inclusive. Defaults to <see langword="false"/>.
/// </summary>
/// <value>
/// <see langword="true"/> if the lower bound is inclusive;
/// otherwise, <see langword="false"/>.
/// </value>
public bool InclusiveLBound { get; set; }

/// <summary>
/// Gets or sets a value indicating whether upper bound is
/// inclusive. Defaults to <see langword="false"/>.
/// </summary>
/// <value>
/// <see langword="true"/> if upper bound is inclusive;
/// otherwise, <see langword="false"/>.
/// </value>
public bool InclusiveUBound { get; set; }

/// <summary>
/// Gets a value indicating whether this instance is
/// percentage based.
/// </summary>
/// <value>
/// <see langword="true"/> if this instance is percentage
/// based; otherwise, <see langword="false"/>.
/// </value>
public bool IsPercentageBased { get { return _accept == AcceptPercent; } }

/// <summary>
/// Gets the lower bound.
/// </summary>
/// <value>The lower bound.</value>
public double LowerBound { get { return _lbound; } }

/// <summary>
/// Gets the upper bound.

185

/// </summary>
/// <value>The upper bound.</value>
public double UpperBound { get { return _ubound; } }

/// <summary>
/// Merges the specified request.
/// </summary>
/// <typeparam name="TValue">The type of the value.</typeparam>
/// <param name="request">The request.</param>
protected internal override void Merge<TValue>(MergeAction<TValue> request)
{

base.Merge(request);

double current, next;
if (Coherse(request.CFIM, out current) && Coherse(request.AFIM, out next))
{

if (_accept(current, next))
request.Resolve(MergeActionResult.Update, request.AFIM);

}
}

/// <summary>
/// Resolves if a calculated delta lies within the
/// acceptable bounds.
/// </summary>
/// <param name="delta">The delta.</param>
/// <returns>
/// <see langword="true"/> if the change is acceptable;
/// otherwise, <see langword="false"/>.
/// </returns>
private bool Acceptable(double delta)
{

if (InclusiveLBound)
{

if (delta < _lbound)
return false;

}
else if (delta <= _lbound)
{

return false;
}

if (InclusiveUBound)
{

if (delta > _ubound)
return false;

}
else if (delta >= _ubound)
{

return false;
}

return true;
}

/// <summary>

186

/// The default comparison, calculates change by simple
/// fixed value step.
/// </summary>
/// <param name="current">The current.</param>
/// <param name="next">The next.</param>
/// <returns>
/// <see langword="true"/> if the change is acceptable;
/// otherwise, <see langword="false"/>.
/// </returns>
private bool AcceptMagnitude(double current, double next)
{

var delta = next - current;
return Acceptable(delta);

}

/// <summary>
/// Calculates acceptable step size as a percentage.
/// </summary>
/// <param name="current">The current.</param>
/// <param name="next">The next.</param>
/// <returns>
/// <see langword="true"/> if the change is acceptable;
/// otherwise, <see langword="false"/>.
/// </returns>
private bool AcceptPercent(double current, double next)
{

if (current == 0)
{

return DivideByZeroOk;
}
var delta = (next - current) / current;

return Acceptable(delta);
}

}
}

Listing C.31: src/Rel.Merge/Strategies/StepMergeableAttribute.cs

187

APPENDIX D

PROPERTY PERFORMANCE DATA

The following table provides the raw numerical data used in verifying the property access meth-

ods used in this work.

Table D.1: Property Performance Data

Native Derived Lambda Reflection

1 34248364 29322843 29135323 3651148

2 32140312 30878063 28610779 3595395

3 32300566 30591885 29007317 3805716

4 32337779 30122661 27540381 3681504

5 32020120 30469309 28929973 3736493

6 31762633 30308593 28747434 3771758

7 32174345 30595617 28832569 3772394

8 32075885 30696931 28881545 3772630

9 32077316 30519845 28868426 3795095

10 31973292 30777653 28696907 3790224

11 32250895 30779251 28863845 3806090

12 32150187 30736694 28975859 3773788

13 32071909 30585035 28970017 3796548

14 32214880 30362781 28731092 3792589

15 32293029 30594297 28867667 3790078

16 32100233 30810483 28806222 3818518

17 32151880 30610494 28934931 3767322

18 32215029 30484403 27646056 3688681

19 31941271 29002126 28866475 3751999

188

Table D.1: Property Performance Data

Native Derived Lambda Reflection

20 31641835 29971915 27334461 3403291

21 31312607 29538794 28085864 3763753

22 31357520 29763654 28881657 3683866

23 31355147 29422027 27962489 3759314

24 31703882 30590500 28755043 3710100

25 31248165 30159181 28410032 3648605

26 31985518 29981577 28531734 3745732

27 31670516 30730462 28706547 3485420

28 32368344 30662450 28783151 3760740

29 32115881 30715018 28936273 3680014

30 31358448 29816316 28793102 3563808

31 31841806 30381806 28912034 3767336

32 32129112 30592873 28799232 3784135

33 31939211 30646972 28721014 3762159

34 31717749 30601480 28861178 3778075

35 30930952 30857160 28936761 3724347

36 32146614 30744447 29090663 3758130

37 31727136 30591575 28953477 3633836

38 31227270 29913645 28696174 3783242

39 32082703 30508504 28397067 3707521

40 31962167 30646170 28761916 3756413

41 31656425 30592887 29057630 3805737

42 32074861 30606310 28790322 3713426

43 32034522 30051711 29255992 3725382

44 32241693 30163582 28474544 3712843

45 31708683 30328125 28669786 3712277

46 31919660 30716869 28530667 3654422

189

Table D.1: Property Performance Data

Native Derived Lambda Reflection

47 32230913 30327742 27032297 3723980

48 31857719 30474847 28783666 3610648

49 32130150 30401938 28851678 3776649

50 32010734 30364536 28744632 3644297

51 32160102 30609012 28958157 3763713

52 32337661 30585849 28682312 3797188

53 31710156 30617384 28841942 3723163

54 32135400 30570365 28987948 3816078

55 32029552 30583794 28757752 3768923

56 31043001 29583115 28801616 3740301

57 32385294 30669137 29012577 3682591

58 32201398 30672467 28737405 3754530

59 31939931 30246852 28518882 3764955

60 31075578 30067023 28758947 3747593

61 31882118 30170853 28752370 3803603

62 32337765 30507421 28718397 3694488

63 32088277 30445497 28833157 3759247

64 31776800 30111073 29015359 3700218

65 31547086 26045545 27450589 3386234

66 32150561 30639662 28934366 3738657

67 32014090 29674515 28727769 3684338

68 32222285 30568929 28765646 3777799

69 31960710 30720115 28231199 3754717

70 32118914 30645194 28927289 3775250

71 32052093 30455055 28366278 3670187

72 32028754 30381342 28736406 3739219

73 32080170 30414534 28997485 3743019

190

Table D.1: Property Performance Data

Native Derived Lambda Reflection

74 32251100 30875251 28661211 3736564

75 32606458 29894376 28848236 3650210

76 31296720 30702789 28928422 3758876

77 32384041 30184547 28763692 3774663

78 31893257 30738258 28691112 3761249

79 31678972 30578439 28744523 3757144

80 32163448 30402463 28814966 3753329

81 31996417 30578466 28750279 3732047

82 31749829 30556157 28787211 3712150

83 31382988 30076643 29023892 3686512

84 32103785 30641026 28672741 3755344

85 32265857 30575706 28574813 3734604

86 32224801 30617321 28756522 3763731

87 31798854 30365200 28601750 3699777

88 31416402 30600393 28653410 3756060

89 31846789 29716759 28553526 3479147

90 31736885 30380576 28488891 3657749

91 30910615 30540914 29016156 3585505

92 31789570 30041385 28762857 3653584

93 32102223 30489295 28443438 3694328

94 31542083 30044828 28933055 3731369

95 31365325 29930333 28613986 3687444

96 31240547 30247121 28664864 3418785

97 29385843 28101364 29002197 3589143

98 32031701 29934020 28725870 3727599

99 32383691 30402510 28717530 3756537

100 32179272 30561472 28804283 3777420

191

Table D.1: Property Performance Data

Native Derived Lambda Reflection

101 31975705 30245411 28513645 3731994

102 31765195 30589100 28768062 3758891

103 31817120 30719613 28569530 3618730

104 31926557 29846911 28815453 3628822

105 35016817 29456298 28965750 3665117

106 34697271 29120938 28902399 3763724

107 35036252 29281641 28348589 3781475

108 34885104 28901939 28721613 3723346

109 34910696 29073898 28506755 3751321

110 34339603 29336238 28736830 3698453

111 34890989 28066393 28612870 3717981

112 34944887 29534889 28948716 3606073

113 34711851 28963852 28730345 3716113

114 34963662 29712534 29143724 3762840

115 34787226 29267897 28750417 3708019

116 34672157 29213802 28453991 3652645

117 34839717 29319734 28919904 3728504

118 34969106 29377729 28663094 3732388

119 33919870 29353013 27401741 3727983

120 35031266 29688643 28499178 3726385

121 34608477 29416533 28665323 3715482

122 35037642 29407178 28328725 3643465

123 34955444 29520760 28703520 3711419

124 34549997 27773846 29139128 3572481

125 34034750 29541016 29018913 3739422

126 34727721 29489647 28501697 3779297

127 34950112 29503154 28834317 3719962

192

Table D.1: Property Performance Data

Native Derived Lambda Reflection

128 34732852 29571549 29066674 3754117

129 34838232 29635946 29034613 3715007

130 35036436 29513468 29337202 3760357

131 35060061 29494326 29353967 3786393

132 34982297 29525796 29347057 3667015

133 34888632 29553910 29330860 3687348

134 34300139 29276278 29343506 3763647

135 34916788 29166627 26330641 3733167

136 33526609 26806369 27944570 3674609

137 34509408 29399399 29102239 3776880

138 35138935 29422083 29197690 3772469

139 34616392 29627443 29338322 3705316

140 34670790 29313765 29109438 3725174

141 34875110 29604251 28861223 3745879

142 34344316 29574886 29214994 3760798

143 35039053 28837845 29396291 3774877

144 34764038 28904883 28520838 3737442

145 35149404 29622069 28844903 3783582

146 34739835 29360150 29274087 3680525

147 34058213 29515710 29318685 3757783

148 34784748 29013134 29183695 3733687

149 35200278 29019326 27789752 3260702

150 34631212 29586594 28949805 3786317

151 34030259 28641501 29653788 3712465

152 34952120 29455567 29478669 3753133

153 34862069 29107412 27637060 3658086

154 34750081 29428056 28974955 3596634

193

Table D.1: Property Performance Data

Native Derived Lambda Reflection

155 34319791 29407568 29101681 3763587

156 32065458 28436603 29200756 3765463

157 33443490 29449304 28556937 3677416

158 34428418 28353354 29173763 3595379

159 33082453 29376843 28940787 3621928

160 35095030 29477959 28823316 3630120

161 34195025 28920257 29095267 3675944

162 35048741 29506135 29470566 3718019

163 34562997 29759988 28235736 3728482

164 34983562 28810934 29212413 3785632

165 34955047 29561584 29343449 3695453

166 34134913 29517967 29200432 3779895

167 34749363 29603567 29191310 3758245

168 34530075 28955189 28939380 3689132

169 34721675 29308510 28951463 3684825

170 34847447 29532044 29024604 3725736

171 34162796 28544229 28681920 3554576

172 32246062 27652022 28011289 3757063

173 34874714 29566453 29258464 3776417

174 34910837 29644154 29178287 3767569

175 35064235 29211563 29393668 3763859

176 34984096 29234146 29034357 3720979

177 34602172 29531048 28763659 3714984

178 32170948 26899629 29023131 3719575

179 34610489 29450852 29299466 3730872

180 34600599 29280297 29394964 3687374

181 34990489 29529547 29376880 3743665

194

Table D.1: Property Performance Data

Native Derived Lambda Reflection

182 34737349 29379200 29151666 3777352

183 35055582 29649472 29323262 3783034

184 34173142 29374749 29451264 3722713

185 34622382 29558981 29606313 3709803

186 34818113 29815278 29293791 3706575

187 34239983 28772255 28494433 3797059

188 34456104 29138333 28836253 3704693

189 34881594 29476585 29234504 3742848

190 35182213 29562130 29166553 3700284

191 35221644 29667315 29412705 3792980

192 34967238 29384752 28931096 3721938

193 35124185 29555213 29271620 3747680

194 34892091 29215432 28795020 3737364

195 34802245 29785568 29602759 3723123

196 34855061 29678215 29112059 3766108

197 35062302 29626543 29124356 3758764

198 34423191 29605042 29388195 3662392

199 34539088 29318952 29135212 3748318

200 34971860 29539881 28931226 3720339

201 34718150 29676593 29373774 3686929

202 33432681 29500662 29377861 3786045

203 35065887 29379583 29238706 3733736

204 34539763 29537698 29327434 3718988

205 34763903 29382807 29383690 3753131

206 35205001 29680813 29336827 3765992

207 34934514 29455058 29031557 3665583

208 33817034 29395241 27718217 3761189

195

Table D.1: Property Performance Data

Native Derived Lambda Reflection

209 34666361 29461833 29373573 3737639

210 34616976 29547263 29346886 3773101

211 35128959 29291239 29298791 3782489

212 34896503 29422077 29102514 3727877

213 34913072 29615044 29434569 3735271

214 34996195 28686594 28674925 3566818

215 34701307 29709771 29176576 3758394

216 35349719 29606302 29073015 3700377

217 34274379 29252274 27932199 3724129

218 34879191 29611571 29471237 3536916

219 34858947 29552459 29021879 3778908

220 34759486 29610866 29259684 3737426

221 34680757 29104561 29056072 3766443

222 34800897 29728861 29052432 3743326

223 35184963 29609446 29476109 3792914

224 34709337 29729848 29442403 3782999

225 34856128 29693065 29250738 3691779

226 34588950 29122126 28541193 3621231

227 34943772 29192827 29522371 3736915

228 35108401 28461929 29243289 3709648

229 34370904 29544627 28986986 3673382

230 33822904 29305041 29251573 3743558

231 35020039 29323654 29367090 3731578

232 34227012 29508914 29080524 3451123

233 33504448 27338445 27584530 3627069

234 34917946 29100030 28921562 3665776

235 34329530 29317810 29258073 3780458

196

Table D.1: Property Performance Data

Native Derived Lambda Reflection

236 34218505 29211998 27569305 3791205

237 35100434 29771057 29427714 3731151

238 34901065 29641085 29349464 3724621

239 34186941 29522450 29471824 3703678

240 34189958 29430930 29463613 3803712

241 35104897 29562551 29138751 3752512

242 35023538 29257467 27037880 3430269

243 32725455 27928626 27953752 3721874

244 34892618 28974191 28042725 3545045

245 33246246 27468007 28695575 3668156

246 33495538 29344318 28485570 3600303

247 34955234 28970077 29073175 3678227

248 34616766 29646545 29287514 3741801

249 35044929 29307866 28860450 3758202

250 34838394 28837860 28591559 3798415

251 35246751 29453384 29264913 3730581

252 34594830 28247641 29321324 3765078

253 34729031 29375529 29215211 3706324

254 34752324 29696957 28999834 3794743

255 35093290 29570500 29019839 3765748

256 34237966 29348475 29277084 3734072

257 34889624 29511784 29358272 3752372

258 34649683 29555631 29284633 3738099

259 35045667 29465209 28149744 3773944

260 34455183 29445184 29076636 3748599

261 34863812 29565459 29460013 3762362

262 34955725 29705714 28557877 3772175

197

Table D.1: Property Performance Data

Native Derived Lambda Reflection

263 34737946 29343858 29344662 3636614

264 34064907 29547490 29254608 3717503

265 34303846 29467332 29176402 3749593

266 35067429 29304418 29350943 3782110

267 34790045 29361348 29330734 3656687

268 34588643 29566043 29274037 3713204

269 34941611 28322678 29311575 3760546

270 34793450 29422285 29344782 3761609

271 35199896 29068130 29138902 3669323

272 34876353 29457101 28365180 3651017

273 33708985 29394270 29500086 3761092

274 34812512 29373619 29532837 3765530

275 34765932 29725736 29117548 3727059

276 34107367 29594762 28458592 3702210

277 35215571 29619548 29612261 3781087

278 34819254 29122376 29179809 3710214

279 34245756 29423671 29140323 3751203

280 34839563 29363793 29447128 3758722

281 34770528 29383861 29083159 3720760

282 34682949 29502208 29059741 3757047

283 34920070 29249180 29200167 3740683

284 34820055 29048696 29265357 3722859

285 34843915 29305083 29301302 3649287

286 34350624 29201515 29362485 3769892

287 34974436 29474229 29060689 3720868

288 34700307 29276873 29356322 3592498

289 34490652 29597054 29264356 3664700

198

Table D.1: Property Performance Data

Native Derived Lambda Reflection

290 34561263 29570740 29129823 3703812

291 34822856 29506531 29414599 3794981

292 35085887 29667254 29282335 3764548

293 34961225 29522901 28479542 3694275

294 33186560 26599012 28587751 3691491

295 34792787 29215084 29188826 3789525

296 34791445 29616465 29254432 3699125

297 34902255 29375475 29135883 3698206

298 34550883 29541868 29216903 3721810

299 34611033 29508340 29439286 3767939

300 34729939 29414542 29348335 3761112

301 34746328 29478806 29148463 3739155

302 34930973 28719978 29237868 3761247

303 35123248 29725894 28937464 3609487

304 33876003 29337411 29341823 3750929

305 32966237 29209612 28697862 3704343

306 34525284 29359793 28414889 3294124

307 31498740 29589981 29136889 3732390

308 34713242 29576661 29096422 3745039

309 34831041 29554320 28824685 3673740

310 34723548 29622312 29283457 3734216

311 34857917 28336990 28153061 3729152

312 34908426 29234617 28960350 3718536

313 34606851 27574162 26434072 3370459

314 34554413 29516515 28974463 3664840

315 34807671 28905803 29185798 3745823

316 35140738 29475813 29205855 3765591

199

Table D.1: Property Performance Data

Native Derived Lambda Reflection

317 35163439 29690912 29336186 3750706

318 34875585 29421647 29522101 3761350

319 34826878 29509204 29255970 3761501

320 35025335 29498565 29329698 3761828

321 34975667 29370062 29198380 3778557

322 35027737 29479299 29285650 3789626

323 34884640 29636578 29206224 3754379

324 34373416 29784138 29101995 3766708

325 34850452 29326665 29311752 3391170

326 32782698 25860935 29080696 3654292

327 34979048 29473981 28353524 3514628

328 33270477 28298553 27848225 3668815

329 34281212 29074359 28746573 3651276

330 34621843 29210154 28667402 3679431

331 34822300 28831642 28943954 3750785

332 34858920 29759910 29309203 3729054

333 34968559 29584727 29002283 3718967

334 33545264 29448103 29645967 3778633

335 35028445 29661533 28749279 3802447

336 34859659 29271098 27290578 2979638

337 33637278 28964049 27719374 3755524

338 35031058 29498607 28710305 3596540

339 34727492 29060525 29483423 3789970

340 35010504 29452145 28854874 3769614

341 34605450 29558611 27912895 3779005

342 34695114 29075649 28952552 3692002

343 34856970 29109804 29516956 3757496

200

Table D.1: Property Performance Data

Native Derived Lambda Reflection

344 34838271 29638590 29530273 3627695

345 34186730 29710860 29227432 3740662

346 34527237 29334953 29005496 3769509

347 34937345 29626574 29092242 3773316

348 34310641 29397807 29055767 3579632

349 34427550 28001129 29207648 3758475

350 35008889 29699940 28908127 3720072

351 34753462 29419045 29013505 3778235

352 34877261 28938204 29143578 3788526

353 35079819 29102965 29443736 3757816

354 34761920 29657685 29266809 3701764

355 35166093 29586391 29231972 3800106

356 34992258 29663075 29282048 3763765

357 34335316 29715342 29174052 3783362

358 35259150 29580389 29374980 3710480

359 34070889 29306723 28521076 3755926

360 34940039 29678052 29023660 3580207

361 34826738 28733964 29265266 3747099

362 34759015 29299307 29202196 3770422

363 34730930 29496594 29391797 3771661

364 34061639 29302798 29209768 3673155

365 34866568 29456619 28880956 3654922

366 33902899 29555307 28706791 3746852

367 34677160 29541343 28827819 3768954

368 34799767 29546809 28394738 3618835

369 34838885 29519143 29594684 3727277

370 34638589 27459522 25296895 3785428

201

Table D.1: Property Performance Data

Native Derived Lambda Reflection

371 33684744 29631332 28819887 3724473

372 34451647 29527397 29336565 3762985

373 34962619 29586818 29227096 3714156

374 34757673 29228678 29067272 3782178

375 34843585 29158895 29142504 3753534

376 34111794 29384645 29282197 3724808

377 35039368 29585322 29245273 3719855

378 34285851 29441340 28928299 3619047

379 35062868 29546070 28348494 3722981

380 33623752 28591672 29274429 3674796

381 34603150 29206021 28910469 3677411

382 34337423 29571480 29175330 3767734

383 34484309 29345647 29219921 3735083

384 35006166 29571340 29194709 3778905

385 34837784 29470813 29142289 3733087

386 34866378 29673517 29329994 3747552

387 34610323 29673665 29072984 3679487

388 34948444 29491877 29447664 3784426

389 34844277 29574511 29204534 3760876

390 35085434 29537932 28904243 3710342

391 33503234 27355173 28990767 3745140

392 34468370 29396558 28484025 3548461

393 32587883 25957893 28001005 3793335

394 34209133 29698654 28853040 3802403

395 34979169 29620072 29445927 3687499

396 35109621 29628401 28983477 3707986

397 34264746 29303464 29039829 3693856

202

Table D.1: Property Performance Data

Native Derived Lambda Reflection

398 33733853 29210435 28980356 3721941

399 35039217 28470827 28210744 3757655

400 34663202 29479864 29387151 3788158

401 35110090 29573446 28158497 3754808

402 34731092 29282981 29220246 3788346

403 34202956 29565975 29068150 3791509

404 34866645 29332805 28597320 3724038

405 35020359 29573336 29276680 3729133

406 35022987 27770756 28859460 3745569

407 34980017 29365284 29451168 3805397

408 34526742 29495196 29402909 3734270

409 34553747 29255066 29203847 3715641

410 34677747 28890075 29260926 3761316

411 33593037 28810618 29660431 3761275

412 34701512 29333046 28499966 3750073

413 34908517 29324420 29172195 3773613

414 34585300 29029198 28901185 3729385

415 34817369 29619084 29086647 3646095

416 34743090 29427628 28259752 3759201

417 35049676 29491266 29385331 3779359

418 34831336 28795982 29391090 3776649

419 34828193 29020201 28552516 3699468

420 35024429 29606843 29441541 3720446

421 34645176 28881622 29248521 3780709

422 34518216 29468253 27959194 3769707

423 34135617 29650690 29312757 3758008

424 34845826 29629863 29250450 3644808

203

Table D.1: Property Performance Data

Native Derived Lambda Reflection

425 34437592 29063805 29116349 3760654

426 34679727 29238486 29374481 3762498

427 34698094 29544820 28741718 3741718

428 34970296 29557086 29073765 3665647

429 34823251 29494567 29344046 3721099

430 34804439 29511676 29469885 3682060

431 34627675 29702121 29323914 3697087

432 34288531 29548540 29320997 3763787

433 35179569 29356433 28898897 3747642

434 34204532 29294559 29277262 3747598

435 33905753 29474137 29129677 3755089

436 34907685 29430841 29263746 3716180

437 34834619 29699310 28966636 3681642

438 34909956 29610121 29542556 3758237

439 34874694 29538933 29306396 3628822

440 33510817 29401168 29407782 3764833

441 34964519 29428555 29445005 3752160

442 35060232 29720999 27994742 3692487

443 34869027 29580896 29199275 3733280

444 34310106 29532787 29235597 3768399

445 34427847 29564930 29336799 3678701

446 34676854 29455070 29074437 3762190

447 34338894 29509326 29630468 3734216

448 34864210 29379108 29213457 3692399

449 34900640 29502393 29232316 3773714

450 34606655 29271907 29044405 3696884

204

REFERENCES

[1] BAILIS, P., FEKETE, A., FRANKLIN, M. J., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I.

Coordination avoidance in database systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185–196.

[2] BARBARÁ, D., AND IMIELIŃSKI, T. Sleepers and workaholics: Caching strategies in mobile envi-

ronments. SIGMOD Rec. 23, 2 (May 1994), 1–12.

[3] CHAN, B., SI, A., AND LEONG, H. A framework for cache management for mobile databases:

Design and evaluation. Distributed and Parallel Databases 10, 1 (2001), 23–57.

[4] ELSHARIEF, D., IBRAHIM, H., MAMAT, A., AND OTHMAN, M. A survey of methods for maintaining

mobile cache consistency. In Proceedings of the 7th International Conference on Advances in

Mobile Computing and Multimedia (New York, NY, USA, 2009), MoMM ’09, ACM, pp. 351–355.

[5] FANG, Y., AND LIN, Y.-B. Strongly consistent access algorithms for wireless data networks. Wire-

less Networks 11, 3 (2005), 243–254.

[6] FAWAZ, K., AND ARTAIL, H. Dcim: Distributed cache invalidation method for maintaining cache

consistency in wireless mobile networks. IEEE Transactions on Mobile Computing 12, 4 (Apr.

2013), 680–693.

[7] FOWLER, M., RICE, D., FOEMMEL, M., HIEATT, E., MEE, R., AND STAFFORD, R. Patterns of En-

terprise Application Architecture. Pearson Education, Inc., 2003, ch. Offline Concurrency Patterns,

pp. 415–453.

[8] HÄRDER, T. Observations on optimistic concurrency control schemes. Inf. Syst. 9, 2 (Nov. 1984),

111–120.

[9] JOY, P., AND JACOB, K. A key based cache replacement policy for cooperative caching in mobile

ad hoc networks. In Advance Computing Conference (IACC), 2013 IEEE 3rd International (Feb

2013), pp. 383–387.

205

[10] LEE, G., JANG, I., AND PACK, S. Fast wireless data access scheme in wireless networks. In Com-

puting, Networking and Communications (ICNC), 2013 International Conference on (Jan 2013),

pp. 40–44.

[11] LEE, S., HWANG, C.-S., AND YU, H. Supporting transactional cache consistency in mobile

database systems. In Proceedings of the 1st ACM International Workshop on Data Engineering

for Wireless and Mobile Access (New York, NY, USA, 1999), MobiDe ’99, ACM, pp. 6–13.

[12] MADHUKAR, A., ÖZYER, T., AND ALHAJJ, R. Dynamic cache invalidation scheme for wireless

mobile environments. Wirel. Netw. 15, 6 (Aug. 2009), 727–740.

[13] QIAN, F., QUAH, K. S., HUANG, J., ERMAN, J., GERBER, A., MAO, Z., SEN, S., AND

SPATSCHECK, O. Web caching on smartphones: Ideal vs. reality. In Proceedings of the 10th

International Conference on Mobile Systems, Applications, and Services (New York, NY, USA,

2012), MobiSys ’12, ACM, pp. 127–140.

[14] SIVARAMAN, A. Diploma: Consistent and coherent shared memory over mobile phones. In

Proceedings of the 2012 IEEE 30th International Conference on Computer Design (ICCD 2012)

(Washington, DC, USA, 2012), ICCD ’12, IEEE Computer Society, pp. 371–378.

[15] VOGELS, W. Eventually consistent. Queue 6, 6 (Oct. 2008), 14–19.

[16] WANG, X., AND FAN, P. A strongly consistent cached data access algorithm for wireless data

networks. Wireless Networks 15, 8 (2009), 1013–1028.

[17] WANG, Z., DAS, S., CHE, H., AND KUMAR, M. A scalable asynchronous cache consistency

scheme (saccs) for mobile environments. Parallel and Distributed Systems, IEEE Transactions on

15, 11 (Nov 2004), 983–995.

[18] XU, W., WU, W., WU, H., CAO, J., AND LIN, X. Cacc: A cooperative approachto cache consis-

tency in wmns. Computers, IEEE Transactions on 63, 4 (April 2014), 860–873.

206

VITA

Ryan Linneman was born on October 12, 1982, in Columbia, Missouri, USA. He was home

schooled until secondary school and graduated in 2001. Working full time as a software developer,

he graduated in 2008 with a Bachelor’s degree in Computer Science. Upon completion of this degree

he enrolled at the University of Missouri - Kansas City, where he completed a second Bachelors in

Computer Science in 2011 and promptly rolled into the Master’s program there.

Starting from a young age Ryan took a strong interest in technology and software. He entered

the workforce straight out of high school and began work as a software developer in 2004 with Burns

& McDonnell Engineering driving development on their document management and CAD modeling

systems. In 2013 he took up his current post with Trabon Solutions, LLC. continuing to pursue his

passions in technology. While there, he has developed data integration systems, E-commerce websites,

CMS/CRM portals, and a variety of other LOB products on Android, Linux, and Windows.

207

