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Abstract 

The Membrane bioreactor (MBR) activated sludge process is increasingly used in 

wastewater treatment due to its excellence in solid-liquid separation, superior effluent 

quality, smaller bioreactor volume and foot print as compare to Conventional Activated 

Sludge (CAS) process. However, operational issues such as membrane fouling and 

sludge bulking affect its broad applications. As solids retention time (SRT) and hydraulic 

retention time (HRT) are the most important operating parameters in activated sludge 

systems, this research determined the effect of different SRTs (180 d, 90 d and 45 d) and 

HRTs (24 h, 12 h, and 6 h) on the change in sludge settling and filtration properties and 

membrane fouling trends while keeping the SRT/HRT ratio constant throughout the study 

period. The biomass concentrations increased from about 8,000 to 10,000 mg COD/L as 

SRT and HRT decreased proportionally. As SRT decreased to 45 d and HTR decreased 

to 6 h, significant sludge bulking and poor filtration with high Time to Filter (TTF) 

values were observed, largely due to the operation at low DO concentrations under high 

organic loading conditions. However, the system recovered in about 50 d after correction 

of low DO concentrations in the MBR. Due to the potential sludge bulking problems at 



 

x 

 

long SRT (180 d) operation, the results suggest the MBR operation at the SRTs of 45 to 

90 d results in excellent sludge settling and filtration properties and effluent water quality.
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1. Introduction 

1.1 Membrane Bioreactor (MBR)  

MBR activated sludge processes replace gravity-based sedimentation with membrane filtration to 

ensure high effluent water quality. Therefore, it is now widely used for municipal and industrial 

wastewater treatment (Beier et al. 2012, Fenu et al. 2010, Hoinkis et al. 2012). Because of its 

unique compact structure, which allows wastewater treatment at high mixed liquor suspended 

solids (MLSS) concentrations (e.g., 8-14 g/L), MBRs have been widely used for water reuse 

(Alturki et al. 2010, Atkinson 2006a). Although the CAS process is popularly used in municipal 

wastewater treatment worldwide, with the increase in water demand and more stringent 

regulatory requirements, more and more activated sludge wastewater treatment plants (WWTPs) 

are upgrading their facilities to improve treatment capacity for water reuse. However, due to the 

limited available space and volumetric organic loading rate in existing activated sludge systems, 

it is very challenging for the current WWTPs to meet the requirements. The MBR wastewater 

treatment process offers many advantages over the CAS process. 

 

The average annual market growth rate is predicted to be 10.9% for MBR, which is significantly 

faster than other wastewater treatment technologies such as sequencing batch reactor (SBR) or 

biological aerated filters (BAF) (Judd 2008). This indicates that MBR plants will double every 

seven years for wastewater treatment. There are two MBR configurations, internal (submerged) 

and external (side-stream). 
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1.1.1 Internal (Submerged) MBR 

The submerged membrane bioreactors (SMBR) are commonly used for wastewater treatment. In 

SMBR, the filtration elements are installed either in the main bioreactor or in a separate tank. 

The membranes used in SMBR operation can be either flat sheet or tubular or a combination of 

both, and may include a backwash system which will reduce the membrane fouling. Aeration is 

required to provide air scour to reduce membrane fouling. As the membranes are installed in the 

main reactor, membrane modules need to be removed from the vessel and transferred to an 

offline cleaning tank (Meng et al. 2008). Since the submerged system operates at a lower 

trans-membrane pressure (TMP) than an external system, it has a lower flux. However, it has the 

advantages of reduced fouling so less rigorous cleaning procedures are necessary as compared to 

the side-stream system (Churchouse 1997, Gander et al. 2000). 

 

1.1.2 External (Side-stream) MBR 

For a side-stream MBR system, the filtration units are installed externally to the main bioreactor. 

The biomass could be pumped directly through a number of membrane modules in series and 

back to the bioreactor, or the biomass is pumped to a bank of modules, from which a second 

pump circulates the biomass through the modules in series. Cleaning and soaking of the 

membranes can be undertaken in place with use of an installed cleaning tank, pump and 

pipework. 
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1.2 Advantages of MBR over Conventional Activated Sludge (CAS) Process 

First, the MBRs require a much smaller footprint than CAS systems because the MLSS 

concentration in the MBRs are several times higher than that of CASs (Ben Aim and Semmens 

2003, Chu et al. 2008, Huang et al. 2001), which means a higher applicable organic loading rate 

accompanied by higher biomass concentration (Falk et al. 2009, Fenu et al. 2010, Verrecht et al. 

2010). Second, the MBR system can be more effective in simultaneous nitrification and 

denitrification, due to the maintenance of high organic loading rates and low Dissolved Oxygen 

(DO) concentrations (Baek and Pagilla 2008). Third, benefits of MBR operation yields high 

quality treated wastewater, easy control of SRT and HRT, and less sludge.  

 

1.2.1 High Effluent Water Quality 

The MBR process is capable of running at a longer SRT than a conventional activated sludge 

process, thus allowing the growth of slow-growing microorganisms, improving the removal of 

refractory organic compounds and making for a more robust system to load variations and toxic 

shocks. MBR process usually results in complete and stable nitrification owing to the retention 

of slow-growing nitrifying bacteria at a prolonged SRT (Davies et al. 1998, Li et al. 2006, Yoon 

et al. 2004). 

 

Meanwhile, membrane process also acts as a barrier to separate suspended solids including 

microorganisms from water. The use of membranes can improve effluent water quality for water 

reuse since bacteria and suspended solids (SS) are larger than the membrane pore size. As a 
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result, membrane plays a role in disinfection to achieve up to 7 logs of inactivation of total 

coliforms (Hirani et al. 2010, Krauth and Staab 1993, Le-Clech 2010, Pollice et al. 2008, 

Rosenberger et al. 2002). So, the water produced from MBR process is almost free of pathogens 

and other microorganisms. The excellence in solid-liquid separation allows MBR operation at a 

very high MLSS concentration (up to approximately 20 g/L), which makes it efficient to deal 

with recalcitrant compounds. Therefore, MBRs have a superior effluent water quality than 

conventional activated sludge processes (Hirani et al. 2010, Krauth and Staab 1993, Le-Clech 

2010, Pollice et al. 2008, Rosenberger et al. 2002).  

 

1.2.2 Easy SRT and HRT Control 

CAS processes cannot have a very long SRT, since long SRT will cause sludge bulking and high 

biomass concentrations, prohibiting the operation of gravity-based sedimentation in clarifiers. In 

contrast, in the MBR process, there is almost no sludge loss in the effluent, and the SRT can be 

controlled with more flexibility. 

 

The MBR process allows for more flexible operation due to separate control of SRT and HRT. 

Unlike CAS operation, it does not need to consider sufficient long HRT for floc formation (Judd 

2008, Khongnakorn et al. 2007, Teck et al. 2009). MBRs can be operated at a SRT as high as 

100 days with the biomass concentration ranging from 10,000 to 50,000 mg/L(Muller et al. 

1995). Nevertheless, the recent trend of MBR operation is to apply lower solids retention times 

(around 10–20 days), resulting in more manageable MLSS levels (10 to 15 g/L)(Le-Clech et al. 

2006). 
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1.2.3 Less Sludge Wasting 

One of the most competitive advantages of MBRs over traditional activated sludge systems is its 

long SRT operation, resulting in reduced sludge production (Gander et al. 2000). Sludge 

treatment and disposal is one of the major challenges in activated wastewater treatment plants 

and can represent up to 60% of their total operating costs (Canales et al. 1994, Wang et al. 2013). 

Therefore, effective reduction of sludge production is possible through MBR operation. Over the 

past decades, various sludge reduction technologies have been developed, which can be applied 

either in the sludge return line to promote sludge degradation, or in the sludge treatment 

processes to enhance aerobic or anaerobic digestion (Wang et al. 2013). Reducing sludge 

production in MBR wastewater treatment process is attracting extensive attention since it allows 

for decreased sludge production in the first place and therefore decreases the subsequent sludge 

management costs (Mahmood and Elliott 2006). In an MBR system operated at a long SRT, 

there is almost no sludge wastage. 

 

1.3 MBR Operation 

1.3.1 Organic and Nutrient Removal in the MBR 

MBRs have become an important wastewater treatment process that is capable of transforming 

wastewater to high quality effluent suitable for various water recycling applications (Atkinson 

2006b, Fane and Fane 2005). Due to recent technical innovation and drastic cost reduction in 

membrane materials, the high biomass concentrations at long SRTs are favorable for the 
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biodegradation of organic pollutants, resulting in high rate treatment systems.  

 

In traditional MBRs intensive aeration is carried out to support microbial growth and control 

membrane fouling. This intensive aeration gives MBRs excellent removal capabilities when 

dealing with organic matter and ammonia nitrogen. However, the adverse effect of intensive 

aeration eliminates the anoxic conditions necessary for denitrification and results in poor total 

nitrogen removal in the MBR systems (Kim et al. 2008, Patel et al. 2005). Recent research 

efforts have been conducted to overcome this drawback and improve nitrogen removal with 

modified reactor configurations. For instance, the Anoxic/Oxic MBR removed COD, NH4
+-N, 

and TN effectively with the average removal efficiencies of 96.4%, 99.1% and 75.8%, 

respectively (Kuang et al. 2012).  

 

Biological nitrogen removal can efficiently remove organic nitrogen compounds to harmless 

nitrogen gas (N2) and is generally more cost effective than physicochemical methods (Ahn 2006, 

Kim et al. 2008). By optimizing the ratio of sludge recirculation to the anoxic reactor, the 

biological nitrogen removal efficiency reached 90% in an MBR system consisting of two anoxic 

and aerobic reactors in series (Abegglen et al. 2008). In another study of the effect of MBR 

configuration on nitrogen removal, the A2/O (Anaerobic/Anoxic/Oxic) MBR process achieved 

higher organic, total nitrogen and nitrate nitrogen removal efficiencies of 95%, 95% and 91%, 

respectively (Kim et al. 2008). 
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Figure1.1 Activated Sludge Wastewater Treatment Flow Diagram 

The classical configuration of activated sludge process for nitrogen removal includes separate 

aerobic and anoxic zones arranged in an appropriate sequence to enable optimal performance. 

However, conventional biological nitrogen removal processes such as post-denitrification 

process have the disadvantage of requiring an external carbon source (Downing and Nerenberg 

2008). Alternative processes using MBR and membrane-aerated biofilm reactor (MABR) 

techniques have the potential to overcome the disadvantage with simultaneous nitrification and 

denitrification. The characteristics of high biomass concentration in the MBR may allow 

simultaneous nitrification and denitrification because anoxic zone is formed in the inner side of 

biomass floc (Sarioglu et al. 2009).  

 

Simultaneous nitrification and denitrification occur to accomplish biological nitrogen removal in 

a single sludge process. Compared to conventional biological nitrogen removal with nitrification 

and denitrification in two separate tanks, simultaneous nitrification and denitrification have 

advantages such as small footprint to save space and reduced construction costs (Bernat and 
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Wojnowska-Baryła 2007). Another advantage is a reduced demand or need for alkalinity 

chemicals (Andrade do Canto et al. 2008). Simultaneous nitrification and denitrification can take 

place inside the activated sludge flocs because of DO concentration gradients in the flocs. High 

DO concentrations at the exterior layer of flocs result in aerobic zone for autotrophic nitrification. 

Due to the limited DO diffusion and high oxygen consumption of nitrifiers, anoxic micro-zones 

develop in the inner rings of the floc, which favors the growth of heterotrophic denitrifiers to 

convert nitrates produced in exterior layers to nitrogen gas (Holman and Wareham 2005). 

Heterotrophic denitrifiers have ability to reduce nitrate under micro-aerobic conditions at the DO 

concentration of 0.8-2.0 mg/L (Bernat and Wojnowska-Baryła 2007). With possible 

co-respiration mechanism of aerobic denitrification, the heterotrophic denitrifiers can 

simultaneously use oxygen and nitrite/nitrate as electron acceptors. Furthermore, parallel 

channels of electron transport chains in microorganisms act to simultaneously transfer electron 

flows to denitrifying enzymes and oxygen-reducing enzymes (Huang and Tseng 2001). The high 

sludge concentrations in an MBR is not only beneficial to  nutrient removal, but is also 

beneficial to the removal of micro-pollutants that tend to accumulate in the sludge, either due to 

their intrinsic hydrophobicity or via electrostatic interactions with the biomass (Sipma et al. 

2010). 

 

1.3.2 Effect of SRT on MBR Performance 

SRT is one of the most important parameters affecting the biodegradation in activated sludge 

systems (Sipma et al. 2010). There have been many research efforts devoted to bioreactor 



 

9 

 

operating conditions and biomass characterization to achieve best performance (Delai Sun et al. 

2007, Rosenberger et al. 2002, Tan et al. 2008). These include, but are not limited to, SRT (Ersu 

et al. 2010), sludge property characterization (Liang et al. 2010), and membrane fouling control 

(Menniti and Morgenroth 2010). SRT is the key design factor in activated sludge systems 

including MBRs. Although optimal operating conditions such as SRTs have yet to be clearly 

defined in MBRs, the membrane system can be operated at a much higher SRT than in the CAS 

system without affecting the biodegradation capacity (Pollice et al. 2008). Although the specific 

bacterial growth rates generally decreased as the SRTs increased, this did not affect organic 

degradation performance or effluent water quality with the help of high biomass concentrations 

(Pollice et al. 2008). Long SRTs also result in reduced sludge production in the MBRs. For 

instance, at a prolonged SRT of 300 d, the observed sludge yield and endogenous decay rate in 

the MBRs were 0.115 g VSS/g COD and 0.024 day-1, respectively, half the reported lower values 

in the traditional CAS systems (Teck et al. 2009). Furthermore, since the concentration of 

soluble microbial products (SMP) that affect membrane fouling generally decreased with 

increasing SRT (Meng et al. 2009), it appears preferable to run MBRs at relatively long SRTs 

(e.g., SRT = 50 d) to control SMP concentration and improve organic and nutrient removal (Ersu 

et al. 2010). 

 

Regarding the selection of SRT in MBR operation, in one study of the effect of SRT on the 

municipal wastewater treatment by pre-denitrification SMBR systems, the highest total nitrogen 

removal was achieved at an SRT of 33.3 days due to higher MLSS concentration and lower DO 
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concentrations in the mixed liquor recirculation flow (Tan et al. 2008). Studies also indicate that 

the importance of mixed liquor recirculation and DO control on nitrogen removal and membrane 

fouling control in pre-denitrification SMBR systems since higher aeration rate minimized 

membrane fouling while lower aeration rate improved total nitrogen removal (Tan et al. 2008). 

The positive effect of operation at a long SRT was also reported by Lesjean et al.(Lesjean et al. 

2005), who found that the removal of pharmaceuticals increased with a sludge age of 26 days 

and inversely decreased when the sludge age was set at 8 days. Others, however, found that 

change in the SRT from 30 days to 10 days resulted in severe fouling (Zhang et al. 2006b). EPS 

is a big factor affecting membrane fouling, and a lower production rate can result from the 

reduced availability of easily biodegradable substrate at longer SRTs (Witzig et al. 2002) which 

leads a lower EPS concentration. Enhanced degradation of EPS at longer SRTs can be explained 

by a longer contact time between bacteria and these biopolymers (Massé et al. 2006) More 

studies are needed to determine biomass characteristics, microbial activities and bioreactor 

configurations on nitrogen removal in the SMBR systems. 

 

 

1.3.3 Effect of HRT on MBR Performance 

Besides SRT, a relationship between HRT and biodegradation performance is expected as HRT 

determines the contact time between the pollutant and microorganisms (Sipma et al. 2010). 

Although MBR process has the capability of providing high removal efficiency of organic and 

nutrients with insensitivity to hydraulic fluctuation (Chang et al. 2002, Delai Sun et al. 2007, 

Rosenberger et al. 2002),  reducing HRT leads to more severe membrane fouling (Chae et al. 
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2006a, Cho et al. 2005). 

 

Since short HRT results in high OLR, HRT is a very important operating parameter in MBR 

systems, which correlated not only to the treatment efficiency but also to the characteristics of 

activated sludge (Meng et al. 2007). HRT may affect MBR performance through the release of 

EPS of bacterial origin. For instance, a low HRT could result in high MLSS concentration, 

sludge viscosity, and high EPS concentration (Meng et al. 2007). These factors resulted in more 

severe membrane fouling (Meng et al. 2009). Therefore, too low HRT may have a negative 

effect on membrane filtration, since the low HRT caused high OLR and potentially low DO 

concentrations which could cause excessive growth of filamentous bacteria in sludge. The 

growth of certain filamentous bacteria, such as Sphaerotilus and Haliscomenobacer hydrssis, is 

favored at relatively low DO concentrations(Liu and Liu 2006). Deficiency of DO is believed to 

be one of the major causes responsible for most filamentous growth in activated sludge process. 

Meanwhile, filamentous bacteria have high surface-to-volume ratio than non-filamentous 

bacteria which enable them to take up more nutrients as the bioreactor operates under high OLRs 

(Meng et al. 2007). Therefore, HRT has a great impact on the performance of MBR systems. 

Overall, HRT affects MLSS concentration, EPS, sludge viscosity and filamentous bacterial 

growth, which all have strong impact on membrane fouling. 

 

1.3.4 Role of MLSS in MBR Operation 

MLSS concentration may be linked to membrane fouling, sludge properties, effluent water 

quality, and so on in MBR systems, which not only affects the pollutant removal efficiencies, but 
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also affects the service life of membrane modules. However, SRT, HRT and SRT to HRT ratio 

are the most important parameters determining the biomass concentration and MBR 

performance. 

 

The activated sludge concentration can be calculated by the following equation:  

                   (1.1) 

Where 

X = biomass concentration, mg/L 

τ = hydraulic retention time, day 

Θc = solid retention time, day 

YH = intrinsic biomass yield, mg biomass COD/mg substrate COD 

Sso = influent substrate concentration, mg/L 

Ss = effluent substrate concentration, mg/L 

bH = biomass decay constant, day-1 

fD = fraction of biomass forming biomass debris  

 

Since the influent substrate concentration is a constant and the effluent substrate concentration is 

often negligible, while YH, bH and fD are constant for activated sludge in an MBR system, it is 

clear that the SRT and SRT to HRT ratio control the biomass concentration. As mentioned 

before, as SRT directly affect MBR performance and membrane fouling while HRT and MLSS 

can also affect MBR performance and membrane fouling, this thesis aimed to fix the SRT to 
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HRT ratio so that the MLSS can be kept at a relatively constant level in order to determine the 

effect of SRT and HRT on MBR performance. 

 

1.4 MBR Fouling 

1.4.1 Membrane Fouling Mechanisms 

Membrane fouling is a major obstacle that hinders fast commercialization of MBR technology. 

the membrane fouling can be defined as the undesirable deposition and accumulation of 

microorganisms, colloids, solutes, and cell debris within/on membranes (Fenu et al. 2010) A 

very comprehensive review about fouling is available elsewhere (Chang et al. 2002, Sun et al. 

2011), which is likely affected by sludge characteristics, operational parameters, membrane 

materials and feed-water characteristics. To date the fouling mechanism remains to be studied. 

 

Figure 1.2 Mechanisms of Membrane Fouling 

As a result of membrane fouling, there is a reduction of permeate flux or an increase of 

transmembrane pressure (TMP). Membrane fouling occurs due to the following mechanisms: (1) 

adsorption of solutes or colloids within/on membranes; (2) deposition of sludge flocs onto the 
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membrane surface; (3) formation of a cake layer on the membrane surface; (4) detachment of 

foulants attributed mainly to shear forces; (5) the spatial and temporal changes of the foulant 

composition after the long-term operation (e.g., the change of bacteria community and 

biopolymer components in the cake layer).  

 

One of the fouling explanations is ‘cake layer’ theory. The resistance of the cake layer accounts 

for 95–98% of the total filtration resistances in membrane filtration (Ramesh et al. 2007). The 

permeability of the cake layer can be affected by flux, electrostatic interactions, and particle size. 

Several observations include the following (Petsev et al. 1993): 

•If salts do not cause aggregation in the feed, the permeability of the cake layer sharply 

decreases with the increase in electrolyte concentration. 

•The permeability of the cake layer sharply decreases with the increase in permeate flux because 

the increased flux results in a more compressed cake layer. 

•The permeability of the cake layer increases with the surface potential of the particles due to the 

increase in the inter-particle repulsion. However, above a certain value of surface potential, a 

plateau value for the permeability is reached. 

•The permeability of the cake layer passes through a minimum with the increase in the particle 

size. 

 

A previous study (Rosenberger et al. 2006) showed that the non-settleable sludge fraction 

(soluble and colloidal material, i.e. polysaccharides, proteins, and organic colloids) were 
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impacted. The solutes in the sludge supernatant played a significant role in the initiation of cake 

layer formation (Bae and Tak 2005). Others have found the relative contributions of SS, colloids, 

and dissolved matter on membrane fouling were 24, 50, and 26%, respectively (Bouhabila et al. 

2001). Hence, sludge deflocculation will cause an increase in small particles and soluble organic 

matter, which in turn lead to rapid decline of membrane permeability.  

 

The overgrowth of filamentous bacteria in sludge could result in severe membrane fouling due to 

the formation of non-porous and thick cake layer (Meng et al. 2006a, Meng et al. 2006b). Since 

filamentous bacteria may produce more foulants (e.g. EPS) than did floc-forming bacteria(Choi 

et al. 2002), the overgrowth of filamentous bacteria can be considered as a fouling indicator. 

 

1.4.2 Trans-membrane Pressure 

Given the complex nature of the activated sludge, it is not surprising that the fouling behavior in 

MBRs is more complicated than that in most membrane applications. Generally, as shown in 

Figure 1.1, a three stage fouling history has been proposed (Cho and Fane 2002, Zhang et al. 

2006a) 

 

Figure 1.3 Schematic illustration of the occurrence of TMP jump in MBR operation. 
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Stage 1: an initial short-term rapid rise in TMP; 

Stage 2: a long-term weak rise in TMP; 

Stage 3: a sharp increase in , also known as TMP jump. 

The TMP jump (Figure 1.1) is believed to be the consequence of severe membrane fouling 

factors. Cho and Fane attributed the TMP jump to the changes in the local flux due to fouling 

eventually causing local fluxes to be higher than the critical flux (Cho and Fane 2002). Zhang et 

al. reported that the sudden jump was possibly not only due to the local flux effect, but also 

caused by sudden changes of the cake layer structure (Zhang et al. 2006b). Due to oxygen 

transfer limitation, the bacteria in the inner cake layer tend to die and release more extracellular 

polymeric substances (EPS). The sudden jump of TMP was closely related to the sudden 

increase in the concentration of EPS at the bottom of cake layer, which might be attributed to the 

bacterial decay in the inner of cake layer (Hwang et al. 2008). 

 

The occurrence of the TMP jump also depends on operating conditions. For instance, an abrupt 

TMP jump of over 10 kPa was observed at 24 and 48 h for the fluxes of 30 and 20 L/(m2 h), 

respectively (Pollice et al. 2005, Zhang et al. 2006b, a). However, there was no TMP jump 

during the 280 h operation at 10 L/ (m2 h). The interactions between TMP jump and these 

operating parameters are very complex, and TMP jump occurs inevitably during long-term 

operation of MBRs. Thus, the overall goal of fouling control is to retard the occurrence of the 

TMP jump via operating the filtration below critical flux and through rigorous sludge 

characterization analysis. 
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1.4.3 Fouling due to EPS production 

The EPS, produced by activated sludge, play an important role in cake layer formation on 

membrane surface thus causing bio-fouling (Ramesh et al. 2007). EPS composition in activated 

sludge also affects membrane fouling (Al-Halbouni et al. 2009). Generally, the specific cake 

layer resistance increased as the bound EPS level increased (Ahmed et al. 2007). While bound 

EPS can be fractionized into loosely bound EPS and tightly bound EPS, it was the loosely bound 

EPS that caused the fouling problem in MBRs (Ramesh et al. 2006). The loosely bound EPS was 

found to correlate with the performance of flocculation and sedimentation process as well as the 

dewaterbility of activated sludge (Li and Yang 2007). EPS in either bound or soluble form are 

currently considered as the predominant cause of membrane fouling in MBRs. The bound EPS 

consists of proteins, polysaccharides, nucleic acids, lipids, humic acids, etc., which are located at 

or outside the cell surface. Soluble EPS and SMP are generally considered the same. SMP can be 

defined as the pool of organic compounds that are released into solution from microbial 

metabolism (usually associated with biomass growth and decay) (Barker and Stuckey 1999). 

 

Bound EPS is not only as a major sludge floc component keeping the floc in a three-dimensional 

matrix, but also as a key membrane foulant in MBR systems. As the bound EPS concentration 

increased, the specific cake resistance increased resulting in the rise of TMP (Ahmed et al. 2007, 

Chae et al. 2006b).  

 

The EPS content is determined by the balance between microbial production and subsequent 
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degradation. It is suggested that EPS production is a result of bacterial response to changing 

environmental factors, including changes in the substrate concentration and stress conditions 

induced by shear and/or predation (Bossier and Verstraete 1996). Adverse environmental 

conditions may result in a higher EPS production due to switching on EPS production genes 

(Laspidou and Rittmann 2002). Therefore, it is not surprising that EPS production is closely 

related to microbial growth and substrate consumption rates, although there is still debate as to 

how SRT affects EPS production. Some studies indicated higher EPS concentration at longer 

SRTs (Badireddy et al. 2010, Ng and Hermanowicz 2005), while others observed lower 

concentrations at longer SRTs (Ahmed et al. 2007, Massé et al. 2006).  

 

Sludge deflocculation may lead to the release of EPS from sludge flocs into the mixed 

liquor(Morgan-Sagastume and Grant Allen 2005). Deflocculation refers to a dysfunction of the 

activated sludge process characterized by the formation of a very small sludge floc, or the 

absence of floc formation (Chae et al. 2006a). Deflocculation can be the result of operating 

conditions and environmental stresses such as shift in temperature, toxic compounds, metals, DO 

concentration, pH, substrate loading, and nutrient conditions (Li et al. 2008b). In the system with 

deflocculated sludge, the colloids and solutes in mixed liquor were the major contributors to 

membrane fouling (Meng and Yang 2007). Sludge bulking also impacts membrane fouling. In 

contrast, the impacts of bulking sludge on membrane fouling mainly resulted from the deposition 

of suspended solids onto the membrane surface. On the one hand, as the filamentous bacteria 

could deposit on the hollow fiber membrane and release the foulants on the membrane surface. 
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On the other hand, the filamentous bacteria can produce more biopolymers and lead to the 

increase of bound EPS in sludge flocs. Therefore, the severe cake fouling might be caused by the 

deposition of filamentous bacteria and bound EPS. Nevertheless, we still cannot conclude which 

one had a more significant influence on membrane fouling. So, further mechanistic research is 

needed to determine the impact of filamentous bacteria and bound EPS (Meng and Yang 2007). 

 

1.4.4 MBR Fouling Control 

Many anti-fouling strategies can be applied to MBR applications. They comprise, for instance, 

membrane backwashing, where permeate water is pumped back to the membrane, and flow 

through the pores to the feed channel, dislodging internal and external foulants. Backwashing 

with air is another common method where pressurized air in the permeate side of the membrane 

builds up and releases a significant pressure within a very short period of time. Membrane 

modules therefore need to be in a pressurized vessel coupled with a vent system. Air usually 

does not stay inside the membrane. If it did, the air would dry the membrane and a rewet step 

would be necessary, by pressurizing the feed side of the membrane. In addition, chemical 

cleaning may also be recommended, such as chemically enhanced backwash. The prevalent 

cleaning agents are sodium hypochlorite (NaClO) and citric acid. It is common for MBR 

suppliers to develop specific protocols containing information such as chemical concentrations 

and cleaning frequencies for chemical cleaning for individual facilities (Le-Clech et al. 2006). 
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1.5 Sludge Characterization 

SMBR has been developed for municipal wastewater treatment in the last few decades to 

produce high quality water, reduce reactor sizes and minimize sludge production (Lesjean et al. 

2004). However, SMBRs can be more complex to operate than the conventional activated sludge 

process because there is a lack of knowledge of sludge properties in the MBR and of their effects 

on membrane fouling. 

 

1.5.1 Sludge Production 

At long SRTs, mass balance on COD in the MBR suggests that around 90% of the influent COD 

is oxidized to carbon dioxide and MLSS concentration in the reactor is almost constant without 

sludge wastage (Yamamoto et al. 1989). In fact, sludge production is related to specific growth 

rate and MLSS concentration. If the MLSS concentration is relatively constant, the sludge 

settling and dewatering properties would be the most important factors. 

 

1.5.2 Sludge Settling and Dewatering properties 

In a study of the relationship between sludge properties and membrane fouling in MBRs, the 

dewatering ability and filterability of sludge in MBRs were evaluated by the measurements of 

specific resistance to filtration and sludge volume index (SVI) (Khongnakorn et al. 2007). The 

results indicated that the dewatering ability of sludge in the MBR was comparable to that in the 

CAS system. The capillary suction time of sludge in the MBR correlated with the amount of 

soluble microbial product (SMP) and associated filamentous bacteria. Hence, capillary suction 
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time couldbe a good indicator of membrane fouling potential (Pan et al. 2010). Within the SMP, 

the fraction of utilization associated products, due to their higher percentage of low molecular 

weight molecules, presented the highest specific cake resistance and appeared to have the highest 

fouling potential (Jiang et al. 2010). 

 

1.5.3 Sludge Bulking 

Sludge bulking, which is often caused by excessive growth of filamentous organisms in activated 

sludge, results in poor sludge settling, sludge loss from secondary clarifiers and deterioration of 

effluent water quality (Guo et al. 2012, Kappeler and Gujer 1994, Nielsen et al. 2009). 

Filamentous bulking has been found to have a strong influence on MBR fouling (Meng and 

Yang 2007). The overgrowth of filamentous bacteria leads to a sharp increase of bound EPS 

concentration and then induces the increase of sludge viscosity and sludge hydrophobicity (Chae 

et al. 2006a). In addition, the filamentous bacteria may release the foulants on the membrane 

surface. When the activated sludge flocculates poorly, the level of suspended solids of the 

supernatant will increase. 

 

1.5.4 Sludge Filtration Property  

There were many factors affecting membrane filtration property, such as MLSS concentration, 

which has been studied in the past 20 years. Membrane fouling is often considered to be caused 

by the deposition of particles on the membrane surfaces. However, MLSS concentrations 

between 2 and 24 g/L had little influence on filterability (Rosenberger and Kraume 2002). A 
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more recent study, however, indicated that there was little difference in filterability for the 

concentrations of MLSS ranging from 4 to 8 g/L, but there was a significant increase in critical 

flux when the MLSS concentration increased to 12 g/L (Le-Clech et al. 2003). So, a systematic 

method is needed to help determine the membrane filtration property.  

 

The objective of this research was to systematically examine the effects of various sludge 

characteristics by using a submerged MBR operated at different SRT and HRT conditions to 

treat synthetic wastewater. The sludge in the MBR was characterized by measuring LB-EPS, 

MLSS, temperature, viscosity, TTF, and DSVI. Although SVI has been often used as an 

operating parameter to assess the membrane filterability for activated sludge (Roest et al. 2002), 

it is widely recognized that the deposition of particles on the membrane surface is fundamentally 

different from their settling by gravity. On the other hand, like DSVI, TTF has been also 

suggested as a filterability index to predict the fouling potential in wastewater MBR operations 

because of its simplicity for measurement (Rabie et al. 2001). TTF measures the effects of cake 

formation on sludge dewaterability only under static conditions. Nevertheless, neither TTF nor 

DSVI can be used individually to assess the MBR fouling potential because the accumulation of 

particles on the membrane surfaces involves different mechanisms from either the dewaterability 

under static conditions or settlability for gravity settling (Fan et al. 2006).  

 

1.5.5 Sludge Activities 

Organic matter and nutrients can be effectively removed in WWTPs using alternating 
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aerobic-anoxic processes such as two stage anoxic/aerobic process with flow recirculation, 

four-stage Bardenpho process, and simultaneous nitrification/ denitrification via intermittent 

aeration in a single biofilm reactor, sequencing batch reactor, or MBR (Danesh and Oleszkiewicz 

1997, Grady 1999, Patel et al. 2005). Conventional nitrogen removal relies on sequential 

nitrification and denitrification by autotrophic and heterotrophic microorganisms, respectively. 

 

The autotrophic and heterotrophic activities of activated sludge in the two MBRs during the 

study period were determined by batch extant respirometry with specific oxygen uptake rate 

(SOUR) measurement due to ammonia oxidation and acetate oxidation, respectively (Hu et al. 

2002).  

 

1.6 Research Objectives 

Since SRT and HRT are the key operating parameters in active sludge bioreactor operation, it is 

important and necessary to study and compare the effect of SRT and HRT on sludge properties 

and membrane performance which are of significance to wastewater treatment. Currently, little 

performance evaluation work has been done to systematically change SRT and HRT values 

while maintaining a constant SRT to HRT ratio. 

  

The main objectives of this study were in the following: 

 To determine the effect of SRT and HRT on organic and nitrogen removal in MBR 

operation  
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 To evaluate the effect of SRT and HRT on settling and filtration property of activated 

sludge in MBRs  

 To determine the effect of SRT and HRT on membrane fouling 
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2 Materials and Methods 

2.1 Bioreactor Setup and Operation 

Two bioreactors were set up for MBR performance evaluation. One served as a control system 

(Figure 2.1) operated at a constant SRT and HRT. The other MBR (Figure 2.2) was operated at 

different HRTs and SRTs but with constant SRT/HRT ratio so that the biomass concentrations in 

the MBR were maintained relatively constant throughout the study period.  

 

Figure 2.1 A schematic of a lab-scale submerged MBR with 180 d STR and 1 d HRT. P stands for a transmembrane 

pressure device. 
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Figure 2.2 A schematic of a lab-scale MBR operated with different STRs and HRTs (PhaseⅠ(SRT=180 d, HRT=1 

d), PhaseⅡ(SRT=90 d, HRT=12 h), PhaseⅢ(SRT=45 d, HRT=6 h)). P stands for a transmembrane pressure device 

 

Both bench-scale MBRs were equipped with the ZeeWeed hollow fiber membrane module (GE 

Water & Process Technologies, Trevose, PA). The membrane module was made of PVDF with a 

nominal pore size of 0.1 µm and an effective surface area of 0.047 m2. The MBRs had a total 

effective reactor volume of 7.2 L and was run under aerobic conditions. The upper and lower 

water level sensors (Cole-Palmer, Vernon Hills, Illinois) were applied to maintain a relatively 

constant mixed liquor volume in the MBRs. The volume difference between the upper and lower 

water level was less than 5% of the total mixed liquor volume in the MBRs. The sensor is 

designed to activate an onboard solid-state relay when the sensor detects a change of water level. 

When the water level reaches the upper limit because of continuous feeding, the upper level 

sensor triggers the operation of a permeate pump. When the water level reaches the lower limit, 

the lower level sensor assures pump shut-down. In this study, a suction peristaltic pump after the 
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membrane module acted as the permeate pump to produce a relative vacuum for permeate 

collection. An online digital pressure gauge (Cole Palmer) was installed to measure the TMP. 

The speed of permeate pump was set at a permeate flow rate higher than the influent flow rate so 

that the permeate pump was intermittently turned on and off by the upper and lower water level 

sensors, respectively, to keep the total mixed liquor volume relatively constant. An air pump 

supplied compressed air to the built-in orifices at the bottom of each membrane module at a 

constant air flow rate of 6 L/min for each membrane module to support aerobic biodegradation 

and control membrane fouling. 

 

With a target HRT, the MBR was fed continuously with synthetic wastewater containing nonfat 

dry milk powder as a primary organic carbon source at a COD concentration of approximately 

500 mg/L. Other nutrient of the synthetic wastewater included 51.7 mg/L total nitrogen (TN), 30 

mg/L NH4
+-N, and 6 mg/L PO4

3-P. The micronutrients in the feed solution contained the 

following: 44 mg/L MgSO4, 14 mg/L CaCl2•2H2O, 2 mg/L FeCl2•4H2O, 3.4 mg/L MnSO4•H2O, 

1.2 mg/L (NH4)6Mo7O24•4H2O, 0.8 mg/L CuSO4, and 1.8 mg/L Zn(NO3)2•4H2O. The prepared 

synthetic wastewater was prepared and stored at room temperature (24 ± 2 ºC) in a covered 100 

L plastic bin.  

 

The inoculation sludge was taken from the aerobic tank from the Columbia Wastewater 

Treatment Plant (Columbia, MO), which has a treatment capacity of 20 million gal per day using 

conventional activated sludge process. A total of 24 L of sludge for each tank was acclimated to 
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the synthetic wastewater for three days and concentrated via sedimentation before the sludge was 

transferred to the MBRs. The starting MLSS concentration in each MBR was approximately 

6,000 mg COD/L. During the start-up period of this study, there was no sludge wasted until the 

biomass COD concentration increased to about 8,000  mg COD/L. Afterward, sludge was wasted 

daily with the target SRT of 180 days to maintain relatively constant biomass concentrations in 

both MBRs. Initially, both MBRs were operated at the SRT of 180 d and HRT of 1d. One of the 

MBRs was then run at the fixed SRT/HRT ratio of 180 while varying SRT from 90 to 45 d and 

HRT from 12 h to 6 h, respectively. One more membrane module was installed in the tank in 

order to run the MBR at the HRT of 6 h. 

 

2.2  Sludge Settling and Filtration properties  

The sludge volume index (SVI), has become the standard measure of the settling property of 

activated sludge. It is defined as the volume in mL occupied by 1 g activated sludge after settling 

the aerated mixed liquor for 30 min (Lee et al. 1983). Due to the high biomass concentrations of 

MBRs, which leads poor settling, diluted SVI (DSVI) was used. The DSVI analysis was 

conducted by first diluting the sludge sample with wastewater effluent until the settled volume 

after 30 min was 250 ml/L or less (APHA 1998). In this research, the sludge was diluted by 

3-5times before MLSS and DSVI were measured according to the Standard Methods. 

 

Time to Filter (TTF) represents the filtration property of active sludge. TTF was determined by 

using a 90-mm Buchner funnel and filter papers (P5 with a pore size of 1 μm, Cat. No.: 09-801B, 
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Fisher Scientific). After pouring 200 mL mixed liquor directly from MBRs, the time required to 

obtain 100 mL of filtrate was measured at the vacuum pressure of 51 kPa (or 7.4 psi).  

 

Sludge viscosity is another important factor for MBR system which has a strong relationship 

with membrane fouling and sludge bulking issues (Sweity et al. 2011). Activated sludge 

viscosity was measured at different periods in this research, using a rotational viscometer (Cole 

Parmer, P/N: 98965- 43). 

 

2.3. Microbial Activities from the MBR operated at different SRTs and HRTs  

Autotrophic and heterotrophic activities of microorganisms in the MBRs were determined 

through the specific oxygen uptake rate (SOUR) measurement (Hu et al. 2002). Aliquots (120 

mL) of the sludge collected from each bioreactor that were operated at a defined SRT and HRT 

were poured into two 50 mL respirometric bottles followed by aeration with pure oxygen. The 

respirometric bottles were tightly capped with no headspace afterwards. At a predetermined time, 

an aliquot of substrate (with a final concentration of 10 mg N/L NH4
+-N or 20 mg/L COD in 

acetate) was added using a 10 µL glass syringe. A decrease in the DO level in the respirometric 

vessel was measured by a DO probe (YSI model 5300A, Yellow Springs, OH) and continuously 

monitored at 4 Hz by an interfaced personal computer. The oxygen uptake rate was calculated 

based on a linear regression analysis because a zero-order reaction was observed for a long 

period of time. SOUR was calculated by dividing OUR by biomass concentration of each sample. 

All SOUR experiments were carried out in at least duplicate. 
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2.4. Live/Dead Fluorescent Staining and Microscopic Analysis  

The activated sludge samples were subjected to live/dead analysis after fluorescent staining using 

the LIVE/DEAD® BacLightTM bacterial viability kit (Invitrogen Co., Carlsbad, CA), according 

to the work reported elsewhere (Hu et al. 2003). A laser-scanning confocal microscope (Zeiss 

LSM 510 META) was used for fluorescence imaging of bacterial cells. Meanwhile, a bright 

microscope was regularly used for to determine the change in sludge properties such as floc size 

and morphology.  

 

2.5. Membrane Fouling Monitoring and EPS Analysis 

The TMP and permeate flux of each membrane module were closely monitored throughout the 

study period, during which time the membrane flux was maintained relatively constant by 

adjusting the speed of the permeate pump. When the TMP increased dramatically in a short 

period of time and the TMP level exceeded 45.5 kPa, the membrane module was taken out of the 

MBR for physical cleaning by rinsing with distilled water for 0.5 h before it was submerged in 

the mixed liquor in the MBR. 

 

The biomass concentration and influent and effluent water quality parameters, such as 

ammonia-N, nitrate-N, nitrite-N, orthophosphate-P, and COD concentrations were determined 

following the standard methods (APHA 2005). Since loosely bound EPS is directly related to 

membrane fouling in activated sludge operation (Li and Yang 2007), it was monitored 

throughout the study according to the method described elsewhere (Hwang et al. 2007, Jorand et 
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al. 1994, Zhang et al. 1998) with minor modification. Briefly, aliquots (50 mL) of MLSS from 

the MBRs were centrifuged at 8,200 g for 5 min to separate the soluble EPS from bound EPS 

(Teck et al. 2009). The supernatant was discarded and pellets resuspended in a 50 mL solution 

containing 8.5% sodium chloride and 0.22% formaldehyde. The suspension was held in an ice 

bath and sonicated at a power output of 20 W for 30 min. After centrifugation at 12,000 g and 

4 ℃ for 30 minutes, the loosely bound EPS concentration in the supernatant was analyzed for 

total polysaccharides and proteins, while the sum of the total polysaccharides and proteins was 

reported as the loosely bound EPS. Polysaccharides were determined by the phenol-sulfuric acid 

method with glucose as a standard (Dubois et al. 1956). Proteins were quantified by a modified 

Micro Lowry method using a total protein assay kit (Sigma-Aldrich, Product Code TP0300 and 

L 3540) containing standards of Bull Serum Albumin for calibration. 

 

2.6. Biomass and Chemical Analysis 

The biomass concentration in the MBRs and influent and effluent water quality parameters, such 

as ammonia-N, nitrate-N, nitrite-N, orthophosphate-P, and COD concentrations were determined 

following the standard methods (APHA 2005).   
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3 Results and Discussion 

3.1 MBR Performance  

 
Figure 3.1. Biomass concentration in the MBR run at different SRTs and HRTs. The error bars represent the data 

range of duplicate samples. PhasesⅠ,Ⅱ,Ⅲ represent the operating periods at different SRTs or HRTs: PhaseⅠ

(SRT=180 d, HRT=1 d), PhaseⅡ(SRT=90 d, HRT=12 h), PhaseⅢ(SRT=45 d, HRT=6 h). 

At the target SRTs of 180 days, 90 days and 45 days for Phases I, II, and III, respectively, by 

controlling the amount of sludge wasted, the HRTs were maintained at 1 day, 12 h and 6 h, 

respectively. Because a constant SRT/HRT ratio was maintained throughout the study period, the 

biomass concentrations ranged from 8,000 to 10,000 mg COD/L (Figure 1). Based on Equation 

3.1, the observe biomass yield increases as SRT decreases because SRT has mainly effect on the 

observe yield).  

                          (3.1) 

where YH = intrinsic yield, mg/L, bH = first-order biomass decay constant, day-1, fD = specific 
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growth rate, day-1, Θc = solid retention time, day 

As aresult, the biomass concentrations increased from an average of 7,697 ± 2,033 mg/L in 

Phase I to 8,889 ± 478 mg/L in Phase II and 9,473 ± 375 mg/L in Phase III.  

 

The effluent COD data (Figure 3.2) demonstrated effluent COD were 13 ± 9 mg/L, with more 

than 97.4 % of influent COD removed due to long SRT operation along with the excellence in 

membrane filtration in MBR operation. 

 
 



 

34 

 

 

Figure 3.2. Change in the effluent COD concentration(A) and effluent concentrations of NH4
+-N (□), NO2

--N ( ) 

and NO3
- -N (○) in the MBR systems(B) in phaseⅠ,Ⅱ,Ⅲ. The error bars represent the data range of duplicate 

samples. PhasesⅠ,Ⅱ,Ⅲ represent the operating periods at different SRTs or HRTs: PhaseⅠ(SRT=180 d, HRT=1 

d), PhaseⅡ(SRT=90 d, HRT=12 h), PhaseⅢ(SRT=45 d, HRT=6 h). 

 

A similar trend was also observed with respect to the concentrations of effluent nitrogen species 

(Figure 3.2). However, at the beginning of Phase III, due to the decrease in HRT from 12 h to 6 h, 

the influent flow rate doubled while the MBR was operated at a constant aeration rate, resulting 

in a decrease in DO concentration from 2 mg/L to 0.2 mg/L. As a result, the nitrate-N 

concentration dropped to almost 0, and the effluent ammonia-N concentration was almost as high 

as that of the influent, which was around 40 mg/L. 

 

Three days after the MBR was run at low DO concentrations, another air pump was added to 

increase the DO concentration of the mixed liquor in the range of 2.0 to 3.0 mg/L, and the 
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effluent water quality recovered in 10 days. The ammonia-N concentration droped to 5.8 mg/L 

just in one day while nitrate-N concentrations increased to the level as before.  

 

3.2 Change in Sludge Settling and Filtration Properties  

  
Figure 3.3. Changes in DSVI in the control MBR (SRT=180 d, HRT=1 d) (●) and the MBR operated at different 

SRTs and HRTs (○) in phasesⅠ,Ⅱ, and Ⅲ as described earlier. 

As shown in Figure 3.3, the DSVI values of the sludge from the control MBR continued to 

increase, which was attributed to the growth of filamentous bacteria (details described later). Due 

to the long SRT and low organic loading rate, MBR operation usully results in the growth of 

filamentous bacteria (Li et al. 2008a, Martins et al. 2004). For comparison, in the MBR with 

variable SRTs and HRTs, DSVI values were low in Phases I and II as there was barely 

filamentous bacteria (Figure 3.3) with the DO concentrations of the mixed liquor ranged from 

2.0 to 3.0 mg/L. However, DSVI changed a lot at the beginning of Phase III because of the 

dramatic increase in filamentous bacteria which was likely caused by the low DO conditions, 
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although it lasted for only 3 days. 

 

Even though the DO concentration was maintained to 2.0 to 3.0 mg/L, DSVI did not decrease 

promptly. In fact, it took 44 d (starting from day 131) before a significant decrease in DSVI was 

observed. A very short HRT under constant aeration conditions would lead to a low DO 

concentration in the MBR, which could help the growth of filamentous bacteria thus resultingin 

poor sludge settling.  

 
Figure 3.4. Time to filter for the sludge in the control-MBR (●) with fixed SRT and HRT and in the MBR run at 

different SRTs and HRTs (○) in phasesⅠ,Ⅱ, and Ⅲ as described earlier. The error bars represent the data range of 

duplicate samples. 

 
Another important sludge property is Time to Filter, and the less TTF represents the stronger 

filtration ability of sludge. Remarkably, the trend of change in TTF (Figure 3.4) was similar to 

that of DSVI, which was linked to the growth of filamentous bacteria and its effect on sludge 

settling and fouling property. For instance, in the control MBR, like DSVI, the TTF value 
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gradually increased with time as filamentous bacteria continued to grow (details described 

below). The growth of filamentous bacteria may facilitate the formation of cake-layer on the 

surface of membrane, which causes membrane fouling and results in the increase of TTF. 

 

There were similarities between the DSVI profile and TTF profile in the MBR run at different 

SRTs and HRTs. However, there was difference between the increase of TTF and the growth of 

filamentous bacteria population or increase in DSVI during Phase III, indicating that not only the 

amount of filamentous bacteria but other factors may affect TTF measurement. Even though a 

significant growth of filamentous bacteria was observed (M-2, Figure 3.5), it might require some 

time for the filamentous bacteria to grow on the surface of membrane. As the filamentous 

bacteria was washed out on day 138, TTF decreased as low as before.  
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Figure 3.5. Change in sludge viscosity at 20 ℃ from different sludge sources with different filamentous bacteria 

population. C 123d was the sample taken from the control MBR on day 123, E 123d and E 142d were the samples 

taken from the MBR run at different SRTs and HRTs on days 123 and 142, respectively. 

Viscosity was another important factor to track sludge properties in the MBRs. The increase in 

viscosity was linked to poor membrane permeability and high membrane resistance which 

resulted in worse membrane fouling (Chae et al. 2006b, Li et al. 2007, Trussell et al. 2007). 

Similar results were obtained in this study as viscosities for C 123d and E 123d samples with the 

sludge containing filamentous bacteria were much higher than that of E 142 sample where sludge 

had almost no filamentous bacteria. As the result, viscosity decreased as the filamentous bacteria 

was washed out after DO correction. 

 

3.3 Change in Sludge Morphology 

Since the sludge properties changed a lot because of the low DO concentration after shortening 

HRT to 6 h, light microscopy and fluorescent micrscopy were used to determine floc size and 

mophorology. 

 

Light microscopic images were taken at the end each phase from both MBRs. For the sludge 

from the control tank, sludge samples C-1 and C-2 were taken on day 30 and day 90, 

respectively. It appeared that after a long-term operation, C-2 had more filamentous bacteria than 

C-1. For the MBR with variable SRTs or HRTs, M-1 was taken at the end of Phase I (on day 30, 

SRT = 180 d, HRT = 1d), there was almost no filamentous bacteria initially. As the SRT and 
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HRT decreased to 90 d and 12 in Phase II, sludge sample M-2 (taken on day 90), there appeared 

to be more filamentous bacteria and the flocs were bigger than in M-1. In M-3, due to low HRT 

(6 h) operation and low DO concentrations in the mixed liquor for three days, there were a 

dramatic increase in filamentous bacterial population. Only after about 50 d of operation at 

normal DO concentrations (2-3 mg/L), the sludge sample M-4 taken from Phase III shows the 

normal sludge properties with little growth of filamentous bacteria (Figure 3.6). 

  
 

  
 

C-1 C-2 

M-1 M-2 
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Figure 3.6. Light microscopic images of the sludge from the control MBR with fixed SRT/HRT and the MBR with 

different SRTs and HRTs. 

 

The activated sludge samples from both MBRs were further subjected to live/dead analysis after 

fluorescent staining.  

 

Pictures of sludge samples C-1 and C-2 from the control MBR were taken on day 87 and day 117, 

respectively. Consistent with that of light microscopy, there was little change in live to dead 

bacteria ratio by visulization. However, the population of filamentous bacteria appeared to 

increse with operating time. 

 

Fluorescent images of sludge samples M-1, M-2, M-3 and M-4 from the MBR with different 

STRs and HRTs were taken on days 87, 117, 131, and 142, respectively.  

 

 

M-3 M-4 
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Figure 3.7. Fluorescent images of sludge samples taken for the control MBR (C-1, and C-2) with fixed SRT and 

HRT and the other MBR run at different SRTs and HRTs (M-1 to M-4). Dead cells are shown in red and live cells 

are shown in green after live/ dead staining. 

Compared to the sludge sample M-1, more dead cells of M-2 to M-4 were observed as 

cultivation continued due to long SRT operation. Furthermore, fimamentous bacterial growth 

became significant in M-2 and M-3 samples. Due to the low DO concentration and high organic 

loading rate at the beginning of Phase III operation, there was a huge increase in filamentous 

bacteria as shown in M-2. Meanwhile, M-2 showed that almost all filamentous bacteria were 

alive compared to floc-forming bacteris, which suggests that filamentous bacteria have a stronger 

ability than other bacteria to survive well under low DO condtitions.  

 

With a prolonged period of aeration to maintain the DO from 2 to 3 mg/L, sludge sample M-3 

showed that the amount of filamentous bacteria decreased. After a total of about 50 d of 

vigourous aeration, there was almost no growth of filamentous bacteria in M-4, as was confirmed 

with low DSVI values (Figure 3.3). 

M-3 M-4 
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3.4 Membrane Performance 

Figure 3.8 describes the change in TMP and permeates flux of individual membrane modules in 

the MBR.  

 

Figure 3.8. Change in the flux (●) and TMP (○) in the MBR run at different SRTs and HRTs in phasesⅠ,Ⅱ, and Ⅲ 

as described earlier. 

 
During Phases I and II, the membrane wash frequence was from 8 to 10 days. At the end of 

Phase II operation, the membrane wash interval increased to 14 days, as also evident from the 

low TTF data (Figure 3.4) and low viscosity (Figure 3.5) in the same period.  

 

However, when HRT decreased further from 12 h to 6 h in Phase III operation, the membrane 

module had a poor performance due to fouling (details shown in Figure S1). The membrane 
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module had to be washed every two days since it was so easily blocked. The serious fouling 

issue was not only due to the doubled influent flow rate, but also due to the increase in 

filamentous bacterial population due to low DO conditions that lasted for three days. Only after 

about 50 d of vigorious aeration (from day 134 onward), the membrane module performance 

improved with less wash frequence needed.  

 

3.5 Change in the EPS Concentration 

 
Figure 3.9. EPS concentration in the control-MBR (●) with fixed SRT/HRT and in the MBR run at different SRTs 

and HRTs (○) systems run at different SRTs and HRTs in phasesⅠ,Ⅱ, and Ⅲ as described earlier. The error bars 

represent the data range of triplicate samples. 

Compare to that of the control MBR, the EPS concentrations in the MBR run in Phases I and II 

were at the same level. However, at the beginning of Phase III operation under low DO 

conditions, the EPS concentration increased significantly ( Figure 3.9). Nevertheless, the EPS 

concentration decreased after the correction of DO in the MBR run at the SRT of 45 d and HRT 
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of 6 h. After about 50 d of vigorious aeration, the EPS concentration remained low. 

 

Even though the LB-EPS concentration remained unchanged at different SRTs and HRTs, the 

individual EPS component such as protein and polysaccharide had different respronses. As 

shown in Figure S3, polysaccharide concentration decreased as the SRT and HRT decreased. 

The change in protein concentration appeared to be oppsite with less significance (Figure S3). 

Possibly, longer SRTs resulted in biodegradation of proteins and lower EPS related protein 

production as they can serve as a food source for bacterial growth (Obayashi and Gaudy Jr 1973), 

especially at low organic loading rates.  

 

Interestingly, the increase in protein fraction of EPS was accompanied by severe sludge bulking 

at the beginning of Phase III due to the operation under low DO conditions. Proteins are more 

likely to be involved in electrostatic bounds with multivalent ions because of the high content of 

amino acids and thus may play a more important role in the bioflocculation process than 

polysaccharides (Laspidou and Rittmann 2002).  
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3.6. Microbial Activities in the MBRs 

 
 

Figure 3.10. Autotrophic SOUR for the control-MBR (●) with fixed SRT and HRT and in the MBR run at different 

SRTs and HRTs (○) systems run at different SRTs and HRTs in phasesⅠ,Ⅱ, and Ⅲ as described earlier. The error 

bars represent the data range of duplicate samples. 

 

With the average autotrophic SOURs for the control MBR and the MBR run at different SRTs 

and HRTs were 10.50 ± 0.41 and 8.95 ± 1.30 mgO2/g/h ,ewspectively. There was no significant 

difference of autotrophic activitiy between the MBRs run at different SRTs and HRTs. Because 

SOUR was calculated by dividing the total biomass and nitrifying bacteria only represented a 

few percent of total biomass, the insignificant change in autotrophic SOUR is expected. It also 

suggests that the shorter HRT or the higher organic loading rate has little effects on autotrophic 

growth as long as SRT is long to keep the nitrifiers in the MBR.  
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Figure 3.11. Heterotrophic SOUR for the control-MBR (●) with fixed SRT and HRT and in the MBR (○)run at 

different SRTs and HRTs in phasesⅠ,Ⅱ, and Ⅲ as described earlier. The error bars represent the data range of 

duplicate samples. 

 

On the other hand, the SOUR of heterotrophs increased as the SRT decreased (Figure 3.11). It is 

well known that the active biomass fraction decreas as SRT increases (Equation 1.1). Therefore, 

at relativelty constant biomass concentrations, the results of heterotrophic SOUR are consistent 

with prediction.   
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4. Conclusions 

This research determined the sludge settling and filtration properties at constant SRT/HRT ratio 

while varying SRT and HRT proportionally. The sludge settling parameter DSVI appeared to 

have a good relationship with sludge filtration paramter TTF. As SRT decreased to 45 d and 

HTR decreased to 6 h, significant sludge bulking and poor filtration were observed, largely due 

to the excess growth of filamentous bacteria at low DO concentrations under high organic 

loading conditions. Lower HRT resulted in faster membrane fouling due to higher influent flow 

rate. However, the system recovered in about 50 d after the correction of low DO concentrations 

in the mixed liquor. Due to the potential sludge bulking problems at long SRT (180 d) operation, 

the results suggest the MBR operation at the SRTs of 45 to 90 d results in excellent sludge 

settling/filtration properties and effluent water quality. 
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5 Future Study 

The mechanism of EPS production and its effect on membrane fouling are still not very clear. 

Furthermore, little is known about the flocculation ability of specific proteins and 

polysaccharides, which are involved in membrane fouling. Future study ia needed to characterize 

proteins and polysaccharides of EPS on a molecular basis. This would also give more detailed 

insight in the mechanisms involved in the bioflocculation and biofouling process.  

 

Molecular biology work can be used in MBR study to determine the species of filamentous 

bacteria since different filamentous bacteria may have different effect on sludge settling and 

filtration properties. This study only evaluated one operating condition (at a fixed SRT/HRT 

ratio of 180) by changing SRT and HRT proportionally. More research is needed to determine 

the effect of SRT and HRT (with broad ranges) on sludge properties and overall MBR 

performance evaluation. 
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Appendix: 

 

Figure S1. Changes in the Flux (●) and TMP (○) for third period in the MBR systems run at45 d SRT and 6 h HRTs. 

 
Figure S2. Changes in the polysaccharide concentration (●) for EPS in the control-MBR with fixed SRT and HRT 

and Polysaccharide concentration for EPS in the MBR run at different SRTs and HRTs (○). The error bars represent 

the data range of triplicate samples. 
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Figure S3. Changes in the protein concentration (●) for EPS in the control-MBR with fixed SRT and HRT and 

Protein concentration for EPS the MBR run at different SRTs and HRTs (○). The error bars represent the data range 

of triplicate samples. 


