
CALCULATING INFORMATION LEAKAGE

USING MODEL CHECKING TOOLS

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

JIA CHEN

Dr. Rohit Chadha, Thesis Supervisor

JULY 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62782592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The undersigned, appointed by the Dean of the Graduate School, have examined

the thesis entitled:

CALCULATING INFORMATION LEAKAGE

USING MODEL CHECKING TOOLS

presented by Jia Chen,

a candidate for the degree of Master of Science and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Rohit Chadha

Dr. Prasad Calyam

Dr. Michela Becchi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Rohit Chadha, for

guiding me through the research process when I was working on the previous thesis

subject of browser cross-site scripting defence, and furthermore for providing me the

current subject when I was struggling with the previous one. He helped me all the way

during research and writing of this thesis, with his deep knowledge on information

security.

I also sincerely give my appreciation to Dr. Prasad Calyam and Dr. Michela Becchi,

for their time and work serving as my thesis committee members.

I’d like to thank Dr. Gennaro Parlato for providing instructions on Getafix, Truc

Nguyen Lam for providing an executable of Interproc, and Umang Mathur for pro-

viding MOPED source code and building instructions. Their help saved us plenty of

time.

Last but not the least, I would like to thank my parents and friends, for encour-

aging me to fight on.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . vii

CHAPTER

1 Introduction . 1

2 Theoretical background . 7

2.1 Min-entropy and information leakage in programs 7

2.2 The problem and two intuitive solutions 9

2.2.1 Double loop . 10

2.2.2 Single loop and array . 11

2.2.3 Comparison . 13

3 Semi-monotonic programs . 14

3.1 Discovery by mistake . 14

3.2 Improvements . 17

4 Experiment with Getafix and jMoped 20

4.1 Getafix . 21

4.1.1 The converter . 22

4.2 jMoped . 25

iii

4.3 Tests and results . 26

4.3.1 Sanity check . 27

4.3.2 Implicit flow . 27

4.3.3 Mix and duplicate . 28

4.3.4 Masked copy . 29

4.3.5 Binary search . 30

4.3.6 Electronic purse . 31

4.3.7 Sum query . 31

4.4 Results summary . 32

5 Conclusion and future works . 33

APPENDIX

A Context-free grammar for the converter 35

BIBLIOGRAPHY . 38

iv

LIST OF TABLES

Table Page

2.1 Execution time of an empty double loop with different bit length. . . 12

2.2 Comparison of the two approaches on execution time and their growth.

t(P) is the execution time of the program within the loop. 13

2.3 Comparison of the two approaches on memory requirement and their

growth. 13

4.1 Examples of input and output of the parser, with bit length of 4 . . . 23

4.2 Timing results for sanity check. 27

4.3 Timing results for implicit flow. 28

4.4 Timing results for mix and duplicate. 29

4.5 Timing results for masked copy. 30

4.6 Timing results for binary search. 30

4.7 Timing results for electronic purse. 31

4.8 Timing results for sum query. 32

v

LIST OF FIGURES

Figure Page

3.1 A function that follows the properties from the first optimization. . . 16

3.2 A function that follows the properties from the second optimization. . 18

4.1 Workflow of calculating information leakage with Getafix. 21

vi

ABSTRACT

A confidential program should not allow any information about its secret inputs

to be inferred from its public outputs. As such confidentiality is difficult to achieve

in practice, it has been proposed in literature to evaluate security of programs by

computing the amount of information it leaks. In this thesis, we consider the problem

of computing information leaked by a deterministic program and use the information-

theoretic measure of min-entropy to quantify the amount of information.

The main challenge in computing information leakage by a program using min-

entropy is that one has to count the number of distinct outputs by that program.

We find a polynomial-time reduction from the problem of counting outputs to the

problem of checking reachability in programs. Thus we propose a hypothesis that we

can estimate leakage using model checking tools which are originally developed for

checking reachability.

We test the above hypothesis using two popular model checking tools, jMoped

and Getafix. Our tests indicate that they do not scale as the number of bits in

the input increases. However, we find that if the program enjoys the additional

property of semi-monotonicity then we can use a different reduction to the problem

of checking reachability. We observe a dramatic improvement in performance with

this new reduction.

vii

Chapter 1

Introduction

A desirable property for a program is non-interference [1, 2] which informally says

that a program should never leak any information about its secret inputs. Formally,

non-interference [1, 2] says that the low-security observations of the executions of a

program must be independent of secret inputs. However, the desired functionality

of a program usually makes non-interference unachievable. For example, a password

checker behaves differently on a correct password and an incorrect password (and

its behavior even depends on the number of incorrect passwords entered). Therefore,

many authors [3, 4, 5, 6] have proposed to evaluate security of programs by quantifying

the amount of information leaked. How do we measure the amount of information

leaked? How to compute the information leaked?

For measuring the amount of information leaked by programs, information-theoretic

measures are often used. In this approach, a program is modeled as an information

channel that transforms a random variable taking values from the set of confidential

inputs into a random variable taking values from the set of public outputs. Then

1

information-theoretic measures are used to quantify the adversary’s initial certainty

about the secret inputs and the uncertainty remaining in the secret inputs after the

adversary observes the execution. The amount of information leaked by the program

is the difference between the two. While, many information-theoretic measures can

be used, it has been argued that leakage based on min-entropy is appropriate to

security applications [6]. Intuitively, leakage based on min-entropy measures vulnera-

bility of the secret inputs to a single guess of the adversary who observes the program

execution.

Even though quantifying information leaked in programs is appealing, it is however

not easy to compute information leaked in programs. Indeed it is known that the

decision problem of checking whether information leaked in non-recursive boolean

programs is equal to (or less than) a given rational number is PSPACE-complete [7,

8, 9, 10]. Recall that PSPACE is the class of decision problems that can be solved by

Turing machines that accesses at most a polynomial number of cells on its working

tape and that this class includes NP decision problems.

In order to measure the information leaked by a program P using min-entropy,

one has to count the number of different possible outputs that may be achieved

when the program is run with different inputs. The amount of information leaked

is the binary logarithm of this number, Now, if the input to the program P consists

of n-bits, this quantity can be computed by running the program on each of the

2n different inputs and remembering the outputs observed on each of the different

inputs. Since different inputs can lead to different outputs, this naive algorithm can

take 2n-additional space. This naive algorithm (which we shall call algorithm A for

the rest of the section) has exponential time and exponential space complexity. The

2

same computation can be actually carried out in polynomial additional space by using

nested iteration. The outer iteration ranges over all possible outputs and checks if

there is an input that leads to that particular output by iterating over all possible

inputs. Hence, in this alternative algorithm, the program has to be run 22n times.

The latter observation immediately leads to the result that the decision problem of

checking whether information leaked in non-recursive boolean programs is equal to (or

less than) a given rational number in PSPACE. Indeed, the latter algorithm (which we

shall call algorithm B for the rest of the section) provides an immediate polynomial-

time reduction to the problem of checking whether the program counter reaches a

given location in a program, which is also known to be PSPACE-complete.

Now, algorithm A for computing min-entropy takes above takes at least exponen-

tial time and exponential space, while algorithm B takes at least exponential time.

Hence, they do not scale very well as n, the number of input bits increase. However,

it has been suggested in [9] that one can potentially exploit the polynomial-time

reduction to the reachability problem in order to estimate the amount of information

leaked by using modelchecking tools as modelchecking tools were originally developed

for checking whether a particular state in a program is reachable (on any possible in-

put). These modelchecking tools do not explicitly run the program on all inputs.

Instead use a variety of heuristics to solve the reachability problem.

We tested the above hypothesis using two popular model-checking tools, jMoped [11]

and Getafix [12]. Jmoped is a tool developed for checking reachability in Java pro-

grams. The key technology used in JMoped is the use of Binary Decision Diagrams

(BDDs) [13, 14]. BDDs are data structures designed to efficiently store Boolean func-

tions. In jMoped, the input program is translated as set of transitions on the states

3

of the program (a state of a non-recursive program is the current line number and the

values of the variables of the program). Each transition then models how program

execution changes the state of the program. However, instead of writing transitions

explicitly, BDDs are used to store the set of transitions. Reachability can then be en-

coded as the least fix-point solution of a set of Boolean equations which can be solved

with efficient BDD operations. Getafix [12] is based on similar ideas except that it

accepts only Boolean programs and reachability is encoded as a winning condition on

a 2-player game on a transition system. Although, these tools should work in theory,

our tests for estimating min-entropy indicate that these do not scale very well as the

number of bits in the input increase.

However, we identified a condition under which there is a dramatic improvement

in the performance of these tools. In particular, we show that if the program P

whose information leakage we are estimating satisfies the additional property of semi-

monotonicty then the computation of min-entropy becomes more feasible. Note that

if the program P inputs n bits and outputs m bits then the program P can be

considered as a function Pfunc from n-bit binary numbers to m-bit binary numbers.

Recall that the function Pfunc is monotonically increasing if for each pair of n-bit

binary numbers s1, s2 such that s1 ≤ s2, we have that Pfunc(s1) ≤ Pfunc(s2). Note

that a monotonically increasing function we have that for each n-bit binary number

s, Pfunc(s) ≥ maxs′≤s Pfunc(s
′). We say the the program P is semi-monotonically

increasing if for each n-bit binary number s either Pfunc(s) ≥ maxs′≤s Pfunc(s
′) or

Pfunc(s) ∈ {Pfunc(s
′) | s′ ≤ s}. We can similarly define semi-monotonically decreas-

ing programs. The program P is said to be semi-monotonic if P is either semi-

monotonically increasing or decreasing.

4

The key observation that we exploit is that for semi-monotonicty we can essentially

use algorithm A for computing information leakage except that we do not need to

use exponential additional space. Instead, if the program P is semi-monotoncially

increasing (increasing respectively) then while iterating over the inputs, we just need

to remember in each iterative step the total number of the distinct outputs seen

thus far as well as the highest (lowest respectively) output seen thus far. Thus, for

semi-monotonic programs we have a new polynomial-time reduction of the decision

problem of checking whether information leaked in non-recursive boolean programs

is equal to (or less than) a given rational number to the problem of checking whether

a line number in a program is reachable or not. We now use this new reduction to

estimate the information leaked in programs using jMoped and Getafix and observe

a dramatic improvement in their performance with this new reduction.

Related work. The complexity of computing the amount of leakage in Boolean

programs has been considered recently in [15, 7, 8, 10, 16, 10, 9]. In recent years,

several automated approaches from model checking [17, 18, 19, 20], static analysis

[21, 22, 23, 17], and statistical analysis [18, 24] have been employed to compute

information leakage. We mention the most closely related work.

[25, 26] estimates min-entropy leakage using SMT solvers. SMT solvers are tools

developed to check whether a given first-order formula over a decidable first-order

theory has a solution or not. In [25, 26], the authors estimate an upper bound of

number of feasible outputs of a program by iterating over each pair of output bits and

computing how many different values of these output bits can be achieved (i.e., how

many of the values {00, 01, 11, 10} can be actually observed). This technique only

5

yields an upper bound, and it is easy to construct examples where the upper bound

is a very poor estimate of the actual value.

Another line of closely related work is the work on computing information leak-

age measure using Shannon entropy [17, 27]. In this line of work, Shannon entropy

(and not min-entropy) is used to measure uncertainty of the adversary. Usually an

assumption of uniformly distributed inputs is made. When Shannon entropy is used

to measure information leakage, one has to compute not only the number of feasible

outputs but one also has to compute, for each feasible output, the number of inputs

that lead to that particular output. In order to compute these two things, usually

an equivalence relation on inputs is defined as follows: two inputs are equivalent if

they lead to the same output. Then one needs to compute these equivalence classes.

In [17], these equivalence classes are constructed iteratively by first starting with a

single equivalence class and progressively refining them until they can be refined no

further. At each iteration, the equivalence relation is characterized using logical for-

mulas and the refinement step uses experimental runs. In [18], statistical analysis is

used for this construction. In [27], bounded model-checking is used to compute the

equivalence. In bounded model-checking, reachability is checked assuming that the

program executes at most a bounded number of steps. Hence, this method gives an

approximate value of information leakage.

6

Chapter 2

Theoretical background

2.1 Min-entropy and information leakage in pro-

grams

We briefly recall the mathematical theory behind computation of information leakage

in programs. For computing information leakage, a program is usually considered as

an information-theoretic channel between its inputs and outputs. Formally,

Definition 1. An information-theoretic channel C is a triple (S,O,CSO) such that

• S is a finite set of secret input values,

• O is a finite set of secret output values, and

• CSO is a |S| × |O| non-negative matrix such that
∑

o∈O
CSO(s, o) = 1.

C is said to be deterministic if for each s ∈ S there is a unique o ∈ O such that

CSO(s, o) = 1.

7

For s ∈ S and o ∈ O, the quantity CSO(s, o) is the conditional probability of

obtaining output o given that the input to the channel is s. Given any information-

theoretic channel C = (S,O,CSO) and apriori distribution ProbS on S, we get a joint

probability distribution ProbS,O on S×O given as ProbS,O((s, o)) = ProbS(s)CSO(s, o).

For the purpose of this thesis, we shall associate with each deterministic program P , a

deterministic channel PC = (S,O,CSO) where S is the set of all possible secret inputs

of P , O is the set of all possible outputs of P and CSO(s, o) = 1 iff the program P

outputs o on input s.

When measuring information leakage in programs using min-entropy [6], an ad-

versary is considered which tries to guess the input to the program before and after

the program is executed. The difference in uncertainty about S before and after the

program execution is taken to be the amount of information leaked. It was proposed

in [6] that min-entropy be used as the measure of uncertainty. We refer the reader

to [6] for details regarding theoretical foundations behind min-entropy. We just point

out here the relevant formulas.

Definition 2. Let C = (S,O,CSO) be an information-theoretic channel and let ProbS

be an apriori distribution on S. The initial uncertainty of the adversary, written

H∞(S), is taken to be − log2maxs∈S ProbS(s) and final uncertainty, written H∞(S|O),

is taken to be − log2
∑

o∈O maxs∈S ProbS,O((s, o)). The amount of information leaked

by C, written LS,O is

LS,O = H∞(S)−H∞(S|O).

As expected, the amount of information leaked by a program is said to be the

amount of information leaked by the channel PC associated to it. We are interested

in computing the maximum possible amount of leakage under all possible apriori

8

distributions (this quantity is also known as min-capacity). It turns out that for

deterministic programs, this just amounts to computing the number of outputs that

are actually feasible, i.e., are actually realized by some input.

Theorem 1. ([6]) Let C = (S,O,CSO) be a deterministic channel. Let feasible =

{o ∈ O|∃s ∈ S. CSO(s, o) = 1}. Then for any apriori distribution ProbS on S, we have

that the information leaked LS,O ≤ log2 |feasible|. Furthermore LS,O = log2 |feasible|

if ProbS is the uniform distribution on S.

Remark. Sometimes, Shannon entropy is used to measure uncertainty instead of

min-entropy. However, it was shown in [6], that if we measure information leaked

using Shannon entropy then Shannon capacity, the maximum amount of informa-

tion leaked, of deterministic programs under all possible apriori distributions matches

exactly the min-capacity.

2.2 The problem and two intuitive solutions

We define a program P as follows:

Definition 3. Let bitLength ∈ {0, 1, 2, ..., 32} and let P be a function with one

input and one output. Also input S ∈
{
0, 1, 2, ..., 2bitLength − 1

}
and output O ∈{

0, 1, 2, ..., 2bitLength − 1
}
.

We need to count the number of feasible outputs of P in order to compute the

information leakage. We have two approaches to this problem:

1. Put the program in a double loop and count the number of outputs. The outer

loop iterates over possible outputs and the inner loop iterates over possible

9

inputs. When the program in the inner loop produces an output which matches

the outer loop, the counter counting the number of feasible outputs increases.

2. Let the program iterate through all input values and record the output hit

results in a bit array. The counter increases when a bit flips.

The first approach is time-consuming, while the second one is memory-consuming.

We will discuss these two approaches in detail in the subsections.

2.2.1 Double loop

In Algorithm 1, for each possible output value, we iterate through the input range to

see if an input can result in this output. If we hit this output, OCounter increases

and the code breaks out of the inner loop to continue testing the next possible output

value. After the double loop finishes, the value of OCounter is the number of outputs

of program P .

In this approach, we declare seven variables, and all of them require bitLength

bits except for OCounter which needs to be bitLength + 1 bits. The total memory

usage for variables is 7×bitLength+1 at O(bitLength). If we assume program P has

time complexity of O(t(P)) then the total execution time for the double loop when

break is never reached is 2bitLength × 2bitLength × O(t(P)). Thus the time complexity

is 2O(bitLength))×O(t(P)).

In order to get an estimation of how much time the double loop will take to execute,

we implemented a piece of C code with an empty while loop which loops 232 times.

On our experiment PC, this loop takes on average 10.30 seconds to complete. Were

we to run a double loop in bit length of 32, the execution time would be 232 × 10.30

10

Algorithm 1: Calculate the number of outputs using double loop.

S ← 0
O ← 0
SIn← 0
OOut← 0
OCounter ← 0
SMax← 1 << bitLength− 1
OMax← 1 << bitLength− 1
for O = 0 to OMax do
for S = 0 to SMax do
SIn← S
OOut← P (SIn) // the program P takes SIn as input
if OOut = O then
OCounter ← OCounter + 1
break

end if
end for

end for

seconds, which is around 1403 years. Running the double loop at 32 bits would be

infeasible.

Starting with bit length n, the time requirement for a full double loop is 22×n ×

O(t(P)). Increase the bit length by one and the time becomes 4× 22×n × t(P), four

times the previous time. Table 2.1 shows the actual execution time of an empty

double loop under different bit length, and the time increase follows the theoretical

analysis. At bit length of 23, the execution time would exceed a day, and executing

at higher bit length is impractical.

2.2.2 Single loop and array

In Algorithm 2, we create a bit array with size equal to the maximum number of

possible outputs(1 << bitLength, or 2bitLength) and initialize it with zeros. While we

11

Bit length Time(s) Multiplier
14 0.708
15 2.797 3.951
16 11.196 4.003
17 44.515 3.976
18 178.970 4.020

Table 2.1: Execution time of an empty double loop with different bit length.

iterate through the range of S, we set each OHit[P (SIn)] to 1. When a 0 turns to

1, we increase OCounter. After the loop, the value of OCounter is the number of

outputs by program P .

Algorithm 2: Calculate the number of outputs using single loop and a table.

S ← 0
O ← 0
SIn← 0
OOut← 0
OCounter ← 0
SMax← 1 << bitLength− 1
OMax← 1 << bitLength− 1
OHit[OMax+ 1]← [0]
for S = 0 to SMax do
SIn← S
OOut← P (SIn) // the program P takes SIn as input
if OHit[OOut] = 0 then
OCounter ← OCounter + 1
OHit[OOut]← 1

end if
end for

In Algorithm 2 except for the array we have 7 variables using 7×bitLength+1 bits

memory. The array OHit[] is of size 2bitLength × 1 bits making a total of 2bitLength +

7 × bitLength + 1 bits at 2O(bitLength). The time complexity for this algorithm is

(2O(bitLength))×O(t(P)).

12

Execution time Growth
Double loop 22×bitLength × t(P) ×4
Single loop & array 2bitLength × t(P) ×2

Table 2.2: Comparison of the two approaches on execution time and their growth.
t(P) is the execution time of the program within the loop.

Memory requirement(bits) Growth
Double loop 7× bitLength+ 1 +7
Single loop & array 2bitLength + 7× bitLength+ 1 +2bitLength + 7

Table 2.3: Comparison of the two approaches on memory requirement and their
growth.

We set the bit length to 32. In array OHit[], each element is 1 bit and the number

of elements is 232. The total memory usage for this array is 232 × 1 bits, which is

about 0.5 gigabytes. To our knowledge, it is neither difficult nor expensive to build a

PC with more than 16 gigabytes of memory, and we can get such a PC off-the-shelf

from top gaming PC brands like Alienware. However, as this memory requirement

grows exponentially, adding five or six bits to the bit length and the requirement will

exceed the capacity of current PCs.

2.2.3 Comparison

Table 2.2 and 2.3 show a comparison on execution time and memory usage respectively

for these two approaches. The single loop and array approach has exponential growth

for both time and memory, while the double loop approach has exponential growth

for time but linear growth for memory, so we choose the double loop approach.

13

Chapter 3

Semi-monotonic programs

In this chapter we describe our discovery that if the test program P meets a certain

property that we call semi-monotonicity, then we can use a different wrapping loop.

3.1 Discovery by mistake

During the initial tests with the sanity check program of bit length 32, the program

terminates in less than a minute and gives the correct output count. Later we time

the execution of an empty loop from 0 to 232 − 1 and the result is 10.30 seconds,

so theoretically the double loop would take a much longer time to terminate, longer

than our test result with sanity check. Listing 3.1 shows the C code we used. We set

the base to 0.

Due to the large difference in actual execution time and the theoretical time, we

decided to inspect the code for errors. Our code differs from Algorithm 1 at two

places: First, S and O can not reach SMax and OMax due to the use of <, thus

14

u in t 32 t S = 0 ;
u i n t 32 t O = 0 ;
u in t 32 t SMax = S − 1 ;
u i n t 32 t OMax = O − 1 ;
u i n t 32 t OCounter = 0 ;
u i n t 32 t OTemp = 0 ;
u in t 32 t base = 0 ;
for (;O<OMax;O++){

for (; S<SMax ; S++){
//program s t a r t here
i f (S < 16)

OTemp = base + S ;
else

OTemp = base ;
//program end here
i f (OTemp == O){

OCounter ++;
break ;

} } }

Listing 3.1: Initial implementation of the double loop with sanity check in C.

the upper bound is not tested. Second, in the inner loop, we did not initialize S

to 0 except for its first iteration. The first point does not affect the output count

of the sanity check example as every S greater than 16 will lead to a P (S) value of

base which is 0. The second point is the cause of the large time difference, because

essentially P only executes once for each S, reaching a total of 232 times, much smaller

than the full double loop in which P executes 22×32 times.

We found that removing the initialization of S to 0 can be a way to speed up

some programs, but not all. Specifically, program P has to obey certain properties

in order for this initialization to give an accurate answer:

1. Function P is monotonically increasing within range [0, n].

15

Figure 3.1: A function that follows the properties from the first optimization.

2. The output of function P with S in range [0, n] has to start with zero and is

continuous.

3. Each output of function P with S in range [n + 1, 1 ≪ bitLength − 1] can be

produced by at least one S in range [0, n].

Figure 3.1 shows an example function that follows these properties. In the first

part [0, 4], function output has to start from 0 and be continuously increasing. As to

the second part [5, 6], each output has to be equal to an output in [0, 4].

16

3.2 Improvements

The properties that P has to follow in order for the optimization to work is rather

strict. For example in the sanity check test, the optimization only works when base

is 0. A possible solution would be to start O at the lowest value P can output, in

essence pulling the function down on y axis so that it starts with 0. However, this

approach does not ease the restrictions.

In our second attempt as shown in Listing 3.2 to improve this optimization

method, we started with monotonicity and rearranged the architecture of the outer

program. The problem is to count the number of outputs of a monotonically increas-

ing function, and our solution is to iterate through the entire range of S and keep

track of the highest output value. If P generates a value OOut which is larger than

the current largest value, then OOut replaces that value and OCounter increases.

The properties that P has to follow in order to use this optimization is different from

the first one.

For program P , it has to follow either of the following conditions:

1. Pfunc(s) ≥ maxs′≤s Pfunc(s
′)

2. Pfunc(s) ∈ {Pfunc(s
′) | s′ ≤ s}

To enable the optimization.

Also Figure 3.2 shows an example function that follows these conditions. A new

output value has to be either larger than all previous values like when S is 3, or is

within the set of all previous outputs like when S is 6.

So with the second attempt, we removed the requirement for P to be continuous

and start with 0 from the first attempt. The execution time for the optimization is

17

Figure 3.2: A function that follows the properties from the second optimization.

18

2bitLength× t(P), which is 1/2bitLength of the execution time of the original double loop.

unsigned int S = 0 ;
unsigned int SMax = 4294967295;
unsigned int base =4;
unsigned int STemp = S ;
unsigned int OTemp = 0 ;
//program s t a r t s here
i f (STemp< 16){OTemp = base+ STemp;}
else {OTemp = base ;}
//program ends here
unsigned int OCounter = 1 ;
unsigned int OMax = OTemp;
S++;
while (S<= SMax){

STemp = S ;
//program s t a r t s here
i f (STemp < 16){OTemp = base+ STemp ; }
else {OTemp = base ;}
//program ends here
i f (OTemp > OMax){

OMax = OTemp;
OCounter= OCounter+1;

}
i f (S < SMax) S=S+1;
else break ;

}

Listing 3.2: Implementation of the optimization with sanity check in C.

19

Chapter 4

Experiment with Getafix and
jMoped

We want to use model-checking tools to see if we can reduce the time requirement

of Algorithm 1. Model-checking tools can help us to decide if a particular line in a

program can be reached. Our approach entails appending Algorithm 3 to the end of

Algorithm 1. The statement within the if statement has a label. Although the exact

statement following that label is irrelevant, reaching this line means OCounter satis-

fies the constrains in the condition block. In our tests, we used only an equality test.

Our purpose is to see our optimization performs with respect to other optimizations

and how the tools scale with the number of bits. However, note we can easily convert

reachability tests into an exact computation by using a binary search to successively

refine the number of the possible values of the counter which counts the number of

outputs.

20

Figure 4.1: Workflow of calculating information leakage with Getafix.

We experiment on several model-checking tools, including Interproc from [28],

Berkeley Lazy Abstraction Software Verification Tool (Blast) from [29], Getafix from

[12] and jMoped from [30]. We can not get correct reachability results from Interproc

and Blast, so we shift our focus onto Getafix and jMoped.

Algorithm 3: Determine if OCounter meets certain constrains.

if value of OCounter meets certain constrains then
reach: OCounter // a label followed by a statement

end if

4.1 Getafix

Getafix is a symbolic model checker for Boolean programs that supports reachability

checking. It translates sequential Boolean programs into Boolean modal mu-calculus

formulae and uses the model-checker Mucke [31] to solve the reachability problem.

Mucke itself model-checks symbolically using Boolean Decision Diagrams.

21

4.1.1 The converter

Input for Getafix are boolean programs, meaning it only supports binary variables

which can be either 0 or 1. We represent our problem in C-style code, thus we need

to translate it into boolean form. We implemented a converter to automate this

process, and Figure 4.1 shows the workflow we used to calculate information leakage

using Getafix. The converter has three components, a parser, a built-in function

generator and a piece of script which calls the first two components and assembles

the output file. The converter has these properties:

1. The input to the converter is a C-style code file and a positive integer which

represents the bit length. The converter supports 32 bits and less. Also note

that the converter represents a number with bit length of bitLength using

bitLength + 1 bits. We do this so that we do not need to deal with the upper

bound explicitly when writing a loop iterating from 0 to 2bitLength − 1.

2. The output of the converter is a boolean program which follows the syntax of

Getafix input file.

3. In the language that we defined for the input file, we support only one variable

type: non-negative decimal integer. Again we support the length up to 32 bits.

4. Our converter does not support function definitions. The input file has two

parts, variable declarations block and statements block. The parser will print

these blocks into the main function of the output boolean program. Also we

require all variable declarations to appear before statements in the input code.

Getafix input syntax has this requirement, and we decide to keep it in our

converter.

22

Input Output

var SMax = 16;
decl SMax4,SMax3,SMax2,SMax1,SMax0;
Smax4, SMax3, SMax2, SMax1, SMax1 := 1,0,0,0,0;

STemp = STemp - 5;
STemp4,STemp3,STemp2,STemp1,STemp0 :=
minus(STemp4,STemp3,STemp2,STemp1,STemp0,0,0,1,0,1);

Table 4.1: Examples of input and output of the parser, with bit length of 4

5. We implement support for the following symbolic operators in the language:

plus +, minus -, and &, or |, xor ˆ, greater than >, equal ==, less than <, not

equal !=, greater than or equal >=, less than or equal <=, left shift <<and

right shift >>.

6. We implement support for three control statements: if...else, while loop, goto

and statements with labels. We currently do not support for loop, do...while

loop, switch statements, break and continue, but these statements can be easily

expressed using the supported ones.

Input to the parser is a C-style code file and a desired bit length. Output of the

parser is its corresponding boolean program which follows the syntax of Getafix input

file. First we define the syntax of the input code and second we create the parser

using flex and bison. The parser scans the input code and builds a syntax tree. Then

the parser prints the syntax tree as a boolean program. The parser has three points

worth noting:

1. When printing the output code, the parser “stretches” each variable and literal

into its binary form. Assume the desired bit length is bitLength. We split each

variable into bitLength variables by copying the name of the variable bitLength

times and appending a counter value to each one. Also we convert a literal to

23

its corresponding binary value and prepend it with zeros to reach the desired

length. Table 4.1 contains an example of how the parser deals with a variable

declaration.

2. In a boolean program, all operators operate on bit level, so we need to implement

higher-level operators like plus, minus, greater than and left shift using operators

that Getafix supports. In the parser, we print these high-level operators as

function calls in the output boolean program, and the built-in function generator

generates the body of the function. Table 4.1 also contains an example of how

the parser deals with a high-level operator.

3. In the boolean code syntax which Getafix defines, function call plus the semi-

colon is defined as a statement, and another rule allows the code to assign a

function call to an identifier, but function call itself is not an expression. This

means that a function call can not work as an expression as in many other lan-

guages, and it leads to two problems: First, the decider expressions in if...else

and while statements can not contain function calls. Second, parameters of a

function call or operands to an operator can not be a function call. We auto-

mated a solution in the parser to the first problem, which assigns the decider

expression to a temporary variable and use that variable as the decider, so we

can use the C-style if...else and while in the input code. For the second problem,

a possible solution would be to manage a set of internal temporary variables

and assign each function call to a variable, but we did not implement it.

Input to the built-in function generator is a desired bit length. Output is a set

of high-level operators like plus and left shift implemented as functions. We do not

24

track the necessary functions in the parser, as experiments with Getafix indicate that

the uncalled functions affect little on the execution time. Listing 4.1 shows a sample

function by the generator.

bool isGT(l e f t 2 , l e f t 1 , l e f t 0 , r ight2 , r i ght1 , r i gh t 0)
begin
i f (l e f t 2 != r i gh t 2) then

i f (l e f t 2 = 1) then return 1 ; f i
else

i f (l e f t 1 != r i gh t 1) then
i f (l e f t 1 = 1) then return 1 ; f i

else
i f (l e f t 0 != r i gh t 0) then

i f (l e f t 0 = 1) then return 1 ; f i
f i f i f i
return 0 ;
end

Listing 4.1: Greater than operator as a function in boolean program with bit length
of 2.

Input to the third component, a piece of script, is a C-style code file and a desired

bit length. Output of the script is a boolean program ready for Getafix to process.

The script first passes the bit length to the built-in function generator and redirects

its output to the output file. Then the script passes both the input to the parser and

appends its output to the output file. At this point the output is complete.

4.2 jMoped

jMoped is a model checker which checks for coverage in Java programs. The authors

implemented it as a plug-in for eclipse, using its UI for parameters and output display.

We rewrite our tests in Java so that we can use jMoped on them.

25

4.3 Tests and results

Before we have the converter, we coded a few test cases manually and Getafix gave us

the correct answers. Now with the converter we can run more complicated tests and

see if Getafix is a good solution to the problem of calculating information leakage.

As with jMoped, we rewrite the tests in Java. We decide to run the eight test cases

from paper [25]. In each test, O represents the output of the test program, and S

is the input. Also in the tables, opt refers to the final optimization in the previous

chapter, and we set the maximum execution time to 600 seconds.

We did our tests on a laptop computer, and key hardware specifications are:

Model Lenovo ideapad Y580-IFI

CPU Intel Core i5-3210M @ 2.5GHz

Memory 4GBytes DDR3-1600 × 2

And the software specifications are:

OS Ubuntu 14.04 LTS 32-bit

Getafix Version information not available. Source code retrieved on 2014/4/10

Mucke Version 0.4.4

Eclipse Eclipse juno sr2

jMoped Version 2.0.2

For Getafix, we time the entire process from converter to Mucke using the time

command in bash and record the elapsed wall time. For jMoped, we record the elapsed

wall time which jMoped reports.

26

4.3.1 Sanity check

Listing 4.2 shows the code we use. In this test, O remains constant unless S is within

a certain range. The program has 16 different outputs, ranging from 4 to 19. We can

use the optimization in this test, and the timing results are in Table 4.2.

var base = 4 ;
i f (S < 16){O = base+ S ;}
else {O = base ;}

Listing 4.2: Sanity check test program.

bit length(bit) Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
6 41.264 2.093 9.32 0.42
7 235.640 3.378 62.07 0.53
8 >600 6.448 326.12 0.88
9 13.491 JVM terminates 1.69
10 27.479 3.05
11 61.871 6.23
12 140.115 14.80
13 302.96 35.17
14 580.982 78.29
15 >600 181.82
16 444.17
17 JRE Error

Table 4.2: Timing results for sanity check.

4.3.2 Implicit flow

Listing 4.3 shows the code. This test copies the value of S to O indirectly through

the if statement when S is less than 7. For other S values, O is 0. The program has

27

7 different outputs, ranging from 0 to 6. We can use the optimization in this test,

and the timing results are in Table 4.3.

O = 0 ;
i f (S == 0){O = 0;}
else { i f (S == 1){O = 1;}

else { i f (S == 2){O = 2;}
else { i f (S == 3){O = 3;}

else { i f (S == 4){O = 4;}
else { i f (S == 5){O = 5;}

else { i f (S == 6){O = 6;}
} } } } } }

Listing 4.3: Implict flow test program.

bit length(bit) Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
6 58.834 2.937 11.87 0.47
7 289.919 8.265 63.56 0.58
8 >600 22.644 325.76 0.97
9 61.464 >600 1.86
10 182.130 3.57
11 429.298 7.21
12 >600 15.75
13 36.31
14 81.53
15 182.01
16 415.69
17 >600

Table 4.3: Timing results for implicit flow.

4.3.3 Mix and duplicate

Listing 4.4 shows the code. This test first calculates the XOR value of the two halves

of S (mix) and second duplicates this XOR value twice in O (duplicate). The output

28

count depends on the bit length, and at 8 bits, it has 24 = 16 different outputs. We

can use the optimization in this test, and the timing results are in Table 4.4.

O = ((S >> 4) ˆ S) & 15 ;
O = O | O << 4 ;

Listing 4.4: Mix and duplicate test program at 8 bits.

bit length Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
4 2.719 0.983 1.14 0.38
6 44.728 3.719 32.94 0.63
8 >600 32.931 JVM terminates 1.97
10 Memory alloc error 9.77
12 69.01
14 JVM terminates

Table 4.4: Timing results for mix and duplicate.

4.3.4 Masked copy

Listing 4.5 shows the code. In this test, O is S with its lower half set to 0, or

“masked” out. The output count depends on the bit length, and at 8 bits, it has

24 = 16 different outputs. We can use the optimization in this test, and the timing

results are in Table 4.5.

O = S & 240 ;

Listing 4.5: Masked copy test program at 8 bits.

29

bit length Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
4 1.728 0.752 0.61 0.23
6 38.244 1.386 10.29 0.35
8 >600 5.254 320.87 0.81
10 39.136 JVM terminates 2.45
12 247.135 11.78
14 >600 57.08
16 327.95
18 JRE fatal error

Table 4.5: Timing results for masked copy.

4.3.5 Binary search

Listing 4.6 shows the code. This test leaks the upper half of S to O through binary

search. The output count depends on the bit length, and at 8 bits, it has 24 = 16

different outputs. We can use the optimization in this test, and the timing results

are in Table 4.6.

i f (O + 128 <= S){O = O + 128;}
i f (O + 64 <= S){O = O + 64;}
i f (O + 32 <= S){O = O + 32;}
i f (O + 16 <= S){O = O + 16;}

Listing 4.6: Binary search test program at 8 bits.

bit length Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
4 3.359 1.094 0.91 0.33
6 136.074 5.947 28.26 0.64
8 >600 65.235 JVM terminates 2.32
10 >600 13.53
12 99.49
14 JVM terminates

Table 4.6: Timing results for binary search.

30

4.3.6 Electronic purse

Listing 4.7 shows the code. Assume S is the account balance, we set the deduction

to 5, and output O represents the number of times one can debit such an amount.

In this test we set SMax to 19,and the program has 4 outputs, ranging from 0 to 3.

We can use the optimization in this test, and the timing results are in Table 4.7.

O = 0 ;
while (S >= 5){

S = S − 5 ;
O = O + 1 ;

}

Listing 4.7: Electronic purse test program.

bit length(bit) Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
5 10.411 2.781 1.70 0.31

Table 4.7: Timing results for electronic purse.

4.3.7 Sum query

Listing 4.8 shows the code. This test leaks the sum of its three inputs to O. We set

S1, S2 and S3 to be less than 10, so the program has 28 outputs ranging from 0 to

27. We can use the optimization in this test, and the timing results are in Table 4.8.

O = S1 + S2 + S3 ;

Listing 4.8: Sum query test program.

31

bit length(bit) Getafix(s) Getafix opt(s) jMoped(s) jMoped opt(s)
5 225.400 33.488 21.12 2.60

Table 4.8: Timing results for sum query.

4.4 Results summary

From the seven test programs and timing results, we can conclude the following points:

1. At the same bit length, jMoped is faster than Getafix.

2. The optimization can reduce execution time for jMoped and Getafix greatly.

3. The best result we get is using jMoped with the optimization, but still the time

growth appears to be exponential.

32

Chapter 5

Conclusion and future works

In this thesis we showed a novel approach of using model checking tools to compute

information leakage. The principal idea is to wrap the program to be tested in a

loop which counts the number of outputs it has, and instead of directly executing the

whole code, we append an if statement with the counter as its condition and apply

a model checking tool to check for reachability of the statement within if. Given the

success of model-checking to program analysis, we think that this approach may be

faster than direct execution.

Our main work divides into three parts:

1. We wrote a converter that converts C-style code into boolean program, which

is the input Getafix requires. Later we used the converter on all the seven test

cases and it saved us a lot of time in coding the tests.

2. We came up with an optimization method which can greatly reduce the time

needed to calculate information leakage, either through model checking tools

33

or through direct execution. The optimization works on certain programs that

satisfy special properties which we call semi-monotonicity.

3. We tested seven benchmarks from [6] on both Getafix and jMoped with varying

bit lengths.

We found that a direct approach in combination with the model checkers does not

scale well. We managed to reach 16 bits with jMoped and the optimization in most

of the tests, but a real-world program would typically use 64 bits or more.

Potential future work includes trying more sophisticated model checkers. Another

approach would be to see if the model-checking algorithms used in jMoped and Getafix

can be modified to count the number of outputs. Another possible direction is to

design heuristics to check whether programs are semi-monotonic or not in order to

see if our optimization can be applied. Currently, we check for semi-monotonicity by

hand.

34

Appendix A

Context-free grammar for the
converter

This is the converter input grammar. We take it out of the parser and remove the

actions to make it serve as a reference.

%start program

%%

program:

var_decls stmts

var_decls:

%empty

| var_decls var_decl

var_decl:

T_VAR T_ID ’;’

| T_VAR T_ID ’=’ exp ’;’

35

stmts:

%empty

| stmts stmt

stmt:

T_ID ’:’ stmt

| exp ’;’

| T_ID ’=’ exp ’;’

| T_IF ’(’ exp ’)’ block T_ELSE block

| T_IF ’(’ exp ’)’ block

| T_WHILE ’(’ exp ’)’ block

| T_GOTO T_ID ’;’

block:

’{’ stmts ’}’

exp:

T_NUM

|’(’ exp ’)’

| T_ID

| exp ’+’ exp

| exp ’^’ exp

| exp ’-’ exp

| exp ’|’ exp

| exp ’&’ exp

| exp "<<" exp

| exp ">>" exp

36

| exp ’<’ exp

| exp "<=" exp

| exp ’>’ exp

| exp ">=" exp

| exp "==" exp

| exp "!=" exp

37

Bibliography

[1] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.

[2] J. C. Reynolds. Syntactic control of interference. In POPL ’78, pages 39–46,

1978.

[3] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[4] J. W. Gray III. Toward a mathematical foundation for information flow security.

In IEEE Symposium on Security and Privacy, pages 21–35, 1991.

[5] J. K. Millen. Covert channel capacity. In IEEE Symposium on Security and

Privacy, pages 60–66, 1987.

[6] G. Smith. On the foundations of quantitative information flow. In FOSSACS ’09,

pages 288–302, 2009.

[7] H. Yasuoka and T. Terauchi. On bounding problems of quantitative information

flow. In ESORICS ’10, pages 357–372, 2010.

[8] H. Yasuoka and T. Terauchi. Quantitative information flow as safety and liveness

hyperproperties. In QAPL 2012, pages 77–91, 2012.

38

[9] R. Chadha, D. Kini, and M. Viswanathan. Quantitative information flow in

boolean programs. In Principles of Security and Trust, pages 103–119, 2014.

[10] P. Černý, K. Chatterjee, and T. A. Henzinger. The complexity of quantitative

information flow problems. In CSF ’11, pages 205–217, 2011.

[11] D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza. jMoped: A test

environment for Java programs. In Werner Damm and Holger Hermanns, editors,

Proceedings of CAV 2007, volume 4590 of Lecture Notes in Computer Science,

pages 164–167. Springer, July 2007. Tool paper.

[12] S. La Torre, P. Madhusudan, and G. Parlato. Analyzing recursive programs

using a fixed-point calculus. In PLDI, pages 211–222, 2009.

[13] C. Y Lee. Representation of switching circuits by binary-decision programs. Bell

System Technical Journal, 38:985–999, 1959.

[14] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677–691, August 1986.

[15] H. Yasuoka and T. Terauchi. Quantitative information flow - verification hard-

ness and possibilities. In CSF ’10, pages 15–27, 2010.

[16] R. Chadha and M. Ummels. The complexity of quantitative information flow in

recursive programs. In FSTTCS, pages 534–545, 2012.

[17] M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and quantifica-

tion of information leaks. In IEEE Symposium on Security and Privacy, pages

141–153, 2009.

39

[18] B. Köpf and A. Rybalchenko. Approximation and randomization for quantitative

information-flow analysis. In CSF ’10, pages 3–14, 2010.

[19] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Probability of error in

information-hiding protocols. In CSF ’07, pages 341–354, 2007.

[20] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity protocols

as noisy channels. Information and Computation, 206(2-4), 2008.

[21] Da. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while lan-

guage. Electronic Notes in Theoretical Computer Science (Proc. QAPL ’04),

112:49–166, 1984.

[22] D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow, relations

and polymorphic types. Journal of Logic Computation, 15(2):181–199, 2005.

[23] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information

flow in a simple imperative language. Journal of Computer Security, 15(3):321–

371, 2007.

[24] K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of infor-

mation leakage. In TACAS ’10, pages 390–404, 2010.

[25] Z. Meng and G. Smith. Calculating bounds on information leakage using two-bit

patterns. In PLAS ’11, 2011.

[26] Z. Meng and G. Smith. Faster two-bit pattern analysis of leakage. Proc. QASA

2013: 2nd International Workshop on Quantitative Aspects of Security Assur-

ance, Royal Holloway, University of London, 2013.

40

[27] J. Heusser and P. Malacaria. Quantifying information leaks in software. In

ACSAC, pages 261–269, 2010.

[28] G. Lalire, M. Argoud, and B. Jeannet. Interproc analyzer. http://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html.

[29] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model

checker blast. STTT, 9(5-6):505–525, 2007.

[30] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig in-

terpolation and symbolic pushdown systems. In TACAS, LNCS 3920, pages

489–503, 2006.

[31] Armin Biere. µcke - efficient µ-calculus model checking. In Proceedings of

CAV, 1997, volume 1254 of Lecture Notes in Computer Science, pages 468–471.

Springer, 1997.

41

