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University of Missouri-Kansas City, 2014 

 

ABSTRACT 

 

The experiments in this thesis addressed whether magnetic fields can enhance 

entrainment (phase determination) of the circadian clock by light. The experiments were 

conducted using a species of small fruit flies, Drosophila melanogaster. A solenoid was 

built in order to create the magnetic field.A magnetic field was produced inside a wire 

coil by passing an electric current through the coil, with the strength of the field 

proportional to the current. Light pulses were produced by a monochromator in the 

incubator, while the programmable timer within the constant temperature incubator was 

used to produce12 hr.: 12 hr. light:dark (LD) cycles or constant illumination with blue 

light (LL).The effects of these treatments on Drosophila locomotor activity rhythms were 

measured in activity monitors. For the first part of the study, magnetic field pulses of 

4.5mT (160-fold increase of the earth’s magnetic field) delivered together with blue light 

pulses at ZT15 produced an enhanced phase delay in subsequent circadian locomotor 

behavior in constant darkness, compared with the effect of light alone or magnetic fields 

alone. The effect was saturable and was observed within blue wavelength range 

(450nm±0.003nm) but not at red wavelengths (700nm±0.013nm). The second part of the 
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study showed that 12hr:12hr cycles of magnetic field strength (oscillating between 

earth’s magnetic field and 160 times earth’s magnetic field) could drive 24hr cycles of 

locomotor activity in LL but had no effect on circadian phase of locomotor activity in 

constant darkness. The effect in constant light did not require the normal CRY 

photoreceptor protein because it was still observed in cry
b
 mutant flies, which remained 

rhythmic in LL and magnetism with the phase of the magnetic field rather than that of the 

previous LD cycle. The results demonstrate that a strong magnetic field can entrain the 

circadian clock in a light-dependent but CRY-independent manner. 
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GLOSSARY 

Cryptochrome- a class of blue light-sensitive flavoproteins found in plants and animals. 

Flavoprotein- a large biological and photoreducible protein containing a nucleic acid 

derivative of riboflavin. 

Photosensitivity- the extent to which a body reacts upon receiving some light particles 

known as photons. 

Photon- a particle that is the quantum of electromagnetic energy and all forms of 

radiation. 

Magnetosensitivity- the aptitude to detect magnetic fields. 

Drosophila- the genus of any various small fruit flies.  

Circadian rhythm- any biological process that exhibits an endogenously generated 

oscillation of approximately 24 hours. 

Wavelength- the distance between one peak or crest of a wave of light and the next 

equivalent peak or crest. 

Zeitgeber- any exogenous cue that synchronizes an organism's endogenous time-keeping 

system, known as internal clock, to the earth's 24-hour light/dark cycle or 12 month 

cycle. 

Radical pair- a radical is a molecule with an unpaired electron spin and thus has spin 

s=1/2. 

Spin of a particle- an intrinsic form of angular momentum carried by an elementary 

particle.   



 xii 

 Singlet state- this occurs when the spins of the two electrons are aligned oppositely. 

Triplet state- this occurs when the net spin is 1. 

Geomagnetic field- Earth’s magnetic field which ranges from 25 µT to 65 µT (0.25 G-

0.65 G). 

Ampere’s-Law- the relation between the total amount of magnetic field around some path 

due to the current that passes through that enclosed path: ∮     = µ0Ienc. 

Solenoid- a long thin loop of wire (usually enfolded around a plastic core) that creates a 

magnetic field when an electric current is passed through it. 

Monochromator- an optical instrument that transmits a mechanically selectable narrow 

band of wavelengths of light or radiation selected from wavelengths of ultraviolet rays to 

infrared rays which are available at the input. 

Femtosecond Pump probe spectroscopy- an experimental technique that is used to 

measure absorption of a sample in the excited state. 

Absorption- the technique by which the energy of a photon is taken up by matter (usually 

the electrons of an atom), and transformed to another form of energy.  
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CHAPTER 1 

INTRODUCTION 

 

An overview of the research project is presented in this chapter. It includes a brief 

description of the background, the problem statement, the research objectives, the 

approach, and some long range consequences of the study. 

 

1.1 Background 

Circadian rhythms are biological cycles that demonstrate a period of about 24 

hours. Plants, animals, fungi, and some bacteria displayed rhythms driven by circadian 

clocks. In 1729, the French astronomer Demarian became the first one to point out that 

rhythms might be regulated inside an organism rather than controlled by a periodic 

milieu.[1]According to Sehgal et al., Demarian monitored the movements of a Mimosa 

plant’s leaf in constant darkness; he concluded that the the 24-hour periodicity of the 

movement was maintained in constant darkness. Two centuries later, Kalmus and 

Bunning proposed an endogenous means of relating the periodicity of the rhythm to the 

variation of the temperature fluctuations; this revealed an effect independent of Earth’s 

rotation.In the1960s, Hamneret.al. conducted an experiment at the South Pole with 

several organisms that were placed on a rotating turntable. The rotation mimicked that of 

Earth in terms of periodicity but in the opposite direction. They noticed that the circadian 

rhythm of eclosion in Drosophila was recurrent, demonstrating that it was not dependent 

on the earth’s rotation.[1] However, not all rhythmic functions are maintained by an 
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endogenous system. There are also diurnal rhythms- those driven directly by the day-

night cycle. 

Circadian rhythms distinguish themselves by some particular characteristics. One 

of the features is a periodicity of approximately 24 hours. Another quality is 

environmental/ecological cues’ abilities to synchronize or reset the cycle. Light is the 

most important factor in synchronizing/resetting periods. The term zeitgeber was first 

coined by Jurgen Aschoff. Zeitgeber(“timegiver” in German) is any exogenous cue that 

synchronizes an organism's endogenous time-keeping system. The course of that 

synchronization is referred to as entrainment. Zeitgeber time, most often denoted ZT, 

corresponds to a particular time in the 24-hour cycle consisting of 12hr: 12hr of light and 

darkness (LD). ZT0 refers to the time at which lights come on while ZT12 refers to the 

time at which lights are turned off. Intuitively, one can notice that ZT24 and ZT0 

correspond to the same point because the daytime hours are between 0 and 12 while the 

night time ones are between 12 and 24. A phase is defined as the time at which a specific 

activity or a rest takes place. A phase shift in the circadian rhythm is caused by a change 

in the phase of the rhythm (typically the result of a change in the light cycle timing). This 

process is similar to the most general concept of jet lag. Finally, oscillations of circadian 

rhythms are temperature compensated.[1] Studies done by Colin Pittendrigh in the 1950s 

confirmed that the periodicity is relatively constant over a broad range of temperature.[1]
 

   The molecular mechanism of circadian rhythms has been investigated with 

genetic analyses in model organisms-the most prominent of which is Drosophila. Kalmus 

and Bunning introduced Drosophila as a test subject in their work on circadian rhythm in 
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Drosophila eclosion. Biologists interested in the examination of circadian rhythms started 

using Drosophila for experimental means. That was the case for Colin Pittendrigh in this 

investigation of the properties of the phase-resetting and in his implementation of the 

notion of temperature compensation in the middle of the twentieth century. In addition, in 

the early 1970s, Ronald Konopka and Seymour Benzer introduced studies of the clock 

mechanism after exploring the single gene mutants in Drosophila.[2]Due to similarities 

between mammalian clock and Drosophila clock, the mechanism introduced for 

Drosophila has helped the studies of the mammalian clock.[1] 

The Drosophila mechanism is an interesting biological concept. The process starts 

at the stage of gene transcription. The period gene (per) and the timeless gene (tim) are 

activated by transcription of the two proteins, CLOCK (CLK) and CYCLE (CYC), which 

bind as CYC/CLK heterodimer to their promoters. At night, PER and TIM proteins build 

up to from a heterodimer; this makes PER more stable and not subject to degradation by 

DOUBLETIME protein (DBT) phosphorylation. PER/TIM interacts with CYC/CLK 

inside the nucleus to remove it from the promoters or per and tim; this causes 

transcription of the per and tim genes to be repressed. As the sun rises, TIM is degraded 

by a light-dependent interaction with CRY, causing PER to degrade as well. 

Consequently, PER/TIM no longer represses, resulting in the beginning of the 

transcription of per and tim. The cycle continues.[1]
 

The entrainment of the Drosophila circadian clock to light involves both the 

intracellular photoreceptor CRY and the visual photoreceptors, which provide neural 

input to the circadian cells of the brain and are themselves a circadian cell type. 
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Collaboration between a group of biologists from The Scripps Research Institute and NSF 

Center for Biological Timing and Brandeis University, explored the importance of CRY 

in Drosophila’s circadian rhythm by analyzing the cry
b
 mutant, which does not make 

functional CRY protein. Activities in LD cycles were monitored for cry
b 

flies, which are 

deficient for CRY. Adults were entrained for 5 days (12 hr: 12 hr LD) by means of a 640- 

lux white light; then they were subject to a phase shift. On the sixth day, the lights were 

put on 4 hr later, and the light in the new condition was switched to blue light at 0.16-lux 

(cry
b
).  Flies remained in the second condition for 5 days, and then all the activity data for 

each individual were monitored by means of actograms. They confirmed that light 

destroys TIM and, cry
b
 is a nonfunctional protein. Stanewsky et al. concluded that cry

b
 is 

an apparent null mutation in a gene encoding Drosophila’s cryptochrome. Cry
b 

exhibits 

poor synchronization to light–dark cycles in genetic conditions that are responsible for 

external blindness or the need of several hours of daily rhythm resets; no response is 

demonstrated to brief light pulses. Cry
b 

flies are rhythmic in DD, associated with strong 

PER and TIM cycling in certain pacemaker neurons.[3] However, in most circadian cells 

of the cry
b
 mutant, TIM protein does not oscillate, presumably because it is not degraded 

in response to light. Prior work had shown the light-dependent degradation of TIM is part 

of the entrainment pathway of Drosophila.[4-7] 

A biology research group from Brandeis University investigated the photosensitivity 

of CRY. Emery et al., in their paper entitled CRY, a Drosophila Clock and Light-

Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and 

Photosensitivity, revealed some further understanding of the gene responsible for the 
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regulation by light of Drosophila’s inner clock. Wild-type Canton-S and y w flies were 

exploited for molecular and behavioral studies. They also recognized and analyzed cry, 

the novel Drosophila cryptochrome gene. The transcription of cry was revealed to be 

under circadian control and influenced by the Drosophila clock genes period, timeless, 

clock, and cycle. In addition, they revealed a noticeable effect of light exposure to CRY 

protein levels. Significantly, circadian photosensitivity is increased in a cry-

overexpressing strain.[8]Subsequent work from the Kay lab identified the molecular basis 

of CRY’s photoreceptive properties. It forms a light dependent interaction with TIM, 

thereby triggering degradation of TIM.[9] This notion is described for the mechanism of 

Drosophila’s clock which was discussed earlier. 

Emery et al. subsequently showed that CRY mediates the effects of constant light on 

the clock. Their work revealed that the cry
b 

mutation in Drosophila cryptochrome 

(dCRY) stops an important photoresponse of circadian rhythms; this causes arrhythmicity 

under constant light (LL) conditions in wild type flies.[10] According to their studies, 

cry
b 

flies were rhythmic in intense LL conditions, as opposed to wild-type flies. Thus, the 

cry
b 

mutation impaired the circadian photoreception pathway so deeply that the fly 

became insensitive of LL conditions. Since this mutant also had a poor response to short 

light pulses in the previous study[8], they concluded that circadian photoreceptor must be 

exclusive to these responses in Drosophila.  

How then can cry
b
 flies entrain to different 24-h light–dark cycles?[10] Entrainment of 

activity rhythms to light persists in cry
b
 mutants because the visual photoreceptors 

provide redundant entrainment of the central brain neurons controlling the activity 
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rhythms. In the absence of both visual photoreceptors and the CRY protein, fly activity 

rhythms are not entrained by light.[11] 

Several studies have been done on magnetic field detection by Drosophila. This 

work revealed that magnetosensitivity of Drosophila exhibits both light and CRY 

dependency. Some of these investigations assessed the capacity of flies to orient when 

subjected to magnetic fields, while another study assessed the lengthening of circadian 

period by light. By contrast, my current research studies are based on the examination of 

the enhancement of entrainment (setting of circadian phase) of flies (Drosophila) by light 

due to magnetic field exposure.  

Gegear et al. (2008) investigated the effects of magnetic field on Drosophila.[12]Flies 

were placed into the preparation tube with or without sucrose reinforcement and a 

magnetic field. Wavelength dependence was examined using long-wavelength pass 

filters.The assay determined whether flies were able to use a magnetic field, which they 

had been trained to associate with food, to find the food source. They determined that the 

ultraviolet-A/blue-light photoreceptor cryptochrome is essential for these light-dependent 

magnetosensitive responses in Drosophila. Wild-type flies demonstrated major naive and 

trained responses to a magnetic field under full-spectrum light (~300–700 nm); however, 

no response was shown when wavelengths less than 420 nm were blocked. Importantly, 

CRY-deficient cry
o
 and cry

b
 flies did not show any responses to a magnetic field under 

full-spectrum light. Furthermore, CRY-dependent magnetosensitivity did not necessitate 

a functioning circadian clock. They believe that their studies revealed the first genetic 

evidence for a CRY-based magnetosensitive structure in any animal.[12] 
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Yoshii et al. explored the magnetosensitivity of Drosophila’s circadian clock.[13]The 

activity of flies was recorded automatically and individually with infrared light beams at 

a constant temperature of 20.8°C. They showed that Drosophila’s clock is 

magnetosensitive and CRY dependent. When earlier works on magnetosensitivity of the 

circadian clock were done, CRY had not been detected yet and the influence of the 

magnetic field on the circadian clock was obscure. Present research and results on CRY’s 

mediation of light inputs have been discussed earlier. The magnetic field effect produced 

a lengthening of the period in constant light (compared with constant light alone), 

comparable to that produced byan increased intensity of blue light. This was mainly 

shown in CRY-overexpressing flies. No responses were shown in red light. The results 

strongly support a radical-pair model proposing light-activated flavin-based 

photoreceptors as sensors for magnetic fields.[13] 

The two main models for magnetoreception are well described by the theoretical 

and computational biophysics group of the University of Illinois Urbana-Champaign. 

They based their models on studies of birds, which can use magnetic fields for navigation 

during migration. 

1. Magnetite-based model 

It proposes that the avian compass has its origin in small particles of magnetite 

located in the head of the bird. “In the proper geometry, iron oxide clusters can behave 

like a compass needle and magnetic bacteria use such a compass needle mechanism to 

find up and down. An alternative possibility is to use short-lived, specialized 
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photochemical reactions, for which thermal noise does not have time to effectively mask 

effects of magnetic fields.”[14]
 

2. Radical-pair based model 

It proposes that the avian compass may be formed in a chemical reaction in the eye of 

the bird, involving the creation of a radical pair. In Drosophila, cryptochromes appear to 

be a particularly fascinating candidate for photo-magnetoreceptors. In animals such as 

Drosophila, cryptochromes can be implicated directly as light inputs into the circadian 

clock. Cryptochromes are present in quite a few organisms that revealed magnetic field 

effects. In addition, as described above, the photochemical properties of cryptochromes 

demonstrated some abilities to detect weak magnetic fields. Cryptochromes are triggered 

by means of an intraprotein electron transfer system that yields radical pairs. The radical 

that is generated triggers the protein in order to stimulate biological activity. Any feature 

that enhances the existence of the radical will essentially augment the cryptochrome 

signal at a given photo fluence (light intensity). Similarly, anything that diminishes the 

lifetime of the radical will automatically decrease cryptochrome signal at a specific light 

intensity.[14]
 

 There are also structures of Drosophila CRY.[15-17] Processes involved with 

cryptochrome signaling (such as hypocotyl growth inhibition) are enhanced under a 

magnetic field of 5 G (as compared with an Earth-strength 0.5 G magnetic field).[18] 

1.2 Problem Statement 

It has been shown that flies can detect magnetic fields in a light-dependent manner and 

orient towards them, and that magnetic fields enhance the effects of light-dependent 
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period-lengthening of circadian rhythms. However, the capacity of magnetic fields to set 

the phase of circadian rhythms as a zeitgeber has not been assessed. The work presented 

in this thesis analyzes whether magnetic fields can serve as a zeitgber with two types of 

assays. One examines whether magnetic field pulses can enhance the phase-resetting of 

rhythms by light pulses; in these assays, the phase of the activity rhythm is measured in 

constant darkness in flies that have received prior pulses and compared with flies that 

have not received the pulses. The other assay determines whether 12hr:12 hr oscillations 

of magnetic fields (on:off) can set the phase of an activity rhythm, and if so whether the 

effect of the magnetic field requires light or can be detected in constant darkness. If light 

is required for these effects, I will determine the optimal wavelength for the 

magnetosensitivity in Drosophila (blue or red) and whether the CRY protein is required. 

Finally, I will determine the threshold strength for the magnetic field at the optimal 

wavelength. The partnership between Dr. Price’s group, from the Department of 

Molecular Biology and Biochemistry at the UMKC, and our group has helped answer 

some of the questions raised.  

Cryptochromes, which are photoreceptors located in the birds' eyes, are thought to be 

involved in magnetic orientation during migration. In Drosophila, cryptochromes are 

responsible for the light-dependent capability to detect the geomagnetic field. The 

existence of a mechanism by which the circadian clocks are entrained by magnetic field 

changes has remained uncertain. By finding the range of the magnetic field strength and 

an optimal wavelength for any effects of magnetic fields on entrainment, this study will 

be able to advance our understanding of the interaction of magnetosensitivity and the 
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circadian system. This research is very valuable in the domain of science because its 

success could inform investigations of magnetosensitivity of human beings. Moreover, 

Physics will once again assert its incredible value in describing the beauty of natural 

phenomena.  

However, there are some constraints in this study. The main limitations will be the 

control of the constant temperature, affecting the temperature between the coils of the 

solenoid. Any small temperature fluctuations will lead to a small effect on the magnetic 

field being applied to the Drosophila melanogaster. However, the main issue is that 

temperature fluctuations can also entrain the circadian clock independent of any magnetic 

field effect. Nonetheless, the magnetic/light pulses in the first type of experiment (phase 

resetting) will be limited to short time intervals that will reduce the amount of heat 

generated in the fly’s body. 

After completion of this research, we anticipate follow-up studies to investigate the 

effects of magnetic fields on human beings. For instance, can blind people who cannot 

entrain to light cycles effectively use the magnetic fields to enhance circadian 

entrainment? This study is expected to lead to the answers of such questions. If carried 

out successfully, the results of this research should confirm the hypothesis that 

Drosophila’s circadian clock is linked to their magnetosentivity at the blue wavelength 

range.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

 

The experimental methods of the research are presented in this chapter. The 

preparation of cuvettes, the experimental devices, and data analysis are described.  

 

2.1 Drosophila 

Drosophila are small flies that have light yellow to dark brown pigment with red 

eyes. They are very small in size, as shown in Fig. 1. Therefore, a microscope is 

needed in order to examine them. Drosophila, which tends to be abundant in tropical 

regions, can be found around the world due to their attraction to fruits like bananas, 

grapes, berries, swamps, rainforests, deserts, and so on. They have been brought to the 

United States through the transport of fruits and especially bananas. The wild type 

strain of flies used in this study was isolated in Canon Ohio and therefore is known as 

the Canton S strain. Several Drosophila species, including Drosophila melanogaster 

(current sample), are very close to human beings genetically. In addition, it is easy to 

breed large numbers of Drosophila, making them very suitable candidates for studies 

related to genetics. 

  



 12 

 

 
Figure 1.View of Drosophila from a microscope. 

Due to their large reproduction, the females are not used for this studied. They 

could lay eggs while the experiment is in progress, making it impossible to monitor the 

activities of the flies in an accurate manner. Therefore, in our study, only males are used 

for the assays. The distinction between the males and females is done by means of a 

microscope. The males have a solid black posterior, while the female have a stripped one. 

Fig. 2 illustrates the difference between the two sexes. 
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Figure 2.Distinction between male and female Drosophila. 

 

2.2 Cuvette Preparation 

Cuvettes are small tubes, with a tolerance of wavelengths ranging from 380 nm to 

780 nm, and will contain Drosophila during the locomotor activity assay experiments. 

They will be sealed at one end with a piece of parafilm and fly food, and at the other end 

with some cotton, as shown in Fig. 3. 

 
Figure 3.A cuvette enclosing a Drosophila. 
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The cuvette preparation is followed by the loading of flies.  A microscope, as 

shown in Fig. 4, is used for the distinction of the genders. Carbon dioxide is used to 

anesthetize the flies during the loading process. The gray tank in Fig. 5 is fitted with a 

regulator to deliver a steady stream of carbon dioxide from a porous plate under the 

flies. 

 
Figure 4.Set-up used to load the Drosophilas. The microscope(left) is used for 

magnifying of the flies while the tank(right) delivers CO2which immobilizes the 

flies. 

 

2.3 Experimental Devices 

This experiment will be conducted using Drosophila melanogaster. The fruit flies, 

provided by Dr. Price’s group, are kept in the research laboratory at a constant 

temperature. A solenoid, as shown in Fig. 5, is built in order to create the magnetic field. 

The strength of the magnetic field is regulated by means of a power supply whose current 
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can be controlled. A magnetic field was produced inside a wire coil (on the left) by 

passing an electric current through the coil, with the strength of the field proportional to 

the current. Light was produced by a monochromator in the incubator, which controlled 

the timing and wavelength of the lights to produce pulses of light. 

 

 
Figure 5.The solenoid (red) enclosed the Drosophilas that are subject to a visible blue 

wavelength. 
 

The tubes containing the Drosophila are aligned in a box, as shown in Fig. 6. The 

box is placed inside the solenoid so that the flies can be subject to magnetism and 

light, or just light if the current is turned off.  
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Figure 6.Illustration of Drosophila aligned before being subject to magnetism and 

light.  

 

A monochromator 74125, as illustrated in Fig. 7, is used in this experiment. This 

device is very efficient in scanning from the ultraviolet through the far infrared. 

 

Figure 7.Monochromator 74125.[19]
 

http://www.google.com/url?sa=i&rct=j&q=monochromator&source=images&cd=&cad=rja&docid=SvKK8CUuuQNdLM&tbnid=jR8izcj8a9YN-M:&ved=0CAUQjRw&url=http://www.newport.com/Cornerstone153-260-1-4-m-Monochromator/375108/1033/info.aspx&ei=dF4lUeLdGIms9ATdkICQDA&bvm=bv.42661473,d.eWU&psig=AFQjCNFNhXhg_QwQx7Xd2YgJaDKkWTc56g&ust=1361489905636297
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The standard features include a built-in electronic shutter, filter wheel control, and a 

family of interchangeable gratings and slits. The CS-260 uses an asymmetrical in-

plane Czerny-Turner optical configuration. Throughput is high and stray light is very 

low. Optically flat black paints and baffles and high efficiency spherical mirrors and 

gratings are used to minimize surface reflections, and thus stray light.[19]The optical 

mechanism by which the device performs is portrayed in Fig. 8.  

 
Figure 8.Optical mechanism of the monochromator.[19]

 

 

 

 An incubator, shown in Fig. 9, is used in order to entrain the flies. The incubator 

can be programmed to produce a12 hr. on: 12hr off cycles of light. The incubator 

encloses several vials which are separated based on the age of the Drosophila. 

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=HZg-JfiWQ-eZzM&tbnid=Iq6ylBXI8ih22M:&ved=0CAgQjRwwAA&url=http://www.sciencetech-inc.com/en/catalog/13/monochromators/9030&ei=oV4lUfnMIIjQ9ASCtYHQDQ&psig=AFQjCNEuPwqBXfJPrrtV7pPuURT0dnJKjA&ust=1361489953583957
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Figure 9.Incubator. 
 

     2.4 Locomotor Activity Assays 

For over a half-century, circadian activity rhythms have been investigated in 

Drosophila. The assays are performed as shown in Figure 10. 
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Figure 10.Activity Assays.The activity of each fly was monitored in activity monitors 

which detect deflections of an infrared beam and record the numbers in 10 minute 

bins.  The 7-10-day record of the flies is plotted as an Actogram. Here, the assay was 

performed in constant darkness, but the phase of the rhythm is set by the time of the 

previous light:dark cycle, which is plotted above the record. 

 
 

A computerized program is used to record activity. ClockLab (a Matlab-based 

circadian analysis software package from Actimetrics, Inc) is used to get the 

periodograms and actograms of the assays. In actograms, the amount of activity in 

consecutive bins periods is plotted along a line with a length of 48hours.  The amount 

of activity is indicated by the height of the black bar.  Data are double-plotted so that 

the day on the right of the line is repotted on the left of the line immediately below.  

Circadian behavior is visualized by scanning from left to right.  Figure 11 is an 

illustration of periodograms and actograms for Canton S flies in12hr: 12hr light and 

detector 

food plug 

Actogram 
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dark (LD) cycle; it demonstrates rhythmiticity (left) and arrhythmicity (right). For 

each condition in my experiments, the activity records of approximately 16 flies were 

obtained for a given condition (genotype, light, magnetism).  In addition, the 7-10 day-

record of each fly was averaged to produce an activity profile for the 23.5-24.5 hour 

circadian cycle of the Canton S flies. Activity offsets (evening activity phase) were 

determined as the time at which the average activity crossed the mean activity level 

during the falling phase of the activity profile. The average phase and synchrony of 

each experimental and control (unpulsed) group were determined by vector addition. 

Alternatively, the average phase of an experimental or control group was determined 

from a 23.5-24.5 hr activity profile for an averaged activity record for the entire group. 

The magnitude of any phase shift was determined by subtracting the evening phase of 

the experimental group from the evening phase of one of the two unpulsed control 

groups. The second method used for data analysis is known as the average waveform 

method. 
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(A).The periodogram on the left shows rhythmicity in DD while the one on the right  

display arrhythmicity in LL.  

 

 

(B). The actogram on the left shows rhythmicity in DD while the one on the right  display 

arrhythmicity in LL. 

Figure 11.Illustration of periodograms and actograms. 

 

2.5 Experimental Strategy 

The first part of the experiment consists of using the monochromator in order to 

illuminate the Drosophila at different wavelengths during the dark phase of an LD cycle.  
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The current through the coils will be produced by a power supply activated manually for 

short pulses of light and magnetism, followed by activity assays in constant darkness to 

determine the effect of magnetism on the light-dependent phase shift of the circadian 

rhythm, and the magnetic field will be generated at the same time lights areon (except in 

the controls where magnetic field pulses were given without light or light was given 

without a magnetic field pulse). Fly activity will be monitored in constant darkness (DD) 

with no magnetic field in Trikinetics fly activity monitors (on the left in figure 12). 

Alternatively, for the experiments involving application of a magnetic field to flies in 

constant light (LL) or constant dark (DD), the monitors can be placed inside the coil for 

activity monitoring during diurnal magnetic field cycles or placed outside the coil for 

monitoring of activity without magnetic field oscillations. The temperature is kept 

constant by the incubator. The current is also kept constant during the pulse in order to 

have a constant applied magnetic field.  

These experiments will employ constant illumination (LL) or darkness (DD), with or 

without a 12hr on: 12hr off cycle of magnetic fields of varying strengths produced by 

changing the current. This is analogous to the experimental set-up shown in Fig. 12. 

Illumination was produced by blue fluorescent bulbs initially programmed to be on for 12 

hrs and off for 12 hrs before a switch to LL or DD. The magnetic field was either 

activated in phase with the previous light period or dark period of the LD cycle, as 

indicated in the description of the experiments. 
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Figure 12.Experimental set-up for cycles of magnetism. A magnetic field was produced 

inside a solenoid by passing an electric current through the coil, with the strength of the 

field being proportional to the current. A  DC power supply on a timer (12hr on:12 hr off 

cycles) was used to generate current through the solenoid. Light was produced by high 

intensity blue fluorescent bulbs in the incubator with wavelengths ranging between 450 

nm and 470nm.
 

  

2.6 Specific Pulse Conditions 

All pulses were done at wavelength of 450.013nm (blue) except one. The last 

pulse is done at a wavelength of 700.013nm (red). The light bulb was a 75 Watt Xenon 

light. The room and incubator temperature was kept at 25
o
C with negligible fluctuations 

less than 2
o
C. The number of turns of the solenoid was about 343. The current produced 

by the power supply in the assays involving magnetism of 160X the earth’s field is about 

1.9A. The voltage was around 12.5V. By using Biot-Savart Law, the magnetic field was 

calculated to be 4.48.mT. A magnetometer was used to ensure the uniformity of the field 

inside the solenoid. A small variation was recorded (3.92mT to 5.34mT).  
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For experiments involving wild type Canton S and cry
b
 mutants, flies with the 

different genotypes were loaded in sequential positions in the monitors, so there was no 

consistent difference in their position that could have produced a difference in the 

average magnetic field to which each genotype was exposed. 

For the first part of the experiment, the assays were performed using the following 

setups: control group (no pulse), light only (blue), magnetism only, light (blue) plus 

magnetism simultaneously, and light (red) plus magnetism simultaneously. 10 s and 1 

min pulses were applied. Two unpulsed control groups were typically analyzed, in order 

to determine the extent of experimental variability in phase determination. 
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CHAPTER 3 

RESULTS & DISCUSSION 

 

This chapter demonstrates the methods used for data analysis, the results, some 

illustrations of circular plots and waveforms, and a discussion section.  

 

3.1 Experimental Strategy and Data Analysis for Phase-Resetting Experiments 

Theactivities of the flies weremonitored and analyzed byactogram, chi-square 

(χ
2
)periodogram and waveform analysis by the means of ClockLab (a Matlab-based 

application). This led to theexamination of the rhythmicity of the flies with and without 

exposure to the magnetic field.Strong phase delays areproduced by light pulses delivered 

at ZT-15 (in DD, 3 hours after the end of a 12hrlight phase), while strong phase advances 

produced by light pulses delivered at ZT-21 (in DD, 9 hours after the end of the 12hr 

light phase). In my experiments, the flieswere subjected topulses of light (red or blue) 

and/or magnetic field 3 hours after the end of a 12hr:12hr LD cycle (i.e., at ZT15).  There 

were two control groups considered as unpulsed. For each condition, the activity records 

of approximately 16 flies were obtained. In addition, the 7-10day-record of each fly was 

averaged to produce an activity profile for the 23.5-24.5 hour circadian cycle of the 

Canton S flies. Activity offsets (evening activity phase) were determined as the time at 

which the average activity crossed the mean activity level during the falling phase. The 

average phase and synchrony of each experimental and control (unpulsed) group were 

determined by vector addition. Alternatively, the average phase of an experimental or 
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control group was determined from a 23.5-24.5hr activity profile for an averaged activity 

record for the entire group. The magnitude of any phase shift was determined by 

subtracting the evening phase of the experimental group from the average evening phase 

of the two unpulsed control groups.The second method used for data analysis is known as 

the average waveform method. 

3.2 Results for Phase-resetting Experiments 

Three assays were performed with light pulses and/or magnetic pulses at ZT 15. These 

experiments are tabulated separately below, and a summary table reports the average 

phase shifts produced (Tables 1-7). Representative circular plots and activity profiles are 

shown in figures 16 and 18respectively.In all three experiments the largest phase shifts 

were produced with a combination of blue light and magnetism. These larger phase shifts 

were calculated with both the vector addition method and the average waveform method. 

The effect of magnetism was produced when coupled with light in the blue spectrum 

(wavelength of 450.013nm) and not with light in thered spectrum (wavelength of 

700.013nm), which was notconsistently effective in producing phase shifts. The results 

showed saturation at pulses equal to or longer than a minute, since enhancement of 

phase-shifting by magnetism was most consistently seen with 10-sec pulses and was not 

consistently enhanced by longer light and magnetism pulses, which did not further shift 

the phase in comparison with the phase shifts produced by 10 sec pulses of blue light and 

magnetism. Magnetism pulses alone did not consistently produce phase shifts. The 

strength of these conclusions is compromised by the high variability of the phase shifts 
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and the relatively small increase in the phase-shift produced by the magnetism coupled 

with blue light, relative to the control conditions. 

 First assay 

Table 1.Vector addition method (1
st
 assay). 

 

 

 

Conditions 

 

Offsets(hr) 

with 10s 

pulse 

Length of 

vector 

(number of 

rhythmic 

flies) 

Phase 

shift(hr) with 

10s pulse 

 

ZT-15 

Unpulsed 12.92 0.97
*
 (6)  

 

Light only 13.28 0.93
*
 (7) -0.36 

 

Light + Magnetism 13.69 0.95
*
 (15) -0.77 

 

Magnetism 12.91 0.92
*
 (13) 0.01 

 

Light + Magnetism (Red) 13.19 0.97
*
 (9) -0.27 

 

 

For these tables and all others for the vector addition method, the offset times 

are those determined by the phase of the resultant vector calculated from the 

phase of the individual fly phase vectors plotted on a 24 hour circle, with time 

0=ZT0. The length of the resultant vector is a measure of phase coherence; * 

indicates the length of the vector produces a Z value (number of flies * (length 

of the vector)
2
) that is greater than that for rejection of the null hypothesis by 

the Rayleigh test (null hypothesis: no phasing of the group, p<0.05). Phase 

shifts are calculated as the offset phase of the unpulsed controls (or the 

average phase of these, if there are two unpulsed groups) minus the offset 

phase of the pulsed group. 
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Table 2. Average waveform method (1
st
 assay). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Offsets for these groups are calculated as the time at which the averaged activity profile 

for the rhythmic flies in the group falls below the mean activity level for the group. Phase 

shifts are calculated as the average offset phase of the unpulsed control groups minus the 

offset phase of the pulsed group. 

  

 

 

 

Conditions 

 

ZT-15 

Offsets(hr) 

with 10s 

pulse 

 

Phase 

shift(rad) 

with 10s 

pulse 

 

Unpulsed 13.13 

 

 

 

Light only 13.29 -0.16 

 

Light + Magnetism 13.29 

 

-0.16 

 

Magnetism 13.13 

 

0 

 

Light + Magnetism (Red) 13.29 

 

-0.16 
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 Second assay 

 

Table 3.Vector addition method (2
nd

 assay). 

 

 

 

Conditions 

 

Offsets(hr) 

with 10s 

pulse 

Phase 

shift(hr) 

with 10s 

pulse 

 

Length of 

vector 

(number 

of 

rhythmic 

flies) 

Offsets(hr) 

with 1min 

pulse 

Phase 

shift(hr) 

with 1min 

pulse 

 

Length of 

vector 

(number 

of 

rhythmic 

flies) 

ZT-15 

Unpulsed 11.52 -0.22 

 

0.89 (4) 11.96 0.22 0.42 (5) 

Light only 13.19 -1.45 

 

0.94
*
 (7) 13.69 -1.95 

 

0.93
*
 (12) 

Light + Magnetism 14.50 -2.76 

 

0.94
*
 (9) 13.63 -1.89 

 

0.93
*
 (11) 

Magnetism 12.51 -0.77 

 

0.93
*
 ( 8) 13.27 -1.53 

 

0.83
*
 (10) 

Light + Magnetism (Red) 13.75 -1.01 

 

0.92
*
 (9) 13.97 -0.23 

 

0.95
*
 (14) 
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Table 4. Average waveform method (2
nd

 assay). 

 

 

 

 

Conditions 

 

ZT-15 

10s pulse 

 

1min pulse 

Offsets(hr)  Phase 

shift(hr)  

 

Offsets(hr)  Phase 

shift(hr)  

 

Unpulsed 12.55 

 

0.08 

 

12.71 

 

-0.08 

 

Light only 13.47 

 

-0.84 

 

13.62 

 

-0.99 

 

Light + Magnetism 14.85 

 

-2.22 

 

14.08 

 

-1.45 

 

Magnetism 12.40 

 

0.23 

 

13.62 

 

-0.99 

 

Light + Magnetism (Red) 13.17 

 

-0.54 

 

 

12.40 

 

0.23 

 

 

 

 

 

 

 



 

 

3
1
 

 

 

 Third assay 

 

 

Table 5.Vector addition method (3
rd

 assay). 

 

 

 

Conditions 

 

Offsets(hr) with 

10s pulse 

Phase 

shift(hr) 

with 10s 

pulse 

 

Length of 

vector 

(number of 

rhythmic 

flies) 

Offsets(hr) 

with 1min 

pulse 

Phase 

shift(hr) 

with 1min 

pulse 

 

Length of vector 

(number of 

rhythmic flies) 

ZT-15 

Unpulsed 10.03 0.51 

 

0.69 (4) 11.05 -0.51 

 

0.95
*
 (9) 

Light only 11.81 -1.27 

 

0.91
*
 (6) 13.36 -2.82 

 

0.96
*
 (6) 

Light + Magnetism 12.31 -1.77 

 

0.95
*
 (9) 13.16 -2.62 

 

0.93
*
(9) 

Magnetism 10.81 -0.28 

 

0.82
*
 ( 9) 11.73 -1.19 

 

0.93
*
 (8) 

Light + Magnetism 

(Red) 

12.26 -1.72 

 

0.96
*
 (7) 11.47 -0.93 

 

0.93
*
 (11) 
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Table 6. Average waveform method (3
rd

 assay). 

 

 

 

 

Conditions 

 

ZT-15 

10s pulse 

 

1min pulse 

Offsets(hr)  Phase 

shift(hr)  

 

Offsets(hr)  Phase 

shift(hr)  

 

Unpulsed 12.99 

 

-0.50 

 

11.99 

 

0.50 

 

Light only 12.63 

 

-0.19 

 

12.71 

 

-0.27 

 

Light + Magnetism 13.01 

 

-0.57 

 

13.62 

 

-1.18 

 

Magnetism 11.48 

 

0.96 

 

12.40 

 

0.04 

 

Light + Magnetism (Red) 13.24 

 

-0.80 

 

 

12.40 

 

0.04 

 



 

  

3
3
 

 

 

Table 7.Summary Table. 

 

These are the average phase shifts and standard deviations calculated from those of the previous 6 tables. 

 

 

 

Conditions 

 

ZT-15 

10s pulse 

 

1min pulse 

Vector Addition Average Waveform Vector Addition Average Waveform 

Averag

e Phase 

shift(hr

)  

 

Standard 

Deviatio

n 

Averag

e Phase 

shift(hr

)  

 

Standard 

Deviatio

n 

Averag

e Phase 

shift(hr

)  

 

Standard 

Deviatio

n 

Averag

e Phase 

shift(hr

)  

 

Standard 

Deviation 

Unpulsed 0.00 

 

0.45 

 

0.00 0.41 - 

 

- 

 

- - 

Blue Light only -1.03 

 

0.58 

 

-0.40 0.38 -2.39 

 

0.62 

 

-0.63 0.51 

Blue Light plus 

Magnetism 

-1.77 

 

1.00 

 

-0.98 1.09 -2.26 

 

0.52 

 

-1.32 1.09 

Magnetism only -0.35 

 

0.32 

 

0.40 0.50 -1.36 

 

0.24 

 

-0.48 0.73 

Red Light plus  

Magnetism 

-1.00 

 

0.73 

 

 

-0.50 0.32 -0.35 

 

0.82 

 

0.14 0.13 



 

  

3
4
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The phase resetting experiments showed that pulses of blue light and magnetic 

field had stronger phase delays than with blue light alone or with red light and magnetism 

when using either the vector addition method or the average waveform method. In 

addition, the effect of magnetism was more consistent with10sec pulses than with 1min 

ones, most likely due to saturation of the phase delay response with the 1 min pulses of 

light. Magnetism alone did not produce consistent phase delays or advancing, 

suggestingthat light is required for the magnetosensitivity. However, the phase shifts 

were highly variable with large standard deviations, precluding definitive results with this 

approach. 

3.3 Experimental Strategy, Data Analysis, and Results for Activity Rhythms in 

12hr:12hr On/Off Oscillations of Magnetic Fields 

 

The two general entrainment protocols were used (LD to LL, with magnetism in 

phase with LD, and LD to DD to LL, with magnetism out of phase with LD). Figures 13 

and 14 are illustrations of the experimental designs. Representative circular plots are in 

figure 16. The average activity profiles of Canton S and cry
b
 flies are illustrated by figure 

18. In DD, the capacity of the magnetism to shift the phase and maintain 24 hour 

periodicity was examined.In LL, the ability of the magnetic field to maintain rhythmicity 

rather than arrhythmicity for Canton S flies and to shift the phase was investigated 

whereas for cry
b
flies,only the capacity to shift phase was inspected. This is due to the fact 

that cry
b
fliesare reported to be rhythmic in LL (ref. 5, 6, 18). Representative actograms of 

a Canton S fly and cry
b
 fly in the DD to LL regime are displayed by figure 19. The 
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percent rhythmicity, the period length, the phase coherence and phase are all things that 

were measured. The percent rhythmicity was calculated by finding the ratio of the 

rhythmic flies to the total number of living flies and multiplying the quotient by 100. The 

period length was measured by means of ClockLab (a Matlab application). The phase 

coherence was done by means of the directional (circular) statistics; the closer the length 

of the average vectorr to 1, the more coherent the phase is. Similarly, the farther the 

length of the average vector to 1 (or closer to 0), the more dispersive the phase is. The 

phase analysis was done by both the vector addition method and the average waveform 

method. Rayleigh z test was used to conduct the statistical analysis.Table 8reveals the 

results of the LD to LL assay. Table 9demonstrates the results of the LD to DD to LL 

assay.The LD, DD, and LL experiments showed that a strong magnetic (160 times the 

earth’s magnetic field) can be sensed in constant light. A 12hr: 12hr on:off oscillation of 

this field can restore rhythmicity under LL in wild type flies and even shift the phase of 

the rhythm from that previously entrained by LD. In addition, re-entrainment of the 

circadian clock of cry
b
 mutant flies was observed, demonstrating that normal wild type 

CRY is not required for detection of the magnetic field. The oscillating magnetic field did 

not re-entrain either wild type or cry
b
 flies in DD, demonstrating that LL is required for 

the effect.  
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Figure 13.LD to LL experimentaldesign.Canton S and cry
b
flies were entrained in 

LD for three days with magnetism tuned on during the day. An LL cycle followedwith 

12hr: 12hrOn:Offoscillations of magnetic field for at least five days with magnetism 

turned on during the subjective day. 

 

 
Figure 14.LD to DD to LL experimentaldesign.Canton S and cry

b
flies were entrained in 

LD for three days without magnetism. A DD regime followed with 12hr: 

12hrOn:Offoscillations of magnetic field for at least five days.Then, an LL regime of at 

least five days was conducted, with12hr: 12hr oscillations of magnetic field opposed to 

the LD cycle (magnetism turned on during the subjective night). 
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Table 8.LD to LL. 

 

 

Conditions Average period 

(hr) 

% 

Rhythmicity 

(total 

number of 

flies) 

Average 

phase of 

offsetby 

waveform 

method 

(hr) 

Average 

phase of 

offset by 

vector 

addition 

(hr) 

Length 

of 

average 

vector 

No 

Magnetism 

- 0 (30) - - - 

 160B 23.43±0.43 96.88
*
(31) 16.06 14.33 0.97

# 

No 

Magnetism 

- 0 (14) - - - 

160B 24.06±0.40 45.83
**

 (24) 13.85 11.26 0.69
# 

No 

Magnetism 

- 0 (30) - - - 

80B 23.17±0.54 15.63 (32) 13.01 12.33 0.89
 

No 

Magnetism 

- 0 (32) - - - 

47B 23.5 3.45 (29) 13.19 13.19 1
 

No 

Magnetism 

- 0 (32) - -  

40B 23.88±0.44 13.33 (30) 22.39 1.04 0.77
 

 

Flies were entrained, monitored, and analyzed as described in the text. Kruskal-

Wallis Anova nonparametric analysis showed a significant effect of group on percent 

rhythmicity (H {5, N= 285} =174.9208 p < 0.001). 
*
 differs from all other groups with p 

< 0.02 (all LL groups pooled together). 
**

 differs from all LL groups without magnetism 

with p < 0.02. The Rayleigh z-test indicated statistically significant phasing for the 

indicated groups
(#)

. 
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Table 9.DD to LL. 

 

 

Conditi

ons 

Average 

period (hr) 

% 

Rhythmicity 

(total of 

number of 

flies) 

Average 

phaseby 

waveform 

method (hr) 

Average 

phase by 

vector 

addition 

(hr) 

Length of 

average 

vector 

Type of 

flies 

Cry
b
 CS Cry

b
 CS Cry

b
 CS Cry

b
 CS Cry

b
 CS 

DD 

with no 

Magnet

ism 

24.91

±0.3 

24.32±

0.48 

92.31 

(14) 

100 

(16) 

17.9

8 

15.77 16.9

6 

15.3

2 

0.92
# 

0.95
# 

DD 

with 

Magnet

ism 

(160B)  

24.82

±0.49 

24.62±

0.50 

100 

(14) 

100 

(14) 

18.6

0 

17.15 17.5

3 

16.4

5 

0.89
# 

0.88
# 

LL 

with no 

Magnet

ism 

24.77

±0.28 

24.42±

0.29 

57.14 

(14) 

25 

(16) 

20.3

6 

17.46 19.0

3 

15.5

6 

0.45 0.67
 

LL 

with 

magnet

ism 

(160B)  

24.81

±0.22 

24.62±

0.36 

85.71 

(14) 

78.57 

(14) 

2.63 0.64 2.62 3.21 0.72
# 

0.70
# 

LL 

with no 

Magnet

ism-2 

weeks 

24.33

±0.53 

- 50 

(14) 

0
*
 

(16) 

16.6

6 

- 15.5

4 

- 0.70
# 

-
 

LL 

with 

(160B)

14 days 

24.64

±0.52 

24.02±

0.35 

46.15 

(13) 

76.92 

(13) 

4.66 3.06 4.77 2.33 0.77
# 

0.75
# 
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Flies were entrained, monitored, and analyzed as described in the text. Kruskal-

Wallis Anova nonparametric analysis showed a significant effect of group on percent 

rhythmicity (H {11, N= 171} =74.75004 p < 0.0001). 
*
 differs from all other groups with 

magnetism with p < 0.02. The Rayleigh z-test indicated statistically significant phasing 

for the indicated groups 
(#)

. 
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3.4 Circular Plots, Activity Profiles, &Actograms 

 

Figure 15. (A).Canton S unpulsed.(D).Magnetism only (10s pulse).   

 

(B).Light only (10s pulse).   (E). Red Light &Magnestim (10s pulse). 

 

(C).Light & Magnetism (10s pulse).  



 

 42 

 

 
(F).Canton S unpulsed.(I).Magnetism only (1min pulse). 

 

 
(G). Light only (1min pulse).             (J). Red Light &Magnestim (1min pulse). 

 
 

(H).Light & Magnetism (1min pulse). 
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Figure 16. (A). CS in DD without magnetism.(B).CS in LL without magnetism. 

 

 

(C). CS in DD at 4.5mT~160B.                                             (D). CS in LL at 4.5mT~160B 
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 (E).Cry
b
 in DD without magnetism.(F).Cry

b
 in LL without magnetism. 

 

 

(G).Cry
b
 in DD at 4.5mT~160B.                                             (H). Cry

b
 in LL at 4.5mT~160B 
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Figure 17.(A.)Unpulsed Canton S flies. 

 

(B.) Canton S flies with 10s pulse of blue light applied at ZT 15. 

 

 

(C.) Canton S flies with 10s pulse of blue light and magnetism applied at ZT 15. 
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Figure 18.(A).Canton S flies group averages               (E).Cry

b
flies group averages                 

(DD without magnetism).(DD without magnetism). 

 

 
  (B).Canton S flies group averages(F).Cry

b
flies group averages                 

(LL without magnetism).(LL without magnetism). 

 

 
  (C).Canton S flies group averages  (G).Cry

b
flies group averages                 

(DD with 4.5mT~160B).(DD with 4.5mT~160B). 
 

 
 

  (D).Canton S flies group averages                                   (H). Cry
b
flies group averages                 

(LL with 4.5mT~160B).(LL with 4.5mT~160B). 
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Figure 19.(A).Canton S fly      (B). Canton S fly  

(DD without magnetism).(LL without magnetism). 

 

 
(C). Canton S fly                                        (D). Canton S fly  

(DD with 4.5mT~160B).(LL with 4.5mT~160B). 

 

 
 

(E).Cry
b
fly(F). Cry

b
fly 

(DD without magnetism).(LL without magnetism). 

 

 
(G).Cry

b
fly(H).Cry

b
fly 

(DD with 4.5mT~160B).(LL with 4.5mT~160B). 

 

 



 

 48 

3.5 Discussion 

The phase resetting assays suggest that magnetism can enhance the phase-

resetting of blue light but has no effect without light or in the presence of red light. The 

results showed saturation at pulses equal to or longer than a minute.In the presence or 

constant light (LL), 12hr:12hr cycles of magnetism can drive rhythms of locomotor 

activity, with activity peaking when the magnetic field is turned off. The effect requires 

field strengths greater than 80 times that of the earth’s magnetic field strength. This effect 

was seen both in wild type and cry
b
 flies; the latter remain substantially rhythmic in LL 

but exhibit phase shifts in the presence of the magnetic field oscillations, thereby 

suggesting that they can entrain to magnetic fields like wild type flies. Neither genotype 

demonstrates entrainment in DD to magnetic fields. These results suggest the existenceof 

a CRY-independent but light-dependent magnetosensitivity that can entrain circadian 

rhythms at magnetic field strengths much higher than those produced by the earth’s 

magnetism. The mechanism is unlikely to involve magnetism induced heating of the flies, 

because heating should be produced in both DD and LL. This mechanism would differ 

from those previously demonstrated for detection of low strength magnetic fields, 

because these required functional CRY protein (i.e., they were not observed in the cry
b
 

mutant). The existence of the magnetosensor that detects these higher strength magnetic 

fields is not known but would obviously be of great interest. It is possible that the cry
b
 

protein, which cannot bind flavin because of a missense mutation affecting flavin 

binding.[3]Nevertheless, retains some capacity to detect light. This hypothesis could be 
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tested in the cry
o
mutants’ flies, in which the CRY gene is completely knocked out. 

Alternatively, some other protein (perhaps an iron binding protein) is involved.  

It is possible that the magnetic field induces a temperature increase in the fly body 

that serves as a Zeitgeber. However, temperatures effects areunlikelyto be a Zeitgeber 

during the experiments for several reason. First, the results of the LD, DD, and LL 

experiments, shown in table 9, argue that magnetism-induced temperature changes as a 

possible zeitgeber are unlikely because the effects of magnetism require light, while 

conversion of the magnetic field energy to temperature should not. In addition, 

theoretically, the maximum energy that could become thermal energy is calculated to be 

in order of microjoules. That small value shows that temperature is unlikely to be a cue 

for entrainment during the experiments. 

Another study would be to have the actual photoreceptor protein as a sample instead 

of Drosophila melanogaster. The effect on the fly’s circadian rhythm would be not 

assayed. Therefore, that project could be deduced as complementary to ours. An ultrafast 

laser would be better in this research instead of a monochromator. A Femtosecond pump-

probe technique could be used to investigate the vibrational motions joined to the 

electronic transitions. The absorption could be then studied. This could allow one to 

calculate magnetic field effects on photoreceptor protein activation and deactivation. In 

addition, the time of the reaction could be precisely deduced in order to investigate the 

amount of light absorbed by the protein.  
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