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The induced innovation hypothesis (IIH) that “a change
in the relative prices of the factors of production is itself
a spur to invention, and to invention of a particular
kind—directed to economizing the use of a factor which
has become relatively expensive” (Hicks, 1932, pp. 124-
125), holds a respected, almost exalted, position in both
macroeconomic and microeconomic theory. It is a
hypothesis with important policy relevance. If valid, a
direct policy implication of the hypothesis is that
distortionary taxes and/or subsidies aimed at
synchronizing market and social input price would have
more than contemporary effects on input use. They
would also have effects on future input use through
research investment decisions to create innovation that
saves relatively more of the inputs for which public cost
exceeds private cost (Nordhaus, 2002). Thus, it is
possible that taxes and/or subsidies proposed without
consideration of their possible impact on research
investments may overshoot social optimality. This is
particularly important for public agricultural research.
While agricultural production is a source of renewable
energy, it also uses large quantities of fossil energy with
socially important environmental consequences. Food
safety issues are also not fully endogenized in market
prices (Pouliot & Sumner, 2008).

The policy relevance of the IIH depends on its valid-
ity as an accurate representation of innovation creation
decision making. However, despite considerable empiri-
cal support for the hypothesis being provided by early
demand-side tests, recent tests with improved methods
and data have found greater evidence of empirical
inconsistency with the hypothesis (e.g., Liu & Shum-
way, 2006, 2009; Machado, 1995; Lin, 1998; Olmstead

& Rhode, 1993; Tiffin & Dawson, 1995). A variety of
testing procedures has been employed, but until recently
all treated the innovation possibilities function as exoge-
nous. Largely because of limited data on the marginal
cost of creating input-saving technology, the supply side
of innovation creation was consistently ignored. Recent
studies by Popp (2002); Crabb and Johnson (2010); and
Cowan, Lee, and Shumway (2015) appear to be the only
exceptions.

Noting that Hicks’ statement of the hypothesis did
not imply that implemented technical change would
substitute relative cheap inputs for expensive ones but
only that factor prices would spur invention to econo-
mize the use of expensive factors, Popp (2002) and
Crabb and Johnson (2010) explicitly incorporated sup-
ply-side control variables (but not innovation prices or
marginal costs) in their examination of the IIH for the
energy private innovation sector. With similar motiva-
tion, Cowan et al. (2015) tested the IIH using research
investments in the agricultural public innovation sector
as signals of intent to create input-saving technology for
the agricultural production sector. Their testing proce-
dure using a pseudo Poisson maximum likelihood esti-
mator assumed a homothetic two-level constant
elasticity of transformation (CET) production function
in the innovation creating sector. Both Popp (2002) and
Crabb and Johnson (2010) found limited evidence of
support for the IIH in the energy sector by accounting
for both demand and supply variables. Cowan et al.
(2015) found considerably more support for the IIH in
the public agricultural research sector.

To determine whether the level of support found for
the IIH in the agricultural research sector was due to the
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assumed production function or estimation method, we
extend the testing initiated by Cowan et al. (2015) by
loosening the connection to the two-level CET produc-
tion function and using panel data and pooled OLS esti-
mators. We still use research expenditure and price
ratios as implied by the two-level CET in our tests but
relax the CET implication that they be specified as loga-
rithms. We use two estimation procedures. In one, zero
observations are converted to ones so that all observa-
tions can be included in the estimation. In the other, we
approach the expenditure decision in two separate steps:
1) funding at least one project, and 2) conditional on
funding a project, how much to invest. We also consider
alternative specifications in our robustness section.

Empirical Model

Following Cowan et al. (2015), our empirical testing
procedure is constructed to determine whether states
with relatively higher prices of an input in the innova-
tion implementing industry (agriculture) devote a rela-
tively greater portion of the research budget in the
innovation creating industry (public research) to devel-
oping technology to save that input and/or whether
states with more rapidly rising prices of an input
increase the portion of the research budget to projects to
save that input.

We use a panel dataset of agricultural input prices
and public agricultural research investments aimed to
save usage of four non-exhaustive input categories. We
initially regress relative research investments on relative
expected output prices (input prices in the innovation
implementing industry) and time dummy variables:

Rist / Rjst = b0 + b1E(Pist) / E(Pjst) + Σt=1 dtDt + μs + est ,(1)

where R is research expenditure, E(P) is expected output
price, D is a time dummy variable, b and d are parame-
ters to be estimated, subscripts i and j are two of the fac-
tors of production (land, labor, energy, or fertilizer) that
research is seeking to save, s is state, and t is year. This
specification allows for time fixed effects. We use a
panel data estimator and conduct Hausman tests to
determine whether a random-effects or fixed-effects
model is most appropriate. Observations of zero expen-
diture are initially recorded as ones for this estimation in
order to use all observations.

In order to isolate the effect of induced innovation,
we need to control for marginal cost differences across
states and time. If the marginal cost of innovation to
save an input (in the implementing industry) is identical

across states at a point in time, then differences in rela-
tive input prices across states identify differences in rel-
ative benefits of innovation. Inclusion of the time
dummy variables in our models allows for secular
change in marginal cost to save an input. If marginal
costs differ across states but relative differences do not
change over time, then inclusion of state fixed effects in
the model will control for such effects. We analyzed
fixed-effect models but found that they are not signifi-
cantly different from random-effects models—which do
not control for time-invariant heterogeneity across
state—in the large majority of our specifications (see
below).

The critical test of the induced innovation hypothe-
sis is the one-sided test, b1 > 0. A significant negative
coefficient on the input price ratio in the innovation
implementing industry is typically used to test the IIH
when input quantity ratios in the innovation implement-
ing industry are used as the dependent variable. How-
ever, that does not constitute a critical test unless
innovation possibilities are neutral. By using the ratio of
research investments, we are able to conduct an unam-
biguous critical test of the hypothesis for public agricul-
tural research regardless of whether innovation
possibilities are neutral or non-neutral. If b1 is signifi-
cantly positive, that is clear evidence that factor prices
in the innovation implementing industry spur invention
efforts in the innovation creating industry to economize
the use of expensive factors in the implementing indus-
try.1

Expected price is defined as a geometrically lagged
function of historical prices and is designed to capture
expected input prices by giving more weight to recent
than to earlier prices. Because of likely lags in the
impact of any price changes, we begin the geometric lag
with prices lagged two years and consider the previous
10 years of price data. Thus, expected price in t is con-
structed as E(Pist) ≈ σPistെ2 + σ  (1−σ)Pist−3 + σ

1. The claim of unambiguity of the test is subject to several cave-
ats: it assumes that the data are measured accurately, that 
there are no omitted variables bias due to failing to control 
appropriately for other variables that could affect relative 
research investments, and that public agricultural research in 
each state can be treated as though it were a competitive firm. 
Because it is not completely clear how variables should be 
specified or what control variables are needed in the model, 
we consider several alternatives in the robustness checks. We 
do not, however, relax the assumption that public agricultural 
research in each state mimics the decisions of a competitive 
firm.

T−1
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ሺ1െσሻ2Pistെ4 + … + σ ሺ1െσሻ9Pistെ11 , where σ is the

geometric lag coefficient. The optimal lag is selected
based on the Akaike criterion from values of 0.5 to 0.9
in 0.1 intervals. Our temporal data period is too short to
conduct meaningful time series tests or even tests for
autocorrelated errors. We find considerable evidence of
heteroskedasticity and compute standard errors that are
robust to both heteroskedasticity and autocorrelation.

For robustness checks on our conclusions, we con-
sider several alternatives to this specification. (A) The
first alternative generalizes the specification to include
all three price ratios as regressors (with the denominator
fixed across the three). (B) As noted in the next section,
our data periods do not match perfectly. Our price data
are available for two inputs through 2008 and only
though 2004 for the other two inputs; we have research
expenditure data through 2010. To utilize more of the
available data, a second alternative uses four more years
of observations but starts the geometric lag of prices at
six years because of the lack of recent input price data
for two of the inputs. (C) To capture investment sticki-
ness in adjustment toward a new equilibrium, a third
alternative includes the lagged dependent variable as a
regressor. A pooled data estimator with fixed time
effects is used for this estimation.2 (D) To determine
whether total research budgets impact research expendi-
ture ratios, another alternative includes total public
research expenditures as an additional regressor. Inclu-
sion of this variable permits us to treat homotheticity of
the innovation creating production function as a local
rather than a global property. This alternative also
includes the lagged dependent variable and is estimated
with a pooled data estimator with fixed time effects. (E)
To utilize all available data, a fifth alternative uses the
four additional observations available for two of the
inputs. We check variance inflation factors and do not
find evidence of serious collinearity among the regres-
sors in any model.

A final alternative is the way we deal with the large
number of zero investments. Because we use investment
ratios as the dependent variable, a zero investment in
research for the denominator input produces a depen-
dent variable with infinite value. In the previous models
we approached this problem by converting all zero
research expenditures to ones. In this specification, we
approach the expenditure decision in two steps: 1) use a

Probit binary choice model to model the decision to
fund or not fund at least one project:

Pr (DPist) = [b0 + b1 E(Pist) / E(Pjst) + c2Rst + Σt=1   

dtDt + est], (2)

where DP is a binary variable (1 if the decision is to
fund at least one project, 0 otherwise) and Rst is total
public research expenditures in state s in year t; and 2)
conditional on funding a project, use a panel data esti-
mator to model the decision of how much to invest,
Equation 1. We include total public research
expenditures to control for the effect of the state’s
research scale on the decision to fund.

The robustness Alternative F is combined with sev-
eral of the other alternative specifications. Robustness
of the binary choice decision to fund model is addressed
with alternatives A, B, C, and E. Robustness of the
resource allocation model is addressed with Alternatives
A-E. A random effects panel data model with fixed time
effects is used to estimate the initial resource allocation
model and robustness Alternatives A, B, and E. A
pooled ordinary least squares (OLS) estimator with
fixed time effects is used to estimate Alternatives C and
D, both of which include the lagged dependent variable.

Data

The data used for this study were also used by Cowan et
al. (2015), and additional details can be found there.
They include total public research expenditures for agri-
cultural productivity research, public research expendi-
tures on technology aimed to save four agricultural
inputs (land, labor, fertilizer, and energy), and agricul-
tural input prices for the same array of inputs.

Land-saving research projects were funded in most
years and states (96% of observations) while research
projects aimed at saving other inputs were funded in
only about half of the observations (44-56%). Further,
aggregate funding for land-saving research was about
10 times as great as for any of the other inputs.

For our initial model, Equation 1, annual data for
each of the 48 states for the period 1998-2006 were used
for the dependent variables, 1987-2004 for prices
(because of the geometric lag structure), and 1998-2006
for total research expenditure. For the robustness checks
that included the lagged dependent variable as a regres-
sor, the period of observations were adjusted to accom-
modate the loss of the 1998 observation in the
dependent variable. Additional data were used in other
robustness checks. The extremes of the data periods

2. This model is estimated via pooled OLS since the inclusion of 
the lagged dependent variable is designed to account for 
unobserved time-invariant heterogeneity across states.

T−1
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used in robustness checks were 1998-2010 for the
dependent variable, 1983-2008 for prices, and 1998-
2009 for the lagged dependent variable and for total
research expenditures.

Test Results
Based on Hausman tests, the random effects panel data
estimator was tested against fixed effects, and the null of
random effects was not rejected for 70% of the models.
Because of the large number of models estimated, we
limit the panel data estimates to those based on the ran-
dom effects estimator with fixed time effects when the
lagged dependent variable is not included. With the
lagged dependent variable included as a regressor, the
estimates are based on pooled OLS with fixed time
effects.

The critical test results for the induced innovation
hypothesis based on Equation 1 are reported in Table 1.
Twelve equations were estimated for an exhaustive per-
mutation of expenditure ratios as the dependent vari-
able. With 1) zero expenditures converted to ones, 2)
beginning the geometric lag specification of expected
price with price lagged two years, and 3) limiting inde-
pendent price ratio variables to own prices, the initial
panel data estimator with random effects provided no
support for the hypothesis at the 5% level of
significance.

Results of the first sets of robustness checks are
reported in Table 2. Including all three price ratios as

regressors (Alternative A) resulted in three equations
being consistent with the hypothesis. Extending the
starting point of the geometric lag (Alternative B) did
not result in any equations supporting the hypothesis.

Including the lagged dependent variable as a regres-
sor and using pooled OLS with fixed time effects (Alter-
native C), one equation was consistent with the
hypothesis when the geometric lag started at two years
and only one price ratio was included as a regressor and
two when all three price ratios were included. Two were
consistent with the hypothesis when the geometric lag
started at six years with one price ratio and three when
all three price ratios were included.

Including total research expenditure as a regressor
(Alternative D), one equation was consistent with the
hypothesis when the geometric lag started at two years
and only one price ratio was included as a regressor and
three when all three price ratios were included. Two
were consistent with the hypothesis when the geometric
lag started at six years with one price ratio and three
when all three price ratios were included. When
additional data were used for energy and fertilizer
(Alternative E), one of two equations was consistent
with the hypothesis.

Of the 146 resource allocation equations estimated
in the base model and this set of robustness checks, 21
equations (14%) were found to be supportive of the IIH.
Among the twelve ratios, labor/fertilizer showed the
most robust support for the IIH with six equations

Table 1. Statistical estimates of induced innovation, initial model.a

Input ratio equation

Own-price ratio Intercept Optimal 
geometric lag 

coefficient
R-square, 

overallCoefficient
Robust std. 

error Coefficient
Robust std. 

error

Energy/land 0.0112 0.0300 0.1566*** 0.0591 0.5 0.037

Fertilizer/land -4.332 3.855 6.856 4.666 0.5 0.020

Labor/land -0.0245 0.0242 0.1501*** 0.0549 0.5 0.021

Energy/labor -134.5 69.11 357.1** 164.1 0.5 0.036

Fertilizer/labor 61.46 72.66 127.6 95.86 0.7 0.045

Land/labor 90.37 615.0 1167.0 885.1 0.5 0.003

Energy/fertilizer 56.11 71.52 36.62 135.9 0.5 0.011

Labor/fertilizer 447.5* 298.0 -368.4 265.8 0.5 0.109

Land/fertilizer 466.0 377.0 417.9 514.1 0.9 0.037

Fertilizer/energy 346.0 358.2 -132.8 237.4 0.5 0.024

Labor/energy 421.5* 266.9 -247.2 175.0 0.7 0.077

Land/energy 238.6 953.5 748.2 895.4 0.5 0.036

a Random effects, geometric-lagged prices beginning with Year 2, zero funding level converted to one, own-price only. All models 
were estimated with 432 observations. Significance of own-price ratio is based on 1-sided test and significance of others on 2-sided 
tests.
*, **, *** delineates coefficients significant at the 10%, 5%, and 1% levels, respectively.
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(50%), followed by fertilizer/labor with five (42%), fer-
tilizer/energy with four (31%), and energy/land with
three (25%). No empirical support was found for six
ratios, five of which included land as the numerator or
denominator.

The equations that were consistent with the hypothe-
sis showed a wide range of R2 values and selected geo-
metric lag coefficients. Except for equations that
included the lagged dependent variable, all R2 values
were less than 0.1. When the lagged dependent variable
was included as a regressor, most R2 values ranged from
0.3 to 0.5. Those for the fertilizer/labor equations
remained less than 0.1. More than half of the geometric

lag coefficients selected by the Akaike criterion between
0.5 and 0.9 were 0.5, and a majority of the remainder
were 0.9.

For the final set of robustness checks, we approach
the funding decision in two steps. Considering the same
set of initial and alternative models as above, we first
estimated the decision to fund at least one project as a
limited dependent variable problem using a Probit
model, Equation 2.3 Twelve equations were estimated

Table 2. Own-price ratios with significant (5% level) positive parameters, alternative models. a

Panel data 
estimator

# of 
price 
ratios

Geometric 
lag begins 
with year

Lagged 
dep. 

variable

Total 
research 
expend. Own-price ratio

Est. 
coeff.

Robust 
std. error

R2 
value

Geometric 
lag coeff.

# of 
obs.b

Alternative A: All price ratios

Random 
effects

3 2 No No Energy/land
Fertilizer/labor
Labor/energy

0.1358
373.6
458.1

0.0615
194.4
269.4

0.0547
0.0879
0.0863

0.5
0.5
0.7

432
432
432

Alternative B: Longer price lags

Random 
effects

1 6 No No None

3 6 No No None

Alternative C: Lagged dependent variable

Pooled 1 2 Yes No Labor/fertilizer 182.3 99.97 0.4788 0.5 384

3 2 Yes No Fertilizer/labor
Labor/fertilizer

199.2
250.4

70.52
142.8

0.0925
0.4826

0.5
0.5

384
384

1 6 Yes No Labor/fertilizer
Fertilizer/energy

107.0
132.4

61.00
78.11

0.4531
0.3361

0.9
0.5

576
576

3 6 Yes No Energy/land
Fertilizer/labor
Fertilizer/energy

0.0282
136.3
145.1

0.0168
54.02
80.00

0.3362
0.0645
0.3368

0.9
0.5
0.5

576
576
576

Alternative D: Total research expenditure

Pooled 1 2 Yes Yes Labor/fertilizer 184.5 100.2 0.4792 0.5 384

3 2 Yes Yes Fertilizer/labor
Labor/fertilizer
Labor/energy

206.5
243.0
249.2

71.51
145.5
159.8

0.0936
0.2923
0.2922

0.5
0.9
0.8

384
384
384

1 6 Yes Yes Labor/fertilizer
Fertilizer/energy

122.3
145.7

68.01
83.65

0.4354
0.4903

0.9
0.9

528
528

3 6 Yes Yes Energy/land
Fertilizer/labor
Fertilizer/energy

0.0365
138.2
180.0

0.0191
56.78
84.70

0.3833
0.0989
0.4920

0.9
0.5
0.9

528
528
528

Alternative E: More data

Random 
effects

1 2 No No Energy/fertilizer 58.94 30.13 0.0237 0.5 624

a All models estimated with time-fixed effects.
b The number of observations used in estimation varies over the alternatives. Starting the geometric lag price expectation with prices 
lagged six years allows four more years of data to be used, including the lagged dependent variable reduces the number of 
observations by one year, and including total research expenditure reduces the number of observations by one year when the 
geometric lag price expectation starts with prices lagged six years.

3. Because we include total public research expenditures in all 
the binary models, Alternative D is excluded from the robust-
ness checks.
Shumway, Cowan, & Lee — Testing the Induced Innovation Hypothesis
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for each model except Alternative E, for which two
equations were estimated. For the probability of funding
at least one research project to save an input, three equa-
tions were estimated, each with a different price in the
denominator. The estimation results are reported in
Table 3.

Of the 98 decision-to-fund binary model equations,
17 equations (17%) were consistent with the IIH. The
input ratios that showed the most support were fertilizer/
land and fertilizer/labor with six equations (50%) each.
In terms of individual inputs, the most support for the
IIH was found with the decisions to fund a fertilizer
research project (16 equations, 32%). Support for the
IIH in decisions to fund a research project to save other
inputs ranged from 10 to 15%.

Conditional on funding at least one project, we next
examined the decision of how much to invest using the
random-effects panel data estimator (pooled OLS
estimator when the lagged dependent variable was
included as a regressor) with fixed time effects. The
estimation results are presented in Table 4.

Of the 146 resource allocation equations, 22 equa-
tions (15%) were consistent with the IIH. The input
ratios that showed the most support were energy/fertil-

izer (10 equations, 77%) and labor/energy (6 equations,
46%). In terms of individual inputs, the most support for
the IIH was found with resource allocation decisions for
energy (18 equations, 24%) and fertilizer (14 equations,
19%). Support for the IIH in decisions to fund a research
project to save land and labor ranged from 7 to 10%.

Overall, a total of 35 models were estimated—10
using a random effects panel data estimator, 16 using a
pooled OLS estimator, and nine using a Probit estimator.
Except for three models, each included 12 equations for
an exhaustive combination of price ratios. This resulted
in a total of 390 separate equations being estimated.
Among those 390 equations, 60 rendered significantly
positive parameters at the 5% level on the own-price
ratio for consistency with the induced innovation
hypothesis. With random observations and a normal dis-
tribution, we would have expected 19-20 of the esti-
mated equations to be consistent with the hypothesis.
Thus, we find three times the evidence in support of the
induced innovations than would be expected from ran-
dom observations. This is nontrivial—but not over-
whelming—support for induced innovation.

The evidence in support of induced innovation is
considerably stronger than that provided by Liu and

Table 3. Own-price ratios with significant positive parameters, two-step decision model (Alternative F), decision to fund, 
alternative models.

Estimator

# of 
price 
ratios

Geometric 
lag begins 
with year

Lagged 
dep. 

variable

Total 
research 
expend. Own-price ratio

Est. 
coeff.

Robust 
std. error

Log-
likelihood 

value
Geometric 
lag coeff.

# of 
obs.

Initial

Probit 1 2 No Yes Fertilizer/land
Fertilizer/labor
Fertilizer/energy

0.555
1.712
2.181

0.292
0.610
1.288

-223.6
-221.1
-223.8

0.5
0.5
0.5

432
432
432

Alternative A: All price ratios

Probit 3 2 No Yes Fertilizer/labor 1.729 0.940 -220.6 0.5 432

Alternative B: Longer price lags

Probit 1 6 No Yes Fertilizer/land
Fertilizer/labor
Energy/fertilizer
Fertilizer/energy

0.682
1.085
0.730
2.643

0.287
0.466
0.365
1.381

-289.3
-289.3
-291.1
-219.8

0.5
0.5
0.9
0.5

576
576
576
576

3 6 No Yes Fertilizer/land
Fertilizer/labor

1.337
1.223

0.704
0.545

-286.5
-288.6

0.6
0.5

576
576

Alternative C: Lagged dependent variable

Probit 1 2 Yes Yes Fertilizer/land
Fertilizer/labor

0.326
0.765

0.122
0.305

-153.2
-153.2

0.5
0.8

384
384

3 2 Yes Yes Energy/land 0.465 0.270 -166.7 0.9 384

1 6 Yes Yes Fertilizer/land
Fertilizer/labor

0.364
0.468

0.103
0.282

-208.2
-211.0

0.5
0.8

528
528

3 6 Yes Yes Fertilizer/land 0.504 0.240 -207.8 0.5 528

Alternative E: More data

Probit 1 2 No Yes Energy/fertilizer 0.205 0.113 -291.0 0.9 576
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Shumway’s (2009) demand-side hypothesis tests. Thus,
it is apparent that these tests based on reduced-form
equations accounting for both supply and demand for
new technology provide clearer evidence in support of
induced innovation. However, the support we found for
the IIH in this less structured specification and broader
set of robustness checks is not as strong as Cowan et
al.’s (2015) hypothesis tests.4 They used the same data
we have but maintained additional structure (i.e., two-
level CET) on the innovation production function and

used the pseudo-Poisson maximum likelihood (PPML)
estimator. Thus, the structure they imposed on the pro-
duction function and their estimation method did not
limit evidence in support of a valid hypothesis, but
rather clarified support.

Table 4. Own-price ratios with significant positive parameters, two-step decision model (Alternative F), allocation decision, 

alternative models.a

Panel 
data est.

# of 
price 
ratios

Geometric 
lag begins 
with year

Lagged 
dep. 

variable

Total 
research 
expend. Own-price ratio Est. coeff.

Robust 
std. error R2 value

Geometric 
lag coeff.

# of 
obs. b

Initial

Random 
effects

1 2 No No None

Alternative A: All price ratios

Random 
effects

3 2 No No Energy/land
Energy/fertilizer

0.0477
4.992

0.0232
1.792

0.0375
0.0411

0.5
0.5

413
216

Alternative B: Longer price lags

Random 
effects

1 6 No No Energy/fertilizer
Labor/fertilizer
Labor/energy

3.352 
1.774 
33.28 

1.647
1.003
20.12

0.0357
0.0720
0.0620

0.8
0.5
0.5

306
306
276

3 6 No No Energy/land
Energy/fertilizer
Labor/energy

0.0262
3.345
35.93 

0.0141
1.997
20.65

0.0306
0.0399
0.0648

0.7
0.8
0.5

599
306
276

Alternative C: Lagged dependent variable

Pooled 1 2 Yes No Energy/fertilizer 5.295 1.852 0.2167 0.5 163

3 2 Yes No None

1 6 Yes No Fertilizer/land
Energy/fertilizer
Labor/energy

0.0184
3.615
41.38

0.0080
1.155
22.13

0.2823
0.1751
0.0782

0.9
0.6
0.5

546
240
192

3 6 Yes No Energy/fertilizer
Labor/energy

2.318
45.06

0.9185
23.35

0.1933
0.0819

0.5
0.5

240
192

Alternative D: Total research expenditure

Pooled 1 2 Yes Yes Fertilizer/land
Energy/fertilizer

0.0152
5.279

0.0089
1.984

0.2871
0.2167

0.9
0.5

364
163

3 2 Yes Yes None

1 6 Yes Yes Fertilizer/land
Energy/fertilizer
Labor/energy

0.0177
3.438
47.01

0.0079
1.262
25.94

0.2884
0.190

0.0800

0.9
0.6
0.5

499
219
171

3 6 Yes Yes Energy/fertilizer
Labor/energy

1.705
49.64

0.912
26.19

0.2140
0.0835

0.5
0.5

219
171

Alternative E: More data

Random 
effects

1 2 No No Energy/fertilizer 1.510 0.912 0.0245 0.5 306

a All panel-data models estimated with time-fixed effects.
b The number of observations depends on the number of non-zero research funding observations in the denominator as well as the 
issues described in Footnote B of Table 2.

4. Fifty-six percent of their estimated equations were consistent 
with the IIH at the 5% level of significance.
Shumway, Cowan, & Lee — Testing the Induced Innovation Hypothesis



AgBioForum, 18(3), 2015 | 310
Considering evidence from all 60 equations, the
greatest support for the induced innovation hypothesis
was found for project selection and resource allocation
decisions governing the fertilizer-labor and energy-fer-
tilizer input-saving research pairs. Eighteen significant
positive coefficients on the own-price ratio for the first
pair (28% of its estimated equations) and 19 models for
the second pair (27% of its estimated equations) were
found. No significant negative own-price coefficients
were found for either pair. Support for the induced inno-
vation hypothesis for the fertilizer-land, energy-labor,
and energy-land input-saving research funding decisions
ranged from 9 to 14% of their estimated equations. The
support from these input ratios dropped to 5 to 9% when
the number of equations with a significant negative
own-price coefficient was subtracted from the number
with a significant positive own-price coefficient. No
support was found for the hypothesis for the labor-land
input-saving research funding decisions. Our finding
that fertilizer provides the greatest support for the IIH
(with 23% of estimated equations) and is followed by
energy (with 17% of estimated equations) is consistent
with the findings of Cowan et al. (2015). We rank labor
next (with 14% of estimated equations supporting the
IIH) and land (with support from 8%) last, whereas they
reverse the rank order of the inputs providing least sup-
port. Our rank order remains the same when the number
of equations with a significant negative own-price coef-
ficient is subtracted from the number with a significant
positive own-price coefficient.

In terms of model specification, robustness Alterna-
tive E provided the greatest support (50%) for the
induced innovation hypothesis, and the initial model
specification provided least support (8%). The other
robustness alternatives provided a similar level of sup-
port (14-17%). With the exception of Alternative E that
used additional data for two inputs, models with longer
lags in initiating the geometric price expectation pro-
vided greater support (19%) than did those with shorter
lags (10%).

Each of the models was estimated subject to a geo-
metric lag coefficient being selected based on the
Akaike criterion. Five alternatives between 0.5 and 0.9
in 0.1 increments were considered. Of all the models
estimated, 0.5 was selected for a majority of the equa-
tions. Thus, it appears that induced funding decisions
give relatively heavy weight to highly lagged input
prices for the implementing industry in formulating out-
put price expectations in the innovation creating indus-
try.

Conclusions and Policy Implications

We join Cowan et al. (2015) in reporting what we
believe to be the first legitimate tests of the induced
innovation hypothesis for US agriculture. They are the
first tests conducted for this industry that account for
supply as well as demand for new technology aimed at
saving inputs. We relax the strict CET specification of
the two-level production function in the innovation cre-
ating industry and conduct a larger set of robustness
checks. We find important but less support for the
induced innovation hypothesis than did Cowan et al.
(2015). Although the support is smaller, our tests are
qualitatively consistent with their finding of support for
the induced innovation hypothesis in the input-saving
research funding decisions that affect energy and fertil-
izer resource allocations. We found relatively more sup-
port than they did for the induced innovation hypothesis
in research resource allocations to save labor but less for
decisions to save land.

We found very little support for the hypothesis in
public research investment decisions to create innova-
tions to save the land input. On reflection, this may not
be particularly surprising. Because land prices are based
on productivity and consequently vary so much more
than do the prices of other inputs, it is possible that the
use of local land prices (even partially accounting for
quality differences as with this series) are not appropri-
ate for testing the induced innovation hypothesis. Prices
could just be reflecting local differences in productivity.
Thus, there may be little difference in the incentive to
invest in research to save high-valued, more productive
land than to save low-valued, less productive land. This
possibility seems to have some support in the fact that
research funding for land-saving research was much
larger and much more stable across states and over time
than funding to save the other inputs.

The greatest support for the hypothesis in public
research decisions came from energy and fertilizer. Both
are largely fossil-based inputs. Consequently, even the
modest support found for the hypothesis in research
investment decisions aimed at saving these inputs docu-
ments the potential for taxes and/or subsidies to be used
in public policy to induce public innovation that has
socially beneficial environmental effects. Since support
has been found in public research decisions, it is likely
that private research decisions will also be responsive
(and likely more so) to tax-subsidy policy that seeks to
synchronize private with social prices. Consequently,
not only can we expect input combinations to change
through substitution effects to save the input with the
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greatest relative disparity between private and social
prices but also through non-neutral technical change.
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