
HIGH AVAILABILITY AND SCALABILITY SCHEMES FOR

SOFTWARE-DEFINED NETWORKS (SDN)

A DISSERTATION
IN

Computer Science
and

Telecommunications and Computer Networking

Presented to the faculty of
the University of Missouri-Kansas City

in partial fulfillment of
the requirements for the degree

DOCTOR OF PHILOSOPHY

by
HYUNGBAE PARK

M.S., South Dakota State University, Brookings, SD, USA, 2007
B.E., Kwangwoon University, Seoul, South Korea, 2005

Kansas City, Missouri
2015

Copyright c⃝ 2015

HYUNGBAE PARK

ALL RIGHTS RESERVED

HIGH AVAILABILITY AND SCALABILITY SCHEMES FOR

SOFTWARE-DEFINED NETWORKS (SDN)

Hyungbae Park, Candidate for the Doctor of Philosophy Degree

University of Missouri–Kansas City, 2015

ABSTRACT

A proliferation of network-enabled devices and network-intensive applications re-

quire the underlying networks not only to be agile despite of complex and heterogeneous

environments, but also to be highly available and scalable in order to guarantee service

integrity and continuity. The Software-Defined Network (SDN) has recently emerged to

address the problem of the ossified Internet protocol architecture and to enable agile and

flexible network evolvement. SDN, however, heavily relies on control messages between

a controller and the forwarding devices for the network operation. Thus, it becomes even

more critical to guarantee network high availability (HA) and scalability between a con-

troller and its forwarding devices in the SDN architecture.

In this dissertation, we address HA and scalability issues that are inherent in the

current OpenFlow specification and SDN architecture; and solve the problems using prac-

tical techniques. With extensive experiments using real systems, we have identified that

iii

the significant issues of HA and scalability in operations of a SDN such as single point

of failure of multiple logical connections, multiple redundant configuration, unrecover-

able interconnection failure, interface flapping, new flow attack, and event storm. We

have designed and implemented the management frameworks that deal with SDN HA and

scalability issues that we have observed from a real system. The proposed frameworks

include various SDN HA and scalability strategies. For SDN HA, we have developed sev-

eral SDN control path HA algorithms such as ensuring logical control path redundancy,

transparency of a controller cluster, and fast and accurate failure detection. We validate

the functionalities of the proposed SDN HA schemes with real network experiments. The

proposed SDN control path HA algorithms overcome the limitations of the current Open-

Flow specification and enhance performance as well as simplify management of SDN

control path HA. For SDN scalability, we have proposed and developed our management

framework in two different platforms; an embedded approach in the OpenFlow switch

and an agent-based approach with the SUMA platform that is located near the Open-

Flow switch. These platforms include various algorithms that enhance scalability of SDN

such as Detect and Mitigate Abnormality (DMA), Modify and Annotate Control (MAC),

and Message Prioritization and Classification (MPC). We have shown that the proposed

framework effectively detects and filters malicious and abnormal network behaviors such

as new flow attack, interface flapping, and event storm.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies, have

examined a dissertation titled “High Availability and Scalability Schemes for Software-

Defined Networks (SDN),” presented by Hyungbae Park, candidate for the Doctor of

Philosophy degree, and hereby certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Baek-Young Choi, Ph.D., Committee Chair
Department of Computer Science Electrical Engineering

Cory Beard, Ph.D.
Department of Computer Science Electrical Engineering

Yugyung Lee, Ph.D.
Department of Computer Science Electrical Engineering

E.K. Park, Ph.D.
Department of Computer Science Electrical Engineering

Xiaojun Shen, Ph.D.
Department of Computer Science Electrical Engineering

Sejun Song, Ph.D.
Department of Computer Science Electrical Engineering

v

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . ix

TABLES . xiv

ACKNOWLEDGEMENTS . xv

1 Introduction . 1

1.1 Software-Defined Networks . 4

1.2 Network Availability . 7

1.3 Network Scalability . 9

1.4 Objectives of the Dissertation . 15

1.5 Scope and Contribution of the Dissertation 17

1.6 Organization . 17

2 Related Work . 19

2.1 Related Work of Traditional Availability Issues 21

2.2 Related Work of High Availability Issues in SDN 22

2.3 Related Work of Scalability Issues in SDN 27

3 Measurement and Analysis of an Access Network’s Availability 33

3.1 Campus Network Architecture and Data Sets 33

3.2 Network Availability Measurement . 36

3.3 Network Availability Analysis with Splunk 38

vi

3.4 Summary . 41

4 SDN Control Path High Availability . 43

4.1 Network Management Issues: Network High Availability 44

4.2 SDN Control Path HA Management Framework: Overview 54

4.3 Coupling Logical and Physical Control Path Redundancy: Approach . . . 55

4.4 Controller Cluster Structure Agnostic Virtualization: Approach 58

4.5 Fast and Accurate Failure Detection and Recovery: Approach 64

4.6 Experiment and Emulation Setup . 67

4.7 SDN Control Path HA Framework Implementation 69

4.8 SDN Controller Software Availability Validation: New Approach 74

4.9 Summary . 84

5 SDN Scalable Network Management . 86

5.1 Network Management Issues: Scalability 88

5.2 SDN Scalability Management Framework: Overview 95

5.3 Disaster Event Detectors in the OpenFlow Switch: Approach 100

5.4 User-defined Monitoring Functions in the SUMA Middlebox: Approach . 106

5.5 Experiment/Emulation Setup and Evaluation: OHSDN 110

5.6 Experiment and Evaluation: UM Functions 117

5.7 SDN Scalability Framework Implementation 120

5.8 Summary . 123

6 Summary and Future Work . 125

REFERENCE LIST . 127

vii

VITA . 136

viii

ILLUSTRATIONS

Figure Page

1 Software-Defined Networks (SDN) architecture 5

2 Network availability timeline . 9

3 Multilateral SDN reliability domains . 10

4 Definition of control path . 11

5 Overall system architecture . 16

6 High availability classification in SDN 22

7 Two major scalability issues in SDN . 26

8 Scalability classification in SDN . 27

9 Existing solutions to the SDN scalability issues 28

10 Hierarchical access (university campus) network design 35

11 Node outages vs link failures . 39

12 Node availability (SNMP) . 40

13 Statistical analysis of node outages using Splunk 41

14 Statistical analysis of link failures using Splunk 41

ix

15 Illustration of unintended single points of failure (see the yellow num-

bers): Multiple logical connections are overlapped such as (1) the legacy

switch between the controller and the OpenFlow switch, (2) the link be-

tween the legacy switch and the OpenFlow switch, and (3) the interface

of the OpenFlow switch . 44

16 Traffic of one interface of an OpenFlow switch which establishes connec-

tions to two controllers shows both logical connections traverse a single

physical interface . 47

17 Management cost for the given network size: The management cost in-

creases as the number of OpenFlow switches and the probability of the

cluster configuration change increase . 50

18 Scenario when an OpenFlow switch loses its master controller: The con-

nection between the slave controller and the OpenFlow switch transfers

only port-status messages . 53

19 System architecture with the three HA components 55

20 Illustration of Dspof : (a) Overlapped multiple logical connections, Dspof

= 7 (b) Elimination of unintended single point of failure by aligning sep-

arate logical connections via redundant physical network with our ap-

proach, Dspof = 0 . 57

21 Logical connections deployed separately through different interfaces by

exploiting the diversity of the physical network 59

22 Availability of logical connections with/without Interface Selector 61

x

23 Fast and accurate failure detection and recovery using topology awareness

and link signals: (1) The master controller initiates the recovery (Algo-

rithm 3) (2) The OpenFlow switch initiates the recovery (Algorithm 4) . . 63

24 Initiated by the master controller (Algorithm 3) 66

25 Initiated by an OpenFlow switch (Algorithm 4) 67

26 Comparison of recovery schemes initiated by an OpenFlow switch and a

controller . 68

27 Simplified Open vSwitch architecture 70

28 SDN control path HA framework implementation 71

29 Configuration information in the JSON format 73

30 High availability experimental testbed and emulation setups 74

31 Cisco’s PAK-Priority . 77

32 MCVO system architecture . 79

33 Control message validation experimental setup 81

34 Combined Controller Scalability Measurement 82

35 Initial control message analysis . 83

36 On-going control message analysis . 84

37 Overview of experimental system setting for observation of scalability

issues . 89

38 OpenFlow status change scenarios . 90

39 New flow attack . 91

40 Object hierarchical relationships . 92

xi

41 Fundamental issues causing scalability of SDN 94

42 OHSDN management framework architecture 96

43 User-defined monitoring system architecture in SUMA 97

44 Software-defined Unified Monitoring Agent (SUMA) board (MDS-40G) . 98

45 SUMA implementation structure . 99

46 DMA operation during interface flapping events 107

47 Different incoming packet variations . 108

48 Proposed prioritization and classification architecture 111

49 Experimental network setup for new flow attack 112

50 Observation on performance under abnormal network events 113

51 OpenFlow switch congestion that can not be recognized by a remote con-

troller . 114

52 OHSDN efficiently isolates switch’s CPU while FlowVisor cannot fully

control switch’s CPU utilization . 115

53 OpenFlow switch congestion that can not be recognized by a remote con-

troller . 116

54 CPU utilization of Beacon/NOX as the number of logical interfaces changes117

55 Comparison of average CPU utilization and port-status messages with and

without flapping detection algorithm when the network scale increases . . 118

56 Event storm impacts CPU utilization . 119

57 ETRI’s experimental network architecture 120

58 System architecture with DMA and MAC in the SUMA middlebox 121

xii

59 Controller’s log messages before and after loading the DMA module into

the system . 122

xiii

TABLES

Tables Page

1 Open source SDN controllers . 6

2 Commercial SDN controllers . 7

3 Network downtime according to the number of nines 8

4 High availability mechanisms . 21

5 High availability research: comprehensive view 23

6 Scalability research: comprehensive view 30

7 Long term outages in the access layer 38

8 Difference between the existing OpenFlow configuration and the pro-

posed OpenFlow configuration . 58

9 Recovery time of the proposed schemes initiated by an OpenFlow switch

or a controller . 64

10 RESTful API URIs for the second HA solution 72

11 RESTful API URIs for the third HA solution 73

12 Ineffectiveness of the remote management 88

13 Notations for interface flapping detection 101

14 Notations for new flow attack detection 103

15 Notations for event storm filtering . 103

16 RESTful API URIs for the DMA and MAC modules 123

xiv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisors Dr. Baek-Young Choi and Dr. Sejun

Song for all their guidance, advice, and support throughout my doctoral research. Their

great advice and guidance during my Ph.D. studies contributed to my growth in research

skills of reading papers critically, discovering ideas, building up projects, and ultimately

leading and managing projects throughout all phases of research. In addition, they have

graciously guided me so I can balance my research and my hectic life with two kids.

I sincerely thank all of my committee members, Dr. Cory Beard, Dr. Yugyung

Lee, Dr. E.K. Park, and Dr. Xiaojun Shen for all their help and sincere advices when I

approached them with questions. Their comments have helped to clarify and improve this

work a lot. I also would like to thank all the lab mates, faculty, staff, colleagues, friends,

and previous students in my classes because even a short chat and a small exchange of

smiles enlightened my day. I also thank Dr. Eun-Kyoung Paik at KT Advanced Institute

of Technology for her insightful comments in the early stage of the work.

Lastly, but most importantly, I’m grateful to my family for making this possible.

My parents Youngwoo Park and Kyungsook Jang and my wife’s parents Daehyun Shin

and Youngboon Song have always encouraged me when I was frustrated and taught me

how to be patient and not to be anxious. My wife Sunae Shin and my two adorable

daughters, Katie Subin Park and Claire Yebin Park, have always been my happiness and

driving force during my doctoral research. Their love has been and will always be my

momentum to move forward.

CHAPTER 1

INTRODUCTION

Modern computer networking is more complicated now than it ever has been.

A proliferation of network-enabled devices and bandwidth-intensive applications lead to

the massive growth of customer’s demands for higher bandwidth and better quality of

networks. As the networks progress, it is getting more difficult to efficiently manage

them. Network volume and complexity come to the fore as the main reasons that hinder

efficient network management. As the number of network devices in the network gets

higher, operating expense (OPEX) of the network accordingly increases. In addition, as

more network layers, various protocols, and multiple vendors are introduced in a given

network, network operation and management becomes even more inefficient and difficult.

In order to grapple with closed, inflexible, complex, error-prone, and hard-to-

manage production network problems, Software-Defined Networking (SDN) [4, 57, 78]

has been proposed by many network companies and researchers. Particularly, fueled

by increasing data center networking and cloud computing, SDN has been building up

significant momentum towards production network deployment. This recently emerging

concept of a network architecture supports the programmable control interfaces by sep-

arating and abstracting the control plane from the data plane. This centralized control

plane, called an SDN controller, becomes the brain of the underlying network. SDN en-

ables many features, such as traffic engineering and network virtualization, in the form of

1

an application on top of the controller of the network. In addition, SDN allows for rapid

and simplified network exploration that improves network reliability, manageability, and

security. Therefore, the centralized controller plays a very important role in controlling

and operating for example, imposing policies and making decisions for routing, underly-

ing network switches. Logically, it lies between northbound applications and southbound

network devices. The OpenFlow protocol [63], which is managed by Open Networking

Foundation (ONF) [61] is the de facto protocol that is being used for communication

between the controller and the underlying network devices (e.g., OpenFlow switches).

Northbound APIs are used for communication between the controller and the applica-

tions. These applications are developed to fulfill a specific purpose. The controller is an

agent that connects applications and network devices and manages flow control to enable

intelligent networking based on the applications’ needs. As mentioned, this centralized

architecture takes all the intelligence from the underlying network switches and leaves a

flow table in the network switches. When the network switches receive new packets, they

will forward these packets to the controller to decide where to send them.

High Availability (HA) of a network control system is important in real network

operation. Thus, provisioning redundancies a priori, then detecting failures and invoking

mitigation mechanisms are the necessary steps in action. In the traditional network, HA is

solely limited to data paths so that the system maintains a certain level of availability such

as Service-Level Agreement (SLA). In the SDN architecture, the issue of HA becomes

more critical, especially for the controllers of SDNs, as they are responsible for the func-

tions of the network switches. Furthermore, the SDN architecture poses more complexity

2

on HA issues by creating a couple of separate HA network domains such as a controller

cluster network as well as control and data plane connection networks in addition to the

data plane network. Although there have been a few recent studies that focus on the fail-

ures of switches or links connecting them in data plane, little work is found to consider the

failures of the controller cluster network itself or to orchestrate the failure detection and

recoveries of all the separate HA network domains. Another important aspect with regard

to HA is fast and accurate failure detection. Detecting a failure quickly and accurately is

also very critical to maintain HA of a system. This is because slow or incorrect failure

detection delays the root cause analysis of the problem and delays recovery of the system.

As a result, overall performance of the system’s HA would be degraded. Therefore, we

additionally focus on how fast we can detect failures in order to reduce the downtime of

the network and improve HA of the network in the SDN environment.

Along with HA, scalability of a network system is also important in a real network

operation. There has been some research conducted on the scalability issue of an SDN

controller. That research can be divided into three types such as improving the capacity

of the controller itself by using parallel processing and multi-threads, devolving some

control functions to the OpenFlow switches, and clustering multiple controllers. Most of

the existing approaches try to increase the system capacity to accommodate the increasing

amount of network traffic between a controller and underlying switches. However, if we

look at the network messages between a controller and underlying switches more closely,

we can find each message has different importance according to the activities and status

of the current network.

3

In this research, we study various aspects of controller’s HA impacting the overall

performance of SDN. We identify several critical HA issues and propose a solution for

each problem. In addition, we also study and propose solutions for SDN scalability using

prioritization and classification techniques.

1.1 Software-Defined Networks

SDN is an emerging computer networking paradigm that supports programmable

interfaces which provide an agile and convenient way to customize the network traffic

control. The main contribution of the SDN architecture is the disaggregation of the ver-

tically integrated networking planes in order to improve network flexibility and manage-

ability. The control plane of the vertical network stack is decoupled and abstracted to

interact and handle all of the underlying network devices within its domain. It is logically

centralized and is called an SDN controller. An SDN controller can run on a commodity

server. With this centralized controller in the network, it gets a global view on the un-

derlying network with ease. In addition, new services can be loaded up to the controller

and each differentiated service can utilize the global view of the controller to achieve

its optimized performance. Therefore, SDN brings many benefits such as easier traffic

optimization, agile new feature deployment, and reduced management cost.

As illustrated in Figure 1, this centralized architecture takes all the intelligence

from the underlying network switches and leaves a flow table in the network switches.

Therefore, when the network switches receive packets, they will search the matching

rules from the flow tables. Each flow table consists of flow entries and there are six

4

Figure 1: Software-Defined Networks (SDN) architecture

main components in each flow entry such as match fields, priority, counters, instructions,

timeouts, and cookie. The match fields category, which consists of the ingress port and

packet headers, is the most important factor to examine incoming packets. If there is a

matching flow entry, the switch will handle the packets according to the associated action

of its instructions category. If there is no matching flow entry (e.g., new packets), then

they will forward these new packets to the controller in order to ask how to handle them.

Many companies, universities, and research institutes have been involved in de-

veloping and improving SDN for practical use. Major components of SDN are SDN

controllers, OpenFlow protocol, and OpenFlow switches. Table 1 and 2 compares the

5

SDN Cont roller

Table 1: Open source SDN controllers

Controller Languages OpenFlow Protocol Copyright
Beacon [11] Java 1.0 Apache 2.0 license

Floodlight [13] Java 1.0 Apache 2.0 license
IRIS [14] Java 1.0 ∼ 1.3 Apache 2.0 license

Maestro [3] Java 1.0 GNU LGPL v2.1
Mul [15] C 1.0 ∼ 1.4 GNU GPL v2.0
Nox [16] C++ & Python 1.0 Apache 2.0 license

OpenDaylight [17] Java 1.0 ∼ 1.4 Eclipse public license v1.0
Pox [18] Pyhon 1.0 Apache 2.0 license
Ryu [19] Python 1.0 ∼ 1.4 Apache 2.0 license

Trema [20] Ruby & C 1.0 GNU GPL v2.0

specifications of the current SDN controllers. Various SDN controllers have been de-

veloped and are currently running commercially and academically such as Beacon [11],

Floodlight [13], IRIS [14], Maestro [3], Mul [15], Nox [29], OpenDaylight [17], Pox [18],

Ryu [19], Trema [20] and etc.

Being a detailed embodiment of SDN, OpenFlow [63] is a configuration language

and protocol that abstracts the data plane of a networking device into a flow based archi-

tecture composed of a cascading set of classifiers and policy enforcement. The OpenFlow

protocol is currently the de facto standard being used for the communication between

an SDN controller and an OpenFlow switch. It is an open source project managed by

Open Networking Foundation (ONF) [61]. It enables an SDN controller to control the

forwarding plane of switches/routers. It also helps an SDN controller collect statistical

information from the network in order to have a global view on the underlying network.

The OpenFlow protocol is currently being implemented by major switch/router vendors

6

Table 2: Commercial SDN controllers

Controller Languages OpenFlow Protocol Company
Big Network Controller Java 1.0 ∼ 1.3 Big Switch Networks

ONE Java 1.0 ∼ 1.4 Cisco
Contrail Java & Python 1.0 ∼ 1.3 Juniper Networks

ProgammableFlow Ruby & C 1.0 ∼ 1.3 NEC
SDN VE Java & Python 1.0 ∼ 1.3 IBM
ViSION Java 1.0 ∼ 1.3 HP
Vyatta Java 1.0 ∼ 1.4 Brocade

to support and deliver OpenFlow-enabled products. Various OpenFlow switches are com-

mercially available in the market.

1.2 Network Availability

Achieving network availability is one of the most important operational objectives

of network service providers (NSPs). Availability is the fraction of a time that a system

or component is continuously operational. Figure 2 describes terminologies related to

network availability. HA can be measured by three main metrics such as Mean Time

Between Failures (MTBF), Mean Time To Repair (MTTRr), and Mean Time To Failure

(MTTF). MTBF is an expected average time between failures of a network component.

MTTRr is an expected average time to restore a failed network component. The average

downtime can be further divided into two parts such as MTTD and MTTRc. MTTD is an

expected average time to detect a failed network component and MTTRc is an expected

average time to recover the failed network component. Lastly, MTTF is a mean time to

failure once the network component starts working normally. Therefore, the availability

7

Table 3: Network downtime according to the number of nines

Availability Downtime per year Downtime per month Downtime per week
90% 36.5 days 72 hours 16.8 hours
99% 3.65 days 7.2 hours 1.68 hours

99.9% 8.76 hours 43.8 minutes 10.1 minutes
99.99% 52.56 minutes 4.32 minutes 1.01 minutes

99.999% 5.26 minutes 25.9 seconds 6.05 seconds

of the network component can be calculated by the formula as shown in Equation 1.1.

Table 3 shows the operational performance (i.e., downtime) according to the number of

nines. As we have more nines, we can say that the network is more stable.

Availability =
MTTF

MTBF
=

MTBF −MTTD −MTTRc

MTBF
(1.1)

Many technologies have been developed to increase network availability and en-

sure the network reliability requirements. A traditional HA architecture supports link

bundling, multipath routing, system redundancy mechanisms along with efficient state

synchronization, and failure detection and handling protocols. These HA mechanisms

are implemented in each network device as a distributed protocol to handle the network

problems according to the dedicated network topologies.

The emerging concept of SDN decouples the control plane from the underlying

network devices and abstracts it out as a centralized service. Many NSPs are very sup-

portive of its deployment due to potential benefits such as operational cost reduction and

enhanced system resilience. However, unlike traditional networks, the existing HA mech-

anisms may face many critical challenges to achieve the same Service Level Agreement

(SLA) of HA for the network services in the SDN environment where the out-of-band

8

Figure 2: Network availability timeline

connections and controller connections exist between the control and data planes and

between controllers, respectively. As illustrated in Figures 3 and 4, unlike traditional net-

works, the SDN architecture poses more complex network reliability domains by creating

new connection network domains between the control and data planes as well as among

the control plane. We named the connection network domains as the control path. The is-

sue of HA becomes more crucial on the ‘SDN controllers’ than the ‘OpenFlow switches’,

as well as it is significantly related to the scalability of the SDN controllers, as they are

responsible for the intelligent decision of the OpenFlow switch policies.

1.3 Network Scalability

In the traditional network systems, the main network functionalities such as data,

control, and management planes are distributed and embedded within the vendor spe-

cific networking devices and are managed remotely by EMSs [26], NMSs [60], OSSs,

9

Failure
Detection

Recovery
MTBF

MTID MTIRc

MTIRr
(tlow11 ti111c)

'

MTIF
(uplimc)

Failure

Time

Figure 3: Multilateral SDN reliability domains

and BSSs [65] through provisioning and configuration. As the network systems become

bigger, faster, and more complex over multiple administration domains and diverse com-

ponents, they need to handle multiple protocols with cross-layer interactions, support

various applications and services over multi-tenant policies, and are managed over un-

certain underlying topology and internal structure. At the same time, the network ser-

vices and applications are expected to be deployed quickly and more dynamically on the

large-scale networking systems while insuring security, reliability, performance, traffic

isolation, end-to-end virtualization and priority treatment. However, providing quick and

easy dynamic network adaptability is an intrinsically difficult problem for legacy network

systems, as they can barely cope with the complexity through the layers of the extensive

and expensive remote provisioning and configuration.

More specifically, traffic and resource monitoring is the essential function for

10

Tradit ional Network
Re llablllty Domain

SDN Network Reliability
Domains

C:.1ub :A Pl.:11lli:!' " -=Lw :.x k

+---------------+
t:--------r
I
I I
I I
I fntPr<:r:nnflr.tion I\P i <N'!lr k f) ! ..-----------.. __.,_.,

- ,. ______ __.,- I

I I
I I
I I
f 0.tNt rfAnP N t"'T¥Jnrk f,. _____________ _.

Figure 4: Definition of control path

large-scale enterprises, service providers, and network operators to ensure network re-

liability, network availability, and security of their resources. For this reason, many

large-scale enterprises and providers have been investing in various stand-alone dedicated

monitoring solutions. However, they find that a proprietary and dedicated stand-alone

hardware-based appliance per feature is inflexible, slow to install, and difficult to main-

tain as well as being cost prohibitive. Because of such a huge required investment, many

enterprises are looking for outsourcing alternatives and providers are also looking for

means to reduce this cost.

As networks are evolving towards software defined networks, control and man-

agement functions are logically centralized and real-time, scalable, and dynamic mon-

itoring of managed resources is a key to make precise control decisions. In addition

11

- Control plane network

...... Interconnection network

II
Control path

fBEACON

to this, virtualization (e.g., Network Virtualization (NV) and Network Function Virtual-

ization (NFV) [59]) of the underlying computing, network resources including Layer 4

(transport) ∼ Layer 7 (application) capabilities, and network services has emerged as a

complementary approach along with SDN. Specially, NFV provides more flexible and

programmable monitoring functions which are used to be built in specific hardware. To

provide such flexible and programmable monitoring functions, virtualization of the mon-

itoring function itself can be a solution. That is, a monitoring function of a particular

objective can be instantiated on demand in real-time whenever a new monitoring require-

ment occurs and can dynamically be deleted once its demand completes. Since the main

benefit of NFV is the chaining of its functionality, the virtual monitoring function can be

utilized as a part of such a virtual function chaining. Even though SDN and NFV promise

flexibility, simplicity, and cost-effectiveness, the abstractions towards the remote and cen-

tralized control and management tend to introduce the following challenging problems:

• Scalability problem: The proposed SDN architecture tends to open up control mes-

sages between the controllers and the forwarding devices to the communication

networks, which is spatiotemporally concentrated around the centralized controller.

Several SDN scalability research studies such as DevoFlow [22], DIFANE [80],

ONIX [50] show that SDN imposes excessive control traffic overheads in order

for the controller to acquire global network visibility. More significantly, the over-

head will be further increased by traditional network management events as well

as the application specific control traffic, as they may use the same physical net-

work paths, buffers, and I/O channels at the same time. If the overheads are not

12

controlled properly, they can cause various scalability problems on the network-

ing devices, controllers, and the network itself including slow message processing,

potential message drop, delayed root cause analysis, and late responses to urgent

problems.

• Inaccurate and unreliable management problem: In traditional network systems,

the network management practice mainly takes remote approaches coping with

the network-centric infrastructure. However, since the network events occurring

within the network should be inferred by the remote management systems, the po-

tential network problems are often accumulated and enlarged, and their diagnosis

is delayed, inaccurate, unreliable, and not scalable. SDN’s remote and centralized

control tends to extend the legacy network management problems into the control

plane.

• Multiple management pillar problem: Although SDN’s management plane is a rela-

tively unexplored area, either the SDN controller agnostic application of the incum-

bent management protocols or the full integration of the management plane into the

controller protocols such as OpenFlow cannot be the viable approach for the highly

dynamic SDN management. Moreover, there are growing expectations for the fine

grained management of the customer specific services and applications. Many ex-

isting SDN approaches evidence that SDN allows a variety of heterogeneous ap-

plication interfaces and protocols in the data plane. For example, according to the

most recent OpenDaylight controller architecture, SDN control and management

provides an expandable facility for the protocol specific management. Although

13

OpenFlow gained its visibility as the most fundamental pillar to support SDN, it

is actually only one of many programming interfaces to the data plane. Multiple

other interfaces and protocols such as OVSDB [66], SNMP [72], and various NFV

applications also play a significant role in the evolution of the SDN management

architecture.

• Heterogeneous deployment problem: Moreover, from the practical network oper-

ation point of view, SDN deployment may take a gradual transition instead of an

all-in-one-night transition. Therefore, integrating existing services and protocols

with SDN is an essential step for the transition. Also, some of the network sys-

tems may want to employ the SDN functions only partially. For example, inter

data center networks may want to use the provisioning functionality only, but use

their existing management tools. This will result a heterogeneous management en-

vironment. A complex combination of multiple and heterogeneous management

channels introduces a significant scalability problem.

We have investigated various network service aspects including agility, accuracy,

reliability, and scalability in order to identify an effective SDN network management sys-

tem. This dissertation intensively focuses on scalability issues. We propose a filtering and

common processing module that facilitates various communication interfaces to collect

network events. It also provides common filtering and event mitigation functions to sim-

plify the event processing for the user-defined monitoring modules. In order to validate

the functionalities of our proposed schemes, we implemented the proposed schemes and

14

metrics in OpenFlow with OpenWrt [54] based switches. In collaboration with Electron-

ics and Telecommunications Research Institute (ETRI), we also implemented our pro-

posed modules in an intelligent management middlebox called Software-defined Unified

Monitoring Agent (SUMA) [8] that becomes one logical point of intelligence for the inte-

grated management services. SUMA is an essential switch-side middlebox that provides

control and management abstraction and filtering layer among vNMS, SDN controllers,

legacy NMS, and OpenFlow switches. SUMA performs light weight event detection and

filtering, and the correlation will be conducted in vNMS. The two-tier framework is used

to balance the performance impact between network devices and controllers, to provide

scalability, and to ensure dynamic deployment.

1.4 Objectives of the Dissertation

The objectives of the dissertation are to suggest new ways to remove or reduce

problems of the existing solutions and the current OpenFlow specification and to develop

management frameworks that improve HA and scalability of the current Software-Defined

Networking systems.

The proposed framework handles two different issues (e.g., SDN HA and scal-

ability) and consists of two separate frameworks such as the SDN Control Path High

Availability Management Framework and the SDN Scalability Management Framework

as illustrated in Figure 5. Each framework is divided into several components that deal

with specific issues inherent in the SDN architecture and the current OpenFlow specifi-

cation. The SDN Control Path HA Management Framework includes several components

15

Figure 5: Overall system architecture

in the SDN controller and the OpenFlow switch. The HA Control Integrity Module in

the SDN controller and the Connectivity Enhancer in the OpenFlow switch will provide

enhanced HA performance. The HA Management Module in the SDN controller and the

Configuration Manager in the OpenFlow switch will communicate each other to provide

automated HA manageability. The SDN Scalability Management Framework includes

several components and is designed and implemented in two different platforms such as

16

---, : SON Control Path High Avallablllty Management Framewortt :

! ! HA Manaeement Module U HA Controllnteer ity Modu le ! !
l---

Controller #1

A11plic;1ti, 1ns

Core functions

Controller 112

A11plicalir1ns

Core functions

Controller IIM
........,I Appli1 :alio11~;

+-+! Core functions

Sullwarl'-tlel inl'tl Unilil'li Mu11 ilu1i11e Ael'nl {SUMA)

Transformation and Adaptation 1'.llodule

.---------------------------. :soN Sca lablllty Management Framework:

: User-defined Monitorin& (UM) :
: Modu les(OMA, MAC, enclMPC) :

l\/1£>1 1ilc11 ing ~1odul<•i,
Basic Cloud, ors. Controller

·--------------------------~ Filtering and Common ?recessing Module

---, : SON Control Path High Avallablllty Management Framewortt I
I I : I Configu rat io n Manager II Connectiv itv Enha nce r I i
L-----------·•••••••••·----------·•••••••••·-------• ---, : SON .Sca lablllty Management Framework I

! !Interface Flapping Detecm rUNew Flow Attack Delecto1I Event Storm Filte r! !
L-----------·•••••••••·----------·•••••••••·-------·

OF Switch 111 OF Switch 112 OFSwitch #N

LJ [] D f J

the OpenFlow switch as an embedded approach and the SUMA as an agent-based ap-

proach. The proposed components such as UM Modules, Interface Flapping Detector,

New Flow Attack Detector, and Event Storm Filter provide scalability against several

SDN scalability threats.

1.5 Scope and Contribution of the Dissertation

In this dissertation, we focus on two aspects of SDN management such as HA and

scalability. The main contributions of this dissertation are as follows.

• We analyze the current OpenFlow specification and identify critical and practical

HA issues that are newly introduced in SDN. The SDN control path HA manage-

ment framework that includes various management modules and algorithms is de-

signed and implemented to improve performance and manageability of HA. Two

Korean patents [48, 69] have been published and a conference paper has been pub-

lished in [68].

• We identify new types of scalability threats and propose distinctive approaches

compared to the existing solutions to resolve SDN scalability issues. One Korean

patent [81] has been published. This research has been published in two conference

papers [6, 8] and one journal paper [7] in collaboration with ETRI.

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we review

related work dealing with the HA and scalability issues of SDN. Before we cope with

17

the HA and scalability issues of SDN, we discuss the traditional network availability in

Chapter 3. In Chapters 4 and 5, we identify new problems of SDN in regards to HA and

scalability issues and propose their practical solutions. Finally, Chapter 6 summarizes and

concludes this dissertation and discusses future research goals.

18

CHAPTER 2

RELATED WORK

As the control plane in SDN is separated from the data plane and becomes a re-

mote and centralized controller of the network, two major operational problems arise.

First of all, HA issues in the SDN controller become very critical. One centralized con-

troller for the network means a single point of failure. Since the controller is the brain

of the network, the network could be easily disrupted by a malfunction in the SDN con-

troller. In addition, since the underlying forwarding devices (e.g., OpenFlow switches)

don’t have their own decision engines, delays may be experienced while recovering from

switch failures (e.g., hardware and software) as compared to legacy networks. Therefore,

it is also critical to have a fast recovery mechanism to improve HA of the data plane.

These concerns for HA issues motivated several research projects on HA in SDN. We

will discuss them in detail in the following sections. Secondly, as the number of under-

lying network devices, protocols, and applications running on top of the SDN controller

drastically increases, the capacity of the controller may not be enough to handle all the

requests from the network, protocols, and applications. In addition, an OpenFlow switch

may experience congestion when it receives more packets than its peak capability or is

under malicious attacks. These issues motivate researchers to study scalability of the SDN

controller. Therefore, in order to provide a highly reliable and robust SDN environment,

we have to deeply consider these two major properties of the SDN controller.

19

In terms of HA in SDN, two types of issues have been studied so far. One is data

plane HA and the other is control plane HA. Data plane HA of SDN can be further catego-

rized into two topics such as fast failure detection on a data plane and HA for application

servers that are running in the SDN environments. The scheme for the fast failure de-

tection on a data plane utilizes the OpenFlow switch’s link signals to check connectivity

among neighboring switches or delegates fault management to the OpenFlow switches by

extending the OpenFlow protocol to support the monitoring function. The scheme for the

server HA mainly focuses on HA between OpenFlow switches and multiple server repli-

cas [23, 47, 49, 52]. In addition to the above proposed HA strategies, it is also significant

to detect failures in the network fast and accurately so the network can recover in a timely

manner so as to maintain a highly available system [77]. There is little work done for

fast failure detection in the SDN area. The existing research has focused on a data plane

network. In comparison with existing research work, our research direction is unique, in

that it mainly focuses on the HA issue of controller networks and a network between a

controller and OpenFlow switches.

As previously mentioned, the separation of the control plane from the data plane

introduces a centralized SDN controller. Since the SDN controller administers the under-

lying network and manages all the flows over the underlying network devices, it is easy

to expect that the SDN controller may have an intrinsic scalability issue. Along with the

HA research work, there has been some research conducted on the scalability issue of the

SDN controller. That research can be divided into three types. The first type is dedicated

20

Table 4: High availability mechanisms

Mechanisms Protocols

Link bundling
Link Aggregation Control Protocol (LACP) [36],
EtherChannel [33]

Multipath routing Equal-Cost Multi-Path routing (ECMP) [31]

System redundancy
Virtual Router Redundancy Protocol (VRRP) [41],
Host Standby Router Protocol (HSRP) [35], Re-
silient Packet Ring (RPR) [39]

State synchronization
Non-Stop Routing (NSR) [38], Non-Stop Forward-
ing (NSF) [37], Stateful Switch-Over (SSO) [40]

Failure detection and handling
Ethernet Automatic Protection Switching
(EAPS) [30], Ethernet Ring Protection Switch-
ing (ERPS) [32], Fast Re-Routing (FRR) [34]

to improving the capacity of the controller itself by using multi-cores with parallel pro-

cessing and multi-threads [3]. The second type is devolving some control functions to

the OpenFlow switches [22, 47, 56, 80]. These hybrid approaches allow some degree of

intelligence to the OpenFlow switches. By offloading some control functions from the

controller, they expect to reduce workloads imposed on the controller. We will see in de-

tail what functions/intelligence are left in the OpenFlow switches. Last but not least, the

third type of solution is clustering multiple controllers [1, 50, 51, 75]. These approaches

show how they can synchronize global visibility of network state changes across the mul-

tiple controllers in the cluster.

2.1 Related Work of Traditional Availability Issues

HA is a well-established research topic and many technologies have been devel-

oped to increase network availability and ensure network reliability requirements. As

21

Figure 6: High availability classification in SDN

shown in Table 4, the traditional HA architecture supports link bundling, multipath rout-

ing, system redundancy mechanisms along with efficient state synchronization, and fail-

ure detection and handling protocols. These HA mechanisms are implemented in each

network device as a distributed protocol to handle network problems according to the

dedicated network topologies. Most of the implementations of these HA mechanisms

are proprietary. Therefore, they are not readily available in the SDN environment. Even

though LACP [36] and VRRP [41] can be easily adopted to the SDN system, they don’t

cover the synchronization between the SDN controllers, correlation of failures between

the control plane and the data plane, and interconnection HA. Therefore, we need sophis-

ticated HA mechanisms specifically designed for SDN.

2.2 Related Work of High Availability Issues in SDN

In Section 2.1, we have presented types of HA techniques and discussed the cur-

rent HA mechanisms in traditional networks. HA is a well-known research topic and

22

High availabi lity solutions in SON

Data plane HA Interconnection HA Cont rol plane HA

I I
Server HA Fast det ection Fast recovery Horizonta l Instance

Table 5: High availability research: comprehensive view

Ref.
Data plane HA Interconnection

HA
Control plane HA

Server HA F.D. F.R. Horizontal Instance
[77]

√

[23]
√

[47]
√ √

[49]
√

[42]
√

[75]
√

[50]
√

[1]
√

[3]
√

F.D.=Fast detection, F.R.= Fast recovery

well-established. However, these HA features don’t fully consider the correlation be-

tween failures of the control plane network and the interconnection network that are

newly introduced in SDN. There have been a few recent studies that focus on the fail-

ures of OpenFlow switches or links connecting them to facilitate the HA feature in the

data plane of SDN and the controller cluster networks for improving both HA and scal-

ability. In this section, we categorize HA issues in SDN into two topics; data plane HA

and control plane HA and talk about the current research work. Table 5 presents a com-

prehensive view of the current network HA research in SDN. The details are explained in

the following sections.

23

2.2.1 Data Plane High Availability

As we mentioned, data plane HA in SDN can be further categorized into two top-

ics application server HA and fast failure detection. First of all, we discuss the current

research work related to the application server HA. The study on application server HA in

SDN can be found in [77]. The authors proposed RuleBricks that provides HA in existing

OpenFlow policies. It primarily focuses on embedding HA policies into OpenFlow’s for-

warding rules. They implemented RuleBricks by utilizing an expressive brick-based data

structure instead of naive tree-based data structure. They show that RuleBricks maintains

linear scalability with the number of replicas (i,e,. backup rules) and offers approximately

50% reduction in the active rule set.

Now, we discuss the current research work in the area of fast failure detection

and recovery on the data plane. As we discussed in the definition of network availabil-

ity, it is very important to quickly detect failures in the network as well as to recover the

network as soon as possible after failure detection. Fast failure detection and network

recovery in a timely manner maintain a highly available system. There have been a few

studies conducted on fast failure detection and recovery in SDN and most of them have

focused on the data plane network. Desai et al. [23] proposed an algorithm that utilizes

the OpenFlow switch’s link signal to check the connectivity among neighboring switches

for fast failure detection. This scheme notifies all the neighboring switches of the link

failure in order to refrain from sending messages in the direction of the failed link so it

can minimize unnecessary traffic in the network and reduce the effects of link failures.

Their algorithm enables failure detection faster than the controller which identifies failed

24

links through heartbeat messages and then sends out an update. However, their algorithm

does not contribute to the recovery of the network. Kempf et al. [47] also considers fast

failure detection and recovery by extending the OpenFlow protocol to support a moni-

toring function on OpenFlow switches. They followed the fault management operation

of MPLS-TP for the implementation and achieved fault recovery in the data plane within

50 ms. Kim et al. [49] proposed an SDN fault-tolerant system, named CORONET (con-

troller based robust network), that mainly focuses on recovering the data plane network

from multiple link failures. Their proposed modules can be implemented and integrated

into the NOX controller. They summarized challenges on building a fault-tolerant system

based on SDN but they didn’t describe the proposed modules in detail.

2.2.2 Control Plane High Availability

Along with data plane HA, control plane HA has also been studied for various

aspects. Hellen et al. [42] discussed about controller’s physical placement in the network.

They tried to optimize the number of controllers and their location in the network. By

connecting an OpenFlow switch to the closest controller in the network, it can reduce

control delay and contribute to improvement of network high availability. Tootoonchian

et al. [75], Koponen et al. [50], and Berde et al. [1] proposed HyperFlow, ONIX, and

ONOS, respectively. These proposed frameworks establish one logical controller consist-

ing of physically distributed controllers in the cluster. Since they run on multiple physical

controllers, the slave controllers can operate the network when the master controller goes

down. Even though HyperFlow, ONIX, and ONOS consider some aspects of reliability of

25

Figure 7: Two major scalability issues in SDN

the controller cluster via the distributed physical controllers, their main concerns are scal-

ability and synchronization of network status among multiple physical controllers. Cai et

al. [3] proposed the Maestro controller which supports software HA. A task manager of

Maestro manages incoming computations and evenly distributes work to each SDN con-

troller instance at each core of the processor. Since it exploits a multi-core architecture, it

can re-distribute the work evenly at the time of the core crash or software crash.

26

Problem 1: Bottleneck at SON Controller

Centra l SDN Cont ro ller

Legacy sw itches

(

New Flo~wlnrr===:'.:::=;:::::::=== ./"------
Arrival Problem 2: Stress on Open Flow switch control-plane

Figure 8: Scalability classification in SDN

2.3 Related Work of Scalability Issues in SDN

Along with the HA research work, there has been some research conducted on

scalability issues in SDN. Figure 7 illustrates the scalability problems that can be ad-

dressed in the current SDN architecture. The first problem can be seen in the controller.

As introduced, SDN relies on a centralized controller to operate the underlying network

and opens up control messages to communicate between the controller and the forwarding

devices. As the size of the underlying network gets bigger, relying on a single controller

for the entire network might not be feasible. The second problem can be observed in the

OpenFlow switch. Unlike a traditional network, the forwarding device in SDN has to

communicate with the SDN controller to make a decision for forwarding or routing and

to get network policies. Specially, it is a mandatory procedure for an OpenFlow switch to

send new flow packets to the SDN controller in an encrypted format such as the packet-in

message in order to cope with them. This can create additional workload and saturate the

27

Sea la bi I ity solutions in SDN

Control p lane scalability Interconnection scalability Data plane scalabi lity

M ult i-threading Devolving Clustering

I I
Switch M iddlebox Horizontal Hierarchica l

Figure 9: Existing solutions to the SDN scalability issues

OpenFlow switch.

Current scalability research in SDN primarily focuses on the SDN controller. As

shown in Figure 9, that research can be divided into three types such as improving the

capacity of the controller itself by using parallel processing and multi-threads, devolving

some control functions to the OpenFlow switches, and clustering multiple controllers.

Table 6 presents a comprehensive view of the current scalability research in SDN. Details

are explained in the following sections.

2.3.1 Controller Enhancement with Multi-threading

The first type of solution tries to improve the capacity of the controller itself.

Cai et al. [3] proposed the Maestro controller for scalable OpenFlow network control.

28

SON Controller
Parallel processing with mult i-cores
Maestro @@

Open Flow Switches

Clustering mult iple contro llers
HyperFlow, ONIX, ONOS

Devolving some control funct io ns to t he switches

DevoFlow, DIFANE, CMQ

Since the SDN controller is the only brain of the network that copes with all the requests

from the underlying network devices, it could be a performance bottleneck in the network

system. The authors exploit parallelism to improve the capacity of the controller. They

implemented Maestro in order to support multi-core processors with parallel processing

and multi-threads. Their experiments show that the throughput of Maestro can achieve

near linear scalability on a multi-core processor server.

2.3.2 Devolving Control Functions

The second type of solution is devolving some control functions to the OpenFlow

switches. There are several well-known papers DIFANE [80] and DevoFlow [22]. DI-

FANE runs a partitioning algorithm that divides the rules evenly and devolves those par-

titioned rules across authority switches. These authority switches will handle new flows

instead of the controller. DevoFlow mainly reduces the interactions between OpenFlow

switches and the SDN controller using filtering and sampling such as rule aggregation,

selective local action, and approximating techniques. Another devolving solution, called

Control-Message Quenching (CMQ), is proposed by Luo et al. [56]. The switch with

CMQ sends only one packet-in message for each source-destination pair, suppresses and

enqueues the following un-matching packets until the switch receives a packet-out or a

flow-mod message and installs the matching rule in its flow table. This reduces unnec-

essary packet-in messages from the OpenFlow switch to the controller. Lastly, the work

done by Kempf et al. [47] also can be considered as one of the devolving schemes. The

authors claimed that the centralized fault management has serious scalability limitations.

29

Table 6: Scalability research: comprehensive view

Ref.
Focus Scalability method Devolving Cluster

Cont. Switch M.C. Devol. Cluster Switch M.B. Horizontal Hier.
[3]

√ √

[80]
√ √ √

[22]
√ √ √

[56]
√ √ √

[47]
√ √ √

[75]
√ √ √

[50]
√ √ √

[1]
√ √ √

[51]
√ √ √

[79]
√ √ √

[70]
√ √ √

[53]
√ √ √

Cont.= Controller, M.C.= Multi-cores with multi-threads, Devol.= Devolving, M.B.=
Middlebox, Hier.= Hierarchical

Therefore, they proposed a scheme which delegated fault management to the OpenFlow

switches by extending the OpenFlow protocol to support the monitoring function.

2.3.3 Clustering Multiple Controllers

The last type of solution is clustering physically distributed controllers into a log-

ically centralized controller in order to increase the capacity of the controller. There are

two types of clustering techniques such as horizontal clustering and hierarchical cluster-

ing. In the horizontal clustering, each controller plays a role of master or slave. They

could have the same functionalities or may have different functionalities based on the

30

configuration and implementation. In HyperFlow [75], the authors tried to provide SDN

controller’s scalability by using as many SDN controllers as necessary while keeping

global visibility of link state changes. However, this scheme has lower visibility for the

flow-level statistics. Koponen et al. [50] proposed ONIX which is also a distributed con-

trol platform for large-scale networks. And, it provides more general APIs than earlier

systems, so it is easier to distribute controllers and collect fine-grained flow statistics with

the distributed controllers. Berde et al. [1] proposed ONOS. It is an experimental open

source distributed SDN operating system which provides scalability for the SDN con-

trol plane and achieves strong consistency of global network visibility. Krishnamurthy

et al. [51] tried to improve the performance of the current distributed SDN control plat-

forms by proposing a novel approach for assigning SDN switches and partitions of SDN

application state to distributed controller instances. The authors focused on two metrics

such as minimizing flow setup latency and minimizing controller operating costs. Their

scheme shows a 44% decrease in flow setup latency and a 42% reduction in controller

operating costs.

The second clustering technique uses a hierarchical structure. Controllers in the

cluster can be classified into two types of controllers; a super controller and a regular

controller. Yeganeh et al. [79] proposed an efficient and scalable framework that offloads

the control applications by separating the controllers into two different roles such as a

root controller and a local controller. The root controller processes rare events and while

highly replicated local controllers cope with frequent events. The local controllers are not

connected each other. Therefore, they only handle the local events that require the local

31

visibility. However, since the root controller maintains the network-wide global visibil-

ity, the root controller is involved in packet processing that requires the global network

state. Park et al. [70] proposed a novel solution, called RAON, that recursively abstracts

the controller’s underlying networks as OpenFlow switches to reduce the complexity. In

this architecture, the networks of the lower-level controllers are abstracted as big Open-

Flow switches. This abstraction extracts the relationship between two different networks

that are operated by physically different controllers. Therefore, all the ingress and egress

ports of the network become the ports of the logical OpenFlow switches. Lee et al. [53]

proposed a hierarchical controller structure with a super controller that collects global vis-

ibility from the lower-level controllers. Their main contribution is defining northbound

message formats to realize the hierarchical controller in the field. They defined three dif-

ferent types of messages; normal messages, bandwidth event messages, and delay event

messages. New types of messages such as bandwidth event messages and delay event

messages are added in order for a super controller to quickly respond to abnormal events

from the underlying network operated by the lower-level controllers.

32

CHAPTER 3

MEASUREMENT AND ANALYSIS OF AN ACCESS NETWORK’S AVAILABILITY

Before we cope with the details of the SDN high availability issues, we will dis-

cuss the network availability in a traditional network. In this chapter, we present our

work on the measurement and analysis of the access network’s health. Understanding the

health of a network via failure and outage analysis is important to assess the availability

of a network, identify problem areas for network availability improvement, and model the

exact network behavior. However, there has been little failure measurement and analysis

work devoted to access networks. We carry out an in-depth outage and failure analy-

sis of a university campus network (University of Missouri-Kansas City) using a rich set

of node outage and link failure data and topology information. We investigate network

availability, the attributes of hardware/software and misconfiguration problems of the net-

works, the relation of link failure and node outage, and correlations between layers of a

hierarchical network. For this dissertation, we mainly focus on network availability.

3.1 Campus Network Architecture and Data Sets

In this section, we describe the architecture of the campus network and the data

sets we used for the availability measurement and analysis. The campus network of our

study is designed in a hierarchical manner which is a common practice of campus or

enterprise networks [10]. It provides a modular topology of building blocks that allow

33

the network to evolve easily. A hierarchical design avoids the need for a fully-meshed

network in which all network nodes are interconnected. The building block components

are the access layer, the distribution layer, and the core (backbone) layer as shown in

Figure 10. The building blocks of modular networks are easy to replicate, redesign, and

expand. There is no need to redesign the whole network each time a module is added or

removed. Distinct building blocks can be put in-service and taken out-of-service with little

impact on the rest of the network. This capability facilitates troubleshooting, problem

isolation, and network management. In a hierarchical design, the capacity, features, and

functionality of a specific device are optimized for its position in the network and the role

that it plays. The number of flows and their associated bandwidth requirements increase

as they traverse points of aggregation and move up the hierarchy from the access layer to

the distribution and core layers.

In earlier years - until 2007, the UMKC network had 2 core routers in the core

layer, 38 routers in distribution layer, and 373 nodes in the access layer. Since then, the

core layer has increased to 3 routers. The new core router was added more recently to

aggregate some part (e.g., dormitory area) of our campus wired and wireless networks.

In the distribution layer, there are currently 54 routers. The access layer has about 571

nodes and includes wireless access points, switches that connect to end-systems directly,

and switches that aggregate other switches.

We collected the node outage data as well as the link failure data from the uni-

versity campus access network. As for network topology, we had the direct and complete

network topology information available for the network operators. We used the naming

34

Figure 10: Hierarchical access (university campus) network design

conventions of devices to classify and relate devices, and utilized the topology information

tool, called ‘Intermapper’. Additionally, we incorporated vendors’ documents in regards

to the causes and recommended actions, and discussed the network operators’ anecdotal

comments on special events and actions. To the best of our knowledge, those data are the

most extensive and complete data used in network failure and outage analysis.

Node outage data was gathered by SNMP polling and trap, and it is from April

7, 2005 till April 10, 2009 with 42,306 outage events. The polling time varies from 2

to 5 minutes depending on the monitored devices. The outage event time is recorded

in minutes, and the outage duration is measured in seconds. Link failure data, which is

UPDOWN messages from each device sent to a central syslog server, was collected from

the syslog. The period of data is from October 1, 2008 to October 5, 2009. Among the

35

To Internet

Core Layer

Distribution
Layer

Access Layer

many types of syslog error messages, we only consider ‘LINK-3-UPDOWN’ messages

as pertaining to failure analysis. The 12 month data contains roughly 46 million syslog

messages, of which 3.8 million messages represent ‘LINK-3-UPDOWN’. Syslog data has

a slightly different format depending on the device vendors and router OSes. However, the

campus network consists of routers and switches from mostly Cisco, providing a similar

format of syslog messages. Note that a link failure can occur due to software/hardware

malfunction, natural or human-caused incidents, and it may not lead to service outage due

to redundancy or recovery mechanisms.

There may be some possible artifacts in the data, however, due to in-band (the

monitoring data follows the same physical path as the user data) monitoring, the SNMP

polling interval, and nature of protocol. Failure or outage reporting can be affected by the

topology of the network. Any failure that is on the path to the monitoring system would

result in an outage being reported for all devices on the path, though it is possible that the

issue only affected one host. If connectivity is lost between the sending device and the

syslog server, the syslog event would not be recorded. Additionally, as syslog uses the

UDP protocol, data can possibly be lost due to transient network congestion, CPU load,

OS patching, EIGRP reconvergence, STP (Spanning Tree Protocol) recalculation, etc.

3.2 Network Availability Measurement

In this section, we investigate the availability of network nodes over four years.

The node availability is the percentage of the uptime of a node. For each node i, let

36

NodeAvail(i) represent the node availability over a month, and it is computed as below.

NodeAvail(i) =
TTBF (i)− TTTR(i)

TTBF (i)
× 100 (3.1)

where TTBF (i) is the monthly Total Time Between Failure of node i, and TTTR(i) is

the monthly Total Time To Repair of node i. This formula shows that we can improve

the network availability by increasing the time between failures and reducing the time to

recover. As we will see from Chapter 4, we focus on reducing the time to recover. Then,

we compute the mean node availability (MNA) of all the nodes in the network.

MNA =

∑m
i=1NodeAvail(i)

m
(3.2)

where m is the number of nodes in the network. The data set of the TTR per device

is derived from the node outage data shown in Figure 11 and the monthly mean node

availability for the period from April 2005 to March 2009 is shown in Figure 12. We only

use the events of the unplanned outages. We exclude the planned outages from the results

to focus on the impact of the unplanned outages on the network availability. We observe

that the network maintains two or three-nine availabilities in most months. It appears

to have fairly healthy performance, even though, to the best of our knowledge, there are

no measurements available for comparison. Delving into the details, we notice one big

drop in the availability in August 2006. After consulting with the network operator, we

discovered that there was a fire near a building that took out the fiber that month. We

also observed slightly lower availabilities in several months during 2007 and 2008. To

concisely explain those occasions, we list possible reasons for the unidentified outage

events below, based on the consultations with the network operator. Then, we summarize

37

Table 7: Long term outages in the access layer

Year Month Causes of Degradation

2006
Jun Reason 1&2&3
Aug Fire accident

2007
Apr Reason 2
Dec Reason 2

2008
Jun Power outages all over campus
Jul Backup link installation & OS bugs

Nov Reason 2&3

the causes that made the performance degradation for each case, in Table 7.

• Reason 1: Issues that were either out of our control to correct any more quickly

(e.g., power problems)

• Reason 2: Issues that didn’t justify an on-call response, thus were dealt with in the

morning

• Reason 3: Issues that we were working on but took a while to fix

• Reason 4: Issues that affected monitoring but not operation

3.3 Network Availability Analysis with Splunk

We also discuss network availability analysis using Splunk and tailored scripting.

Splunk is a big data analysis tool and provides easy classifications and statistics in a con-

venient format by efficiently capturing, indexing, and correlating big data. It analyzes the

similarity between each line of the given data and recognizes the format of the messages

38

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time To Repair (sec)

E
m

pr
ic

al
 C

D
F

Node Outages
Link Failures
Link Failures (SNMP added)

Figure 11: Node outages vs link failures

or anomalies. It is very useful to quickly check various statistics of big data in real-time.

Therefore, it enables us to have agile visibility of data and manage systems efficiently.

As the size of the network increases, network operators usually focus on only

important links that are uplinks from a switch to other switches in the upper layer. Con-

sidering the limited human resources, it’s impossible for them to track all the network

messages caused by the very end links due to the sheer amount of messages being gen-

erated daily. Currently, the issues with individual interfaces are not monitored well nor

fixed unless a user contacts the network operators. However, to improve the user experi-

ence, we need to harness the syslog messages by providing an automatic tool that analyzes

network log messages and detects detrimental network events based on the institutional

network policies.

39

2005/04 2006/04 2007/04 2008/04 2009/04
98.5
98.6
98.7
98.8
98.9

99
99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9
100

A
va

ila
bi

lit
y

(%
)

Figure 12: Node availability (SNMP)

In order to quickly identify a network anomalies, we conduct quantitative analysis

that ranks the number of node outages and link failures. We use Splunk for this analysis

so that we can identify the problematic areas in our campus network taking the spatial

and temporal aspects into consideration. For example, as shown in Figure 13, Splunk

identifies that our network has many node outages in the “D” field of our campus. This

is a soccer field, which is a wide-open area. Since no students expect Wi-Fi availability

in this area, no complaints have been filed and it was left unfixed. Splunk can also be

used to detect a problematic network component. In Figure 14, Splunk indicates that we

have many link failures in one of switches in the “m” building. The possible reasons

could be related to a bad port on the switch, a bad adapter on a client’s NIC, or very

old cables such as CAT3. In this case, old cables caused these errors. After the new

wiring installation, these problems were resolved. Since this type of error only impacts

40

Figure 13: Statistical analysis of node out-
ages using Splunk

Figure 14: Statistical analysis of link fail-
ures using Splunk

individual end devices, it does not receive urgent attention in the current configuration.

These network events captured by Splunk are hard to monitor by network operators since

these errors don’t have a significant impact on the network operation. There is no way for

them to get this information unless they carefully look through all the node outage and

link failure events. In order to improve the user experience, we need to actively detect

these detrimental network events based on the institutional network policies. Network

availability analysis with Splunk can help network operators search problematic areas

and devices quickly and easily.

3.4 Summary

We conducted analysis of node outage and link failure data on a university campus

network (UMKC) in order to understand the general characteristics of an access network

including network availability. In order to precisely analyze the characteristics of the

campus network, we incorporated vendors’ documents in regards to the causes and rec-

ommended actions, and the network operators’ input on special events and actions as well

as long periods of network data such as syslog messages and SNMP data. This study

41

on the campus network provides insights on the behaviors and conditions of access net-

work availability, and potential end-to-end availability expectations. It also suggests that

Splunk can be used as an agile network analysis tool as it helps the network administrators

identify weak areas for the overall network reliability improvement.

42

CHAPTER 4

SDN CONTROL PATH HIGH AVAILABILITY

In this chapter, we present our approaches to current SDN HA problems. We elab-

orate our proposed SDN control path HA management framework that includes several

algorithms and describe its implementation. As aforementioned, SDN controller needs to

be connected to its underlying network devices and communicate with them to manage

flow requests from the network and impose network administrative policies into the net-

work. This introduces new physical links between the controller and network devices. In

addition to this, the controller can be configured as a cluster having multiple controllers

for network reliability. In this case, there would be a separate network that connects the

multiple controllers in the cluster. In this work, the links that connect the controllers in

the cluster as well as between the controller and underlying network devices are called

control paths. We will show various factors that impact the overall SLA of HA for the

network services in SDN. Specifically, we will elaborate important practical SDN HA is-

sues and propose simple and effective strategies to the corresponding problems, namely,

1) coupling logical and physical control path redundancy, 2) controller cluster structure

agnostic virtualization, and 3) fast and accurate failure detection and recovery.

43

Figure 15: Illustration of unintended single points of failure (see the yellow numbers):
Multiple logical connections are overlapped such as (1) the legacy switch between the
controller and the OpenFlow switch, (2) the link between the legacy switch and the Open-
Flow switch, and (3) the interface of the OpenFlow switch

4.1 Network Management Issues: Network High Availability

In this section, we describe our observations on HA problems in SDN with a focus

on the control path which has not been considered by the existing research. In order to

identify the limitation of the HA feature of the current specification and verify feasibility

of our proposed schemes, we set up an Open vSwitch (OpenFlow switch) [62] and two

Floodlight [13] controllers running as master and slave as shown in Figure 15. According

to the latest specification, the master controller handles all the messages from OpenFlow

switches and communicates with the OpenFlow switches. Meanwhile, the slave con-

troller does not receive OpenFlow switch’s asynchronous messages such as packet-in and

44

MASTER SLAVE
Controller

Legacy
Sw itch

------ Physical link
Lu~icul link

Font rol plane network

Inter connection network

Data plane net work

flow-removed messages except for port-status messages. Thus, the slave controller only

recognizes topology changes in the network but doesn’t execute any controller-to-switch

commands that send packets or modify the state of the OpenFlow switch. The connection

between the OpenFlow switch and the two controllers are established through two legacy

switches for HA so that we can create redundant network between the controllers and

the OpenFlow switch. We use packETH [67] to generate data plane traffic which causes

control plane traffic as well. We observe these traffic flows through this work. We discuss

three HA problems in detail in this section and our solution strategies are explained in the

following section.

Our work is unique, in that we address the HA problems of 1) the interconnection

network between a controller(s) and OpenFlow switches (i.e., control and data planes)

and 2) the network that connects multiple controllers in the cluster. We identify cruciality

of control path HA and address the important and practical issues of control path HA for

SDN. We propose multiple effective strategies in order to overcome the control path HA

issues.

4.1.1 Single Point of Failure of Multiple Logical Connections

As the control plane is the so-called brain of a network, it is vital to provide HA

for the controllers in order to maintain continuous connections and fundamental network

reliability between controllers and OpenFlow switches for the deployment of an opera-

tional SDN. As the essential first step towards HA, a cluster of multiple and networked

controllers such as the master and multiple slaves would serve a network rather than a

45

single controller. As aforementioned, the paths between these controllers and underlying

OpenFlow switches are called the control path. More precisely, the control path in this

work also includes the control plane network which is the network connection among

the controllers in the cluster. Therefore, the control path consists of the control plane

network and interconnection network which represents the network domain between the

control and data planes. Therefore, a fundamental step towards control path HA is to

allow an OpenFlow switch to connect with multiple controllers in a cluster simultane-

ously. However, as shown in Figure 15, we observed that multiple logical connections

from an OpenFlow switch to controllers don’t fully utilize the physical redundancies and

go through the same physical interfaces and links. This causes a logical single point of

failure (SPOF) in the control path.

According to the latest OpenFlow specification 1.4.0 [64], OpenFlow switches use

an IP address and a transport port number to identify a controller in the network when the

OpenFlow switches establish a secure communication between them. We find that this

simple approach doesn’t fully exploit the benefits of the multiple physical paths between

controllers and an OpenFlow switch. It also doesn’t provide a flexible way to control

which control path to choose in order to reach the controller. Moreover, this may cause a

single point of failure of multiple logical connections even if there are physically multi-

ple paths between the controllers and OpenFlow switches. Figure 15 illustrates the issue

of single point of failure despite the existence of physically redundant network compo-

nents from the OpenFlow switch to the two controllers for HA of the control plane. As

seen from the figure, the current OpenFlow configuration policy makes both of the logical

46

Figure 16: Traffic of one interface of an OpenFlow switch which establishes connections
to two controllers shows both logical connections traverse a single physical interface

connections go through the first interface of the OpenFlow switch. Through real experi-

mentation, we have identified and verified that this is indeed a single point of failure of

multiple logical connections and could delay the failure recovery time which can degrade

HA performance. Figure 16 shows the packets captured from one of the interfaces of

the OpenFlow switch connected to multiple controllers. When the OpenFlow switch con-

nects to two controllers, two logical connections use only one interface of the OpenFlow

switch. As we can see from the figure, the hello messages surrounded by the dotted box

indicate that the logical connections from the OpenFlow switch to two controllers through

the same interface.

47

This configuration works well when we have a failure only on the master con-

troller. The second logical connection to the slave controller will immediately recover

communication. However, if we have some failures on the intermediate network compo-

nents between the OpenFlow switch and the controllers, then both of the logical connec-

tions will be lost. Since each logical connection doesn’t exploit the physical redundancy,

this makes three unintended single points of failure as described in the figure such as (1)

the legacy switch between the controller and the OpenFlow switch, (2) the link between

the legacy switch and the OpenFlow switch, and (3) the interface of the OpenFlow switch.

Since the HA mechanism of SDN is not specifically intended to provide fast switch-over

time, the network may experience long recovery time and ultimately service disruption.

For example, when one of the components that causes the logical single point of failure

fails, an OpenFlow switch needs to find the slave controller through other physical paths.

The MAC addresses mapped to the intermediate legacy switches need to be updated or

established accordingly in order to re-establish the logical connections. As we may have

multiple hops between the OpenFlow switch and the controller, it is difficult to predict the

switch-over time. This points out that we need to effectively disperse the logical connec-

tions to fully exploit the available physical redundancy, so that HA failover would take

place seamlessly without requiring a re-connection process.

Hence, we propose an HA algorithm in order to exploit the physical redundancies,

align multiple logical connections along with physically redundant network components

on the control path, and guarantee a seamless switch-over.

48

4.1.2 Configuration of Explicit and Distinctive Controller Information

When there are multiple controllers in the controller cluster, it would be desirable

to have multiple logical connections from one OpenFlow switch to multiple controllers at

the same time so that we can minimize failover progress at the time of failover. However,

the current OpenFlow specification requires that when we want to connect an OpenFlow

switch to multiple controllers, each controller’s information should be explicitly and dis-

tinctively configured on the OpenFlow switch. Furthermore the current OpenFlow spec-

ification [64] requires additional operations for adding or removing a controller in the

controller cluster (e.g., edit-config) [24, 25]. To the best of our knowledge, the currently

available SDN HA features [12] do not support an automated configuration for newly

added or deleted controllers and OpenFlow switches in the network. Therefore, whenever

there are changes in the topology of a controller cluster, a network operator should manu-

ally perform the configuration of controllers and/or OpenFlow switches. It is noteworthy

that the VRRP (Virtual Router Redundancy Protocol) [41], which is one of the possible

protocols that can be used to implement control path HA, is an IP level HA solution.

Thus, it allows only one logical connection at a time even if there are multiple controllers

in the HA domain. The VRRP does’t support an OpenFlow switch’s preparation of a

backup path to slave controllers along with the working path to the master controller.

As the number of network components of SDN such as controllers and OpenFlow

switches increases, the number of connections between the controllers and OpenFlow

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (day)

N
o
rm

a
liz

e
d
 m

a
n
a
g
e
m

e
n
t

c
o
s
t 100 OFSWs, P

c
=99%

100 OFSWs, P
c
=90%

50 OFSWs, P
c
=99%

50 OFSWs, P
c
=90%

Figure 17: Management cost for the given network size: The management cost increases
as the number of OpenFlow switches and the probability of the cluster configuration
change increase

switches in the network also becomes larger through either out-of-band or in-band con-

nections. Network administrators have to configure each OpenFlow switch with mul-

tiple controllers’ individual information. Furthermore, whenever there are configura-

tion changes in the cluster of controllers, they need to reconfigure all the OpenFlow

switches managed by the corresponding controller cluster. This would become more time-

consuming, tedious, and error-prone, thus increasing operating expenditure (OPEX) due

to the augmented complexity of network management.

Figure 17 shows the management cost of the SDN network with the HA feature

obtained from the results of the simulation. Let Pc denote the probability that the cluster

topology is stable over the course of its running time. Therefore, we can expect more

50

reconfiguration, when the value of Pc is small. We assume that each topology change

of the cluster takes a constant time of the reconfiguration for each OpenFlow switch.

We varied the number of OpenFlow switches in the network and Pc. The management

cost for the given network increases as the number of OpenFlow switches increases and

Pc decreases. To address this problem, we propose a robust and simple management

framework that keeps the management cost constant by virtualizing the IP addresses of

the controllers. Therefore, the logically centralized controller (i.e., controller cluster) of

physically distributed controllers can be identified by OpenFlow switches with only one

virtual identity (e.g., virtual IP address). The OPEX of the proposed scheme will not

be affected by the size of the network. We will discuss the details of our solution in

Section 4.4.

4.1.3 Unrecoverable Interconnection Network Failure

As network systems become complex and convoluted, fast and accurate failure

detection becomes more difficult. Fast and accurate failure detection and recovery are in-

dispensable to maintain HA of a network. Note that availability is formally defined as the

fraction of time that a system is operational. Thus, there are two approaches in order to

increase availability, namely increasing the uptime of a system or reducing the downtime

of a system. However, little can be done to increase the uptime, since the commodity sys-

tems do fail in practical operations and failures occur often. Meanwhile, we may reduce

the downtime by detecting failure early and recovering it as soon as possible. Traditional

failure detection and mitigation mechanisms use a heartbeat based scheme. It indicates a

51

failure when no heartbeat is received from a remote node for a predefined threshold dura-

tion. There are a couple of problems with such approaches. It is difficult to identify the

exact root cause of the failure since the absence of heartbeats could have originated from

possibly various scenarios of a failure(s). The detection time of any failure could be un-

necessarily long depending on the configuration of parameters of heartbeat schemes such

as a heartbeat interval and the number of heartbeats to conclude a failure. Short heartbeat

intervals and a small number of absent heartbeats increase the control signal overhead

and may cause inaccurate premature reactions, while reducing the failure detection time.

Hence, we focus on how fast and accurate we can detect and recover failures by utilizing

additional information such as network topology and link signals in order to overcome

the current limitation of the OpenFlow specification and reduce the downtime.

Even if the OpenFlow specification [64] has been evolved to provide better net-

work capability and operability, little about HA of the control plane network as well as

the interconnection network that bridges the control and data planes has been considered.

As mentioned earlier, in order to improve HA, we have to consider not only failures of

controllers themselves but also the correlation between failures of controllers and Open-

Flow switches including their interconnection network. This could be critical because in

some cases we may lose the connection between an OpenFlow switch and a controller

and may not be able to recover the failure by a controller or an OpenFlow switch alone.

In the following example, we show that an OpenFlow switch loses its master controller

and can not get connected to any other slave controllers.

52

Figure 18: Scenario when an OpenFlow switch loses its master controller: The connection
between the slave controller and the OpenFlow switch transfers only port-status messages

In Figure 18, we have two controllers such as the master and slave, and the Open-

Flow switch that has established connections to both of the controllers. The controllers

are connected through a legacy switch for the purpose of the operational synchronization

among controllers in the controller cluster. According to the OpenFlow specification, the

slave controller cannot manage the OpenFlow switch. Therefore the connection between

the slave controller and the OpenFlow switch is initially inactive. In addition, another

important issue of the OpenFlow specification is that only a slave controller initiates the

role change request when the slave controller detects that its master controller is down.

The failure detection of the master controller is done by periodic heartbeat messages from

the master controller to the slave controller. Typically, if a slave controller doesn’t re-

ceive the heartbeats messages three consecutive times, then the slave controller initiates

the procedure to become the master controller.

Suppose that we have a link failure that causes complete disconnection between

53

MASTER
Controller

- , , OpenFlow

Switch

SLAVE
Controller

Port-status messaees only

Active

Inactive

the master controller and the OpenFlow switch as depicted in Figure 18. Since the Open-

Flow switch lost its master controller, it has to find a slave controller. However, since

the master controller and the slave controller can communicates with each other without

any error, the slave controller will not change its role from the slave to the master even if

the OpenFlow switch lost its connection with the master controller. Note that the current

specification doesn’t allow an OpenFlow switch to initiate its controller’s role change.

This situation exposes the possibility that some part of the network could be non-operable

due to the disconnection between the controller and OpenFlow switches and may have a

cascade effect on the network and lead to performance degradation. This is mainly be-

cause the current HA feature doesn’t fully consider the correlation between failures of the

control plane network and interconnection network. Therefore, we design an HA algo-

rithm that exploits additional information such as network topology and link signals along

with the heartbeat messages in order to detect failures in a fast and accurate manner. Our

main contribution of this approach is to sophisticatedly integrate various failure detection

procedures through all the HA network domains including the control, data, and control

path domains.

4.2 SDN Control Path HA Management Framework: Overview

In the following three sections, we propose and discuss our strategies to improve

the overall performance and manageability of HA. We have implemented the proposed

algorithms and modified the OpenFlow reference implementation on our real network

testbed, which consists of one OpenFlow switch, two legacy switches, and two SDN

54

Figure 19: System architecture with the three HA components

controllers. Figure 19 describes our proposed system architecture with the three HA ap-

proaches. We also illustrate operational examples for each approach in the following

sections.

4.3 Coupling Logical and Physical Control Path Redundancy: Approach

In order to fully exploit the physical redundancy of the network and alleviate/remove

the single points of failure, we have improved the OpenFlow reference implementation

by enabling an interface selection feature. As described in Section 4.1.1, the logical con-

nections do not exploit physical network redundancy. This causes multiple single points

55

SDN Controller

Open Flow
Protocol

Open Flow Switch

Open Flow
Protocol

Interface
Selector

Cluster
nformation
Collector

Cluster
Information
Broadcaster

Cluster
Information

Receiver

of failure of the logical connections. This is mainly due to the current OpenFlow specifi-

cation which identifies a controller only with an IP address and a transport port number.

We have added an L2 MAC address to enable the selection of interfaces on the OpenFlow

switch along with an IP address and a transport port number. After the modification, it

becomes possible to separate the overlapped logical connections into the two separate log-

ical connections aligned through two separate physical paths. The proposed approach can

balance the number of logical connections through multiple interfaces on an OpenFlow

switch. As illustrated in Figure 20, a little bit of improvement provides better flexibility

and makes it possible to separate the overlapped logical connections into two separate

physical paths. Interface Selector in Figure 19 automatically scans available interfaces

that are connected to a controller and distributes multiple logical connections evenly. For

simplicity of the comparison, Table 8 shows the difference between the existing Open-

Flow specification and the proposed approach. Figure 21 shows two logical connections

are separately deployed through the diversity of the physical network. Different source

MAC addresses (in the black dashed boxes) for the two logical connections indicate that

they are assigned through the multiple interfaces of the OpenFlow switch. In this case, the

logical connection to the master controller is assigned to the first interface of the Open-

Flow switch and the other logical connection to the slave controller is assigned through

the second interface of the OpenFlow switch.

The proposed approach can effectively be applied to and be even more beneficial

in the case of the network configuration with an in-band controller. This is because the

degree of single points of failure increases as the hop count increases from one of the

56

(a) (b)

Figure 20: Illustration of Dspof : (a) Overlapped multiple logical connections, Dspof = 7
(b) Elimination of unintended single point of failure by aligning separate logical connec-
tions via redundant physical network with our approach, Dspof = 0

OpenFlow switches to the controller. The term, Dspof , is used to represent the number

of SPOF that is possessed by a single logical connection. Dspof increases when logical

connections share (1) an intermediate switch, (2) a link between switches, and (3) an

interface of a switch. The higher Dspof is, the higher probability it takes longer time

to recover the connection to the controller. Figures 20(a) and 20(b) further explain the

benefit of the proposed approach by comparing operational scenarios when our solution

is applied or not. As we can see, Dspof of the current logical connections is 7 while

the proposed connection shows Dspof is 0. Our solution can effectively reduce Dspof by

57

* SharP.d r.ompon~nrs

- Shared luKicalli11k

SLAVE
Controller

Legacy
, Switch /.__ _

,' i
.... - . '----, / I

I

'

Switch

Legacy
Switch

------- 1-'hysi~ l link

L0Kitol li11k

SLAVE
Cont roller

Legacy
, Swit ch
/'---.--
' I

I
I

/

Swit ch

Table 8: Difference between the existing OpenFlow configuration and the proposed Open-
Flow configuration

Parameters used for the connection to controller
Existing IP address, transport port number
Proposed MAC address, IP address, transport port number

ensuring that logical paths align through physical redundancy. Figure 22 shows that the

availability of logical connections with/without Interface Selector. We assume that each

component that can cause a single point of failure between the OpenFlow switch and the

controller has the availability 99%. Availability 100% means no downtime or no error. As

we can see from Figure 22, availability of the logical connections with Interface Selector

keeps a constant value. On the other hand, availability of the logical connections without

Interface Selector is decreased as Dspof increases.

4.4 Controller Cluster Structure Agnostic Virtualization: Approach

In this approach, we propose a virtualization technique to make the physically dis-

tributed multiple controllers into one logically centralized controller that can be identified

by an OpenFlow switch via one virtual IP address. It also automates the configuration

process, which originally was a time-consuming and error-prone manual process, for ev-

ery change of the controller cluster. Thus, each OpenFlow switch doesn’t have to know

about the distinct IP addresses or port numbers of the controllers or dynamics of the con-

troller cluster regardless of how large the controller cluster is. By having the virtualized

information for the controller cluster, we can reduce a significant amount of time for the

58

Figure 21: Logical connections deployed separately through different interfaces by ex-
ploiting the diversity of the physical network

configuration and keep a constant time consumption for OpenFlow switch configuration.

Here we explain how we keep only one virtual IP address to maintain the iden-

tification for the cluster of multiple controllers in Algorithm 1. Virtualization that uses

only ‘one’ virtual IP address to maintain the identification for the controller cluster can

be done with an approach such as the VRRP. The first step of the proposed virtualization

is similar to the VRRP. An assigned virtual IP will be associated with only one controller

in the cluster at any given time. Since the virtual IP would be associated with only one

controller in the cluster at any given time, an OpenFlow switch, which is just added in

the network, can connect to the associated controller with only one virtual IP address to

59

Connection to master via int erface#!
IHII•

I ntelcor _sc :as :ea ~ 9El: 15 : 17: Sc :as: ea 1,
version 4, Src : .183 (

iE2!iill!.1!'~!:.l1EiirJ~i!iii-=~~Z:m:Jl=!!,;OII•"'!!!""'• ;:::.:: I~ ~:~'1!".~7, ~~~~;.'.!,~;;.~'.~ l';'. ~:!r.· "''"'"*" . ,n ,U*=O\'<I. , 1- ••• ,,-,..,,, 10,--u .. i . ~•= .:a, , loll,), OM· :» ,
• T·.,,,- (.. ,. ... ~·-.t, ~< ~" .. ~II ,ao.-... 0.< ,. N)J tM»), ~ '), -· l.1.0P'
·~ ,t

.183)

Different source MAC addresses from t he OpenFlow switch (x.x.x.183)

Algorithm 1 Cluster Virtualization Algorithm – runs on each controller in the cluster
1: if this.role == NULL then
2: while this.role == NULL do
3: multicast this.priority;
4: check CIBroadcaster.priority;
5: if no CIBroadcaster || this.priority > CIBroadcaster.priority then
6: this.role = CIBroadcaster;
7: this.IP = virtual IP;
8: else
9: this.role = backup;

10: end if
11: end while
12: else if this.role == CIBroadcaster then
13: while this.role == CIBroadcaster do
14: multicast heartbeat packets periodically;
15: listen to new.priority;
16: if received new.priority then
17: send this.priority;
18: if this.priority < new.priority then
19: this.role = backup;
20: end if
21: end if
22: end while
23: else if this.role == backup then
24: listen to heartbeat packets;
25: if no heartbeat packets then
26: this.role = NULL;
27: end if
28: end if

60

1 2 3 4 5 6 7
93

94

95

96

97

98

99

100

D
spof

A
va

ila
bi

lit
y

(%
)

with Interface Selector
without Interface Selector

Figure 22: Availability of logical connections with/without Interface Selector

get the cluster information. Therefore, we can hide the structure of the controller cluster

behind of the virtual IP address. There is a module in a controller that can collect other

controllers’ information in the cluster (‘Cluster Information Collector’ in Figure 19). An

OpenFlow switch uses the one virtual IP address and can communicate with the associ-

ated controller to obtain the rest of the cluster information. The controller associated with

the virtual IP address would be the cluster information broadcaster (CIBroadcaster).

The CIBroadcaster will send the up-to-date cluster information to the newly connected

OpenFlow switches in the network. Other controllers will remain as backup broadcasters

and listen to the heartbeat messages from the CIBroadcaster. A new CIBroadcaster

selection will occur when the current CIBroadcaster is down or a new controller added

to the cluster has the highest priority. This election process has nothing to do with the

61

decision of the master or the slave controller of the cluster. This means even one of the

slave controllers can be the CIBroadcaster.

Algorithm 2 Cluster Information Consistency Algorithm – runs on each controller in the
cluster

1: if just added to the cluster and booted up then
2: repeat
3: createHelloMessage();
4: multicast hello message to the cluster;
5: wait for responses;
6: until number of responses == number of controllers in the cluster;
7: save the number of responses and current information it received;
8: else if configuration changed then
9: sendUpdateInfo();

10: // send updated cluster information to all the OpenFlow switches in the network
11: repeat
12: createUpdateMessage();
13: multicast update message to the cluster;
14: wait for responses;
15: until number of responses == number of controllers in the cluster;
16: else if received hello message then
17: this.sendIPaddress();
18: this.sendPortnum();
19: // send its IP address and port number
20: else if received update message then
21: this.updateDB();
22: // update its cluster information database
23: else if received a request for cluster information then
24: this.sendClusterInfo();
25: // send cluster information to requesting OpenFlow switch
26: end if

We have explained how an OpenFlow switch can get all the controllers’ informa-

tion in the cluster using only one virtual IP address. Now, we describe how the cluster

keeps consistency of cluster information among the controllers and with the OpenFlow

switches. Algorithm 2 illustrates how the logically centralized controller, which is the

62

Figure 23: Fast and accurate failure detection and recovery using topology awareness
and link signals: (1) The master controller initiates the recovery (Algorithm 3) (2) The
OpenFlow switch initiates the recovery (Algorithm 4)

cluster of multiple controllers, keeps consistency of cluster information. There are two

types of messages to maintain consistency of cluster information. The first one is the

‘hello’ message. It is sent by the controller, which has just been added into the cluster.

And then the controller that just sent a ‘hello’ message tries to collect the current clus-

ter information from other existing controllers in the cluster. The second message is an

‘update’ message. If there is any change on the controller’s configuration, then it sends

the updated information to the OpenFlow switches and the other controllers in the cluster.

Therefore, whenever there are changes to the configuration in the cluster, the consistency

of the cluster information is automatically achieved and no human-intervention needs to

be involved.

63

MASTER
Controller

' Open Flow

Switch

SLAVE
Controller

Active
Inact ive

Table 9: Recovery time of the proposed schemes initiated by an OpenFlow switch or a
controller

Methods Recovery time (RTTs)
Existing specification ∞
Approach initiated by controller 4 RTTs
Approach initiated by OpenFlow switch 1 RTT

4.5 Fast and Accurate Failure Detection and Recovery: Approach

In this section, we discuss how to promptly detect control path failures. As we

discussed in Section 4.1.3, fast and accurate failure detection is very important in order to

maintain HA especially for reliable operation of controllers. We design an algorithm that

exploits additional information such as network topology and link signals along with the

heart-beat messages to detect failures in a fast and accurate manner. Note that our main

contribution to this approach is to orchestrate the failure detection procedures of all the

HA network domains that include the controller cluster network and the network connec-

tion between the controllers and OpenFlow switches. According to the most recent SDN

protocol specifications (such as OpenFlow and OpenDaylight), there is no orchestration

for the failure detections and recoveries of all the separate HA network domains. Hence,

our proposed protocol will be the first algorithm exploiting the network topology and the

low level link signal along with the heart-beat messages. The algorithm not only detects

failures quickly, but it also proposes another potential enhancement. Ample information

from various sources may be able to overlap failure detection and recovery windows. Al-

gorithms 3 and 4 describe the simple yet effective idea to expedite failure detection and

64

Algorithm 3 Detection Algorithm – runs on the master controller in the cluster
1: downlink signal is detected by the master controller;
2: check connectivity with the OpenFlow switch;
3: if connection is okay then
4: alert an operator for a repair physical repair of the link;
5: else
6: check available slave controllers and their reachability to the OpenFlow switch;
7: inform an appropriate slave controller to become the master;
8: end if

Algorithm 4 Detection Algorithm – runs on an OpenFlow switch
1: downlink signal is detected by an OpenFlow switch;
2: if link failure to its master controller then
3: inform (a) slave controller(s) if reachable;
4: else
5: report to the master controller about the link failure for flow table update;
6: end if

recovery that runs on the controllers and switches, respectively.

Figure 23 gives a simple illustration of the logical flows of the algorithms. Note

that the slave controller keeps receiving port-status messages from the OpenFlow switches

and has up-to-date information of connectivity (i.e., topology) of the underlying Open-

Flow switches. We propose two different solutions. In the first approach, the master

controller notifies the slave controller about the disconnection to one of the OpenFlow

switches (Alg. 3). If the slave controller has a connection to the OpenFlow switch that

has lost its connection to the master controller, then it will notify the original master con-

troller to change the role from the master to the slave. And then it changes its role from the

slave to the master so that it becomes the new master controller and serves the OpenFlow

switch that previously has lost its original master controller. We assume that a master

election mechanism can be applied when there are multiple slave controllers in the cluster

65

Figure 24: Initiated by the master controller (Algorithm 3)

as proposed in [24, 25]. The second approach (Alg. 4) allows that the OpenFlow switch

notifies the slave controller about its disconnection to the original master controller. Once

the slave controllers receive this notification from the OpenFlow switch, it will change its

role to the master. If there are multiple slave controllers in the controller cluster, we need

to run the master election process. After a new master controller is decided, the original

master controller will change its role to slave according to the notification from the new

master controller. Detailed procedures of Alg. 3 and 4 that show the interactions among

the master/slave controllers and the OpenFlow switch are illustrated in Figures 24 and 25,

respectively.

Table 9 and Figure 26 show the performance of the two proposed algorithms. The

66

Master Controller OF Switch r Slave Controller 1

Master Control poth fui led but still inter controller network fine Slave

I OF switch lo~t its Master I
NntifySl;;vP. t hP. lmt sv,itc.h

I Check the f nnect ivity

Inform no connectivity(process terminoted)

o rPT _ 1"!0 1 r _ Rr O.lJrST (IVl ;;stP.r)

OFPT ROI F RFPIY (M;;~tP. rj

Master

Figure 25: Initiated by an OpenFlow switch (Algorithm 4)

one running on the OpenFlow switch has a definitely faster response time than the one

on the controller due to its simpler procedure as seen in Table 9. The modification on

the OpenFlow switch is reasonably simple and easily adapted to the current specification

(OpenFlow 1.4). Figure 26 shows that the recovery time linearly increases as the network

size increases. The network size is measured by the maximum hop counts between the

controller and the OpenFlow switch.

4.6 Experiment and Emulation Setup

Here we describe our experimental testbed and emulation setups. We then verify

the functionalities of our proposed schemes in the physical testbed. As illustrated in

Figure 30, three servers and two legacy switches are used to configure the experimental

testbed. One of the servers is running either Open vSwitch [62] or Mininet [58] so that it

can play the role of the OpenFlow switch or can emulate a large network topology along

67

Master Controller !oFSwi@
I
I

' ' ' ' ' ' ' ' ' ' '

Slave Controller

Master Control path fa iled but st ill inter-controller network fine Sieve

OF switch loFt its Master I
: OFPT ROLE STI\TUS (Master)

Master

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Network size (Maximum hop count)

R
e
c
o
v
e
ry

 t
im

e
 (

m
s
)

OF Switch

Controller

Figure 26: Comparison of recovery schemes initiated by an OpenFlow switch and a con-
troller

with hosts. Note that each emulated OpenFlow switch created by Mininet is directly

connected to the controllers through Server #3’s physical interfaces eth0 and eth1. The

remaining two servers are used as an SDN controller. All the servers are running Ubuntu

12.04 LTS, which is the most compatible operating system with various SDN controllers

and other software packages, and the two servers for the SDN controller specially run the

software packages such as keepalived (VRRP) [46] and bonding driver [2] for the HA

configuration.

68

4.7 SDN Control Path HA Framework Implementation

Our HA framework consists of two parts: the modules in the SDN controller and

those in the OpenFlow switch. For the implementation of the SDN controller part, we

mainly use the Floodlight controller [13] which is one of the well-known SDN controllers

and written in Java. For the implementation of the OpenFlow switch part, we use REST-

ful (Representation State Transfer) API to communicate between SDN controllers and

OpenFlow switches. In addition, since we need a direct modification of the OpenFlow

switch for our first HA solution, we also use Open vSwitch [62], which is the OpenFlow

reference implementation, to implement our first HA solution that can select the multiple

interfaces for its logical connections to the multiple SDN controllers. The Open vSwitch

is an open source virtual switch licensed under the Apache 2.0 license. It supports stan-

dard management interfaces and protocols as well as the OpenFlow protocol.

Figure 28 shows the implementation details of the proposed solutions in the SDN

controller and the OpenFlow switch. We elaborate the implementations of our proposed

solutions with the first HA solution. Our objective of the first HA solution is to give

the OpenFlow switch a capability of exploiting and selecting an interface for its logi-

cal connections to the SDN controller. We extensively analyze the source codes of the

Open vSwitch and identify the important parts of the source codes to implement the in-

terface selection module. Browsing the source codes of the Open vSwitch shows many

directories for the functional and administrative implementation such as ofproto, ovsdb,

datapath, utilities, rhel, vswitchd, and lib. As shown in Figure 27, vswitchd is the main

69

Figure 27: Simplified Open vSwitch architecture

module that communicates with the SDN controller for the packet processing and man-

agement and uses many library functions defined in the lib directory. The ovs-ofctl com-

mand is used for administering and monitoring OpenFlow switches. We can query the

OpenFlow switches to add, retrieve, and delete flow entries to/from the flow table of the

OpenFlow switches. The ovs-vsctl command is mainly used for administering Open-

Flow switches’ connections to the SDN controllers. It communicates with the Open

vSwitch database (ovsdb) [66] running in the OpenFlow switches. ovsdb stores Open

vSwitch configuration information and we can query the ovsdb to see the current con-

figuration and apply any configuration changes using the ovs-vsctl command. As we

mentioned earlier, each connection from the OpenFlow switch to the SDN controller is

70

SON controller

ovs-ofctl

vswitchd

Flow Table

ovs-vsctl

ovsdb

Open vSwitch

Figure 28: SDN control path HA framework implementation

a TCP connection. Therefore, the best place in the Open vSwitch to locate our modifi-

cation would be the part that establishes a new TCP connection. We can find the source

code from ∼/openvswitch/lib/stream-tcp.c. The new tcp stream function is the one we

modify to add our proposed solution, interface selector. In order to control physical

network components (e.g., interfaces), we can use the ioctl function. The ioctl function

with the SIOCGIFINDEX flag returns the interface index of the interface. Currently, the

Open vSwitch uses only one interface by default to establish multiple connections to the

71

Table 10: RESTful API URIs for the second HA solution

URI Method Description

/wm/cluster/configuration GET
Get the current configuration information
from the configuration information manager
(CIManager)

/wm/cluster/configuration POST
Send its configuration information to the
CIManager

/wm/cluster/configuration DELETE
Delete its configuration information from the
CIManager

/wm/cluster/clear GET
Clear all the configuration information from
the CIManager

SDN controllers. This hinders the logical connections from exploiting the physical re-

dundancies between the OpenFlow switch and the SDN controllers. In order to solve this

problem, we modify and expand the function so that the OpenFlow switch can exploit

the physical redundancies between the OpenFlow switch and the SDN controllers when

it established logical connections.

For our second solution, we mainly use a scripting language with the curl com-

mand [21] and RESTful APIs to exchange extra messages between the OpenFlow switch

and the SDN controllers as well as between the SDN controllers. We implement a Flood-

light module [27] that exchanges and stores the configuration information of the SDN con-

trollers in the cluster. This module can be accessed by the OpenFlow switches and SDN

controllers by the URIs shown in Table 10. For example, the “/wm/cluster/configure”

path can be used by the OpenFlow switches and SDN controller. A series of the script-

ing codes are implemented to trigger the execution of those RESTful APIs in order for

the SDN controller to send its configuration information to the CIManager as well as to

72

Figure 29: Configuration information in the JSON format

Table 11: RESTful API URIs for the third HA solution

URI Method Description

/wm/core/switch/all/role/json GET
Retrieve the roles of all the
presently connected switches

/wm/core/switch/all/role/json POST
Set the role of all the presently
connected switches

/wm/core/switch/<switchID>/role/json GET
Retrieve the role of a particular
connected switch

/wm/core/switch/<switchID>/role/json POST
Set the role of a particular con-
nected switch

update or delete its configuration information. There is also a scripting code that can be

used by the OpenFlow switches to retrieve the up to date configuration information from

the CIManager. The up to date configuration information is delivered in the JSON for-

mat [43] as shown in Figure 29. The scripting codes use the C++ JSON parser [44] to

parse the configuration information in the JSON format.

Lastly, we also use a scripting language with the curl command [21] and RESTful

APIs to exchange extra messages between the OpenFlow switch and the SDN controllers

73

Figure 30: High availability experimental testbed and emulation setups

as well as between the SDN controllers for the third HA solution. The Floodlight con-

troller already supports various URIs related to controlling the roles of the controllers

as listed in Table 11 [28]. We utilize these URIs and expand their correlated functions to

sophisticatedly handle unexpected disconnection from the SDN controllers the HA mech-

anism.

4.8 SDN Controller Software Availability Validation: New Approach

In this section, as an extension of the SDN high availability project, we approach

SDN high availability problems from a different perspective. We propose to build a new

74

SDN controller software validation and optimization framework that serves as a funda-

mental approach to improve network high availability and scalability for SDN. As we

will see in the following section, each SDN controller generates various types of control

messages to administer the underlying network. Even though the implementation of each

SDN controller follows the format of each control message as defined in the OpenFlow

specification, the number of each control message used for coping with some network

events varies depending on SDN controllers. The proposed solution verifies validity of

the implementation of an SDN controller by analyzing the types and number of control

messages generated by the SDN controller. It then reduces the detrimental impact of an

overloaded system by incorporating vitality of individual control messages. We believe

that the proposed validation and optimization facility services a fundamental approach to

improve SDN high availability and scalability as the operations of the SDN controllers

can be optimized. Detailed objectives are as follows:

• The system reduces control message processing overhead for the controller by fa-

cilitating a selective message processing mechanism. It classifies the received mes-

sages to identify the essential messages to be processed.

• The system increases scalability of the controller by reducing the spatiotemporal

control message concentration towards the controller. It facilitates the registration

mechanisms by requesting the levels and schedules of the control messages.

75

• The system expedites the response time against the urgent issues by delegating ac-

tions to the immediate controllers, servers, or switches. The delegated system per-

forms a resolution first and reports to the controller later according to the requested

delegation level.

• The system enhances the root cause analysis capability of the controller by provid-

ing intelligences related to the classified and prioritized control messages. It corre-

lates the control messages with incoming traffic patterns and relationships among

objects.

• The system saves network bandwidth by reducing the amount of control message

traffic. It creates fewer control messages according to the controllers registration

and delegation requests.

4.8.1 Problem Definitions and Motivation

SDN exposes control messages from an internal device to the communication net-

works between the controllers and the forwarding devices. As studied in [9, 45,73], SDN

imposes excessive control traffic overhead in order for the controller to acquire global

network visibility. More significantly, the overhead will be further increased as many ex-

isting SDN controller platforms allow a variety of heterogeneous application interfaces

and protocols to the data plane. The overhead will be worsened if the control plane uses

an in-band network that shares the same physical network paths with the data plane. If the

overhead is not controlled properly in a complex combination of multiple and heteroge-

neous management channels, they cause various scalability problems for the networking

76

Figure 31: Cisco’s PAK-Priority

devices, controllers, and the network itself including slow message processing, potential

message drops, delayed root cause analysis, and late responses to urgent problems. Not

only logical control centralization, but also virtualization of the underlying computing and

network resources including Layer 4 (transport) ∼ Layer 7 (application) capabilities adds

demands for more flexible and programmable monitoring functions per virtual domain.

Moreover, in the practical network operation point of view, SDN deployment may take a

gradual or partial transition that will result in more complex heterogeneous management

environment.

In a traditional router, there is a classification facility such as Cisco’s PAK-Priority [76]

for the internally generated packets (i.e., setting a value on the ToS field). As illustrated

in Figure 31, packets punted between the control plane and the data plane within a router

are classified and handled as “Important” packets and “unimportant” packets according

to the predefined ToS values. However, the remote SDN controllers do not support any

packet prioritization and classification facility. According to the most recent OpenFlow

specification, the SDN controllers drop packets randomly regardless of the importance

and urgency of the packets. The detrimental impact of dropping vital packets can be even

77

Type of service (ToS)

worse, if the network and the controllers are in competition with other protocol and ap-

plication traffics. SDN uses asynchronous control messages to convey data plane state to

the centralized controller. For example, in the OpenFlow protocol, switches send asyn-

chronous control messages including a packet-in, flow or port state change, and error to

the controller. An asynchronous configuration option that enables the controller to set or

unset the asynchronous control messages except error messages is also available. For ex-

ample, it can disable all the port state change messages from a switch. Although control

message overhead can be reduced by disabling some control messages, potentially impor-

tant information from the switch can be also eliminated. Since some control packets are

vital to basic functioning of SDN and should not be subject to random dropping by the

controller, a prioritization and classification facility is needed in SDN.

4.8.2 MCVO Implementation

We facilitate a comprehensive classification and prioritization system for creat-

ing, handling, and managing the network control messages in SDN. We believe that the

facility services a fundamental approach to improve SDN high availability and scalabil-

ity as the controllers and interconnection networks can drop less impactful and non-vital

packets when the resource becomes limited. The MCVO facility is designed to provide

a control message classification, verification, and optimization for SDN. As illustrated

in Figure 32, the system includes a prioritization and classification, a type, quality, and

schedule registration mechanism, and the resolution and delegation protocols. The sys-

tem also provides mechanisms to correlate the control messages with other intelligence to

78

Figure 32: MCVO system architecture

expedite a decision process.

We perform an initial overhead analysis of control messages to understand the

impact of dropping packets both with and without the priority-based suppression. We

classify the control message types with various frequencies. Control messages include

(i) messages for flow entry installation; (ii) messages for flow statistics gathering; (iii)

messages for system status gathering such as CPU utilization, energy consumption, and

capacity utilization; and (iv) messages for network events such as failure. In this analysis

phase, we have found that the priority-based suppression can effectively restrain addi-

tional traffic overhead and system resources, while packet drops without priority a scheme

can abruptly peak in the traffic overhead causing significant additional data packet drops

79

Contro ller d uster

Inter oonnection network

especially under network failure events. Instead of building a sophisticated classification

mechanism, we develop an MCVO system using 2 bits of the type of service (ToS) field

in the IPv4 header according to the importance of the classified control message. This

enables the controllers and switches to differentiate the processing sequence as well as

to selectively drop received control messages. Control messages from the highest to the

lowest priority include (11) messages for network events such as failure,(10) messages

for flow entry installation, (01) messages for system status gathering such as CPU utiliza-

tion, energy consumption, and capacity utilization, and (00) messages for flow statistics

gathering. The implementation is based upon the agent where the initial messages from

the switches can be annotated and further filtered. The agent also forwards packets to the

different controllers according to the importance of the packets. If it is implemented in a

controller, two different priority queues will be used.

The MCVO system consists of the following three facilities. The selective process

facility is a process in the SDN controller to classify the urgent or important messages to

be processed among the received packets according to the message type and priority. It

can identify the essential messages to be processed among the received packets. The

controller also can ignore certain control messages, if related decisions are already made

or similar information has been seen before. The delegation and registration facility

is a basic controller layer function that can specifically register control message types,

quality, and a schedule to receive them. It can also delegate potential action items for

other controllers, servers, or switches to expedite the response against urgent problems.

The delegation and registration facility expedites the response time against the urgent

80

Figure 33: Control message validation experimental setup

issues by delegating actions to the immediate controllers, servers, or switches. The del-

egated system performs a resolution first and later reports to the controller according to

the requested delegation level. The system also saves network bandwidth by reducing

the amount of control message traffic. The correlation facility enhances the root cause

analysis capability of the controller by providing intelligence related to the classified and

prioritized control messages. It correlates the control messages with incoming traffic pat-

terns and relationships among objects. The system also provides mechanisms to correlate

control messages with other intelligences to expedite the decision process.

81

Cont roller M ini net

IRIS, Ryu, FL, and ONOS

Figure 34: Combined Controller Scalability Measurement

4.8.3 Control Message Evaluation

We have made initial progress by capturing and analyzing control messages from

various SDN controllers using the experimental setting in Figure 33. According to Fig-

ure 34, both IRIS and Ryu have are relatively large number of control messages. Specially,

more than 50% control messages are generated during the first one minute over the course

of a five minute duration. As illustrated in Figure 35, Floodlight [13] (FL) generates more

echo reply messages as the number of switches increases due to the message retransmis-

sion. The default timeout is configured in 60 seconds. The retransmission is caused by an

internal logic of FL. This indicates the FL controller can be easily congested only with its

82

Figure 35: Initial control message analysis

own control messages. This phenomenon doesn’t happen for other controllers. IRIS [14]

and ONOS [1] have relatively small number of echo messages. However, IRIS creates

abnormally high number of initial messages. As shown in Figure 36, FL generates the

smallest number of control messages. ONOS relatively has small number of control mes-

sages. The number of control messages of ONOS linearly increases as the number of

switches increases.

By analyzing the measured control messages, we can infer a few interesting SDN

controller design approaches. The results indicate that the SDN controllers interpret the

same OpenFlow specification differently. Some controllers use far more initial control

83

18000r;::;;;;;:=====c::;--.------.---,----:-.----,
- initial msgs (FL)

"' "'

15000

14000

~ 12000
"' "' Q)

E 10000
0

~ 6000
E
2
"' 6000 ,::::
~

4000

2000

- cc:ho_roquost (FL)
- echo_reply (FL)
- initial msgs (IRIS)
[:]echo_request (IRIS)
- echo_reply (IRIS)
- initial msgs (Ryu)
D echo_request (Ryu)
- cc:ho_reply (Ryu)
• lnltlal msgs (O'JOS)
- echo_request (ONOS)
- echo_reply (ONOS)

40 60 80 100
The number of switches

120 140

Figure 36: On-going control message analysis

messages. Also it should be noticed that there are many redundant control messages such

as echo, LLDP, and ICMP for the same discovery purpose. By using the MCVO system,

we will be able to further find software bugs, redundancies, and misinterpretations cases.

4.9 Summary

We have addressed various issues of HA in SDN. We first verified critical prob-

lems of SDN control path HA with the current OpenFlow specification and the existing

HA solutions using a real network setup and experiments. We then proposed the HA

84

4

12
x 10

- lldp(FL)
- dns_quory (FL)

10 - dns_response (FL)
- icmp(FL)

v, - lldp (IRIS)
2l, - dn$_query QRISi
iJl 8 - dns_response (IRIS)
V)

~ D icmp (IRIS)

0 0 dns_query (Ryu)
~ 6 C)dns_response (Ryu)
E D icmp (Ryu)
E - lldp (OMOS)
., 4 - dns_query (ONOS)
~ - dns_response (ONOS)

- icmp (ONOS)

The number of switches

management framework that incorporates practical strategies towards building SDN con-

trol path HA including ensuring logical path redundancy aligning with physical network

diversity, virtualizing a controller cluster, and exploiting topology awareness and link sig-

nals for fast and accurate failure detection and failover. We validated the efficacy of the

proposed schemes with real network experiments. For future work, we further investi-

gate a different approach to SDN high availability and scalability by validating the SDN

controller software in Section 4.8. We propose a novel control Message Classification,

Verification, and Optimization (MCVO) system that serves as a fundamental approach

to improve the scalability and then network reliability for SDN. Unlike traditional solu-

tions, the proposed solution will analyze, verify, and reduce the detrimental impact of

an overloaded system by incorporating vitality of individual control messages. By using

the MCVO algorithms and protocols in future work, we will further investigate the SDN

control messages to verify the correctness of the SDN controller.

85

CHAPTER 5

SDN SCALABLE NETWORK MANAGEMENT

In this chapter, we discuss the problems of remote network management ap-

proaches that may lead to critical scalability issues in a network. Remote approaches

are common in traditional network management and current SDN architecture to cope

with the ossified network infrastructure and the underlying forwarding devices, respec-

tively. However, since abnormal network events that occur within the network should be

inferred by the remote management system on the network edge, as explained in Table 12,

problems are often accumulated and enlarged, and diagnosis is delayed, inaccurate, unre-

liable, and not scalable. This tends to extend the legacy network’s inaccurate and unreli-

able management problems into the control plane. In addition, the abstractions towards

the remote and centralized control tend to impose excessive control traffic overhead in

that a network controller needs to acquire global network visibility. All the events that

occur within a network should be inferred by a centralized remote SDN controller and

this requires that a network event monitoring and management system on the controller

should be able to acquire global visibility of the network status as well as effectively ana-

lyze the network events to make an accurate control in time. However, as the underlying

network is an inter-related complex system, it is not straightforward to identify the root

cause of a problem. For example, a single problem may issue a huge amount of related

syslog events as well as some faults may induce a failure which is seemingly not directly

86

related to the original source of the problem. These insignificant event reports may result

in false negative or false positive decisions which may cause yet another network service

problem. As the network system becomes more complex, it is not sufficient to rely on a

single type of data to cope with network problems. The network health management sys-

tem should have a data fusion facility that can collect various types of data and efficiently

correlate the data in real-time. In this work, we specially focus on the SDN architecture

and investigate and verify abnormal network events that can practically threaten scalabil-

ity of SDN and elaborate our approaches to the current scalability issues. First of all, we

explain our observations on scalability issues of SDN and elaborate experimental environ-

ments from where we can observe abnormal network events that caused those scalability

issues. Then we describe our solutions for the identified scalability problems. We sug-

gest two different approaches to solving scalability issues by implementing our proposed

schemes in two different platforms; an embedded approach in the OpenFlow switch and

an agent-based approach that is located near the OpenFlow switch. For the embedded

approach, we propose a globally deployable Online Health management framework for

SDNs (OHSDN). OHSDN addresses important network management issues including

agility, accuracy, reliability, and scalability. We elaborate our implementation of OHSDN

in the OpenWrt [54] based OpenFlow switch and Mininet [58]. For the agent-based ap-

proach, we propose and elaborate several scalability schemes: Detect and Mitigate Ab-

normality (DMA), Modify and Annotate Control (MAC), and Message Prioritization and

Classification (MPC).

87

Table 12: Ineffectiveness of the remote management

Reason Explanation

Agility

Since abnormal network events that occur within the network sould be
inferred by the remote management system on the network edge via
polling, notification, and logging, the diagnosis is delayed and the prob-
lems are often accumulated and enlarged.

Accuracy
Due to the system and performance limitations, the remote management
cannot detect detailed abnormal network events within the network de-
vices.

Reliability
Since the management message can be lost in the presence of link fail-
ure and router crashes, it is not reliable.

Scalability
Since the remote event polling consumes both system and network re-
sources, it is not scalable when the network size or the number of mon-
itored components increases.

5.1 Network Management Issues: Scalability

In this section, we investigate what causes the scalability issues in SDN and de-

scribe our observations. In order to identify scalability issues of SDN, we set up an

SDN network with an OpenFlow switch using OpenWrt [54], controllers such as Flood-

light [13], Baecon [11], and NOX [16], and hosts connected to this SDN network as

illustrated in Figure 37. We also used Mininet [58] to create a large network with Open-

Flow switches. We ran packETH [67] to generate data plane traffic that causes control

plane traffic as well. We kept track of these control traffic flows throughout the experi-

ments. We were able to observe that a network with even a small number of OpenFlow

switches can generate enough control traffic on the network that induces congestion on

the network, specially on an SDN controller.

88

Figure 37: Overview of experimental system setting for observation of scalability issues

5.1.1 Interface Flapping

Unlike the traditional networks, a simple switch status change may cause various

cascading actions in an OpenFlow network. For example, as shown in Figure 38, when an

OpenFlow switch detects a port failure, it will send a port-status message to the SDN con-

troller. Then, the SDN controller checks its network policy, currently available network

topology, and routing information to find the flows that use the failed port. The controller

recalculates the alternative flows and sends flow modification messages to the OpenFlow

switches in order to update the flow tables. In practice, hundreds of logical interfaces can

be configured for one physical port. If a port fails, it will also cause failures to all the

89

MASTER controller SLAVE controller
(Floodlight, Baecon, NOXJ

PackETH
(Packet Ge nerator)

.....
•I r r

r .--
r

I

-~i- __ ,. .., .. N -...., ~- ____ , ...

.... , ·--~ .,-9 -· ~ ---·· ~-

Mini net
(SON e mulator)

Figure 38: OpenFlow status change scenarios

logical interfaces configured on the port. The OpenFlow switch will create and send hun-

dreds of port-status messages to an SDN controller. A port connected to the failed port on

the other OpenFlow switch may also send hundreds of port-status messages. Being the

single place of holding the network meta knowledge, the SDN controller needs to handle

all the received port-status messages in a short time period. It checks its network policy,

currently available network topology, and routing information for each request as well as

updates all the information at the same time. Considering many related flows need to be

updated, it may also send out thousands of flow modification messages to the switches.

As all the exchanged messages are encrypted, the overhead on the SDN controller, switch,

and network cannot be trivial. Furthermore, if the status keeps on changing, it may cause

a significant problem on the OpenFlow network. Indeed, it is not uncommon to see that

the status of an interface object keeps changing between up and down due to certain tran-

sient problems such as misconfiguration or partial physical failures. It is also possible

90

Open Flow Open Flow
Switch Controller

(ti Detects a port failurlc!Sl!i::::(2)::r:ort::-5:'ta~t~u~saaM:c:s:sa:g:c:s::! ~ ~~~f.~~s,
SSL ----- Routine.

1f~:::;;;=::======== etc. ' © I h>'N-Mod M~s ... i-lg!-!"> ft
/' , ,

(2),/

(1) Peer µor l
t:lil11rP 11PIPflt><I <:ii Upda te lire I low lable

Figure 39: New flow attack

that an adversary can keep on causing up and down situations intentionally. This is called

interface flapping. This unstable condition should be detected rapidly and should get the

operator’s attention in time. Otherwise, it may cause critical network malfunction espe-

cially in an OpenFlow network due to the related significant overheads.

5.1.2 New Flow Attack

One of the greatest advantages of SDN is that the control plane of the network

is centralized and has a global view of the network. This global view enables the SDN

controller to effectively and efficiently deal with traffic in the network and manage the net-

work. However, due to this remote location apart from the data plane, an OpenFlow switch

needs more effort to handle unknown incoming packets. As illustrated in Figure 39, when

a packet arrives on an OpenFlow switch, it checks the flow table. If the packet does not

match any flow entries in the flow table, the OpenFlow switch should send a new flow

request to the SDN controller via a secure channel (SSL). The SDN controller handles the

new flow request using the network policies and routing information. It makes a decision

91

OpenFlow
Switch

Open Flow
Controller

<l) Nt!w F ,.:l:o:w: P: ;,i~;- +--~- N- c-!1_" _Fh:::<_:q_u_c!-:,I--+ ,;g
<5) Sd lhc Flow T;,blc! @ Nc!w Flow C.0 1111n;,od

@ HJndle New Flows
usi np, Pol icics

Figure 40: Object hierarchical relationships

and sends a flow entry to the OpenFlow switch via a secure channel (SSL). According to

the new flow decision, the OpenFlow switch adds the new flow entry into its flow table or

drops the new packet. In practice, adversaries can inject randomly generated New Flow

packets into an OpenFlow switch port to Attack the OpenFlow switch (named new flow

attack). The OpenFlow switch needs to communicate with the SDN controller for each

unknown flow packet via a secure channel. However, it may cause control and data traffic

overhead to saturate CPU usage in the OpenFlow switch instantaneously. A FlowVisor

is designed to act as a proxy between OpenFlow switches and multiple SDN controllers

and to ensure the resource isolation within each SDN controller’s domain. However, we

have identified several new flow attack scenarios that the remote FlowVisor cannot handle

properly.

92

5.1.3 Event Storm

There are hierarchical relationships among network objects. For example, as il-

lustrated in Figure 40, a router device contains many line card objects. Each line card

object also contains many physical interfaces (i.e., ports). In turn, each physical interface

contains many logical or virtual interfaces. If objects are in a hierarchical relationship,

a status change in an object causes status changes in all the objects it contains. This, in

turn, may produce intensive status change notifications to cause an event storm. For ex-

ample, a line card failure may trigger thousands of logical interface failure events as well

as multiple physical interface failure events. With thousands of event notifications, it may

cause tremendous overhead on the switch itself as well as the network and management

services. If the event storm is not handled properly, it may cause significant problems in

an OpenFlow network due to the related overhead.

5.1.4 Various Applications on the SDN Controller

SDN supports the programmable control interfaces by separating and abstracting

the control plane from the data plane. SDN enables new applications, such as traffic en-

gineering and network virtualization and further allows for rapid and simplified network

exploration that improves network reliability, manageability, and security. Despite SDN’s

promises of flexibility and simplicity, the abstractions towards the remote and central-

ized control tend to extend the legacy network management’s inaccurate and unreliable

problems into the control plane. Although SDN’s management plane is a relatively unex-

plored area, either the SDN controller agnostic application of the incumbent management

93

(a) Multiple management pillars (b) Traffic shares a physical network

Figure 41: Fundamental issues causing scalability of SDN

protocols or the full integration of the management plane into the controller’s protocols

such as OpenFlow cannot be a viable approach for highly dynamic SDN management.

As illustrated in Figure 41(a), many recent SDN approaches evidence that SDN facilitates

multiple management pillars such as customized interfaces and protocols so that the cus-

tomer applications can directly communicate to the data plane to measure and monitor

specific information.

SDN opens up control messages between the controllers and the forwarding de-

vices to the communication networks. As studied in [9, 45, 73], SDN imposes excessive

control traffic overheads in order for the controller to acquire global network visibility.

More significantly, as shown in Figure 41(b), the overhead will be further increased by

traditional network management events as well as application specific control traffic, as

they may use the same physical network paths, buffers, and I/O channels at the same

time. The overhead will be even worsened if the control plane uses an in-band network

sharing with the data plane. If overhead is not controlled properly, it can cause various

94

scalability problems on networking devices, controllers, and the network itself including

slow message processing, potential message drops, delayed root cause analysis, and late

responses against urgent problems. Some control packets are vital to the basic function-

ing of SDN and should not be subject to random dropping by the controller. However,

the decoupled SDN controllers do not support any packet prioritization and classification

facility. According to the most recent OpenFlow [61] specification, the SDN controllers

drop packets randomly regardless of the importance and urgency of the packets. The

situation can be even worse, if the network and the controllers are in competition with

other protocol and application traffics. In this work, we intend to facilitate a comprehen-

sive prioritization and classification system for creating, handling, and managing network

control messages in SDN. Unlike the existing scalability solutions, the proposed solution

reduces the detrimental impact of an overloaded system by incorporating vitality of indi-

vidual control messages. We believe that the facility services a fundamental approach to

improve SDN scalability because the controllers and interconnection networks can drop

fewer impacting and non-vital packets when the resource becomes limited.

5.2 SDN Scalability Management Framework: Overview

From the architectural point of view, our proposed scheme is based on a two-tier

framework. As shown in Figures 42 and 43, it consists of two functional segments, the

abnormal network event detection and filtering segment and the abnormal network event

correlation and detector management segment. In the abnormal network event detection

and filtering segment, our scheme is embedded in an OpenFlow Switch as a light-weight

95

Figure 42: OHSDN management framework architecture

OpenFlow firmware extension and also implemented in the SUMA middlebox [8] as a

user-defined monitoring (UM) function. Figure 44 shows the SUMA board. SUMA

is implemented in a couple of multi-core network processing cards powered by a Tile-

Gx36 [74] processor. It supports 36 cores and each core has 1.2GHz clock speed. It also

supports a 10 Gbps packet processing capacity. Each card supports four 10G ports. As

illustrated in Figure 45, the smart packet and flow filter take the fast-path to process the

incoming packets with the line-rate. Common processing, basic monitoring functions are

all processed over the slow-path. Virtual monitoring and function manager are imple-

mented in the host user space and interact with other functions via the virtual monitoring

96

Abnormal Network ,~,-.-.. SDN Controller
Eve nt Correlation
& Detector
Management

OpenAow Protocol

----------- -------
OpenAow Protocol

OHSDN Dynamic Event Detector Manager

OHSDN
Event

Detectors •••
•

• I . ' • • :

Figure 43: User-defined monitoring system architecture in SUMA

manager agent in the card. Our solutions for scalability issues are implemented as a User-

defined Monitoring (UM) service and are realized on a Virtual Machine (VM). We talk

about details of the abnormal network event detection and filtering segment for both of

the architectures.

In the OHSDN architecture, it consists of OHSDN Event Detectors, OHSDN Dy-

namic Event Detector Manager, OHSDN Event Publisher, and OHSDN System Event

Adaptation Layer. The OHSDN Event Detectors include basic event handlers such as

SNMP, Syslog, and Outage manager as well as application specific handlers such as

CPU Attack Detector, Event Storm Filter, and Interface Flapping Detector. The OHSDN

97

Abnormal Network
Event Correlation
& Detector
Management

SON Controller

OpenFlow Protocol UMManager e
------- - ---

OpenFlow Protocol SUMA

Transformation and Adaptation Module

Use r-defined
Monitoring
Functions • •

Figure 44: Software-defined Unified Monitoring Agent (SUMA) board (MDS-40G)

Event Detectors monitor the abnormal network events according to the configured poli-

cies. Raw data are persistently maintained within the switch, and are sent to or polled by

the OHSDN Event Publisher. The OHSDN Event Publisher selects OpenFlow protocols,

SNMP MIBs, or Syslogs to communicate with the remote OHSDN manager. The OHSDN

Dynamic Event Detector Manager dynamically downloads network abnormality manage-

ment policies from the OHSDN Manager in the controller and adaptively executes them

in the OpenFlow switch using the OHSDN Event Detectors. This dynamic deployment

capability reduces performance impact on the network devices and provides scalability

to the management of the OHSDN Event Detectors. The OHSDN System Event Adap-

tation Layer facilitates a vendor independent environment to simplify the event detector

deployment as well as a dynamic configuration to filter vendor critical information.

In the SUMA architecture, the abnormal network event detection and filtering

segment consists of Transformation and Adaptation Module, Basic Monitoring Func-

tions, User-defined Monitoring (UM) Functions, and Filtering and Common Processing

98

Figure 45: SUMA implementation structure

Module. The UM functions include Packet Variation Detector (i.e., MAC) and Port Status

Watcher (i.e., DMA) which are equivalent to CPU Attack Detector and Interface Flapping

Detector in the OHSDN architecture, respectively. Abnormal event notifications are sent

to the UM Manager by the Transformation and Adaptation Module. The Transformation

and Adaptation Module originally supports OpenFlow, SNMP, compression, and tunnel-

ing protocols to communicate with the remote managements and controllers. It requests

runtime management policies and downloads dynamic event monitor modules from the

SDN controllers. The Filtering and Common Processing Module is originally integrated

with the SUMA middlebox and facilitates smart packet and flow filtering, control mes-

sage/traffic aggregation, traffic classification and forwarding, and time-stamping.

Now, we go over the details of the abnormal network event correlation and de-

tector management segment. The OHSDN Manager and the UM Manager can reside in

99

__ - fast path ___ - - slow path

Cu111111un

1•, uc.:e~~u1

--ir.-,
I ,(i, '

' ' I ' ' • RM(i ' , ',
I '

-~, i'' ,

User ·th:rined UM,
f\;1onit r.ring S~rvir.?.

VM
(Vim 1.1I r1.,1onitoring)

VI VirtuJI Function

na~i<:
RMS

r\/lonilu1 i11e S<.•1 vii.:t•

Vim 1~t
\/1\ 11~1 rv1onit orine/ Function

r'y1a11as~1

t;pn<tin~ w it h
TA lr Jnsform.:ition and

Adc!fJ lt!lion

one or more controllers. Using the network topology, routing, and configuration infor-

mation from the controllers as well as the abnormal network event information from the

individual switches, these managers can perform network-wide abnormal network event

correlation for the applications such as verification of customer’s SLA and DoS attack de-

tection. The OHSDN/UM management framework further enables an accurate root cause

classification and a detailed event prediction that have been considered as not scalable

or impossible to conduct. For example, facilitating a CPU utilization or packet variation

measurements on each individual router can provide a potential indication of abnormal

events such as a DoS attack. Traditional approaches are mainly based upon a watchdog

to set a threshold (i.e., instantaneous CPU utilization is above 90%). However, this indi-

cation alone cannot be dependable information to predict abnormal network events such

as a DoS attack. Hence, in practice, the ability to handle abrupt events in real-time is a

very difficult issue. Instead of choosing a remote or embedded approach, our management

framework harmonizes both approaches. While a light-weight embedded extension on the

OpenFlow switch or the SUMA middlebox analyzes the trend of the network abnormality

and rapidly responds to the network abnormality on the source of the problem, a remote

system performs network-wide correlation.

5.3 Disaster Event Detectors in the OpenFlow Switch: Approach

In this section, we present three abnormal network event detectors in the OHSDN

management framework such as Interface Flapping Detector, CPU Attack Detector, and

Event Storm Filter. They are the primary components in the proposed framework.

100

Table 13: Notations for interface flapping detection

Notation Explanation
FI Th Flapping Interval Threshold
FI Flapping Interval to check the flapping condition

FC Th
Flapping Event Count Threshold that is a minimum number
of flapping events to start a flapping condition

FC Flapping Event Count
Fl Start Flag indicating a start of a flapping condition
Fl Notified Flag indicating detection of a flapping condition

5.3.1 Proposed Solution Against Interface Flapping

To prevent the problems caused by the frequent status changes, we propose a

light-weight, switch embedded interface flapping detection function. Table 13 explains

the notations that are used for the OHSDN interface flapping detection algorithm. As

described in Algorithm 5, when a set of down and up events is detected within FI Th, the

interface flapping detector starts to count the number of flapping events FC. If the FC ex-

ceeds the configured flapping count threshold FC Th during the flapping interval FI, it is

considered as a flapping condition. The interface flapping detector sends a Flapping Start

notification to the network management. It may take a follow-up action such as marking

the flapping interface as a logically down status until the unstable condition is resolved.

Once FC becomes less than FC Th, a Flapping End notification is sent to indicate that

the flapping condition has been resolved.

5.3.2 Proposed Solution Against New Flow Attack

To ensure the CPU resource isolation against a New Flow attack, we propose a

101

Algorithm 5 OHSDN Interface Flapping Detection Algorithm
1: if a set of down and up event is detected within FI Th then
2: Fl Start is Y;
3: Fl Notified is N;
4: while Fl Start is Y do
5: reset FC;
6: FC++ for each flapping event;
7: wait for FI;
8: if FC > FC Th then
9: if Fl Notified ≡ N then

10: send a Flapping Start notification;
11: Fl Notified is Y;
12: end if
13: else
14: if Fl Notified ≡ Y then
15: send a Flapping End notification;
16: end if
17: Fl Start is N;
18: end if
19: end while
20: end if

light-weight, switch embedded CPU usage detection function. Table 14 explains the no-

tations that are used for the OHSDN CPU isolation algorithm. As shown in Algorithm 6,

the CPU usage detector periodically (for a slot time interval (STI)) checks CPU usages

of both the OpenFlow data path module (OFdatapath) and the OpenFlow controller con-

nection module (OFprotocol). It saves the number of clock ticks Jiffy and the observed

time T for the time slot i. A sliding window WS is used for a CPU usage calculation. For

every STI, an average CPU usage is calculated using an accumulated Jiffy with a period

time WS (Average CPU Usage = (Jiffy for WS) / WS). If the CPU usage of a port is over

the threshold Thp, the port drops incoming packets for the time interval PDI.

102

Table 14: Notations for new flow attack detection

Notation Explanation
STI Slot Time Interval
PDI Packet Drop Interval
Thp CPU usage threshold for port p

Jiffy
The number of clock ticks since system boot (user mode
(utime) + kernel mode (stime))

J[i] Jiffy value on index i
T[i] Time value on index i
WS Window size which is the number of STIs
cur index The end index of the sliding window (mod by WS)
first index The first index of the sliding window (mod by WS)
OFdatapath OpenFlow data path module (flow table)
OFprotocol OpenFlow controller connection module (protocols)

Table 15: Notations for event storm filtering

Notation Explanation
EDL Event drop list
ESI Event storm interval
SNL Status notification list

5.3.3 Proposed Solution Against Event Storm

To prevent the event storm, we propose a light-weight, switch embedded event

storm filtering function. Table 15 explains the notations that are used for the OHSDN

event storm filtering algorithm. As described in Algorithm 7, when a status change event

of an object is detected, the event storm filter checks the event drop list (EDL). If the object

is already marked, the event will be ignored. Otherwise, it will check the hierarchical

relationship. If the object has child objects, it will be added in EDL to ignore the same

103

Algorithm 6 OHSDN CPU Isolation Algorithm
1: for every STI for both OFdatapath and OFprotocol do
2: read current Jiffy and Time;
3: advance both cur index and first index by 1;
4: write J[cur index] and T[cur index];
5: read J[first index] and T[first index];
6: CPUusage = (J[cur index] - J[first index]) / (T[cur index] - T[first index]);
7: if CPUusage ≥ Thp then
8: drop the incoming packet from the port p for PDI;
9: end if

10: end for

Algorithm 7 OHSDN Event Storm Filtering Algorithm
1: if a down or up event of an object X is detected then
2: check EDL and drop if marked;
3: check the hierarchical relationship of the object;
4: if X has child objects then
5: mark in EDL to ignore the same status change events from the child objects;
6: end if
7: check SNL to remove any child objects of X;
8: add X into the notification list;
9: send a notification for the objects within SNL after ESI;

10: end if

status change events from the child objects. The object will be further added into the status

notification list (SNL), after removing all the child objects within SNL. After an interval

(ESI), port-status messages for the objects within SNL will be sent to the controller. By

sending a few representative object events, we can avoid the event storm.

104

Algorithm 8 Interface flapping detection and mitigation by DMA
1: initialize the value of EC to 0;
2: set Flap Start to N;
3: set Flap Notified to N;
4: if receive a port-status “down” message then
5: if Start Flag == 1 then
6: if Flap Interval is over then
7: set EC to 0;
8: set Start Flag to 0;
9: end if

10: return 2;
11: else if Start Flag == 0 then
12: // normal port-status down message
13: set EC to 0;
14: end if
15: else if receive a port-status “up” message then
16: if Start Flag == 1 then
17: if Flap Interval is over then
18: set EC to 0;
19: set Start Flag to 0;
20: else
21: increase the value of EC by 1;
22: if EC ≥ FC then
23: notify the interface flapping has been detected;
24: return 1;
25: else
26: warning that interface flapping may occur soon;
27: return 2;
28: end if
29: end if
30: return 2;
31: else if Start Flag == 0 then
32: // new Flap Interval starts
33: set Start Flag to 1;
34: set EC to 0;
35: increase the value of EC by 1;
36: end if
37: end if
38: return 0; // Not in Flap Interval

105

5.4 User-defined Monitoring Functions in the SUMA Middlebox: Approach

In this section, we continue to talk about the abnormal network event detection and

filtering segment in a different platform. We present three UM functions in the SUMA

middlebox such as Detect and Mitigate Abnormality (DMA), Modify and Annotate Con-

trol (MAC), and Message Prioritization and Classification (MPC).

5.4.1 Detect and Mitigate Abnormality (DMA)

The DMA module mainly detects interface flapping events from the network and

notifies the SDN controller so that the controller can drop upcoming port-status mes-

sages. Figure 46 illustrates the algorithm of the DMA module. Algorithm 8 describes

how the DMA module detects interface flapping events using port-status messages from

OpenFlow switches. When a set of down and up events is detected, the interface flapping

detector starts to count the number of flapping events in the event count (EC). If the EC

exceeds the flapping count (FC) during the predefined flapping interval (FI), it is con-

sidered as a flapping condition. The interface flapping detector sends a Flapping Start

notification to the SDN controller. It may take follow up actions so as to mark the flap-

ping interface as a logically down status until the unstable condition is resolved. Once

EC becomes less than FC, a Flapping End notification is sent to indicate that the flapping

condition has been resolved. Upon receiving the Flapping End notification, the SDN con-

troller starts to handle upcoming port-status messages normally. A network administrator

can adjust the parameters such as EC, FC, and FI according to their own environment.

106

Figure 46: DMA operation during interface flapping events

5.4.2 Modify and Annotate Control (MAC)

We propose a scheme that utilizes the control message arrival patterns such as

packet jitter and variation information as well as the packet count. Although the SDN

controller may not be able to detect the remote switch problem by only counting the in-

coming packets, a different decision can be made by considering the incoming packet

arrival patterns. As shown in Figure 47, the saturated switch presents very different the

incoming control message patterns (packet jitter and variation information) for the same

incoming packet count. In order to follow up data patterns from a specific port, we im-

plemented a simple MAC (Modify and Annotate Control) facility that mainly detects the

pattern variation.

In order to cope with problems such as following up the data patterns from a

specific port, MAC provides algorithms, protocols, and facilities to modify and annotate

control messages (e.g., adding sequence numbers in the control message) to assist remote

107

I I starts
1f a flapp1nq
t!Yt!ll l i~
J elet leJ <

f ldµµiriy ·'Slarl" Nulilit aliun
Under a flapping condi,ioo:
cc ., re

Fl Fl

EC = 4 EC = 4

>:< fl

EC = 4

Flaµµi119 "En<l" Nulilit aliun
Under a flapping condit ion:
cc <- re

Fl

EC = 2

Figure 47: Different incoming packet variations

network monitoring, control message differentiation, control message differentiation, and

resource isolation. According to the latest OpenFlow specification 1.4.0 [64], there are

three different types of messages such as asynchronous, synchronous, and controller-to-

switch messages. Especially, the synchronous messages sent by an SDN controller in-

clude a transaction identification (xID). This will be used to match the request-reply pair

during operation. An SDN controller uses the “Stats-Request” message, which is one

of the synchronous messages, to get a report of the statistics from an OpenFlow switch.

The OpenFlow switch will respond to the request using the “Stats-Reply” message. Each

request message has a unique xID. In addition, “Echo-Request” and “Echo-Reply” mes-

sages are used to check aliveness and various applications running on the SDN controller

will send various synchronous messages to get global network visibility. Therefore, we

can utilize these xIDs to track the incoming packets’ arrival pattern variation.

108

250 .
•) ' •
" "

,,
t":• , • , . •
""

,
'·· • I •

"' 200 , .. ., ..
I , ,

• • 1i, • , , ., , • Q. • • •
~ 150 • • • •
8

, , • • c , ., • • & 100 . '· • ·' . ·•·· ., ····, ,· • "' , ., • • • Q> , • ,
"' • ,
'" ,
"' 50 • • ,
"' • • • ,
::; • • •

- Not saturated •• • • ,•
i" - - • Saturated ' 00 50 100 150

Time

5.4.3 Message Prioritization and Classification (MPC)

We perform an initial overhead analysis to understand the impact of control mes-

sage drop under the priority-based suppression and packet drop without priority. We

classify the control message types with varied frequencies. Control messages from the

highest to the lowest priority include (11) messages for network events such as failure

(10) messages for flow entry installation, (01) messages for system status gathering such

as CPU utilization and capacity utilization, and (00) messages for flow statistics gather-

ing. We found that priority-based suppression can effectively restrain additional traffic

overhead and system resource use, while packet drops without a priority scheme can

abruptly peak causing significant additional data packet drops, especially under network

failure events. Instead of building a sophisticated classification mechanism, we develop

a system to use 2 bits of the type of service (ToS) field in the IPv4 header according to

the classified control message importance. This enables the controllers and switches to

differentiate the processing sequence as well as to selectively drop received control mes-

sages. As illustrated in Figure 48, the implementation is based upon the agent where the

initial messages from the switches can be annotated and further filtered. The agent also

forwards packets to the different controllers according to the importance of the packets.

If it is implemented in a controller, two different queues will be used. We also envisions

providing the following three facilities. A selective process facility reduces control mes-

sage processing overheads on the controller by facilitating a selective message processing

mechanism. It can identify the essential messages to be processed among the received

109

packets. The following control messages can be ignored, if the related decisions are al-

ready made or the similar information has been seen before. A delegation and registration

facility expedites the response time against the urgent issues by delegating actions to the

immediate controllers, servers, or switches. The delegated system performs a resolution

first and reports to the controller later according to the requested delegation level. The

system also saves network bandwidth by reducing the amount of control message traffic.

A controller can specifically register control message type, level, and schedule to receive.

A correlation facility enhances the root cause analysis capability of the controller by pro-

viding intelligence related to the classified and prioritized control messages. It correlates

the control messages with incoming traffic patterns and relationships among objects. The

system also provides mechanisms to correlate control messages with other intelligences

to expedite the decision process.

5.5 Experiment/Emulation Setup and Evaluation: OHSDN

In this section, we describe our experimental testbed and emulation setting and

evaluate the effectiveness and efficiency of our proposed framework through extensive

system experiments and simulations. We used the OpenWrt-based Linksys WRT54GL

router [55] as well as used Mininet simulation for the scalable network abnormality tests.

5.5.1 The Case Against New Flow Attacks

As shown in Figure 49, three hosts and one Beacon controller are connected to the

four port OpenWrt router. Host 1 uses a packETH traffic generator [67] to inject packets

into the OpenFlow switch. Hosts 2 and 3 exchange ICMP messages. We create a new

110

Figure 48: Proposed prioritization and classification architecture

flow attack by injecting garbage traffic into the OpenFlow switch port 1 from the traffic

generator in host 1. As shown in Figure 50(a), when new flow packets are inserted into

an OpenFlow switch, they cause both control and data overhead to saturate CPU usage

in the switch. The CPU utilization of the OpenFlow protocol increases proportionally to

the packet injection rate until the CPU is saturated. It is mainly due to the secure chan-

nel (i.e., encryption and decryption) overheads for sending new flow requests. However,

it should be clearly observed that the OpenFlow protocol overhead does not exist in the

traditional switches. It makes the OpenFlow switch more vulnerable to the new flow at-

tack. Since there is no CPU isolation mechanism, the new flow attack on port 1 directly

impacts the existing regular traffic between ports 2 and 3. For example, the average RTT

in Figure 50(b) clearly shows that the ICMP messages between ports 2 and 3 are greatly

111

Controllers for
important messages

Controllers for
'un'important messages ,-------, ,-------,

I I I I
I Controller I· • · l Controller l
t__ _ __) t__ _ __)

C I ~ C I '

Controller (luster

ontro , ,- : o ntro , :

_______ -~--=~-==:-:~:-'.·~~·;:m:
0":'::::::s,___ ... ~~~;;..=·:.:-·::."'~~-::!7::·:_: ________________________ _

Agents/Switches/
Controll er 1/0

Jnter<onne<tion network

Data plane network

Figure 49: Experimental network setup for new flow attack

impacted by the new flow attack on port 1. These results indicate that a new flow attack

is real and easy to be created. Although OpenFlow itself does not provide CPU isolation,

FlowVisor [71] remotely monitors the OpenFlow switch’s new flow packet count to en-

sure CPU isolation among the virtual slices. However, as presented in Figure 51, when

the CPU is already saturated due to the abrupt injection of new flow packets, the actual

number of new flow packets sent to the FlowVisor (i.e., 100 pps) can be far less than the

real incoming new flow packet counts (i.e., 4000 pps). Figure 50(a) also shows that the

protocol CPU utilization stays the same after the CPU saturation where the packet injec-

tion rate is over 100 pps regardless of the incoming packet rate. It indicates that only a

few packets are actually sent to the FlowVisor. In this case, the FlowVisor fails to detect

the critical CPU problem in the remote switch as shown in Figure 52(a). Figure 52(b) also

112

[Openf low Firmware

Tr al lie Ci1:nc•r a l r>1

(packCTI I)

1q? .1 fi8.11.?
Host 1

Flow Table

+---------If.M P l rrun Hosl ?

to I lostJ

1'l?.HiR.1 ?.?
Host 2

1q? .1 68.B.?

Host el

Controller
(Floodlight)

----~I]
Tt.P prn I ll: fi6~'.1

II' address: 192. l bl:l.1.~0

(a) CPU utilization (b) Average round-trip time

Figure 50: Observation on performance under abnormal network events

presents that the FlowVisor cannot accurately ensure CPU isolation for the remote switch.

Although an average CPU utilization may meet the CPU isolation target (i.e., 80%), it fre-

quently violates the resource limitation. It is mainly due to the delayed response. These

experimental results confirm that remote resource control has intrinsic difficulties. How-

ever, as presented in Figure 52(c), the proposed embedded CPU usage detection function

can control the CPU resource very accurately. It also shows that the average CPU usage

is better than the FlowVisor results in Figure 52(c).

5.5.2 The Case Against Interface Flapping

As illustrated in Figure 53, Mininet creates an OpenFlow network with multiple

OpenFlow switches on a single virtual machine and Beacon is used as the main controller

of the network. The Beacon controller runs on an Eclipse debug mode with applica-

tions including learning switch (self learning from the new flow messages), link topology

113

Figure 51: OpenFlow switch congestion that can not be recognized by a remote controller

discovery (links to a switch aliveness check with LLDP), and routing (APSP: All Pairs

Shortest Path). We implemented up to 255 logical interfaces (configurable) for a port. We

created an interface flapping by changing a port status on an emulated OpenFlow switch

that also causes the status changes on the contained logical interfaces. First, we checked

the controller CPU utilization by varying the number of logical interfaces. We used both

NOX and Beacon controllers. As the controller needs to recalculate the existing flows

and sends flow modification messages to the switches, we also changed the number of

switches to see how the network size impacts the controller performance. As shown in

Figure 54, CPU utilization on a controller increased proportionally to the number of log-

ical interfaces. The result shows that the controller CPU utilization became around 35%

114

4000PPS
New Flows

9-=:=o -~
u
Q)

(fJ

ui 200
]
u
i:S 150

2
fl 100
c
T
]
u
rn

CL

OpenFlow Switch
Only lOOPPS
Outgoing New

Flow Requests tJ
1- '-
~~~ SSL 

SDN Cont roller 

Cannot detect a 
switch under 
attack! 



(a) CPU isolation failure (b) FlowVisor CPU isolation (c) OHSDN CPU isolation

Figure 52: OHSDN efficiently isolates switch’s CPU while FlowVisor cannot fully con-
trol switch’s CPU utilization

in a small network (three switches) with 255 logical interfaces for a port. It indicates

that a simple port status change can cause great overhead in an OpenFlow network. We

tested both the CPU utilization and the number of messages on a controller with an inter-

face flapping detection algorithm by varying the number of switches. We used a Beacon

controller with 255 logical interfaces for each switch port. As the controller recalculated

the flows and sent flow modification messages, the network size impacted the controller

performance. As presented in Figures 55(a) and 55(b), without the interface flapping de-

tection algorithm, the controller CPU utilization was increased about 30% and the number

of received messages was increased around 80K messages. Considering a relatively small

network (six switches) was used in the experiment, it caused a significant performance

overhead. However, with the interface flapping detection algorithm, the controller’s CPU

utilization was kept at less than 5% and the number of messages was far less than 5K

messages. The event storm filtering algorithm was applied in this experiment along with

the interface flapping detection algorithm. It indicates that a simple embedded algorithm

115



Figure 53: OpenFlow switch congestion that can not be recognized by a remote controller

can achieve significant performance improvement especially in an OpenFlow network.

5.5.3 The Case Against Event Storm

We created an event storm by changing the port status on a switch that also caused

the status changes on the contained logical interfaces. We checked the average CPU

utilization of a switch by varying the number of logical interfaces up to 200 ports. As

shown in Figure 56, the average CPU utilization becomes around 30% with 200 logical

interfaces for a port without the using event storm filtering while it is only 3% by using the

event filtering algorithm. Considering typical configurations on the switches, it indicates

that a simple port status change can cause great overhead in an OpenFlow network.

116

Controller mQ 
{Beacon/NOX) ~ 

Host OF Switch 

controller H/W (CPU: lntel (R) core(TM) 17-
2600 CPU @ 3.40GHz, RAM: 16GB, OS: Ubuntu) 

Port-Status messaReS 
li11k u[J/duwn nulificaliu11s) 

OF Switch OF Switch Host 

Mininet Simulation H/W {CPU: lnte l(R) Core(TM) i7-2600 CPU @ 3.40GHz, 
RAM: 16GB, OS: Ubuntu) 



Figure 54: CPU utilization of Beacon/NOX as the number of logical interfaces changes

5.6 Experiment and Evaluation: UM Functions

In this section, we describe our experimental testbed and validate the effectiveness

and efficiency of our proposed framework through extensive system experiments. We

used the ETRI’s network testbed as shown in Figure 57 in order to validate the proposed

scalability solutions implemented in the SUMA middlebox. This network testbed is also

used for the industry demonstrations at GLOBECOM 2014 [5]. As shown in Figure 58,

the proposed UM monitoring modules are integrated into the ETRI’s SUMA middlebox

that taps the control messages from the network and interprets raw network messages into

meaningful network events.

117

40--================-~~~~~~---, 
- [BeaconJ 1 switch 

35 ~ [Beacon) 2 switches 
~ - [Beacon) 3 switches 
-;; 3 0 · -- [Nox) 1 switch 
.g · -o- [Nox) 2 switches i 25 - ..... [Nox) 3 switches 

::::, 20 -
::::, 
a.. 
<.> 15 
Q) 
0) 

~ 10 
~ 

5-

00 1 5 10 20 40 60 80 100 150 200 250 
Number of Logical Ports 



(a) Controller’s average CPU utilization as the
number of switches changes

(b) Port-status messages from switches as the
number of switches changes

Figure 55: Comparison of average CPU utilization and port-status messages with and
without flapping detection algorithm when the network scale increases

5.6.1 Detect and Mitigate Abnormality (DMA)

We validate the DMA function running in the SUMA middlebox. As explained

in Section 5.4.1, DMA is designed to detect the interface flapping and notify the con-

troller about abnormal network events. Figure 59 shows log messages obtained from the

controller before and after loading the DMA module. As we can see, before we load the

DMA module into the SUMA middlebox, DeviceManager and LinkDiscoveryManager

modules of the controller are activated in order to respond to and cope with the interface

flapping events (Case #1). After we load and run the DMA feature with the SUMA mid-

dlebox (Case #2), we can see the controller is not responding to the interface flapping

events any more (Case #3). The controller simply ignores the interface flapping events

from the specific port and calculates the route based on the rest of available ports or other

118



Figure 56: Event storm impacts CPU utilization

OpenFlow switches. Therefore, we can alleviate the detrimental effect of the interface

flapping events.

5.6.2 Modify and Annotate Control (MAC)

We also validate the MAC function running in the SUMA middlebox. Due to

the limited permission to the ETRI’s network system, we couldn’t capture the screen

shots of the MAC operation. However, as we mentioned, the DMA and MAC functions

have been demonstrated in the industry demonstrations at GLOBECOM 2014 [5] and its

effectiveness and efficiency has been shown in Section 5.5.1.

119

l4o 
c 
.2 
r5 
~ 30-
5 
::::, 
Q. 
<..> 20-
Q) 
0, 

!!? 
Q) 

~ 10 

0 

-!-Without Storm Event Fi lter 
- With Storm Event Filter 

o...-~-4i~.--~~ea1-~--<e9'-~~ee~~-o 

25 50 75 100 150 200 
Number of Logical Ports 



Figure 57: ETRI’s experimental network architecture

5.7 SDN Scalability Framework Implementation

In this section, we describe the implementation of OHSDN abnormal network

event detectors and UM monitoring services in the SUMA middlebox [8] that can be

easily integrated with the current SDN systems.

For the implementation of the abnormal network event detection and filtering seg-

ment, we used the C, Python, and C++ languages, which are compatible with Open-

Wrt [54], Mininet [58], and software implementation of the SUMA board, respectively.

In addition, we also used RESTful APIs to communicate between the SDN controller

and the SUMA middlebox. We have implemented the CPU resource isolation function

120

- -- 1r.is 
tw,1 ·nll,., 

OfSW 115 Of SW /1'5 



Figure 58: System architecture with DMA and MAC in the SUMA middlebox

and the event storm filtering algorithm in the OpenWrt switch. The interface flapping

detection function is implemented in the Mininet simulation environment that enables the

creation of a virtual OpenFlow network on a single machine. For the implementation

of the abnormal network event correlation and detector management segment, we used

Floodlight [13] and IRIS [14] controllers which are written in Java.

For the direct communication between the UM functions and the SDN controller,

we implemented a communication extension using curl commands [21] in the Transfor-

mation and Adaptation Module (Figure 43). It structures the notification from the UM

functions in the JSON format and sends them to the UM Manager in the SDN controller.

Table 16 shows the available path to access the functions in the UM Manager. The DMA

and MAC modules in the SUMA middlebox use RESTful APIs to communicate with the

121

f • /\_sync:hronnus mP.ss;:igP.s 
i • Symmetric messages 

SON CONTROLLER 

I_• Cu11l1o lle1-lo-, wilci1 messages 

OPENFLOW SWITOIES 

SUMA 

Asynchronous message 
with a rransaction 10 (xlD) 

OMA 

MAC 

·--·~ i=luw~ ol c:0 11Lrol 11 1t:o~'.: :.JP,C.':i 

Notif ication when detectinp, events 



Figure 59: Controller’s log messages before and after loading the DMA module into the
system

SDN controller when abnormal network events are detected. As listed in Table 16, the

addresses used by the DMA and MAC modules are “http://localhost:8080/wm/dmastatus/

dmaalert/json” and “http://localhost:8080/wm/mac/alert/json”, respectively. The detected

network abnormality report will be integrated with these requests and the controller will

parse the report from the request. Whenever there is a request using the above ad-

dress, the SDN controller executes the module that is correlated with the requested ad-

dress. The implementation on the IRIS and Floodlight controllers can be found in “Tor-

pedo/src/etri/sdn/controller/module/ statemanager/” and “floodlight/src/main/java/it/park/”,

respectively.

122

(i) Cortroller resoonds for 
?OP.T _STf,TlJS rn~<<.,gF 

Q) Ccntro ller does not cespond as 
PORT _STATl!S rne,s.1g~ got dror,pp(1 



Table 16: RESTful API URIs for the DMA and MAC modules

URI Method Description

/wm/dmastatus/dmaalert/json GET
Get all the status information of ports of
OpenFlow switches that currently experi-
ence interface flapping

/wm/dmastatus/dmaalert/json POST
Send notification of interface flapping events
on a specific port of a specific OpenFlow
switch

/wm/mac/alert/json POST
Send notification of congestion on a specific
OpenFlow switch

5.8 Summary

We’ve proposed a two-tier network management framework that includes the ab-

normal network event correlation and detector management segment and the abnormal

network event detection and filtering segment. As we discussed, in order to assess the

health of a network, maintain a reliable network, and handle abnormal network events,

traditional networks and current SDN architecture mainly take a remote approach to net-

work management where raw network events or measured data are sent to a remote moni-

tor or controller. This remote approach makes the real-time network monitoring unreliable

and difficult and may cause various scalability issues as it delays root cause analysis and

slows down response against urgent problems. We have shown that they are ineffective

and vulnerable to various abnormal network events using concrete examples including

new flow attacks, interface flapping, and event storm. We’ve implemented the two-tier

network management framework in two different platforms. The OHSDN (Online Health

123



Management Framework for SDNs) is implemented in an OpenFlow switch as an embed-

ded light-weight detector/analyzer. It is a practical abnormal network event management

system. It works on SDN architecture (i.e., vendor-agnostic) and succinctly addresses the

issues of agility, accuracy, reliability, and scalability. In addition, the proposed frame-

work is implemented as an agent-based network management in the SUMA middlebox.

We have shown the effectiveness of these approaches, especially compared to the plain

OpenFlow environment.

124



CHAPTER 6

SUMMARY AND FUTURE WORK

As our daily life gets more dependent on essential and important services con-

nected to the Internet, network reliability has never been more important. To deal with

network reliability, we have mainly focused and studied network high availability and

scalability. This dissertation specifically focused on Software-Defined Networks (SDN),

identified new issues of network high availability and scalability of SDN, and solved the

problems using various schemes and algorithms.

First of all, we addressed the various issues of network high availability in SDN.

We verified the critical issues of control path high availability with the current OpenFlow

specification and the existing high availability solutions using a real network setup and

experiments. We then proposed the practical strategies towards building control path HA

including ensuring logical path redundancy aligning with physical network diversity, vir-

tualizing a controller cluster, and exploiting topology awareness and link signals for fast

and accurate failure detection and failover. We validated the functionalities of the pro-

posed schemes with real network experiments. Secondly, we addressed the various issues

of scalability in SDN. We proposed various schemes and algorithms using event filtering,

annotation, prioritization and classification techniques to alleviate the workloads of SDN

controllers. Our proposed schemes and algorithms improved scalability of the SDN net-

works without sacrificing global view of SDN controllers or performance of OpenFlow

125



switches.

As future work, further investigation and development can be continued by ap-

plying the proposed HA scenarios and algorithms on the control path for efficient and

reliable mechanisms to achieve HA for the carrier-grade SDN networks where we con-

sider a large scale network deployment. In addition, a new approach to improve network

high availability and scalability of the SDN controller can be further investigated by vali-

dating the SDN controller software. For scalability work, by comparing the performance

of the proposed scalability solutions deployed in the embedded approach and the agent-

based approach, the best deployment location of the scalability functions can be verified

and determined in the context of SDN.

126



REFERENCE LIST

[1] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B.,

O’Connor, B., Radoslavov, P., Snow, W., and Parulkar, G. ONOS: Towards an

Open, Distributed SDN OS. In Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking (2014), HotSDN ’14.

[2] Linux Bonding Driver How-To. https://www.kernel.org/doc/Documentation/net

working/bonding.txt.

[3] Cai, Z., Cox, A. L., and Ng, T. E. Maestro: A System for Scalable OpenFlow

Control. Tech. Rep. TR10-11, Rice University, Dec. 2010.

[4] Casado, M., Freedman, M., Pettit, J., Luo, J., McKeown, N., and Shenker, S. Ethane:

Taking Control of the Enterprise. Proceedings of ACM SIGCOMM Computer Com-

munication Review 37 (2007), 1–12.

[5] Choi, T., Cho, C., Yoon, S., Yang, S., Park, H., and Song, S. DEMO: Unified Virtual

Monitoring & Analysis Function over Multi-core Whitebox. In Proceedings of

IEEE Global Telecommunications Conference (GLOBECOM) (Dec. 2014).

[6] Choi, T., Kang, S., Yoon, S., Yang, S., Song, S., and Park, H. SuVMF: Software-

defined Unified Virtual Monitoring Function for SDN-based Large-scale Networks.

In Proceedings of The 9th International Conference on Future Internet Technologies

(CFI) (Jun. 2014).

127



[7] Choi, T., Lee, B., Kang, S., Song, S., Park, H., Yoon, S., and Yang, S. IRIS-

CoMan: Scalable and Reliable Control and Management Architecture for SDN-

enabled Large-scale Networks. Journal of the Network and Systems Management

23 (2015), 252–279.

[8] Choi, T., Song, S., Park, H., Yoon, S., and Yang, S. SUMA: Software-defined

Unified Monitoring Agent for SDN. In Proceedings of IEEE Network Operations

and Management Symposium (NOMS) (May 2014).

[9] The art of Application-Centric Networking. http://www.cisco.com/en/US/solutions/

collateral/ns1015/ns175/ns348/ns1126/cisco td 030513 fin.pdf.

[10] Designing a Campus Network for High Availability. http://

www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/cdccont

0900aecd801a8a2d.pdf.

[11] Beacon. http://www.beaconcontroller.net/.

[12] Big Network Controller. http://bigswitch.com/products/SDN-Controller.

[13] Project Floodlight. http://www.projectfloodlight.org/floodlight/.

[14] IRIS: The Recursive SDN OpenFlow Controller by ETRI. http://openiris.etri.re.kr/.

[15] Open Mul: High performance SDN. http://www.openmul.org/.

[16] NOX. http://www.noxrepo.org/nox/about-nox/.

[17] OpenDaylight. http://www.opendaylight.org/.

128



[18] POX. https://OpenFlow.stanford.edu/display/ONL/POX+Wiki.

[19] Ryu SDN framework. http://osrg.github.io/ryu/.

[20] Trema. http://trema.github.com/trema/.

[21] curl Man page. http://curl.haxx.se/docs/manpage.html.

[22] Curtis, A., Mogul, J., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee, S.

DevoFlow: Scaling Flow Management for High-performance Networks. In Pro-

ceedings of ACM SIGCOMM (Aug. 2011), pp. 254–265.

[23] Desai, M., and Nandagopal, T. Coping with Link Failures in Centralized Control

Plane Architecture. In Proceedings of IEEE COMmunication Systems and NET-

works (COMSNET) (2010), pp. 79–88.

[24] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., and Kompella, R. Towards an

Elastic Distributed SDN Controller. In Proceedings of ACM SIGCOMM Workshop

on HotSDN (2013).

[25] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., and Kompella, R. ElastiCon: An

Elastic Distributed SDN Controller. In Proceedings of ACM/IEEE Symposium on

Architectures for Networking and Communications Systems (ANCS) (2014).

[26] Element Management System (EMS) network manager. http://www.sonus.net/

node/96.

129



[27] Project Floodlight: Module Applications. https://floodlight.atlassian.net/wiki/display/

floodlightcontroller/Module+Applications.

[28] Floodlight RESTful API. https://floodlight.atlassian.net/wiki/display/floodlight con-

troller/Floodlight+REST+API.

[29] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker,

S. NOX: Towards an Operating System for Networks. In SIGCOMM Computer

Communication Review (Jul. 2008), vol. 38, pp. 105–110.

[30] Ethernet Automatic Protection Switching (EAPS). https://tools.ietf.org/html/

rfc3619, Oct. 2003.

[31] IP Multicast Load Splitting - Equal Cost Multipath (ECMP). http://www.cisco.com/

c/en/us/td/docs/ios/12 2sr/12 2srb/feature/guide/srbmpath.html.

[32] Ethernet Ring Protection Switching (ERPS). http://www.cisco.com/c/en/us/td/docs/

ios-xml/ios/cether/configuration/xe-3s/ce-xe-3s-book/ce-g8032-ering-pro.html.

[33] EtherChannels. http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3550/

software/release/12-1 13 ea1/configuration/guide/3550scg/swethchl.html.

[34] Fast Re-Routing (FRR). http://tools.ietf.org/html/rfc4090, May 2005.

[35] Cisco Hot Standby Router Protocol (HSRP). https:// www.ietf.org/rfc/rfc2281.txt,

Mar. 1998.

130



[36] Link Aggregation Control Protocol (LACP). http://www.cisco.com/c/en/us/td/docs/ios/

12 2sb/feature/guide/gigeth.html, Mar. 2007.

[37] Graceful OSPF Restart: Non-Stop Forwarding (NSF). http://tools.ietf.org/html/

rfc3623, Nov. 2003.

[38] Non-Stop Routing (NSR). http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/

iproute ospf/configuration/15-e/iro-15-e-book/iro-nsr-ospf.html.

[39] Resilient Packet Ring (RPR). http://www.ieee802.org/17/documents.htm.

[40] Stateful Switch-Over (SSO). http://www.cisco.com/c/en/us/td/docs/ios/12 0s/feature/

guide/sso120s.html.

[41] Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6.

http://tools.ietf.org/html/rfc5798, Mar. 2010.

[42] Heller, B., Sherwood, R., and McKeown, N. The Controller Placement Problem. In

Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking (HotSDN) (2012), pp. 7–12.

[43] JSON Data Interchange Standard. http://json.org/.

[44] GitHub: Open source parser Jsoncpp. https://github.com/open-source-

parsers/jsoncpp.

131



[45] Kandula, S., Sengupta, S., Greenberg, A., and Patel, P. The Nature of Datacenter

Traffic: Measurements and Analysis. In Proceedings of ACM IMC (2009), pp. 202–

208.

[46] Keepalived: Load Balancing and High-Availability. http://www.keepalived.org/.

[47] Kempf, J., Bellagamba, E., Kern, A., Jocha, D., Takacs, A., and Skoldstrom, P.

Scalable Fault Management for OpenFlow. In Proceedings of IEEE International

Conference on Communications (ICC) (2012), pp. 6606–6610.

[48] Kim, D., Park, J.-W., Song, S., Choi, B.-Y., Park, H., Paik, E.-K., Jeong, K.-T., and

Hong, S. Method and Apparatus for Processing a Control Message in Software-

Defined Network. Korean Patent, 1020130143244 (Nov. 2013).

[49] Kim, H., Santos, J., Turner, Y., Schlansker, M., Tourrilhes, J., and Feamster, N.

CORONET: Fault Tolerance for Software Defined Networks. In Proceedings of

IEEE International Conference on Network Protocols (ICNP) (2012).

[50] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ra-

manathan, R., Iwata, Y., Inoue, H., Hama, T., and Shenker, S. ONIX: A Distributed

Control Platform for Large-scale Production Networks. In Proceedings of USENIX

conference on Operating Systems Design and Implementation (OSDI) (2010).

[51] Krishnamurthy, A., Chandrabose, S. P., and Gember-Jacobson, A. Pratyaastha: An

Efficient Elastic Distributed SDN Control Plane. In Proceedings of the Workshop

on Hot Topics in Software Defined Networking (HotSDN) (2014), pp. 133–138.

132



[52] Kuźniar, M., Perešı́ni, P., Vasić, N., Canini, M., and Kostić, D. Automatic Fail-

ure Recovery for Software-defined Networks. In Proceedings of the ACM SIG-

COMM Workshop on Hot Topics in Software Defined Networking (HotSDN) (2013),

pp. 159–160.

[53] Lee, K., Jang, I., Shin, M., and Baek, S. Design of Super Controller for Large Scale

Software-Defined Networks. In OSIA Standards & Technology Review (Sep. 2012).

[54] Pantou: OpenFlow 1.0 implementation for OpenWRT. http://archive.openflow.

org/wk/index.php/Pantou : OpenFlow 1.0 for OpenWRT.

[55] Linksys WRT54GL. http://support.linksys.com/en-us/support/routers/wrt54gl.

[56] Luo, T., Tan, H.-P., Quan, P., Law, Y. W., and Jin, J. Enhancing Responsiveness and

Scalability for OpenFlow Networks via Control-Message Quenching. In Proceed-

ings of International Conference on ICT Convergence (ICTC) (2012), pp. 348–353.

[57] MaKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., and Turner, J. OpenFlow: Enabling Innovation in Campus Networks.

Proceedings of ACM SIGCOMM Computer Communication Review 38 (2008), 69–

74.

[58] Mininet: An Instant Virtual Network on your Laptop (or other PC).

http://mininet.org/.

[59] Network Functions Virtualization (NFV). http://www.etsi.org/technologies-

clusters/technologies/nfv.

133



[60] Network Management System (NMS). http://www.cisco.com/c/en/us/support/docs/

availability/high-availability/15114-NMS-bestpractice.pdf.

[61] Open Networking Foundataion (ONF). https://www.opennetworking.org/.

[62] Production Quality, Multilayer Open Virtual Switch (Open vSwitch).

http://openvswitch.org/.

[63] OpenFlow Switch Specification. https://www.opennetworking.org/index.php?option

=com content&view=category&layout=blog&id=57&Itemid=175&lang=en.

[64] OpenFlow Switch Specification Version 1.4.0. https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-

spec-v1.4.0.pdf, Oct. 2013.

[65] Operations Support System (OSS) / Business Support System (BSS). http://www.

ericsson.com/res/thecompany/docs/publications/business-review/2012/issue2/oss-

bss explained.pdf.

[66] Open vSwitch Database. http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf.

[67] packETH. http://packeth.sourceforge.net/packeth/Home.html.

[68] Park, H., Song, S., Choi, B.-Y., and Choi, T. Toward Control Path High Availability

for Software-Defined Networks. In Proceedings of The 11th International Confer-

ence on Design of Reliable Communication Networks (DRCN) (Mar. 2015).

134



[69] Park, J.-W., Kim, D., Song, S., Choi, B.-Y., Park, H., Paik, E.-K., Jeong, K.-T., and

Hong, S. Method for Establishing Connection between Switches and Controllers in

Software-Defined Network. Korean Patent, 1020130143289 (Nov. 2013).

[70] Park, S. H., Lee, B., You, J., Shin, J., Kim, T., and Yang, S. RAON: Recursive Ab-

straction of OpenFlow Networks. In Proceedings of the Third European Workshop

on Software Defined Networks (EWSDN) (Sep. 2014), pp. 115–116.

[71] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown,

N., and Parulkar, G. Flowvisor: A network virtualization layer. Tech. Rep.

OPENFLOW-TR-2009-1, Deutsche Telekom Inc. R&D Lab, Stanford University,

Nicira Networks, Oct. 2009.

[72] A Simple Network Management Protocol (SNMP). http://www.ietf.org/rfc/

rfc1157.txt.

[73] Tavakoli, A., Casado, M., Koponen, T., and Shenker, S. Applying NOX to the

Datacenter. In Proceedings of HotNets (2009).

[74] TILE-Gx36 Multicore Processor. http://www.tilera.com/products/?ezchip=585&spage=621.

[75] Tootoonchian, A., and Ganjali, Y. Hyperflow: a distributed control plane for open-

flow. In Proceedings of Internet Network Management Conference on Research on

Enterprise Networking (INM/WREN) (2010), USENIX Association.

[76] Unified QoS - Locally generated packet prioritization. http://www.cisco.com/c/en/

us/td/docs/ios/12 0s/feature/guide/unif qos.pdf.

135



[77] Williams, D., and Jamjoom, H. Cementing High Availability in OpenFlow with

RuleBricks. In Proceedings of ACM SIGCOMM Workshop on HotSDN (2013),

pp. 139–144.

[78] Yan, H., Maltz, D., Ng, T., Gogineni, H., Zhang, H., and Cai, Z. A 4d Network Con-

trol Plane. In Proceedings of USENIX Symposium on Networked Systems Design

and Implementation (NSDI) (2007).

[79] Yeganeh, S. H., and Ganjali, Y. Kandoo: a framework for efficient and scalable

offloading of control applications. In Proceedings of HotSDN (Aug. 2012).

[80] Yu, M., Rexford, J., Freedman, M., and Wang, J. Scalable Flow-Based Networking

with DIFANE. In Proceedings of ACM SIGCOMM (Aug. 2010), pp. 351–362.

[81] Yun, W.-D., Koo, T.-H., Song, S., Choi, B.-Y., Park, H., kyoung Paik, E., Jeong,

K.-T., and Hong, S. Method and System for detecting network failure in Software

Defined Network. Korean Patent, 1020130143238 (Nov. 2013).



VITA

Hyungbae Park was born in Seoul, South Korea, on August 31, 1980. Mr. Park

entered the Kwangwoon University in South Korea in March 1999 and graduated in De-

cember 2004 with a Bachelor of Engineering degree in Computer Engineering. Between

2000 and 2002, Mr. Park performed his military service in the Korean army. After grad-

uation, Mr. Park came to the USA to study and gained a Master of Science degree in

Computer Science from South Dakota State University at Brookings in South Dakota in

December 2007. His thesis topic was implementing a fault tolerance facility for Linux

Kernel 2.6.

After his Master degree, Mr. Park joined interdisciplinary Ph.D. curriculum at

the University of Missouri-Kansas City in 2008. His coordinating discipline is Com-

puter Science and his co-discipline is Telecommunication and Computer Networking.

His main research interest and dissertation topic is highly availability and scalability of

Software-Defined Networking (SDN). Mr. Park gained Outstanding Ph.D. student award

from Telecommunication and Computer Networking discipline in 2013. Mr. Park also

performed several distinct projects in various areas such as location privacy in wireless

sensor networks, campus network outage traffic analysis and modeling, and smartphone-

based collision avoidance system, localization and authentication.

137




