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ABSTRACT 

Process improvements for better wastewater treatment performance are necessary 

with stringent discharge requirements. The main objective of this research is to develop 

new wastewater treatment technologies for improved nutrient removal and the 

degradation of recalcitrant organic nitrogen compounds. In this research, a reverse A2/O 

system demonstrated better phosphorus removal efficiency than the regular A2/O system 

by inverting the sequence of anaerobic and anoxic zones. Placing an anoxic stage before 

the anaerobic stage in the reverse A2/O process resulted in a lower oxidation-reduction 

potential in the anaerobic zone, which contributed to higher P uptake by bacteria under 

subsequent aerobic respiration.  

With the development of emerging environmental nanotechnology, the effectiveness 

of nano zero-valent iron (NZVI) in nutrient removal was also determined under anaerobic, 

anoxic and aerobic conditions. The highest P removal efficiency (95% at the initial P 

concentration of 10 mg/L) by NZVI was observed under anoxic abiotic conditions. 
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Furthermore, new applications of NZVI as an antiseptic/antimicrobial material were 

extended to sludge bulking control. In two Modified Ludzack-Ettinger (MLE) activated 

sludge treatment systems, a single dose of NZVI at the final concentration of 100 mg Fe/L 

in the mixed liquor reduced the number of filamentous bacteria Type 021N by 2-3 log units 

(a reduction of 99.9 and 96.7% in MLE tank #1 and #2, respectively). Additional benefits 

of the use of NZVI such as improved P removal was also determined. The side effect of the 

use of NZVI depended on sludge bulking conditions and biomass concentration.  

In the last part of this dissertation, process improvements to remove recalcitrant 

organic N compounds such as melamine were evaluated. Melamine is a nitrogen-rich (67% 

nitrogen by mass) heterocyclic aromatic compound that could significantly increase 

effluent total nitrogen concentrations. The degradation of melamine and its impact on 

activated sludge operation in conventional activated sludge (CAS) systems and MBRs 

with high biomass concentrations were compared. Melamine was dosed continuously in 

CAS and MBR systems at an influent concentration of 3 mg/L for about 100 days. Even 

after such a long period of sludge adaptation, melamine appeared not to be easily 

biodegradable in any of the CAS and MBR systems indicating that selective enrichment 

of special microbes (melamine degradation specialists) and the special enzymes 

responsible for melamine degradation cannot be induced through acclimation. However, a 



xix 

 

significant reduction in toxicity of melamine to the activated sludge was observed in 

MBR systems, demonstrating the significance of MBR operation at high sludge 

concentrations.  



 

1 

 

CHAPTER 1 

 

 

1. Introduction 

1.1. Anaerobic/Anoxic/Oxic (A2/O) and Reverse A2/O Processes in 
Biological Nutrient Removal 

Biological nutrient removal (BNR) is increasingly used in wastewater treatment for 

nitrogen and phosphorus reduction. Nitrogen removal relies on different groups of bacteria 

that are responsible for nitrification followed by denitrification, while phosphorus removal 

relies on the proliferation of phosphate-accumulating organisms (PAOs) through an 

anaerobic-aerobic sequence in activated sludge processes (Ersu et al., 2010, Ramphao et al., 

2005). In enhanced biological phosphorus removal (EBPR), the PAOs use energy 

generated through the breakdown of Poly-P molecules to convert readily biodegradable 

organic matter to carbon compounds such as poly-hydroxyalkanoates (PHAs) under 

anaerobic conditions (Smolders et al., 1994). Under subsequent aerobic conditions, PAOs 

use the stored PHAs as an energy source to take up soluble P released under the anaerobic 

conditions plus the phosphate originally present in the wastewater due to the difference in 

energetics between anaerobic and aerobic metabolism (Grady et al., 2011). 
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The EBPR process must be integrated with nitrification and denitrification processes very 

well to achieve simultaneous nitrogen and phosphorus removal because both the EBPR and 

the denitrification processes compete for organic substrates. As a result, many BNR 

processes have been developed. These include, but are not limited to, the 

anaerobic/anoxic/oxic (A2/O) process, the five-stage Bardenpho process, the University of 

Cape Town (UCT) or modified UCT process, and the oxidation ditch process (Grady et al., 

2011, Metcalf and Eddy, 2003). All of these treatment processes are capable of removing 

nutrients with moderate cost (Littleton et al., 2003, Peng and Ge, 2011, Ramphao et al., 

2005, Solley and Armstrong, 2003). The A2/O process is comprised of three chambers in 

sequence—anaerobic, anoxic, and oxic (or aerobic) chambers (Figure 1)—and can be 

viewed as a combination of the Modified Ludzack-Ettinger (MLE) and the A/O processes 

for nitrogen and phosphorus removal, respectively (Grady et al., 2011). Studies have 

shown that the influent wastewater composition (chemical oxygen demand (COD), total N, 

and total P) and distribution (e.g., step feeding), and operating parameters such as 

hydraulic retention time (HRT), solids retention time (SRT), dissolved oxygen (DO), 

return activated sludge (RAS), and mixed liquor recirculation (MLR) flow rate have 

significant impacts on the performance of A2/O systems (Guerrero et al., 2011, Kim et al., 

2013, Maurer and Gujer, 1998, Scheer and Seyfried, 1997, Van Veldhuizen et al., 1999). 
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Due to the competition for organic substrates between PAOs and denitrifiers, there is a 

concern about the adverse effects of the nitrate in the returning sludge on the growth of 

PAOs, which prefer to grow under alternating anaerobic and aerobic conditions (Guerrero 

et al., 2011, Hauduc et al., 2013, Lee et al., 2009, Oehmen et al., 2007). Additionally, even 

though they have the function of simultaneous N and P removal (Beun et al., 2000, Kishida 

et al., 2006), the denitrifying PAOs (DPAOs) have a lower P uptake performance than the 

regular PAOs (Hu, Wentzel, and Ekama, 2002).   

 

 

Figure 1. A schematic of the two biological nutrient removal processes: (A) A2/O and (B) 
reverse A2/O. 
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To overcome the inherent drawbacks of the A2/O process, a reverse A2/O process has been 

proposed for nutrient removal by placing an anoxic stage before the anaerobic stage 

(Figure 1) (Fu et al., 2004, Kang et al., 2011, Zhang and Gao, 1997, Zhou et al., 2011). It is 

claimed that the reverse A2/O process will result in more complete denitrification and 

improve P uptake by bacteria under aerobic conditions (Kang et al., 2011, Zhang and Gao, 

1997). It is further claimed that by eliminating the MLR required in the A2/O process, the 

reverse A2/O process is easier to manage and can reduce energy consumption by about 20% 

(Kang et al., 2011). However, these claims may not be valid as the process performance is 

easily affected by wastewater strength and composition. Theoretically, the COD and 

nitrogen removal efficiencies would be similar for both A2/O and reverse A2/O processes if 

the HRT, the SRT, the aerobic and anoxic fractions of total volume, and the internal 

recycle flow rate are the same in both cases. The elimination of MLR may result in reduced 

nitrogen removal as denitrification becomes solely reliant on the flow of return activated 

sludge. Unfortunately, although there are quite a few publications advocating for reverse 

A2/O process in biological nutrient removal, there is still little information directly 

comparing the performance of A2/O and reverse A2/O processes under identical operating 

conditions.  
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1.2. NZVI: Environmental Applications and Implications 

The application of nanotechnology offers great opportunities to improve contaminant 

removal and treatment performance (Qu et al., 2013, Tang and Lo, 2013). Among the 

nanoparticles, nano zero-valent iron (NZVI) underwent a period of uncertainty and 

scrutiny in applications due to its high reactivity (Tang and Lo, 2013). The application of 

NZVI is a complementary treatment of iron permeable reactive barriers (PRBs) for 

groundwater remediation (Hosseini et al., 2011, Huang and Cheng, 2012, Saeedi et al., 

2013, Scherer et al., 2000, Shariatmadari et al., 2009, Yan et al., 2013). NZVI could be 25 

times more reactive than its counterpart (bulk ZVI) because of its higher surface/volume 

ratio (Li et al., 2006, Nurmi et al., 2005) and faster delivery to deep contamination zones 

due to its smaller size (Vance, 2005). NZVI is also used in industrial wastewater treatment 

to remove heavy metals and recalcitrant organic compounds (Fang et al., 2011, Homhoul et 

al., 2011, Jagadevan et al., 2012, Ma and Zhang, 2008). On the other hand, NZVI has 

antimicrobial activity against a broad range of microorganisms, causing serious damage to 

the cell membrane and respiratory activity (Auffan et al., 2008, Kim et al., 2011, Kim et al., 

2010). The mode of action of NZVI appears to be through reductive decomposition of 

protein functional groups and cell membrane due to strong reducing conditions at the 
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NZVI surface (Kim et al., 2010, Lee et al., 2008, Li et al., 2010). The antibacterial effect of 

NZVI may also involve the generation of intracellular reactive oxygen species (ROS) by 

dissociative recombination of H3O+ (H3O+ + e- → •HO + H2) catalyzed by Fe0/Fe (II) (Kim 

et al., 2011, Zhaunerchyk et al., 2009).  

 

Despite recent progress in NZVI research, the applications and implications of NZVI in 

wastewater treatment plants (WWTPs) are less studied. Nowadays, many wastewater 

treatment systems are designed and operated under different biochemical environments for 

nutrient removal and resource recovery. With appropriate configuration of biochemical 

settings (e.g., activated sludge operation under anaerobic, anoxic and aerobic conditions), 

nutrient removal is achieved through nitrification/denitrification and enhanced biological 

phosphorus removal (EBPR). NZVI can also be used in wastewater treatment for nitrogen 

removal through chemical reduction of nitrate (Hwang et al., 2012, Shin and Cha, 2008) 

and chemical phosphate precipitation (Chang et al., 2008). The release of Fe2+ associated 

with the dissolution of NZVI helps sludge flocculation, and therefore, resulting in better 

sludge settling (Wilén et al., 2004). Furthermore, NZVI is promising for odor control in 

biosolids as the released ferrous ions can form stable complexes with malodorous sulfur 

compounds (Li et al., 2007). However, questions remain to be answered as how to 
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maximize nutrient removal in wastewater treatment facilities with different biochemical 

settings while minimizing the negative effects (e.g., microbial toxicity and excess 

production of NH4
+-N in treated wastewater) from the use of NZVI. 

 

Earlier studies have shown that compared to that under anaerobic conditions, NZVI 

appears to have lower bactericidal activity under aerobic conditions (Li et al., 2010). This 

is because rapid oxidation of NZVI by oxygen can lead to the formation of different oxide 

layers, which are generally less toxic or non-toxic. As a result, partially oxidized NZVI 

particles are prevented from having direct contact with bacterial cells and are thus less 

toxic. It is also possible that under aerobic conditions, bacteria express enzymes that 

destroy ROS such as superoxide dismutase (Li et al., 2010). 

 

On the other hand, under anoxic conditions, NZVI can remove nitrate through chemical 

reduction in both abiotic (free of activated sludge) and biotic systems, where the electrons 

required to reduce nitrate come directly from the dissolution of Fe0 or indirectly through 

the corrosion products, Fe2+ and H2 (Equation 1) (Stumm and Morgan, 1996). Biological 

denitrification could be therefore improved under the conditions of lack of organic carbon 

and molecular hydrogen because the Fe2+ released from NZVI dissolution can serve as an 
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electron donor for nitrate removal (Shin and Cha, 2008). The multiple pathways of nitrate 

reduction associated with the use of NZVI and its dissolution products are listed in 

Equations 2-5 (Choe et al., 2000, Ruangchainikom et al., 2006, Tyrovola et al., 2006). In 

addition to ammonia, nitrite, and nitrogen gas, the products of nitrate reduction by NZVI 

include other nitrogenous species such as NO and N2O (Wang et al., 2006, Yang and Lee, 

2005).  

 

Fe0 + 2H2O      Fe2+ + H2 + 2OH- (1) 

5Fe0 + 2NO3
- + 6H2O      5Fe2+ + N2 +12OH-  (2) 

Fe0 + NO3
- + 2H+      Fe2+ + H2O + NO2

-  (3) 

4Fe0 + NO3
- + 10H+      4Fe2+ + NH4

+ + 3H2O  (4) 

NO3
- + 10H+ + 8Fe2+      NH4

+ + 3H2O + 8Fe3+  (5) 

2Fe0 + 2H2O + O2        2Fe2+ + 4OH- (6) 

4Fe2+ + 10H2O + O2        4Fe(OH)3
 + 8H+  (7) 

4Fe0 + 6H2O + 3O2       4Fe(OH)3 (8) 

 

The dissolution of NZVI under anaerobic and aerobic conditions results in different pH 

changes due to the degree of hydrolysis of ferric ions (e.g., Equations 6-8 under aerobic 

conditions) (Ruangchainikom et al., 2006), which in turn affect the formation of iron (II, III) 

hydroxides and iron-phosphate complexes/precipitates (Stumm and Morgan, 1996, Wu et 
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al., 2013). NZVI has been therefore applied for the removal of phosphate (PO4
3-) in water 

due to P precipitation and adsorption on the surface of NZVI particles and iron complexes 

(Almeelbi and Bezbaruah, 2012, Liu et al., 2013, Stumm and Morgan, 1996). 

 

1.3. Filamentous Sludge Bulking Control and NZVI Toxicity 

Sludge bulking, which is often caused by excessive growth of filamentous organisms in 

activated sludge (Jenkins et al., 2004), results in poor sludge settling, sludge loss from 

secondary clarifiers and deterioration of effluent water quality (Grady et al., 2011, Guo et 

al., 2012, Kappeler and Gujer, 1994, Nielsen et al., 2009). The kinetic selection theory is 

commonly used to explain sludge bulking and to explore engineering solutions to control 

bulking (Chudoba et al., 1973, Grady et al., 2011). Most filamentous bacteria are slowly 

growing organisms with lower maximum specific growth rate (μmax) but higher affinity 

constant (Ks) than floc-forming bacteria (Grady et al., 2011). At low substrate 

concentrations (S) (i.e., S << Ks), filamentous bacteria may have higher growth rates, thus 

outcompeting floc-forming bacteria (e.g., Zoogloea) in activated sludge (Cenens et al., 

2000). Nowadays, selectors are therefore commonly used by creating a substrate 

concentration gradient to improve sludge settling (Chudoba et al., 1973, Gray et al., 2010). 

Metabolic selection is another approach for filamentous sludge bulking control as most 
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filamentous bacteria cannot grow under anoxic or anaerobic conditions (Grady et al., 2011). 

Other theories and factors such as substrate diffusion limitation (Martins et al., 2003), 

intracellular polymer storage (Goel et al., 1998, Van Loosdrecht et al., 1997b), and the 

difference in decay rates between filaments and floc-forming bacteria (In and De Los 

Reyes III, 2005) have also been proposed. While an integrated framework combining 

kinetic selection and substrate diffusion limitation has been suggested for sludge bulking 

(Lou and De Los Reyes III, 2008), there is still no single mechanism that can fully explain 

the sludge bulking problems. In practice, the causes for filament growth in activated sludge 

treatment are complex and include factors such as low food-to-microorganisms (F/M), 

long solids retention time (SRT), low nutrients, low dissolved oxygen (DO), low pH or 

high sulfide levels (Grady et al., 2011, Jenkins et al., 2004, Wanner, 1994). Eikelboom type 

021N (Type 021N), Type 1701, Type 0041, Microthrix parvicella, Thiothrix spp, Gordonia 

spp., among others, have been found to be reponsible for most of the bulking and foaming 

events (Grady et al., 2011, Kanagawa et al., 2000, Madoni et al., 2000).  

 

Practical control methods for filamentous sludge bulking include specific and non-specific 

methods (Kotay et al., 2011, Martins et al., 2004). Specific methods like the use of 

selectors are preferred as they eliminate the causes favorable for filamentous growth. In 
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order to apply the principles of kinetic selection and metabolic selection, approaches such 

as modifying process operating conditions and process configurations are necessary but 

can be costly (Martins et al., 2004). Non-specific methods can be a quick fix by adding 

toxicants (biocides) such as chlorine and hydrogen peroxide to improve sludge settleability 

(Guo et al., 2012, Jenkins et al., 2004). This approach is based on the fact that filaments 

protrude from the flocs are more susceptible to toxicant exposure, while most of 

floc-forming bacteria are embedded inside the flocs therefore protected from exposure to 

toxicants. Chlorination is the most widely applied method to control sludge bulking due to 

its low cost. Chlorine dose can be properly managed to control filamentous bulking 

without impairing nitrification performance (Jenkins et al., 2004). However, chlorination 

often causes side effects on wastewater treatment performance by deflocculating activated 

sludge resulting in poor effluent water quality (Mascarenhas et al., 2004, Wimmer and 

Love, 2004). There is also a concern about the development of chlorine-resistant 

filamentous bacteria in sludge (Guo et al., 2012, Séka et al., 2001b). Other types of 

toxicants such as cetyl trimethylammonium bromide (CTAB), ozone and hydrogen 

peroxide are generally too costly to use, not to mention the generation of harmful 

disinfection byproducts (DPBs), odor and chemical scum (Guo et al., 2012, Jenkins et al., 

2004). Synthetic polymers and coagulants (e.g. lime, iron salts) may also be used to 
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improve sludge sedimentation through bridging between flocs (Agridiotis et al., 2007), but 

coagulation/flocculation does not kill filamentous bacteria.  

 

Nanomaterials having antiseptic (antimicrobial) properties may have beneficial uses in 

wastewater treatment. Nano zero-valent iron (NZVI) is one of the most commonly used 

and studied engineered nanoparticles due to its broad applications (Lee et al., 2008, Shin 

and Cha, 2008). NZVI has been evaluated in wastewater treatment for nitrogen removal 

through chemical reduction of nitrate (Hwang et al., 2012, Shin and Cha, 2008) and 

phosphate removal through chemical precipitation (Chang et al., 2008). The associated 

release of Fe2+ due to oxidative dissolution of NZVI helps sludge flocculation and settling 

(Wilén et al., 2004). More importantly, NZVI is an effective biocide that can kill a broad 

range of microorganisms (Auffan et al., 2008, Kim et al., 2011, Kim et al., 2010) with its 

mode of action through reductive decomposition of cell membrane due to strong reducing 

conditions (EH˚(Fe2+/Fe) = -0.447 V) at the NZVI surface (Kim et al., 2010, Lee et al., 

2008). The antibacterial effect of NZVI may also involve the generation of intracellular 

reactive oxygen species (ROS) by dissociative recombination of H3O+ (H3O+ + e- → •HO + 

H2) catalyzed by Fe0/Fe (II) (Zhaunerchyk et al., 2009). Remarkably, NZVI was also 

reported to be highly selective (Marsalek et al., 2012), with its EC50 on cyanobacteria 
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20-100 times lower than that on algae, daphnids, water plants and fishes. It is well 

established that the filaments have higher cell loss from biocide because a larger fraction of 

their population compared to floc formers is exposed to the bulk liquid (Jenkins et al., 

2004).  

 

1.4. Toxicity and Biodegradation of Melamine  

Melamine (C3H6N6), chemically known as 1, 3, 5-triazine-2, 4, 6-triamine, is a 

nitrogen-rich (67% nitrogen by mass) heterocyclic aromatic compound commonly used to 

make plastic for food containers and flame retardants (Costa and Camino, 1988, Salaün et 

al., 2011). Incidents of pet-food contamination by melamine and a 2008 Chinese milk 

scandal raise concerns about the impact of melamine on wastewater treatment operations 

and effluent water quality. With more stringent nutrient discharge limits for wastewater, it 

is important to understand the fate and toxicity of melamine in wastewater treatment 

systems.  

 

Although it is not carcinogenic, melamine is well known to cause urinary stones and acute 

renal failure in human and animals. A combination of melamine and cyanuric acid (one of 

the melamine degradation byproducts) in a diet may lead to acute kidney failure (Dobson et 
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al., 2008, Puschner et al., 2007). Long-term exposure to melamine may also result in sperm 

DNA damage and abnormalities (Zhang et al., 2011). The toxicity of melamine to 

microorganisms is, however, rarely reported. Polyvinylalcohol (PVA) gel plate studies 

showed that melamine inhibited yeast growth at a concentration of 500 mg/L (Nishimura et 

al., 2002). Toxicity to activated sludge and nitrifying bacteria (Nitrosomonas) was not 

observed after a short-term (< 2 hours) exposure at melamine concentrations of 1,992 mg/L 

and 100 mg/L, respectively (Hockenbury and Grady Jr, 1977, UNEP). However, the 

impact on microbial growth after long-term activated sludge exposure to melamine is 

largely unknown. 

 

To date, only a few soil bacteria have been isolated that are capable of degrading melamine 

via stepwise hydrolytic deamination reactions producing ammeline, ammelide, and 

cyanuric acid, sequentially (Boundy-Mills et al., 1997, Cook and Hütter, 1981, El-Sayed et 

al., 2006, Shelton et al., 1997). Melamine can also be hydrolyzed by melamine deaminase 

(TriA) from Acidovorax avenae subsp. citrulli strain NRRL B-12227 (Seffernick et al., 

2001, Seffernick et al., 2000). Cyanuric acid is further subject to hydrolytic ring cleavage, 

producing CO2 and NH4
+-N via hydrolysis of biuret and allophanate (Cheng et al., 2005, 

Cook, 1987, Nenner and Schulz, 1975).  
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Figure 2. Melamine Degradation Pathway 

 

1.5. Role of Sludge Acclimation and High Sludge Concentration 
Operation in MBR Systems 

Sludge acclimation or adaptation generally improves degradation rates of recalcitrant 

organic compounds in the environment (Hu et al., 2005a, Hu et al., 2005b). Adaptations 

contribute to the fitness and plasticity of microorganisms in response to environmental 

stress and chemical exposure. There are several interrelated adaptation mechanisms 

including (i) selective enrichment of microorganisms, (ii) induction and/or depression of 

specific enzymes, and (iii) genetic changes resulting in new metabolic capabilities (Leahy 

and Colwell, 1990, Rittman and McCarty, 2001). Hence, a selection and concentration of 

specialized bacteria during acclimation improve biodegradation rates of synthetic organic 

chemicals such as nitrobenzoate and chlorophenol (Hu et al., 2005a, Hu et al., 2005b). 

 

Membrane bioreactor (MBR) systems are excellent in solid-liquid separation and offer 

higher effluent quality than conventional activated sludge (CAS) systems (Ersu et al., 2010, 
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Metcalf and Eddy, 2003). Additional benefits can be achieved through MBR operation, 

such as higher volumetric loading rates and thus shorter hydraulic retention times (HRTs) 

for economical operation, and longer solid retention times (SRTs) and thus less sludge 

production (Bhatta et al., 2004, Metcalf and Eddy, 2003). The biomass concentration in 

MBR systems can therefore be 10 times that of the conventional activated sludge systems 

(Galil and Jacob, 2009), resulting in more efficient pollutant removal (Fleischer et al., 2005, 

Monclús et al., 2010). Although membrane fouling is still a big operational problem 

(Charcosset, 2006), MBR is increasingly used in wastewater treatment for wastewater 

reuse (Iversen et al., 2009, Juang et al., 2010, Mutamim et al., 2012, Rosenberger et al., 

2006, Yoon et al., 2004).  

 

For treating organic matter with low biodegradability, the MLSS must be high enough to 

increase the process of degradation (Mutamim et al., 2013). Compared with CAS, MBR 

operated at high biomass concentration could create more opportunities for the 

degradation of recalcitrant organic compounds. Highly diverse bacterial consortium with 

more slow growing microorganisms can be cultivated in MBR system to enhance the 

biodegradation of those compounds (Boonnorat et al., 2014). 
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1.6. Hypotheses and Research Overview 

The main objective of this study was to develop new technologies for improved nutrient 

removal and the degradation of recalcitrant organic nitrogen, specifically through process 

reconfiguration, the use of emerging nanomaterials, and MBR operation at high biomass 

concentrations. 

A few of the important questions need to be answered: 

a) How will different sequences of anaerobic and anoxic processes affect nutrient 

removal in an enhanced biological phosphorus removal (EBPR) system? 

b) Is NZVI capable of removing nitrogen and phosphorus simultaneously? If so, what 

is the difference in removal efficiency under different biochemical environments?  

c) Will NZVI enhance or decrease denitrification because of its potential electron 

donor and antimicrobial characteristics?  

d) What is the possible mechanism of P removal by NZVI under different biochemical 

environments? 

e) Other than nutrient removal, will the use of NZVI be beneficial to sludge bulking 

control while minimizing its negative effect on floc-forming bacteria in activated 

sludge processes? 
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f) Can recalcitrant organic nitrogenous compounds such as melamine be degraded 

after long-term activated sludge adaptation?  

g) Will high biomass concentration in MBR help the removal of melamine? 

 

With the above questions, comprehensive literature review, and preliminary data, we 

have proposed the following hypotheses: 

Hypothesis 1: Improved N and P removal can be achieved in a reversed A2/O process 

following the sequence of anoxic-anaerobic-aerobic treatment. 

Hypothesis 2: NZVI improves N and P removal in activated sludge treatment and the 

removal kinetics depend on the use of biochemical environments (e.g., under anaerobic, 

anoxic, and aerobic growth conditions). 

Hypothesis 3: NZVI dosing is an effective method of sludge bulking control with 

minimal negative effect on activated sludge processes. 

Hypothesis 4: The removal efficiency of recalcitrant organic nitrogen compounds such 

as melamine can be improved through a long-term sludge acclimation. 

Hypothesis 5: MBR process with high biomass concentration helps degrade 

melamine. 
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CHAPTER 2 

 

 

2. Evaluation of Anaerobic/Anoxic/Oxic (A2/O) and Reverse A2/O 

Processes in Biological Nutrient Removal∗

A performance comparison between the conventional anaerobic/anoxic/oxic (A2/O) 

process and the anoxic/anaerobic/oxic (reverse A2/O) process was conducted in lab-scale 

at the hydraulic retention time of 0.75 d and solids retention time of 10 d for more than 200 

days. Both processes demonstrated excellent removal efficiency for organic matter (> 96%) 

and total nitrogen (> 85%), with no significant difference in microbial activities, sludge 

phosphorus (P) content, sludge settling property, and nitrifying community (dominated by 

Nitrosomonas and Nitrospira). However, there was significant difference in P removal, 

with the total P removal efficiencies in the reverse A2/O and A2/O systems of 76 ± 6% and 

70 ± 6%, respectively. Placing an anoxic stage before the anaerobic stage in the reverse 

A2/O process resulted in a lower oxidation-reduction potential (ORP = -268 ± 45 mV) of 

 

                                                 

∗ A research paper based on this thesis chapter has been published: Full citation in Water Environment 
Research, in press. 
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the anaerobic zone, which contributed to higher P uptake by bacteria under subsequent 

aerobic respiration.  

 Objectives 

The objective of this research was to comparatively evaluate the performance of A2/O and 

reverse A2/O processes under the same operating conditions. In this study, lasting more 

than 200 days, two lab-scale A2/O and reverse A2/O systems were operated in parallel at a 

HRT of 0.75 d and a target SRT of 10 d to investigate and compare their organic and 

nutrient removal efficiencies, P release and uptake kinetics, nitrifying bacterial community 

structure and activity, sludge P content, and sludge settling property. 

 

2.2. Materials and Methods 

2.2.1. Bioreactor Setup and Operation  

The lab-scale A2/O and reverse A2/O bioreactors had total working volumes of 10.5 L each, 

with three separated chambers that were made of glass (Figure 1). The effective volumes of 

the anoxic, anaerobic and aerobic chambers were 1.8, 1.8, and 5.2 L, respectively. For each 

bioreactor, there was a separated settling zone with an effective volume of 1.7 L and the 

RAS was pumped into the first chamber at 100% of the influent flow rate. There was a 

mixed liquor recirculation flow that was about 200% of the influent flow rate from the 
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aerobic chamber to the anoxic chamber for both systems. Mixing was provided by 

magnetic stir-bars in each chamber while a fine bubble diffuser provided additional mixing 

and aeration in the aerobic (oxic) chamber. The DO was maintained at 3–4 mg/L in the 

aerobic chamber. 

 

The medium-strength synthetic wastewater contained nonfat dry milk powder with a target 

COD concentration of 400 mg/L which contained 60 mg/L volatile fatty acids (VFAs), 40 

mg/L total N (TN), 25 mg/L NH4
+-N, 10 mg/L total P (TP), and 8 mg/L PO4

3--P. The 

synthetic wastewater also contained the following macro- and micronutrients per liter: 44 

mg MgSO4, 14 mg CaCl2∙2H2O, 2 mg FeCl2∙4H2O, 3.4 mg MnSO4∙H2O, 1.2 mg 

(NH4)6Mo7O24∙4H2O, 0.8 mg CuSO4, 0.3 mg NiSO4·6H2O, and 1.8 mg Zn(NO3)2∙6H2O 

(Sigma Aldrich, St. Louis, MO) (Liang et al., 2010a). The wastewater was prepared every 

3 days and stored at room temperature (23 ± 1 ºC) in a covered 130 L (volume) plastic 

storage bin. 

 

The two bioreactors were operated at the same HRT of 0.75 d and target SRT of 10 d. At 

the beginning of bioreactor operation, a total of 4,000 mL activated sludge taken from the 

aeration basin of a local municipal wastewater treatment plant (Columbia, MO) was added 
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as an inoculum to each reactor. The bioreactors were operated for more than 200 days, 

during which time the influent (sampling from the storage bin) and effluent water quality 

(sampling from the settling zone) was carefully monitored twice a week. 

 

2.2.2. Sludge Phosphorus Content and P Release/Uptake Kinetics  

In addition to effluent water quality monitoring, batch experiments were conducted to 

determine the P content of the sludge from the A2/O and reverse A2/O systems. The sludge 

P content was calculated by subtracting the P concentration of the supernatant from the TP 

concentration of the mixed liquor suspended solids (MLSS), and then divided by the 

MLSS concentration. The sludge samples were taken from the anaerobic and aerobic 

chambers of the A2/O and reverse A2/O systems.  

 

Batch studies were conducted to determine the phosphorus release and uptake kinetics of 

the sludge taken from the A2/O and reverse A2/O systems, and the maximum P release and 

uptake rates were calculated according to the procedures described elsewhere 

(Wachtmeister et al., 1997). Briefly, activated sludge samples taken from the aerobic 

chamber were centrifuged at 4,000 g for 5 min followed by three washing steps with 

distilled water to remove residual nutrients from the water. They were then resuspended to 
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a biomass concentration of about 2,000 mg COD/L. Sodium acetate was used as a soluble 

biodegradable substrate and it was added to a final concentration of 100 mg/L. After 

purging with nitrogen gas for 15 min, the mixed liquor in each serum bottle was tightly 

capped with a butyl rubber stopper and screw cap, and incubated on a shaker at 150 rpm for 

240 min. For both the P release and uptake studies, the anaerobic condition was maintained 

for about 120 min before the mixed liquor was vigorously aerated for another 120 min. 

Aliquots of mixed liquor samples were taken at predetermined time intervals and filtered. 

The supernatant was collected for PO4
3--P analysis.  

  

2.2.3. Fluorescent Microscopy Analysis of Activated Sludge Including 
PAOs  

The fluorescent antibiotic tetracycline (TC) hydrochloride was proven to show highly 

polyphosphate-specific and stable fluorescence with a 15-times-lower unspecific 

background labeling than that of the DAPI (4’,6’-Diamidino-2-Phenylindole) staining 

(Günther et al., 2009). Hence, the TC staining procedure was applied to determine the 

intracellular polyphosphate in the activated sludge from the A2/O and reverse A2/O 

systems. The cells in the mixed liquor taken from the aerobic chamber were fixed with 4% 

paraformaldehyde for 1 day. Aliquots (2 mL) of the fixed cell suspensions were 

centrifuged, washed with phosphate buffered saline (PBS) three times and resuspended in 
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PBS. The samples were stained with TC at a final concentration of 0.2 mM, and stored at 

20 °C in the dark for 10 min before they were used for microscopic analysis. An activated 

sludge sample from a conventional activated sludge wastewater treatment plant served as 

the control. The treated cells were subjected to microscopy and image analysis (Axioskop 

[Zeiss] microscope, DXC-9100P camera, and Openlab 3.1.4. [Improvision] software) 

using light from a 100-W mercury arc lamp. The Zeiss filter set 02 (excitation G 365, BS 

395, emission LP 420) was used for examining the green fluorescence of TC stained cells. 

 

2.2.4. Bacterial Activity Measurement  

Aliquots of the mixed liquor were taken from the aeration zone in the A2/O and reverse 

A2/O systems once a week to determine bacterial activity. This was assessed through the 

specific oxygen uptake rate (SOUR) measurements by extant respirometry (Hu, Chandran, 

Grasso, and Smets, 2002). Briefly, aliquots of 120 ml of biomass (for duplicate measures) 

were poured into two 50 ml respirometric bottles. After 3 min of aeration with pure oxygen 

gas, the respirometric bottles were tightly capped with no air space. MOPs 

(3-(N-morpholino) propanesulfonic acid) were added to a final concentration of 20 mM to 

maintain a constant pH of 7.5. At predetermined times, an aliquot of substrate (10 mg 

NH4
+-N/L or 20 mg/L COD in acetate) was injected with a 10-µL Hamilton syringe. A 

decrease of dissolved oxygen (DO) level in the respirometric bottles due to substrate 

oxidation was measured by the DO probe and continuously monitored at 4 Hz by an 



 

25 

 

interfaced computer. Oxygen uptake rates were calculated based on a linear regression 

analysis because zero-order reactions were observed for a long period of time. Specific 

oxygen uptake rate (SOUR) was calculated by dividing OUR by biomass concentration of 

each sample. At a minimum, all SOUR experiments were carried out in duplicate. 

  

2.2.5. Analysis of Nitrifying Communities in the A2/O and Reverse A2/O 
Systems  

To analyze the nitrifying community structure in the A2/O and reverse A2/O systems, three 

independent Terminal Restriction Fragment Length Polymorphism (T-RFLP) assays were 

conducted by targeting the 16S rRNA genes of ammonia-oxidizing bacteria (AOB) 

(Amann et al., 1990, Mobarry et al., 1996), and nitrite-oxidizing bacteria (NOB), including 

Nitrospira (Regan et al., 2002) and Nitrobacter (Wagner et al., 1995), was extracted from a 

1.0 mL sample of mixed liquor taken directly from the aerobic chamber in each bioreactor 

using an Ultraclean Soil DNA Isolation Kit (Carlsbad, CA). The concentration and purity 

of DNA were analyzed with a NanoDrop instrument (ND-1000 NanoDrop Technologies, 

Wilmington, DE). All of the primers (Supporting Information, Table S1) were synthesized 

by Integrated DNA Technologies (Coralville, IA). A fluorescent dye, 6-FAM, was 

incorporated at the 5’- end of the labeled oligonucleotides.  
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Table 1. Primer used for specific AOB and NOB 16s rRNA gene amplification 

Target Primer Sequence (5’-3’) References 

Bacterial 16S rRNA Eub338f 5’-(6-FAM)-ACTCCTACGGGAGGCAGC-3’ (Amann et al., 1990) 
AOB 16S rRNA Nso1225r 5’-CGCCATTGTATTACGTGTGA-3’ (Mobarry et al., 1996) 
Nitrobacter 16S rRNA NIT3r 5’-CCTGTGCTCCATGCTCCG-3’ (Wagner et al., 1995) 
Nitrospira 16S rRNA Ntspa685r 5’-CGGGAATTCCGCGCTC-3’ (Regan et al., 2002) 

 

Polymerase chain reactions (PCRs) were conducted in a PCR DNA thermocycler 

(Eppendorf, Westbury, NY). The thermal profiles used for each PCR amplification have 

been described elsewhere (Siripong and Rittmann, 2007). The PCR amplification products 

were purified and digested with MspI restriction endonuclease (Promega, Madison, WI) at 

37 °C for 3 hrs. After digestion, the DNA products were diluted 10 times and run through 

an ABI 3730 DNA Analyzer (Applied Biosystems, Carlsbad, CA) at the University of 

Missouri DNA Core Facility. An internal lane standard ranging from 20 to 600 bases 

(Genescan 600 LIZ) was added to each sample for precise sizing of each fragment by 

adjusting for lane-to-lane loading variation. All experiments were performed in triplicate 

per sample and all PCR runs included control reactions without the DNA template.  
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2.2.6. Chemical and Statistical Analysis  

Wastewater influent and effluent samples were collected and used for COD, TN, 

ammonium-N, nitrite-N, nitrate-N, TP and orthophosphorus measurements following the 

standard methods (APHA, 2002). The biomass concentrations of the A2/O and reverse 

A2/O systems were measured in COD units, while oxidation-reduction potential (ORP) in 

each chamber was measured with an ORP meter (Fisher Scientific, Pittsburgh, PA). The 

sludge volume index (SVI) was calculated to describe the sludge settling characteristics 

according to the standard methods (APHA, 2002). One-way ANOVA analysis was 

conducted to assess the statistical significance of the differences among groups, with p 

values less than 0.05 indicating statistical significance. 

 

2.3. Results and Discussion 

2.3.1. BNR Performance  

The start-up period in the A2/O and reverse A2/O systems lasted for about 40 days (>3 

SRTs) before stable operation was observed. This is evidenced by consistently high 

effluent water quality as shown in Figure 3 and Figure 4. At an average influent COD 

concentration of 408 ± 17 mg/L, the effluent COD concentrations were 21 ± 12 mg/L and 

17 ± 7 mg/L for the A2/O and reverse A2/O systems, respectively, with an average COD 
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removal efficiency of 95% and 96%, respectively. There was no significant difference in 

effluent COD concentration between the A2/O and reverse A2/O systems (p = 0.11).  

 
Figure 3. Influent (□) and effluent COD concentrations in the A2/O (○) and reverse A2/O 
(●) systems. The error bars represent the data range of duplicate samples. 
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(c) 

 
Figure 4. Effluent NH4

+-N (A), NO2
--N (B) and NO3

--N (C) concentrations in the A2/O 
(○) and reverse A2/O (●) systems. The error bars represent the data range of duplicate 
samples. 
 

The average effluent TN concentration in the A2/O and reverse A2/O systems were 5.3 ± 

1.4 mg/L and 4.9 ± 1.5 mg/L, respectively, as shown in Figure 5. This corresponds to 

average nitrogen removal efficiencies of 86 ± 5% and 87 ± 4%, respectively. There was no 

significant difference in the effluent TN concentration between the A2/O and reverse A2/O 

systems (p = 0.22). There was also no significant difference in the effluent NH4
+-N (p = 

0.65), NO2
--N (p = 0.86), and NO3

--N (p = 0.10) concentrations between the two BNR 

systems. With the exception of a short period of ammonia spike in the reverse A2/O system 
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on day 31 due to a sudden failure of aeration, the effluent NH4
+-N concentrations were 0.1 

± 0.3 mg/L, and 0.1 ± 0.1 mg/L for the A2/O and reverse A2/O systems, respectively, as 

shown in Figure 4. Correspondingly, the effluent NO2
--N concentrations for the A2/O and 

reverse A2/O were 0.1 ± 0.1 mg/L and 0.1 ± 0.1 mg/L, respectively. The effluent NO3
--N 

concentrations were 4.1 ± 1.2 mg/L and 3.6 ± 1.4 mg/L for the A2/O and reverse A2/O 

systems, respectively. These results illustrate that the alternating anoxic/oxic conditions 

offer equally high nitrogen removal efficiencies in the A2/O and reverse A2/O systems.    

 

 

Figure 5. Influent (□) and effluent TN concentrations in the A2/O (○) and reverse A2/O (●) 
systems. The error bars represent the data range of duplicate samples. 
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the P removal performance between the A2/O and reverse A2/O systems. At an average 

influent TP concentration of 10.1 ± 0.2 mg/L, the effluent TP concentrations in the reverse 

A2/O and A2/O systems were 2.4 ± 0.6 mg/L and 2.9 ± 0.6 mg/L, respectively. The 

performance of these systems over time is shown in Figure 6. The average TP removal 

efficiency of the reverse A2/O system was 76 ± 6% (n = 46), which was significantly 

different (p = 0.0002) from that of the A2/O system (70 ± 6%, n = 46). In addition, at an 

average influent PO4
3--P concentration of 8.1 ± 0.2 mg/L, the effluent PO4

3--P 

concentrations in the reverse A2/O and A2/O systems were 1.1 ± 0.5 mg/L and 1.6 ± 0.5 

mg/L, respectively (Figure 7). The average PO4
3--P removal efficiencies were 86 ± 6% and 

80 ± 7% in the reverse A2/O and A2/O systems, which was also statistically different (p < 

0.001). The difference between the effluent TP and PO4
3--P concentrations indicates the 

existence of refractory organic P from the feed and possibly produced in the EBPR process 

(e.g., acid hydrolysable P) (Gu et al., 2011).  
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Figure 6. Influent (□) and effluent TP concentrations in the A2/O (○) and reverse A2/O (●) 
systems. The error bars represent the data range of duplicate samples. 
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Figure 7. Influent (□) and effluent PO4
3--P concentrations in the A2/O (○) and reverse 

A2/O (●) systems. The error bars represent the data range of duplicate samples. 

 

Considering the extreme importance of maintaining a strictly anaerobic condition for 

enhanced biological P removal, the NO3
--N concentration and ORP value in each chamber 

of the A2/O and reverse A2/O systems was determined. As can be seen in Figure 8a, there 

was a significant difference in the NO3
--N concentration in the anaerobic chamber between 

the A2/O and reverse A2/O systems (p = 0.04). The higher NO3
--N concentration in the 

anaerobic chamber of the A2/O system was due to NO3
--N carried over from the RAS flow. 

In the reverse A2/O system, because of the reverse sequence of anaerobic and anoxic 

chambers, almost complete deletion of NO3
--N was achieved through the two-stage 

0 

3 

6 

9 

12 

0 50 100 150 200 250 

PO
43-

-P
 (m

g/
L)

 

Days of operation (d) 



 

36 

 

(anoxic followed by anaerobic) denitrification process. This favors the growth of PAOs 

that prefer to grow under alternating anaerobic and aerobic conditions. Earlier studies have 

shown the deleterious impact of NO3
--N on the P-release under anaerobic conditions 

(Guerrero et al., 2012, Lee et al., 2009), which could also affect P uptake and removal 

under aerobic conditions. 
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Figure 8. The NO3
--N concentration distribution (a) and the sludge P content (b) in 

different chambers of the A2/O (□) and reverse A2/O (■) systems. The error bars 
represent one standard error of the mean (n = 6). 
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The ORP results were consistent with the nitrate distribution in different chambers and 

provided additional information about the biochemical environment in the A2/O and 

reverse A2/O processes. In the A2/O system, the ORP values for the anaerobic, anoxic, and 

aerobic (oxic) chambers were -170 ± 24 mV, -100 ± 39 mV, and 109 ± 23 mV, respectively. 

In comparison, the ORP values for the anaerobic, anoxic, and aerobic (oxic) chambers in 

the reverse A2/O system were -268 ± 45 mV, -145 ± 34 mV, and 152 ± 58 mV, respectively. 

The larger ORP change between the anaerobic chamber and aerobic chamber (420 ± 145 

mV) in the reverse A2/O system may provide a better metabolic stimulus for PAOs to 

release and uptake P more efficiently. In the A2/O system, the presence of greater levels of 

NO3
--N in the anaerobic chamber results in a smaller ORP difference between the 

anaerobic chamber and aerobic chamber (279 ± 67 mV). Therefore, it appears that the 

reverse A2/O process, with the anaerobic chamber followed directly by the aerobic 

chamber, could create a more favorable metabolic environment for P release and uptake by 

PAOs.  

 

2.3.2. Sludge P Content, PAO Distribution, and P Release/Uptake 
Kinetics  

As shown in Figure 8b, the P contents of the sludge collected from the anoxic, anaerobic 

and aerobic chambers of the A2/O system were 5.9 ± 1.0%, 5.7 ± 0.7%, and 6.2 ± 0.8%, 
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respectively. In comparison, the P contents were 5.6 ± 1.1%, 5.3 ± 0.9%, and 6.5 ± 1.1% 

for the sludge from the anoxic, anaerobic and aerobic chambers in the reverse A2/O system, 

respectively. The difference in sludge P content between the sludge taken from the 

anaerobic and aerobic chambers was significant in both processes (p = 0.03 for A2/O and p 

= 0.02 for reverse A2/O). This can be explained by the fact that PAOs are able to uptake 

PO4
3--P under aerobic conditions and release PO4

3--P under anaerobic conditions, while the 

sludge was continuously recycled throughout the different chambers. Although the 

difference in sludge P content in different chambers between the two systems were not 

significant (p values > 0.05), the difference in P content between the sludge taken from the 

anaerobic zone and aerobic zone of the reverse A2/O system was higher than that of A2/O 

system (p = 0.037). This may be attributed to the lower ORP in the anaerobic chamber of 

the reverse A2/O system that can result in more PO4
3--P release (Schon et al., 1993). While 

the P content per cell dry weight in the EBPR process can be higher (e.g., 12%) (Hauduc et 

al., 2013), an average sludge P content of 6% indicated the growth and enrichment of 

PAOs in the activated sludge for the A2/O and reverse A2/O systems because P content in 

regular activated sludge is between 1 and 3% (Van Loosdrecht et al., 1997a).  

 



 

40 

 

Light microscopy and fluorescent microscopy micrographs support the P measurement 

data for the A2/O and reverse A2/O processes. Although it was not quantified, the fraction 

of the PAOs in the sludge of the A2/O and reverse A2/O systems appears to be at a similar 

level (Figure 9). The presence of PAOs is suggested by Poly-P granules that were detected 

upon binding to TC in living cells taken from the sludge of the A2/O and reverse A2/O 

systems. These granules appear as bright (greenish) spots within the blue auto fluorescence 

caused by the sludge flocs. In contrast, there were no visible Poly-P granules in the 

activated sludge taken from a traditional wastewater treatment plant. 

 

 
Figure 9. Light and fluorescent microscopy micrographs of the sludge taken from the 
A2/O, reverse A2/O, and control systems. The control was taken from a conventional 
activated sludge plant. 
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Batch studies were conducted to further investigate the P release and uptake by the sludge 

from the A2/O and reverse A2/O systems. Under anaerobic conditions, the sludge from the 

A2/O and reverse A2/O systems exhibited the same P release behavior as shown in Figure 

10. The maximum P release rates were 0.22 ± 0.02 and 0.21 ± 0.02 mg P/mg MLSS/d for 

the the A2/O and reverse A2/O systems, respectively, with no significant difference (p = 

0.79). These values are lower than those in the full-scale study (0.60~0.79 mg P/mg 

MLSS/d) because of the difference in substrate concentration and process operation (Qi et 

al., 2012). The maximum P concentrations in the aqueous solutions were both observed at 

120 min for sludge taken from the A2/O and reverse A2/O processes. Remarkably, after 120 

min, the PAOs started uptaking P even under anaerobic conditions, although the uptake 

was slow. This was probably due to the complete deletion of readily biodegradable COD 

(in the form of acetate) after 120 min, resulting in the PAOs using intracelluarly stored 

PHAs as an energy and carbon source to uptake P for cell maintenance purposes. Although 

the phenomenon of P uptake under anaerobic conditions has not been reported before, 

there have been studies demonstrating P release under aerobic conditions (Ahn et al., 2002, 

Guisasola et al., 2004, Pijuan et al., 2005). The function of P release and uptake may 

therefore be changed in the presence or absence of external carbon sources regardless of 

anaerobic or aerobic conditions (Pijuan et al., 2005, Vargas et al., 2009). Under aerobic 
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conditions, phosphorus uptake began, and all the PO4
3--P released during anaerobic phase 

was taken up within 80 min (Figure 8). The sludge from the A2/O and reverse A2/O systems 

exhibited the same P uptake behaviors, as well. The maximum phosphorus uptake rate 

were 0.32 and 0.31 mg P/mg MLSS/d for the the A2/O and reverse A2/O systems, with no 

significant difference (p = 0.8). 

 

 
Figure 10. P release from the sludge taken from the A2/O (○) and reverse A2/O (●) systems 
under anaerobic conditions, and P uptake by the sludge from the A2/O (∆) and reverse A2/O 
(▲) systems under aerobic conditions. The error bars represent one standard error of the 
mean (n = 6). 
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2.3.3. Microbial Activities and Sludge Settling Characteristics  

The heterotrophic SOUR values were 32.7 ± 8.9 and 31.8 ± 11.6 mg O2/g MLSS/h (n = 28) 

for the A2/O and reverse A2/O sludge, respectively. The autotrophic SOURs of the sludge 

from the A2/O and reverse A2/O were 29.2 ± 7.2 and 29.1 ± 6.4 mg O2/g MLSS/h (n = 28), 

respectively. There were no significant differences in the heterotrophic (p = 0.88) and 

autotrophic (p = 0.97) activities between the A2/O and reverse A2/O systems. The results 

indicate that the change in sequence of the anaerobic and anoxic zones does not affect the 

regular microbial growth, as long as the appropriate SRTs were maintained in the BNR 

systems. Indeed, under the target SRT of 10 days, the biomass concentrations in the A2/O 

and reverse A2/O systems were maintained at 1550 ± 258 and 1638 ± 315 mg COD/L, 

respectively, with no significant differences (p = 0.12; Figure 11). The average SVI values 

for the A2/O and reverse A2/O systems were 129 mL/g and 122 mL/g, respectively, 

indicating excellent sludge settling characteristics. 
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Figure 11. Biomass concentrations of the A2/O (○) and reverse A2/O (●) systems. The 
error bars represent the data range of duplicate samples. 

 

2.3.4. Nitrifying Bacteria Community Structure  

The T-RFLP analysis specifically targeting the AOB and NOB indicates that the AOB 
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Figure 12. Nitrifying bacterial community composition reflected by T-RFLP profiles 
targeting 16S rRNA genes of Nitrosomonas (A and B, 161 bp) and Nitrospria (C and D, 
261 and 271 bp) in the A2/O (A and C) and reverse A2/O (B and D) systems. DNA 
samples were taken after 3 months of stable operation. 

 

2.3.5. Implications in Process Design and Control  

By directly comparing the conventional A2/O process to the reverse A2/O process with 

identical operating conditions several insights and observations can be made. First of all, 

for both the A2/O and reverse A2/O processes, ordinary heterotrophic organisms (OHOs, 

including denitrifying bacteria), nitrifying bacteria, and PAOs are the three primary groups 

of microorganisms in the activated sludge. The different requirements for SRT between 

PAOs and nitrifying bacteria, along with system instability, demonstrate the challenges 

with simultaneous N and P removal in wastewater treatment (Gu et al., 2008). For instance, 

due to the slow growth of nitrifying bacteria, a longer SRT (> 8~15 d) is required for 

efficient and reliable N removal while a shorter SRT (< 5 d) is preferred for phosphorus 
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removal through wastage of high P content sludge (Onnis-Hayden et al., 2011). 

Competition for organic substrates between the PAOs and denitrifiers also exists when the 

carbon source is limited (Chiu and Chung, 2000, Kishida et al., 2004). In this study, the 

COD/N of 10 indicated that a sufficient carbon source was provided for the denitrifiers and 

the 10-d SRT was also sufficient to support the growth of nitrifiers. Therefore, the nitrogen 

removal was not affected by the change in sequence of the anaerobic and anoxic zones. 

This study confirmed that the sludge biomass concentration, the COD, and nitrogen 

removal efficiencies were similar for both treatment schemes under the same reactor 

conditions (i.e., with identical HRT, SRT, the aerobic and anoxic fractions of total volume, 

and the internal recycle flow rate in both cases). The expected advantage of the reverse 

A2/O for improved nitrogen removal was therefore not observed, as also evidenced by the 

similar microbial activity and nitrifying assemblages in both the A2/O and reverse A2/O 

systems.  

 

Second, according to the experimental results, slightly higher phosphorus removal 

efficiency was observed in the reverse A2/O although the phosphorus release and uptake 

rates as well as the P content in the sludge were the same in both cases. In the reverse A2/O 

process, P release occurred in both the anoxic and anaerobic compartments, which could 
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result in a more efficient P release (Qi et al., 2012). More importantly, the direct anaerobic 

and aerobic sequence accompanied with the lower ORP in the anaerobic zone of the 

reverse A2/O could lead to more efficient phosphorus release under anaerobic conditions 

and subsequently higher P uptake efficiency under aerobic respiration. Third, the same 

sludge recycle and internal recirculation destination allows microorganisms to participate 

in a more complete anaerobic/aerobic metabolic pathway, giving rise to a "group effect" 

for enhanced BNR (Zhou et al., 2011). The shorter, effective, anaerobic HRT in the reverse 

A2/O system, due to the difference in MLR destination between the A2/O and reverse A2/O 

(Figure 1), could also affect P removal because of possible differences in VFA utilization 

mechanisms (Hauduc et al., 2013). This opens up new questions related to the competition 

between PAO and glycogen-accumulating organisms (GAOs). The phosphate to COD 

ratio we used in the study is 0.02, which is a critical value affecting the growth competition 

between PAOs and GAOs. When an influent contains lower than 0.02 g PO4
3--P/g COD, 

the ability of uptaking phosphate by PAOs could be impacted adversely (Grady et al., 

2011). Future work is needed to quantify PAOs and GAOs in both treatment schemes in 

order to determine the effect of the first anoxic zone on the proliferation of PAOs and 

GAOs. More study on the values and distribution of ORP in the anaerobic and aerobic 

zones could help elucidate their effect on P removal efficiency. In addition, how influent 
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wastewater containing low readily biodegradable BOD, or with low C/N ratio, would 

affect P removal in the A2/O and reverse A2/O systems remains to be studied and compared 

with each other. This is because reverse A2/O might not be working properly since all 

biodegradable BOD can be easily consumed by denitrifiers in the anoxic tank first. 

 

Finally, from the engineering point of view, a lower energy consumption and operating 

cost may be achieved by combining the MLR with RAS flow, which also facilitates 

operation and maintenance (Kang et al., 2011). Chemical precipitation and biosorption of 

phosphorus are generally insignificant compared to EBPR in activated sludge wastewater 

treatment (Carlsson et al., 1997). To achieve more complete P removal, however, the ratios 

of the RAS and MLR flows should be optimized to maximize the growth of PAOs. 

 

2.4. Conclusions 

Both the A2/O and reverse A2/O systems showed excellent organic matter and total N 

removal. It was validated that the COD and nitrogen removal efficiencies were similar for 

both A2/O and reverse A2/O processes because the HRT, the SRT, the aerobic and anoxic 

fractions of total volume, and the internal recycle flow rate were the same in both cases. 

Placing an anoxic stage before the anaerobic stage in the reverse A2/O process, however, 
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resulted in a lower oxidation-reduction potential in the anaerobic zone, which contributed 

to higher P uptake by bacteria under subsequent aerobic respiration. The reverse A2/O 

process appears to be a better choice because of its higher P removal performance, and for 

its potentially simpler design for full-scale operation. 
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CHAPTER 3 

 

 

3. Kinetics of Nutrient Removal by Nano Zero-Valent Iron under 

Different Biochemical Environments ∗

The effectiveness of nano zero-valent iron (NZVI, an average size of 55 nm at the 

concentration of 200 mg Fe/L) in nutrient removal was determined under anaerobic, anoxic 

and aerobic conditions. Compared to the rate of reduction of NO3
--N to NH4

+-N by NZVI 

alone, the presence of activated sludge increased the rate of complete reduction by 300%. 

About 31% of NO3
--N was converted to NH4

+-N through NZVI-facilitated dissimilatory 

nitrate reduction to ammonium while 56% of NO3
--N was removed by heterotrophic 

denitrification. The presence of sludge reduced the rates of phosphorus removal by NZVI, 

with the first-order reaction rate constants of 0.06 h-1, 0.42 h-1 and 0.18 h-1 under 

anaerobic, anoxic and aerobic conditions, respectively. The highest P removal efficiency 

(95%) by NZVI was observed under anoxic abiotic conditions whereas the efficiency 
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dropped to 31% under anaerobic biotic conditions, which was attributed to significant 

sludge-facilitated NZVI agglomeration. 

 

3.1. Objectives 

It becomes evident that NZVI has dual functions as both a reducing agent and a 

complexing agent/adsorbent for nitrate and phosphate removal, respectively. The objective 

of this study was to systematically determine the capability of NZVI in simultaneously 

removing nitrogen and phosphorus under different biochemical conditions while 

minimizing its negative effects on activated sludge wastewater treatment performance.  

 

3.2. Materials and Methods  

3.2.1. NZVI Synthesis and Characterization  

NZVI particles were synthesized by the sodium borohydride reduction method (2Fe2+ + 

BH4
- + 3H2O → 2Fe0 + H2BO3

- + 4H+ + 2H2) (He et al., 2007). The diluted carboxymethyl 

cellulose (CMC, Sigma-Aldrich, St. Louis, MO) solution (0.2%, w/w) served as a capping 

agent (Lin et al., 2010). Briefly, 160 mL of the CMC solution was sparged with nitrogen 

for at least 20 min before use. Then 40 mL of freshly prepared FeCl2∙4H2O (0.25 M) was 

gradually added to the CMC solution under nitrogen gas protection. Finally, a total of 50 
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mL freshly prepared NaBH4 (0.4 M, Sigma-Aldrich) solution was added dropwise to the 

CMC solution that was magnetically stirred at 1,100 rpm at room temperature (24 ± 2 ˚C). 

Nitrogen sparging was continued for another 10 min to remove hydrogen gas. The final 

concentration of NZVI in the solution was 0.04 M. The NZVI stock suspension was 

purged with nitrogen gas throughout the synthesis process to ensure that only nano-Fe0 was 

formed (Lee et al., 2008, Li et al., 2010). The NZVI particles had an average size of 55 ± 11 

nm as reported in our recent study (Yang et al., 2013). 

 

3.2.2. Batch Systems  

A series of batch studies were conducted to determine the rates of nitrogen and phosphorus 

removal in abiotic or biotic systems. Synthetic wastewater containing sodium acetate  

with target concentrations of 400 mg/L chemical oxygen demand (COD), 25 mg/L NH4
+-N, 

and 10 mg/L PO4
3--P was used in each batch reactor under aerobic and anaerobic 

conditions. In addition, nitrate was added at a final concentration of 40 mg/L NO3
--N under 

anoxic conditions only. The synthetic wastewater also contained the following macro- and 

micronutrients per liter: 41 mg MgSO4, 14 mg CaCl2∙2H2O, 2 mg FeCl2∙4H2O, 3.4 mg 

MnSO4∙H2O, 1.2 mg (NH4)6Mo7O24∙4H2O, 0.8 mg CuSO4, 0.3 mg NiSO4·6H2O, and 1.8 

mg Zn(NO3)2∙6H2O (Liang et al., 2010a) (Table 2). The activated sludge seed was taken 
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from the aeration basin at the Columbia Regional Wastewater Treatment Plant (WWTP) 

(Columbia, MO) and the sludge concentration was adjusted to about 2000 mg/L in each 

batch biotic test. 

Table 2. Composition of medium used in batch studies 

Medium  
composition 

Final concentration 

mg/L Cations (mM) Anions (mM) 

CH3COONa 512 6.24 Na+ 6.24 CH3COO- 

Na2HPO4 45.8 0.64 Na+ 0.32 HPO4
2- 

NH4Cl 95.5 1.79 NH4
+ 1.79 Cl- 

NaNO3* 242.9 2.86 Na+ 2.86 NO3
- 

MgSO4 41 0.34 Mg2+ 0.34SO4
2- 

CaCl2·2H2O 14 0.096 Ca2+ 0.192 Cl- 

FeCl2·4H2O 2 0.01 Fe2+ 0.02 Cl- 

MnSO4·H2O 3.4 0.02 Mn2+ 0.02 SO4
2- 

(NH4)6Mo7O24·4H2O 1.2 0.006 NH4
+ 0.001 Mo7O24

6- 

CuSO4 0.8 0.01 Cu2+ 0.01 SO4
2- 

Zn(NO3)2·6H2O 1.8 0.01 Zn2+ 0.02 NO3
- 

Ni(NO3)2·6H2O 0.3 0.001 Ni2+ 0.002 NO3
- 

* Only present in anoxic batch reactors. 

 

All the batch systems were set up in triplicate. Each anoxic or anaerobic study was 

conducted in a 160 mL serum bottle containing 130 mL of solution or mixed liquor and 30 

mL of headspace. The bottles were sealed with both rubber stopper and aluminum caps and 

further covered by parafilm. The tests were initiated using a Lab-Line Orbit 
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Environ-Shaker (Model 3527, Lab-Line Instruments, IL) at 200 rpm to ensure complete 

mixing. In aerobic studies, aeration was provided through air bubbling in the 

solution/mixed liquor to provide 2~4 mg/L of dissolved oxygen (DO).  

 

3.2.3. Nitrate Reduction Kinetics  

To investigate the NO3
--N reduction kinetics under anoxic conditions, both ZVI powder 

(with an average size of 44 µm, Sigma-Aldrich) and NZVI were applied at a final 

concentration of 200 mg Fe/L according to the preliminary experimental data to compare 

their reactivity. In both abiotic and biotic systems, the liquid in batch reactors was purged 

with N2 for 5 min to completely remove the oxygen from the solution before ZVI powder 

or NZVI was added. Aliquots (5 mL) of mixed liquor were collected at predetermined time 

intervals for nitrate and ammonia concentration measurements. To determine the rate 

constant of nitrate reduction, a surface-area-normalized kinetic model is used for 

heterogeneous reactions between reducible pollutants (e.g., nitrate) and metallic particles 

by fitting to the experimental data (Liou et al., 2007). 
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3.2.4. Phosphorus Removal under Different Biochemical Environments  

Phophorus removal was studied under anaerobic, anoxic and aerobic conditions in the 

presence or absence of activated sludge. In anaerobic and anoxic studies, the solution or 

mixed liquor was purged with N2 gas for 5 min before NZVI was added at the final 

concentration of 200 mg Fe/L. Besides the seed sludge taken from the Columbia WWTP, 

the activated sludge from a lab-scale EBPR process was also used for comparison. To 

prevent the release of phosphorus in the batch assays under anaerobic conditions, the 

EBPR sludge was pretreated by incubating under anaerobic conditions for 120 min in order 

to release all the intracelluar polyphosphate according to the procedure described 

elsewhere (Wachtmeister et al., 1997). Aliquots (5 mL) of mixed liquor were collected at 

predetermined time intervals for phosphate measurements. 

 

3.2.5. Physical, Chemical and Statistical Analysis  

The concentrations of NO3
--N, NO2

--N, NH4
+-N, and PO4

3--P in the solution or mixed 

liquor were determined following the standard methods, specifically including ultraviolet 

spectrophotometry for NO3
--N, a colorimetric method for NO2

--N, nessler’s method for 

NH4
+-N and ascorbic acid method for PO4

3--P (APHA, 2002). The mixed liquor was 

filtered through a 0.22 µm syringe filter before chemical analysis. To avoid oxygen 
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exposure for the samples taken from anoxic and ananerobic batch studies, all sampling 

work was conducted in an anoxic glove box containing 5% H2 and 95% N2 (Coy 

Laboratory Producte Inc., MI). The pH of the solution was measured using a pH meter 

(Excel XL 15, Fisher Scietific, PA).  

 

N2O concentrations in the headspace were determined by gas chromatography (GC, 

Shimadzu 2014, Japan) equipped with a Poropak Q column (Restek, PA) and an electron 

capture detector (ECD) with helium as the carrier gas at a flow rate of 14 mL/min and 

temperatures of the column, injector and detector at 50 °C, 50 °C and 290 °C, respectively 

(Sims et al., 2013).  

 

Particle size and zeta potential of NZVI in the mixed liquor were analyzed by ZEN3600 

Zetasizer Nano-ZS (Malvern Instruments Inc, Westborough, MA) after taking the mixed 

liquor at the end of batch study. 

 

Linear regression was performed to determine the first-order rate constants of phosphate 

removal, nitrate reduction and ammonia production under different biochemical 
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environments. ANOVA analysis was performed to assess significant difference between 

groups, with a p value of < 0.05 indicating statistical significance.  
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3.3. Results and Discussion 

3.3.1. Nitrate Reduction to Ammonia by NZVI in Abiotic and Biotic 
Systems  

As expected, NZVI was more reactive than ZVI powder in abiotic nitrate reduction. At the 

concentration of 200 mg Fe/L, NZVI and ZVI powder reduced 27 ± 2% and 2 ± 0% of 

NO3
--N, respectively, in 150 min when biological denitrification was complete (Figure 13). 

Meanwhile, ammonia (NH4
+) was produced (Figure 14) and there was no nitrite (NO2

-) or 

N2O detected during the reaction period (data not shown). From the amount of NH4
+-N 

generation (Figure 14), only 13% of NO3
--N was reduced completely to NH4

+-N by NZVI 

in abiotic systems indicating the formation of other nitrate reduction products (e.g., N2) 

(Yang and Lee, 2005). By contrast, the conversion of NO3
--N to NH4

+-N by ZVI powder 

was negligible (Figures 13 and 14), in agreement with previous studies (Huang et al., 1998, 

Yang and Lee, 2005). Because the rate of nitrate reduction was proportional to the surface 

area of Fe0 (Huang and Zhang, 2002), NZVI having higher specific surface areas resulted 

in higher degree of chemical reduction of nitrate (Yang and Lee, 2005) than ZVI powder. 

  

Nitrate reduction in biotic systems (in the presence of activated sludge) was significantly 

higher (p < 0.001) than in abiotic systems (Figure 13). During the 150-min reaction period, 

while NO3
--N was almost completely removed in biotic systems containing NZVI or ZVI 
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powder, about 44% of NO3
--N was converted to NH4

+-N by NZVI (Figure 14), a 

significant increase from only 13% under abiotic conditions. Remarkably, there was no 

conversion of NO3
--N to NH4

+-N by ZVI powder in the presence of activated sludge. 

 

Since bacterial denitrification reduces NO3
--N as well, it is necessary to compare the 

overall nitrate reduction kinetics in the presence and absence of ZVI. Compared to the 

control (without ZVI), ZVI powder appeared to have no effect on denitrification (Figure 13) 

during the 150-min study period. In contrast, NZVI reduced the overall bacteria-facilitated 

nitrate reduction processes, which was attributed to the high reactivity and toxicity of 

NZVI to denitrifying organisms in activated sludge. NZVI is a known antimicrobial agent 

and especially effective against anaerobic organisms (Li et al., 2010). A direct contact of 

NZVI with the bacterial surface can result in a significant reduction in redox potential thus 

disrupting cell integrity (Xiu et al., 2010) while the reaction of dissolved Fe2+ with 

intracellular oxygen or hydrogen peroxide may induce ROS, further damaging the cells (Li 

et al., 2010, Marsalek et al., 2012).  

  

The profiles of nitrate reduction (Figure 13) and ammonia production (Figure 14) indicated 

denitrifying bacteria in the sludge still play a significant role in dissimilatory nitrate 
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reduction regardless the presence of ZVI. NZVI particles may facilitate the microbial 

dissimilatory reduction of nitrate to ammonia (Hansen et al., 1996, Nielsen and Nielsen, 

1998) because of significant reduction in redox potential of the cell membrane after the 

direct contact of nanoparticles with bacteria (Xiu et al., 2010). A process known as 

dissimilatory nitrate reduction to ammonium or DNRA, is also possibly activated for 

microorganisms that have the nrfA gene, which encodes a periplasmic nitrite reductase 

catalyzing the conversion of nitrite to ammonia (Smith et al., 2007). The presence of NZVI 

therefore resulted in the extension of microbial dissimilatory reduction of nitrate from 

regular denitrification (nitrate reduction to N2) to DNRA, a more complete reduction of 

NO3
--N towards the formation of NH4

+-N. Based on the difference between the portions of 

nitrate reduction (Figure 13) and ammonia generation (Figure 14) in the biotic systems, it 

was estimated that 56% of NO3
--N was removed by bacteria through regular denitrification 

while 31% (after subtracting the 13% reduction by NZVI alone) of NO3
--N was completely 

reduced to NH4
+-N due to DNRA.  
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Figure 13. Nitrate removal in abiotic (▲ for NZVI and ∆ for ZVI powder), biotic (● for 
NZVI and ○ for ZVI powder) and ZVI -free biological (♦) system. Error bars represent 
one standard deviation from the mean of triplicate samples. 
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Figure 14. Ammonia generated in abiotic (▲ for NZVI and ∆ for ZVI powder), biotic (● 
for NZVI and ○ for ZVI powder) and ZVI-free biological (♦) system. Error bars represent 
one standard deviation from the mean of triplicate samples. 
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biotic systems (Figure 16), bacterial catalysis increased the rate of reduction of NO3
--N to 

NH4
+-N by 300%.  

 

 
Figure 15. Observed nitrate removal by NZVI in abiotic (▲) and biotic (●) system and 
ZVI-free biological (♦) system. 
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Figure 16. Observed ammonia generation by NZVI in abiotic (▲) and biotic (●) system. 
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Under aerobic conditions, the abiotic P removal kinetics may be divided into two stages 

(Figure 18). In the first 10 min, phosphorus was removed rapidly by NZVI while 

thereafter the removal rate was much slower (p = 0.001). The oxidation of NZVI by 

oxygen at neutral pH produces a rapid burst of oxidized iron species (e.g., Fe3+, Fe2O3 and 

Fe(OH)3) (Greenlee et al., 2012, Kim et al., 2011, Ruangchainikom et al., 2006). In another 

study, NZVI exposed to oxygen-saturated water showed a rapid (< 24 h) loss of Fe0 and 

evolved both magnetite and maghemite (gamma-Fe2O3) within the oxide layer (Reinsch et 

al., 2010). Both Fe2+ and Fe3+ can react with phosphate to form iron (II, III) phosphate 

precipitates (Gunnars et al., 2002, Stumm and Morgan, 1996) while the freshly produced 

iron oxides and hydroxides are excellent materials for P adsorption on oxide surfaces by 

forming inner sphere complexes (Tyrovola et al., 2006). Hence, phosphorus removal was 

very fast initially. Thereafter, however, the rapid passivation of NZVI due to oxygen 

exposure (Kim et al., 2011, Reinsch et al., 2010) might result in slower rates of phosphorus 

removal.  
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Figure 17. Abiotic phosphorus removal by dosing NZVI under anaerobic (◊), anoxic (○) 
and aerobic (∆) conditions. Error bars represent one standard deviation from the mean of 
triplicate samples. 
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Figure 18. Observed abiotic phosphorus removal rate by dosing NZVI under anaerobic 
(◊), anoxic (○) and aerobic (∆) conditions. Error bars represent one standard deviation 
from the mean of triplicate samples. 
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and Morgan, 1996). Higher pH could facilitate the formation of Fe oxide/hydroxide and 

iron (II, III) phosphate complexes/precipitates thus resulting in highest P removal under 

anaerobic conditions. 

 

 

Figure 19. pH in abiotic (□) and biotic (■) systems at 150 min of the batch studies. Error 
bars represent one standard deviation from the mean of triplicate samples. 

 

In biotic systems, the overall phosphorus removal efficiencies were 31 ± 1%, 91 ± 0%, 

and 66 ± 1% under anaerobic, anoxic and aerobic conditions, respectively. While the 

phosphorus removal kinetics followed the first-order reaction under all conditions, 

phosphorus removal by NZVI decreased in the presence of activated sludge, with the 

first-order reaction rate constants of 0.06 h-1, 0.42 h-1 and 0.18 h-1 under anaerobic, anoxic 
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and aerobic conditions, respectively, corresponding to reductions by about 80%, 30% and 

50%, respectively (Figure 20 and 21). While there was no significant difference in 

phosphorus removal between different activated sludge sources (Figure 20), the initial fast 

phosphorus removal stage was not observed under aerobic biotic conditions, indicating the 

microbial effect on the process of phosphorus removal by NZVI.  

 

 
Figure 20. Phosphorus removal by dosing NZVI under anaerobic (♦ and ◊), anoxic (● and 
○) and aerobic (▲ and ∆) conditions. The markers with fill represent WWTP mixed 
liquor suspended solids (MLSS) sample and the ones without fill represent the sludge 
from a lab-scale EBPR process. Error bars represent one standard deviation from the 
mean of triplicate samples. 
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Figure 21. Observed biotic phosphorus removal rate by dosing NZVI under anaerobic (♦ 
and ◊), anoxic (● and ○) and aerobic (▲ and ∆) conditions. The markers with fill represent 
WWTP mixed liquor suspended solids (MLSS) sample and the ones without fill represent 
lab-scale Reverse A2/O process MLSS. Error bars represent one standard deviation from 
the mean of triplicate samples.  
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agglomeration of metallic nanoparticles such as NZVI (Yang et al., 2013) and silver 

nanoparticles (Choi et al., 2010) while the microbially derived extracellular proteins such 

as those rich in cysteine play an important role in rapid particle agglomeration (Moreau et 

al., 2007). The lowest phosphorus removal (31%) was observed under anaerobic biotic 

conditions, which was correlated to the most significant NZVI agglomeration (p < 0.001) 

due to the magnetic properties of iron (Phenrat et al., 2010). 

 

 

Figure 22. Particle size in abiotic (□) and biotic (■) systems at 150 min of the batch studies. 
Error bars represent one standard deviation from the mean of triplicate samples. 

 

Since NZVI agglomeration is promoted by the magnetic properties of iron, it is plausible 

that the surface passivation caused by nitrate or DO will reduce the content of Fe0 of NZVI 
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to mitigate NZVI agglomeration. The iron oxide shell formed on the NZVI surface could 

be responsible for the less agglomeration of NZVI particles. The formation of iron 

species with less magnetic (magnetite (Fe3O4)) or nonmagnetic (hematite (Fe2O3)) 

properties (Reinsch et al., 2010) from NZVI dissolution in the presence of oxygen might 

contribute to less significant particle agglomeration under aerobic conditions than under 

anoxic conditions. Meanwhile, the zeta potential of NZVI in all the systems remained 

relatively constant (Figure 23) and was consistent with the value reported earlier (around 

-30 mV) (Zhang and Elliott, 2006), further indicating the role of magnetic properties of 

NZVI in particle agglomeration.    

 

 
Figure 23. Zeta potential in abiotic (□) and biotic (■) systems at 150 min of the batch 
studies. Error bars represent one standard deviation from the mean of triplicate samples. 
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Yet the phosphorus removal efficiency under anoxic conditions was still higher than under 

aerobic conditions indicating the particle agglomeration was not the sole factor affecting P 

removal by NZVI. In fact, the significant increase in water pH (8.4 ± 0.2, Figure 5) due to 

denitrification and dissimilatory nitrate reduction to ammonium under anoxic conditions 

could enhance iron phosphate precipitates (e.g., Fe3(PO4)2, FePO4, and Fex(OH)y(PO4)3) 

(Stumm and Morgan, 1996) and the formation of iron oxides/hydroxides for P adsorption, 

thus improving phosphorus removal. 

 

3.3.3. Applications and Implications of NZVI in Wastewater Treatment  

There are several applications and implications of this study regarding the effectiveness 

and safe use of NZVI in biological wastewater treatment. Unlike its application for in situ 

groundwater remediation, NZVI is more commonly exposed to nitrate and dissolved 

oxygen in wastewater treatment. Such biochemical environments, particularly under 

anoxic conditions, are actually preferred for phosphorus removal by NZVI (Figure 20). 

Both nitrate and dissolved oxygen passivate the particle surface, thereby encapsulating the 

Fe0 and decreasing NZVI reactivity (Reinsch et al., 2010) while reducing particle 

aggregation (Figure 22). It is therefore possible to dose NZVI in anoxic or aerobic zone to 
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improve phosphorus removal through precipitation and adsorption by iron 

oxides/hydroxides along with activated sludge flocs. On the other hand, unlike ZVI powder, 

NZVI facilitated dissimilatory nitrate reduction to ammonium (Figure 14), which is 

unwanted in secondary wastewater effluent. NZVI also exhibited inhibition to 

denitrification by denitrifying microorganisms (Figure 13). Nevertheless, benefits of the 

use of NZVI can prevail over the risk in wastewater treatment. For instance, our on-going 

work indicates that it could be used for sludge bulking control through selectively killing 

filamentous species in activated sludge treatment systems (data not shown). NZVI is also 

promising in biosolids treatment for odor control (Li et al., 2007). By considering its 

advantages and disadvantages, NZVI may be used to address urgent wastewater treatment 

problems such as P removal and sludge bulking control, but it is important to identify and 

select the appropriate dose of NZVI before use.  

 

3.4. Conclusions 

The kinetics of simultaneous nitrogen and phosphorus removal by NZVI under different 

biochemical conditions were determined. The rate of NO3
--N reduction in biotic systems 

was significantly higher than in abiotic systems (by NZVI alone). Unlike ZVI powder, 

bacterial catalytic nitrate reduction by NZVI resulted in the accumulation of ammonia. 
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About 31% of NO3
--N was converted to NH4

+-N through NZVI-facilitated dissimilatory 

nitrate reduction to ammonium (DNRA) while 56% of NO3
--N was removed by 

heterotrophic denitrification. Phosphorus removal by NZVI followed a first-order reaction, 

with the highest removal efficiencies observed under anoxic abiotic conditions, most likely 

due to P adsorption by Fe oxide/hydroxide associated with NZVI dissolution and iron 

phosphate complexes/precipitates at relatively higher pH values. The P removal rate was 

the lowest under anaerobic biotic conditions, which was attributed to the most significant 

NZVI agglomeration in the presence of sludge. 
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CHAPTER 4 

 

 

4. Filamentous Sludge Bulking Control by Nano Zero-Valent Iron in 
Activated Sludge Treatment Systems 

Sludge bulking causes loss of biomass in the effluent and deterioration of effluent water 

quality. This study explored the use of nano zero-valent iron (NZVI with an average 

particle size of 55 ± 11 nm) for sludge bulking control. In two Modified Ludzack-Ettinger 

(MLE) activated sludge treatment systems, a single dose of NZVI at the final concentration 

of 100 mg Fe/L in the mixed liquor reduced the number of filamentous bacteria Type 021N 

by 2-3 log units (a reduction of 99.9 and 96.7% in MLE tank #1 and #2, respectively). The 

side effect of the use of NZVI depended on sludge bulking conditions and biomass 

concentration. In the system with sludge bulking and significant sludge loss already 

(average biomass concentration = 1,022 ± 159 COD mg/L or at the ratio of 0.098 g Fe/g 

biomass COD), the use of NZVI increased effluent COD, NH4
+-N and NO2

--N 

concentrations, as also evident with loss of nitrifying populations and nitrifying activities. 

This resulted in more than 40 days to have the full recovery of the activated sludge system. 

In contrast, in the system with the early stages of bulking and the biomass concentration of 
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1,799 ± 113 COD mg/L (at the ratio of 0.056 g Fe/g biomass COD), the effluent water 

quality and overall bioreactor performance were only slightly affected for a few days.  

   

4.1. Objectives   

Because both filaments and NZVI have high surface/volume ratios, it is hypothesized that 

filamentous bacteria are more susceptible to NZVI exposure than floc-forming bacteria. 

The main objective of this research was to explore the use of NZVI for sludge bulking 

control and to determine the side effect of the use of NZVI, which is likely related to sludge 

bulking conditions and biomass concentration (or NZVI/biomass ratio) in activated sludge 

wastewater treatment systems.  

 

4.2. Materials and Methods 

4.2.1. Nano Zero-Valent Iron Synthesis 

The synthesis method of NZVI can be seen in 3.2.1. 

 

4.2.2. Bioreactor Set-Up and Operation  

Replicate lab-scale activated sludge systems (Tanks #1 and #2) employing a Modified 

Ludzack-Ettinger (MLE) process were used in this study. The MLE process was chosen so 
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that the approach of metabolic selection was applied in sludge bulking control while 

filamentous species such as type 021N would not be affected (Grady et al., 2011). Each 

system had a working volume of 7.4 L and consisted of anoxic and aerobic chambers 

separated by a glass baffle. The effective volumes of the anoxic, aerobic, and internal 

settling chambers were 1.9, 3.8 and 1.7 L, respectively. The feed flow rate was set at 7.2 

L/d resulting in an average hydraulic retention time (HRT) of 0.8 d. There was 

recirculation at a flow rate equal to the influent flow rate from the aerobic chamber to the 

anoxic chamber in each MLE tank. For each bioreactor, a fine bubble diffuser in 

conjunction with the use of a magnetic stirrer provided mixing and aeration in the aeration 

chamber to maintain DO concentrations of 2-4 mg/L and only a magnetic stirrer was used 

to provide mixing in the anoxic chamber. Both bioreactors were inoculated with activated 

sludge obtained from the Columbia WWTP (Columbia, MO) and fed with synthetic 

wastewater. The synthetic wastewater (pH = 6.9 ± 0.1) prepared with tap water mainly 

contained nonfat dry milk powder with a target chemical oxygen demand (COD) 

concentration of 400 mg/L, 40 mg/L total nitrogen, 25 mg/L NH4
+-N and 8 mg/L PO4

3--P. 

It also contained the following macro- and micronutrients per liter: 44 mg MgSO4, 14 mg 

CaCl2∙2H2O, 2 mg FeCl2∙4H2O, 3.4 mg MnSO4∙H2O, 1.2 mg (NH4)6Mo7O24∙4H2O, 0.8 mg 

CuSO4, 0.3 mg NiSO4·6 H2O, and 1.8 mg Zn(NO3)2∙6H2O (Liang et al., 2010b). The 
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wastewater was prepared every 3 days and stored at room temperature (23 ± 1 ºC) in a 

covered 130 L (volume) plastic storage bin. 

 

The bioreactors were operated and monitored for 150 days after the start-up period, and 

divided into two phases. Phase I lasted for the first 60 days at the target SRT of 10 d by 

wasting the mixed liquor directly from the aerobic chamber. Phase II started from day 61 

onwards at a long SRT (20 days) associated with high bulking potential. To determine 

bulking conditions, the sludge volume index (SVI) was regularly monitored following the 

standard methods (APHA, 2002) with modification (by taking 100-mL of the waste 

sludge). Through SVI measurements and microscopic observations, an instantaneous dose 

of NZVI in the anoxic chamber at the final concentration of 100 mg Fe/L in the entire 

mixed liquor was applied for sludge bulking control on day 89 and day 104 for Tank #1 and 

#2, respectively.  

 

4.2.3. Filamentous Bacterial DNA and Polymerase Chain Reaction 
Analysis  

Bacterial DNA samples were collected from each bioreactor before and after NZVI dosing 

at a predetermined time. Total genomic DNA was extracted from the mixed liquor taken 

from the aeration chamber using a MoBio UltracleanTM Soil DNA Isolation Kit (MioBio 
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Laboratories, Inc., Carlsbad, CA). An average of 0.5 g biomass was collected in DNA 

extraction. The DNA was quantified by Nanodrop ND 1000 (NanoDrop Technologies, 

Wilmington, NC, USA) and its purity was analyzed by measuring the 260/280 nm 

absorbance ratio. The extracted DNA samples were stored at -20˚C before use.  

 

A broad range of filamentous bacteria including Microthrix parvicella, Eikelboom type 

021N, Gordonia spp., Thiothrix eikelboomii were detected in the MLE systems by 

conventional polymerase chain reaction (PCR) methods as described elsewhere 

(Dumonceaux et al., 2006, Kumari et al., 2009, Vervaeren et al., 2005a). All primers were 

synthesized by Integrated DNA Technologies (Coralville, IA) and their detailed sequence 

information is available in Table 3.  
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Table 3. Primer used for filamentous bacteria detection  

Target Primer Sequence (5’-3’) References 

Most 021 N group strains 21Nf CGTAGGCGGCTCTTTAAGTCRGAT  (Vervaeren et al., 2005b) 
Most 021 N group strains 21Nr CCGACGGCTAGTTGACATCGTTTA  (Vervaeren et al., 2005b) 

Gordonia spp. G268f CGACCTGAGAGGGTGATCG (Nielsen et al., 2004) 
Gordonia spp G1096r ATAACCCGCTGGCAATACAG (Nielsen et al., 2004) 

Candidatus Microthrix 
parvicella 

M1f GGTGTGGGGAGAACTCAACTC 
(Kumari et al., 2009) 

Candidatus Microthrix 
parvicella 

M2r GACCCCGAAGGACACCG 
(Kumari et al., 2009) 

T.eikelboomii AP3 
Cpn60 
49/50f 

ATAATAATGCGATTGCTCAAG 
(Dumonceaux et al., 
2006) 

T.eikelboomii AP3 
Cpn60 
49/50r 

ACGACTAAAGTGGCTAAGG 
(Dumonceaux et al., 
2006) 

Bacterial 16S rRNA 1055f ATGGCTGTCGTCAGCT (Harms et al., 2003) 
Bacterial 16S rRNA 1392r ACGGGCGGTGTGTAC (Harms et al., 2003) 

 

For quantitative microbial analysis, Type 021N was selected as a representative 

filamentous species through quantitative real-time PCR (qPCR) analysis. Type 021N 

stands for a large group of filamentous bacteria and their growth is strongly related to an 

unbalanced influent composition, low molecular weight organic substrates and low oxygen 

concentrations in the aeration tanks (Gaval and Pernelle, 2003, Jenkins et al., 2004, 

Martins et al., 2004). The bacteria have also been shown to be present at moderate to high 

SRT (Martins et al., 2004). The qPCR assays were performed with the ABI 7500 Real time 

PCR System and the 7500 SDS system software (version 1.4, Applied Biosystems, CA), 

according to the protocols described previously with modification (Vervaeren et al., 
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2005a). To avoid PCR inhibition, NZVI/iron ions in the DNA samples were removed with 

EDTA following a method described previously (Teng et al., 2008). PCR reactions were 

carried out in MicroAmp optical reaction plates (Applied Biosystems, Branchburg, NJ) 

containing 1 μL of each forward primer and reverse primer (stock concentration of 10 μM), 

12.5 μL of SYBR Green PCR master Mix (Applied Biosystems, CA), 1.25 μL EDTA (10 

mM), 0.5 μL MgCl2 (25 mM), 3.75 μL of PCR water, and 5 μL sample DNA (a total of 

4.3–11.6 ng DNA) in a 25 μL total volume. The qPCR reactions were performed starting at 

50 °C for 2 min, followed by an initial denaturation at 95 °C for 10 min, and then 40 cycles 

of 95 °C for 15 s and 62 °C for 1 min. The dissociation step at 95 °C for 15 s and 60 °C for 

1 min was added at the end to check the specificity of the PCR results (Table 4). For 

comparison purposes, qPCR was also applied to quantify total bacterial 16S rRNA gene 

copy number using primers 1055f and 1392r (Table 3). To reduce potential false-positive 

signals in total bacterial count, TaqMan-based detection was applied and the TaqMan 

probe 16S Taq1115 (6-FAM)-CAACGAGCGCAACCC-(TAMRA) was modified from 

the 1114f primer. The PCR Mix had a total volume of 25 μL consisting of 12.5 μL of 

TaqMan Universal PCR Master Mix (Applied Biosystems, CA), 1 μL of each forward 

primer and reverse primer (stock concentration of 20 μM), 0.5 μL of TaqMan probe, 1.25 

μL EDTA (10 mM), 0.5 μL MgCl2 (25 mM), 3.25 μL of PCR water, and 5 μL sample DNA. 
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The program for 16S rRNA gene amplification was set as follows: 10 min at 95 ˚C, 45 

cycles of 30 s at 95 ˚C, 60 s at 50 ˚C, and 45 s at 72 ˚C. 

 

Table 4. Primer and DNA Concentrations used in q-PCR 

Methods Component in one well  Stock Conc. Volume per rxn 
(µL/well) 

Final Conc 
in a 25-µL 
PCR rxn 

SYBR Green 1 F/ R Primer  10 µM 1 0.4 µM 
DNA Template (with 100 

time dilution) 
 0.9-2.3 ng/µL 5 0.2-0.5 ng/µL 

SYBR PCR Mix  X 12.5 0.5 X 

PCR grade water   3.75  
 EDTA  10 mM 1.25 0.5 mM 
 MgCl2  25 mM 0.5 0.5 mM 

Taqman Probe2 F/ R Primer  10 µM 1 0.4 µM 

Probe  10 µM 0.5 0.2 µM 
DNA Template (with 100 

time dilution) 
 0.9-2.3 ng/µL 5 0.2-0.5 ng/µL 

Tapman PCR Mix  X 12.5 0.5 X 
PCR grade water   3.25  

 EDTA  10 mM 1.25 0.5 mM 
 MgCl2  25 mM 0.5 0.5 mM 

1 SYBR green method was for Type 021N and total PCR volume was 25 µL. 
2 Taqman probe method was used for total bacteria determination and total PCR volume was 25 µL. 

 

The copy numbers of 16S rRNA genes of Type 021N and total bacteria in all the samples 

were determined at least in triplicate. Standard curves (mean cycle threshold (Ct) value of 
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triplicate assays versus log of cell number/PCR reaction) were constructed through serial 

dilutions of plasmid DNA carrying a cloned 16S rRNA gene of Type 021N or total bacteria 

using a TOPO® TA Cloning® kit (Invitrogen, CA). The PCR amplification efficiencies for 

Type 021N and total bacteria were 92.4% and 94.8%, respectively (Figure 24). The 

standard curves of the PCR assay without EDTA and MgCl2 served as control to determine 

the effect of EDTA and MgCl2 on PCR amplification efficiencies (Figure 24). The 

quantified 16S rRNA copy numbers were converted to cell numbers, according to the 

genomic information (available at http://www.microbesonline.org), with the assumption 

that Type 021N cell contains one 16S rRNA gene copy and total bacterial cell contains an 

average of 3.6 16S rRNA gene copies (Harms et al., 2003). 

 

 

http://www.microbesonline.org/�
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Figure 24. qPCR standard curves for Type 021N and total bacteria in the presence (◆) 
and absence (▲) of EDTA and MgCl2 in PCR reactions. Error bars represent one standard 
deviation from the mean of triplicate samples.  
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4.2.4. Effect of NZVI Dosing on Nitrifying Bacterial Population and 
Nitrifying Activity  

The side effect of NZVI dosing in activated sludge treatment systems was inferred from its 

effect on the growth of sensitive nitrifying bacteria, which include ammonia-oxidizing 

bacteria (AOB) and nitrite-oxidizing bacteria (NOB). To analyze the impact of NZVI on 

the nitrifying population, the collected DNA samples were analyzed by Terminal 

Restriction Fragment Length Polymorphism (T-RFLP) with details provided in 2.2.5.  

 

To determine the change in nitrifying bacterial activity, aliquots of mixed liquor were 

periodically taken from the aeration chamber to determine the specific oxygen uptake rates 

(SOUR), with detailed procedures described in 2.2.4.  

 

4.2.5. Microtiter Assay and NZVI Dose Choice 

A turbidimetric microtiter assay was applied to evaluate the toxicity of NZVI on the 

growth of active sludge bacteria (at the concentration of about 2000 mg/L of biomass COD) 

at different concentrations (20, 100 and 200 mg Fe/L). Activated sludge samples from the 

Columbia WWTPs were washed with 1 × phosphate buffered saline (PBS) three times to 

remove the residue organic matter and nutrients before use. Aliquots (20 µL) of sludge 

samples in 8 replicates were added to the microplate wells followed by the addition of 180 
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µL sterile basal mineral medium in each well. The absorbance of cell culture in each 

microwell was measured at 600 nm every 1 hour for about 48 h by a microreader 

(VICTOR3, PerkinElmer, Shelton, USA). Activated sludge sample with no NZVI 

treatment served as control. 

 

Figure 25 shows bacterial growth curves in the presence of NZVI using a microtiter assay. 

Compared with the control having the specific bacterial growth rate of 2.36 ± 0.37 d-1, the 

presence of NZVI at 20, 100 and 200 mg/L reduced the specific growth rates to 2.16 ± 0.52 

d-1, 1.61 ± 0.28 d-1 and 1.59 ± 0.43 d-1, respectively. By increasing the NZVI concentration 

from 20 to 100 mg/L, the reduction in bacterial growth was increased from 8% to 32%. 

However, further reduction was not observed when NZVI concentration was increased to 

200 mg/L. Therefore, an instantaneous, one-time dose of NZVI at the final concentration 

of 100 mg Fe/L in the mixed liquor was applied in the MLE bioreactors for sludge bulking 

control. 
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Figure 25. Aerobic bacterial growth, as indicated by optical density measurments at 600 
nm, in the groups treated with different NZVI concentrations: Control ( ), 20 mg/L ( ), 
100 mg/L ( ) and 200 mg/L ( ). Activated sludge from the Columbia WWTP was used 
as a seed culture. The error bars represent one standard error of the mean (n = 8). 

 

 

4.2.6. Microscopic, Chemical and Statistical Analysis  

Activated sludge in the aeration chamber was periodically subjected to light microscopic 

examination (Axioskop Zeiss microscope). One day after NZVI dosing into each MLE 

bioreactor, the activated sludge samples were subjected to live/dead analysis after 

fluorescent staining with the LIVE/DEAD® BacLightTM bacterial viability kit (Invitrogen 

Co., Carlsbad, CA), according to the work reported elsewhere (Hu et al., 2003). A 
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laser-scanning confocal microscope (Zeiss LSM 510 META) was used for fluorescence 

imaging of bacterial cells.  

 

The influent and effluent water quality parameters such as COD, NH4
+-N, NO2

--N, NO3
--N, 

and orthophosphorus in the MLEs were measured in duplicate following the standard 

methods (APHA, 2002). Biomass concentration was measured in COD units (Contreras et 

al., 2002, Münch and Pollard, 1997). One-way ANOVA analysis was conducted to assess 

the significance of the difference among groups, with p < 0.05 indicating statistical 

significance. 

 

4.3. Results and Discussion 

4.3.1. Sludge Bulking Associated with Long SRT Operation and 
Bioreactor Performance  

Both MLE bioreactors were initially operated at the SRT of 10 d for about two months. The 

SRT increased to 20 days from day 61 onwards. As long SRT operation often favors 

filamentous bacterial growth (Grady et al., 2011) while short SRTs (< 5.7 d) suppress the 

growth of filamentous bacteria (Microthrix parvicella) (Noutsopoulos et al., 2006), an 

increase in SRT from 10 to 20 d encouraged sludge bulking as indicated from the SVI 

measurements and confirmed by light microscopy (Figures 26 and 27). In Tank #1, the SVI 
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value increased from < 100 mL/g at the SRT of 10 d to 333 mL/g after about 20 days of 

operation at the SRT of 20 d. For comparison, the SVI increase was slower in Tank #2, 

where the SVI increased from < 100 mL/g at the SRT of 10 d to 210 mL/g after about 40 

days of operation at the SRT of 20 d (Figure 26). Though SVI values above 150 mL/g 

indicate sludge bulking (Metcalf and Eddy, 2003), the different trends in SVI change 

suggest the uncertainty and complex sludge bulking mechanisms involved in each 

bioreactor, even though the two tanks were identical and operated at the same HRT and 

SRT.  

 

Correspondingly, the degree of loss of sludge differed between the two bioreactors during 

sludge bulking. At the SRT of 10 d with no evidence of sludge bulking, the average 

biomass COD concentrations in Tank #1 and #2 were 2,332 ± 255 mg/L and 2,269 ± 235 

mg/L, respectively (Figure 28). There was no significant difference in the biomass 

concentration between the two bioreactors (p = 0.67). At the SRT of 20 d, due to sludge 

loss in the effluent associated with bulking, the biomass COD concentration in Tank #1 

gradually reduced to 1,022 ± 159 mg/L on day 89. For comparison, in Tank #2, the 

biomass COD concentration was only reduced to 1,799 ± 113 mg/L on day 104 (after about 

40 days of operation at an average SRT of 20 d). The SVI data (Figure 26) and microscopic 
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observation (Figure 27) also confirmed that sludge in Tank #1 was already bulking, 

resulting in sludge loss, while sludge in Tank #2 was in the early stages of bulking.   

 

 
Figure 26. SVI values in Tank #1 before (○) and after (●) NZVI dosing on day 89 and 
SVI values in Tank #2 before (◇) and after (◆) after NZVI dosing on day 104. Two 
vertical hashed lines show the days of NZVI addition in Tanks #1 and #2, respectively. 
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Figure 27. Micrographs of light microscopy of activated sludge samples from Tank #1 (left 
panel) and Tank #2 (right panel) taken on day 80 and 100, respectively. 
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Figure 28. Biomass concentrations in Tank #1 (○) and Tank #2 (◇) before NZVI dosing 
and in Tank #1 (●) and Tank #2 (◆) after NZVI dosing on day 89 and day 104, 
respectively. Two vertical hashed lines show the days of NZVI addition in Tanks #1 and 
#2, respectively. The SRT was increased from 10 to 20 day from day 61 onwards. Error 
bars represent the range of duplicate samples. 

 

Figures 29 and 30 demonstrate that sludge bulking affected effluent water quality. At the 

SRT of 10 d (with no sludge bulking) and influent COD concentration of 403 ± 47 mg/L, 

the effluent COD concentrations from Tank #1 and #2 were 21 ± 5 mg/L and 20 ± 5 mg/L, 

respectively, resulting in a similar average removal efficiency of 95% (Figure 29). There 

were also no significant differences in effluent NH4
+-N (p = 0.75), NO2

--N (p = 0.73) or 

NO3
--N (p = 0.66) concentrations between the two MLE bioreactors. The effluent NH4

+-N 

concentrations from Tank #1 and #2 were 0.4 ± 0.1 mg/L and 0.4 ± 0.2 mg/L, respectively, 

with removal efficiencies of 98% and 99%, respectively, indicating almost complete 
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nitrification (Figure 30A). Correspondingly, the effluent NO2
--N concentrations from Tank 

#1 and #2 were 0.4 ± 0.6 mg/L and 0.5 ± 0.7 mg/L, respectively, and the effluent NO3
--N 

concentrations were 20.2 ± 1.9 mg/L and 20.4 ± 1.9 mg/L, respectively.   

 

As the SRT was increased to 20 days from day 61 onwards, the average effluent COD 

concentrations before NZVI dosing in Tank #1 and #2 increased to 40 ± 13 mg/L and 37 ± 

7 mg/L, respectively (Figure 29). This was mainly attributed to the loss of sludge in the 

effluent due to sludge bulking. Meanwhile, the average effluent NH4
+-N and NO2

--N 

concentrations in Tank #1 increased significantly to 1.2 ± 1.4 mg/L and 1.9 ± 1.6 mg/L, 

respectively, while the effluent NO3
--N concentration decreased to 15.9 ± 6.3 mg/L. The 

much higher effluent NH4
+-N and NO2

--N concentrations in Tank #1 were linked to its 

more serious sludge bulking and biomass loss in the effluent, suggesting that nitrifying 

bacteria are more easily washed out and susceptible to perturbation associated with 

filamentous sludge bulking. For comparison, with the sludge in the early stages of bulking 

in Tank #2, the average effluent NH4
+-N and NO2

--N concentrations before NZVI dosing 

remained relatively low at 0.5 ± 0.2 mg/L and 0.4 ± 0.2 mg/L, respectively. 
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Figure 29. Effluent COD concentrations in Tank #1 (○) and Tank #2 (◇) before NZVI 
dosing and in Tank #1 (●) and Tank #2 (◆) after NZVI dosing on day 89 and day 104, 
respectively. Two vertical hashed lines show the days of NZVI addition in Tanks #1 and 
#2, respectively. Error bars represent the range of duplicate samples. 
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(c) 

 
Figure 30. Effluent NH4

+-N (a), NO2
--N (b) and NO3

--N (c) concentrations in Tank #1 (○) 
and Tank #2 (◇) before NZVI dosing and in Tank #1 (●) and Tank #2 (◆) after NZVI 
dosing on day 89 and day 104, respectively. Error bars represent the range of duplicate 
samples. 
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4.3.2. Effectiveness of NZVI in Killing Filamentous Bacteria  

Among the filamentous bacteria studied, Type 021N and Gordonia spp. were detected 

most often while Thiothrix eikelboomii was only detected in Tank #1 (data not shown). 

Type 021N bacteria were found to be excessive at the SRT of 20 d in Tank #1 on days 88 

and 89 and Tank #2 on day 104 (Figure 31). The bloom of Type 021N species in Tank # 2 

was delayed for about 15 days with a smaller population for unknown reasons, which was 

in agreement with the sludge bulking conditions observed through SVI measurements and 

light microscopy.  
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Figure 31. Type 021N (A) and total bacterial population (B) dynamics in Tank #1 and Tank 
#2 . A single dose of NZVI at the final concentration of 100 mg Fe/L in the mixed liquor 
was applied on day 89 and day 104 in Tank #1 and Tank #2, respectively. Two vertical 
hashed lines show the days of NZVI addition in Tanks #1 and #2, respectively. Error bars 
represent one standard deviation from the mean of at least triplicate samples. 
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In Tank #1, before NZVI dosing, the average concentration of Type 021N were increased 

from (2.00 ± 0.69) × 106 cells/g biomass on day 40 to (2.67 ± 0.09) × 109 cells/g biomass on 

day 88 and (2.43 ± 0.07) × 109 cells/g biomass on day 89 (Figure 31a). One day after NZVI 

dosing, however, Type 021N was reduced to (1.37 ± 0.54) × 106 cells/g biomass, a 

significant decrease (in 3 log units). In the following 20 and 40 days, the average 

concentrations of Type 021N were (1.35 ± 0.80) × 106 cells/g biomass and (9.56 ± 0.26) × 

106 cells/g biomass, respectively, indicating a slight and slow recovery of the bacteria 

under long SRT operation. In Tank #2, Type 021N species increased from (2.70 ± 0.69) × 

106 cells/g biomass on day 40 to (1.09 ± 0.01) × 109 cells/g biomass on day 104 (before 

NZVI dosing) (Figure 31a). One day after NZVI treatment, the number of Type 021N was 

reduced to (3.58 ± 0.20) × 107 cells/g biomass, a significant decrease (in about 2 log units 

or a 96.7% reduction). After 20 more days of operation at the SRT of 20 d, the number of 

Type 021N remained low at (3.40 ± 0.23) × 107 cells/g biomass. For comparison, the 

average concentration of total bacteria ranged from (1.38 ± 0) × 1011 cells/g biomass to 

(1.68 ± 0.15) × 1011 cells/g biomass in Tank #1 and from (1.30 ± 0.05) × 1011 cells/g 

biomass to (1.49 ± 0) × 1011 cells/g biomass in #2 throughout the study period (Figure 31b), 

which were generally consistent with the range of biomass concentrations in municipal 
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WWTPs (Harms et al., 2003). Type 021N was characterized by having extremely high SVI 

values (Séka et al., 2001a). The results demonstrated the successful use of NZVI in sludge 

bulking control by significantly reducing the number of Type 021N bacteria.  

 

Due to its high specific surface area, it is likely that NZVI was capable of directly attaching 

to the cell surface thus more likely killing filamentous bacteria, which also have high 

surface/volume ratio (Figure 32). Interestingly, the use of NZVI did not cause significant 

deflocculation one hour after the dosing while the nanoparticles appeared to be 

agglomerated. Live/dead staining results showed that unlike the control group (Figure 33), 

NZVI effectively killed the filamentous bacteria in both bioreactors, while a large fraction 

of floc-forming species were still alive with a larger amount of dead cells for the higher 

NZVI to biomass ratio in Tank #1 (Figure 34), because the filamentous bacteria are not 

protected by the floc. NZVI was also effective in killing Gordonia spp. based on regular 

PCR analysis, as the bands associated with this species disappeared right after NZVI 

dosing indicating the significant bactericidal effect (Figure 35).  
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Figure 32. Micrographs of light microscopy of activated sludge samples from Tank #1 
(left panel) and Tank #2 (right panel) taken 1 h after NZVI dosing in the MLE systems 
with agglomerated NZVI structure shown in black. 

 

Figure 33. The viability of bulking activated sludge before NZVI treatment. Under 
florescence microscopy, living cells were stained green and dead cells were stained red.  
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Figure 34. The viability of activated sludge from Tank #1 (with sludge bulking and 
significant sludge loss already, left) and Tank #2 (with the early stages of bulking, right) 
after the NZVI treatment on day 90 and 105, respectively. Under florescence microscopy, 
living cells were stained green and dead cells were stained red.  
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Figure 35. Conventional PCR analysis of the sludge samples targeting genomic DNA 
(829 bp) of Gordonia spp. Lane 1, molecular mass marker (100 bp plus DNA ladder); 
Lane 2, DNA template from Tank #1 before NZVI dosing; Lane 3, DNA template from 
Tank #1 one day after NZVI dosing; Lane 4, DNA template from Tank #2 before NZVI 
dosing; Lane 5, DNA template from Tank #2 one day after NZVI dosing; Lane 6, 
negative control (no DNA template). 

 

4.3.3. Impact of Sludge Bulking and NZVI Dosing on Nitrifying 
Bacterial Population and Activity  

T-RFLP analysis (Figure 36) shows the change in nitrifying bacterial community structure 

in Tank #1 before and after NZVI dosing. On day 40, Nitrosomonas was the dominant 

genus of AOB while Nitrospira was dominant among NOB. With significant sludge 

bulking on day 89, there was a large decrease in the AOB population as indicated from the 

change in peak intensity (at 155 bp and 161 bp) of Nitrosomonas; in contrast, only one of 
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the Nitrospira peaks (272 bp) was reduced considerably. Consistent with the higher 

effluent NH4
+-N and NO2

--N concentrations, the decrease in Nitrosomonas and Nitrospira 

population was attributed to overgrowth of filamentous bacteria and associated biomass 

loss in the effluent. Additional decrease in the numbers of Nitrosomonas and Nitrospira 

species were observed one day after NZVI dosing (day 90), showing the bactericidal effect 

of NZVI on nitrifying bacteria. Thereafter, the peak sizes of Nitrosomonas and Nitrospira 

species increased gradually as indicated from the data on days 110 and 130, correlating 

well with the effluent water quality data (Figures 29 and 30).  
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(a) 

 

 

 

 

 

 
Note: Arrows indicate significant T-RFLPs of AOB: 161bp for AOB Group-1 and 155 bp 
could belong to the uncharacterized AOB.   
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(b) 

 

 

 

 

 

 

 

Note: Arrows correspond to significant T-RFLPs of Nitrospira, 261 bp, and 272 bp. 

Figure 36. Nitrifying bacterial community composition reflected by T-RFLP profiles 
targeting 16S rRNA genes of Nitrosomonas (a) and Nitrospria (b) in Tank #1 before and 
after NZVI dosing on day 89. 
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Furthermore, consistent with the change in nitrifying population and the effluent water 

quality, the autotrophic SOUR values in Tank #1 were decreased by 46 ± 4% due to sludge 

bulking on day 89 (Figure 37). One day after NZVI dosing, the nitrifying bacteria activity 

decreased further, with the full recovery of the activated sludge system taking more than 40 

days. There was also a slight decrease in nitrifying activity in Tank # 2 on day 104 followed 

by a significant decrease (34 ± 1%) one day after NZVI dosing. Thereafter, the nitrifying 

bacteria activity was fully recovered within a few days.  

 

 
Figure 37. Autotrophic SOUR in Tank #1 (○) and #2 (◇) before NZVI dosing and in 
Tank #1 (●) and #2 (◆) after NZVI dosing on day 89 and day 104 and day 104, 
respectively. Two vertical hashed lines show the days of NZVI addition in Tanks #1 and 
#2, respectively. 
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4.3.4. Bioreactor Performance Recovery and Other Benefits Associated 
with NZVI Dosing  

In Tank #1 with sludge bulking and sludge loss already present (average biomass 

concentration = 1,022 ± 159 COD mg/L or at the ratio of 0.098 g Fe/g biomass COD), the 

use of NZVI caused a significant increase in effluent COD, NH4
+-N and NO2

--N 

concentrations, with the full recovery of the activated sludge system taking more than 40 

days (Figures 29 and 30). For comparison, in Tank #2 with the early stages of bulking and 

the biomass concentration of 1,799 ± 113 COD mg/L (at the ratio of 0.056 g Fe/g biomass 

COD), the effluent COD concentration was stabilized at 22 ± 1 mg/L, with the exception 

of NH4
+-N accumulation during the first week after NZVI dosing, the effluent NH4

+-N 

concentration was quickly reduced to 0.02 ± 0.03 mg/L (Figures 29 and 30). Hence, the 

effluent water quality and overall activated sludge bioreactor performance were only 

affected for a few days in Tank #2. 

 

Additional benefits of the use of NZVI included improved phosphorus removal and sludge 

settling. An single dose of NZVI resulted in fast and enhanced reduction of effluent 

PO4
3--P concentration (Figure 38), possibly due to iron phosphate precipitates (e.g., 

Fe3(PO4)2, FePO4, and Fex(OH)y(PO4)3) (Stumm and Morgan, 1996) and the formation of 
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iron oxides/hydroxides for P adsorption (Almeelbi and Bezbaruah, 2012). However, the 

effluent PO4
3--P concentrations resumed to the previous level three HRTs after NZVI 

treatment, indicating the rapid loss of NZVI reactivity as nanoparticles were mainly 

associated with sludge. Nevertheless, due to the dissolution of NZVI, the oxidized forms 

(Fe2+, Fe3+) of iron could improve the sludge flocculation and settleability, as was also 

confirmed in this study where the SVI was generally below 100 mg/L in both bioreactors 

after the one-time NZVI treatment (Figure 26). Although more questions remain as to 

whether or how the NZVI treated sludge would affect sludge digestion, it is expected that 

NZVI could be converted to iron ions and their complexes through fast NZVI dissolution 

(within an hour, data not shown) and therefore would not pose problems.  
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Figure 38. Effluent PO4

3--P concentrations in Tank #1 (●) and Tank #2 (♦) right after 
NZVI dosing. Error bars represent one standard deviation from the mean of duplicate 
samples. 

 

In chlorination-based bulking control, filamentous and floc-forming bacteria do not appear 

to largely differ in their chlorine susceptibility. Unlike chlorine, NZVI may serve as a new 

bulking control agent that can selectively kill filamentous organisms due to the unique fate 

and transport characteristics associated with NZVI dissolution and agglomeration (Figure 

31). Nevertheless, the findings of this paper are more of an exploratory nature. A NZVI 

final concentration of 100 mg/L is very high, which shows side effects in a way that excess 

chlorine treatment does. More research is needed to show if there is a NZVI specific dose 

that can control filaments without causing nitrification inhibition by adjusting the particle 

size and dose of NZVI. Also there could be more complicated instances of filamentous 
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bulking that are much more challenging to resolve in full-scale wastewater treatment 

plants. Further research is needed to design and test NZVI related nanomaterials for better 

sludge bulking control.  

 

4.4. Conclusions 

A new approach of filamentous sludge bulking control with NZVI was proposed. NZVI is 

an effective biocide. A single dose of NZVI at the final concentration of 100 mg Fe/L in the 

mixed liquor reduced filamentous bacteria such as Type 021N by 2-3 log units. Meanwhile, 

the nitrification efficiency was also reduced while the side effect of the use of NZVI 

depended on sludge bulking conditions and sludge concentration. Because the filamentous 

bacteria are not protected by the floc and the agglomeration of nanoparticles in the sludge 

may reduce the negative effect of NZVI on floc formers, this research opens up the 

potential to use NZVI as a more selective sludge bulking control agent.    
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CHAPTER 5 

 

 

5. Fate and Toxicity of Melamine in Activated Sludge Treatment 

Systems after a Long-Term Sludge Adaptation∗

Melamine is a nitrogen-rich (67% nitrogen by mass) heterocyclic aromatic compound that 

could significantly increase effluent total nitrogen concentrations. In this study, we 

investigated the degradation of melamine and its impact on activated sludge operations by 

employing two common activated sludge processes, namely the Modified 

Ludzack-Ettinger (MLE) process and the continuous stirred tank reactor (CSTR) process. 

Melamine was dosed continuously from day 125 in both activated sludge treatment 

systems at an influent concentration of 3 mg/L for about 100 days. Even after such a long 

period of sludge adaptation, melamine appeared not to be easily biodegradable. The 

average melamine removal efficiencies in the CSTR and MLE systems were 14 ± 10% and 

20 ± 15%, respectively. There was no significant difference in melamine removal between 

the two different activated sludge processes. The long-term input of melamine resulted in a 

 

                                                 

∗ A research paper based on this thesis chapter has been published: Full citation in Water Research, Vol 
47(2003):2307~2314 
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decrease in the nitrifying bacterial activities (by 82 ± 8 %) and population in both systems. 

Short-term microtiter assay results also showed that melamine reduced activated sludge 

growth by 80% when supplied at a concentration of 75.6 mg/L. These results suggest that 

sludge adaptation plays a minimal role in melamine degradation, as the enzymes 

responsible for hydrolytic deamination of melamine in activated sludge are not easily 

induced. The insignificant biodegradation of melamine is also attributed to bacterial 

growth inhibition under long-term dosing conditions with melamine, resulting in a 

significant decrease in effluent water quality.  

 

5.1. Objectives 

Earlier studies have shown that the inherent biodegradability of melamine by unacclimated 

activated sludge is very low, ranging from 0 to 16% after continuous aeration at 24 °C in 

the dark for 28 days (UNEP). The objective of this study was to determine the fate and 

toxicity of melamine in activated sludge systems and to evaluate whether long-term sludge 

adaptation can improve melamine degradation. 
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5.2. Materials and Methods 

5.2.1. Bioreactor Setup and Operation 

Two lab-scale activated sludge systems were operated in parallel by employing two 

commonly used activated sludge treatment processes during this study. Each system had a 

working volume of 7.4 L. For the bioreactor using the Modified Ludzack-Ettinger (MLE) 

process, the system was composed of sequential anoxic and aerobic chambers separated by 

a glass baffle. The effective volumes for the anoxic, aerobic, and internal settling chambers 

were 1.9, 3.8 and 1.7 L, respectively. There was a recirculation from the aerobic chamber 

to the anoxic chamber in the MLE system at a flow rate equal to the influent flow rate. The 

continuous stirred tank reactor (CSTR) system was a completely mixed bioreactor with 

aeration and settling chamber effective volumes of 5.7 and 1.7 L, respectively. For each 

bioreactor, a fine bubble diffuser and a magnetic stirrer provided mixing and aeration in the 

aeration chamber.   

 

The synthetic wastewater primarily contained nonfat dry milk powder with a target 

chemical oxygen demand (COD) concentration of 500 mg/L, 50 mg/L total N, 30 mg/L 

NH4
+-N and 6 mg/L PO4

3--P. The synthetic wastewater also contained the following 

micronutrients per liter: 44 mg MgSO4, 14 mg CaCl2∙2H2O, 2 mg FeCl2∙4H2O, 3.4 mg 

MnSO4∙H2O, 1.2 mg (NH4)6Mo7O24∙4H2O, 0.8 mg CuSO4, 0.3 mg NiSO4·6 H2O, and 1.8 
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mg Zn(NO3)2∙6H2O (Sigma Aldrich, St Louis, MO) (Liang et al., 2010a, Liang et al., 

2010b).  

 

The two bioreactors were operated with a hydraulic retention time (HRT) of 0.75 d and 

target solids retention time (SRT) of 15 d. At the beginning of reactor operation, a total of 

2,000 mL of activated sludge taken from the aeration basin of a local municipal wastewater 

treatment plant (WWTP) (Columbia, MO) was added as an inoculum to each bioreactor. 

The bioreactors were operated and monitored for 227 days, which was divided into two 

phases. Phase I consisted of the first 124 days of operation before melamine dosing. Phase 

II started on day 125, with continuous melamine dosing at an influent concentration of 3 

mg/L. This concentration was chosen considering some industrial wastewater streams 

containing melamine and its derivatives (e.g., melamine formaldehyde) at a concentration 

of about 30 mg/L (Othman, 2012) and the fact of dilution with other wastewater prior to 

entering the WWTP.  

 

5.2.2. Effect of Long-term Melamine Dosing on Bioreactor 
Performance 

Melamine (99%) was purchased from Acros Organics. From day 125 onwards, a melamine 

stock solution with a concentration of 122.8 mg/L was fed separately into each bioreactor 
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at a flow rate of 0.172 L/d. This was mixed with influent synthetic wastewater to reach an 

influent nominal concentration of 3 mg/L in each bioreactor. The change in HRT due to 

melamine addition was negligible because the flow rate of melamine stock was much 

lower than the influent (6.9 L/d). Wastewater effluent from each bioreactor was collected 

and analyzed for melamine, NH4
+-N, NO3

--N, NO2
--N, and COD following the standard 

methods (APHA, 2002). SOUR measurement is shown in 2.2.4. 

 

5.2.3. Batch Melamine Degradation and Adsorption Study 

Batch studies were conducted to determine the potential for adsorption and degradation of 

melamine in activated sludge systems before melamine dosing in the continuous flow 

systems. The sludge samples were collected from the CSTR and the aeration chamber of 

the MLE system. All of the samples were washed with phosphate buffered saline (PBS) 

three times to remove the residual carbon and nutrients before they were resuspended in 

medium that had the same recipe as the feed solution with the exception of the organic 

matter (milk powder). Aliquots (500 mL) of the sample with a biomass concentration of 

about 2 g/L were poured into 1,000 mL beakers. Then 5 mL aliquots of the melamine stock 

solution (1,000 mg/L) were spiked into the sludge samples, to obtain a final melamine 

concentration of 10 mg/L. The mixed liquor in each beaker was mixed at 350 rpm with 
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magnetic stirrers at 25 ± 1 ºC and the batch systems were run under aerobic and anoxic 

conditions. An aeration pump was used to supply air in addition to mixing under aerobic 

conditions. Excess sodium nitrate was added to the mixed liquor under anoxic conditions. 

After 2, 4, 6, 10, 22, 34, 46, and 70 hours, 5 mL aliquots of the mixed liquor were collected. 

Following 70 hours of culture time, the mixed liquor was allowed to settle for 10 min, and 

then the supernatant was filtered through a 0.45 μm nylon syringe filter and the filtrate was 

stored at 4 ºC before analysis. To determine the adsorption of melamine by the sludge, two 

more groups of heat-inactivated biomass samples were prepared (killed by heating at 80 ºC 

for 20 min) (Hu et al., 2005b) and the experiment was repeated under aerobic and anoxic 

conditions.  

 

5.2.4. Melamine Toxicity Inferred from the Microtiter Assay 

Activated sludge samples from the CSTR system at the end of phase II were washed with 

1× PBS three times to remove the residual organic matter and nutrients before use. The 

samples were placed into sterile basal mineral medium that was modified by removing the 

(NH4)2SO4 and (NH4)6Mo7O4·7H2O components, and replacing them with  melamine 

(final concentration = 75.6 mg/L or 0.6 mM) as a sole nitrogen source (El-Sayed et al., 
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2006). Glucose was added to the medium as the main carbon source when needed. The 

liquid medium was sterilized by autoclaving at 121 °C before use.  

 

A turbidimetric microtiter assay was used to determine the growth of active sludge with 

different substrates (melamine only, glucose only, and a combination of glucose and 

melamine). Aliquots (10 µL) of sludge samples in 8 replicates were added to the 

microplate wells followed by the addition of 190 µL medium containing the different 

substrates. The absorbance of the cell culture in each microwell was measured at 600 nm 

every 1 hour for 72 h by a microreader (VICTOR3, PerkinElmer, Shelton, USA).  

 

5.2.5. Effect of Melamine on Nitrifying Community Structure and 
Population 

Activated sludge samples in the CSTR and MLE bioreactors were collected before and 

after the melamine dosing for DNA extraction and nitrifying community structure analysis 

using terminal restriction fragment length polymorphism (T-RFLP) (see 2.2.5).  
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5.2.6. Chemical and Statistical Analysis  

The melamine concentration was determined by high-pressure liquid chromatography 

(HPLC) coupled with a Zorbax SB-C8 column with a dimension of 4.6 mm ID × 250 mm. 

In each analysis, a 5 µL sample was injected into a mobile phase consisting of 15% 

acetonitrile and 85% buffer solution (10 mM citric acid + 10 mM sodium octanesulphonate 

at pH 3) at a flow rate of 1 mL/min (Lin et al., 2008). Wastewater influent and effluent 

samples were collected twice a week for COD, ammonium-N, nitrite-N, and nitrate-N 

measurements following standard methods (APHA, 2002). The biomass concentrations of 

the bioreactors were measured in COD units. One-Way ANOVA analysis was conducted 

to assess the significance of the differences among groups, with p values less than 0.05 

indicating statistical significance. 

 

5.3. Results and Discussion 

5.3.1. Biodegradation of Melamine by Activated Sludge 

The sludge adaptation period lasted for 124 days and continuous melamine dosing began 

on day 125. The average influent melamine concentration over Phase II of testing was 2.9 ± 

0.4 mg/L, while the average effluent melamine concentrations in the MLE and CSTR 

systems over the same period were 2.3 ± 0.5 mg/L (removal efficiency = 20 ± 15%) and 2.4 
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± 0.4 mg/L (removal efficiency =14 ± 10%), respectively. These values were also fairly 

constant across all of Phase II, as seen in Figure 39. Although the removal efficiencies were 

not high, there were significant differences in melamine concentration between the influent 

and effluent samples in both the MLE and CSTR systems (p < 0.001). However, there was 

no significant difference in the effluent melamine concentration between the two activated 

sludge treatment processes (p = 0.22). This suggests that melamine is not easily removed 

under either aerobic conditions or anoxic/aerobic sequencing conditions. Furthermore, the 

results from the short-term batch studies suggest that melamine is not removed by 

biodegradation or adsorption either (Figures 40 and 41).  

  

 
Figure 39. Influent (■) and effluent melamine concentrations in the CSTR (○) and MLE (●) 
systems after continuous melamine dosing starting on day 125. Error bars represent one 
standard deviation from the mean of triplicate samples. 
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Figure 40. Change in melamine concentration due to biodegradation (●) and adsorption (○) 
of melamine under anoxic conditions in batch studies. 
 
 

 
Figure 41. Change in melamine concentration due to biodegradation (●) and adsorption 
(○) of melamine under aerobic conditions in batch studies. 
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5.3.2. Bioreactor Performance before and after Melamine Exposure 

The start-up period for both bioreactor systems lasted about 30 days before consistent 

effluent water quality was observed. At an average influent COD concentration of 503 ± 78 

mg/L, the COD removal efficiencies during Phase I of operation for the MLE and CSTR 

systems were 94 ± 3% and 93 ± 4%, respectively. The variation in the performance of both 

reactors over the operating period can be seen in Figure 42. The effluent ammonium 

removal efficiencies during Phase I of operation were 99 ± 1% and 99 ± 0% for the MLE 

and CSTR systems, respectively, indicating complete nitrification in both bioreactors. 

Variations in the ammonium removal with both reactors over the operating period can be 

seen in Figure 43a. There were no significant differences in COD (p = 0.13) or NH4
+-N (p 

= 0.15) removal efficiencies between the two types of activated sludge processes. There 

was also no significant difference in the effluent concentrations of NO2
--N between the two 

bioreactors as seen in Figure 43b. However, during Phase I of operation, a significant 

difference was seen between the two reactors in the effluent concentrations of NO3
--N. The 

average effluent NO3
--N concentration in the MLE system was 1.3 ± 1.1 mg/L, which was 

much lower than the 19.7 ± 4.9 mg/L found in the CSTR system. This result demonstrates 

the role of anoxic and aerobic alternation in nitrogen removal in the MLE system.  
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After melamine dosing (Phase II), the average effluent COD concentration in the MLE 

system was statistically (p < 0.05) higher than that in Phase I, whereas in the CSTR there 

was no statistically significant difference in the effluent COD concentration between the 

two phases. The variability in performance over Phase II is also shown in Figure 42. The 

average effluent NH4
+-N and NO3

--N concentrations in both the MLE and CSTR systems 

were statistically higher after melamine dosing, although there was high variability in the 

results from day to day as seen in Figure 43a and 43c. However, while there was noticeably 

more variability in the NO2
--N concentrations as shown in Figure 43b, the differences in 

the concentrations between the two Phases of operation were only statistically significant 

for the CSTR system. All of the average effluent conditions before and after melamine 

dosing for both reactor systems are summarized in Table 5. These results clearly 

demonstrate that the presence of melamine in activated sludge systems reduces effluent 

water quality. The COD and nitrogen species data also suggest that melamine has more of 

an impact on autotrophic nitrifying bacteria than on heterotrophic bacteria based on the 

results for the MLE system. 
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Figure 42. Influent (■) and effluent COD concentrations in the CSTR (○) and MLE (●) 
systems before (Phase I) and after (Phase II) melamine dosing. Error bars represent the data 
range of duplicate samples. 
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(a) 

 

 

(b)  
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(c) 

 
Figure 43. Effluent NH4

+-N (a), NO2
--N (b) and NO3

--N (c) concentrations in the CSTR 
(○) and MLE (●) bioreactors before (Phase I) and after (Phase II) melamine dosing. Error 
bars represent the data range of duplicate samples. 
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Table 5. One-way ANOVA analysis of the effluent water quality in the MLE and CSTR 
systems before (phase I) and after melamine dosing (phase II). 

 Effluent COD 
(mg/L) 

Effluent 
NH4

+-N (mg/L) 
Effluent 
NO2

--N (mg/L) 
Effluent 
NO3

--N (mg/L) 

MLE, before dosing 29 ± 11 0.2 ± 0.2 0.2 ± 0.2 1.3 ± 1.1 
MLE, after dosing 40 ± 11 0.4 ± 0.2 0.2 ± 0.2 5.0 ± 2.9 
p value * 0.0005 0.006 0.075 1.46E-08 
CSTR, before dosing 34 ± 16 0.2 ± 0.1 0.3 ± 0.3 19.7 ± 4.8 
CSTR, after dosing 37  ± 19 0.3 ± 0.2 0.2 ± 0.2 16.0 ± 4.6 
p value ** 0.460 0.0002 0.040 0.005 

*A statistical analysis of reactor performance in the MLE system before and after melamine dosing. 
**A statistical analysis of reactor performance in the CSTR system before and after melamine dosing. 

 

5.3.3. Toxicity of Melamine to Activated Sludge 

The SOURs were used to determine the nitrifying bacterial activity profiles before and 

after melamine dosing in the bioreactors and the results are shown in Figure 44. There was 

a significant decrease in the nitrifying activity after melamine dosing. At the completion of 

Phase II, the nitrifying activities in the MLE and CSTR systems decreased by 92 ± 5 % and 

82 ± 8 %, respectively. The impact on the nitrifying bacterial activity happened more 

quickly in the CSTR system, even though both systems had similar overall reductions in 

activity. The rate at which the nitrifying bacterial activity drops also provides an 

explanation for the effluent NO2
--N results seen in Figure 43.  
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Figure 44. Change in autotrophic SOURs in the CSTR (○) and MLE (●) bioreactors 
before (Phase I) and after (Phase II) melamine dosing. Error bars represent the data range 
of duplicate samples. 

 

The bacterial growth curves in the presence of melamine were tracked using a short-term 

microtiter assay and the results are shown in Figure 45. When melamine served as a sole 

carbon and nitrogen source, there was no growth of activated sludge. Exponential growth 

was observed in the presence of glucose only (positive control) with an average specific 

growth rate of 0.090 ± 0.011 d-1. The relatively low specific bacterial growth rate is 

attributed to the lack of an ammonia nitrogen source, which was done to see if melamine 

can be used as a sole nitrogen source. The presence of glucose and melamine together (75.6 

mg/L melamine) resulted in a longer lag phase and a reduced specific growth rate of 0.018 



 

131 

 

± 0.001 d-1. This reduction of 80% suggests that melamine inhibits activated sludge growth 

when it is present at high concentrations. 

 

 
Figure 45. Aerobic bacterial growth as indicated by optical density curves at 600 nm, 
with different substrate concentrations: 0.6 mM (or 75.6 mg/L) melamine only (■), 14 
mM glucose only (●), and a combination of 0.6 mM melamine and 14 mM glucose (○). 
Activated sludge from the CSTR before melamine dosing was used as a seed culture. 
Error bars represent one standard error of the mean (n=4). 

 

5.3.4. Bacteria Community Structure Changes after Continuous 
Melamine Dosing 

The T-RFLP analysis specifically targeting the AOB and NOB indicated that the AOB 

genera primarily consisted of Nitrosomonas and the NOB genera contained Nitrospira and 
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Nitrobacter in both the CSTR and MLE systems (data not shown). The peak heights in 

Figure 46a and 46c represent the relative abundance of each species in the CSTR and MLE 

systems (Luna et al., 2006, Luna et al., 2004), and before melamine dosing, both systems 

had almost the same AOB population. After melamine dosing, the Nitrosomonas 

population in the CSTR system was reduced, based on the reduction in the peak heights in 

Figure 46b as compared to those in Figure 46a. At the same time, the AOB population was 

decreased even more substantially in the MLE system, as evidenced by the greater 

reduction in peak height shown in Figure 46d. These results correlate well with the effluent 

water quality (Figure 43) and nitrifying bacterial activity (Figure 44) results before and 

after melamine dosing.  
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Figure 46. Ammonia-oxdizing bacterial community structure and abundance reflected by 
T-RFLP profiles targeting 16S rRNA genes of Nitrosomonas in the CSTR before 
melamine dosing (A), the CSTR after melamine dosing (B), the MLE before melamine 
dosing (C), and the MLE after melamine dosing (D). AU = arbitrary units. DNA samples 
were taken 1 month before melamine dosing and after 50 days of continuous melamine 
dosing.  

 

5.3.5. Implications of Melamine Biodegradation and Its Toxicity to 
Activated Sludge 

Melamine has been reported to be slowly degradable in soil with an estimated half-life 

between 2 and 3 years (UNEP). The results of this study demonstrate that melamine is not 

readily biodegradable in activated sludge processes used for domestic wastewater 

treatment (UNEP). Even after a prolonged exposure, activated sludge has no demonstrated 
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capability to degrade melamine. The melamine removal efficiencies in the CSTR and MLE 

systems were 14 ± 10% and 20 ± 15%, respectively. These removal efficiencies were not 

statistically significant from each other, indicating that neither aerobic conditions nor 

anoxic/aerobic sequencing conditions have an impact on melamine degradation. Earlier 

studies have suggested that the biodegradation rates of single aromatic compounds are 

often highest under aerobic conditions (Hu et al., 2005b). As biochemical conditions are 

shifted from oxygen-respiration to nitrate respiration, to anaerobiosis, the biodegradation 

rates decrease or cease to occur. However, this is not the case for the biodegradation of 

melamine, which is a triazine derivative (Seffernick et al., 2001). Such N-heterocyclic 

molecules have lower electron affinities than benzene (Nenner and Schulz, 1975), which 

reduces their potential for electrophilic aromatic substitution.  Instead, these molecules are 

more likely to undergo nucleophilic aromatic substitution (e.g., via hydrolyzation). Based 

on this degradation process and the results of this study, it appears that the enzymes 

responsible for hydrolytic deamination are not readily induced in activated sludge 

processes. 

 

Microbial communities adapt to a chemical contaminant that is not easily biodegradable 

through one or more of five primary mechanisms: selective enrichment, enzyme regulation, 
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gene transfer (via conjugation, transformation, and transduction), inheritable genetic 

change through mutation and recombination, and alternation of their growth environment 

(Rittman and McCarty, 2001). In this study, none of the above mechanisms seemed to 

occur. Because the valence of carbon is +4 in C3H6N6, melamine could not be used as a 

carbon source to support the growth of heterotrophs that are dominant in activated sludge 

systems. Therefore, selective enrichment of bacteria capable of degrading melamine was 

not seen as bacteria prefer to use biogenic substrate for growth. This suggests that the 

enzymes responsible for the hydrolytic deamination of melamine appear not to be 

produced by bacteria in activated sludge. This is a plausible because only a few bacterial 

strains have been found to be capable of degrading melamine and they have only been 

isolated from soil (Boundy-Mills et al., 1997, Cook and Hütter, 1981, El-Sayed et al., 2006, 

Shelton et al., 1997), Alternatively, the competent biomass fraction (Hu et al., 2005b) or 

the number of bacterial specialists capable of degrading melamine may simply be too low 

to degrade melamine in wastewater to a significant degree. Although genetically 

widespread guanine deaminases have a promiscuous activity allowing them to catalyze a 

key reaction in the bacterial transformation of melamine to cyanuric acid (Seffernick et al., 

2010), a series of deaminases are required for complete melamine degradation. 

Additionally, microbial adaptations occur over times from a few hours to years. In this 
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study, the adaptation period lasted for about 100 days. Therefore, further study is still 

needed to better understand the mechanisms of adaptation and its effect on melamine 

degradation.     

 

Melamine toxicity may also cause insignificant biodegradation of melamine in activated 

sludge processes. Continuous melamine dosing, even at a relatively low concentration (3 

mg/L), resulted in a significant inhibition of nitrification (Figures 42 and 44) and a 

decrease in the total nitrifying bacterial population (Figure 46). Melamine also inhibited 

heterotrophic growth at higher concentrations (Figure 45). Consequently, melamine has a 

negative impact on bacterial adaptation by negatively affecting the growth environment 

(Rittman and McCarty, 2001). 
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Figure 47. Biomass concentrations in the CSTR (○) and MLE (●) bioreactors before 
(Phase I) and after (Phase II) melamine dosing. Error bars represent data range of 
duplicate samples. 

 

5.4. Conclusions 

In this study, we investigated the degradation of melamine and its impact on two activated 

sludge treatment systems seeded with the sludge from a local municipal WWTP. Even 

after a long period of sludge adaptation (100 d), melamine appeared not to be easily 

biodegradable in these systems. Selective enrichment of activated sludge bacteria with the 

enzymes responsible for the hydrolytic deamination of melamine was not successful as 

bacteria prefer to use biogenic substrate in wastewater for growth. Furthermore, 
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insignificant biodegradation of melamine was also attributed to bacterial growth inhibition 

under long-term dosing conditions with melamine in the treatment systems.  
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CHAPTER 6 

 

 

6. Biodegradation of Melamine in a Membrane Bioreactor with High 
Biomass Concentration 

Melamine is recalcitrant and toxic to activated sludge in conventional activated sludge 

(CAS) systems. In this study, we investigated the degradation of melamine in an MBR 

system operated at high biomass concentrations. Melamine was dosed continuously from 

day 85 at an influent concentration of 3 mg/L for about 100 days. Even after such a long 

period of sludge adaptation, melamine appeared to not be easily biodegradable. The 

average melamine removal efficiency in the MBR system was 20 ± 11%. For comparison, 

batch studies showed the acclimated sludge has higher removal efficiencies (e.g., 41 ± 10% 

by 10 g/L biomass) than non-acclimated sludge which has no capability for melamine 

degradation. Hence, the microbial specialists in the acclimated sludge were likely 

responsible for melamine degradation through cometabolism or fortuitous degradation. 

With continuous input of readily biodegradable substrate in the MBR, the population of 

microbial specialists capable of degrading melamine appeared not to proportionally 

increase as the biomass concentration increased to 10 g/L in MBR operation. Possibly 

because bacteria prefer to use readily biodegradable substrate for growth regardless of 
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acclimation, there was no significant difference in melamine removal between the MBR 

and the CAS systems. Furthermore, the long-term input of melamine did not affect MBR 

performance or the effluent water quality. These results suggest that high biomass 

concentrations (increased by a factor of 5 compared to that of CAS) result a significant 

reduction in toxicity of melamine to the activated sludge, demonstrating the significance 

of toxicant to biomass ratio in MBR performance.  

 

6.1. Objectives 

Although the previous chapter shows that the biodegradation of melamine was not 

improved after a long-term sludge adaptation in CAS systems, it has been reported that 

high biomass concentration may improve the biodegradation of some recalcitrant organic 

compounds (Boonnorat et al., 2014). In the CAS study, the competent biomass fraction 

(Hu et al., 2005b) or the number of bacterial specialists capable of degrading melamine 

may simply be too low to degrade melamine in wastewater to a significant degree. The 

objective of this chapter was to study the effect of long-term sludge adaptation on the 

biodegradation of melamine in a MBR system at high biomass concentrations (i.e., 5 × 

biomass concentration in the CAS).  
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6.2. Materials and Methods 

6.2.1. MBR Setup and Operation 

One bench-scale submerged MLE-MBR equipped with the ZeeWeed hollow fiber 

membrane module (GE Water & Process Technologies, Trevose, PA) was operated during 

the study (Figure 48). The membrane module was made of polyvinylidene fluoride (PVDF) 

with a nominal pore size of 0.1 µm and a total effective surface area of 0.047 m2. The 

MLE-MBR had a total effective reactor volume of 7.2 L including anoxic (first) and 

aerobic chambers of 2.4 L and 4.8 L, respectively. There was a glass baffle installed to 

separate the anoxic and aerobic chambers and recirculation at a flow rate equal to the 

influent flow rate from the aerobic chamber to the anoxic chamber. The upper and lower 

water level sensors (Cole-Palmer, Vernon Hills, Illinois) were applied to maintain a 

relatively constant mixed liquor volume in the MLE-MBR. The volume difference 

between the upper and lower water level was less than 5% of the total mixed liquor volume 

in the MLE-MBR. The sensor is designed to activate an onboard solid-state relay when the 

sensor detects a change of water level. When the water level reaches the upper limit 

because of continuous feeding, the upper level sensor triggers the operation of a permeate 

pump. When the water level reaches the lower limit, the lower level sensor assures pump 

shut-down. In this study, a suction peristaltic pump after the membrane module acted as the 

permeate pump to produce a relative vacuum for permeate collection. An online digital 
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pressure gauge (Cole-Palmer) was installed to measure the transmembrane pressure (TMP). 

The speed of the permeate pump was set at a permeate flux higher than the influent flow 

rate so that the permeate pump was intermittently turned on and off by the upper and lower 

water level sensors, respectively, to keep the total mixed liquor volume relatively constant. 

An air pump supplied compressed air to the built-in orifices at the bottom of each 

membrane module at a constant air flow rate of 6 L/min to support aerobic biodegradation 

and control membrane fouling. 

 

At a hydraulic retention time (HRT) of 1 d, the MBR was fed continuously with synthetic 

wastewater containing nonfat dry milk powder as the primary organic carbon source at a 

COD concentration of approximately 500 mg/L. The details of the synthetic wastewater 

were described in 5.2.1. The inoculation sludge was taken from the aerobic tank from the 

Columbia Wastewater Treatment Plant (Columbia, MO), which has a treatment capacity of 

20 million gal per day using the CAS process. A total of 24 L of sludge was collected and 

fed with synthetic wastewater for 1 week before the sludge was transferred to the 

MLE-MBR. The starting biomass concentration in the MLE-MBR was approximately 6 

g COD/L. During the start-up period of this study, there was no sludge wasted until the 

biomass concentration reached 10 g COD/L. Afterward, sludge was wasted daily with the 
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targeted SRT of approximately 130 days to maintain relatively constant biomass 

concentrations in MLE-MBR. 

 

During the operating period, the TMP and permeate flux of the membrane process in the 

MLE-MBR were closely monitored. When the TMP increased dramatically in a short 

period of time or the TMP level exceeded the predefined TMP value (44.5 kPa), as 

suggested by the manufacturer, the membrane module was taken out of the MBR for 

physical cleaning. The membrane module was rinsed with tap water for about 30 min 

before it was submerged in the mixed liquor in the MBR for reuse.  

 
Figure 48. A schematic of a bench-scale submerged MLE-MBR. P stands for a 
transmembrane pressure measurement device. 
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6.2.2. Effect of Long-Term Melamine Dosing on Bioreactor 
Performance 

Melamine (99%) was purchased from Acros Organics. From day 85 onwards, a melamine 

stock solution with a concentration of 122.8 mg/L was fed separately to the bioreactor at a 

flow rate of 0.172 L/d to reach a nominal influent concentration of 3 mg/L (Xu et al., 2013). 

The change in the HRT due to melamine addition was negligible because the flow rate of 

melamine stock was much lower than the influent (6.9 L/d). Wastewater effluent from the 

MBR system was collected and analyzed for melamine, NH4
+-N, NO3

--N, NO2
--N, and 

COD following the standard methods (APHA, 2002).  

 

6.2.3. Batch Melamine Adsorption and Degradation Study 

Batch studies were conducted to determine the potential for adsorption of melamine by 

sludge in the MBR system before melamine dosing in the continuous flow system. The 

sludge samples were collected from the Columbia WWTP and concentrated with a final 

biomass concentration of about 10 g/L before use. For comparison, aliquots (500 mL) of 

the sludge sample were killed by heating at 80 ºC for 20 min (Hu et al., 2005b). Then 

aliquots (5 mL) of the melamine stock solution (1,000 mg/L) were added to the sludge 
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samples at a final melamine concentration of 10 mg/L. The mixed liquor in each beaker 

was magnetically mixed at 350 rpm at 25 ± 1 ºC under aerobic and anoxic conditions to 

evaluate the influence of different metabolic environments. An aeration pump was used to 

supply air in addition to mixing under aerobic conditions. Excess sodium nitrate was added 

to the mixed liquor under anoxic conditions. At predetermined times (4, 12, 16, 24, 36, 54, 

72 h), aliquots (5 ml) of mixed liquor were collected for melamine analysis. After 10 min 

sedimentation, the supernatant was passed through a 0.45 μm nylon syringe filter and the 

filtrate was stored at 4 ºC before analysis.  

 

Batch studies were also conducted to compare the melamine degradation behavior by the 

acclimated activated sludge and unacclimated sludge. The acclimated sludge samples were 

collected from the aeration chamber of the MBR system after 100d of continuous 

melamine dosing. The sludge samples with biomass concentrations of 10 g COD/L or 2 g 

COD/L (after dilution) were used. The activated sludge taken from the WWTP served as a 

control (unacclimated sludge). All of the samples were washed with distilled water three 

times to remove the residual carbon and nutrients before they were re-suspended in the 

medium that had the same recipe as the feed solution with the exception of the use acetate 

as a readily biodegradable substrate (~400 mg COD/L) instead of milk powder to 
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determine the effect of ammonia on melamine degradation. Part of the batch experiments 

were conducted with the medium containing no ammonia (20 mg/L). The experiment was 

repeated at different initial melamine concentrations (2.5, 3, 5, 10 and 20 mg/L) at the 

sludge concentration of 10 g biomass COD/L. All of the batch systems were set up in at 

least duplicate. Each study was conducted in a 250mL flask with 50 mL headspace. Each 

flask covered with a cotton stopper was placed on a platform shaker (Innova 2000) running 

at 200 rpm to ensure complete mixing of the mixed liquor inside.  

 

6.2.4. Effect of Melamine on Nitrifying Community Structure and 
Microbial Activities 

Activated sludge samples in the MLE-MBR bioreactor were collected before and after the 

melamine dosing for DNA extraction and nitrifying community structure analysis using 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) (details shown in 2.2.5). 

To determine the change in heterotrophic and autotrophic microbial activities, aliquots of 

mixed liquor were periodically taken from the aeration chamber to determine the specific 

oxygen uptake rates (SOUR), with detailed procedures described in 2.2.4.  
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6.2.5. Chemical and Statistical Analysis  

Details about the bioreactor performance monitoring are described in 5.2.6. In addition, 

acetic acid in the batch studies was measured by high performance liquid 

chromatography (HPLC) with ultraviolet detection at 210 nm. The HPLC injection 

volume was 10 μL, and the mobile phase used was 0.1% o-phosphoric acid circulated at 

0.8 mL/min at ambient temperature (Yang et al., 2012). Wastewater influent and effluent 

samples were collected twice a week for COD, ammonium-N, nitrite-N, and nitrate-N 

measurements following standard methods (APHA, 2002). One-Way ANOVA analysis 

was conducted to assess the significance of the differences among groups, with p values 

less than 0.05 indicating statistical significance. 

 

6.3. Results and Discussion 

6.3.1. Biodegradation of Melamine in the MBR System 

After the biomass concentration in the MBR became stabilized at approximately 10 g/L 

(Figure 49) from day 56 to day 84 (Phase I) melamine was dosed continuously from day 85 

onward (Phase II). As can be seen in Figure 50, the average influent melamine 

concentration over the Phase II period was 3.0 ± 0.2 mg/L, while the average permeate or 

effluent melamine concentrations in the MBR were 2.4 ± 0.3 mg/L (removal efficiency = 
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20 ± 11%). There was a significant difference in the melamine concentration between the 

influent and effluent samples (p < 0.001). Melamine removal through adsorption was not 

observed even at high biomass concentrations (~10 g COD/L) (Figures 51). Hence, 

melamine can be partially removed in activated sludge systems via biodegradation. 

However, the removal efficiency of melamine in the MBR remained the same as that in the 

CSTR or MLE systems in our previous study (Xu et al., 2013). The result suggests that 

high biomass concentration (10 g COD/L) in the MBR system does not improve melamine 

degradation.  

 

 
Figure 49. Change in the biomass concentration in the MBR bioreactors before (Start-up 
and Phase I) and after (Phase II) melamine dosing. Error bars represent data range of 
duplicate samples. 
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Figure 50. Influent (●) and effluent (○) melamine concentrations in the MBR system after 
continuous melamine dosing starting from day 85. Error bars represent one standard 
deviation of the mean (n = 3). 
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(a) 
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(b) 

 
Figure 51. Change in melamine concentration in the absence of readily biodegradable 
substrate under aerobic (○) and anoxic (●) conditions in the mixed liquor with an average 
biomass concentration of 10 g COD/L in batch studies: live cells (a) and dead cells (b). 
Error bars represent one standard error of the mean (n = 4). 

 

The effect of sludge acclimation on melamine degradation was further evaluated in the 

presence of acetate in batch studies. As shown in Figure 52, there was no removal of 

melamine by unacclimated activated sludge (2 g/L) during 7 d of incubation. However, 

acclimated sludge had higher removal efficiencies ranging from 33 ± 6% (by 2 g/L 

biomass) to 41 ± 10% (by 10 g/L biomass). There was a significant difference between 

the removal efficiencies (p < 0.001) possibly due to the different melamine/biomass 
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concentration ratios. Meanwhile, HPLC results showed that acetate was depleted in the 

first day (data not shown), which may drive the bacterial specialist to degrade melamine 

through cometabolism under stress conditions or utilize melamine as a nitrogen source. 

By comparing the removal efficiency in the first day with that over the rest of the days of 

cultivation, which were 0.1 % vs 33 ± 6 % by 2 g/L biomass and 12 ± 4% vs 33 ± 7% by 

10 g/L biomass, the removal efficiencies after the depletion of acetate was significantly 

higher (p < 0.01 by 2 g/L biomass and P = 0.03 by 10 g/L biomass) than that in the 

presence of acetate. In fact, the significant increase in degradation started on day 4 which 

is probably due to bacteria doing endogenous respiration before they degrade melamine. 

At the same time, in the batch studies with available ammonia as a nitrogen source, the 

biodegradation efficiency of melamine (= 35 ± 8%) by the acclimated activated sludge (2 

g/L) was not affected much even though ammonia was fully oxidized in the first day (data 

not shown). However, in the continuous flow systems, when the readily biodegradable 

organic substrate was fed continuously, the removal of melamine was limited (Figure 50). 

The results demonstrate the role of long-term sludge acclimation in melamine 

biodegradation and the impact of the readily biodegradable carbon source on melamine 

biodegradation. The results also suggest that the total biomass concentration plays a 

minimum role in melamine biodegradation. Instead, the microbial specialists capable of 
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degrading melamine through cometabolism or fortuitous degradation are likely 

responsible, but their population appeared not to proportionally increase as the biomass 

concentration increased from 2 g/L to 10 g/L in MBR operation.  

 

 

 
Figure 52. Change in melamine concentrations by unacclimated sludge of 2 g/L (●), 
acclimated sludge of 2 g/L (○), acclimated sludge of 2 g/L with ammoia substrate (20 mg/L) 
(∆), and acclimated sludge of 10 g/L (◇) in batch studies. Error bars represent one standard 
error of the mean (n = 4). 

 

Another batch experiment was conducted to investigate the effect of initial melamine 

concentrations on biodegradation. Regardless of initial melamine concentration (i.e., 2.5, 5, 
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10 and 20 mg/L), similar amounts (0.9 ~ 1.0 mg/L) of melamine were removed in one week 

(Figure 53), resulting in the removal efficiencies ranging from 5% (at 20 mg/L melamine) 

to 41% (at 2.5 mg/L melamine). This result further suggests the degradation of melamine 

is irrelevant to cell metabolism, but is more related to cometablism or fortuitous 

degradation by some housekeeping enzymes (Gold et al., 2000).  

 

 
Figure 53. Change in melamine concentrations with time at initial melamine 
concentrations of 2.5 mg/L (○), 5 mg/L (□), 10 mg/L (∆) and 20 mg/L (◇) in batch 
studies. Error bars represent one standard error of the mean (n = 4). 
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6.3.2. Bioreactor Performance before and after Melamine Exposure 

During the start-up period (day 0 to 55), biomass concentrations in the MBR gradually 

increased from about 6 to 10 g COD/L because there was no sludge wastage. Through 

regular biomass wasting, the biomass concentrations leveled off and became stable 

between 9 and 10 g COD/L (day 56–84, Phase I) before the continuous melamine dosing 

began (day 85-185, Phase II). The water quality data before (Phase I) and after (Phase II) 

melamine dose were compared statistically. At an average influent COD concentration of 

511 ± 76 mg/L, the average effluent COD concentrations during Phase I and Phase II were 

17 ± 5 mg/L and 9 ± 5 mg/L respectively (Figure 54), resulting in the average removal 

efficiencies of 97% and 99%. The significantly lower (p < 0.001) effluent COD 

concentration in Phase II was due to the long-term MBR operation as the biomass 

concentration was maintained around 10 g COD/L. The continuous melamine dosing did 

not affect the organic matter removal, which was different from that in the CAS system 

(Xu et al., 2013). Meanwhile, there were no significant differences in effluent NH4
+-N (p = 

0.4), NO2
--N (p = 0.8) or NO3

--N (p = 0.3) concentrations between Phase I and Phase II. 

The effluent NH4
+-N concentrations during Phase I and Phase II were 0.2 ± 0.1 mg/L and 

0.1 ± 0.2 mg/L, respectively, with removal efficiencies of 99% and 100% respectively, 

indicating almost complete nitrification before and after melamine dosing (Figure 55a). 
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Correspondingly, the effluent NO2
--N concentrations during Phase I and Phase II were 0.3 

± 0.3 mg/L and 0.2 ± 0.2 mg/L, respectively, and the effluent NO3
--N concentrations were 

11.2 ± 5.4 mg/L and 13.2 ± 4.4 mg/L, respectively (Figure 55b).  

 

Unlike the results from CAS systems where the presence of melamine (3 mg/L) 

deteriorated effluent water quality (Xu et al., 2013), the continuous melamine dosing (3 

mg/L) in the MBR with high biomass concentration (5 times higher than that in CAS) had 

no impact on organic and nitrogen removal. These results were also confirmed by the 

SOUR data, which indicated normal heterotrophic and autotrophic activities before and 

after melamine dosing (Figure 56). 
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Figure 54. Effluent COD concentrations in the MBR before (Start-up and Phase I) and 
after (Phase II) melamine dosing. Error bars represent the data range of duplicate samples. 
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(a) 
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(b) 
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(c) 

 
Figure 55. Effluent NH4

+-N (a), NO2
--N (b) and NO3

--N (c) concentrations in the MBR 
before (Start-up and Phase I) and after (Phase II) melamine dosing. Error bars represent 
the data range of duplicate samples. 

 

6.3.3. Bacterial Activities before and after Melamine Dosing 

The changes in bacterial activities in response to the continuous melamine were inferred 

from the extant respirometic assays as shown in Figure 56. The average heterotrophic 

SOUR values of the sludge before and after melamine dosing were 18.4 ± 1.4 mg O2/g 

MLSS/h and 18.0 ± 1.1 mg O2/g MLSS/h, respectively. There was no significant difference 

(p = 0.49) in the heterotrophic SOUR values before and after melamine dosing. Hence, the 

continuous melamine dosing with an average range concentration of 3 mg/L in the sludge 
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did not affect heterotrophic activities, consistent with low effluent COD concentrations. A 

slight drop observed in heterotrophic SOUR data during the beginning of Phase II was 

probably due to a short and insignificant impact of melamine on the heterotrophic bacterial 

activity at the beginning of dosing. Similarly, the autotrophic SOUR values before and 

after melamine dosing were 14.8 ± 0.7 and 13.8 ± 1.5 mg O2/g MLSS/h, respectively. 

There was no significant difference in autotrophic SOUR values before and after melamine 

dosing (p = 0.1).  

 

 
Figure 56. Changes in autotrophic (○) and heterotrophic (●) SOURs in the MBR before 
(Phase I) and after (Phase II) melamine dosing. Error bars represent the data range of 
duplicate samples. 
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6.3.4. Bacterial Community Structure Changes after Melamine Dosing 

The T-RFLP analysis specifically targeting the AOB and NOB shows the change in 

nitrifying bacterial community structure in the MBR system before and after melamine 

dosing. The peak heights in Figure 57a and 57b represent the relative abundance of each 

species in the MBR system (Luna et al., 2006, Luna et al., 2004) About one week before 

melamine dosing, Nitrosomonas (Figure 57a) was the dominant genus of AOB while 

Nitrospira (Figure 57b) was dominant among NOB. About 1 month after melamine dosing, 

similar levels of AOB and NOB in the MBR were detected. This suggests the long-term 

exposure to low concentration of melamine did not affect nitrifying bacterial growth in the 

MBR system. These results correlate well with the effluent water quality (Figure 55) and 

nitrifying bacterial activity (Figure 56) results before and after melamine dosing.  
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Figure 57. Nitrifying bacterial community composition reflected by T-RFLP profiles 
targeting 16S rRNA genes of Nitrosomonas (A), and Nitrospria (B) before (Phase I) and 
after (Phase II) melamine dosing.  

 

 

6.3.5. Implications of Melamine Biodegradation in MBR Operated at 
High Biomass Concentrations  

Figure 2 shows the biodegradation of melamine is mainly via hydrolysis, which occurs 

theoretically, according to  
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rhyd = - khydSp                                    (9) (Rittman and McCarty, 2001)  

where rhyd is the rate of accumulation of particulate substrate due to hydrolysis, Sp is the 

concentration of the particulate substrate and khyd is the first-order hydrolysis rate 

coefficient which is proportional to the concentration of hydrolytic enzymes. The theory 

suggests khyd is related to the activate biomass concentration in many cases (Rittman and 

McCarty, 2001). Obviously the hydrolysis of a particulate substrate cannot apply to 

melamine which showed no improvement in melamine degradation in the MBR system 

by increasing biomass concentration to about 10 g COD/L. It is believed that the 

competent biomass, a specific population of the microbial community that has the 

capacity to degrade melamine through cometabolism or fortuitous degradation, is 

responsible for melamine biodegradation (Cook and Hütter, 1981, Takagi et al., 2012). 

Acclimation of the entire microbial community to melamine in a MBR system operated at 

long SRT may allow a better selection of microorganisms containing enzymes and 

pathways or development of new catabolic pathways for recalcitrant organic chemical 

removal such as melamine (Boonnorat et al., 2014). So the question remains to be 

answered for the plateau of the melamine biodegradation efficiencies (about 20%) in both 

MBR and CAS systems with continuous readily biodegradable substrate. On the other 

hand, the water quality data showed that the MBR has a better tolerance to the variables of 
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influent compared to CAS systems, which is likely due to the low melamine/biomass 

concentration ratio or these variables (i.e. melamine) mainly responsible for triggering the 

shifts between functionally redundant populations (Gómez-Silván et al., 2014).  

 

6.4. Conclusions 

The degradation of melamine in the MBR with high biomass concentration (10 g COD/L) 

was investigated in this study. Even though acclimation appeared to improve melamine 

degradation in batch studies, there was no improvement of melamine degradation in the 

MBR even after a long period of sludge acclimation (100 d). Most likely, melamine was 

degraded through cometabolism or fortuitous degradation. With continuous input of 

readily biodegradable substrate in the MBR, the population of microbial specialists 

capable of degrading melamine appeared not to proportionally increase as the biomass 

concentration increased to 10 g/L in MBR operation. Nevertheless, compared to that in 

CAS systems, there was no inhibition of melamine to the activated sludge in the MBR 

because of operation at high biomass concentrations (with low melamine/biomass 

concentration ratio).   
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CHAPTER 7 

 

 

7. Summary and Future Research Directions 

Under the identical operating conditions, both the A2/O and reverse A2/O systems showed 

excellent organic matter and total N removal performance. The reverse A2/O process 

appears to be a better choice because of its higher P removal performance, and for its 

potentially simpler design for full-scale operation. However, how influent wastewater 

containing low readily biodegradable BOD or with low C/N ratio would affect P removal 

in the A2/O and reverse A2/O systems remains to be studied and compared. A reverse A2/O 

might not work properly because all biodegradable BOD can be easily consumed by 

denitrifiers in the anoxic tank first. 

 

To extend its application beyond in situ groundwater remediation, NZVI may be used for 

wastewater treatment with wastewater often containing nitrate and dissolved oxygen. Such 

biochemical environments, particularly under anoxic conditions, are actually preferred for 

phosphorus removal by NZVI. It is therefore possible to dose NZVI in the anoxic or 

aerobic zones to improve phosphorus removal through precipitation and adsorption by iron 
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oxides/hydroxides along with activated sludge flocs. On the other hand, unlike ZVI powder, 

NZVI facilitated dissimilatory nitrate reduction to ammonium, which is unwanted in 

secondary wastewater effluent. Nevertheless, benefits of the use of NZVI can prevail over 

the risk in wastewater treatment. For instance, a single dose of NZVI can reduce the 

population of type 021N filamentous bacteria by 2~3 log units without causing a similar 

toxicity to the regular bacteria flocs, which opens up the potential to use NZVI as a more 

selective sludge bulking control agent. NZVI is also promising in sludge treatment for 

odor control (Li et al., 2007). By considering its advantages and disadvantages, NZVI 

may be used to address urgent operational problems in wastewater treatment such as P 

removal and sludge bulking control, but it is important to identify and select the 

appropriate dose of NZVI before use. More filamentous bacteria other than type 021N 

should also be tested. 

 

The biodegradation of melamine was not improved in CAS and MBR systems through 

continuous dosing at an influent concentration of 3 mg/L for about 100 days. It is 

plausible because selective enrichment of activated sludge bacteria with the enzymes 

responsible for the hydrolytic deamination of melamine was very limited as bacteria 

prefer to use biogenic substrates in wastewater for growth. The low melamine 
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biodegradation efficiency through long-term exposure to melamine was more likely 

related to cometabolism or fortuitous degradation in these activated sludge systems. 

However, a significant reduction in toxicity of melamine to the activated sludge was 

observed in MBR systems, demonstrating the significance of MBR operation at high 

sludge concentrations (i.e. 10 g COD/L). More research work such as bioaugmentation or 

a combination use of physicochemical and biological processes should be studied to 

improve the biodegradation of melamine in activated sludge systems. 
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Appendix 

 

Additional relevant scholar work (attached at the end) 

S. Xu, D. Wu, and Z. Hu* “Impact of hydraulic retention time on organic and nutrient 
removal in a membrane coupled sequencing batch reactor”, Water Research, Vol.55 
(2014): 12~20 
 
  



 

170 

 

Bibliography 

 

Agridiotis, V., Forster, C.F. and Carliell-Marquet, C., 2007. Addition of Al and Fe salts 
during treatment of paper mill effluents to improve activated sludge settlement 
characteristics. Bioresource Technology 98 (15), 2926-2934. 

Ahn, J., Daidou, T., Tsuneda, S. and Hirata, A., 2002. Transformation of Phosphorus and 
Relevant Intracellular Compounds by a Phosphorus-Accumulating Enrichment Culture in 
the Presence of Both the Electron Acceptor and Electron Donor. Biotechnology and 
Bioengineering 79 (1), 83-93. 

Almeelbi, T. and Bezbaruah, A., 2012. Aqueous phosphate removal using nanoscale 
zero-valent iron. Journal of Nanoparticle Research 14 (7), 900. 

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R. and Stahl, D.A., 
1990. Combination of 16S rRNA-targeted Oligonucleotide Probes with Flow Cytometry 
for Analyzing Mixed Microbial Populations. Applied and Environmental Microbiology 
56 (6), 1919-1925. 

APHA, 2002. Standard Methods for the Examination of Water and Wastewater, 
American Public Health Association, Washington, DC. 

Auffan, M., Achouak, W., Rose, J., Roncato, M.A., Chanéac, C., Waite, D.T., Masion, A., 
Woicik, J.C., Wiesner, M.R. and Bottero, J.Y., 2008. Relation between the redox state of 
iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental 
science & technology 42 (17), 6730-6735. 

Beun, J.J., Verhoef, E.V., Van Loosdrecht, M.C.M. and Heijnen, J.J., 2000. 
Stoichiometry and Kinetics of Poly-β-Hydroxybutyrate Metabolism under Denitrifying 
Conditions in Activated Sludge Cultures. Biotechnology and Bioengineering 68 (5), 
496-507. 

Bhatta, C.P., Matsuda, A., Kawasaki, K. and Omori, D., 2004. Minimization of sludge 
production and stable operational condition of a submerged membrane activated sludge 
process. Water Science and Technology 50, 121-128. 



 

171 

 

Boonnorat, J., Chiemchaisri, C., Chiemchaisri, W. and Yamamoto, K., 2014. Microbial 
adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using 
different sludge sources. Bioresource Technology 165 (0), 50-59. 

Boundy-Mills, K.L., De Souza, M.L., Mandelbaum, R.T., Wackett, L.P. and Sadowsky, 
M.J., 1997. The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of 
a novel atrazine degradation pathway. Applied and Environmental Microbiology 63 (3), 
916-923. 

Carlsson, H., Aspegren, H., Lee, N. and Hilmer, A., 1997. Calcium phosphate 
precipitation in biological phosphorus removal systems. Water Research 31 (5), 
1047-1055. 

Cenens, C., Smets, I.Y., Ryckaert, V.G. and Van Impe, J.F., 2000. Modeling the 
competition between floc-forming and filamentous bacteria in activated sludge waste 
water treatment systems - I. Evaluation of mathematical models based on kinetic 
selection theory. Water Research 34 (9), 2525-2534. 

Chang, N.B., Wanielista, M., Hossain, F., Zhai, L. and Lin, K.S., 2008. Integrating 
nanoscale zero-valent iron and titanium dioxide for nutrient removal in stormwater 
systems. Nano 3 (4), 297-300. 

Charcosset, C., 2006. Membrane processes in biotechnology: An overview. 
Biotechnology Advances 24 (5), 482-492. 

Cheng, G., Shapir, N., Sadowsky, M.J. and Wackett, L.P., 2005. Allophanate hydrolase, 
not urease, functions in bacterial cyanuric acid metabolism. Applied and Environmental 
Microbiology 71 (8), 4437-4445. 

Chiu, Y.C. and Chung, M.S., 2000. BNP Test to Evaluate the Influence of C/N Ratio on 
N2O Production in Biological Denitrification. Water Science and Technology 42, 23-27. 

Choe, S., Chang, Y.Y., Hwang, K.Y. and Khim, J., 2000. Kinetics of reductive 
denitrification by nanoscale zero-valent iron. Chemosphere 41 (8), 1307-1311. 

Choi, O., Yu, C.P., Esteban Fernández, G. and Hu, Z., 2010. Interactions of nanosilver 
with Escherichia coli cells in planktonic and biofilm cultures. Water Research 44 (20), 
6095-6103. 



 

172 

 

Chudoba, J., Grau, P. and Ottova, V., 1973. Control of activated sludge filamentous 
bulking. II. Selection of microorganisms by means of a selector. Water Research 7 (10), 
1389-1406. 

Contreras, E.M., Bertola, N.C., Giannuzzi, L. and Zaritzky, N.E., 2002. A modified 
method to determine biomass concentration as COD in pure cultures and in activated 
sludge systems. Water SA 28 (4), 463-467. 

Cook, A.M., 1987. Biodegration of s-triazine xenobiotics. FEMS Microbiology Letters 
46 (2), 93-116. 

Cook, A.M. and Hütter, R., 1981. s-triazines as nitrogen sources for bacteria. Journal of 
Agricultural and Food Chemistry 29 (6), 1135-1143. 

Costa, L. and Camino, G., 1988. Thermal behaviour of melamine. Journal of Thermal 
Analysis 34 (2), 423-429. 

Dobson, R.L.M., Motlagh, S., Quijano, M., Cambron, R.T., Baker, T.R., Pullen, A.M., 
Regg, B.T., Bigalow-Kern, A.S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., 
Shan, Y. and Daston, G.P., 2008. Identification and characterization of toxicity of 
contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs. 
Toxicological Sciences 106 (1), 251-262. 

Dumonceaux, T.J., Hill, J.E., Pelletier, C.P., Paice, M.G., Van Kessel, A.G. and 
Hemmingsen, S.M., 2006. Molecular characterization of microbial communities in 
Canadian pulp and paper activated sludge and quantification of a novel Thiothrix 
eikelboomii-like bulking filament. Canadian Journal of Microbiology 52 (5), 494-500. 

El-Sayed, W.S., El-Baz, A.F. and Othman, A.M., 2006. Biodegradation of melamine 
formaldehyde by Micrococcus sp. strain MF-1 isolated from aminoplastic wastewater 
effluent. International Biodeterioration and Biodegradation 57 (2), 75-81. 

Ersu, C.B., Ong, S.K., Arslankaya, E. and Lee, Y.W., 2010. Impact of Solids Residence 
Time on Biological Nutrient Removal Performance of Membrane Bioreactor. Water 
Research 44 (10), 3192-3202. 

Fang, Z., Qiu, X., Huang, R. and Li, M., 2011. Removal of chromium in electroplating 
wastewater by nanoscale zero-valent metal with synergistic effect of reduction and 
immobilization. Desalination 280 (1-3), 224-231. 



 

173 

 

Fleischer, E.J., Broderick, T.A., Daigger, G.T., Fonseca, A.D., Holbrook, R.D. and 
Murthy, S.N., 2005. Evaluation of membrane bioreactor process capabilities to meet 
stringent effluent nutrient discharge requirements. Water Environment Research 77 (2), 
162-178. 

Fu, G., Dong, B., Zhou, Z. and Gao, T., 2004. Design Characteristics and Operating 
Parameters of Inverted AAO Process. China Water and Wastewater 20 (9), 53-55. 

Gómez-Silván, C., Arévalo, J., González-López, J. and Rodelas, B., 2014. Exploring the 
links between population dynamics of total and active bacteria and the variables 
influencing a full-scale membrane bioreactor (MBR). Bioresource Technology 162 (0), 
103-114. 

Günther, S., Trutnau, M., Kleinsteuber, S., Hause, G., Bley, T., Röske, I., Harms, H. and 
Müller, S., 2009. Dynamics of Polyphosphate-Accumulating Bacteria in Wastewater 
Treatment Plant Microbial Communities Detected via DAPI 
(4′,6′-diamidino-2-phenylindole) and Tetracycline Labeling. Applied and Environmental 
Microbiology 75 (7), 2111-2121. 

Galil, N.I. and Jacob, L., 2009. Comparative characterization of biosolids from a 
membrane bioreactor and from a sequencing batch reactor. Environmental Engineering 
Science 26 (5), 1001-1008. 

Gaval, G. and Pernelle, J.J., 2003. Impact of the repetition of oxygen deficiencies on the 
filamentous bacteria proliferation in activated sludge. Water Research 37 (9), 1991-2000. 

Goel, R., Mino, T., Satoh, H. and Matsuo, T., 1998. Intracellular storage compounds, 
oxygen uptake rates and biomass yield with readily and slowly degradable substrates. 
Water Science and Technology 38 (8-9 -9 pt 7), 85-93. 

Gold, R.S., Wales, M.E. and Grimsley, J.K.W., James R. (2000) Enzymes in Action, pp. 
263-286. 

Grady, C.P.L., Jr., Daigger, G.T., Love, N.G. and Filipe, C., 2011. Biological Wastewater 
Treatment, 3rd Edition., CRC Press, New York. 

Gray, D.M.D., De Lange, V.P., Chien, M.H., Esquer, M.A. and Shao, Y.J., 2010. 
Investigating the fundamental basis for selectors to improve activated sludge settling. 
Water Environment Research 82 (6), 541-555. 



 

174 

 

Greenlee, L.F., Torrey, J.D., Amaro, R.L. and Shaw, J.M., 2012. Kinetics of zero valent 
iron nanoparticle oxidation in oxygenated water. Environmental science & technology 46 
(23), 12913-12920. 

Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. and Murthy, S., 2011. Treatability and 
Fate of Various Phosphorus Fractions in Different Wastewater Treatment Processes. 
Water Science and Technology 63 (4), 804-810. 

Gu, A.Z., Saunders, A., Neethling, J.B., Stensel, H.D. and Blackall, L.L., 2008. 
Functionally Relevant Microorganisms to Enhanced Biological Phosphorus Removal 
Performance at Full-Scale Wastewater Treatment Plants in the United States. Water 
Environment Research 80 (8), 688-698. 

Guerrero, J., Guisasola, A. and Baeza, J.A., 2011. The Nature of the Carbon Source Rules 
the Competition between PAO and Denitrifiers in Systems for Simultaneous Biological 
Nitrogen and Phosphorus Removal. Water Research 45 (16), 4793-4802. 

Guerrero, J., Tayà, C., Guisasola, A. and Baeza, J.A., 2012. Understanding the 
Detrimental Effect of Nitrate Presence on EBPR Systems: Effect of the Plant 
Configuration. Journal of Chemical Technology and Biotechnology 87 (10), 1508-1511. 

Guisasola, A., Pijuan, M., Baeza, J.A., Carrera, J., Casas, C. and Lafuente, J., 2004. 
Aerobic Phosphorus Release Linked to Acetate Uptake in Bio-P Sludge: Process 
Modeling Using Oxygen Uptake Rate. Biotechnology and Bioengineering 85 (7), 
722-733. 

Gunnars, A., Blomqvist, S., Johansson, P. and Andersson, C., 2002. Formation of Fe(III) 
oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of 
phosphate and calcium. Geochimica et Cosmochimica Acta 66 (5), 745-758. 

Guo, J., Peng, Y., Wang, Z., Yuan, Z., Yang, X. and Wang, S., 2012. Control filamentous 
bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB. 
Water Research 46 (19), 6531-6542. 

Hansen, H.C.B., Koch, C.B., Nancke-Krogh, H., Borggaard, O.K. and Sørensen, J., 1996. 
Abiotic nitrate reduction to ammonium: Key role of green rust. Environmental science & 
technology 30 (6), 2053-2056. 



 

175 

 

Harms, G., Layton, A.C., Dionisi, H.M., Gregory, I.R., Garrett, V.M., Hawkins, S.A., 
Robinson, K.G. and Sayler, G.S., 2003. Real-time PCR quantification of nitrifying 
bacteria in a municipal wastewater treatment plant. Environmental science & technology 
37 (2), 343-351. 

Hauduc, H., Rieger, L., Oehmen, A., van Loosdrecht, M.C.M., Comeau, Y., Héduit, A., 
Vanrolleghem, P.A. and Gillot, S., 2013. Critical Review of Activated Sludge Modeling: 
State of Process Knowledge, Modeling Concepts, and Limitations. Biotechnology and 
Bioengineering 110 (1), 24-46. 

He, F., Zhao, D., Liu, J. and Roberts, C.B., 2007. Stabilization of Fe - Pd nanoparticles 
with sodium carboxymethyl cellulose for enhanced transport and dechlorination of 
trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research 
46 (1), 29-34. 

Hockenbury, M.R. and Grady Jr, C.P.L., 1977. Inhibition of nitrification: effects of 
selected organic compounds. Journal of the Water Pollution Control Federation 49 (5), 
768-777. 

Homhoul, P., Pengpanich, S. and Hunsom, M., 2011. Treatment of distillery wastewater 
by the nano-scale zero-valent iron and the supported nano-scale zero-valent iron. Water 
Environment Research 83 (1), 65-74. 

Hosseini, S.M., Ataie-Ashtiani, B. and Kholghi, M., 2011. Bench-scaled nano-Fe 0 
permeable reactive barrier for nitrate removal. Groundwater Monitoring & Remediation 
31 (4), 82-94. 

Hu, Z., Chandran, K., Grasso, D. and Smets, B.F., 2003. Impact of metal sorption and 
internalization on nitrification inhibition. Environmental science & technology 37 (4), 
728-734. 

Hu, Z., Ferraina, R.A., Ericson, J.F., MacKay, A.A. and Smets, B.F., 2005a. Biomass 
characteristics in three sequencing batch reactors treating a wastewater containing 
synthetic organic chemicals. Water Research 39 (4), 710-720. 

Hu, Z., Ferraina, R.A., Ericson, J.F. and Smets, B.F., 2005b. Effect of long-term exposure, 
biogenic substrate presence, and electron acceptor conditions on the biodegradation of 
multiple substituted benzoates and phenolates. Water Research 39 (15), 3501-3510. 



 

176 

 

Huang, C.P., Wang, H.W. and Chiu, P.C., 1998. Nitrate reduction by metallic iron. Water 
Research 32 (8), 2257-2264. 

Huang, Y.C. and Cheng, Y.W., 2012. Electrokinetic-enhanced nanoscale iron reactive 
barrier of trichloroethylene solubilized by Triton X-100 from groundwater. 
Electrochimica Acta 86, 177-184. 

Huang, Y.H. and Zhang, T.C., 2002. Kinetics of nitrate reduction by iron at near neutral 
pH. Journal of Environmental Engineering 128 (7), 604-611. 

Hwang, Y., Kim, D., Ahn, Y.T., Moon, C.M. and Shin, H.S., 2012. Recovery of 
ammonium salt from nitrate-containing water by Iron nanoparticles and membrane 
contactor. Environmental Engineering Research 17 (2), 111-116. 

Hwang, Y.H., Kim, D.G. and Shin, H.S., 2011. Effects of synthesis conditions on the 
characteristics and reactivity of nano scale zero valent iron. Applied Catalysis B: 
Environmental 105 (1-2), 144-150. 

In, C.L. and De Los Reyes III, F.L., 2005. Integrating decay, storage, kinetic selection, 
and filamentous backbone factors in a bacterial competition model. Water Environment 
Research 77 (3), 287-296. 

Iversen, V., Koseoglu, H., Yigit, N.O., Drews, A., Kitis, M., Lesjean, B. and Kraume, M., 
2009. Impacts of membrane flux enhancers on activated sludge respiration and nutrient 
removal in MBRs. Water Research 43 (3), 822-830. 

Jagadevan, S., Jayamurthy, M., Dobson, P. and Thompson, I.P., 2012. A novel hybrid 
nano zerovalent iron initiated oxidation - Biological degradation approach for 
remediation of recalcitrant waste metalworking fluids. Water Research 46 (7), 
2395-2404. 

Jenkins, D., Richard, M.G. and Daigger, G.T., 2004. Manual on the causes and control of 
acivated sludge bulking, foaming, and other solids separation problems, 3rd Edition, IWA 
Publishing, London. 

Juang, Y.C., Adav, S.S., Lee, D.J. and Lai, J.Y., 2010. Influence of internal biofilm 
growth on residual permeability loss in aerobic granular membrane bioreactors. 
Environmental Science and Technology 44 (4), 1267-1273. 



 

177 

 

Kanagawa, T., Kamagata, Y., Aruga, S., Kohno, T., Horn, M. and Wagner, M., 2000. 
Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 
021N filamentous bacteria isolated from bulking activated sludge. Applied and 
Environmental Microbiology 66 (11), 5043-5052. 

Kang, X.S., Liu, C.Q., Zhang, B., Bi, X.J., Zhang, F. and Cheng, L.H., 2011. Application 
of Reversed A2/O Process on Removing Nitrogen and Phosphorus from Municipal 
Wastewater in China. Water Science and Technology 63 (10), 2138-2142. 

Kappeler, J. and Gujer, W., 1994. Verification and applications of a mathematical model 
for 'aerobic bulking'. Water Research 28 (2), 311-322. 

Kim, B.C., Kim, S., Shin, T., Kim, H. and Sang, B.I., 2013. Comparison of the Bacterial 
Communities in Anaerobic, Anoxic, and Oxic Chambers of a Pilot A2O Process Using 
Pyrosequencing Analysis. Current Microbiology 66 (6), 555-565. 

Kim, J.Y., Lee, C., Love, D.C., Sedlak, D.L., Yoon, J. and Nelson, K.L., 2011. 
Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. 
Environmental science & technology 45 (16), 6978-6984. 

Kim, J.Y., Park, H.J., Lee, C., Nelson, K.L., Sedlak, D.L. and Yoon, J., 2010. 
Inactivation of escherichia coli by nanoparticulate zerovalent iron and ferrous ion. 
Applied and Environmental Microbiology 76 (22), 7668-7670. 

Kishida, N., Kim, J., Tsuneda, S. and Sudo, R., 2006. Anaerobic/Oxic/Anoxic Granular 
Sludge Process as an Effective Nutrient Removal Process Utilizing Denitrifying 
Polyphosphate-Accumulating Organisms. Water Research 40 (12), 2303-2310. 

Kishida, N., Kim, J.H., Kimochi, Y., Nishimura, O., Sasaki, H. and Sudo, R., 2004. 
Effect of C/N Ratio on Nitrous Oxide Emission from Swine Wastewater Treatment 
Process. Water Science and Technology 49, 359-365. 

Kotay, S.M., Datta, T., Choi, J. and Goel, R., 2011. Biocontrol of biomass bulking caused 
by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water 
Research 45 (2), 694-704. 

Kumari, S.K.S., Marrengane, Z. and Bux, F., 2009. Application of quantitative RT-PCR 
to determine the distribution of Microthrix parvicella in full-scale activated sludge 
treatment systems. Applied Microbiology and Biotechnology 83 (6), 1135-1141. 



 

178 

 

Leahy, J.G. and Colwell, R.R., 1990. Microbial degradation of hydrocarbons in the 
environment. Microbiological Reviews 54 (3), 305-315. 

Lee, C., Jee, Y.K., Won, I.L., Nelson, K.L., Yoon, J. and Sedlak, D.L., 2008. Bactericidal 
effect of zero-valent iron nanoparticles on Escherichia coli. Environmental science & 
technology 42 (13), 4927-4933. 

Lee, H., Han, J. and Yun, Z., 2009. Biological Nitrogen and Phosphorus Removal in 
UCT-Type MBR Process. Water Science and Technology 59 (11), 2093-2099. 

Li, X.Q., Brown, D.G. and Zhang, W.X., 2007. Stabilization of biosolids with nanoscale 
zero-valent iron (nZVI). Journal of Nanoparticle Research 9 (2), 233-243. 

Li, X.Q., Elliott, D.W. and Zhang, W.X., 2006. Zero-valent iron nanoparticles for 
abatement of environmental pollutants: Materials and engineering aspects. Critical 
Reviews in Solid State and Material Sciences 31 (4), 111-122. 

Li, Z., Greden, K., Alvarez, P.J.J., Gregory, K.B. and Lowry, G.V., 2010. Adsorbed 
polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. 
Environmental science & technology 44 (9), 3462-3467. 

Liang, Z., Das, A., Beerman, D. and Hu, Z., 2010a. Biomass Characteristics of Two 
Types of Submerged Membrane Bioreactors for Nitrogen Removal from Wastewater. 
Water Research 44 (11), 3313-3320. 

Liang, Z., Das, A. and Hu, Z., 2010b. Bacterial response to a shock load of nanosilver in 
an activated sludge treatment system. Water Research 44 (18), 5432-5438. 

Lin, M., He, L., Awika, J., Yang, L., Ledoux, D.R., Li, H. and Mustapha, A., 2008. 
Detection of melamine in gluten, chicken feed, and processed foods using surface 
enhanced Raman spectroscopy and HPLC. Journal of Food Science 73 (8), T129-T134. 

Lin, Y.H., Tseng, H.H., Wey, M.Y. and Lin, M.D., 2010. Characteristics of two types of 
stabilized nano zero-valent iron and transport in porous media. Science of the Total 
Environment 408 (10), 2260-2267. 

Liou, Y.H., Lo, S.L. and Lin, C.J., 2007. Size effect in reactivity of copper nanoparticles 
to carbon tetrachloride degradation. Water Research 41 (8), 1705-1712. 



 

179 

 

Littleton, H.X., Daigger, G.T., Strom, P.F. and Cowan, R.A., 2003. Simultaneous 
Biological Nutrient Removal: Evaluation of Autotrophic Denitrification, Heterotrophic 
Nitrification, and Biological Phosphorus Removal in Full-Scale Systems. Water 
Environment Research 75 (2), 138-150. 

Liu, H., Chen, T., Zou, X., Xie, Q., Qing, C., Chen, D. and Frost, R.L., 2013. Removal of 
phosphorus using NZVI derived from reducing natural goethite. Chemical Engineering 
Journal 234, 80-87. 

Lou, I.C. and De Los Reyes III, F.L., 2008. Clarifying the roles of kinetics and diffusion 
in activated sludge filamentous bulking. Biotechnology and Bioengineering 101 (2), 
327-336. 

Luna, G.M., Dell'Anno, A. and Danovaro, R., 2006. DNA extraction procedure: A critical 
issue for bacterial diversity assessment in marine sediments. Environmental 
Microbiology 8 (2), 308-320. 

Luna, G.M., Dell'Anno, A., Giuliano, L. and Danovaro, R., 2004. Bacterial diversity in 
deep Mediterranean sediments: Relationship with the active bacterial fraction and 
substrate availability. Environmental Microbiology 6 (7), 745-753. 

Münch, E.v. and Pollard, P.C., 1997. Measuring bacterial biomass-COD in wastewater 
containing particulate matter. Water Research 31 (10), 2550-2556. 

Ma, L. and Zhang, W.X., 2008. Enhanced biological treatment of industrial wastewater 
with bimetallic zero-valent iron. Environmental science & technology 42 (15), 
5384-5389. 

Madoni, P., Davoli, D. and Gibin, G., 2000. Survey of filamentous microorganisms from 
bulking and foaming activated-sludge plants in Italy. Water Research 34 (6), 1767-1772. 

Marsalek, B., Jancula, D., Marsalkova, E., Mashlan, M., Safarova, K., Tucek, J. and 
Zboril, R., 2012. Multimodal action and selective toxicity of zerovalent iron 
nanoparticles against cyanobacteria. Environmental science & technology 46 (4), 
2316-2323. 

Martins, A.M.P., Heijnen, J.J. and Van Loosdrecht, M.C.M., 2003. Effect of feeding 
pattern and storage on the sludge settleability under aerobic conditions. Water Research 
37 (11), 2555-2570. 



 

180 

 

Martins, A.M.P., Pagilla, K., Heijnen, J.J. and Van Loosdrecht, M.C.M., 2004. 
Filamentous bulking sludge - A critical review. Water Research 38 (4), 793-817. 

Mascarenhas, T., Mikkelsen, L.H. and Nielsen, P.H., 2004. Effects of chlorination on the 
adhesion strength and deflocculation of activated sludge flocs. Water Environment 
Research 76 (4), 327-333. 

Maurer, M. and Gujer, W., 1998. Dynamic Modelling of Enhanced Biological 
Phosphorus and Nitrogen Removal in Activated Sludge Systems. Water Science and 
Technology 38, 203-210. 

Metcalf and Eddy, 2003. Wastewater Engineering:Treatment and Reuse, 4th Edition., 
McGraw-Hill Higher Education, New York. 

Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E. and Stahl, D.A., 1996. 
Phylogenetic Probes for Analyzing Abundance and Spatial Organization of Nitrifying 
Bacteria. Applied and Environmental Microbiology 62 (6), 2156-2162. 

Monclús, H., Sipma, J., Ferrero, G., Rodriguez-Roda, I. and Comas, J., 2010. Biological 
nutrient removal in an MBR treating municipal wastewater with special focus on 
biological phosphorus removal. Bioresource Technology 101 (11), 3984-3991. 

Moreau, J.W., Weber, P.K., Martin, M.C., Gilbert, B., Hutcheon, I.D. and Banfield, J.F., 
2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316 
(5831), 1600-1603. 

Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A. and Olsson, G., 2012. Application of 
membrane bioreactor technology in treating high strength industrial wastewater: A 
performance review. Desalination 305, 1-11. 

Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A., Yuniarto, A. and Olsson, G., 2013. 
Membrane bioreactor: Applications and limitations in treating high strength industrial 
wastewater. Chemical Engineering Journal 225, 109-119. 

Nenner, I. and Schulz, G.J., 1975. Temporary negative ions and electron affinities of 
benzene and N-heterocyclic molecules: Pyridine, pyridazine, pyrimidine, pyrazine, and 
s-triazine. The Journal of Chemical Physics 62 (5), 1747-1758. 



 

181 

 

Nielsen, J.L. and Nielsen, P.H., 1998. Microbial nitrate-dependent oxidation of ferrous 
iron in activated sludge. Environmental science & technology 32 (22), 3556-3561. 

Nielsen, P.H., Kragelund, C., Seviour, R.J. and Nielsen, J.L., 2009. Identity and 
ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews 
33 (6), 969-998. 

Nielsen, P.H., Thomsen, T.R. and Nielsen, J.L., 2004. Bacterial composition of activated 
sludge - Importance for floc and sludge properties, pp. 51-58. 

Nishimura, K., Yamamoto, M., Nakagomi, T., Takiguchi, Y., Naganuma, T. and Uzuka, 
Y., 2002. Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil 
yeast Lipomyces starkeyi. Applied Microbiology and Biotechnology 58 (6), 848-852. 

Noutsopoulos, C., Mamais, D. and Andreadakis, A., 2006. Effect of solids retention time 
on Microthrix parvicella growth. Water SA 32 (3), 315-321. 

Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, 
C., Linehan, J.C., Matson, D.W., Penn, R.L. and Driessen, M.D., 2005. Characterization 
and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and 
kinetics. Environmental science & technology 39 (5), 1221-1230. 

Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L. and Reis, 
M.A.M., 2007. Advances in Enhanced Biological Phosphorus Removal: From Micro to 
Macro Scale. Water Research 41 (11), 2271-2300. 

Onnis-Hayden, A., Majed, N., Schramm, A. and Gu, A.Z., 2011. Process Optimization by 
Decoupled Control of Key Microbial Populations: Distribution of Activity and 
Abundance of Polyphosphate-Accumulating Organisms and Nitrifying Populations in a 
Full-Scale IFAS-EBPR Plant. Water Research 45 (13), 3845-3854. 

Peng, Y. and Ge, S., 2011. Enhanced Nutrient Removal in Three Types of Step Feeding 
Process from Municipal Wastewater. Bioresource Technology 102 (11), 6405-6413. 

Phenrat, T., Cihan, A., Kim, H.J., Mital, M., Illangasekare, T. and Lowry, G.V., 2010. 
Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous 
porous media: effects of particle concentration, Fe0 content, and coatings. Environmental 
science & technology 44 (23), 9086-9093. 



 

182 

 

Pijuan, M., Guisasola, A., Baeza, J.A., Carrera, J., Casas, C. and Lafuente, J., 2005. 
Aerobic Phosphorus Release Linked to Acetate Uptake: Influence of PAO Intracellular 
Storage Compounds. Biochemical Engineering Journal 26 (2-3), 184-190. 

Puschner, B., Poppenga, R.H., Lowenstine, L.J., Filigenzi, M.S. and Pesavento, P.A., 
2007. Assessment of melamine and cyanuric acid toxicity in cats. Journal of Veterinary 
Diagnostic Investigation 19 (6), 616-624. 

Qi, R., Yu, T., Li, Z., Li, D., Mino, T., Shoji, T., Fujie, K. and Yang, M., 2012. 
Comparison of conventional and inverted A2/O processes: phosphorus release and uptake 
behaviors. Jounal of Environmental Sciences 24 (4), 571-578. 

Qu, X., Alvarez, P.J.J. and Li, Q., 2013. Applications of nanotechnology in water and 
wastewater treatment. Water Research 47 (12), 3931-3946. 

Ramphao, M., Wentzel, M.C., Merritt, R., Ekama, G.A., Young, T. and Buckley, C.A., 
2005. Impact of Membrane Solid-Liquid Separation on Design of Biological Nutrient 
Removal Activated Sludge Systems. Biotechnology and Bioengineering 89 (6), 630-646. 

Regan, J.M., Harrington, G.W. and Noguera, D.R., 2002. Ammonia- and nitrite-oxidizing 
bacterial communities in a pilot-scale chloraminated drinking water distribution system. 
Applied and Environmental Microbiology 68 (1), 73-81. 

Reinsch, B.C., Forsberg, B., Penn, R.L., Kim, C.S. and Lowry, G.V., 2010. Chemical 
transformations during aging of zerovalent iron nanoparticles in the presence of common 
groundwater dissolved constituents. Environmental science & technology 44 (9), 
3455-3461. 

Rittman, B.E. and McCarty, P.L., 2001. Environmental Biotechnology: Principles and 
Applications, McGraw-Hill Science Engineering, New York. 

Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M. and Schrotter, 
J.C., 2006. Impact of colloidal and soluble organic material on membrane performance in 
membrane bioreactors for municipal wastewater treatment. Water Research 40 (4), 
710-720. 

Ruangchainikom, C., Liao, C.H., Anotai, J. and Lee, M.T., 2006. Characteristics of 
nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system. 
Water Research 40 (2), 195-204. 



 

183 

 

Séka, M.A., Cabooter, S. and Verstraete, W., 2001a. A test for predicting propensity of 
activated sludge to acute filamentous bulking. Water Environment Research 73 (2), 
237-242. 

Séka, M.A., Kalogo, Y., Hammes, F., Kielemoes, J. and Verstraete, W., 2001b. 
Chlorine-Susceptible and Chlorine-Resistant Type 021N Bacteria Occurring in Bulking 
Activated Sludges. Applied and Environmental Microbiology 67 (3-12), 5303-5307. 

Saeedi, M., Li, L.Y. and Moradi Gharehtapeh, A., 2013. Effect of alternative electrolytes 
on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. 
International Journal of Environmental Research 7 (1), 39-50. 

Salaün, F., Lewandowski, M., Vroman, I., Bedek, G. and Bourbigot, S., 2011. 
Development and characterisation of flame-retardant fibres from isotactic polypropylene 
melt-compounded with melamine-formaldehyde microcapsules. Polymer Degradation 
and Stability 96 (1), 131-143. 

Scheer, H. and Seyfried, C.F., 1997. Enhanced Biological Phosphate Removal: 
Modelling and Design in Theory and Practice. Water Science and Technology 35, 43-52. 

Scherer, M.M., Richter, S., Valentine, R.L. and Alvarez, P.J.J., 2000. Chemistry and 
microbiology of permeable reactive barriers for in situ groundwater clean up. Critical 
Reviews in Environmental Science and Technology 30 (3), 363-411. 

Schon, G., Geywitz, S. and Mertens, F., 1993. Influence of Dissolved Oxygen and 
Oxidation-Reduction Potential on Phosphate Release and Uptake by Activated Sludge 
from Sewage Plants with Enhanced Biological Phosphorus Removal. Water Research 27 
(3), 349-354. 

Seffernick, J.L., De Souza, M.L., Sadowsky, M.J. and Wackett, L.P., 2001. Melamine 
deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. 
Journal of Bacteriology 183 (8), 2405-2410. 

Seffernick, J.L., Dodge, A.G., Sadowsky, M.J., Bumpus, J.A. and Wackett, L.P., 2010. 
Bacterial ammeline metabolism via guanine deaminase. Journal of Bacteriology 192 (4), 
1106-1112. 



 

184 

 

Seffernick, J.L., Johnson, G., Sadowsky, M.J. and Wackett, L.P., 2000. Substrate 
specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. Applied and 
Environmental Microbiology 66 (10), 4247-4252. 

Shariatmadari, N., Weng, C.H. and Daryaee, H., 2009. Enhancement of hexavalent 
chromium [Cr(VI)] remediation from clayey soils by electrokinetics coupled with a 
nano-sized zero-valent iron barrier. Environmental Engineering Science 26 (6), 
1071-1079. 

Shelton, D.R., Karns, J.S., McCarty, G.W. and Durham, D.R., 1997. Metabolism of 
melamine by Klebsiella terragena. Applied and Environmental Microbiology 63 (7), 
2832-2835. 

Shin, K.H. and Cha, D.K., 2008. Microbial reduction of nitrate in the presence of 
nanoscale zero-valent iron. Chemosphere 72 (2), 257-262. 

Sims, A., Gajaraj, S. and Hu, Z., 2013. Nutrient removal and greenhouse gas emissions 
in duckweed treatment ponds. Water Research 47 (3), 1390-1398. 

Siripong, S. and Rittmann, B.E., 2007. Diversity Study of Nitrifying Bacteria in 
Full-Scale Municipal Wastewater Treatment Plants. Water Research 41 (5), 1110-1120. 

Smith, C.J., Nedwell, D.B., Dong, L.F. and Osborn, A.M., 2007. Diversity and 
abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and 
nrfA), and their transcripts in estuarine sediments. Applied and Environmental 
Microbiology 73 (11), 3612-3622. 

Smolders, G.J.F., Van der Meij, J., Van Loosdrecht, M.C.M. and Heijnen, J.J., 1994. 
Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process: 
Stoichiometry and pH Influence. Biotechnology and Bioengineering 43 (6), 461-470. 

Solley, D. and Armstrong, M., 2003. Phased Upgrading for Nitrogen Removal - A Low 
Cost Approach. Water Science and Technology 47 (11), 157-163. 

Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry, John Wiley & Sons, New York. 

Takagi, K., Fujii, K., Yamazaki, K.I., Harada, N. and Iwasaki, A., 2012. Biodegradation 
of melamine and its hydroxy derivatives by a bacterial consortium containing a novel 
Nocardioides species. Applied Microbiology and Biotechnology 94 (6), 1647-1656. 



 

185 

 

Tang, S.C.N. and Lo, I.M.C., 2013. Magnetic nanoparticles: Essential factors for 
sustainable environmental applications. Water Research 47 (8), 2613-2632. 

Teng, F., Guan, Y. and Zhu, W., 2008. A simple and effective method to overcome the 
inhibition of Fe to PCR. Journal of Microbiological Methods 75 (2), 362-364. 

Tyrovola, K., Nikolaidis, N.P., Veranis, N., Kallithrakas-Kontos, N. and Koulouridakis, 
P.E., 2006. Arsenic removal from geothermal waters with zero-valent iron-Effect of 
temperature, phosphate and nitrate. Water Research 40 (12), 2375-2386. 

UNEP, Melamine, OECD Screening Information Data Set (SIDS). 

Van Loosdrecht, M.C.M., Hooijmans, C.M., Brdjanovic, D. and Heijnen, J.J., 1997a. 
Biological Phosphate Removal Processes. Applied Microbiology and Biotechnology 48 
(3), 289-296. 

Van Loosdrecht, M.C.M., Pot, M.A. and Heijnen, J.J., 1997b. Importance of bacterial 
storage polymers in bioprocesses. Water Science and Technology 35, 41-47. 

Van Veldhuizen, H.M., Van Loosdrecht, M.C.M. and Heijnen, J.J., 1999. Modelling 
Biological Phosphorus and Nitrogen Removal in a Full Scale Activated Sludge Process. 
Water Research 33 (16), 3459-3468. 

Vance, D.B., 2005. Nanoscale iron colloids the maturation of the technology for field 
scale applications. Pollution Engineering 37 (7), 16-18. 

Vargas, M., Casas, C. and Baeza, J.A., 2009. Maintenance of Phosphorus Removal in an 
EBPR System under Permanent Aerobic Conditions Using Propionate. Biochemical 
Engineering Journal 43 (3), 288-296. 

Vervaeren, H., De Wilde, K., Matthys, J., Boon, N., Raskin, L. and Verstraete, W., 2005a. 
Quantification of an Eikelboom type 021N bulking event with fluorescence in situ 
hybridization and real-time PCR. Applied Microbiology and Biotechnology 68 (5), 
695-704. 

Vervaeren, H., De Wilde, K., Matthys, J., Boon, N., Raskin, L. and Verstraete, W., 2005b. 
Quantification of an Eikelboom type 021N bulking event with fluorescence in situ 
hybridization and real-time PCR. Appl. Microbiol. Biotechnol. 68 (5), 695-704. 



 

186 

 

Wachtmeister, A., Kuba, T., Van Loosdrecht, M.C.M. and Heijnen, J.J., 1997. A Sludge 
Characterization Assay for Aerobic and Denitrifying Phosphorus Removing Sludge. 
Water Research 31 (3), 471-478. 

Wagner, M., Rath, G., Amann, R., Koops, H.P. and Schleifer, K.H., 1995. In Situ 
Identification of Ammonia-Oxidizing Bacteria. Systematic and Applied Microbiology 18 
(2), 251-264. 

Wang, W., Jin, Z.h., Li, T.l., Zhang, H. and Gao, S., 2006. Preparation of spherical iron 
nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65 (8), 
1396-1404. 

Wanner, J., 1994. Activated sludge bulking and foaming control., Technomic Publishing, 
Pennsylvania, USA. 

Wilén, B.M., Keiding, K. and Nielsen, P.H., 2004. Flocculation of activated sludge flocs 
by stimulation of the aerobic biological activity. Water Research 38 (18), 3909-3919. 

Wimmer, R.F. and Love, N.G., 2004. Activated sludge deflocculation in response to 
chlorine addition: The potassium connection. Water Environment Research 76 (3), 
213-219. 

Wu, D., Shen, Y., Ding, A., Qiu, M., Yang, Q. and Zheng, S., 2013. Phosphate removal 
from aqueous solutions by nanoscale zero-valent iron. Environmental Technology (U. K.) 
34 (18), 2663-2669. 

Xiu, Z.m., Jin, Z.h., Li, T.l., Mahendra, S., Lowry, G.V. and Alvarez, P.J.J., 2010. Effects 
of nano-scale zero-valent iron particles on a mixed culture dechlorinating 
trichloroethylene. Bioresource Technology 101 (4), 1141-1146. 

Xu, S., Zhang, Y., Sims, A., Bernards, M. and Hu, Z., 2013. Fate and toxicity of 
melamine in activated sludge treatment systems after a long-term sludge adaptation. 
Water Research 47 (7), 2307-2314. 

Yan, W., Lien, H.L., Koel, B.E. and Zhang, W.X., 2013. Iron nanoparticles for 
environmental clean-up: Recent developments and future outlook. Environmental 
Science: Processes & Impacts 15 (1), 63-77. 



 

187 

 

Yang, G.C.C. and Lee, H.-L., 2005. Chemical reduction of nitrate by nanosized iron: 
kinetics and pathways. Water Research 39 (5), 884-894. 

Yang, Y., Guo, J. and Hu, Z., 2013. Impact of nano zero valent iron (NZVI) on 
methanogenic activity and population dynamics in anaerobic digestion. Water Research 
47 (17), 6790-6800. 

Yang, Y., Xu, M., Wall, J.D. and Hu, Z., 2012. Nanosilver impact on methanogenesis 
and biogas production from municipal solid waste. Waste Management 32 (5), 816-825. 

Yoon, S.H., Kim, H.S. and Yeom, I.T., 2004. The optimum operational condition of 
membrane bioreactor (MBR): Cost estimation of aeration and sludge treatment. Water 
Research 38 (1), 37-46. 

Zhang, B. and Gao, T.Y., 1997. Enhancement of Nitrogen and Phosphorus Removal by 
Reversal of Anaerobic and Anoxic Zones Sequence. China Water and Wastewater 13 (3), 
7-9. 

Zhang, J., Hao, Z., Zhang, Z., Yang, Y. and Xu, X., 2010. Kinetics of nitrate reductive 
denitrification by nanoscale zero-valent iron. Process Safety and Environmental 
Protection 88 (6), 439-445. 

Zhang, Q.X., Yang, G.Y., Li, J.T., Li, W.X., Zhang, B. and Zhu, W., 2011. Melamine 
induces sperm DNA damage and abnormality, but not genetic toxicity. Regulatory 
Toxicology and Pharmacology 60 (1), 144-150. 

Zhang, W.-X. and Elliott, D.W., 2006. Applications of iron nanoparticles for 
groundwater remediation. Remediation 16 (2), 7-21. 

Zhaunerchyk, V., Geppert, W.D., Rośn, S., Vigren, E., Hamberg, M., Kamińska, M., 
Kashperka, I., Af Ugglas, M., Semaniak, J., Larsson, M. and Thomas, R.D., 2009. 
Investigation into the vibrational yield of OH products in the OH+H+H channel arising 
from the dissociative recombination of H3O +. The Journal of Chemical Physics 130 (21), 
214302. 

Zhou, Z., Wu, Z., Wang, Z., Tang, S., Gu, G., Wang, L., Wang, Y. and Xin, Z., 2011. 
Simulation and Performance Evaluation of the Anoxic/Anaerobic/Aerobic Process for 
Biological Nutrient Removal. Korean Journal of Chemical Engineering 28 (5), 
1233-1240. 



 

188 

 

 

VITA 

 
 
 

Shengnan Xu was born on December 8th, 1983 in Henan, China. She earned her bachelor and 

master degree of Environmental Engineering in 2006 and 2009, respectively, from Tongji 

University, Shanghai, China. She came to the U.S. in January 2010 and attended the University of 

Missouri, pursuing a Ph.D degree in Civil and Environmental Engineering. She studied the process 

improvements in biological nutrient removal systems, completing this degree in July 2014. She 

hopes to continue working in environmental engineering and pursue her career in academia or 

industry in the future. 

 

 



Impact of hydraulic retention time on organic and
nutrient removal in a membrane coupled
sequencing batch reactor

Shengnan Xu a, Donglei Wu b,*, Zhiqiang Hu a,**
aDepartment of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO

65211, USA
bDepartment of Environmental Engineering, Zhejiang University, China

a r t i c l e i n f o

Article history:

Received 9 September 2013

Received in revised form

17 January 2014

Accepted 24 January 2014

Available online 4 February 2014

Keywords:

Hydraulic retention time

Biological nutrient removal

Sequencing batch reactor

Membrane bioreactor

Phosphorus release and uptake

a b s t r a c t

Although solids retention time (SRT) is the key parameter in wastewater treatment design

and operation, this study determined the effect of hydraulic retention time (HRT) on bio-

logical nutrient removal in a membrane coupled sequencing batch reactor (MSBR) at the

fixed SRT of 10 days. During more than 200 days of operation, the HRT of the MSBR were

decreased from 24 to 12 and to 6 h while the volumetric exchange ratio in each operating

cycle was fixed at 50%. The decrease of HRT led to a proportional increase in biomass con-

centration at the fixed SRT. The system demonstrated excellent removal of organic matter

with the highest COD removal efficiency (97%) achieved at the shortest HRT of 6 h. As HRT

was reduced from 24 to 12 h, the total nitrogen removal efficiency improved from 68� 5% to

80 � 4%, but there was no further improvement when HRT decreased to 6 h. Coincidently,

similar and higher abundance of nitrifying bacteria was observed in the MSBR operated at

theHRTs of 6 and 12 h than that at theHRT of 24 h. The total phosphorus removal efficiencies

were 62� 15%, 77� 4% and 85� 3% at the HRTs of 24, 12 and 6 h, respectively. Themaximum

P release rates for activated sludge at the HRTs of 24, 12 and 6 h were 3.7 � 0.5, 6.4 � 0.2 and

8.7� 0.1mg P/h, respectively, while themaximumPuptake rateswere 3.2� 0.1, 8.6� 0.2 and

15.2 � 0.2 mg P/h, respectively. Contradictory to the theory that effluent water quality is

solely SRT dependent, the results suggest that it is also affected by HRT and resultant

biomass concentration possibly due to factors such as change in hydrolysis of particulate

organic matter, the unique microenvironment and transition between anaerobic and aer-

obic metabolism at high biomass concentrations in MSBR operation.

ª 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wastewater treatment is evolving from the traditional acti-

vated sludge process to biological nutrient removal (BNR).

A combination of anaerobic, anoxic and aerobic processes in

BNR systems results in simultaneous nitrogen (N) and phos-

phorus (P) removal. Biological N removal is typically achieved

by autotrophic nitrification under aerobic conditions followed

by heterotrophic denitrification under anoxic conditions
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(Grady et al., 2011; Metcalf and Eddy, 2003). Phosphorus

accumulating organisms (PAOs) are essential to enhanced

biological phosphorus removal (EBPR). By taking readily

biodegradable organic matter from wastewater and storing it

as polyhydroxyalkanoates (PHAs) under anaerobic conditions,

PAOs are able to use stored PHAs as an energy source to

remove inorganic P from wastewater and convert into intra-

cellular poly-P (Grady et al., 2011; Wu et al., 2006) under sub-

sequent aerobic conditions or anoxic conditions (for

denitrifying PAOs). Consequently, P in wastewater can be

significantly accumulated in mixed liquor suspended solids

(MLSS) and then removed by sludgewasting (Grady et al., 2011;

Metcalf and Eddy, 2003).

The activated sludge wastewater treatment performance

can be optimized with various BNR processes and configura-

tions, such as the selection of proper volumes of anaerobic/

anoxic/aerobic chambers and the flow rates of internal mixed

liquor recirculation (MLR) and return activated sludge (RAS)

(Grady et al., 2011; Metcalf and Eddy, 2003). These re-

quirements often make it difficult to retrofit and upgrade

existing troubled wastewater treatment systems. One option

to overcome this obstacle is the use of sequencing batch

reactor (SBR) technology, which does not require RAS andMLR

operations and allows all complex processes to occur in a

single bioreactor by performing cyclic events such as fill, react,

settle, draw and idle steps in sequence (Grady et al., 2011). SBR

can mimic various types of continuous flow systems by

changing the cycle format and the time associated with each

step (Metcalf and Eddy, 2003). Due to its flexibility in opera-

tion, control and small footprint feature, SBR is preferred in

small-scale treatment plants (with flow rates < 19,000 m3/d or

5 million gallons per day) (Dubber and Gray, 2011; Lee et al.,

2001). However, the risk in poor settlement and the conse-

quently turbid effluent are concerns in SBR operation (Kang

et al., 2003).

On the other hand, membrane bioreactor (MBR) systems

are excellent in solideliquid separation and offer higher

effluent quality than conventional activated sludge systems

(Ersu et al., 2010; Metcalf and Eddy, 2003). Additional benefits

can be achieved through MBR operation, such as higher

volumetric loading rates and thus shorter hydraulic retention

times (HRTs) for economical operation, and longer solid

retention times (SRTs) and thus less sludge production (Bhatta

et al., 2004; Metcalf and Eddy, 2003). The biomass concentra-

tion in MBR systems can therefore be 10 times that of the

conventional activated sludge systems (Galil and Jacob, 2009),

resulting in more efficient pollutant removal (Fleischer et al.,

2005; Monclús et al., 2010). Although membrane fouling is

still a problem in its operation (Charcosset, 2006), MBR is

increasingly used in wastewater treatment for wastewater

reuse (Iversen et al., 2009; Juang et al., 2010; Mutamim et al.,

2012; Rosenberger et al., 2006; Yoon et al., 2004).

Since both SBR and MBR are widely used (Shannon et al.,

2008), combining a membrane process with SBR to have a

membrane coupled sequencing batch reactor (MSBR) may

offer a better solution for wastewater treatment. MSBR can

provide engineering flexibility in organic and nutrient removal

more than conventional BNR processes. The use of mem-

branes eliminates settling and decanting steps reducing the

SBR cycle length. Meanwhile, the SBR operation allows a feast-

famine environment that favors biogranulation of activated

sludge to mitigate membrane fouling (Tu et al., 2010). Not

surprisingly, MSBR technique has been employed for indus-

trial wastewater treatment to effectively remove organics and

toxic compounds from wastewater (Fakhru’l-Razi et al., 2010;

Kaewsuk et al., 2010; Moreno-Andrade and Buitrón, 2012;

Serrano et al., 2011; Vargas et al., 2008). With prolonged SRTs

(e.g., >360 d), the technique has also shown to be capable of

treating greywater with improved nitrogen removal at

reduced HRTs (Scheumann and Kraume, 2009). However, long

SRT results in poor phosphorus removal because P is only

removed through sludge wasting (Metcalf and Eddy, 2003).

Since HRT is another important operating parameter which

affects biomass concentration and separation by membrane

filtration (Tay et al., 2003), the objective of this study was to

determine the impact of HRT on MSBR wastewater treatment

performance at a fixed SRT (10 d). During more than 200 days

of operation, a lab-scale MSBRwas operated andmonitored to

investigate and compare the biomass concentration, organic

and nutrient removal efficiency, P release and uptake behav-

iors and nitrifying community structure at different HRTs.

2. Materials and methods

2.1. MSBR set-up and operation

An 8-L glass vessel (length � width � height ¼
0.12 m � 0.11 m � 0.61 m) was employed for MSBR operation

with an effective working volume of 7.2 L. Two identical

ZeeWeed hollow fiber membrane modules (GE Water & Pro-

cess Technologies, Trevose, PA) were submerged in the MSBR.

The membrane module was made of polyvinylidene fluoride

(PVDF) with a nominal pore size of 0.1 mm, a total effective

filtration area of 0.047 m2, and a maximum membrane flux of

15.0 L/m2$h. The MSBR was operated at room temperature

(24 � 2 �C) with a short start-up period lasting about 10 days.

Activated sludge (obtained from the Columbia Wastewater

Treatment Plant, Columbia, MO) was seeded at an initial

biomass concentration of approximately 2000 mg COD/L. The

MSBR was fed with synthetic wastewater that was mainly

composed of nonfat dry milk powder. The wastewater con-

tained about 400 mg/L of chemical oxygen demand (COD),

40 mg/L total N (TN), 25 mg/L NHþ
4eN, and 10mg/L total P (TP).

The synthetic wastewater also contained the following

macro- and micro-nutrients per liter: 44 mg MgSO4, 14 mg

CaCl2$2H2O, 2 mg FeCl2$4H2O, 3.4 mg MnSO4$H2O, 1.2 mg

(NH4)6Mo7O24$4H2O, 0.8 mg CuSO4, 0.3 mg NiSO4$6H2O, and

1.8 mg Zn(NO3)2$6H2O (Sigma Aldrich, St Louis, MO) (Liang

et al., 2010). A magnetic stirrer ensured homogeneous mix-

ing continuously while compressed air was supplied to the

built-in orifices at the bottom of the membrane module to

control membrane fouling and support aeration and mixing.

Peristaltic pumps (ColeeParmer, Vernon Hills, Illinois) were

used for the influent filling and effluent drawing (Fig. 1).

A standard four-circuit programmable timer

(ColeeParmer, Vernon Hills, Illinois) was used to control the

operating cycles of the MSBR. During each cycle a total of 3.6 L

feed solution was added, which led to a volumetric exchange

ratio (defined as the ratio between the influent volume added
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per cycle and the effectiveworking volume (7.2 L) of 50%. Since

HRT used in SBR operation ranges from 20 to 30 h while for

many BNR facilities HRT ranges from 4 to 18 h (Metcalf and

Eddy, 2003), three HRTs (24, 12, and 6 h) were selected for

evaluation. As shown in Supporting Information (Table S1), in

Phase I (HRT ¼ 24 h), the MSBR cycle consisted of a 4-h

anaerobic reaction including a 10-min influent filling at the

beginning and then an 8-h aerobic reaction including a 20e30-

min effluent drawing at the end. Thus two cycles were

running each day giving an HRT of 24 h. On day 91, the MSBR

operation was shifted to Phase II (HRT ¼ 12 h), when the

operating cycle consisted of a 2-h anaerobic reaction

(including a 10-min influent filling at the beginning) and then

a 4-h aerobic reaction (including a 20-min effluent drawing at

the end). The HRT was reduced to 12 h by running four cycles

per day. Starting from day 151 (Phase III), an HRT of 6 h was

chosen by running eight cycles each day. Each cycle consisted

of a 1-h anaerobic reaction (including a 10-min influent filling)

and then a 2-h aerobic reaction (including a 20-min effluent

drawing). The SRT was maintained at about 10 days

throughout the study period by wasting 0.72 L mixed liquor

before the start of effluent drawing in the last cycle each day

according to the Garrett wastage strategy (Grady et al., 2011).

The transmembrane pressure (TMP) was closely monitored

while themembrane fluxwas set atmaximum.When the TMP

level exceeded the maximum value (45.5 kPa), the membrane

modulewas taken out of theMSBR for physical cleaning (Liang

and Hu, 2012). The module was rinsed with distilled water for

30-min before it was submerged back to the bioreactor. The

influent and effluent quality was monitored twice a week

during the whole operation period.

2.2. P release/uptake kinetics and sludge phosphorus
content

The phosphorus release and uptake kinetics of the sludge at

different HRTs were determined directly from the MSBR by

sampling the sludge mixed liquor at a predetermined time

interval and then measuring the supernatant TP concentra-

tion of the samples. The maximum P release and uptake rates

were calculated according to the procedures described else-

where (Wachtmeister et al., 1997). The sludge P content at the

anaerobic and aerobic stages in the MSBR was calculated by

subtracting the supernatant phosphorus concentration from

the TP concentration of the MLSS, and then divided by the

MLSS concentration.

2.3. Analysis of nitrifying communities in the MSBR

Two distinct groups of nitrifying bacteria, ammonia oxidizing

bacteria (AOB) and nitrite oxidizing bacteria (NOB), are

responsible for the ammonia and nitrite oxidation, respec-

tively. To analyze the nitrifying community structure in the

MSBR, Terminal Restriction Fragment Length Polymorphism

(T-RFLP) was used by targeting 16S rRNA genes of ammonia-

oxidizing bacteria (AOB) (Amann et al., 1990; Mobarry et al.,

1996) and nitrite-oxidizing bacteria (NOB) including Nitrospira

spp. (Regan et al., 2002) and Nitrobacter spp. (Wagner et al.,

1995). DNA was extracted from a 1.0 mL sample of mixed li-

quor taken directly from the aerobic phase of the MSBR using

an Ultraclean Soil DNA Isolation Kit (Carlsbad, CA). The con-

centration and purity of DNA were analyzed with a NanoDrop

instrument (ND-1000 NanoDrop Technologies, Wilmington,

DE). All of the primers (Supporting Information, Table S2) were

synthesized by Integrated DNA Technologies (Coralville, IA). A

fluorescent dye, 6-FAM, was incorporated at the 50 end of the

labeled oligonucleotides.

Polymerase chain reactions (PCRs)were conducted in a PCR

DNA thermocycler (Eppendorf, Westbury, NY). The thermal

profiles used for each PCR amplification have been described

elsewhere (Siripong and Rittmann, 2007). The PCR amplifica-

tion products were purified and digested with MspI restriction

endonuclease (Promega, Madison, WI) at 37 �C for 3 h. After

digestion, the DNA products were diluted 10 times and run

through an ABI 3730 DNA Analyzer (Applied Biosystems,

Carlsbad, CA) at the University of Missouri DNA Core Facility.

An internal lane standard ranging from 20 to 600 bases (Gen-

escan 600 LIZ) was added to each sample for precise sizing of

each fragment by adjusting for lane to lane loading variation.

All experiments were performed in triplicates per sample and

all PCR runs included control reactions without the DNA

template.

2.4. Chemical and statistical analysis

The water quality parameters such as COD, TN, ammonium-

N, nitrite-N, nitrate-N, TP, orthophosphorus in the MSBR

were measured in duplicate following the standard methods

(APHA, 1998). Biomass concentration was measured in COD

units (Contreras et al., 2002; Münch and Pollard, 1997). One-

way ANOVA analysis was conducted to assess the statistical

significance of the differences among groups, with p values

less than 0.05 indicating statistical significance.

3. Results and discussion

3.1. Effect of HRT on reactor biomass concentration and
COD removal

At the fixed SRT (10 d), the biomass COD concentration

experienced a proportional increase as the HRT decreased,

which were 1717 � 436 mg/L, 3502 � 1082 mg/L and

Fig. 1 e A schematic diagram of the MSBR process.
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6093 � 1064 mg/L at the HRTs of 24, 12 and 6 h, respectively

(Fig. 2). The results confirmed the theory that biomass con-

centration in the bioreactor depends on HRT although the

product of biomass concentration and HRT is constant at a

fixed SRT (Grady et al., 2011; Metcalf and Eddy, 2003). The rate

of biomass increase by decreasing the HRT from 12 h to 6 h

was relatively lower than that from 24 h to 12 h. This was

attributed to the loss of biomass because more frequent

rinsing andwashing of themembranemodulewas required at

the HRT of 6 h. It is also possibly due to biomass loss by more

endogenous respiration at high biomass concentrations

because of oxygen transfer limitation within the biological

flocs (Yoon et al., 2004).

Meanwhile, at the influent COD concentration of

410 � 11 mg/L, the effluent COD concentrations were 34 � 22,

32 � 23 and 12 � 12 mg/L at the HRTs of 24, 12 and 6 h,

respectively, with COD removal efficiencies of 92%, 92% and

97%, respectively (Fig. 3). There was no significant difference

in COD removal efficiency between the operation at HRTs of

24 h and 12 h (p ¼ 0.82) while the difference was significant

betweenHRTs of 12 h and 6 h (p¼ 0.008). It seems that the COD

removal efficiency was increased as the biomass concentra-

tion increased in the MSBR, as was also reported elsewhere in

MBR operation (Liang and Hu, 2012).

3.2. Nitrogen removal performance and community
structure of nitrifiers

At the influent TN concentration of 39.9 � 2.6 mg/L, the

average effluent TN concentrations at the HRTs of 24, 12 and

6 h were 12.9 � 2.5, 8.0 � 1.6 and 7.8 � 1.4 mg/L, respectively

(Fig. 3), with average nitrogen removal efficiencies of 68 � 5%,

80 � 4% and 80 � 2%, respectively. The nitrogen removal ef-

ficiency of the MSBR operated at the HRT of 12 h was signifi-

cantly higher than that at the HRT of 24 h (p < 0.001) while

there was no significant difference between the operation at

HRTs of 12 h and 6 h (p ¼ 0.70).

For detailed nitrogen species performance analysis the

effluent NHþ
4eN, NO�

2eN and NO�
3 eN concentrations at

different HRTs were relatively stable (Fig. S1) despite a tem-

porary ammonia spike on day 78 and an obvious NO�
2eN

accumulation on day 48 due to mixing failure. The effluent

NHþ
4 eN concentration at the HRT of 12 h (0.1 � 0.1 mg/L) was

lower than that at the HRT of 24 h (0.2 � 0.1 mg/L) (p ¼ 0.03)

whereas there was no significant difference (p ¼ 0.99) in

effluent NHþ
4eN concentration between the operation at HRTs

of 12 h and 6 h. Similarly, effluent NO�
3eN concentration at

HRT of 12 h (7.2� 1.4mg/L) was significantly lower than that at

HRT of 24 h (11.8 � 2.4 mg/L) (p < 0.001) whereas there was no

significant difference (p ¼ 0.82) in effluent NO�
3 eN concen-

tration between operation at the HRTs of 12 h and 6 h

(7.2 � 1.6 mg/L). There were no significant differences in

Fig. 2 e Biomass concentrations of the MSBR operated at

the HRTs of 6 (:), 12 (B), and 24 h (C), respectively. Error

bars represent data range of duplicate samples.

Fig. 3 e Influent (,) and effluent COD, TN and TP

concentrations in the MSBR operated at the HRTs of 6 (:),

12 (B), and 24 h (C), respectively. Error bars represent the

data range of duplicate samples.
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effluent NO�
2eN concentration among operations at HRTs of

24, 12 and 6 h, which were all at an average of 0.1 mg/L.

The change in nitrogen removal efficiency with HRT was

consistent with the change in nitrifying bacterial population.

As shown in Fig. 4, the T-RFLP profiles specifically targeting

AOB and NOB indicated that the AOB genera primarily con-

sisted ofNitrosomonas spp. and the NOB genera contained both

Nitrospira and Nitrobacter in the MSBR. As peak height repre-

sents the relative abundance of each bacterial species (Regan

et al., 2002), both Nitrosomonas (AOB) and Nitrobacter (NOB) at

Fig. 4 e Nitrifying bacterial community composition reflected by T-RFLP profiles targeting 16S rRNA genes of Nitrosomonas

(A), Nitrospria (B) and Nitrobacter (C) in the Phases I, II, III with HRTs of 24, 12, and 6 h, respectively.
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the HRTs of 12 h and 6 h appeared to exhibit higher population

abundance than those at the HRT of 24 h (Fig. 4A and C).

Higher biomass concentration in MBR operation could provide

better retention of slowly growing AOB and NOB (Holakoo

et al., 2007) because of potentially beneficial interactions be-

tween heterotrophic and autotrophic bacteria (Grady et al.,

2011), while the nitrifiers formed in clusters and in

frequently close contact with each other in sludge flocs

(Mobarry et al., 1996; Ni et al., 2008). Remarkably, the popu-

lation abundance of AOB and NOB in the MSBR was similar at

the HRTs of 12 h and 6 h (Fig. 4A and C). The growth of AOB and

NOB could be susceptible to mass transfer (e.g., ammonium

and oxygen diffusion) at high biomass concentrations which

could result in more aggregation of suspended cells and

sludge floc formation (Huang et al., 2001). Nitrospira (NOB), on

the other hand, was detected at the same population abun-

dance at different HRTs (Fig. 4B).

3.3. Effect of HRT on phosphorus removal

The effluent TP (Fig. 3) and PO3�
4 eP data (Fig. S2) showed that

there was significant difference in P removal efficiency at

different HRTs. At the influent TP concentration of

10.3 � 0.6 mg/L, the effluent TP concentrations at the HRTs of

24, 12 and 6 h were 3.9 � 1.7 mg/L, 2.3 � 0.4 mg/L and

1.5 � 0.3 mg/L, respectively (Fig. 3). The average TP removal

efficiency at the HRT of 12 h (77 � 4%) was significantly higher

(p < 0.001) than that at the HRT of 24 h (62 � 5%), and

furthermore, the TP removal efficiency at the HRT of 6 h

(85 � 3%) was significantly higher than that at the HRT of 12 h

(p < 0.001). Correspondingly, at the influent PO3�
4 eP concen-

tration of 8.2� 0.5mg/L, the effluent PO3�
4 eP concentrations at

the HRTs of 24, 12 and 6 h were 3.5 � 1.6 mg/L, 2.2 � 0.1 mg/L

and 1.3� 0.1mg/L, respectively (Fig. S2), with average removal

efficiencies of 56 � 20%, 73 � 7% and 83 � 3%, respectively.

3.4. P release/uptake kinetics and sludge P content

As shown in Fig. 5, significant P release in the anaerobic stage

and P uptake in the aerobic stage was observed at different

HRTs. The maximum P release rates from the sludge at the

HRTs of 24, 12 and 6 h were 3.7� 0.5, 6.4 � 0.2 and 8.7� 0.1 mg

P/h, respectively, with significant differences (p

values < 0.001). Longer anaerobic HRT led to more complete P

release but with lower P release rates, which is similar to the

scenario of the continuous flow systemwhereas the anaerobic

zone decreases, the PAOs release P less completely (Grady

et al., 2011). Long anaerobic HRT might lead to a depletion of

volatile fatty acids (VFAs) which could negatively impact P

release (Coats et al., 2011). Meanwhile, the maximum phos-

phorus uptake rates at the HRTs of 24, 12 and 6 h were

3.2 � 0.1, 8.6 � 0.2 and 15.2 � 0.2 mg P/h, respectively, with

significant differences (p values < 0.002). Hence, the incom-

plete P release under anaerobic conditions at shorter HRTs

(Fig. 5) did not affect the subsequent P uptake under aerobic

conditions. This result is in agreement with a recent study

where the shortened anaerobic HRT actually induced PAOs to

store more PHAs and then drive them to take up more P

aerobically (Liu et al., 2013).

As shown in Fig. 6, the P contents of the sludge collected

from the anaerobic stage at the HRTs of 24, 12 and 6 h were

2.2 � 0.3%, 3.5 � 0.1% and 3.4 � 0.2%, respectively. In com-

parison, the P contents were 3.3 � 0.7%, 4.0 � 0.2% and

3.6 � 0.1% for the sludge from the aerobic stage at the HRTs of

24 h, 12 h and 6 h, respectively. The higher sludge P content in

the MSBR than that in conventional activated sludge pro-

cesses (ranging from 1 to 3%) indicates luxury P uptake by

PAOs (Qi et al., 2012). There were significant differences in

anaerobic (p ¼ 0.002) and aerobic (P ¼ 0.01) sludge P content

between the operation at HRTs of 24 h and 12 h because of the

characteristics of P release and uptake under anaerobic and

aerobic conditions, respectively. However, such difference

was not significant between the operation at HRTs of 12 h and

6 h due to sludge loss through more frequently membrane

cleaning at the HRT of 6 h.

Fig. 5 e Phosphorus release and uptake by the sludge from

the MSBR operated at the HRTs of 6 (:), 12 (B), and 24 h (C),

respectively. Error bars represent one standard error of the

mean (n [ 6).

Fig. 6 e Sludge phosphorus content at the anaerobic (,)

and aerobic (-) stages of each SBR cycle in the MSBR

operated at the HRTs of 6, 12, and 24 h. Error bars represent

one standard error of the mean (n [ 6).
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3.5. Implication for wastewater treatment in MSBRs and
MBRs

For nutrient removal in wastewater that requires aerobic/

anoxic/anaerobic environments, operating parameters and

conditions such as SRT, HRT, volumetric exchange ratio and

biomass concentration are crucial factors affecting treatment

performance. In this study, at the same SRT (10 d) and fixed

volumetric exchange ratio (50%), biomass concentration

increased almost inversely proportional to the decrease in

HRT (Fig. 2). The reduced HRT and corresponding increased

volumetric organic loading rate provided more available

organic carbon for denitrification (Grady et al., 2011; McCarty

and Bremner, 1992; Zumft, 1997) resulting in higher nitrogen

removal at the HRTs of 12 h and 6 h. However, higher MLSS

concentrations could result in more aggregation of suspended

cells and sludge floc formation (Huang et al., 2001), which limit

oxygen and substrate (such as ammonia) diffusion, while the

nitrifiers formed in clusters and in frequently close contact

with each other in sludge flocs are more susceptible to inhi-

bition at low dissolved oxygen concentrations (Mobarry et al.,

1996; Ni et al., 2008). Therefore, further improvement of ni-

trogen removal was not observed at the HRT of 6 h (Fig. 3B).

Coincidently, similar levels of AOB and NOB were observed in

the sludge operated at the HRTs of 6 h and 12 h (Fig. 4A and C).

The increasing P removal efficiencywith decreasing HRT at

the fixed SRT was possibly related to the higher biomass

concentration that contributes higher hydrolysis and

fermentation ability to supply VFAs for PAO growth (Grady

et al., 2011). P removal can be also improved at higher

biomass concentrations due to sludge-assisted adsorption

and precipitation (Adam et al., 2003; De-Bashan and Bashan,

2004; Huang et al., 2010;Wang et al., 2013). However, the lower

than expected content of sludge P at the HRT of 6 h (Fig. 6)

suggested that P removal due to sludge loss and membrane

cleaning, which was difficult to quantify, should be taken into

account. More frequent maintenance was necessary due to

rapid membrane fouling at the HRT of 6 h.

Contradictory to the theory that the effluent water quality

is solely SRT dependent, the results suggest that effluent

quality is also affected by HRT and resultant biomass con-

centration in MSBR operation. At the fixed SRT of 10 days in

this study, the shorter HRT consistently led to better P

removal. Unlike organic carbon and nitrogen removal pro-

cesses, biological P removal process is mainly achieved by the

growth of PAOs and sludge wastage (Monclús et al., 2010). A

shorter anaerobic HRT was reported to be the key parameter

for PAOs to obtainmore PHA storage as the energy source that

is needed for P release. Hence, as the anaerobic HRT decreased

the P release rate was increased (Valentino et al., 2013). The

study further confirmed that the incomplete P release at the

short HRT did not negatively impact the P uptake under sub-

sequent aerobic conditions (Fig. 5). The intermittent aeration

inMSBR or general MBR operation also provides anaerobic and

aerobic sequencing conditions with possibly more favorable

change in oxidation-reduction potential during the transition

between anaerobic and aerobic metabolism under higher

biomass concentrations. As a result, the EBPR process could be

enhanced under low HRTs or high biomass concentrations.

The intermittent feeding further creates a feast-famine envi-

ronment to microorganisms, which could enhance the hy-

drophobic characteristic of sludge cells to resist starvation

and facilitate biogranulation (Bossier and Verstraete, 1996; Liu

et al., 2004; Watanabe et al., 2000). Coincidently, the COD

removal efficiency was also the highest at the shortest HRT

(6 h) from this study. Hence, a selection of an appropriate

range of SRT and HRT and their ratio along with anaerobic/

aerobic sequencing is required to ensure that the highest

organic and nutrient removal can be achieved in MSBR or

general MBR operation with minimal fouling. The results

suggest that it is preferred to maintain high biomass con-

centrations (e.g.,>6000mg/L) and high ratios of SRT/HRT (e.g.,

>40) in the MSBR or general MBR systems for maximum

organic and nutrient removal.

4. Conclusions

The effect of HRT on MSBR performance at a fixed SRT (10

days) was determined in this study. The following conclusions

were drawn from the data obtained:

� A decrease in HRT led to a proportionally inverse increase

in biomass concentration in the MSBR.

� COD and phosphorus removal efficiencies in the MBSR

were highest at the shortest HRT (6 h).

� When HRT was reduced from 24 to 12 h, nitrogen removal

efficiency increased significantly, which was accompanied

by an increase of nitrifying bacterial population. There was

no improvement of nitrogen removal when HRT was

further reduced to 6 h.

� Activated sludge wastewater treatment principles show

that effluent COD is solely SRT dependent. Under the same

anaerobic and aerobic SRTs and similar biochemical envi-

ronment, the effluent nutrient (N and P) concentration is

fixed as well. In this MSBR operation at the constant SRT of

10 days, however, the highest organic and nutrient

removal efficiencies were achieved at the shortest HRT

(6 h), suggesting that operating conditions at high biomass

concentrations or high ratios of SRT/HRT are necessary for

better wastewater treatment performance.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.watres.2014.01.046.
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