
TOWARDS DATA OPTIMIZATION IN STORAGES AND NETWORKS

A DISSERTATION
IN

Telecommunications and Computer Networking
and

Computer Science

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
DAEHEE KIM

M. S., State University of New York, Binghamton, NY, USA, 2008
B. S., Pusan National University, Pusan, South Korea, 1995

Kansas City, Missouri
2015

c© 2015

DAEHEE KIM

ALL RIGHTS RESERVED

TOWARDS DATA OPTIMIZATION IN STORAGES AND NETWORKS

Daehee Kim, Candidate for the Doctor of Philosophy Degree

University of Missouri–Kansas City, 2015

ABSTRACT

We are encountering an explosion of data volume, as a study estimates that data

will amount to 40 zeta bytes by the end of 2020. This data explosion poses significant

burden not only on data storage space but also access latency, manageability, and pro-

cessing and network bandwidth. However, large portions of the huge data volume contain

massive redundancies that are created by users, applications, systems, and communication

models. Deduplication is a technique to reduce data volume by removing redundancies.

Reliability will be even improved when data is replicated after deduplication.

Many deduplication studies such as storage data deduplication and network re-

dundancy elimination have been proposed to reduce storage consumption and network

bandwidth consumption. However, existing solutions are not efficient enough to optimize

data delivery path from clients to servers through network.Hence we propose a holis-

tic deduplication framework to optimize data in their path.Our deduplication framework

consists of three components including data sources or clients, networks, and servers. The

iii

client component removes local redundancies in clients, the network component removes

redundant transfers coming from different clients, and theserver component removes re-

dundancies coming from different networks.

We designed and developed components for the proposed deduplication frame-

work. For the server component, we developed the Hybrid Email Deduplication System

that achieves a trade-off of space savings and overhead for email systems. For the client

component, we developed the Structure Aware File and Email Deduplication for Cloud-

based Storage Systems that is very fast as well as having goodspace savings by using

structure-based granularity. For the network component, we developed a system called

Software-defined Deduplication as a Network and Storage service that is in-network dedu-

plication, and that chains storage data deduplication and network redundancy elimination

functions by using Software Defined Network to achieve both storage space and network

bandwidth savings with low processing time and memory size.We also discuss mobile

deduplication for image and video files in mobile devices. Through system implementa-

tions and experiments, we show that the proposed framework effectively and efficiently

optimizes data volume in a holistic manner encompassing theentire data path of clients,

networks and storage servers.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the Schoolof Graduate Studies, have

examined a dissertation titled “Towards Data Optimizationin Storages and Networks,”

presented by Daehee Kim, candidate for the Doctor of Philosophy degree, and hereby

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Sejun Song, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Baek-Young Choi, Ph.D. (Co-advisor)
Department of Computer Science & Electrical Engineering

Xiaojun Shen, Ph.D.
Department of Computer Science & Electrical Engineering

Ken Mitchell, Ph.D.
Department of Computer Science & Electrical Engineering

Lein Harn, Ph.D.
Department of Computer Science & Electrical Engineering

Yugyung Lee, Ph.D.
Department of Computer Science & Electrical Engineering

v

CONTENTS

ABSTRACT . iii

List of Figures . x

List of Tables . xiv

ACKNOWLEDGEMENTS . xv

Chapter

1 Introduction . 1

1.1 Redundancies . 2

1.2 Existing Deduplication Solutions to Remove Redundancies 3

1.3 Issues of Existing Solutions .. . 5

1.4 Objective of Ph.D. Study . 6

1.5 Contributions . 7

1.6 Organization . 8

2 Deduplication Technology .. . 10

2.1 Dedupication Classification .. . 11

2.2 File-level Deduplication .. 13

2.3 Fixed-size Block Deduplication .. . 14

2.4 Variable-size Block Deduplication 16

2.5 Comparsion of Deduplications by Method per Granularity. 17

2.6 Bloom Filter . 18

vi

2.7 Server Based Deduplication .21

2.8 Client Based Deduplication .. 22

2.9 End-to-end Redundancy Elimination 23

2.10 Network-wide Redundancy Elimination 24

2.11 Inline deduplication .. 28

2.12 Offline deduplication .29

3 Existing Deduplication Approaches 30

3.1 File-level Deduplication .. 30

3.2 Fixed-size Block Deduplication .. . 32

3.3 Variable-size Block & Server-based Deduplication 36

3.4 Hybrid Deduplication . 37

3.5 Object-level Deduplication .. . 38

3.6 Client-based Deduplication & End-to-end Redundancy Elimination . . . 39

3.7 Network-wide Redundancy Elimination 41

3.8 Inline & Offline Deduplication .. 43

4 HEDS: Hybrid Email Deduplication System 45

4.1 Large Redundancies in Emails .45

4.2 Hybrid System Design . 47

4.3 EDMilter . 48

4.4 Metadata Server . 49

4.5 Bloom Filter . 50

4.6 Chunk Index Cache . 51

vii

4.7 Storage Server . 51

4.8 EDA (Email Deduplication Algorithm) 51

4.9 Experiment Setup . 55

4.10 Deduplication performance .. . 57

4.11 Memory overhead . 62

4.12 CPU overhead . 64

4.13 Summary . 65

5 SAFE: Structure-Aware File and Email Deduplication for Cloud-based Storage

Systems . 66

5.1 Large Redundancies in Cloud Storage Systems 67

5.2 SAFE Modules . 68

5.3 Email Parser . 69

5.4 File Parser . 71

5.5 Object-Level Deduplication and Store Manager 77

5.6 SAFE in Dropbox . 77

5.7 Metrics and Setup . 81

5.8 Storage and Data Traffic Reduction Performance 84

5.9 Memory and CPU Overhead . 87

5.10 Summary . 89

6 SoftDance: Software-defined Deduplication as a Network and Storage Service . 91

6.1 Large Redundancies in Network .92

6.2 Software Defined Network . 94

viii

6.3 Control and Data Flow . 95

6.4 Encoding Algorithms in Middlebox (SDMB) 98

6.5 Index Distribution Algorithms .. . 100

6.6 Implementation: REST, JSON, Middlebox 107

6.7 Experiment and Emulation Setup .. 108

6.8 Storage Space and Network Bandwidth Saving 112

6.9 CPU and Memory Overhead . 114

6.10 Performance and Overhead per Topology 115

6.11 SoftDance vs Combined Existing Deduplication Techniques 119

6.12 Summary . 121

7 Mobile De-duplication .. 122

7.1 Large Redundancies in Mobile Devices 122

7.2 Approaches and Observations .123

7.3 JPEG and MPEG4 . 124

7.4 Throughput and Running Time of Encryption Algorithm 124

7.5 Summary . 129

8 Conclusions . 130

REFERENCE LIST . 132

VITA . 140

ix

List of Figures

Figure Page

1 Data explosion: (Source - IDC’s Digital Universe Study, sponsored by

EMC, December 2012) . 1

2 Redundancies . 2

3 Existing solutions to remove redundancies 4

4 Deduplication framework . 7

5 Components developed for deduplication framework 7

6 File-level deduplication .13

7 Fixed-size block deduplication .. 15

8 Variable-size block deduplication 16

9 Comparisons of deduplications .18

10 How bloom filter works . 19

11 Server based deduplication .21

12 Client based deduplication: c1 and c2 are chunks. h(c1) and h(c2) are

hash keys (indexes) of chunks. 22

13 End-to-end redundancy elimination: c1 and c2 are chunks.h(c1) and

h(c2) are hash keys (indexes) of chunks. 24

14 Network-wide redundancy elimination 25

15 Network-wide redundancy elimination: issue 25

x

16 Inline deduplication . 27

17 Offline deduplication . 29

18 A study of practical deduplication: evaluation setup 31

19 Venti tree structure of data blocks [63] 33

20 Dropbox internal mechanism . 35

21 Sparse indexing: deduplicaiton process [44] 38

22 Low bandwidth file system (LBFS) [54]40

23 Redundant traffic elimination with packet caches on routers 42

24 Proposed hybrid email deduplication system (HEDS) 47

25 EDMilter . 49

26 Block deduplication at EDA . 54

27 File-level deduplication at EDA .. 54

28 Distribution of the Enron corporate email sizes 56

29 Distribution of the gmail personal email sizes 57

30 Reduced storage (Enron - corporate dataset) 59

31 Reduced storage (Gmail - single user dataset) 60

32 Chunk index overhead . 63

33 Relative CPU overhead . 65

34 SAFE deduplication architecture .. . 68

35 Email parser . 70

36 Structure of an email . 70

37 Physical file format . 73

xi

38 File parser . 74

39 Logical structure of MS office document file 76

40 Dropbox internal mechanism . 79

41 SAFE integration with Dropbox . 80

42 Distribution of the file sizes in the email dataset 83

43 Percentage of the structured files in the email datasets 83

44 Deduplication ratio . 85

45 Data traffic incurred (MB) . 87

46 Relative processing time overhead compared to file-leveldeduplication . . 88

47 Relative index overhead compared to file-level deduplication 88

48 SoftDance architecture . 93

49 Software defined network . 95

50 SoftDance control and data flows .96

51 SoftDance forwarding table example 98

52 A network topology with three routes 102

53 JSON format example: response of hash range URI 108

54 Experiment topology . 109

55 Emulation topology . 110

56 Comparison of performance . 112

57 Comparison of overhead . 115

58 Memory size among SoftDance approaches: per-node 115

59 Performance per topology . 117

xii

60 Overhead per topology . 118

61 Performance of combined approaches 120

62 Overhead of combined approaches .121

63 Throughput of encryption algorithms per file type 125

64 Running time of encryption algorithms per file type 126

65 Throughput of encryption algorithms per file size 128

66 Running time of encryption algorithms per file size 128

xiii

List of Tables

Tables Page

1 Deduplication classification .. 11

2 Datasets . 55

3 Locality of attachments . 61

4 Used datasets . 82

5 SD-uniform hash ranges and generated index size 103

6 SD-merge hash ranges and generated index size 104

7 REST API URIs . 107

xiv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisors including Dr. Sejun Song and Dr.

Baek-Young Choi for their great advice and guidance for my Ph.D. study. Dr. Song

enabled me to develop various multicasting projects for wireless sensor network with his

insightful thoughts and helped me begin my current dissertation topic, deduplication. Dr.

Choi’s great guide for my study at the University of Missouri-Kansas City enabled me

to learn research skills including writing, discovering ideas, building up projects, and

ultimately making a paper throughout all research.

I would like to thank my committee members: Dr. Xiaojun Shen,Dr. Ken

Mitchell, Dr. Lein Harn, and Dr. Yugyung Lee for all their help for my dissertation

and insightful comments. Thanks to these comments, this dissertation was improved sig-

nificantly.

I also sincerely thank Professor Judy Mullins. Thanks to herkind help and encour-

agement during my assistance as a graduate assistant for herdata structure and algorithm

course, I had great opportunities to experience Big Data using Hadoop and Amazon Cloud

and IBM Cloud. Making the first Hadoop tutorial in UMKC with her was a great joyful

moment. Throughout two and a half year of assistance to her, Ilearned great teaching

skills from her.

I appreciate both my parents and my wife’s parents, ByungJunKim and Okyeun

Ahn, HyungKi Shin and MyungJa Song. During my entire Ph.D. study, they always have

been on my side to encourage and help me and my family. My beloved daughters Sarah

and Daisy have grown taller since we came here and their continuous smiles at me have

been one of the greatest weapons and ways that I could continue my study without taking

a break. I thank my lovely wife, Jongsoon Shin. Without her help and support, I could

not achieve this amazing goal.

I thank God, Jesus who always lead and guide my way, and know better than me

about my way even though I cannot see what life holds in store for me.

xvi

CHAPTER 1

INTRODUCTION

We live in the era of data explosion. Based on the IDC’s digital universe study [34]

as shown in Figure 1, data volume will increase by 50 times higher at the end of 2020

than it is in 2010, which amounts to 40 zetabytes (40 million petabytes - more than 5,200

gigabytes for every person). This huge increase of data volume has a critical impact on

the overhead costs of computation, storage, and network.

Figure 1: Data explosion: (Source - IDC’s Digital Universe Study, sponsored by EMC,
December 2012)

Interestingly, massive portions of this enormous data are derived from redundan-

cies in storages and networks. A study [46] shows there is a redundancy of 70% in datasets

collected from file systems of almost one thousand computersin an enterprise. Another

study [71] finds that 30% of incoming traffic and 60% of outgoing traffic are redundant

based on packet traces on a corporate research environment with 3000 users and web

servers.

1

Figure 2: Redundancies

1.1 Redundancies

Redundancies are produced in clients, servers, and networks in various manners

as shown in Figure 2. Redundancies increase on the client side. A user copies a file with

a different file name and creates similar files with small updates. These redundancies

further increase when users copy redundant files back and forth among people within an

organization. Another type of redundancy is generated by applications. For example,

currently there is a popular trend to take pictures of movingobjects, called burst shooting

mode. In this mode, we can take 30 pictures within a second, and choose good pictures

or remove bad pictures. However, this application can produce large redundancies among

similar pictures. Another type of redundancy occurs from similar frames in video files.

2

A video file consists of many frames. In scenes where actors keep talking with the same

background, large portions of the background become redundancies.

Redundancies also occur on the network side. When a user requests a file for

the first time, a unique transfer occurs, which does not produce redundant transfers in a

network. However, when a user requests the same file again, redundant transfer occurs.

Redundancies are also generated by data dissemination suchas video streaming. For

example, when different clients receive a streaming file from Youtube, redundant packets

must traverse through multiple Internet Service Providers(ISPs).

On the server side, redundancies are greatly expanded when people in the same

organization upload the same (or similar) files. The redundancies are accelerated by repli-

cation, Redundant Array of Inexpensive Disks (RAID), and remote backup for reliability.

Then, what problems arise from these redundancies? From theclient and server

sides, storage consumption increases. On the network side,network bandwidth consump-

tion increases. For clients, latency increases because users keep downloading the same

files from distant source servers each time. We find that redundancies significantly im-

pact storages and networks. Then, the next question is: whatsolutions exist to remove (or

reduce) these redundancies.

1.2 Existing Deduplication Solutions to Remove Redundancies

As shown in Figure 3, there are three type of studies throughout storages and net-

works. The first type is storage data deduplication that aimsto save storage spaces. In

3

Figure 3: Existing solutions to remove redundancies

this approach, only a unique file or chunk is saved, but redundant data are replaced by in-

dexes. Likewise, an image is decomposed into multiple chunks, and redundant chunks are

replaced by indexes. A video file consists of I-frame that hasthe image itself and P-frame

that has the delta information between images in I-frames. In a video file where the back-

grounds are same, I-frames have large redundancies that arereplaced by indexes. Servers

deduplicate redundancies coming from clients by using storage data deduplication.

The second type is Redundancy Elimination (RE). This aims toreduce traffic loads

in networks. The typical example is the Wide Area Network (WAN) optimizer that re-

moves redundant network transfers between branches (or a branch) to a head quarter and

4

a data center to a different data center. WAN optimizer workslike this. Suppose a user

sends a file to a remote server. When the file is passing, the WANoptimizer splits the

file into chunks and saves the chunks and corresponding indexes. The file is compressed

and delivered to the WAN optimizer at other side where the fileis again split into chunks

which are saved along with indexes. Next time when the same file passes, the WAN op-

timizer replaces the file with small sized indexes. The WAN optimizer at the other side

reassembles the file with previously saved chunks based on indexes on a packet. The other

example is network-wide redundancy elimination, network-wide RE where a router (or

switch) is specially named as an RE device. In this approach,for a unique transfer, RE

devices save unique packets. When transfers become redundant, an RE device replaces

redundant payload within a packet with an index (called encoding), and reconstructs the

encode packet (called decoding).

The third type is Information Centric Networking (ICN) thataims to reduce la-

tency. In ICN, any router can cache data packets passing by. Thus, when a client requests

data, any router with the proper cache can send the requesteddata.

1.3 Issues of Existing Solutions

Problems exist within these current solutions. First, storage data deduplication has

considerable computation and memory overhead in clients orservers. Many studies are

focused on the trade-off between space savings and overheadbased on granularity. Us-

ing small sized granularity like 4 KB can find more redundnacies than using large sized

granularity such as a file, but it suffers from large processing time and index overhead.

5

Second, redundancy elimination (RE) has resource-intensive operations such as finger-

printing, encoding, and decoding at routers. Also a representative RE study suggests a

control module that involves traffic matrix, routing policies, and resource configurations,

but there are not many details and some of them are based on assumptions. Thus, we need

to have an efficient way to adapt RE devices with dynamic changes. Third, information

centric networking (ICN) uses name-based forwarding tables that grow much faster than

IP forwarding tables. Thus, large table lookup times and scalability issues arise.

1.4 Objective of Ph.D. Study

To remove (or reduce) issues of existing solutions, the objective of my Ph.D.

study is to develop a deduplication framework that optimizes data from clients to servers

through networks. The framework consists of three components that have different levels

of removing redundancies as shown in Figure 4.

The client component removes local redundancies with a client and is basically

comprised of functions to decompose and reconstruct a file. These components should

be fast and have low overhead considering the low-capacity of most clients. The network

component removes redundant transfers coming from different clients. In this component,

RE devices intercept data packets and eliminate redundant data. RE devices are dynami-

cally controlled by Software Defined Network (SDN) controllers. This component should

be fast analyzing large amount of packets and should be scalable to a large number of RE

devices. Last, server component removes redundancies coming from different networks.

This component should satisfy high space savings. Thus, fine-grained deduplication and

6

Figure 4: Deduplication framework

Figure 5: Components developed for deduplication framework

fast response are fundamental functions.

1.5 Contributions

We propose a deduplication framework using components we designed and devel-

oped for the proposed deduplication framework as shown in Figure 5. For the server

component, we developed Hybrid Email Deduplication System, HEDS, that achieves

a balanced trade-off of space savings and overhead for emailsystems. This work has

7

been published in IEEE International Conference on Ubiquitous and Future Networks

(ICUFN), 2012. For the client component, we developed Structure-Aware File and Email

Deduplication for Cloud-based Storage Systems, SAFE that is fast and has high storage

space savings by using structure-based granularity. This work has been published in IEEE

2nd International Conference on Cloud Networking(CloudNet), 2013. For the network

component, we developed Software-Defined Deduplication asa Network and Storage

Service, or SoftDance. SoftDance is an in-network deduplication that chains storage data

deduplication and redundancy elimination functions by using Software Defined Network

(SDN), and achieves both storage space and network bandwidth savings with low pro-

cessing time and memory overhead. This work will be submitted to a premier conference

and we applied for invention disclosure. For the extension of the client component, we

are also working on mobile deduplication that removes redundancies of popular files like

images and video files in mobile devices. Part of this work hasbeen submitted to a book

chapter.

1.6 Organization

This dissertation follows the order of components that we developed for the dedu-

plication framework. We give background information abouthow deduplication works in

Section 2, and introduce existing deduplication studies inSection 3. After that, we elabo-

rate on each component for the deduplication framework one by one. In Sections 4 and 5,

we present a server component and a client component: HybridEmail Deduplication Sys-

tems (HEDS) and Structure-Aware File and Email Deduplication for Cloud-based Storage

8

Systems (SAFE) respectively. In Section 6, we elaborate howdeduplication can be used

for networks and storages to reduce data volumes by using Software-defined Deduplica-

tion as a Network and Storage Service, or SoftDance. We show our on-going project,

mobile deduplication, in Section 7. Section 8 concludes this dissertation.

9

CHAPTER 2

DEDUPLICATION TECHNOLOGY

Though various deduplication techniques have been proposed and used, there has

been no one-best-fit solution to handle all types of redundancies. Considering perfor-

mance and overhead, each deduplication technique has been developed with different

designs’ considering characteristics of datasets, systemcapacity, and deduplication time.

For example, if datasets to be handled have many duplicate files, deduplication can com-

pare files themselves without looking inside the file contentfor faster running time. How-

ever, if datasets have similar files rather than identical files, deduplication should look

inside the file content to check what parts of the file content are the same as previously

saved data for better storage space savings. Also deduplication should consider different

designs up to the capacity of the system. High capacity servers can handle considerable

overhead for deduplication, but low capacity clients should have lightweight deduplica-

tion designs for fast performance. There have been studies to reduce redundancies at

routers (or switches) within a network. This approach requires the fast processing of data

packets at routers, which is of great necessity for InternetService Providers (ISPs). Mean-

while, if a system should remove redundancies directly in a write path within a confined

storage space, it is better to discover redundant data before storing. On the other hand, if a

system has residual (or idle) time or space enough to store data temporarily, deduplication

can run after data are placed into temporary storages.

10

Table 1: Deduplication classification

Methods per granularity Place Time

File-level deduplication
Fix-size block deduplication

Variable-size block deduplication

Server-based deduplication
Client-based deduplication
Redundancy elimination(RE)

(End-to-end RE,
Network-wide RE)

Inline deduplication
Offline deduplication

In this chapter, we classify existing deduplication techniques based on dedupli-

cation methods per granularity to be used, deduplication place, and deduplication time.

Then, we describe how each deduplication technique works along with existing approaches

in brief. We elaborate detail of existing commercial and academical existing deduplica-

tion approaches in next chapter.

2.1 Dedupication Classification

Deduplication can be divided based on methods per granularity (the unit of com-

pared data), deduplication place, and deduplication time,as shown in Table 1. The main

components of these three classification criteria are chunking, hashing, and indexing.

Chunking is a process that generates the unit of compared data, called a chunk. To com-

pare duplicate chunks, hash keys of chunks are computed and compared, and a hash key

is saved as an index for future comparison with other chunks.

For methods, deduplication is based on different granularity. The unit of compared

data can be file-level or sub-file level which are further divided into fixed-size block,

variable-size chunk, packet payload, or byte streams in a packet payload. The smaller

granularity is used, the more indexes are created, but the more redundant data are detected

11

and removed.

For deduplication place, deduplication is divided into server-based and client-

based deduplication for end-to-end systems. Server-baseddeduplication traditionally runs

on high capacity servers whereas client-based deduplication runs on clients that have nor-

mally limited capacity. Deduplication can occur on the network side, called Redundancy

elimination (RE). The main goal ofredundancy eliminationtechniques is to save band-

width and reduce latency by reducing repeating transfers through network links. Redun-

dancy elimination is further divided into end-to-end RE where deduplication runs at end

points in network and network-wide RE (or in-network deduplication) where deduplica-

tion runs at routers in network.

For deduplication time, deduplication is divided into Inline and Offline dedupli-

cation. Inline deduplication runs deduplication before data are stored into disks whereas

Offline deduplication runs deduplication after data are stored. Thus, Inline deduplica-

tion does not require extra storage space but incurs latencyoverhead within a write path.

Oppositely, Offline deduplication does not have latency overhead but involves extra stor-

age space and more disk bandwidth because data saved in temporary storage are loaded

for deduplication and deduplicated chunks are saved again into more permanent stor-

age. Inline deduplication mainly focuses on latency-sensitive primary workload, whereas

Offline deduplication concentrates on throughput-sensitive secondary workload. Thus,

Inline deduplication studies tend to trade-off storage space savings for fast running time.

We elaborate classified deduplication techniques in detailone by one hereafter,

in the order of methods, place, and time. Please note that a deduplication technique can

12

Figure 6: File-level deduplication

belong to multiple categories like a combination of variable-size block deduplication,

server-based deduplication, and inline deduplication.

2.2 File-level Deduplication

File-level deduplication uses file-level granularity which is the most coarse-grained

granularity. File-level deduplication compares entire files based on a hash value of a file

like SHA1 [56] to avoid saving the same files. For example, as shown in Figure 6, sup-

pose we have two identical files. When we save the first file, deduplication computes an

index which is a hash value by one-way hash function. If the index is not found in index

table, the file is unique. In this case, the index and the file are saved into index table and

storage respectively. For the second file, the index of the file is found in the index table,

so the corresponding file is not saved.

File-level deduplication has been used for removing redundancies of identical files

in storage, email systems, cloud-based storage systems. For storage, EMC’s Centera [23]

13

uses file-level deduplication to reduce redundancies in storage. For email systems, Mi-

crosoft Exchange 2003 [47] and 2007 [48] use file-level deduplication, called Single In-

stance Store (SIS) [7]. An email with multiple recipients iscopied into multiple mail-

boxes, resulting in having multiple copies of the email. In this case, SIS saves only one

copy of an email in recipient’s mailbox and saves only the pointers of the email in other

recipients’ mailboxes without storing the email redundantly in individual recipients’ mail-

boxes. Many cloud-based storage services such as JustCloud[39], and Mozy [52] also

use file-level deduplication. There has been a study [46] on acorporate users’ file systems

where simple file-level deduplication can achieve three quarters of the space savings of

aggressive expensive block deduplications (which we will discuss at the next two sec-

tions) at a lower cost in performance and complexity.

2.3 Fixed-size Block Deduplication

File-level deduplication can find redundancies of identical files, but cannot find

redundancies within similar files. To find redundancies in similar files, fixed-size block

deduplication has been proposed and uses fixed-size block asits granularity. However,

fixed-size block deduplication has an issue finding matchingcontents in similar files when

content in the beginning of files is changed. For example as shown in Figure 7, suppose

deduplication uses 15 byte fixed-size block as granularity.When we save an original file

File1, deduplication splits a file into 15 byte fixed-size blocks. Likewise, when we save

an updated fileFile2 where we add small text “welcome” in the beginning of the original

file, deduplication again splits a file into fixed-size blocks. However, blocks split from the

14

Figure 7: Fixed-size block deduplication

updated second file are totally different from blocks split from the original first file. This

is because contents are shifted in a file, and this is calledoffset-shifting problem.

Fixed-size block deduplication has been used for archival storages like Venti [63].

Venti uses fixed-size block as granularity and compares SHA1hash keys of blocks with

previously saved hash keys following on-disk index hierarchy. A popular cloud storage

system, Dropbox [14] uses a very large fixed-size (4 MB) blockdeduplication. Drop-

box reduces network redundant traffic and redundant savingsin server by communication

with indexes between clients and servers before sending data. Detailed information how

Dropbox works is explained in Chapter 5.

15

Figure 8: Variable-size block deduplication

2.4 Variable-size Block Deduplication

Variable-size block deduplication has been proposed to solve theoffset-shifting

problemof fixed-size block deduplication. Variable-size block deduplication relies on

contents rather than fixed-offset. Figure 8 illustrates howvariable-size block deduplica-

tion works. Suppose we have two files.File1 is an original file andFile2 is an updated file

where we add a small texts in the middle of a file. When we save theFile1, deduplication

slides a small sized window from the beginning of the file. While the window is sliding

byte by byte, a fingerprint [64] of each window is computed andthe lowest two digits are

compared to a pre-defined value. If they are the same, the window is set to a chunk bound-

ary. Then, the content from the previous chunk boundary to the current chunck boundary

are determined as a chunk. The window keeps sliding and finding chunk boundaries in

16

the same manner. As a result, three unique chunks (C1, C2, andC3) and corresponding

indexes are saved. When we save the updated second file, deduplication again slides a

window and finds chunks.C4 is found to be unique, andC1 andC3 are found to be re-

dundant. Here, we see chunk boundaries are maintained though contents are shifted in

a file. Thus, content-based variable-size block deduplication can find more redundancies

than offset-based fixed-size block deduplication.

Since variable-size block deduplication provides fine granularity chunking tech-

niques to achieve high storage space savings, it has been used for backup [12] [16] [29]

[44] [76] [78] or file systems [8] [70]. However, to speed up processing time by reduc-

ing number of disk accesses, this approach like Data Domain File System (DDFS) [78]

exploits efficient caching schemes like bloom filter and chunk index cache, and locality-

based disk layout.

2.5 Comparsion of Deduplications by Method per Granularity

Overall, as shown in Figure 9, the deduplication ratio that indicates how many re-

dundancies are removed, variable-size block deduplication is much better than others. For

processing time, variable-size block deduplication is theworst due to expensive chunking.

For index overhead, fixed-size and variable-size block deduplication is much worse than

file-level deduplication, and index overhead of fixed-size and variable-size block dedupli-

cation changes depending on block or chunk size. Thus, variable-size block deduplication

is good for deduplication of updated files or server-based deduplication because high ca-

pacity servers can handle excessive processing time and index overhead. On the other

17

Figure 9: Comparisons of deduplications

hand, file-level deduplication is good for deduplication ofthe copied files or client-based

deduplication considering low capacity clients.

2.6 Bloom Filter

Deduplication aims to find as many redundancies as possible while maintaining

processing time. To reduce processing time, one typical technique is to check indexes of

data in memory before accessing disks. If the indexes of dataare same, deduplication

does not access the disk where indexes are stored, which reduces processing time.

A Bloom filter is used to see if duplicate chunks of a data existin storage. The

Bloom filter is a bit array of m bits, that are set to 0 initially. Given a set U, each element

u (u ∈ U) of the set is hashed usingk hash functionsh1, ..., hk. Each hash functionhi(u)

returns an array index in the bit array, that ranges from 0 tom − 1. Subsequently, a bit

18

(a) bloom filter after c1 chunk is saved

(b) bloom filter when c2, a unique chunk is compared

(c) bloom filter when c3, a unique chunk is compared (false posi-
tive). A unique chunk is found to be redundant

Figure 10: How bloom filter works

19

of the index is set to 1. If the bit of the index was set to 1, it stays 1. This Bloom filter is

used to check if an element was already saved into a set. When an element attempts to be

added into the set, if one of the bits corresponding to the return values of hash functions

h1, ..., hk is 0, the element is considered as a new one in the set. If bits corresponding to

return values of hash functions are all 1, the element is considered to exist in the set.

Let us explain how bloom filter works in an example. As shown inFigure 10(a),

the bloom filter initially have all 0 bits. When a chunk c1 is saved, the array indexes of

bloom filter are computed by using three different hash functions (h1, h2, andh3). Here,

h1, h2, andh3 functions return 2nd, 4th, and 7th index respectively. Subsequently indexes

of bloom filter are set to 1. Suppose the same chunk c1 is saved again. The chunk is found

to be redundant because all three indexes by hash functions are already set to 1. As shown

in Figure 10(b), when a unique chunk (c2) is saved, indexes by three hash functions are

computed again. Now, the elements of the three indexes are all 0. Thus, a chunkc2 is

determined to be unique. However, in Figure 10(c) , bloom filter can have false positive;

that is, bloom filter says that a chunk is redundant but the chunk is unique. The array

indexes forc3 are 2nd, 3rd, and 4th, which were set by other chunks. In this case, we

will lose a unique chunk without saving it. Thus, bloom filterguarantees that a chunk is

unique with any of one 0 index, but it does not guarantee that achunk is redundant with

all three 1 indexes. Thus, in this case, chunk index cache should be checked after bloom

filter.

20

Figure 11: Server based deduplication

2.7 Server Based Deduplication

Server based deduplicationhas emerged as a disk-based substitute of tape storage,

and backs up large size data at fast speeds using high performance and dedicated backup

systems. There are many commercial products [24] [58] [74].

In this approach, clients send backup data to servers where data are de-duplicated.

Clients have light-weight backup by application through which data are sent to servers,

avoiding large CPU computation and memory overhead of sources for backup purposes.

Figure 11 shows how server-based deduplication works. A fileis transferred to a server

through a client application. In the server, the file is separated to chunks typically using

variable-size block deduplication. Indexes of chunks are computed and compared with

indexes previously saved using a bloom filter or a chunk indexcache. Suppose a chunk

c1 is redundant and a chunkc2 is unique in this example. Then, a chunkc2 and its

corresponding index are saved into storage.

Server based deduplication finds significant redundancies,but incurs excessive

21

Figure 12: Client based deduplication: c1 and c2 are chunks.h(c1) and h(c2) are hash
keys (indexes) of chunks.

redundant data traffic because duplicate data are deliveredto servers to be deduplicated.

What is worse, servers have large CPU computation and memoryoverhead for chunking

and indexing of all backup data. To handle backup quickly with this overhead within a

limited backup window, efficient in-memory and on-disk layout are required such as Data

Domain File System (DDFS) [78].

2.8 Client Based Deduplication

In client based deduplication, clients can keep indexes of deduplicated data or

have a backup agent to check indexes that exist in servers. Ineither case, clients check

uniqueness of data in local indexes or in remote indexes through backup agent. Only

unique data are then delivered to servers. Client based deduplication [22] [75] removes ex-

cessive redundant network traffic by performing deduplication at the client before data is

transmitted. However, clients incur CPU computation and memory overhead for backup.

Pure client based deduplication, where a client removes redundant data before

22

sending data to a server, does not collaborate with a server (or servers); redundant data

among clients are transferred to a server, which increases data traffic in network. Thus,

client based deduplication typically communicate with a server, and Figure 12 displays

how client based deduplication works with the help of a server. The client splits a file

into chunks (c1 andc2) and compute indexes (h(c1), h(c2)). Then, the client sends all

the indexes of the file to server which then returns indexes (h(c2)) of unique chunks that

have not been saved previously. The client then can send onlyunique chunks (c2) in this

manner.

LBFS [54] improves space savings by adding a communication protocol that sends

indexes to a server before sending a real data chunk. However, it introduces latency to

run the protocol. Overall, a client based deduplication system has difficulties with limited

capacity of clients to perform an expensive deduplication process.

2.9 End-to-end Redundancy Elimination

End-to-end RElike WAN optimizers [9] [10] [65] removes redundant network

traffic at two end points (e.g. branch to headquarter and datacenter to data center). Fig-

ure 13 illustrates how end-to-end RE works. End-to-end RE like WAN optimizer is lo-

cated just before an ingress router (sending side), and justafter an egress router (receiving

side). Suppose clients send the same files (f1 andf2) to a server. When a unique filef1 is

transferred, the file is split into chunks (herec1andc2) and corresponding indexes (h(c1)

andh(c2)) are saved into the cache; subsequently, chunks and indexesare saved onto disk

that is now shown here. The file is compressed and delivered toserver side where chunks

23

Figure 13: End-to-end redundancy elimination: c1 and c2 arechunks. h(c1) and h(c2) are
hash keys (indexes) of chunks.

and indexes of the received file are saved into the cache.

Now, when another client sends the same file(f2), chunks off2 are split and in-

dexes of the chunks are compared with previously saved indexes. The file f2 is found to

be duplicate because same indexesh(c1)andh(c2)are found in cache. Thus, the contents

of the file are replaced (or encoded) by small sized indexesh(c1)and h(c2), which reduces

packet size. When the encoded packet arrives at server side,a file f2 is reassembled with

chunksc1 andc2 based on indexes in the packet. The reassembled file is directed to a

destined server.

2.10 Network-wide Redundancy Elimination

Network-wide RE[4] [5] [71] eliminates repeating network traffic across network

elements such as routers and switches. Network-wide RE computes indexes [64] for the

incoming packet payload, and eliminates redundant packetsby comparing indexes with

the packets saved previously. Redundant payload is encodedby small sized shims and

decoded before exiting networks. However, this approach suffers from high processing

24

Figure 14: Network-wide redundancy elimination

Figure 15: Network-wide redundancy elimination: issue

25

time due to sliding fingerprinting at routers and high memoryoverhead to save packets

and indexes.

The goal of network-wide RE is to remove redundancies of packet payloads and

the granularity is byte strings in a payload. Figure 14 displays how network-wide RE

works. In network-wide RE, there are special routers (or switches), called RE devices.

When an RE device receives a packet, it slides a small sized window on the payload,

and computes fingerprints of all windows. Then, some fingerprints are compared with

fingerprints in local cache. If they are same, pointed byte regions are expanded to the left

and to the right while comparing with a packet in local cache.Expanded byte region is

replaced by a small sized shim header with a fingerprint and byte offsets. These processes

are encoding. The encoded payload is reconstructed by an RE device on a path, called

decoding. Decoded packets are delivered to a server.

As we see here, network-work RE saves bandwidth in links between an encoder

and a decoder. However, as shown in Figure 15, sliding fingerprinting requires excessive

processing time, and packets which are saved in cache increase memory requirements.

More importantly, redundancies removed in network are restored in a decoder before

reaching the server. Thus, the server should run deduplication again to remove redundan-

cies using expensive chunking. That is, there are redundantde-duplication operations in

network as well as in server. We address this issue by developing SoftDance in chapter 6.

26

(a) Inline deduplication for primary workloads

(b) Inline deduplication for seconary workloads

Figure 16: Inline deduplication

27

2.11 Inline deduplication

Inline deduplicationis a deduplication that removes redundancies before data are

stored onto disk. Inline deduplication can be applied for primary workloads like email,

user directories, databases, and secondary workloads likearchives and backups. Fig-

ure 16 elaborates how inline deduplication works for primary workloads (latency sen-

sitive) as well as secondary workloads (throughput sensitive). For primary workloads,

as shown in Figure 16(a), deduplication runs on a direct write and read path. When a

user or client writes data, deduplication intercepts the data and checks for redundancies.

Only unique data and indexes are saved into storage along with cache. Applications us-

ing primary workloads are highly latency sensitive; thus, deduplication typically uses in-

memory cache to reduce disk I/O requests. Figure 16(b) showshow deduplication works

for secondary workloads. In these workloads, deduplication runs when data are archived

or backed up in backup server. Backup server does not maintain additional storage.

Inline deduplication has been proposed to remove redundancies for primary work-

load [20] [72] and secondary workload [11] [44] [58] [78] without incurring extra space

overhead and more disk bandwidth. However, this approach requires latency overhead

in a write path. iDedup [72] exploits temporal locality and spatial locality to maintain

fast processing time in a write path. Content address storage (CAS) systems [23] [63]

run inline deduplication because blocks are addressed by their fingerprints. A few file

systems [8] [70] use inline deduplication for primary storage.

28

Figure 17: Offline deduplication

2.12 Offline deduplication

Offline deduplication[2] [21] [33] runs deduplication after data are stored on disk;

thus, it does not involve latency overhead in a write path butrequires extra storage space.

As shown in Figure 17, data are saved into storage without deduplication. Offline dedupli-

cation runs out of a critical write and read path using already saved data, which does not

hurt latency to write and read data. However, offline deduplication has several drawbacks:

1) extra disk space is needed to hold data temporarily beforededuplication, 2) dedupli-

cation runs on system idle time, so deduplication can be verydelayed if the system is

running almost all the time, and 3) data on disk are loaded to memory for deduplication,

so disk bandwidth is unnecessarily consumed.

29

CHAPTER 3

EXISTING DEDUPLICATION APPROACHES

In this chapter, we elaborate existing and representative deduplication approaches

based on deduplication classification.

3.1 File-level Deduplication

File-level deduplication is used for Microsoft Exchange 2003 and 2007 based on

Single Instance Store (SIS) [7]. SIS stores file contents into ‘SIS Common Store’. In SIS,

a user file is managed by an SIS link that is a reference to the file called ‘Common Store

File’. Whenever SIS detects duplicate files, SIS links are created automatically and file

contents are saved into the common store. SIS consists of a file system filter library that

implements links and a user level service detecting duplicate files (which are replaced by

links). SIS can find duplicate files but cannot find large redundancies within similar files.

We addressed this issue by developing the ‘Hybrid Email Deduplication System’ [40].

File-level deduplication is used for popular cloud storagesystems such as Just-

Cloud [39] and Mozy [52] to reduce latency in a client. Cloud storage system client

applications run file-level deduplication that computes anindex (hash key) of each file

and checks if the index exists in a server. If the server has the index, client does not send

the duplicate file. Running the file-level deduplication in the client before sending data

to server allows cloud storage systems to consume less storage space and bandwidth. A

30

Figure 18: A study of practical deduplication: evaluation setup

study [32] measured performance of several cloud storage systems including Mozy.

A study [46] evaluates the tradeoff in space savings betweenfile-level dedupli-

cation and block-based (fixed-size and variable-size) deduplications, claiming that file-

level deduplication provides simpler complexity and reduces more file-fragmentation than

block-based deduplications. The study collected file system contents from almost 1000

desktop computers in a corportation, and measured file redundancies and space savings.

Authors show file-level deduplication achieves 87% of spacesavings compared to block-

based deduplications. Figure 18 shows the evaluation setupof the study. ‘File system

scanner’ computes indexes of blocks or chunks by running fixed-size and variable-size

31

block deduplication with the minimum and maximum chunk sizes 4 KB and 128 KB re-

spectively. The expected chunk size ranges from 8 KB to 64 KB.The computed indexes

are collected by post-processing module that checks redundancies of indexes using two

bloom filters. The size of the bloom filter is 2 GB. Analyzed results are saved into a

database. The computed total size of files is 40 TB and the number of files is 200 million

files. The file duplicates are found in post-processing by identifying files where all chunks

matched. This study also mentions semantic knowledge of filestructures will be useful to

reduce redundancies with less overhead, and our approach ‘Structure aware file and email

deduplication (SAFE)’ exploits the semantic information of file structures as shown in

chapter 5.

3.2 Fixed-size Block Deduplication

Venti [63] is a fixed-size block deduplication and uses a write-once policy, pre-

venting data from being inconsistent or malicious data loss. The main idea is that a file

is divided into several blocks, and that the index (hash key)of each block is created by

SHA1 hash function. If the index of the block is same as an index previously saved,

the block is not saved. The index is arranged into a hash tree for reconstructing a file

which contains the block. To improve the performance, Ventiuses three techniques called

caching, striping, and write buffering. Block as well as index are cached. Venti shows

the possibility of using hash to differentiate each block ina file. Most of de-duplication

applications which have been published split a file into several blocks (or chunks) and

save each block based on the index (hash key) of each block.

32

(a) Tree structure of an original file (File1). File1 consists of four data blocks including
D0, D1, D2, andD3.

(b) Tree structure of an similar file (File2). File2 consistsof four data blocks including
D0, D1, D4, andD5.

Figure 19: Venti tree structure of data blocks [63]

33

Figure 19 shows how files are saved into tree structure of Venti. A data block is

pointed by an index (hash key) of the block, and the indexes are packed into a pointer

block with pointers. As shown in Figure 19(a), Venti createsa hash key of a pointer block

P0 that is a root pointer block offile1. Venti creates new pointer blocksP1 andP2 that

subsequently point toD0, D1, D2, andD3. Thus, data blocks of file1 are retrieved fol-

lowing on the tree structure of pointer blocks starting fromP0. Figure 19(b) demonstrates

how the tree structure is changed when a similar file (file2) is saved. Supposefile2 has

two identical data blocks (D0 andD1) as file1, but two unique data blocks (D4 andD5).

Venti does not change pointer blocks but instead creates newpointer blocks (P3 andP4)

for file2. File2 can be retrieved using pointer blocksP3, P1, andP4.

Dropbox [14] uses fixed-size block deduplication with a 4 MB fixed block as its

granularity. A study [13] discovers internal mechanisms ofDropbox by measuring and

analyzing packet traces between clients and Dropbox servers. Dropbox is accessed by

Web UI (http://www.dropbox.com) or dropbox client. We leverage SAFE into a Dropbox

client to deduplicate structured files in a client side. Dropbox consists of two type of

servers; one is a control server and the other is a storage server. Control servers hold

meta data of files such as hash value of individual blocks and mapping between a file

and its blocks. Storage servers contain unique blocks in Amazon S3 [3]. Dropbox client

synchronizes its own data and indexes with Dropbox servers.

Figure 20 shows how Dropbox works. Circles with numbers are the order in

which a file is saved.File-A is a file andBlk-X is a block which is separated from a

file. h(Blk-X)means hash value of a block. Thickh(Blk-X) andBlk-X are considered as

34

Figure 20: Dropbox internal mechanism

hash values and blocks which already existed before a file is saved. A user’s device is a

mobile phone, tablet, labtop, or desktop. Dropbox follows the next steps to save a file.

(1) As soon as a user savesFile-A into a shared folder in a Dropbox client, the fixed-size

block deduplication of Dropbox splits the file into blocks based on 4 MB granularity, and

computes hashes of the objects. If a file is larger than 4 MB, a file is the same as an

object, and an hash value of the file is computed. Dropbox usesSHA256 [57] to compute

a hash value. (2-4) Dropbox client sends computed all hash values of a file to a control

server that returns only unique hash values after checking previously saved hash values.

In this example, hash ofBlk-B is returned to a client because the hash ofBlk-A is found to

35

be duplicate. (5-6) The Dropbox client sends to the storage server the blocks of returned

indexes. Ultimately, storage servers have unique blocks across all Dropbox clients. Note

that storage saving occurs in a server (thanks to not savingBlk-Aagain), and the incurred

network load is reduced thanks to sendingBlk-Bonly.

3.3 Variable-size Block & Server-based Deduplication

Variable-size block deduplication involves expensive chunking and indexing for

finding large redundancies, requiring an efficient in-memory cache and on-disk layout in

high capacity servers. DDFS [78] exploits three techniquesto relieve disk bottleneck,

reducing processing time. The ‘Summary vector’ that is a compact in-memory data struc-

ture is used to find new data. ‘Stream-informed segment layout’, on-disk layout, is used to

improve spatial locality for both data and indexes. The ideaof Stream-informed segment

layout is that a segment tends to reappear in the similar sequences with other segments.

This spatial locality is called ‘Segment duplicate locality’. ‘Locality preserved caching’

uses segment duplicate locality to acquire a high hit ratio in the memory cache. The

study removes 99% of the disk accesses and achieves 100 MB/sec and 210 MB/sec for

single-stream throughput and multi-stream throughput respectively.

Sparse indexing [44] uses sampling and a sparse index to reduce the number of

indexes, decreasing RAM requirements. The study chooses small portions of chunks in

the byte stream as sample, and avoids full chunk indexes unlike DDFS. This approach

employschunk locality, tendency for chunks in backup data streams to reoccur together.

36

Figure 21 shows the deduplication process of Sparse indexing. In Sparse indexing, seg-

ment is the unit of storage and retrieval, and a sequence of chunks. A byte stream is split

to chunks by Chunker using variable-size chunking, and a sequence of chunks becomes

a segment by Segmenter. Two segments are similar if they share a number of chunks.

Champion chooser chooses sampled segments, called champion, from sparse index (in-

memory index). Deduplicator compares chunks in incoming segments with chunks in

champions (selected segments). Unique segments are saved to sparse index for future

comparison, and new chunks are saved into Container store.

3.4 Hybrid Deduplication

Hybrid approacheshave been proposed by adaptively using variable-size block-

level deduplication and file-level deduplication either based on fixed policy or dynami-

cally changed file information [40] [50]. Min et al. [50] employs context-aware chunk-

ing where they use a file-level deduplication for multimediacontent, compressed files,

or encrypted content and uses variable-size block-level deduplication for text files. Our

approach, Hybrid Email Deduplication System (HEDS) [40] first separates the message

body and individual attachments, and performs a variable-size block-level deduplication

if the object size exceeds a predefined threshold. Otherwise, a file-level deduplication is

used.

37

Figure 21: Sparse indexing: deduplicaiton process [44]

3.5 Object-level Deduplication

Fixed-size block deduplication and variable-size block deduplication can be used

for all types of files because they rely on the physical byte-string format of a file. However,

for specific file formats, they may be inefficient due to expensive chunking. Thus, object-

level deduplication that splits a file based on the semantic (or logical) format of a file has

been proposed. A fewstructure-aware data deduplicationtechniques [41] [43] [45] [77]

38

have been proposed to simplify the chunking mechanism by using objects. Our approach,

SAFE [41] splits structure files including compressed files,document files (docx, pptx,

and pdf), and emails based on files’ structured formats. ADMAD [45] separates a file into

variable-size semantic segments, called meaningful chunks (MCs), based on the metadata

of each file. Although the idea of ADMAD to decompose a file intoobjects according to

the object structure is similar to the SAFE, ADMAD is limitedto a specific file format.

For example, ADMAD does not deal with document file types suchas docx, pptx, and pdf.

In addition, ADMAD does not handle an email with multiple attachments. [43] and [77]

show similar concepts where they deduplicate structured objects.

3.6 Client-based Deduplication & End-to-end Redundancy Elimination

Low bandwidth file system (LBFS) [54] reduces latency and network bandwidth

through collaboration of the client and server. That is, LBFS avoids sending data over

network when the same data can already be found in the server’s file system or the client’s

cache. In order to reduce bandwidth requirement, LBFS exploits cross-file similarity. As

shown in Figure 22(a), LBFS consists of LBFS client and server, and both sides maintain

chunk indexes in chunk database.

Figure 22(b) shows how LBFS works when a file is written to a server from a

client. When a user closes file, a client chooses a file descriptor and calls MKTMPFILE

RPC; subsequently, a server creates a temporary file. A client splits a file into chunks

(chunk1 and chunk2) and compute hash keys of chunks, and calls CONDWRITE RPCs

with hash keys. Suppose the server has sha1 (hash key for chunk1), but does not have

39

(a) LBFS implementation

(b) LBFS: write a file

Figure 22: Low bandwidth file system (LBFS) [54]

40

sha2 (hash key for chunk2). Server returns HASHNOTFOUND forsha2 request; that is,

server does not have chunk2. The client sends only chunk2 to server, and server create a

file with chunk1 (previously saved chunk) and chunk2 (chunk received by TMPWRITE

RPC). LBFS can be considered as a client-based deduplication because the client split

the file into chunks and saves the indexes. Also, LBFS can be considered as end-to-end

redundancy elimination because client and server holds same chunks and indexes, only

unique chunks are transferred through the network, and bothsides (client and server)

maintain chunks for unique and redundant files.

3.7 Network-wide Redundancy Elimination

A study [4] proposes network-wide deployment of redundancyelimination tech-

nology. Authors assume that routers have the ability to detect and encode redundant

content from network packets on the fly by comparing packet contents that were stored

in a cache previously. In this approach, unique packets and corresponding fingerprints of

bytes in packet payload are saved into a packet store and fingerprint store. When a packet

comes to a router, a small sized window slides on the payload in a packet, and finger-

prints are computed for all windows. Among all fingerprints,representative fingerprints

are selected randomly. If the same fingerprints are found in the cache, the matched region

from pointed byte regions on a payload are expanded both to the left and to the right while

comparing the two packets (incoming packet and packet in cache). The expanded region

is replaced by a small sized shim header.

Figure 23 illustrates how many redundant packets are removed. Figure 23(a)

41

(a) No redundancy elimination (b) Redundancy elimination

(c) Redundancy elimination with redun-
dancy aware routing

Figure 23: Redundant traffic elimination with packet cacheson routers

42

shows traditional shortest path routing where 18 packets are transferred from a sender

to two destinationsD1 andD2. Using redundancy elimination on the routers, packetP1

on each link is removed as shown in Figure 23(b), which is a 33%reduction of total

packets. This study proposes redundancy-aware routes based on redundancy profile (that

explains how oftent content is replicated across differentdestinations) for intra domain

routing and inter domain routing. Figure 23(c) supports theidea that redundancies are

further reduced using redundancy-aware routing, which amount to a 44% reduction of

total packets.

3.8 Inline & Offline Deduplication

Inline deduplication [16] [11] runs deduplication before data are saved onto disk

storage. iDedup [72] has been proposed as inline deduplication for primary workload.

iDedup exploits spatial locality and temporal locality to gain performance (running time).

For spatial locality, iDedup performs selective deduplication and mitigates the extra seek

time for sequentially read files. For this purpose, iDedup examines blocks at write time,

and only deduplicate full sequences of file blocks if and onlyif the sequence of blocks are

1) sequential in the file and 2) have duplicates that are sequential on disk. For temporal

locality, iDedup maintains dedup-metadata as aLeast Recent Used (LRU)cache by which

iDedup avoids dedup-metadata IOs.

ChunkStash [11] is a flash-assisted inline deduplication system where chunk meta-

data (with chunk index as key, and with chunk location and length as value) are saved into

flash memory rather than disk. Considering that flash memory is 50 times faster than disk,

43

ChunkStash reduces the penalty of index lookup misses in RAM, which increases inline

deduplication throughput. ChunkStash also uses in-memoryhash tables using the variant

of cuckoo hashing [61], and compact key signatures rather than full keys are stored in the

hash table, which reduces RAM size.

HYDRAstor [16] is a grid of storage nodes. It works based on a distributed hash

table (DHT) to save blocks into distributed storages, inline de-duplication based on im-

mutable and content-addressed and variable-sized blocks,data resilience by erasure cod-

ing, load balancing, preservation of locality of data streams by pre-fetching. HYDRAstor

achieves scalability (by DHT), efficient utilization (by deduplication), fault-tolerance (by

data resiliency), and system performance (by load balancing, locality, and prefetching).

44

CHAPTER 4

HEDS: HYBRID EMAIL DEDUPLICATION SYSTEM

In this chapter, we show a server-side deduplication component, HEDS (Hybrid

Email Deduplication System) for the proposed deduplication framework. HEDS removes

redundancies by trading-off of file-level and block deduplication for email systems while

achieving good storage space savings and low processing overhead.

4.1 Large Redundancies in Emails

Email is a prominent method of communication today, and the volume of emails

is greatly increasing and requires huge storage space on email servers. Email servers have

large amount of redundancies. For example, an email with multiple recipients is copied

into multiple mailboxes, and email threads (where emails onthe same topic are repeatedly

sent and received with same or similar attachments) increase redundant attachments. The

redundancies in the emails are further increased as they arecopied over multiple storages

for reliability or performance.

The volume of email data can be reduced by properly removing the redundancies.

Fixed-size and variable-size block deduplication can be used to find redundant contents

in emails. However, fixed-size block deduplication cannot find redundancies between

similar emails whose beginning contents are changed due to the offset shifting problem.

45

Variable-size block deduplication efficiently finds redundancies of similar emails but in-

creases processing time overhead due to expensive chunkingby sliding a window. File-

level deduplication can be used to find redundancies of duplicate emails with multiple

recipients quickly, but cannot find redundancies inside emails and attachments, resulting

in low space savings.

There have been few studies to remove redundancies found in email. Single In-

stance Store (SIS) [7] uses file-level deduplication where an email is the unit of compared

data. In this approach, only unique email is saved, and redundant emails are linked by

pointers, which increases storage space savings by not saving the same emails. However,

SIS does not exploit redundancies within email messages andattachments.

Considering the overhead as well as performance of a deduplication, we developed

Hybrid Email Deduplication System, HEDS, that trades-off of file-level and variable-size

block deduplication in terms of space savings and index overhead. HEDS separates at-

tachments from an email, runs file-level deduplicaton for the message body and separated

attachments, and adaptively runs variable-size block deduplication only if data size is over

a predetermined threshold. The reason for this threshold isthat small sized message body

and attachments are generally unique, and that using block deduplication for small data

does not give any performance benefits considering the processing overhead. Evaluation

of results using real email datasets show that HEDS achievesa good deduplication ratio

while keeping the CPU and memory overhead manageable. Therefore, it sheds light on

in-line deduplication for email servers. This chapter is organized as follows. We describe

the design and implementation of HEDS in Section 4.2. The evaluation results are shown

46

Figure 24: Proposed hybrid email deduplication system (HEDS)

in Section 4.9. We conclude this chapter in Section 4.13.

4.2 Hybrid System Design

To explain the architecture of HEDS, we begin by presenting an overview of

HEDS, and then elaborate each module in HEDS. HEDS is a server-based deduplication

that consists of six modules including EDMilter, meta data server, chunk index cache,

bloom filter, storage server, and email de-duplication algorithm (EDA). When an email

comes in the Mail Transfer Agent of a receiving Sendmail server, EDMilter intercepts the

email and divides the email into meta data and content. Content consists of message body

47

and attachments. EDMilter forwards the content to the EmailDe-duplication Algorithm

(EDA) through a virtual file system, and delivers the meta data to the meta data server.

The meta data server holds meta data such as email id, recipients, and sent date. EDA

deduplicates content that is intercepted byLibfuse through a virtual file system. EDA

plays a key role in the deduplication and communicates with all other modules. We im-

plemented EDA with filesystem on userspace, FUSE [28]. Chunkindex cache and bloom

filter speed up processing time by reducing the number of diskaccesses. We explain each

module hereafter.

4.3 EDMilter

As shown in Figure 25, we have developed the Email Deduplication Milter, called

the EDMilter, based on the Milter [49] API. Milter is an emailfilter that intercepts emails

coming into the sendmail server. When a sendmail server receivers an email, the Milter

Library accepts an email from the Mail Transfer Agent (MTA) and passes the email into

the EDMilter with a callback. The EDMilter extracts needed metadata from the SMTP

header such as a mail id, senders, receipients, the number ofrecipients, and the size

of email content that comprises of the body and attachments.At the same time, the

EDMilter receives the content from the email and requests tosave it into a directory that

is a mounting point in a virutal file system. EDMilter also sends the email meta data to

the meta data server through a message queue.

48

Figure 25: EDMilter

4.4 Metadata Server

The metadata server saves email meta data and chunk indexes for each email.

Email meta data includes email id that is 14 byte strings, recipients, the number of re-

cipients, and the size of email contents. The chunk indexes are received from the Email

Deduplication Algorithm (EDA) when EDA splits an email content to chunks if the size

of the content is over the threshold. Ultimately, the metadata server saves the meta data

and chunk indexes into a meta data store. Meanwhile, to speedup reading and writing

based on temporal locality, the metadata server maintains meta data and chunk indexes of

the latest emails in a meta data cache. Each meta data in the cache has a time stamp to

evict old meta data based on Least Recently Used (LRU) in casethe cache grows over the

cache size limit. The size of the metadata cache is configurable.

49

4.5 Bloom Filter

A Bloom filter is used to see if duplicate chunks of a current email exist in chunk

storage. The Bloom filter is a bit array of m bits, that are set to 0 initially. Given a set

U, each element u (u ∈ U) of the set is hashed usingk hash functionsh1, ..., hk. Each

hash functionhi(u) returns an array index in the bit array, that ranges from 0 tom − 1.

Subsequently, a bit of the index is set to 1. If the bit of the index was set to 1, it stays

1. The Bloom filter is used to check if an element was already saved into a set. When an

element attempts to be added into the set, if one of the bits corresponding to the return

values of hash functionsh1, ..., hk is 0, the element is considered as a new one in the set. If

bits corresponding to return values of hash functions are all 1, the element is considered

to exist in the set. However, the Bloom filter has a false positive where it says that an

element exists though it does not. In HEDS, the purpose to usethe Bloom filter [6] is to

speed up the writing of emails or chunks by reducing the number of disk accesses. DDFS

(Data Domain File System) [78] shows how big the memory size for Bloom filter should

be used with a certain false positive rate; for example, to achieve a 2% false positive, the

smallest size of the Bloom filter ism = 8n bits (m/n = 8), and the number of the hash

functions can be 4 (k = 4) wherem is the size of the Bloom filter in bits,n is the key

size. We use four hash functions, and the key size is 160 bits,which is the size of the

SHA1 [56] hash key. Therefore, the smallest size of the bloomfilter for our case is 8 *

160 bits = 1280 bits.

50

4.6 Chunk Index Cache

Chunk index cache is the next level of cache after Bloom filter, and saves indexes

for chunks that are saved as unique chunks. The chunk indexesare classified into three

different categories based on what the source of the chunk is. The source can be an entire

email, an attachment, or part of an email text. Chunk indexesof latest emails are saved

into the chunk index cache, and if chunks or a chunk of a current email exists in the chunk

index cache, the chunk(s) is not saved into the chunk store ona disk. Because of limited

size of the chunk index cache, old indexes are evicted to chunk storage if size of cache

grows over a certain threshold. Likewise, loaded indexes from the chunk store have new

time stamps. The key of each entry in chunk index cache is a SHA1 hash value of a chunk.

4.7 Storage Server

The storage server checks whether or not the chunks of the current email exist in

chunk storage by accessing the disk, saving non-existent chunks into the chunk storage,

or reading chunks from chunk storage. We have used BerkeleyDB for chunk storage, and

pairs of<chunk index, chunk> are saved into the chunk storage.

4.8 EDA (Email Deduplication Algorithm)

The Email Deduplication Algorithm (EDA) interacts with allother modules in

HEDS. Algorithms 1, 2, and 3 show how EDA works on an email withor without attach-

ments. As shown in Algorithm 1, EDA separates email contentsinto message body and

attachments that are further divided into individual attachment. As shown in Algorithm 2,

51

Algorithm 1 Email Deduplication Algorithm
Input: email content

1: if Not Exist(attachments)then ⊲ email without attachments
2: messageBody← email content
3: HybridDedupDecision(messageBody)
4: else ⊲ email with attachments
5: separate email content into message body, attachments
6: HybridDedupDecision(messageBody)
7: for all each attachment∈ attachmentsdo
8: HybridDedupDecision(attachment)
9: end for

10: end if

Algorithm 2 HybridDedupDecision
Input: data, sizethreshold

1: if size(data)> size thresholdthen ⊲ variable-size block deduplication
2: chunks← variableSizeChunking(data)
3: for all each chunk∈ chunksdo
4: checkIndexAndSaveData(chunk)
5: end for
6: else ⊲ file-level deduplication
7: checkIndexAndSaveData(data)
8: end if

EDA checks the size of a divided attachment or message body. If size of the data is over

a configurable threshold, EDA splits the data into chunks by using variable-size chunking

based on Rabin fingerprint [64]. Then, as shown in Algorithm 3, EDA checks to see if

each chunk or data has been already saved based on Bloom filterand then chunk index

cache. In case of chunk index cache miss, EDA checks indexes at chunk store in disk.

If the Bloom filter says “no” (this means chunk or data are unique), EDA saves a chunk

(or data) and the corresponding index into store. The reasonto check chunk index cache

52

Algorithm 3 Check Index and Save Data
Input: data
Output: saved data

1: if ExistInBloomFilter(data)then
2: index← hash(data)
3: if ExistInChunkIndexCache(index) then ⊲ duplicate in cache
4: return
5: if ExistInChunkStore(index) then ⊲ cache miss, duplicate in storage
6: return
7: end if
8: end if
9: end if ⊲ unique data

10: index← hash(chunk)
11: saveToStore(index, chunk)

after Bloom filter says “yes” (that means chunk or data may be redundant) is due to false

positive of Bloom filter: the chunk or data may or may not be redundant. Also, the reason

for relying on size is that small sized message body or attachments tend to be unique, and

using variable-size block deduplication does not give any benefits considering overhead

costs.

Figure 26 shows how variable-size block deduplication works in a case where

EDA adaptively runs block deduplication. As is shown in Figure 27, EDA basically runs

file-level deduplication if size is under the threshold. In this case, EDA does not separate

the content into chunks but considers the content as a chunk:that is, none of variable-size

chunking is necessary, which reduces index and processing overhead.

53

Figure 26: Block deduplication at EDA

Figure 27: File-level deduplication at EDA

54

Table 2: Datasets
Enron dataset Gmail dataset

Type Corporate emails (Enron)Personal emails
Attachment Removed Retained

Number of users 150 1
Number of emails 0.5 million 0.01 million

Size of dataset 1.3 GB 1 GB
Duration 1998 - 2002 2007 - 2011

4.9 Experiment Setup

We evaluate HEDS with respect to deduplication performance, and the overhead

costs of memory and CPU usage with the generated chunk indexes. We compare HEDS

with file-level and variable-size block deduplications. Asfor the deduplication perfor-

mance, we use a deduplication ratio that is computed as below.

Dedup ratio = 1− (deduped size / original size)

For the experiments with HEDS, we have set up two sendmail systems where one

system sends and the other system receives emails. We also deployed an internal DNS

server for the mail servers. The speed of network cards of theservers is 100Mbps. All

servers have a Linux operating system whose kernel version is 2.6.35.9, and the version

of mail servers is sendmail 8.14.4. We experiment with two datasets including a corporate

email dataset, called the Enron dataset [42] and a single user gmail dataset. Table 2 shows

the summary information of the two datasets.

For the Enron dataset experiment, we created 150 mail users for the receiving

email server, according to the recipients shown in the dataset. With the gmail dataset, we

created only one email user who receives all the emails, as the gmail dataset belongs to

55

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

Email size (bin size : 1KB)

P
ro

ba
bi

lit
y Median :0.73096 KB

Mean :1.9401 KB

(a) Complete distribution

0 50 100
0

0.2

0.4

0.6

0.8

Email size (bin size : 1KB)

P
ro

ba
bi

lit
y Median :0.73096 KB

Mean :1.9401 KB

(b) Zoomed in to 0KB - 100KB

Figure 28: Distribution of the Enron corporate email sizes

one person. At a sender’s email server, emails were sent one by one sequentially, in the

order of emails in the datasets. For all cases, we analyze thededuplication ratios and the

overhead of CPU and memory to process and store the chunk indexes.

We adjusted the threshold size, based on which HEDS performsdeduplication on

either an file-level or a block, adaptively. In order to gain insight on a proper threshold

size, we observed the distributions of email sizes of the datasets.

Figures 28(a) and 29(a) display complete distributions, and Figures 28(b) and

29(b) are distributions with ranges zoomed in ranges for a closer look. The mean and

median email sizes for the Enron dataset were about 1.9 KB and0.7 KB, respectively.

Meanwhile, the mean and median email sizes for the gmail dataset were around 28 KB

and 5 KB, respectively. Note that the Enron dataset did not include attachments in the

emails. Thus, we select the threshold sizes that are about orgreater than the mean value

of 1 KB and 2 KB for the Enron dataset. Bigger threshold sizes are chosen including 512

KB, 128 KB, 16 KB, and 4 KB for the gmail dataset. As for the expected average chunk

56

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

Email size (bin size : 1KB)

P
ro

ba
bi

lit
y

Median :5.2354 KB

Mean :28.488 KB

(a) Complete distribution

0 50 100
0

0.05

0.1

0.15

0.2

Email size (bin size : 1KB)

P
ro

ba
bi

lit
y Median :5.2354 KB

Mean :28.488 KB

(b) Zoomed in to 0 KB - 100 KB

Figure 29: Distribution of the gmail personal email sizes

size, we have used 0.5 KB for the Enron dataset, and 2 KB for thegmail dataset, con-

sidering the means and medians of the datasets. We note that the previous deduplication

studies [44, 46, 78] have used the expected average chunk size ranging from 4 KB to 64

KB.

4.10 Deduplication performance

In this section, we measured a deduplication ratio that indicates how many re-

dundancies are removed. Overall, we discovered that most ofredundancies are found in

attachments rather than in message bodies. Thus, for corporate (Enron) datasets without

attachments, variable-size block deduplication and HEDS showed lower deduplication

ratios than file-level deduplication because the low deduplication ratio cannot offset the

index overhead. However, for the gmail dataset with attachments, variable-size block

deduplication and HEDS has a greater deduplication ratio due to large redundancies com-

ing from attachments. We explain in detail.

57

Figure 30 shows the deduplication ratio of Enron datasets. ‘App dedup’ means

file-level deduplication. ‘Block dedup’ means variable-size block deduplication. ‘Hy-

brid’ means HEDS with variable thresholds, 1 KB and 2 KB. All deduplication showed a

deduplication ratio over 55% on average. This means a sending email server sent to 2 re-

cipients on average. Without the index as shown in Figure 30(a), block deduplication and

HEDS achieved 2% to 3% more deduplication ratio than file-level deduplication. How-

ever, with the index as shown in Figure 30(b), the slight advantage of block deduplication

and HEDS is overridden due to chunk index overhead.

For gmail dataset as shown in Figure 31, the deduplication ratio is different as

compared to Enron datasets. Figure 31(a) shows deduplication ratios without chunk index

overhead. Since the gmail dataset belongs to one person, we did not see the benefit using

file-level deduplication. That is, the deduplication ratioof file-level deduplication is 0%

meaning that the file-level deduplication cannot reduce anystorage size. By contrast,

block deduplication reduced 15% more space than file-level deduplication. HEDS with

small threshold sizes like 4 KB, 16 KB has the same space savings as block deduplication,

and HEDS with large threshold sizes like 512 KB reduces 10% more space savings than

file-level deduplication. Figure 31(b) depicts deduplication ratios including the chunk

index overhead. Even after including the overhead, the behavior of deduplication ratios

shown in Figure 31(a) still remains, which indicates that the removed duplicates well

over-compensate for the overhead.

We next investigated the sudden increase of deduplication ratios observed in Fig-

ure 31(a) with the gmail dataset. We found that they were caused by temporal locality of

58

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of emails which have been sent

D
e−

du
pl

ic
at

io
n

ra
tio

app dedup
hybrid (2KB)
hybrid (1KB)
block dedup

(a) Without index

0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of emails which have been sent

D
e−

du
pl

ic
at

io
n

ra
tio

app dedup
hybrid (2KB)
hybrid (1KB)
block dedup

(b) With index

Figure 30: Reduced storage (Enron - corporate dataset)

59

0 100 200 300 400 500
−0.05

0

0.05

0.1

0.15

0.2

Number of emails which have been sent

D
e−

du
pl

ic
at

io
n

ra
tio

app dedup
hybrid (512KB)
hybrid (128KB)
hybrid (16KB)
hybrid (4KB)
block dedup

Locality
of

attachments

(a) Without index

0 100 200 300 400 500
−0.05

0

0.05

0.1

0.15

0.2

Number of emails which have been sent

D
e−

du
pl

ic
at

io
n

ra
tio

app dedup
hybrid (512KB)
hybrid (128KB)
hybrid (16KB)
hybrid (4KB)
block dedup

(b) With index

Figure 31: Reduced storage (Gmail - single user dataset)
60

Table 3: Locality of attachments
email id Date Size Attachment size Dedup ratio

(bytes) (bytes) (%)
74 Jan.8 12873 9844 0
75 Jan.8 17805 9844 32.09
80 Jan.8 11957 9844 33.08
81 Jan.8 12012 9844 41.07
86 Jan.9 14896 9593 0

attachments. In Table 3, we show the changes of a relative deduplication ratio compared

to the previous email from the 74th email to the 86th email. The first column shows the

email ids in the dataset. The second column displays the received date. The third, fourth,

and fifth columns show the size of an entire email, the size of an attached file, and relative

deduplication ratio compared to the previous email, respectively. Five emails in Table 3

are in the same email thread, where each email has the same subject and title of attach-

ment as the other emails. The 74th email shows 0 deduplication ratio that does not show

a deduplication benefit. However, every time the 75th, 80th,and 81st emails were re-

ceived, we acquire a high deduplication ratio because we do not save the same attachment

that was stored in the 74th email already. Interestingly, wesee that the 86th email does

not show a deduplication ratio, though the title of attachment is the same as other emails.

Looking into the attachment, we find that the contents of the attached file in the 86th email

have been changed a lot, so even block deduplication cannot find redundancies inside an

email. This observation tells us that temporal locality maywell be found in emails, and

thus, we can exploit the temporal locality with caches.

Table 3 illustrates that 1) file-level deduplication does not detect the same attach-

ments in emails with a different message body. 2) block deduplication can detect the

61

same attachments, but it has to do chunking of the same attachments every time emails

are received, resulting in unnecessary CPU and chunk index overhead. Furthermore, if the

email contents are changed heavily, it does not detect redundant parts in the attachments

as we see at the 86th email; 3) HEDS can detect the same attachments though a message

body is different because it extracts attachments unlike file-level deduplication. More-

over, an attachment in the next email is not chunked if the hash value of the attachment is

found, resulting in less CPU and chunk index overhead over block deduplication.

4.11 Memory overhead

In order to find the existence of a chunk in a new email in the existing chunk index,

the chunk index is stored in memory. The more chunk indexes means more memory

overhead. Here, we evaluate the amount of the chunk indexes produced with different

deduplication approaches. The more chunks an email is separated into, the more chunk

indexes are created. For our experiments, our system had large enough memory and thus,

all the chunk index could be stored in memory. In practice, however, memory would

contain only a partial chunk index due to the limit of cache size and handle continuous

incoming emails that result in a huge demand in the cache. Then, a cache management

scheme, such as LRU, can be used.

As expected, we find that a block-level deduplication shows the largest chunk in-

dex overhead, whereas an application-level deduplicationshows the least overhead. Fig-

ures 32(a) and 32(b) indicate the accumulated chunk index sizes with the Enron dataset

62

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

In
de

x
si

ze
 (

 M
B

)

app dedup
hybrid (2KB)
hybrid (1KB)
block dedup

(a) Enron dataset

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

In
de

x
si

ze
 (

 M
B

)

app dedup
hybrid (512KB)
hybrid (128KB)
hybrid (16KB)
hybrid (4KB)
block dedup

(b) Gmail dataset

Figure 32: Chunk index overhead

63

and the gmail dataset, respectively. HEDS shows varying chunk index overhead be-

tween application-level and block-level deduplication schemes corresponding to different

threshold sizes. HEDS with a small size threshold, e.g. 4 KB or 16 KB, shows a close

chunk index overhead than a block-level deduplication. However, HEDS with a large size

threshold, e.g. 512 KB or 128 KB, shows a less chunk index overhead than a block-level

deduplication. It is observed that there are sudden increases in chunk index overhead over

time. This is because many chunks are created from a large sized email that does not have

much redundancies compared to previously saved chunks, resulting in creating excessive

chunk indexes in memory.

4.12 CPU overhead

Finally, we observe the extra CPU overhead of an application-level, HEDS, and

a block-level deduplication scheme. Figure 33 shows the CPUusage measured with the

datasets. As for the Enron dataset, an application-level deduplication takes 1.6 times as

much CPU as sendmail without a deduplication scheme. A block-level deduplication

shows the highest CPU usage, and HEDS’s CPU usage stays between the two schemes.

The gmail dataset shows the similar relative behavior amongthe three kinds of schemes,

but uses generally higher CPU usage, as it includes attachments and thus a greater number

of chunks is generated. In short, HEDS achieves a good tradeoff between an application-

level and a block-level deduplication scheme.

64

app 2K 1K block
0

0.5

1

1.5

2

2.5

(C
P

U
 u

sa
ge

 o
f s

en
dm

ai
l :

 1
)

(a) Enron dataset

app 512K 128K 16K 4K block
0

10

20

30

40

(C
P

U
 u

sa
ge

 o
f s

en
dm

ai
l :

 1
)

(b) Gmail dataset

Figure 33: Relative CPU overhead

4.13 Summary

We developed a server-based and hybrid deduplication approach (HEDS) for email

servers to minimize data storage size while minimizing the overhead of CPU and mem-

ory. It performs hybrid data deduplication adaptively, at the granularity of a file-level or

chunk-level, based on the size of emails and the existence ofattachments. We have imple-

mented and evaluated the hybrid approach on email servers with real email data sets, and

we have shown that it achieves a significantly better reduction ratio of storage consump-

tion than file-level deduplication, and low CPU and memory overheads than variable-size

block deduplication.

65

CHAPTER 5

SAFE: STRUCTURE-AWARE FILE AND EMAIL DEDUPLICATION FOR

CLOUD-BASED STORAGE SYSTEMS

In this chapter, we introduce SAFE, a client-based deduplication that is fast and

has the same space savings as variable-size block deduplication by using structure-based

granularity rather than physical chunk granularity for cloud-based storages.

Cloud-based storages including Dropbox [14], JustCloud [39], and Mozy [52]

have been popular as people can access data at any time, anywhere, and with various types

of devices such as laptops, tablets, and smart phones. The cloud-based storage services

use de-duplication techniques to avoid sending and storingduplicate files (or blocks),

reducing network bandwidth and storage space, which gives the subsequent benefit of

data upload speed. Existing deduplications (file-level andfixed-size block deduplication)

that cloud-based storages use are fast and have a low index overhead, but find fewer

redundancies than variable-size block deduplication. However, due to excessive CPU

and memory overhead from chunking, indexing, and fragmentation, variable-size block

deduplication cannot be used for cloud-based storages.

Thus, we developed SAFE, Structure-Aware File and Email Deduplication, that

achieves both fast speeds and shows good space savings in clients by using structure-

based granularity for cloud-based storage systems. Evaluation results show that SAFE

has as good storage space savings as existing variable-sizeblock deduplication while

being as fast as file-level or a large fixed-size block de-duplication.

66

5.1 Large Redundancies in Cloud Storage Systems

A structure file is a file that consists of meta data and objectslike text and image

objects. Typical examples of structure files are compressedfiles (zip, rar), document files

(Microsoft Word document, Powerpoint document, and Portable Document Format-PDF),

and emails. Everyday, people are creating large numbers of structured files, and cloud-

based storages of document suites contain large amounts of structured files. For example,

for one of datasets that we used, 89% were structured files and11% were unstructured

files.

We observed that a structure file can be decomposed into various objects with off-

sets whose positions are dynamically changed based on the location of the objects. As an

example, an email is decomposed into multiple objects such as meta data, message body

which is text, and attachments. Among attachments, a structure file is further divided into

objects like meta data, text, and image objects. Thus, we show that following structures

of a file, we can remove redundant objects without expensive chunking.

Based on our observations, we developed SAFE, a fast client-based deduplication

that runs on the client-side for cloud-based storage systems. SAFE is as fast in processing

time as file level (or fixed size block deduplication) as well as having the same storage

space savings as block deduplication by using structure-based granularity.

67

Figure 34: SAFE deduplication architecture

5.2 SAFE Modules

SAFE consists of cooperative modules through which a file is saved into storage.

We begin by outlining an architecture of SAFE with modules, and elaborating each mod-

ule. We explain structures based on which objects are extracted and de-duplicated. Last,

we describe how to embed SAFE into a popular cloud storage service, Dropbox.

SAFE incorporates our Structure-Aware de-duplication with existing file-level

deduplication. As shown in Figure 34, SAFE system consists of Email parser, File parser,

68

Object-level dedup, Object manager, and Storage manager modules. SAFE also exploits

file-level deduplication to identify redundancy of unstructured files for low CPU and

memory overhead. SAFE has two parsers including email parser and file parser. The

Email parser module extracts attachments of an email based on email policy, and saves

indexes (hash values) of the body and attachments for reconstruction of an email. File-

level dedup module receives input data (that is, files) from email parser or file system. If

a file is an unstructured file such as an image or a video file, SAFE directly saves the file

into a storage after compression at the Store manager module. Otherwise, a structure file

is sent to the File parser where a file is decomposed into objects based on a file policy. The

File parser sends parsed objects to the Object manager. The Object-level dedup module

computes hash value of each object and checks if an object is aduplicate based on the

object index table. Last, the Store manager saves unique objects whose indexes are sent

from the Object-level dedup into storage after compression. We elaborate each module

hereafter.

5.3 Email Parser

The Email parser runs as a light-weight mail filter on a sendmail server [69]. It

intercepts an email using Milter [49] APIs when a Mail Transfer Agent (MTA) of a send-

mail server receives an email. Milter API is a part of the Sendmail Content Managment

API that can look up, add, and modify email messages. Figure 35 illustrates how the

Email parser works. When an email comes into MTA in an email server, Milter intercepts

and sends the email to the Parser that decomposes the email into meta data, body, and

69

Figure 35: Email parser

Figure 36: Structure of an email

70

attachments based on the email policy. The email policy has structure information of an

email as shown in Figure 36, and the structure is based on the format of Multipurpose

Internet Mail Extensions (MIME) [27]. The Email parser decomposes an email based

on a boundary string that are given at “Content-Type:Boundary=” in meta data, which is

“<boundary>” in the figure. There can be several attachments that are split by the same

boundary string, “<boundary>”. Each attachment may be encoded using different en-

coded type like “base64” that are designated by “Content-Transfer-Encoding”. Thus, the

Email parser runs decoding before processing (sending to other modules) a decomposed

attachment.

In Figure 35, the Email indexer computes SHA1 [56] hash values of meta data,

body, and attachments decomposed; saves all indexes into anemail indexer table by using

the unique email ID that is a 14 byte string. The buffer has an array data structure where

it holds data decomposed from an email, and sends the array data (that is, files) to the

File-level dedup where each file is identified to be unique or redundant.

5.4 File Parser

The File parser decomposes three types of structured document files such as Mi-

crosoft Word (docx), Powerpoint (pptx), and Adobe PortableDocument Format (PDF).

SAFE deduplicates a file based on two key aspects: (1) how to extract objects from a

file, and (2) what granularity is efficient for deduplication. SAFE uses an object or a

combination of objects for a granularity. We explain how theFile parser works in detail.

MS word (docx) and powerpoint (pptx) are based on the structure of MS Office

71

Open XML format which is standardized at ECMA-376 [18] and ISO/IEC 29500 [37], as

shown in Figure 37(a). An Open XML file is a ZIP [62] file that contains multiple files

such as texts and images. An Open XML file format contains different sections (with meta

data and data) that are chained with offsets from the end of a file, and data are tracked

down along the offsets upwards. In Open XML format, data are located in sections with

local file headers in the beginning of a file. Track to a data starts from “End of central

directory record” section with offset of “central directory header” section that describe a

directory. The directory has offsets of files in it and through the offsets, a section of a file

is accessed. Each file section consists of a “local file header” and file data. The “local file

header” contains meta data such as compression method and file name. Likewise, other

files are accessed through offsets in the “central directoryheader” section. In Figure 37(a),

Gray bars are signatures. Signatures of “end of central directory record”, “file header” in

the central directory header, and the “local file header” are0x06064b50, 0x02014b50, and

0x04034b50, respectively. The encryption which comes between local file header and file

data is not shown.

A PDF physical format contains also multiple sections such as a header, a body,

cross references, and a trailer. A PDF structure is defined atISO 32000 [1], and data

are accessed through chains of offsets. The header section is in the beginning of a file,

which shows the version of a PDF file. The body section contains objects with a text or an

image. The cross reference section has offsets that points to objects in the body section.

The trailer section at the end of file has offsets that point tocross reference sections. Thus,

data in objects are accessed through offsets from the end of afile upwards. The body

72

(a) Structure of an MS Office Open XML file

(b) Structure of a PDF file

Figure 37: Physical file format

73

Figure 38: File parser

section contains objects surrounded by “obj” and “endobj” each of which may have a text

or an image. Two keywords including “stream” and “endstream” surround the data. A

stream is encoded by a compression algorithm and can be decoded by the corresponding

decompression algorithm shown in the meta data of the object, called ‘dictionary’ (i.e,

<</Type../Filter/<decompression algorithm>/..>>). According to ISO 32000, there are

10 different decompression algorithms among which FlateDecode and DCTDecode are

used to decode a text stream and a JPEG image stream respectively.

Figure 38 shows how the File parser works. Dotted lines are control flows and

solid lines are data flows. Output of the File parser is indexes of all objects including

individual objects and combined objects of a file. The File parser receives and parses

74

a structured file into objects based on file policy. Encoded objects are decoded based

on a decoding algorithm that is specified in structure. The combiner concatenates small

objects into a larger object to reduce number of indexes of objects. The combined objects

are mainly small-sized meta data whose contents are always changed for each file, in

which case we cannot find any redundancy of the objects. A parsed object that is not

combined comprises a 5-tuple including hash value of an object, length of an object, ID

of container that contains an object (file ID for Open XML format and obj ID for PDF),

decoding scheme (if specified), and object itself. A combined object is a contatenation

of 5-tuples. The object putter sends an individual object ora combined object into the

object manager that subsequently holds the objects in an object buffer until deduplication

of the objects is finished. The trigger combines all object indexes and sends them to the

object-level dedup where redundancy of objects are identified.

SAFE runs parsing and combining based on a different file policy per file type. To

do that, SAFE creates a dynamic instance for each file. SAFE has an abstract base class,

FilePolicy, that defines functions to be implemented in derived classes such as DOCXFile-

Policy, PPTXFilePolicy, and PDFFilePolicy. The file parsercreates a derived class object

corresponding to a file type and executes functions of the class object. Thus, a structure

file with new format can be implemented as a derived class whose basic functions are

already defined.

For combining, SAFE puts together metadata objects that aresmall, but uses a

image and text(content) objects without combination basedon logical structures per file

75

(a) Word (docx)

(b) Powerpoint (pptx)

Figure 39: Logical structure of MS office document file

76

type. Figure 39 illustrates a logical structure of docx and pptx files. As shown in Fig-

ure 39(a), texts of a Word file are contained in a document.xmlobject, and image objects

are under a media directory, and other directories shown in the figure contain metadata

objects. Likewise, a Powerpoint file in Figure 39(b) has a media directory, but has dif-

ferent metadata objects. In addition, texts per slide are structured into each individual

slide<number>.xml. A presentation.xml holds the pointers of slide objects.

5.5 Object-Level Deduplication and Store Manager

The Object-level deduplication module receives indexes ofobjects from the File

parser, and checks if each index exists in the object index table. If an index does not exist,

the index is unique. Unique indexes are are saved into an object index table and sent

to the Store manager module that fetches objects corresponding to the unique indexes

from the Object manager module. If an index does exist in the object index table, the

index is redundant. Redundant indexes are excluded for storing. The Object manager

module retrieves an object that store manger requests from the Object buffer. The Store

manager stores a pair of<object index, object> into object storage after compression.

Unstructured files are stored through Store manager withoutdeduplication.

5.6 SAFE in Dropbox

In this section, we describes how SAFE can be embedded into a cloud storage

service like Dropbox [14]. Dropbox removes redundancy in network and storage using a

large (4MB) fixed-sized block deduplication. Thus, we address how SAFE can improve

77

data reduction of current Dropbox with minimal additional overhead of processing and

memory.

A recent study [13] discovers internal mechanisms of Dropbox by measuring and

analyzing packet traces between clients and Dropbox servers. Dropbox is accessed by

Web UI (http://www.dropbox.com) or dropbox client. We leverage SAFE into a Dropbox

client to deduplicate structured files in a client side. Dropbox consists of two type of

servers; one is control server and the other is storage server. Control servers hold meta

data of files such as hash value of a block and mapping between afile and blocks. Storage

servers contain unique blocks in Amazon S3 [3]. Dropbox client synchronizes its own

data and indexes with Dropbox servers.

Figure 40 shows how Dropbox works. Circles with numbers showthe order in

which a file is saved.File-A is a file andBlk-X is a block which is separated from a

file. h(Blk-X)means hash value of a block. Thickh(Blk-X) andBlk-X are considered as

hash values and blocks which already existed before a file is saved. A user’s device is

mobile phone, tablet, labtop, or desktop. Dropbox follows the next steps to save a file.

(1) As soon as a user savesFile-A into a shared folder in a Dropbox client, fixed-size

block deduplication of Dropbox splits a file into blocks based on 4 MB granularity, and

computes hashes of objects. If a file is larger than 4 MB, a file is the same as an object,

and an hash value of a file is computed. Dropbox uses SHA256 [57] to compute a hash

value. (2-4) Dropbox client sends the computed hash values of a file to a control server

that returns only unique hash values not found through checking previously saved hash

values. In this example, hash ofBlk-B is returned to a client because hash ofBlk-A is

78

Figure 40: Dropbox internal mechanism

found to be a duplicate. (5-6) A Dropbox client sends to the storage server the blocks

of returned indexes. Ultimately, storage servers have unique blocks across all Dropbox

clients. Note that storage saving occurs in the server (thanks to not savingBlk-A again),

and the incurred network cost is reduced thanks to sendingBlk-B only.

SAFE can complement the fixed-size block deduplication in a Dropbox client as

shown in Figure 41. Suppose that an unstructured file (File-A) and a structured file (File-

B) are added into a Dropbox folder. The file-level deduplication module checks duplicate

files using the file index table whose entry has a pair of<hash value of file contents,

79

Figure 41: SAFE integration with Dropbox

file path of the first unique file>. For duplicate files, the entry is added into a file index

table without savings of a file in local storage. An unstructured file follows the fixed-

size block deduplication. A structured file is fed into the File parser, and objects of the

file are extracted. The trigger module calls the REST API [15]of Dropbox to send the

hash values of objects. The control servers act as an object-level dedup module. We

used SHA256 hash function in SAFE for compatibility with Dropbox. The store manager

sends objects corresponding to returned hashes from a control server to a storage server

through the REST API. Thus, in the integration of SAFE with Dropbox, control servers

function as object-level dedup module. In the Figure 41, thick fonts such ash(Blk-X),

80

h(Obj-X), Blk-X, and Obj-X are existent already beforefile-Aandfile-B are saved.

5.7 Metrics and Setup

We discuss the performance evaluation criteria and datasets used in this section.

We then show the evaluation results of performance and overhead of the proposed SAFE

approach, compared with a file-level deduplication that JustCloud [39] and Mozy [52] use,

a fixed-size block deduplication that Dropbox [14] uses, andvariable-size block dedupli-

cation schemes.

The major performance metrics are the deduplication ratio and incurred data traf-

fic amount. The deduplication ratio indicates how much storage space can be saved by

removing redundancies, and is computed by Equation (5.1).

(

InputDataSize− ConsumedStorageSize

InputDataSize

)

× 100 (5.1)

Data traffic incurred designates how much data are transferred to a storage that is the

amount of unique data out of the input data.

As overhead metrics, we measure the processing time and index size. Since the

overhead is proportional to the data size, we compare the processing time and index size

overhead relative to the file-level deduplication that has the least overhead.

We collected real datasets of structured files including docx, pptx, and pdf from

the file systems and emails of five graduate students in the same department. Table 4

summarizes the information of datasets that were collectedfrom file systems and emails.

Individual user’s data is labeled as ‘P-’#, and ‘Group’ is the sum of all personal datasets

and ‘no.’ is the number of structured files in each dataset. For the experiments with email

81

Table 4: Used datasets
file systems emails

Data set size (MB) no. size (MB) no.
P-1 1,721 4,384 637 955
P-2 509 590 554 720
P-3 266 523 249 480
P-4 869 1,499 358 859
P-5 864 1,430 744 823

Group 4,229 8,426 2,542 3,837

datasets, we deployed two sendmail servers; structured files are attached to emails from a

sending sendmail server, and the attached structured files are extracted by the email parser

at a receiving sendmail server. Structured files in the file system datasets are fed into the

file parser directly.

Figure 42 shows the ranges of the file sizes in the email group dataset whose

mean value (673 KB) is relatively small compared to the maximum block size 4 MB of

Dropbox. 10 and 20 in x-axis indicate 5 MB and 10 MB, respectively. Meanwhile, we

measured the percentages of the structured files among all attached files of five people’s

emails. As shown in Figure 43, the structured files occupy 89%out of all attached files.

PDF occupies 44% and the percentage of docx and pptx is 11%. Image files such as jpg,

bmp, and png belong to unstructured file types. Despite the small size of datasets, the

high percentage of structured files (89% for all types of structured files and 55% for docx,

pptx, and pdf structured files) validates the popularity of structured file types on which

SAFE is based.

The datasets used may be considered to be relatively small. However, we note that

82

0 5 10 15 20
0

0.2

0.4

0.6

0.8

File size (bin size :512 KB)

P
ro

ba
bi

lit
y

Median :263 KB

Mean :673 KB

Figure 42: Distribution of the file sizes in the email
dataset

89%

11%

pdf,zip,doc,
docx,ppt,pptx,
rar

Structured
Unstructured

Figure 43: Percentage of the structured files in the
email datasets

83

the results obtained in this evaluation will only be stronger if larger datasets of an organi-

zation are used, since the redundancy levels would become greater. For the variable-size

block deduplication, we use 2 KB, 8 KB, and 64 KB as minimum, average, and maximum

chunk sizes, respectively. For fixed-size block deduplication, we use 4 MB as the fixed

block size as Dropbox does. Fixed-size block deduplicationis thus the same as the file-

level deduplication for files smaller than 4 MB. We carried out the evaluations on Fedora

16 Linux operating systems of kernel 2.6.35.9 SMP on Intel Core 2 Duo 3GHz.

5.8 Storage and Data Traffic Reduction Performance

We first evaluate the deduplication ratio for each dataset. The deduplication ratio

of a group is larger than that of each personal dataset. For the file systems, the high

deduplication ratio of a group is due to the same or similar content files shared among

people in the same department. For emails, the high deduplication ratio of a group is

due to duplicates of multiple-recipient emails as well as the same or similar attachments

delivered and updated through email threads.

Figure 44 presents the deduplication ratio of six datasets including personal datasets

and a group dataset. File, Block-F, and Block-V means file-level deduplication, fixed-size

block deduplication and variable-size block deduplication, respectively. Deduplication

ratios with the email datasets are higher than those with thefile system datasets due to

the frequent email threads in addition to shared attached files among people in the same

department. Compared to the file-level deduplication in Figure 44 on an average based

on group datasets, SAFE can further reduce 15% redundanciesand achieves about 40%

84

File Block−F SAFE Block−V
0

10

20

30

40

D
ed

up
lic

at
io

n
ra

tio
 (

%
)

P−1 P−2 P−3 P−4 P−5 Group

(a) File system datasets

File Block−F SAFE Block−V
0

20

40

60

D
ed

up
lic

at
io

n
ra

tio
 (

%
)

P−1 P−2 P−3 P−4 P−5 Group

(b) Email datasets

Figure 44: Deduplication ratio

85

better performance than that of the file-level deduplication. For the email datasets, SAFE

shows almost 99% of the performance level of the variable-size block deduplication. Fur-

thermore, SAFE’s deduplication ratio is better than the variable-size block deduplication

in the file system datasets. It is because SAFE can find the boundaries of objects more

efficiently in complicated structured files than the variable-size block deduplication, es-

pecially for PDF that uses compressions for more individualobjects than other structured

files such as docx and pptx. Note that file system datasets havetwice as many PDF files

as email datasets.

We next evaluate the incurred data traffic for group datasetsas shown in Figure 45.

For file system datasets, SAFE shows the lowest data traffic among all dedeuplication

types: concretely, SAFE has the lowest data traffic with the file system datasets, and the

second to the lowest (just behind the variable-size block dedup) with the email datasets.

This supports that SAFE can be used as a deduplication technique for personal cloud

storage services like Dropbox due to the expected decrease in network bandwidth con-

sumption. In addition, for email datasets SAFE reduces 56% data traffic out of the email

group dataset (1.4 GB out of 2.5 GB). Compared to the file-level and fixed-size block

deduplications, SAFE has lower data traffic by 30% for the email datasets (and 15% for

the file system datasets), which indicates that SAFE efficiently reduces the network band-

width requirement storing emails to cloud storages.

86

File Block−F SAFE Block−V
0

1000

2000

3000

4000

D
at

a
tr

af
fic

 (
M

B
)

(a) File system datasets

File Block−F SAFE Block−V
0

500

1000

1500

2000

D
at

a
tr

af
fic

 (
M

B
)

(b) Email datasets

Figure 45: Data traffic incurred (MB)

5.9 Memory and CPU Overhead

Here we show the assessments of the processing time and memory overhead. As

shown in Figure 46, the file-level deduplication runs the fastest for both datasets types,

due to no overhead of separating a file. We present relative processing time based on

file-level deduplication that (whose value is 1) is shown as 0because y-axis is set in

log scale. The fixed-size block deduplication shows close processing time overhead to

the file-level deduplication. Even if it is slower than the file-level deduplication, SAFE

processing is relatively fast on average for the datasets despite that we do not use salient

cache management schemes in our implementation. In addition, SAFE is faster by two

orders of magnitudes than the variable-size block deduplication.

We now compare the relative index overhead in Figure 47. Likeprocessing time,

we present relative index overhead compared to file-level deduplication. SAFE shows 2

to 3 times less index overhead than the variable-size block deduplication. We use a 40

87

File Block−F SAFE Block−V
10

0

10
1

10
2

10
3

10
4

R
el

at
iv

e
pr

oc
es

si
ng

 ti
m

e
lo

g
sc

al
e

P−1
P−2
P−3
P−4
P−5
Group

(a) File system datasets

File Block−F SAFE Block−V
10

0

10
1

10
2

10
3

10
4

R
el

at
iv

e
pr

oc
es

si
ng

 ti
m

e
lo

g
sc

al
e

P−1
P−2
P−3
P−4
P−5
Group

(b) Email datasets

Figure 46: Relative processing time overhead compared to file-level deduplication

File Block−F SAFE Block−V
0

20

40

60

80

R
el

at
iv

e
in

de
x

si
ze

P−1
P−2
P−3
P−4
P−5
Group

(a) File system datasets

File Block−F SAFE Block−V
0

10

20

30

40

50

60

R
el

at
iv

e
in

de
x

si
ze

P−1
P−2
P−3
P−4
P−5
Group

(b) Email datasets

Figure 47: Relative index overhead compared to file-level deduplication

88

bytes-hexadecimal string of SHA1 hash value for a chunk index in all testing deduplica-

tion schemes. Though smaller sized chunk index can reduce overhead of variable-size

block deduplication, the relative ratios shown in Figure 47would be maintained. The

index overhead increases proportionally to the number of unique chunks. For the email

datasets, the numbers of unique chunks for file-level deduplication, fixed-size block dedu-

plication, SAFE, variable-size block deduplication were 2.4K, 2.5K, 33K, and 92K, re-

spectively. For the file system datasets, the numbers for each deduplication scheme were

5K, 5.5K, 155K, and 248K, respectively. SAFE with the file system datasets shows a little

more chunk index overhead than with the email datasets. Thisis because the file system

datasets had higher percentages of pdf files than the email datasets. PDF files have a rela-

tively complex structure where files are divided to many small objects, and the current file

policy we implemented for PDF saves each object individually without combining. By

combining multiple small objects into a large object as in file policy for docx and pptx,

SAFE would reduce more chunk index overhead for PDF files.

5.10 Summary

We developed a fast client-based deduplication, SAFE that removes redundant

objects based on a structure-based granularity instead of using a physical chunk gran-

ularity. Unlike traditional deduplication that is a trade-off between deduplication ratio

and processing overhead, SAFE gains benefits of both high deduplication ratio and low

processing overhead. Our experiments with real datasets and implementation on a cloud

storage client show that SAFE achieves more storage space savings by 10% to 40% and

89

less data traffic by 20% on average than the file-level and fix-sized block deduplication

which are used in existing cloud-based storage services. Inaddition, SAFE shows permis-

sible processing time on average to be used in a client for cloud-base storage system, and

is faster by two orders of magnitude than variable-size block deduplication. Thus, SAFE

can be used for deduplication in a client that should be fast and produces low overhead.

90

CHAPTER 6

SOFTDANCE: SOFTWARE-DEFINED DEDUPLICATION AS A NETWORK AND

STORAGE SERVICE

In this chapter, we focus on removing redundancy in a chain between end-systems

through a network. As nodes are massively connected throughnetworks, redundancy oc-

curs in various domains (storage and network) and in diverseways including copying and

modifying files, redundant transfers through networks, backup and replication in servers.

Simply leveraging data reduction techniques developed in each domain does not give

benefits, and even incurs significant redundant processing overhead. In this chapter, we

present SoftDance, software-defined deduplication as a network and storage service.

SoftDance chains and virtualizes storage deduplication and network redundancy

elimination by using Software Defined Network (SDN) to achieve both storage space and

network bandwidth savings while reducing expensive overhead of processing time and

memory size. SoftDance uses encoding and indexing schemes for SoftDance middlebox

(SDMB) and control mechanisms for an SDN controller. Evaluation results show Soft-

Dance reduces 2-4x more bandwidth than network-wide redundancy elimination tech-

nique and achieves equal/close storage space saving to existing the best storage saving

techniques.

91

6.1 Large Redundancies in Network

Redundancies that occur in various domains (storage and network) consume stor-

age spaces and reduce available network bandwidth as nodes are massively connected

through networks. In storage domain for data reduction,data deduplication (Dedup)has

been proposed [7] [40] [41] [44] [46] [63] [78]. Dedup computes indexes of chunks (split

from file) and does not store redundant chunks by comparing current indexes with indexes

of chunks saved previously. Each index points to a unique chunk. In a network domain,

network redundancy elimination (NRE)has been studied [4] [5] [71] for data reduction.

NRE computes indexes [64] for the incoming packet payload, and removes redundant

byte strings in packets by checking packets saved previously. Though Dedup and NRE

share the same goal of identifying and removing redundant data, functionalities of the

two are orthogonal. Thus, they do not provide any benefits foreach other and even incurs

redundant processing overhead on both end-systems and networks.

We propose an efficient framework forsoftware-definedde-duplicationas anetwork

and storage service (SoftDance) to save storage space and network bandwidth, while re-

ducing overhead of processing time and memory overhead. As presented in Figure 48,

SoftDance consists of SDMBs (SoftDance middlebox), OpenVSwitches, a SoftDance

controller, and lightweight modules at end-systems. SDMB mainly performs encoding

and indexing algorithms. SDMB identifies a packet payload for encoding, stores an index

of unique packet payload, and replaces redundant packet payload with an index (called

encoding). SDMB also maintains an appropriate indexes by communicating with a Soft-

Dance controller. A SoftDance controller provides deduplication function virtualization

92

Figure 48: SoftDance architecture

and control mechanisms by coordinating end-systems and network elements. SoftDance

uses a packet payload as a unit of comparison, which enables azero chunking mechanism

through deduplication function virtualization. Considering that chunking is a culprit of

expensive processing time, SoftDance reduces this processing time significantly. In addi-

tion, SoftDance distributes indexes to reduce memory overhead on SDMBs based on hash

based sampling [68]. Various index distribution algorithms are designed and implemented

in a SoftDance controller.

To validate our approach, we implement the proposed framework and algorithms

on both a testbed system and mininet-based emulation by using Software Defined Net-

work (SDN) technologies. We built a testbed system by using OpenVSwitches, a flood-

light SDN controller, and Linux based SDMBs that intercept packets using userspace

netfilter library. Mininet-based emulation compares SoftDance with Dedup and NRE

93

techniques based on typical Data Center Network (DCN) topologies including tree, multi-

rooted tree, and fat-tree. Our evaluation results from bothtestbed and mininet-based emu-

lation show that SoftDance reduces 2-4x as much bandwidth asnetwork-wide redundancy

elimination (SmartRE) and has equal/close storage space saving to existing storage do-

main techniques. Furthermore, in scenarios of both end-systems and networks performing

deduplication redundantly, SoftDance achieves much efficient processing and memory

overhead.

The rest of the chapter is organized as follows. We begin by explaining Software

Defined Network as a background information in Section 6.2. We describe the design

and implementation issues on packet encoding and indexing algorithms of SDMB and a

system coordination scheme of a SoftDance controller in Section 6.3. We evaluate our

approach in Section 6.7, and Section 6.12 concludes this chapter.

6.2 Software Defined Network

SoftDance is based on Software Defined Network (SDN) to set upefficient paths

for removing more redundancies and reducing indexes in networks. Software Defined

Network is a new paradigm that separates the control plane that computes forwarding

rules and the data plane that forwards data packets in a network element. As shown in

Figure 49, SDN moves the control plane from a switch to a centralized SDN controller

that has global network view and decides paths based on application requirements or

policies. When a data packet arrives at a switch without a corresponding forwarding rule,

the switch asks a controller. Then, the controller sets forwarding rules to the switch, and

94

Figure 49: Software defined network

data packets are forwarded based on the rules.

6.3 Control and Data Flow

To effectively reduce redundancies in chains from clients to servers through a

network, SoftDance coordinates clients, servers, and SDMBs using a SDN controller. A

SDN controller with global network view controls data transfer service requests of clients,

and provides an efficient path from a client to a targeted server, leading to low processing

and memory overhead. Next, we explain the design and implementation of SoftDance.

We start by presenting control and data flows. We then elaborate on the encoding scheme

processed at SDMBs. Last, we describe four distributed hashindexing algorithms.

SoftDance uses control flows to set up a service request from aclient and data

95

Figure 50: SoftDance control and data flows

packets flow based on the set-up through switches and SDMBs. ASoftDance con-

troller coordinates control flows through communication with clients, servers, SDMBs,

and OpenVSwitches.

As drawn in Figure 50, the SoftDance process starts with a client’s deduplication

service request (C1). A client sends the request along with the client’s and server’s IP

addresses to a SoftDance controller. When a SoftDance controller receives the service

request from a client, the controller performs Algorithm 4.A controller computes and

selects a path between a requested client and a targeted server, retrieves SDMBs and

switches on the selected path, and computes hash ranges of retrieved SDMBs. Then, a

controller pushes flow table entries into switches on the path (C2). Figure 51 illustrates

forwarding tables with entries in each switch. A controllersends hash ranges computed

to SDMBs on the path, and SDMBs set up the hash range for each path (C3). Then, a

96

Algorithm 4 SoftDance Controller
Input: inPacket(ServiceRequest)
Output: outPacket

1: senderIP =getSenderIP(inPacket)
2: // set up service
3: srcIP =getSrcIP(inPacket)
4: dstIP =getDstIP(inPacket)
5: (SDMBList, switchList)← setupPath(srcIP, dstIP)
6: computeHashRange(SDMBList)
7: pushFlowEntry(switchList, SDMBList)
8: assignHashRange(SDMBList)
9: registerToService(srcIP, dstIP)

10: outPacket← “confirm”
11: forward outPacket(senderIP)

controller sends a configuration message to a destination node for preparing deduplication

in the storage system (C4). Finally, a controller registersa service with a pair (A,B) and

acknowledges to the requesting client.

When a client’s SoftDance request has been approved, a client starts sending data

packets. For forwarding data packet, we use most significanttwo bits on TOS fields. The

first bit on TOS is called a service bit that represents if a data packet uses our deduplication

service. The second bit on TOS is called a encoding bit that indicates if a data packet has

been encoded by the previous SDMB. A client sends a data packet after setting a service

bit and resetting an encoded bit (D1). When a switch receivesa data packet, if a service

bit is on and an encoded bit is off, a switch forwards the data packet to a SDMB (D2).

Otherwise, the data packet is forwarded to the next switch. For example, as shown in

Figure 51, if the service bit is on and the encoded bit is off (as shown at the third row),

switch 1 forwards the data packet to a SDMB through port 3. Otherwise, data packets

97

Figure 51: SoftDance forwarding table example

are sent to the next switch (switch 2) through port 3. A SDMB checks redundancy of a

data packet while comparing an index of its payload with previously saved indexes. If the

same index exists, the data packet is redundant. In this case, a payload is replaced with an

index and an encoded bit is set (D3). When a server receives a data packet, if an encoded

bit is not set, an index and data itself is saved. Otherwise, only index is stored for the

future data reconstruction (D4).

6.4 Encoding Algorithms in Middlebox (SDMB)

An SDMB takes SoftDance service packets that are forwarded by a switch, and

encodes redundant packets among the taken packets. In this section, we explain how to

take packets and encode redundant packets.

Algorithm 5 explains packet processing in SDMB. SDMB computes a path ID of

98

Algorithm 5 Packet Processing in SDMB
Input: inPacket
Output: outPacket

1: // pathID is<srcIP> <dstIP>
2: pathID =getPathID(inPacket)
3: payload =getPayload(inPacket)
4: hashKey =computeHash(payload)
5: hashRangeKey =computeHashRangeKey(hashKey)
6: if hashRangeKey∈ hashRange(pathID) then
7: if hashKey∈ indexTable then
8: // redundant packet - encode
9: replacePayload(hashKey, inPacket, outPacket)

10: recomputeChecksum(outPacket)
11: else
12: // unique packet
13: saveToIndexTable(hashKey)
14: outPacket← inPacket
15: end if
16: else
17: outPacket← inPacket
18: end if
19: forward(outPacket)

a packet based on a source IP address and a destination IP address from the packet header,

and retrieves the payload from the packet. Then, SDMB computes a hash range key of a

packet by using SHA1 hash key [56]. Though it is implementation-specific, we use SHA1

hash key for uniform distribution of dataset. To compute hash range key, we take the 18

most significant bits from a SHA1 hash, use a modulo operationwith 100, and divide the

remainder by 100 to have a range of floating point from 0 to 1. Ifthe computed hash

range key is in the hash range that is set by a controller during set-up phase (we defer

how a controller compute hash range for a SDMB in next section), SDMB compares the

99

hash key of a packet with hash keys (indexes) saved previously. When current hash key

exists in index table, the current packet is redundant. Payload of a packet is replaced by a

hash key and checksum is recomputed for continuous forwarding. If a packet is unique, a

hash key is saved into index table for future comparison, anda packet is sent to next hop

without encoding the index.

We implement an SDMB as a userspace program that is a callbackfunction based

on libnetfilterqueue userspace library [60]. An SDMB runs on a Linux bridge that con-

nects the incoming and outgoing network interfaces. To intercept an incoming packet,

we set up the iptables rules in a filter table. We set up iptables rules with OUTPUT for a

client module, a FORWARD for an SDMB, and INPUT for a server module along with

iptables-extension NFQUEUE [59]. Whenever packets come in, packets are given to a

userspace program through netfilter queue. A userspace program handles an incoming

packet and a processed packet is forwarded back to either a network elements such as

switches and SDMBs or a server.

6.5 Index Distribution Algorithms

An SDMB stores indexes of unique packets to compare redundancy of future pack-

ets. As the large amount of indexes cause significant processing and memory overhead,

we propose distributed indexing mechanism. By using hash-based sampling [68], a Soft-

Dance controller distributes hash ranges to SDMBs on a routeof a flow, and each SDMB

handles only a data packet whose hash range key belongs to a hash range assigned by a

controller. In this manner, SoftDance can reduce processing time and memory size by

100

Algorithm 6 Compute hash range (uniform, merge)
Input: sdMBList, pathList
Output: nodes with hash range

1: for all path∈ pathList do ⊲ retrieve each path
2: if approach == “uniform”then
3: fraction = 1 /numSDMBs(path)
4: else if approach == “merge”then
5: totalDegree =getTotalDegree(path)
6: end if
7: sdMBs =getSDMBs(path)
8: range = 0
9: for all sdMB∈ sdMBs do ⊲ a sdMB in a path

10: if approach == “merge”then
11: fraction = sdMB.getDegree() / totalDegree
12: end if
13: sdMB.lowerBound = range
14: sdMB.upperBound = range + fraction
15: range = range + fraction
16: end for
17: end for

handling a data packet only once on a flow. In this section, we describe four different

index distribution algorithms.

SoftDANCE-full (SD-full) : SD-full is an approach with a full hash ranges(0,1). Thus,

using SD-full, an SDMB processes all incoming data packets and holds indexes of the

unique packet among incoming packets. The index size complexity per route is O(n*m)

where n and m are the number of unique packets and the number ofSDMBs on a path

respectively.

SoftDANCE-uniform (SD-uniform) : ND-uniform distributes hash ranges uniformly to

all SDMBs over a flow path. Each SDMB handles only packets whose hash-range key is

101

Figure 52: A network topology with three routes

in its hash-range. This scheme reduces index sizes comparedto ND-full with the trade-

off of reducing bandwidth saving. As presented in Algorithm6, a SoftDance controller

retrieves a path between a client and a server, and computes uniform fractions of SDMBs

on a path. Then, a controller assigns adisjoint hash rangeof each SDMB by accumulating

sequentially from the closest SDMB (to client) to the farthest SDMB. For example, in

Figure 52, a pathH1-H4 has three SDMBs. Thus, each SDMB has an fraction of1

3
or

0.33. Hash ranges are computed from the first SDMB (R2) to the last SDMB (R4) on a

path, starting from 0 by accumulating the hash ranges:R2is assigned [0,0.33), where 0 is

inclusive and 0.33 is exclusive. In this manner,R3andR4are assigned [0.33, 0.66) and

[0.66, 1) respectively.

Table 5 demonstrates an example how many memory indexes SD-uniform pro-

duces on a topology of Figure 52. ‘-’ means a SDMB is not on a path. ‘0 (dup A)’ means

a packetA is redundant and none of redundant index is stored. Suppose all clients send

two packetsA andB, and hash range keys of packetsA andB are 0.3 and 0.7 respectively.

102

Table 5: SD-uniform hash ranges and generated index size
Path R1 R2 R3 R4

H1-H4 - [0,0.33) [0.33,0.66) [0.66,1)
Hash range H2-H4 [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1)

H3-H4 - - [0,0.5) [0.5,1)
H1-H4 - 1 (A) 0 1 (B)

Index H2-H4 0 0 (dup A) 1 (B) 0
H3-H4 - - 1 (A) 0 (dup B)
Total 0 1 2 1

Assuming clientsH1, H2, andH3 send sequentially, total memory size to be stored is 4.

Concretely, hash ranges are computed uniformly among SDMBson a path. When a client

H1 sends packetsA andB, SDMBsR2andR4stores indexes ofA andB. An SDMB R3

just forwards data packets without storing indexes becausehash range keys ofA (0.3) and

B (0.7) are not in a hash range [0.33,0.666) ofR3. When a clientH2 sends packetsA

andB, SDMB R2 finds a data packetA is redundant, and SDMBR3 stores an index of

data packetB whose hash range key (0.7) is within hash range [0.5,0.75) ofSDMB R3.

Likewise, a data packetB from a clientH3 is found to be redundant at SDMBR4, not

storing an index again. In this manner, SD-uniform reduces index sizes from 8 (in case

each SDMB stores indexes of packetA andB) to 4. The complexity of index size per path

is O(n), where n is the number of unique packets on a flow path.

SoftDANCE-merge (SD-merge): SD-merge assigns the disjoint hash ranges only for the

SDMBs that have more than one incoming flows of the same destination (merge). As

presented in Algorithm 6, SD-merge counts total incoming degree of merge SDMBs on a

path. Then, a fraction of an SDMB is computed by incoming degree of a SDMB

total incoming degree of merge SDMBs on a path
.

sdMB.getDegree() function returns 0 if a SDMB is not merge node, leading fraction to 0.

103

Table 6: SD-merge hash ranges and generated index size
Path R1 R2 (merge) R3 (merge) R4

H1-H4 - [0,0.5) [0.5,1) -
Hash range H2-H4 - [0,0.5) [0.5,1) -

H3-H4 - - [0,1) -
H1-H4 - 1 (A) 1 (B) -

Index H2-H4 - 0 (dup A) 0 (dup B) -
H3-H4 - - 1 (A), 0 (dup B) -
Total 0 1 2 0

Hash ranges are computed by accumulating fractions, starting from 0 like SD-uniform.

In Figure 52, for a path H1-H4, there are two merge SDMBs, R2 and R3. Thus, R2 and

R3 are assigned [0,0.5) and [0.5,1) respectively, but R4 is not assigned hash ranges; that

is, incoming packets to R2 are just forwarded to the next hop (in this case, H4) without

encoding.

Table 6 shows how many indexes SD-merge produces. Paths H1-H4 and H2-H4

have two merge SDMBs (R2 and R3), and H3-H4 has only one merge SDMB (R3). When

a client H1 sends data packets A and B, R2 stores index of a packet A and R3 stores index

of a packet B. Data packets sent from H2 are found to be redundant at R2 and R3. When

a client H3 sends data packets, an index of data packet A is stored at R3 but an index of

data packet B is found to be redundant. R1 and R4 just forwardspackets because their

hash ranges are out of [0,1). The total index size of SD-mergeis now 3 that is lower than

that of SD-uniform. This shows that assigning hash ranges toonly merge nodes can find

more redundant packets.

SoftDANCE-optimize (SD-opt): As both SD-uniform and SD-merge assign the hash

range based on the flow path information, they may not be able to consider the dynamic

104

Algorithm 7 runOptHashRange: Compute hash range (optimize)
Input: sdMBList, pathList
Output: nodes with hash range

1: rProfileList← importRProfile() ⊲ matchp,q,matchSizep,q
2: pathList(packetp)← importPacketCounts()
3: pathList(packetp,unique)← importUniqueCounts()
4: // hash range is set to lowerbound, upperbound in a node
5: solveLP(sdMBList, pathList, rProfileList) ⊲ by LP
6: range = 0
7: for all path∈ pathList do
8: for all sdMB∈ path do ⊲ a sdMB in a path
9: fraction = sdMB.fraction() ⊲ set bysolveLP()

10: setHashRange(sdMB, range, range+fraction)
11: range = range + fraction
12: end for
13: end for

conditions such as network traffic, packet redundancy, and resource constraints. To get

better hash ranges, we use a linear programming (LP) formation of SmartRE [5] for SD-

opt scheme. Algorithm 7 presents how to compute hash ranges based on LP. To run LP,

SD-opt needs input constants: (1) redundancy profile that indicates how many packets

across paths are redundant (denoted as matchp,q), and how many bytes across paths are

redundant (denoted as matchSizep,q). (2) number of packets that passed SDMBs on a

pathp (denoted as packetp). (3) number of unique packets that passed SDMBs on a path

p (denoted as packetp,unique). SDMBs maintain these input constants and a SoftDance

controller uses the input constants that are collected fromSDMBs. The solveLP() function

runs LP, computes fractions of SDMBs which are results of LP,and sets the fractions into

SDMBs. The setHashRange() function computes hash range with fractions of SDMBs on

a path; concretely, lower bound and upper bound are computedfor each hash range.

105

Adopted formulation of SD-opt is different from the formulation of SmartRE [5].

SoftDance stores only indexes while SmartRE stores packet as well as indexes, which

changes the memory constraint in our formulation. Also, SoftDance performs index-

ing and encoding at SDMBs, but SmartRE runs storing packets and decoding encoded

packets, which changes the processing constraints in our formulation. Formulation of

SD-opt has three constraints: memory constraints, processing constraints, and fraction

constraints. For memory constraint in Equation 6.1, each SDMB stores all indexes of

unique packets that are within hash ranges assigned, and theindex sizes in the SDMB

should be less than available memory size.dp,r is a fraction of a packet that an SDMB

r can hold on a pathp. indexSizeis 40 byte of a hash key string.packetp,unique is the

number of unique packets on pathp. Mr is the maximum available memory of a SDMB

r.

∀r,
∑

p:r∈p

dp,r × packetp,unique × indexSize ≤Mr (6.1)

For the processing constraint in Equation 6.2, each SDMB checks hash range and

index table for checking redundancy, and encodes redundantpackets. The total processing

should be less than maximum available processing capability, Lr. packetp is the number

of packets passing a SDMB on a pathp. matchp,q is the number of packets matched

across pathsp andq.

∀r,
∑

p:r∈p

dp,r packetp +
∑

p,q:r∈p,q

dq,rmatchp,q ≤ Lr (6.2)

106

Table 7: REST API URIs
URI Method Description

/wm/re/cmd/<op>/<ip> GET get hash range (ip: ip address of sdMB)

/wm/re/cmd/hashRange/<op> GET signal to compute hash range

/wm/re/set/<op> POST
send node information(ip, mac addr) to

controller

/wm/re/get/<op> GET retrieve paths

∀p,
∑

r:r∈p

dp,r ≤ 1 (6.3)

The third constraint is shown in Equation 6.3 where the maximum sum of the

fraction on a path is 1. The objective shown in Equation 6.4 isto find the largest amount

of redundant packets considering the storage space and bandwidth savings.matchSizep,q

is the total size of matched packets across pathsp andq. Our objective is different from

SmartRE that is to achieve only bandwidth savings.

max
(

∑

p

∑

r

∑

q:r∈q

dq,r ×matchSizep,q

)

(6.4)

6.6 Implementation: REST, JSON, Middlebox

We use Floodlight [26] to implement a SoftDance controller.We implement

a Floodlight module [25] that computes hash ranges. A clientmodule, SDMBs, and

a server module communicate with a SoftDance controller through REST API using

cURL [73]. We add REST API URIs into Floodlight module for communication. SDMBs

107

Figure 53: JSON format example: response of hash range URI

use C++ JSON parser [38] to parse JSON data (with hash ranges)that is delivered from

a SoftDance controller. A few important URIs are shown in Table 7. For example,

“/wm/re/set/<op>” is used for a SDMB to send node information including IP and MAC

addresses to a controller using POST method.<op> is one of “uniform”, “merge”, and

“opt”. “/wm/re/cmd/<op>/<ip>” is used for a SDMB to receive hash range from a con-

troller.

Figure 53 describes JSON format of an example responded by the “get hash

range” URI. SD-opt requires input constants including packetp,unique, packetp, matchp,q,

matchSizep,q, Mr, Lr to run a LP. In our prototype, SDMBs maintain the input constants

during each SoftDance service.

6.7 Experiment and Emulation Setup

We measure the performance and overhead of SoftDance compared to other ex-

isting storage and network data reduction techniques. We begin by describing our setup

108

Figure 54: Experiment topology

of testbed experiment and emulation along with topology andmetrics. We then compare

overall and per-topology performance and overhead of SoftDance with others. Finally,

we contrast SoftDance with combined existing techniques.

We deployed a testbed experiment to verify that SoftDANCE works practically in

a physical testbed system. As shown in Figure 54, the experiment consists of 3 clients

(H1,H2, andH3), a server (H4), 4 SDMBs (R1 to R4), OpenVSwitches, and a controller.

The controller is connected to all nodes through an out-of-band network (not shown in

figure). There are three paths and each client sends the same dataset as other clients.

Thus, redundancy of all datasets is2

3
.

We also set up several topologies such as a tree, a multi-rooted tree, and a fat-tree

based on mininet [51] as shown in Figure 55. The purpose of choosing the topologies

is to validate SoftDANCE on typical topologies in Data Center Network (DCN). In all

109

(a) Tree

(b) Multi-rooted tree

(c) Fat-tree

Figure 55: Emulation topology

110

topologies, we choose a server that is on the far right side:H8 in tree,H16 in multi-tree

and fat-tree. Other hosts act as clients.R{x} is a SDMB andS{x} is an OpenVSwitch.

A controller communicates with all nodes through in-band (not shown in figure). We do

not use multi-path because our main purpose is to measure performance and overhead

on the same path for all compared techniques: a switch is chosen by a spanning tree in

both multi-tree and fat-tree. Thus, number of nodes selected for multi-tree and fat-tree

are same with a single core switch. Like experiment, all clients send the same dataset as

other clients, so redundancy is6
7

for tree and14
15

for multi-rooted tree/fat-tree.

We use two metrics for measuring performance: storage spacesaving and net-

work bandwidth saving, and other two metrics for measuring overhead: processing time

and memory size. To present storage space saving, we use deduplication ratio. Dedupli-

cation ratio is a typical means to show how much storage spaceis reduced, and is com-

puted byvolume of redundant data eliminated

total volume sent by all clients
∗ 100. Network bandwidth saving is computed by

Reduced traffic size

Total traffic size without redundancy elimination
∗ 100. For overhead metrics, we measure pro-

cessing time occurred at clients, a server, and RE boxes. We also measure the size of

memory that clients, a server, and RE boxes hold.

For the dataset, we use campus log data that has been capturedat a university data

center. The log data are backed up to storage servers every week. The used dataset has

rare redundancies under 2%. Thus, for all techniques used, intra-redundancy ratio found

when a single client sends a dataset is under 2% at maximum.

SoftDance is compared with client Dedup, server Dedup, and network wide RE

111

0

0.2

0.4

0.6

0.8

1

S
er

ve
rD

C
lie

nt
D

F
ul

l

U
ni

fo
rm

M
er

ge O
pt

(a) Storage space saving

0

0.2

0.4

0.6

0.8

1

S
R

E

F
ul

l

U
ni

fo
rm

M
er

ge O
pt

(b) Bandwidth saving

Figure 56: Comparison of performance

(SmartRE). We implemented existing techniques for comparison. Client Dedup is de-

noted as ClientD. Server Dedup is divided into file-granularity Dedup (File Dedup), fixed-

size block granularity Dedup (Fix Dedup), and variable-size chunk granularity Dedup

(Var Dedup) based on granularity. SmartRE distributes hashranges based on its opti-

mization LP [5]. SmartRE is denoted as SRE. We also compare our approaches including

SD-full, SD-uniform, SD-merge, and SD-opt.

6.8 Storage Space and Network Bandwidth Saving

We present overall performance of SoftDance compared to existing techniques

across all evaluation topologies: experiment and emulation (tree and multitree/fat-tree).

For this purpose, we compare relative value normalized for all metrics as in Figures 56

and 57. We use log scale for Figures 57(a) and 57(b) because the gap between largest and

smallest one is huge, and multiply104 and103 respectively to read figures easily.

For storage space saving as shown in Figure 56(a), SoftDanceshows the closest

112

performance to server Dedup (ServerD) that is the best for saving storage space in existing

techniques. SD-full shows exactly the same space saving as server Dedup. This indicates

SD-full does not miss any redundancy through network. SD-uniform, SD-merge, and SD-

opt have close space saving to the server Dedup. Meanwhile, client Dedup is the worst

for space saving and has only 1.6% saving by eliminating redundancy inside a client.

This shows client Dedup does not deal with redundancy acrossclients. SmartRE does not

contribute storage space saving because it runs only on network in an application agonistic

fashion. In SoftDance approaches, SD-merge shows better performance than SD-uniform

due to finding more redundancies at merge SDMBs.

For bandwidth saving in Figure 56(b), SoftDance shows 2-4x more bandwidth

saving than SmartRE. The reason that SmartRE shows lower bandwidth saving than

SoftDance is that SmartRE fails to find inter-path redundancies passing different ingress

routers that are encoders. For example, in Figure 54, two duplicate packets that arrive

encoders (R1andR2) from different hosts (H1 andH2) are determined to be unique, and

thereafter traverse to a server without eliminating redundancy as if they were unique pack-

ets. To investigate our argument, we choose a multi-rooted tree as shown in Figure 55 and

build a test case where edge SDMB is connected to only a client(e.g.,R5 is connected

to only H1 but not withH2,H3, andH4). We choose 4 clients (H1,H5,H9,H13) and one

server (H16). The bandwidth saving on the test case shows only about 4% that is summa-

tion of intra-path redundancy from each client: 70% inter-path redundancy is not detected

(3
4
(75%)− 4%).

113

In SoftDance, SD-opt (optimize) shows close storage space saving to SD-full con-

sidering resource constraints, but has lower bandwidth saving than SD-merge. Note that

SD-opt optimizes based on matches between packets, which seeks overall benefit of space

and bandwidth saving rather than only a single benefit. Thus,a single benefit can be lower

than heuristic approaches.

6.9 CPU and Memory Overhead

For processing time in Figure 57(a), SoftDance (denoted as Full) is the lowest

among all techniques. Client Dedup (denoted as ClientD) andVar Dedup (denoted as S-

Var) have 100x and 10x higher processing time than SmartRE due to expensive chunking.

Even SmartRE (denoted as SRE) shows larger processing time than SoftDance because of

the sliding fingerprinting. For memory size in Figure 57(b),SoftDance (denoted as Full)

has 40x less memory than SmartRE. This is because SoftDance only stores indexes but

SmartRE saves packets as well as indexes in caches for encoders and decoders. Evicting

indexes and packets from caches can reduce memory size, but may lead to low band-

width because same packets of evicted ones are not encoded (that is, they are found to

be unique). However, SoftDance (Full) still consumes larger memory than server Dedup

and client Dedup due to more indexes on fine-grained granularity (SoftDance uses 1.5

KB packet payload, but server Dedup and client Dedup use 8 KB chunk(or block) granu-

larity). To reduce memory size, SoftDance distributes indexes based on hash-based sam-

pling [68]. Figure 58 demonstrates that memory size (concretely index size) required by

SD-full can be reduced up to 3x by SD-opt.

114

10
0

10
2

10
4

P
ro

ce
ss

in
 ti

m
e

(lo
gs

ca
le

)

S
−

F
ix

S
−

V
ar

C
lie

nt
D

S
R

E

F
ul

l

(a) Processing time: per-node

10
0

10
1

10
2

10
3

M
em

or
y

si
ze

 (
lo

gs
ca

le
)

S
er

ve
rD

C
lie

nt
D

S
R

E

F
ul

l

(b) Memory size: per-node

Figure 57: Comparison of overhead

0

0.2

0.4

0.6

0.8

1

F
ul

l

U
ni

fo
rm

M
er

ge O
pt

Figure 58: Memory size among SoftDance approaches: per-node

6.10 Performance and Overhead per Topology

We show performance per metric and changes of performance depending on dif-

ferent topologies. The differences among topologies are two fold: number of clients and

location of clients. First, the number of clients in tree topology is more than that in exper-

iment, resulting in more redundancy because each client sends the same dataset as other

clients in our evaluation. Second, in experiment, clients are attached to both edge and in-

terior switches while in emulation, clients are attached toonly edge switches. Our focus

115

is what performance each technique acquires on the differences.

Storage space saving increases as the number of clients increases for all techniques

(except for SD-opt) as shown in Figure 59(a). This is becauseredundancies increase pro-

portionally to the number of clients that send same dataset.SD-full shows exactly the

same space saving as server Dedup, which indicates SD-full does not miss any redun-

dancies through the network. In experiment, SD-merge showshigher space saving than

SD-uniform, which indicates a merge SDMB has more redundantpackets (originated

from different paths) than a forwarding node with one incoming degree. SD-opt achieves

the most space saving among distributed indexing approaches. However, we find SD-opt

in multi-tree/fat-tree shows a bit anomalous result which was expected to be higher than

in tree topology. We are investigating the anomaly.

For bandwidth saving in Figure 59(b), SoftDance shows more bandwidth sav-

ing than SmartRE. In experiment, SmartRE has much less bandwidth saving by 10-40x

times than SoftDance while in tree (or mtree/fattree), SmartRE has 2-3x less bandwidth

saving than SoftDance. The significant difference between in experiment and in tree(or

mtree/fatree) for SmartRE is not caused by the increase in the number of clients but by a

fact that SmartRE fails to find inter-path redundancies passing different ingress routers.

As the number of clients increases, processing time increases as shown in Fig-

ure 60(a) for all techniques (except for SmartRE). However,the velocity of change is

different; SoftDANCE (denoted as Full) increases more slowly in processing time than

others. Other SoftDance approaches such as SD-uniform, SD-merge, SD-opt (not shown

here) have the almost same processing time as SD-full. Client Dedup and variable-size

116

0

20

40

60

80

100

S
er

ve
rD

C
lie

nt
D

F
ul

l

U
ni

fo
rm

M
er

ge O
pt

Experiment Tree MTree/FatTree

(a) Storage space saving (%)

0

20

40

60

80

S
R

E

F
ul

l

U
ni

fo
rm

M
er

ge O
pt

Experiment Tree MTree/FatTree

(b) Bandwidth saving (%)

Figure 59: Performance per topology

117

0

100

200

300

S
−

F
ix

S
R

E

F
ul

l

Experiment Tree MTree/FatTree

(a) Processing time: per-node (sec)

0

1

2

3

S
er

ve
rD

C
lie

nt
D

F
ul

l

M
er

ge

Experiment Tree MTree/FatTree

(b) Memory size: per-node (MB)

Figure 60: Overhead per topology

118

server Dedup are not shown as readable figures due to excessive processing time. Inter-

estingly, in experiment, SmartRE shows larger processing time than in tree topology. We

find that computers used for REboxes in experiment are much slower than a computer

used for emulation (tree and multi-tree/fat-tree), which amplifies processing time slowed

by fingerprinting. Memory size increases proportional to increase in the number of clients

as shown in Figure 60(b). For SmartRE (not shown in figure), memory size in SDMBs is

X, 1.1X, 2.5X for experiment, tree, and multi-tree/fat-tree respectively where X requires

40 times more memory than SD-full. SD-full has more index size than server Dedup and

client Dedup, but SoftDance can reduce the indexes by utilizing an indexing scheme like

SD-merge to reduce memory size of SD-full in the figure.

6.11 SoftDance vs Combined Existing Deduplication Techniques

We tested some of scenarios when client data is transferred across network links to

be stored in a server, while each Dedup and NRE can be performed for a benefit of its own

domain. The data may go through various forms of deduplication processes redundantly

that may incur significant processing and memory overhead. To compare with SoftDance,

we envision two combined approaches that can be used as a network and storage service

using existing techniques: client Dedup (storage serivce)+ SmartRE (network service)

and server Dedup (storage service) + SmartRE (network service).

For storage space saving as shown in Figure 61(a), SoftDanceshows the best space

saving equal to “ServerD+SRE”. Both two combined approaches rely on storage services

including client Dedup and server Dedup because SmartRE is not applicable for storage

119

0

0.2

0.4

0.6

0.8

1

ClientD+SRE

ServerD+SRE
SoftDance

(a) Storage space saving

0

0.2

0.4

0.6

0.8

1

ClientD+SRE

ServerD+SRE
SoftDance

(b) Bandwidth saving

Figure 61: Performance of combined approaches

space saving. For bandwidth saving as shown in Figure 61(b),SoftDance saves the most

bandwidth compared to two combined approaches. For two combined approaches, band-

width saving is determined by performance of SmartRE. For processing time, SoftDance

outperforms the two combined approaches as shown in Figure 62(a). The slow processing

time of the two combined approaches is due to expensive chunking and fingerprinting. For

memory size as shown in Figure 62(b), SoftDance requires less memory size than the two

approaches combined. This is attributed to the fact that SmartRE stores packets itself as

well as indexes. The slight reduction in memory size inside aclient becomes invalid due

to excessive memory size needed by SmartRE. Overall, the evaluation results show that

in the scenarios of both end-systems and networks performing deduplication redundantly,

SoftDance achieves very efficient processing and memory overhead.

120

10
0

10
5

P
ro

ce
ss

in
 ti

m
e

(lo
gs

ca
le

)

ClientD+SRE

ServerD+SRE
SoftDance

(a) Processing time: per-node

10
0

10
1

10
2

10
3

M
em

or
y

si
ze

 (
lo

gs
ca

le
)

ClientD+SRE

ServerD+SRE
SoftDance

(b) Memory size: per-node

Figure 62: Overhead of combined approaches

6.12 Summary

In this chapter, we proposed SoftDance, an efficient software-defined deduplica-

tion as a network and a storage service that gives both storage space savings and network

bandwidth savings while significantly reducing processingtime and memory size. We de-

veloped efficient encoding and indexing algorithms for a SoftDance middlebox (SDMB)

and an effective control mechanism for an SDN controller. Wealso built a prototype of

testbed experiments and Mininet-based emulations to evaluate SoftDance on real system

environments and typical DCN topologies. Our evaluation results show that SoftDance

saves 2-4x more bandwidth than an RE technique (SmartRE) andsame/close storage

space saving to the Dedup technique with low overhead, whileachieving very efficient

processing and memory overhead.

121

CHAPTER 7

MOBILE DE-DUPLICATION

In this chapter, we show an enhancement of client-based deduplication for popular

files in mobile devices, where each file is deduplicated basedon the file’s structure con-

sidering low capacity mobile device. We also consider security of the files, and observed

performance of encryption algorithms based on systems withdifferent CPU types such as

android mobile device (ARM-CPU) and desktop Linux server (Intel-CPU).

7.1 Large Redundancies in Mobile Devices

Currently, massive files are popularly created and used in mobile devices. Large

amount of documents and image files are generated and used in mobile devices. Also

watching video streams is one of major usages in mobile devices.

We address two issues. The first issue is that large redundancies exist in files of

mobile devices. For example, nowadays there is a very popular application to take pictures

of moving objects, called burst shooting mode. In this mode,we can take 30 pictures

within a second and choose good pictures or remove bad ones, but this application may

experience large redundancies between similar pictures. Also, a video file consists of I-

frame that has images and P-frame that has delta informationbetween I-frames. In scenes

where actors keep talking in the same background, large portions of background become

redundant: that is, I-frame has large redundancies that canbe removed. The second

122

issue is that security becomes critically important in deduplication in mobile devices, and

encryption function should be fast and consider low energy consumption considering the

low capacity of mobile devices.

Thus, our approaches are to use structure aware deduplication for files based on

files’ structured formats with strong and fast encryption. We choose many different types

of files including documents, emails, and image files in mobile devices. For structure

aware deduplication, we decompose a file into objects, and deduplicate objects based on

structure library where structure formats are defined. For security, the encryption algo-

rithm has different performances and strengths. Generally, stronger encryption is slower

due to more computation. Thus, we develop an idea that for more security-sensitive ob-

jects, strong encryption should be used, but for less security-sensitive objects, weaker

encryption can be used for fast performance.

For varying systems with different CPU types, we measured the performance of

strong encryption algorithms like Advanced Encryption Standard (AES) [17] and weaker

encryption algorithms like Blowfish [67], Data Encryption Standard (DES) and 3DES [55],

and RC2 [66]. Based on the results, we found that the performance of encryption can be

effected by encryption strength as well as CPU types (Intel or ARM).

7.2 Approaches and Observations

We propose structured-based deduplication using encryption functions based on

different level of security. Thus, in our approaches, we mainly focus on two purposes:

how to efficiently decompose and reconstruct files in mobile devices, and how fast and

123

strong encryptions can be used for security of decomposed objects. For the first purpose,

we are using structure aware deduplication that has been used for SAFE. we are inves-

tigating how efficiently it deduplicates images and video files in mobile devices, and we

will focus more on the second purpose for security. The security and privacy issues on

deduplication are discussed in many studies [30] [31] [32] [53].

7.3 JPEG and MPEG4

JPEG [35] is popular compression technique for digital photography, and current

mobile devices use JPEG as a default image format due to its small footprint compared

to other image files. JPEG uses efficient compression algorithm such as Discrete Cosine

Transformation (DCT). We argue that JPEG efficiently reduces redundancies of a single

image, and our approach reduces redundancies among similarimages. MPEG4 [36] is a

popular compression for audio and video files. For example, streaming files in youtube

are MPEG4.

7.4 Throughput and Running Time of Encryption Algorithm

We show how encryption algorithms are performed depending on different file

types and systems with different CPU types. Overall, AES outperforms other com-

pared encryption algorithms on Intel-based system in termsof performance. However,

for ARM-based systems like smart phone, blowfish shows the best performance among

other algorithms.

As shown in Figures 63 and 64, we observed that encryption algorithms show

124

AESBlowfishDES 3DES RC2
0

0.5

1

1.5

2

2.5

3x 10
8

T
hr

ou
gh

pu
t (

B
/s

ec
)

mp3
wav
wma
doc
docx
pdf
ppt
pptx
eml
gif
jpg
txt

(a) Linux (Intel I5)

AESBlowfishDES 3DES RC2
0

0.5

1

1.5

2x 10
7

T
hr

ou
gh

pu
t (

B
/s

ec
)

mp3
wav
wma
doc
docx
pdf
ppt
pptx
eml
gif
jpg
txt

(b) Nexus 7 (ARM)

Figure 63: Throughput of encryption algorithms per file type

125

AESBlowfishDES 3DES RC2
0

0.5

1

1.5

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

mp3
wav
wma
doc
docx
pdf
ppt
pptx
eml
gif
jpg
txt

(a) Linux (Intel I5)

AESBlowfishDES 3DES RC2
0

1

2

3

4

5

6

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

mp3
wav
wma
doc
docx
pdf
ppt
pptx
eml
gif
jpg
txt

(b) Nexus 7 (ARM)

Figure 64: Running time of encryption algorithms per file type

126

different performances per system with different CPU types. As shown in Figure 63, we

measured throughput of encryption algorithms in a Linux machine with Intel I5 and in

a Nexus 7 with ARM, for different file types including audio, document, image, text,

and email files. We found that in Linux, AES outperforms otherencryption algorithms,

but in nexus 7, blowfish has the highest performance. We were interested in this result

because a previous study [19] insisted that blowfish always has the best performance. The

reason of AES’s best performance in Linux system is that Intel CPU has hardware-support

instruction sets for AES; that is call AES New Instruction (AES NI). In the same vein,

Figure 64 presents that AES is the fastest in Linux system butblowfish is the fastest in

Nexus7.

We measured throughput and processing time of encryption algorithms in Linux

and nexus 7, varying the data size from 4 KB to 1 GB. Overall, Inboth systems, through-

put and processing time increase as the growth of data size. However, for throughput as

shown in Figure 65, there is a threshold size (here, 10 MB) after which throughput de-

creases. For processing time as shown in Figure 66, very small data (like 4 KB) takes

longer time than relatively larger data (like 128 KB). However, the processing time from

4 KB to 128 KB decreases for both AES and blowfish in both systems. These results

show the importance of choosing granularity of deduplication, considering performance

of encryption in deduplication. 128KB is 32 4KBs. Thus, encrypting a 128 KB object is

32 times faster than encrypting 32 4KB objects. However, using 128KB granularity finds

less redundancies using 4 KB granularity. As a result, we need to select a granularity

considering balance between removing redundancies and encryption processing time.

127

4K 128K 512K 1M 10M 100M 1G
0

0.5

1

1.5

2

2.5

3x 10
8

T
hr

ou
gh

pu
t (

B
/s

ec
)

AES
Blowfish
DES
3DES
RC2

(a) Linux (Intel I5)

4K 128K 512K 1M 10M 100M
0

0.5

1

1.5

2

2.5x 10
7

T
hr

ou
gh

pu
t (

B
/s

ec
)

AES
Blowfish
DES
3DES
RC2

(b) Nexus 7 (ARM)

Figure 65: Throughput of encryption algorithms per file size

4K 128K 512K 1M 10M 100M 1G
10

−4

10
−2

10
0

10
2

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

AES
Blowfish
DES
3DES
RC2

(a) Linux (Intel I5)

4K 128K 512K 1M 10M 100M
10

−4

10
−2

10
0

10
2

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

AES
Blowfish
DES
3DES
RC2

(b) Nexus 7 (ARM)

Figure 66: Running time of encryption algorithms per file size

128

7.5 Summary

In this chapter, we show a client-based deduplication for popular files in mobile

devices, mobile deduplication that remove redundancies ofthe files in mobile devices.

Considering low capacity of mobile devices, we propose to use structure aware dedupli-

cation for the files to improve processing time. Also, we observed that the performance

of encryption is changed depending on the strength level of security as well as systems

with different CPU types. In future work, we are investigating efficient structure aware

deduplication for JPEG [35] and MPEG4 [36] files in terms of storage space savings and

processing time overhead.

129

CHAPTER 8

CONCLUSIONS

In the era of data explosion, huge redundancies exist in storages and networks.

Existing deduplication solutions such as storage data deduplication and network redun-

dancy elimination are not as efficient as possible to optimize data moving from clients to

servers through networks.

Thus, my contribution is devoted to develop an efficient deduplication framework

to optimize data in a chain from clients to servers through network, and to make com-

ponents for the framework. We developed the components suchas Hybrid Email Dedu-

plication System (HEDS) on the server side, Structure AwareFile and Email Deduplica-

tion for Cloud-based Storage Systems (SAFE) on the client side, and Software-Defined

Deduplication as a Network and Storage Service (SoftDance)on the network side for the

deduplication framework. HEDS efficiently achieves an trade-off of file-level and block

deduplication for email systems. SAFE a exploits structure-based granularity rather than

using physical chunk granularity, which enables SAFE to as fast as file-level deduplication

and has the same space savings as block deduplication with a low overhead. SoftDance, as

an in-network deduplication, chains storage data deduplcation and network redundancy

elimination functions by using Software Defined Network (SDN), and it achieves stor-

age space savings and network bandwidth savings with low processing time and memory

overhead in storages and networks. We are also working on mobile deduplication with

130

popular files such as image and video files in mobile devices.

For the future work, we are planning to deploy and explore more reliability for

network dynamics, storage workload, and failure, as well asscalability in Cloud environ-

ments.

131

Bibliography

[1] Adobe. ISO32000:Document management:Portable document format.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF320002008.pdf.

[2] Alvarez, C. NetApp deduplication for FAS and V-Series deployment and implemen-

tation guide (TR-3505). http://www.netapp.com/us/media/tr-3505.pdf.

[3] Amazon. Amazon Simple Storage Service. http://aws.amazon.com/s3/.

[4] Anand, A., Gupta, A., Akella, A., Seshan, S., and Shenker, S. Packet caches on

routers: the implications of universal redundant traffic elimination. In Proc. of the

ACM SIGCOMM 2009 conference on Data communication(2008).

[5] Anand, A., Sekar, V., and Akella, A. SmartRE: an architecture for coordinated

network-wide redundancy elimination. InProc. of the ACM SIGCOMM 2009 con-

ference on Data communication(2009).

[6] Bloom, B. H. Space/time Trade-offs in Hash Coding with Allowable Errors. vol. 13,

Communication of the ACM.

[7] Bolosky, W., Corbin, S., Goebel, D., and Douceur, J. Single instance storage in

Windows 2000. InProc. of the 4th USENIX Windows Systems Symposium(2000).

[8] Bonwick, J. ZFS deduplication. https://blogs.oracle.com/bonwick/entry/zfsdedup.

132

[9] Cisco. Wide Area Application Services. http://www.cisco.com/c/en/us/products/routers

/wide-area-application-services/index.html.

[10] Citrix. CloudBridge. http://www.citrix.com/products/cloudbridge/overview.html.

[11] Debnath, B., Sengupta, S., and Li, J. ChunkStash: Speeding Up Inline Storage

Deduplication Using Flash Memory. InUSENIX Annual Technical Conference

(2010).

[12] Dong, W., Douglis, F., Li, K., Patterson, R. H., Reddy, S., and Shilane, P. Trade-

offs in Scalable Data Routing for Deduplication Clusters. In Proc. of the USENIX

Conference on File and Stroage Technologies (FAST)(2011).

[13] Drago, I., Mellia, M., M Munafo, M., Sperotto, A., Sadre, R., and Pras, A. Inside

dropbox: understanding personal cloud storage services. In Proc. of the 2012 ACM

conference on Internet measurement conference (IMC)(2012), pp. 481–494.

[14] Dropbox. http://www.dropbox.com.

[15] Dropbox. REST API. https://www.dropbox.com/developers/core/docs.

[16] Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P.,

Szczepkowski, J., Ungureanu, C., and Welnicki, M. HYDRAstor: A Scalable Sec-

ondary Storage. InProc. of the USENIX Conference on File and Stroage Technolo-

gies (FAST)(2009).

133

[17] Dworkin, M. J., Barker, E. B., Nechvatal, J. R., Foti, J., Bassham, L. E., Roback,

E., and Jr, J. F. D. Advanced Encryption Standard. http://www.nist.gov/manuscript-

publication-search.cfm?pubid=901427.

[18] ECMA. Standard ECMA-376 : Office Open XML File Formats. http://www.ecma-

international.org/publications/standards/Ecma-376.htm.

[19] Elminaam, D. S. A., Kader, H. M. A., and Hadhoud, M. M. Performance Evaluation

of Symmetric Encryption Algorithms.International Journal of Computer Science

and Network Security (IJCSNS) 8, 12 (2008), 280–286.

[20] ElShimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., and Sengupta, S. Primary

Data Deduplication-Large Scale Study and System Design. InUSENIX Annual

Technical Conference(2012).

[21] EMC. Achieving storage efficiency through EMC Celerra data dedupli-

cation. http://china.emc.com/collateral/hardware/white-papers/h6265-achieving-

storage-efficiency-celerra-wp.pdf.

[22] EMC. Avamar. http://www.emc.com/backup-and-recovery/ avamar/avamar.htm.

[23] EMC. Centera: Content Addresses Storage System, Data Sheet.

http://www.emc.com/collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf.

[24] EMC. Networker. http://www.emc.com/domains/legato/index.htm.

[25] Floodlight. Floodlight Module. https://floodlight.atlassian.net/wiki/display/floodlightcontroller/

Module+Applications.

134

[26] Floodlight. Floodlight SDN Controller. http://www.projectfloodlight.org/floodlight/.

[27] Freed, N., and Borenstein, N. S. Multipurpose InternetMail Extensions (MIME)

Part One: Format of Internet Message Bodies. http://tools.ietf.org/html/rfc2045.

[28] FUSE. File in UserSpacE. http://fuse.sourceforge.net/.

[29] Guo, F., and Efstathopoulos, P. Building a High-performance Deduplication System.

In USENIX Annual Technical Conference(2011).

[30] Halevi, S., Harnik, D., Pinkas, B., and Shulman-Peleg,A. Proofs of ownership in

remote storage systems. InProceedings of the 18th ACM conference on Computer

and communications security(2011), CCS ’11, ACM, pp. 491–500.

[31] Harnik, D., Pinkas, B., and Shulman-Peleg, A. Side Channels in Cloud Services:

Deduplication in Cloud Storage.Security Privacy, IEEE 8, 6 (2010), 40–47.

[32] Hu, W., Yang, T., and Matthews, J. N. The good, the bad andthe ugly of consumer

cloud storage.ACM SIGOPS Operating Systems Review 44, 3 (Aug 2010), 110–115.

[33] IBM. IBM White paper: IBM StorageTank - A distributed storage system.

https://www.usenix.org/legacy/events/fast02/wips/pease.pdf.

[34] IDC. The Digital Universe in 2020. http://idcdocserv.com/1414.

[35] ISO. JPEG, digital compression and coding of continuous-tone still images.

http://www.iso.org/iso/cataloguedetail.htm?csnumber=18902.

135

[36] ISO. MPEG4, Coding of audio-visual objects: Part 12: ISO base media file format.

http://www.iso.org/iso/isocatalogue/catalogueics/cataloguedetail ics.htm?csnumber=38539.

[37] ISO, and IEC. ISO/IEC 29500-1:2008. http://www.iso.org/iso/isocatalogue/cataloguetc/

cataloguedetail.htm?csnumber=51463.

[38] Json.org. C++ JSON parser. http://sourceforge.net/projects/jsoncpp/.

[39] JustCloud. http://www.justcloud.com/.

[40] Kim, D., and Choi, B.-Y. HEDS: Hybrid Deduplication Approach for Email Servers.

In Ubiquitous and Future Networks (ICUFN), 2012 Fourth International Confer-

ence on(2012).

[41] Kim, D., Song, S., and Choi, B.-Y. SAFE: Structure-Aware File and Email Dedu-

plication for Cloud-based Storage Systems. InProc. of the 2nd IEEE International

Conference on Cloud Networking(Nov 2013).

[42] Klimt, B., and Yang, Y. The enron corpus: A new dataset for email classification

research. 217–226.

[43] Li, J., He, L.-w., Sengupta, S., and Aiyer, A.Multimodal Object De-duplication.

Microsoft Corporation, 08 2009. Patent.

[44] Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar,V., Trezise, G., and Camble, P.

Sparse Indexing: Large Scale, Inline Deduplication Using Sampling and Locality. In

Proc. of the USENIX Conference on File and Stroage Technologies (FAST)(2009).

136

[45] Liu, C., Lu, Y., Shi, C., Lu, G., Du, D., and Wang, D. ADMAD: Application-Driven

Metadata Aware De-duplication Archival Storage System. InStorage Network Ar-

chitecture and Parallel I/Os, (SNAPI) Fifth IEEE International Workshop on(2008),

pp. 29–35.

[46] Meyer, D. T., and Bolosky, W. J. A Study of Practical Deduplication. In Proc. of

the USENIX Conference on File and Stroage Technologies (FAST) (Feb 2011).

[47] Microsoft. Exchange server 2003. http://technet.microsoft.com/en-

us/library/bb123872%28EXCHG.65%29.aspx.

[48] Microsoft. Exchange server 2007. http://www.microsoft.com/exchange/en-

us/exchange-2007-overview.aspx.

[49] Milter.org. Sendmail Mail Filters. https://www.milter.org/home.

[50] Min, J., Yoon, D., and Won, Y. Efficient Deduplication Techniques for Modern

Backup Operation. In IEEE Transactions on Computers(June 2011), vol. 60,

pp. 824–840.

[51] Mininet.org. Mininet. http://mininet.org/.

[52] Mozy. http://mozy.com/.

[53] Mulazzani, M., Schrittwieser, S., Leithner, M., Huber, M., and Weippl, E. Dark

clouds on the horizon: using cloud storage as attack vector and online slack space.

In Proceedings of the 20th USENIX conference on Security(2011), SEC’11.

137

[54] Muthitacharoen, A., Chen, B., and Mazières, D. A low-bandwidth network file

system. InSOSP(Dec. 2001).

[55] National Institute of Standards and Technology (NIST). Data Encryption Standard

(DES). http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[56] National Institute of Standards and Technology (NIST). Secure Hash Standard 1

(SHA1). http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[57] National Institute of Standards and Technology (NIST). Secure Hash Stan-

dard 256 (SHA256). http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-

384-512.pdf.

[58] NEC. Hydrastor. https://www.necam.com/hydrastor/.

[59] Netfilter.org. iptables extensions. http://ipset.netfilter.org/iptables-

extensions.man.html.

[60] Netfilter.org. libnetfilterqueue. http://www.netfilter.org/projects/libnetfilterqueue/.

[61] Pagh, R., and Rodler, F. F. Cuckoo Hashing.J. Algorithms 51, 2 (May 2004),

122–144.

[62] PKWARE. ZIP File Format Specification. http://www.pkware.com/documents/ cas-

estudies/APPNOTE.TXT.

[63] Quinlan, S., and Dorward, S. Venti: A New Approach to Archival Storage. InProc.

of the USENIX Conference on File and Stroage Technologies (FAST)(Jan. 2002).

138

[64] Rabin, M. O. Fingerprinting by random polynomials. Tech. Rep. Report TR-15-81,

Harvard University, 1981.

[65] Riverbed. SteelHead for WAN Optimization. http://www.riverbed.com/

products/wan-optimization/.

[66] Rivest, R. A Description of the RC2(r) Encryption Algorithm, RFC2268.

https://www.ietf.org/rfc/rfc2268.txt.

[67] Schneier, B. Description of a New Variable-Length Key,64-bit Block Cipher (Blow-

fish). In Fast Software Encryption, Cambridge Security Workshop(London, UK,

UK, 1994), Springer-Verlag, pp. 191–204.

[68] Sekar, V., Reiter, M. K., Willinger, W., Zhang, H., Kompella, R. R., and Andersen,

D. G. CSAMP: a system for network-wide flow monitoring. InNSDI (2008).

[69] Sendmail.com. Sendmail. http://www.sendmail.com/sm/opensource/.

[70] Silverberg, S. SDFS. http://opendedup.org.

[71] Spring, N. T., and Wetherall, D. A protocol-independent technique for eliminating

redundant network traffic. InProc. of the ACM SIGCOMM 2000 conference on

Data communication(2000).

[72] Srinivasan, K., Bisson, T., Goodson, G., and Voruganti, K. iDedup: Latency-aware,

inline data deduplication for primary storage. InProc. of the Tenth USENIX Con-

ference on File and Storage Technologies (FAST)(2012).

139

[73] Stenberg, D. cURL. http://curl.haxx.se/.

[74] Symantec. NetBackup. http://www.symantec.com/netbackup.

[75] Symantec. PureDisk. http://www.symantec.com/netbackup-puredisk.

[76] Xia, W., Jiang, H., Feng, D., and Hua, Y. SiLo: A Similarity-Locality based Near-

Exact Deduplication Scheme with Low RAM Overhead and High Throughput. In

USENIX Annual Technical Conference(2011).

[77] Yan, F., and Tan, Y. A Method of Object-based De-duplication. Journal of Networks

6, 12 (2011), 1705–1712.

[78] Zhu, B., Li, K., and Patterson, H. Avoiding the Disk Bottleneck in the Data Domain

Deduplication File System. InProceeding of the USENIX Conference on File and

Stroage Technologies (FAST)(2008).

VITA

Daehee Kim graduated from Pusan National University in South Korea in 1995

as a bachelor of science for Computer Science. After graduation. He had worked for In-

formation Technology (IT) companies including IBM Korea for more than 10 years as a

programmer, a software engineer, a system architect, and a project leader. He performed

various large scale system integration (SI) projects wherehe developed Web GroupWare

system, Web Portal system, and Web Intranet applications using Java programming lan-

guage. After he went abroad to study, he gained a Master of Science degree for Computer

Science from State University of New York at Binghamton in 2008. At that time, he

joined a project to develop a multicasting protocol for a wireless sensor network.

After one year’s Ph.D. study in Wichita State University, hejoined interdisci-

plinary Ph.D. curriculum in University of Missouri-KansasCity in 2009. His coordi-

nating discipline is Telecommunication& Computer Networking and his co-discipline

is Computer Science. His main research interest is to optimize data in storages and net-

works, and main technique is deduplication to reduce redundancies. His dissertation topic

is tightly coupled with deduplication to optimize data (reduce data volumes by removing

redundancies). Daehee also performed several multicasting projects for wireless sensor

networks.

He gained Outstanding Ph.D. student award from Telecommunication& Com-

puter Networking discipline in 2012, and is a member of Institute of Electrical and Elec-

tronic Engineers (IEEE).

141

