

INTEGRATING FEATURES IN THE DEVELOPMENT OF SOFTWARE PRODUCT

LINE ARCHITECTURE

A THESIS IN

Computer Science

Presented to the Faculty of the University

of Missouri-Kansas City in partial fulfillment

 of the requirements for the degree

MASTER OF SCIENCE

By

VARUN NARISETTY

B.TECH, JNTU Hyderabad, 2010

Kansas City, Missouri

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62782741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2015

VARUN NARISETTY

ALL RIGHTS RESERVED

iii

INTEGRATING FEATURES IN THE DEVELOPMENT OF SOFTWARE PRODUCT

LINE ARCHITECTURE

Varun Narisetty, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2015

ABSTRACT

Software product line architecture (PLA) is one of the most promising applications of

software architecture. This paper presents a pragmatic PLA development approach with tool

support. It addresses two existing issues of PLA development, the difficulty of relating

product line features to PLA, and the overhead of manually creating and maintaining

variation points in PLA. The approach is implemented and integrated in ArchStudio, an

Eclipse-based architecture development toolset. The developed tool supports (1) side-by-

side integrated development of features, PLA, and their relationships, (2) automatic

variability modeling in PLA, and (3) derivation of architecture instances from the PLA

model. To evaluate the scalability and effectiveness of the approach, I have used the work

done by Adam Carter and Jeffrey Lanning [30] as a case study using the developed tool to

create a feature-integrated architecture for the Apache Solr software system - a Java-based

enterprise search server used in the Cerner Corporation.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and

Engineering, have examined a thesis titled “Integration Features in the Development of

Software Product Line Architecture,” presented by Varun Narisetty, candidate for the

Master of Science degree, and certify that in their opinion, it is worthy of acceptance.

Supervisory Committee

Yongjie Zheng, Ph.D., Committee Chair

School of Computing and Engineering

Praveen Rao, Ph.D. Committee Member

School of Computing and Engineering

YugYung Lee, Ph.D. Committee Member

School of Computing and Engineering

v

CONTENTS

ABSTRACT ... iii

LIST OF ILLUSTRATIONS ... vii

LIST OF TABLES .. viii

ACKNOWLEDGEMENTS .. ix

Chapter

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Problem Statement ... 2

1.3 Thesis Outline .. 3

2. BACKGROUND AND RELATED WORK ... 5

2.1 Background .. 5

 2.1.1 Extension of xADL .. 5

2.2 Related Work ... 8

2.2.1 Ménage .. 8

2.2.2 EASEL ... 9

2.2.3 Feature Maper .. 9

3. TOOLS DEVELOPED .. 14

3.1 Integrated Development of Features and PLA .. 14

3.2 Automatic Variability Modeling in PLA ... 17

vi

3.3 Deviation of Architecture Instances from PLA ... 20

4. IMPLEMENTATION .. 23

4.1 Implementation Environment: ArchStudio .. 23

4.2 Integration with ArchStudio .. 23

5. RESULTS AND EVALUATION ... 26

5.1 Case Study ... 26

 5.1.1 Objectives .. 26

 5.1.2 Apache Solr ... 26

 5.1.3 Threats to Validity ... 30

CONCLUSION, AVAILABILITY, AND FUTURE WORK ... 32

REFERENCES .. 33

VITA .. 37

vii

ILLUSTRATIONS

Figure Page

1. PLA Modeling Environment ... 15

2. Screenshot of the Selector Tool ... 21

3. Example of a Derived Architecture Instance. .. 22

viii

TABLES

Table Page

1. A Comparison of Feature-Model Mapping Tools ... 12

2. Solr’s Features and Architecture Mapping .. 34

ix

ACKNOWLEDGEMENTS

I take this opportunity to express my gratitude to Dr. Zheng for his continuous support

throughout my thesis. I also want to thank all my friends and family for their

encouragement. This work was in part supported by a grant from the University of Missouri

Research Board.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Software product line engineering (SPLE) is focused on development and evolution of a

family of related products that have substantial commonality - a software product line [5,

19]. It addresses the problems (e.g. architecture mismatch and maintenance of redundant

code) of traditional software reuse [27] by promoting planned reuse. Specifically, SPLE

requires that the differences (i.e. variability [21], anticipated changes [18]) among the

products of a product line must be explicitly represented in the artifacts such as feature

model [7] and product line architecture (PLA) [5] that can be customized and reused in

development of single products.

A feature model captures variability in the problem space and identifies the product line

scope. It includes a collection of product line features and their relationships (e.g. mutual

dependency). Each feature is an end-user visible characteristic used to capture

commonalities or discriminate among systems in a product family [7]. PLA is the first

artifact that places variability into the solution space. Software architecture is a set of

principal design decisions of a software system [24]. It is usually characterized as a

configuration of components communicating with each other via explicitly defined

interfaces. A PLA captures simultaneously the principal design decisions of many related

products. Some of these design decisions are common among all the products, some are

common among a subset of the products, and some are unique to individual products. With

2

PLA playing an increasingly important role in SPLE [23, 29], development of methods and

tools to support PLA becomes necessary.

1.2 Problem Statement

A common approach to modeling PLA is to use a single monolithic architecture with

variation points embedded in variable architecture elements [8, 9, 11, 17]. Variation points

in PLA identify the places where the products differ [21]. Each variation point is

accompanied by a guard condition that determines when the variation occurs. The guard

condition is usually defined as a Boolean formula over product line features. By making

appropriate decisions to resolve the variation points, a single architecture describing a single

product can be derived from the PLA. The monolithic PLA modeling approach maintains

the integrity of PLA so that it can be used for communication and system comprehension as

regular software architecture [24]. Using Boolean expression in the definition of variation

points also makes it relatively easy to represent the advanced existence logics, such as one

variation point involved with multiple features, when Boolean operators (e.g. AND, OR) can

be used. Meanwhile, the approach also faces some significant challenges. Two of them are

listed below and are specifically addressed in this research study.

● There is a sizable mismatch or a conceptual gap between product line

features and PLA. A single product line feature may translate to multiple scattered

variation points in the PLA [13]. As a result, the entire PLA often has to be examined to

identify the variation points that are related to a feature. This is primarily because

features and variable architecture elements are usually developed and saved in two

separate artifacts (i.e. feature models, PLA) at different abstraction levels. An existing

solution to this problem is creating traceability links between the feature model and PLA

3

[1]. However, it is difficult to automatically update the links when both artifacts

frequently evolve [29].

● Creation and maintenance of variation points and guard conditions in PLA

have to be manually done. This can cause significant overhead in PLA development and

prevent the user from focusing on architecture design. In particular, an architecture

element (e.g. component) may contain child elements (e.g. interfaces) related to different

features. A single architecture element also may be related to multiple features. It is even

challenging under these circumstances to manually create and maintain variation points

in PLA so that a valid PLA model can be used to derive architecture instances.

1.3 Thesis Outline

In this paper we present a pragmatic approach to developing PLAs. I extended an existing

XML-based architecture description language (ADL), xADL [9], and integrated definition

of product line features into the language. Based on it, I built a tool that includes 1) a PLA

modeling environment where features and PLA can be developed side-by-side, and 2) a

selector tool that can automatically generate an architecture instance based on a given

feature configuration. The user can add/remove/edit a product line feature, and modify the

PLA model for the corresponding feature in the modeling environment. The relationships

between features and PLA elements can be created either automatically based on the

changes that the user made to the PLA model for a specific feature, or manually with the

user explicitly assigning a selected architecture element to a feature. In either way, creation

and maintenance of the variation points (e.g. update of the associated guard condition) in the

PLA are automatically done and completely encapsulated from the user. When a feature is

selected, all the corresponding variation points in the PLA can be highlighted in a user-

4

specified color. Similarly, removing a feature will automatically remove all the related

variation points from the PLA model. The included selector tool automatically loads the

information (e.g. name, default value) of defined features from the PLA model and shows

them to the user as a default feature configuration. This further automates the process of

PLA instantiation.

The approach is implemented and integrated in ArchStudio [26], an Eclipse-based toolset

for developing software architectures. As a case study, we used the developed tool to model

the architecture of the Apache Solr software system [2] used in the Cerner Corporation [6] -

an information technology company providing health care solutions and services. Solr is a

Java-based open-source standalone enterprise server that has approximately 146K SLOC.

We identified and developed a list of Solr’s features, and successfully integrated them into

the architecture model that we created for the Solr system. All the involved variation points

were automatically created.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Extension of xADL

I used xADL, an XML-based ADL to model PLAs in this project. The existing definition

of xADL includes a set of XML schemas providing constructs to model both single system’s

architecture and PLA. The architecture in xADL is modeled as a configuration of

components. A component is connected to other components via explicitly defined provided

interfaces or required interfaces. A provided interface of a component contains the

operations implemented inside the component. A required interface includes the operations

that the component needs other components to implement. In terms of PLA modeling,

xADL uses the monolithic architecture approach mentioned in Section I. The code in List.1

shows an example definition of a variation point in xADL. A variation point (i.e.

<optional>, Lines 02-11) is embedded into the definition of a component to represent an

optional component. It includes a guard condition (Lines 03-10) defined as a Boolean

expression indicating when the component should be included. The symbol element (Line

06) is the name of the involved product line feature. The corresponding value element (Line

07) could be true, false, or a variant depending on the type of the feature as further discussed

below.

01: <component id=”…”>

02: <optional>

03: <guard>

04: <booleanExp>

6

05: <equals>

06: <symbol> … </symbol>

07: <value> … </value>

08: </equals>

09: </booleanExp>

10: </guard>

11: </optional>

12: … <!--The remainder of the component-->

13: </component>

List.1. Example of a variation point definition in xADL.

In order to extend xADL to model product line features and the relationships between

features and related variation points in PLA, I developed new xADL schemas and integrated

them into the existing definition of xADL. Development of xADL schemas was relatively

straightforward based on the XML knowledge that I have. Integrating them into the

language and writing code to support new language elements (e.g. reading/writing) could be

difficult. At this point, xADL has a tool called Apigen [9] that can parse a collection of

xADL schemas and automatically generate a code library to access the language elements

defined in all the included schemas. This significantly reduced our workload. The generated

library provides high-level APIs such as addComponent and removeFeature, based on which

I was able to build graphical tools to manipulate the xADL model. Specifically, the extended

xADL introduced a new language element, feature, that is parallel to the component element

shown in List.1. Each feature element has an identifier, and includes the following six child

elements.

7

● Type: depicting the way a feature varies. My work currently support three

types of product line features: optional feature, alternative feature, and optional-

alternative feature. An optional feature only exists in some products of the product line.

An alternative feature exists in all the products of the product line, and each product may

contain different instances (i.e. variants) of the feature. An optional-alternative feature is

same as an alternative feature except that some products do not have it. In the rest of this

paper, by default I refer to both as alternative features unless explicitly distinguished.

● Description: a user-readable text message describing the corresponding

feature.

● BindingTime: the time when a decision will be made on the feature.

Variations include development time, link time, initialization time, or runtime. In this

project, I only focus on features to be resolved at development time. The decisions of

some features may be delayed to runtime (e.g. dynamic adaptation).

● DefaultValue: the default decision on a feature. It could be true or false for an

optional feature, and a specific variant for an alternative feature. This information is

useful in derivation of architecture instances, so that the user does not need to make an

explicit decision for every feature.

● Links: traceability links to the architecture elements (e.g. an optional

component) that are related to the feature and should be included if the feature is selected

in a product. As features and architecture elements are both defined in the same xADL

document, I use Xlink to capture this information. This is an important extension of

xADL as it essentially serves as a bridge between product line features and their

implementation in the architecture.

8

● DisplayOptions.: the way (e.g. color) a feature and its associated architecture

elements should be displayed. This information is not essential to the feature definition. It

is included mainly to facilitate visualization of feature implementations in the

architecture editor.

Overall, the extension of xADL provides a modeling language that can be used to capture

product line features, architecture elements, and their relationships in a PLA model. It serves

as the basis of this research study. To fully integrate features in the development of PLA, the

next step is building tools to support activities such as creation of features and relating

features to PLA elements. This is specifically discussed in the following section.

2.2 Related Work

2.2.1 Ménage

Ménage [11] is one of the early tools for PLA modeling. The idea of embedding

variation points governed by guard conditions into architecture elements to represent

variability in PLA was first used in Ménage. However, all the variation points and guard

conditions have to be manually created in Ménage. In contrast, creation of variation points is

fully automated with our tool as the user edits the architecture for a specific feature. Another

important difference between Ménage and our tool is that Ménage offers little support in

terms of relating features to their implementation in PLA. It only shows optional elements in

PLA using dashed lines, and does not distinguish elements for different features in

visualization.

9

2.2.2 EASEL

EASEL [13] is another tool that supports PLA modeling. Similar to the tool

presented in this paper, EASEL is also based on an extension of xADL. The difference is

that it separates variable architecture elements of a PLA into a number of changesets. Each

change set only contains the architecture elements that implement a specific feature. In

addition, EASEL explicitly manages the relationships between different change sets, such as

structural dependencies and compatibilities. A main problem of EASEL is that it makes a

PLA model less understandable as the definition of an architecture element is spread into

multiple changesets. Derivation of architecture instance in EASEL is essentially about

composition of changesets, which can become difficult when the number of overlapping

elements between change sets increases.

2.2.3 Feature Mapper

 FeatureMapper [12] is a tool that supports mapping features from feature models to

solution artifacts expressed in EMF/Ecore-based languages (e.g. UML2). It is similar to the

tool presented in this paper in a number of aspects. Both can either manually or

automatically relate a feature to elements in the solution space. Both support visualization of

the elements in the solution space that are related to a specific feature, and both have the

function of deriving a model instance based on a feature configuration. A main difference

between them is that the tool I developed is specifically focused on the PLA model

consisting of components and connections. All the variability information (e.g. guard

condition) is embedded in the involved architecture elements as I believe variability is an

essential part of PLA. In contrast, FeatureMapper is mostly used for UML models that are of

a lower level of abstraction. Particularly, the variability information and the mappings of

10

features to solution artifacts are saved in a separate mapping model. This potentially

increases the overhead of software maintenance as one more artifact is introduced in

addition to feature model and UML model.

 Gears [16] is a product line framework emphasizing automatic derivation of product-

specific artifacts, such as source code, requirements, and design. It includes a product

configurator, a feature model, and a set of reusable artifacts containing defined variation

points. The product configurator automatically customizes each reusable artifact based on a

feature portfolio, and derives artifacts from each stage of the development lifecycle that

belong to a product instance of the product line. Different from Gears, the approach

presented in this paper is focused on the relationship between features and PLA as I believe

architecture should play a central role in software development [29], including product line

engineering.

 Other related tools or methods also include Koala [17], XVCL processor [14], and CIDE

[15]. Koala is one of the first representations of PLAs. It uses special language constructs

(e.g. switch) to represent variability in the architecture. Koala does not support feature-

oriented PLA modeling or visualization. XVCL is another XML-based approach to

capturing variability in product line development. It follows a composition with adaptation

process in terms of product derivation. The XVCL processor can be used to automate the

derivation process. Different from our tool, variations in XVCL have to be manually

defined. Finally, CIDE is a program development environment that can associate code

fragments with one or more features and display them in different colors. This is similar to

the visualization technique presented in this paper. The difference is that CIDE is focused on

program development and cannot support automatic creation of variation points in the code.

11

Table II compares the tools described above and the tool presented in this paper along five

criteria: supported features, target model, feature-model relationship, variability modeling,

and product derivation. From the table, it can be seen that FeatureMapper and the tool I

developed both offer comprehensive support in terms of relating features to the target model

(e.g. automatic creation and visualization of the relationship). In particular, the tool I

developed is the only one supporting automatic creation and maintenance of variation points

in the target model (e.g. PLA). A main limitation of the tool is that it does not fully support

feature relationships as many other tools do.

Feature template [8] advocates superimposition of all variants in a single model called

model template that refers to features through annotations. At this point, it is similar to the

work presented in this paper. In particular, feature template also suggests use of Boolean

formulas over the set of feature names from the feature model. Its template instantiation

process is also similar to our derivation of architecture instance in the sense that evaluation

of presence conditions (i.e. Boolean formulas) based on a specific feature configuration is

involved. A main difference is that the work presented in this paper is mainly focused on

PLA modeling. Some of its main functions, such as automatic creation of variation points

and visualization of feature-PLA mapping are not supported by feature template.

FeatureIDE [25] is an Eclipse-based tool that mainly supports feature-oriented software

development (FOSD) [4]. FOSD is similar to EASEL in the sense that they both separate

software elements into fragments based on the feature they correspond to, and generate

product instance by composing the fragments. The difference is that EASEL is focused on

the architecture level, while FOSD is mainly at the code level. Therefore, they both face the

12

challenge of composition when the overlapping between separated fragments increases or

the order of composition has to be considered [15].

Table 1: A Comparison of Feature-Model Mapping Tools

Tools
Supported

Features

Target

Model

Feature-Model

Relationship

Variability

Definition in the

Model

Product

Derivation

Ménage

Optional,

alternative

features

only.

The

monolithic

PLA model

including

both

common

elements and

variation

points.

Optional

elements are

shown in dashed

lines.

The user

manually

creates and

maintains

variation points.

A prototype

tool was built,

requiring the

user’s

intervention.

Feature

Template

Feature

model (i.e.

features and

feature

relationship

s).

Model

template

with

presence

conditions

and meta-

expressions.

Variation points

are defined in

terms of

features.

The user

manually

creates and

maintains

presence

conditions.

Fully

automated

with a

prototype

support.

EASEL

Feature

dependencie

s and

compatibilit

ies.

A number of

change sets,

each

containing a

subset of

architecture.

Each change set

corresponds to a

feature.

A change set.

Composition

of change sets

of architecture.

FeatureID

E

Feature

model.

Feature

module (i.e.

a piece of

source code.)

Each feature

module

corresponds to a

feature.

A feature

module.

Composition

of code feature

modules.

FeatureM

apper

Feature

model.

Models

defined in

Ecore-based

languages

(UML2).

Automatic/man

ual creation and

removal of

relationship;

visualization of

relationship.

Variability is

saved in a

separate

mapping model.

Fully

automated

with tool

supported.

Gears
Feature

model.

A set of

artifacts (e.g.

requirements

, design, and

Variation points

are defined in

terms of

features.

The user

manually

creates and

maintains

Fully

automated by

the product

configurator.

13

source code). variation points

based on Gears

APIs.

Koala

Features are

not

explicitly

supported.

A PLA

model

defined in

the Koala

language.

Not addressed.

Variability is

captured using

special language

constructs.

Supported by

the Koala

complier.

XVCL
Optional

features.

A hierarchy

of meta-

components.

Not addressed.

The user

manually edits

the meta

information.

Fully

automated

using XVCL

processor.

CIDE
Feature

model.
Source code.

Uses a color

mechanism to

represent the

feature-code

fragment

relationship.

Highlighted

code fragment.

Fully

automated

with tool

support.

Tool

presented

in this

paper

Optional,

alternative,

optional-

alternative

features.

The

monolithic

PLA model

including

both

common

elements and

variation

points.

Automatic/man

ual creation and

removal of

relationship;

visualization

support.

Variation points

are

automatically

created and

maintained in

PLA.

Fully

automated

with tool

support.

14

CHAPTER 3

TOOLS DEVELOPED

This section presents a tool that I built to support integrated development of features and

PLA. It includes a PLA modeling environment and a selector tool. The modeling

environment has two novel functions: integrated development of features and PLA, and

automatic variability modeling. The selector tool can be used to automatically derive an

architecture instance from the developed PLA model.

3.1 Integrated Development of Features and PLA

Figure 1 is a screenshot of the PLA modeling environment that I developed in

ArchStudio, an existing Eclipse-based architecture development toolset that is specifically

introduced in Section IV. The modeling environment consists of two primary user interface

elements: a feature tree and an architecture editor. The example shown in the figure is the

PLA model of a chatting application under development. The core elements of the model

include two client components and one server component. The clients exchange messages

via the server. In addition, there are also variable architecture elements (e.g. interfaces,

components) created for a number of features, such as ChatLog, Game, and Send File listed

in the feature tree. Different chatting application products may include different sets of

features.

The feature tree in Figure 1 contains a list of features of the product line application. The

user can add an optional feature or an alternative feature. For each feature, the user can

further define its associated information such as binding time and default value discussed in

Section II. The user can right click an alternative feature in the feature tree to add a variant

to it. For example, the ChatLog feature in Figure 1 is an alternative feature that has three

15

variants: Multimedia, Plain Text, and Rich Text, representing three different formats of

chatting history. The user can also choose a specific variant as the default value of the

corresponding feature by right clicking the variant and selecting “Mark as Default”.

Figure 3.1 PLA Modeling Environment.

On the right of Figure 1 is a graphical editor to visualize and edit an architecture model

specified in the xADL language. It is based on an existing architecture editor of ArchStudio

that supports basic operations such as adding an architecture component, removing a

connection, and adding a new interface to a component. All the modifications made to the

architecture are automatically saved in the underlying xADL specification, so that the user

does not need to directly access the xADL file. A specific change I made to the editor was

adding the support for creation, removal, and visualization of the relationships between

features in the feature tree and architecture elements in the editor. Relating a product line

feature to a variable architecture element involves two specific operations: creating a

traceability link from the feature to the architecture element, and updating the guard

16

condition of the variation point embedded in the architecture element to include the

corresponding feature. Both operations are automatically done with the developed tool.

The developed PLA modeling environment supports two complementary ways to relate a

feature to a PLA element. The user can double click a feature in the feature tree and enter

the architecture editor to modify the PLA model to implement the feature. The relationships

between the feature and all the new architecture elements that the user created will be

implicitly and automatically established. By default, all the architecture elements that the

user created will be automatically related to the selected feature and marked as optional. To

create or edit a common architecture element, the user should double click “Core Elements”

shown in Figure 1. In this case, the architecture elements that the user worked on would not

be associated to any feature. In addition, the user can explicitly establish the relationship

between a feature and an existing architecture element. The user can select the feature in the

feature tree, right click an element in the architecture editor and select “Add to Current

Feature” in the pop-up menu. To remove an established relationship, the user can right click

the involved architecture element and select “Remove from Current Feature” instead. This

function is particularly useful if the user wanted to create features and relate them to an

existing architecture model.

The established feature-PLA relationship is used by the developed tool in two primary

ways. First, the tool offers visualization support. All the variation points related to a feature

will be highlighted in a user-specified color in the architecture editor when the feature is

selected in the feature tree. For example, the architecture elements (e.g. components,

interfaces, connections) related to the Game feature of the chatting application are shown in

red in Figure 1. This helps the user understand and communicate with how a product line

17

feature is implemented in the product line system. The user can also right click a feature or a

feature variant and change the display color. If the selected feature is an alternative feature

that contains several variants, the variation points related to all the feature variants will be

simultaneously highlighted. Second, removal of a feature from the feature tree will

automatically remove all the related variation points embedded in the PLA model. The tool

follows the traceability links of the feature to be removed and automatically updates the

guard conditions of all the involved architecture elements.

3.2 Automatic Variability Modeling in PLA

The second main function of the developed PLA modeling environment is automatic

creation and maintenance of variation points related to a feature. Specifically, the user can

open a PLA model in the architecture editor by double clicking an optional feature or a

variant of an alternative feature in the feature tree shown in Figure 1. After that, a guard

condition will be automatically set in the background: Feature Name = true in case of an

optional feature or Feature Name = Feature Variant in case of an alternative feature variant.

A variation point with the present guard condition will be automatically created and inserted

into the architecture elements that become related to the feature. Similarly, the guard

condition can also be automatically removed when an architecture element is not related to

the feature any more. A primary benefit of automatically creating/removing variation points

is that the user can focus on editing architecture for application logics as the modeling

environment shields variability modeling in PLA from the user.

As introduced in Section II, the guard condition of a variation point is defined by a

Boolean expression in xADL. To support variation points that are related to multiple

features, I use the Boolean operators such as AND, OR to connect the guard condition

18

corresponding to each feature. For example, the user may want to relate the same

architecture element to two different features consecutively. When this occurs, the

developed tool will automatically combine their respective preset guard conditions with an

OR operator. The user can also have two features selected at the same time in the feature

tree, representing the condition when the two features must be selected at the same time. In

this case, the tool will automatically insert the AND operator into the guard conditions of the

involved variation points. In the future, I plan to support more advanced operators such as

NOT, NOR, as I believe they potentially address the relationships (e.g. mutual exclusion)

between features.

A main challenge of automatically creating and maintaining variation points is related to

the hierarchical structure of PLA: an architecture element (e.g. a component) may contain

child elements (e.g. interfaces) corresponding to different features. In particular, these child

elements cannot exist independently in a valid architecture instance. Therefore, it is

important to ensure that the parent or containing element is always included if any of its

child elements is included in a derived architecture instance given a feature configuration. If

the parent element is a common element that exists in the architectures of all the products of

the product line, this is not a problem. It becomes tricky when the parent element itself is

variable (e.g. optional) and contains its own guard condition. In that case, the guard

condition of the parent element must be evaluated as True (i.e. to be included) if the guard

condition of any of its child elements is evaluated as True based on a feature configuration.

In fact, I believe the following rule of thumb must be held in the developed PLA model.

19

Rule of Thumb: The guard condition of a variable element in the PLA model must cover

all the guard conditions of its variable child elements. (i.e. Gparent = gchild1 || gchild2 || …

|| gchildn, G and g represent guard conditions, || is the OR operator)

Manually enforcing the above rule in PLA development can be expensive and error

prone, as an architecture element often contains multiple child elements. Each may evolve

(e.g. getting related to different features) in specific ways. The user can easily get

overwhelmed by the workload of editing the involved Boolean expressions. The PLA

modeling environment I developed integrates some special logics that can automatically

enforce the rule. Two example scenarios are given below to illustrate how this is achieved.

Scenario #1: A new interface corresponding to Feature A (i.e. Feature A is selected in the

feature tree) is added to an existing optional component corresponding to Feature B. As a

result, the guard condition of the new (optional) interface is FeatureA=true. Meanwhile, the

guard condition of the existing component is updated to FeatureB=true || FeatureA=true.

When an architecture element is associated with a feature (i.e. getting a new guard

condition), the developed tool will check its parent element (e.g. the component above) first.

If the parent element is variable and has its own guard condition (e.g. FeatureB=true above),

the tool will append the child element’s new guard condition (e.g. FeatureA=true above) to

the parent element’s guard condition using an OR operator (e.g. FeatureB=true ||

FeatureA=true). This process stops either when the parent is a core element or when the

parent element can exist independently in an architecture. It represents a bottom-up process

of propagating guard conditions to maintain the rule of thumb described above.

Scenario #2: An existing core component containing an optional interface corresponding

to Feature B gets related to Feature A and becomes an optional component. As a result, the

20

guard condition of the component is FeatureA=true || FeatureB=true. The interface’s guard

condition remains same, FeatureB=true.

When an existing core architecture element becomes variable (e.g. optional) and gets a

new guard condition, the developed tool will automatically extract all the guard conditions

(e.g. FeatureB=true above) of its direct variable child elements and append them to its own

guard condition (e.g. FeatureA=true above) using an OR operator (e.g. FeatureA=true ||

FeatureB=true). This represents a top-down process of maintaining the rule of thumb.

In addition to the two examples described above, the tool includes other logic to

automatically manage the variation points included in a PLA model. For example, the tool

will automatically remove an optional architecture element from the PLA model if its

relationship with the only feature that it corresponds to is deleted. Otherwise, the tool only

updates the guard condition of the element if the element is still related to some other

features. Overall, the developed PLA modeling environment automatically creates and

manages the variation points embedded in the PLA model. It guarantees the correctness of

the developed PLA model in terms of the Rule of Thumb described above. This plays an

important role in derivation of architecture instances from the PLA model as introduced in

the following subsection.

3.3 Derivation of Architecture Instances from PLA

The selector tool can be used to generate an architecture instance from a PLA. Figure 2

shows a screenshot of the tool. When a PLA is opened in the selector, all features defined in

the PLA are automatically loaded into the selector. Related information of each feature, such

as type (i.e. optional, alternative), default value, and descriptions are also loaded and

displayed to the user in a panel. The user can customize the PLA by changing the value

21

setting of each feature. A drop down list is provided and the user can simply choose the

legal values for each feature. Only true and false are shown for an optional feature. Feature

variants are shown for alternative features. False and feature variants are shown for optional

alternative features.

Figure 2 Screenshot of the Selector tool

In addition, the selector includes an import/export function (e.g. the buttons labelled

Import Feature Settings, Export Feature Settings in Figure 2) that allows the user to

save/load their feature selections. By this means, the user does not need to re-select features

if they want to generate an architecture instance that includes the same set of features. They

can simply load the setting file that was exported before. Alternatively, the user can also pre-

define some recommended system settings such as basic version, professional version, and

advanced version. Each version is defined by its own feature configuration file that the user

can reuse.

After the feature configuration is done, the user can click the “Run” button in the selector

tool to generate the architecture instance. Figure 3 below shows the generated architecture

instance of the chatting application based on the feature setting shown in Figure 2. Note that

the architecture elements highlighted in Figure 1 do not exist in Figure 3. This is because the

corresponding feature (i.e. the Game feature) is not selected (i.e. set to false) in Figure 2

22

when running the selector tool. Similarly, only the Plain Text Log component is included for

the feature ChatLog in the generated architecture. The process of deriving architecture

instances involves the activities of evaluating guard conditions and pruning elements. This is

further discussed in Section IV.

Figure 3. Example of a derived architecture instance

23

CHAPTER 4

IMPLEMENTATION

The tool presented in Section III is implemented and integrated in ArchStudio, an

Eclipse-based architecture development toolset. A main task of the development work is to

integrate the functions such as automatic creation of variation points and feature

development into ArchStudio. During this process, I was able to reuse several existing tools

and code provided by ArchStudio.

4.1 Implementation Environment: ArchStudio

ArchStudio is an architecture development environment integrated within the Eclipse

platform as a plug-in project. It supports developing, visualizing, and analyzing architecture

models using the xADL language introduced in Section II. On the one hand, ArchStudio has

provided a number of ancillary tools, such as Archipelago, ArchEdit, and TypeWrangler

[26]. These tools support some essential activities (e.g. visualization, editing, and validation)

of architecture development, and can be extended to address new architecture concerns. On

the other hand, new tools that are independent of the tools mentioned above can also be built

and integrated with ArchStudio for the purpose of some other development activities, such

as architecture-implementation mapping [28], architecture-centric traceability [3], and PLA

development focused in this study. This process includes developing new xADL schemas

and building specific tools to explore new functions.

4.2 Integration with ArchStudio

The main functions of the tool are developed and integrated in two existing tools of

ArchStudio, Archipelago and a selector prototype. They provide some basic functions such

as visualization of architecture models, modification operations, and file management.

24

Based on them, our implementation work was mainly focused on developing variability-

related functions described in Section III, including 1) creation, removal, and edit of product

line features and their relationships to the architecture; 2) automatic maintenance of

variation points; 3) visualization of the variation points when a feature is selected; 4) fully

automated derivation of architecture instance. The first three functions are implemented in

Archipelago, and the last function is done in the selector tool.

Archipelago is an existing graphical architecture editor that provides a symbolic boxes-

and-arrows editing interface. The user can add/update/remove architecture components and

links in Archipelago. The current version of Archipelago is focused on architecture

modeling for single system development. It provides limited support for PLA modeling: the

user can define an optional component and edit its guard condition. However, Archipelago

does not support modeling of features or feature-PLA mapping. All the variability-related

operations (e.g. creation of a variation point) in PLA have to be manually done. I made

significant changes to the code of Archipelago in this regard. A specific issue I addressed is

implementation of alternative features in PLA. Our original plan was to define alternative

variation points (e.g. <variant>) correspondingly and embed them in involved architecture

elements. For example, there could be an alternative architecture component that includes

two <variant> sub-elements, which point to another two components respectively. It can be

graphically represented as a component containing two inner smaller components as

alternatives. The problem is that this would require operations such as add/remove variant to

be included in Archipelago to modify architecture elements. More importantly, it introduces

the product line concepts into the operations of Archipelago. This conflicts with one of our

goals in this project – freeing the user from product line specific operations (e.g. creating

25

variation point) so that they can focus on editing architecture for application logics. As a

result, I decide to exploit the expressive power of Boolean guard included in the definition

of a variation point to resolve this problem. All variable architecture elements are marked as

optional. An alternative feature is then implemented in PLA as a number of optional

variation points. Each is governed by a guard condition that has the same guard symbol (e.g.

feature name) and different guard values that are mutually exclusive.

A product line selector prototype was built in a prior research project [11], where an

exploratory study of PLA was done. It included the functions such as evaluating guard

conditions and pruning un-selected architecture elements in a PLA. A main problem of the

tool was that the user had to manually prepare the configuration information in terms of

symbol-value pairs, based on which a corresponding architecture instance can be generated.

This was primarily because there was no feature information explicitly defined in the PLA

model. The user had to manually identify the symbols and allowed values from the guard

conditions included in the PLA. In our implementation, I made the entire process of

architecture instantiation fully automated and feature-oriented. All the features and related

information are automatically loaded into the selector tool. The user only needs to select

values for each feature from the drop-down list I provided.

26

CHAPTER 5

RESULTS AND EVALUATION

5.1 Case Study

Case study in software engineering is an empirical research method emphasizing study of

an object in its natural context [20]. It is used in this project to assess the effectiveness of the

presented approach. I used the work done by Adam Carter and Jeffrey Lanning [30] of

modeling feature integrated Architecture model of Apache Solr Project using the tool

proposed in this document

5.1.1 Objectives

There are two primary objectives of the case study. First, I want to assess how the

presented approach performs with a real software system. Scalability will be our main

concern at this point. I will consider the approach to be successful if it works well with a

system that has considerable size and a significant number of features. For example, the

functions of implicitly and explicitly relating features to PLA should work as described in

Section III. This can be validated by using the feature visualization function included in the

tool. The other objective of the case study is to explore how the integrated development of

features and PLA presented in this paper can help the user manage and understand the

system.

5.1.2 Apache Solr

We have chosen to build the PLA for Apache Solr 4.0, a Java-based open-source

standalone enterprise search server with a REST-like API. Solr is currently used in Cerner

Corporation to support a variety of solutions. The Solr project has over fifty Java packages,

more than a thousand classes, and approximately 146K SLOC. In addition, Solr has been

27

through more than eight years of development. A number of features have been added to it

while the system evolved over time, such as query result highlighting, spell checking, and

caching. In particular, an explicit architecture model that distinguishes elements related to

different features does not exist yet. As Solr is increasingly popular, many companies began

to experiment with extending the capabilities of Solr. This has launched a request for a

public architecture model that can be used to describe the system and associated features.

We started the case study by recovering Solr’s architecture from its source code. We

followed the typical two-step architecture recovery procedure: extraction and abstraction

[10]. The first step generates low-level UML diagrams (e.g. class diagrams) by using

existing UML tools. The second step groups classes into components, and usually has to be

manually done. After that, we used the Apache Solr Reference Guide [22] as a reference and

identified a list of important features of Solr. In order to discover the relationship between

these features and Solr’s architecture elements, we used the UML’s sequence diagram

generated in the architecture recovery process. This provided us with some clues about

where and how a specific feature is implemented in the architecture. There were also cases

when we had to manually go through the code to find out how a feature is implemented.

After we determined the entire architectural structure, all of the features, and the feature-

architecture relationships, we used the tool presented in this paper to model the recovered

features and architecture of Solr in ArchStudio. We developed the recovered features, with

each feature corresponding to a number of architecture elements. The involved architecture

elements are all accompanied by guard conditions as shown in List. 1. At the end, we

collected data, analyzed the results, and made a conclusion.

28

Table I shows the list of the features that we discovered and modeled for Solr. Each

feature in the table is depicted by feature type, number of feature variants (not available for

optional features), and number of involved architecture elements. We have captured twenty

eight features in total. Fourteen of them are optional features, eleven are alternative features,

and three are optional-alternative features. The total number of feature variants that the

alternative features contain are one hundred and forty three. For example, the feature of

Query Processors in the table has sixteen variants, each responsible for handling the work of

a certain type of query. The system configuration file specifies which of them should be

included and instantiated. The developed architecture model of Solr has one hundred and

eighty three components. There are only twenty seven common components representing the

kernel functions of Solr, such as evaluating queries, executing commands, and generating

response. These functions are not included in Table I as they exist in every Solr instance.

Table 2: Solr’s Features and Architecture Mapping

Feature Type Number of Variants

Number of

Related PLA

Elements

Query Caching Optional n/a 3

Index Analysis Optional n/a 3

Result Clustering Optional n/a 5

Faceting
Optional-

Alternative
5 11

Function Queries Optional n/a 2

Result Highlighting
Optional-

Alternative
3 10

Recommendation Optional n/a 6

NoSQL Support Optional n/a 6

Query Boosting Optional n/a 7

Geospatial Search Optional n/a 4

Spell Checking
Optional-

Alternative
5 12

Statistics Collection Optional n/a 6

29

Query Suggest Optional n/a 6

Term-based Query Optional n/a 7

SolrCloud Optional n/a 3

Extract PDF/Word Optional n/a 2

Posting Tool Optional n/a 1

Query Processors Alternative 16 16

Query Handler Alternative 6 6

Query Parsers Alternative 24 24

Response Writers Alternative 9 9

Query Commands Alternative 2 2

Service Client Alternative 13 13

Solr Parameters Alternative 16 16

Update Commands Alternative 6 6

Update Handlers Alternative 4 4

Update Loaders Alternative 4 4 4

Update Processors Alternative 30 30

Despite the large size of Solr and the number of features we modeled in the case study,

all the variation points were automatically created and updated for the involved architecture

elements. When we were developing the relationships between features and architecture, we

exercised both explicit mode and implicit mode. We did this by changing the order of

creating a feature and its related architecture elements. If the feature is created first, the

implicit mode is activated and all the new architecture elements we created afterwards were

automatically (i.e. implicitly) related to the feature. Otherwise, we would need to right click

an architecture element in the editor and explicitly select “Add to Current Feature”. As

mentioned at the beginning of this section, we validated the established relationships by

using the visualization function provided by the developed tool. All these functions worked

as designed. In particular, there were several architecture components related to multiple

features. For example, Components QueryParser and QueryParameters are both related to

30

the features of Result Highlighting, NoSQL Support, Term-based Query shown in Table 1.

The tool handled this situation well and we did not need to manually intervene. One problem

we found in the case study is that the existing feature types are not sufficient for all the

situations. Specifically, an OR feature is needed to allow more than one alternative to be

selected from a feature set. We plan to include this in our future work.

Additionally, the experience of the case study further shows that it is beneficial to

integrate features in the development of PLA. It was relatively easy to tell from the

developed Solr model which portion of the system was relatively stable and which portion

evolved frequently (e.g. involving a number of variants). The included feature visualization

function of the modeling environment made it straightforward to review the elements where

a specific feature is implemented. In contrast, this would require examination of the entire

architecture or even the source code if features and PLA were developed and managed

separately.

5.1.3 Threats to Validity

A primary concern that we had about the case study is that we essentially recovered the

architecture of an existing software system. In particular, the architecture we developed was

for a single software system, rather than a product line. All the features we recovered belong

to the same system, instead of different products of a product family. This is a threat to

validity of the case study. The case study results described above are valid because 1)

converting the architecture of a single system into a PLA is a typical PLA development

approach, especially when the product line development did not start from the beginning; 2)

all the operations that we exercised in the case study are essential to features of both single

system and a product line, such as creating feature, variability modeling, and relating feature

31

to architecture. In addition, we addressed the threat to validity by selecting the features that

are relatively loosely coupled with the Solr system, as product line features typically are. For

the features that are closely tied to the system and require significant changes to the system

to be included or excluded, we made them core functions and did not model them in the case

study. This further strengthens the validity of the work done.

32

CONCLUSION, AVAILABILTY AND FUTURE WORK

This paper presents a pragmatic PLA modeling and instantiation tool. The modeling tool

bridges the conceptual gap between abstract features and PLA by integrating their

development in a single environment. It maintains and visualizes the mapping from each

feature to its implementation in the PLA. The tool can automatically create and maintain

variation points in variable architecture elements, and reduces the overhead of manual

variability modeling in PLA. The included selector tool fully automates the process of

resolving variability in PLA to derive architecture instances.

The source code of the tool can be downloaded from

https://github.com/varunnarisetty/Archstudio_PLA. A video demo is available online at

http://youtu.be/ZGgx2AA0ALI.

Future work will be focused on modeling the relationships between features (e.g. mutual

dependency, mutual exclusion) and automatically enforcing them in the PLA model. I

believe the guard condition presented in Section II can be potentially extended to address

this issue, based on the Boolean operators such as AND, OR. At this point, the feature list in

the development PLA modeling environment is a flat list. After the feature relationship is

supported, the feature tree in the environment will contain a hierarchy of features.

33

REFERENCES

[1] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., and Shaham-Gafni, Y. Model

Traceability. IBM Systems Journal. 45(3), p. 515-26, 2006.

[2] Apache Software Foundation. Apache Solr. http://lucene.apache.org/solr/, 2014.

[3] Asuncion, H.U., Asuncion, A.U., and Taylor, R.N. Software traceability with topic

modeling. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1. p. 95-104, ACM: Cape Town, South Africa, 2010.

[4] Batory, D., Sarvela, J.N., and Rauschmayer, A. Scaling Step-Wise Refinement. IEEE

Transactions on Software Engineering. 30(6), p. 355-371, June, 2004.

[5] Bosch, J. Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. ACM Press, Addison-Wesley Professional: Reading,

Massachusetts, 2000.

[6] Cerner Corporation. http://www.cerner.com/.

[7] Czarnecki, K. and Eisenecker, U. Generative Programming: Methods, Tools, and

Applications. Addison-Wesley Professional: Reading, Massachusetts, 2000.

[8] Czarnecki, K. and Antkiewicz, M. Mapping features to models: a template approach

based on superimposed variants. In Proceedings of the 4th international conference on

Generative Programming and Component Engineering. p. 422-437, Springer-Verlag:

Tallinn, Estonia, 2005.

[9] Dashofy, E., van der Hoek, A., and Taylor, R.N. A Comprehensive Approach for the

Development of Modular Software Architecture Description Languages. ACM

Transactions on Software Engineering and Methodology (TOSEM). 14(2), p. 199-245,

April, 2005.

34

[10] Garcia, J., Ivkovic, I., and Medvidovic, N. A comparative analysis of software

architecture recovery techniques. In Proceedings of the Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. p. 486-496,

IEEE. 2013.

[11] Garg, A., Critchlow, M., Chen, P., Van der Westhuizen, C., and van der Hoek, A. An

Environment for Managing Evolving Product Line Architectures. In Proceedings of the

IEEE International Conference on Software Maintenance (ICSM 2003). p. 358-367,

Amsterdam, The Netherlands, September 22-26, 2003.

[12] Heidenreich, F., Kopcsek, J., and Wende, C. FeatureMapper: mapping features to

models. In Companion of the 30th international conference on Software engineering. p.

943-944, ACM: Leipzig, Germany, 2008.

[13] Hendrickson, S.A. and van der Hoek, A. Modeling Product Line Architectures

through Change Sets and Relationships. In Proceedings of the 29th International

Conference on Software Engineering (ICSE 2007). p. 189-198, Minneapolis, MN, May

20-26, 2007.

[14] Jarzabek, S., Bassett, P., Hongyu, Z., and Weishan, Z. XVCL: XML-based variant

configuration language. In Proceedings of the Software Engineering, 2003. Proceedings.

25th International Conference on. p. 810-811, 3-10 May 2003, 2003.

[15] Kastner, C., Apel, S., and Kuhlemann, M. Granularity in software product lines. In

Proceedings of the 30th international conference on Software engineering. p. 311-320,

ACM: Leipzig, Germany, 2008.

35

[16] Krueger, C.W. The BigLever Software Gears Unified Software Product Line

Engineering Framework. In Proceedings of the 2008 12th International Software Product

Line Conference. p. 353, IEEE Computer Society, 2008.

[17] Ommering, R.v., Linden, F.v.d., Kramer, J., and Magee, J. The Koala Component

Model for Consumer Electronics Software. IEEE Computer. 33(3), p. 78-85, March,

2000.

[18] Parnas, D.L. Designing Software for Ease of Extension and Contraction. IEEE

Transactions on Software Engineering. 5(2), p. 128-137, 1979.

[19] Pohl, K., Böckle, G., and van der Linden, F.J. Software Product Line Engineering:

Foundations, Principles and Techniques. 1 ed. 468 pgs., Springer: New York, New York,

2005.

[20] Runeson, P. and Host, M. Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering. 14(2), p. 131-164,

2009/04/01, 2009.

[21] Sinnema, M., Deelstra, S., Nijhuis, J., and Bosch, J. COVAMOF: A Framework for

Modeling Variability in Software Product Families. In Proceedings of the Third

International Software Product Lines Conference (SPLC 2004). p. 197-213, Springer

Berlin / Heidelberg. Boston, MA, USA, August 30-September 2, 2004.

[22] Targett, C. Apache Solr Reference Guide.

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide, 2014.

[23] Taylor, R. and van der Hoek, A. Software Design and Architecture: The Once and

Future Focus of Software Engineering In Future of Software Engineering 2007, Briand,

L.C. and Wolf, A.L. eds. p. 226-243, IEEE-CS Press, 2007.

36

[24] Taylor, R.N., Medvidovic, N., and Dashofy, E.M. Software Architecture:

Foundations, Theory, and Practice. 736 pgs., John Wiley & Sons, 2010.

[25] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T.

FeatureIDE: An extensible framework for feature-oriented software development.

Science of Computer Programming. 79(0), p. 70-85, 2014.

[26] University of California Irvine, Institute for Software Research. ArchStudio.

http://www.isr.uci.edu/projects/archstudio/.

[27] Yael, D., Julia, R., Thorsten, B., Slawomir, D., Martin, B., and Krzysztof, C. An

Exploratory Study of Cloning in Industrial Software Product Lines. In Proceedings of

the Software Maintenance and Reengineering (CSMR), 2013 17th European Conference

on. p. 25-34, IEEE. 2013.

[28] Zheng, Y. and Taylor, R.N. Enhancing architecture-implementation conformance

with change management and support for behavioral mapping. In Proceedings of the

2012 International Conference on Software Engineering. p. 628-638, IEEE Press:

Zurich, Switzerland, 2012.

[29] Zheng, Y. and Taylor, R. A classification and rationalization of model-based

software development. Software & Systems Modeling. 12(4), p. 669-678, October 2013,

2013.

[30] Adam Carter and Jeffrey Lanning. Modeling Feature integrated Architecture model

of Apache Solr Project using Integration features in the development of Software

Product line Architecture tool. As a part of Class project for Software Architecture and

Design during Fall Semester 2014 at University of Missouri Kansas City.

37

VITA

Varun Narisetty was born on February 14th 1989, in Andhra Pradesh, India. He

completed his Bachelor's degree in Information Technology from JNTU University

Hyderabad in 2010. Started his career in a start up and later worked for Samsung Research

Institute Delhi. In August 2013 he came to the United States to pursue his Master's degree in

Computer Science at University of Missouri-Kansas City (UMKC). During this period he

worked under Dr. Zheng as a Graduate Research Assistant.

He is a Software Engineer by profession and a Traveler by passion. Currently living

in Kansas City, MO. Still looking for a perfect soulmate.

