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ABSTRACT

Protein sequence and profile alignment is a basic tool for bioinformatics research

and analysis. It has been used essentially in almost all bioinformatics tasks such as

protein structure modeling, gene and protein function prediction, DNA motif recog-

nition, and phylogenetic analysis.

We designed and developed a new method, MSACompro, to synergistically in-

corporate predicted secondary structure, relative solvent accessibility, and residue-

residue contact information into the currently most accurate posterior probability-

based MSA methods to improve the accuracy of multiple sequence alignments. To

the best of our knowledge, applying predicted relative solvent accessibility and con-

tact map to multiple sequence alignment is novel. The rigorous benchmarking of our

method to the standard benchmarks (i.e. BAliBASE, SABmark and OXBENCH)

clearly demonstrated that incorporating predicted protein structural information im-

proves the multiple sequence alignment accuracy over the leading multiple protein se-

quence alignment tools without using this information, such as MSAProbs, ProbCons,

Probalign, T-coffee, MAFFT and MUSCLE. And the performance of the method is

comparable to the state-of-the-art method PROMALS of using structural features

and additional homologous sequences by slightly lower scores. We also developed a

novel profile-profile pairwise protein sequence alignment method based on pair HMM

(Hidden Markov Model) by integrating the predicted secondary structure, solvent

accessibility, torsion angle and evolutionary constraint information from the protein

pairs. The evaluation showed that the secondary structure, relative solvent acces-

sibility, torsion angle information significantly improved the alignment accuracy in

comparison with the state of the art methods HHsearch and HHsuite. The evolution-

ary constraint information did help in some cases, especially the alignments of the

proteins which are of short lengths, typically 100 to 500 residues. Furthermore, we

x



believe adopting evolutionary constraint information into the protein profile-profile

pairwise alignment provides a useful point of view for the future improvement.

Protein Model selection is also a key step in protein tertiary structure prediction.

We developed two SVM model quality assessment methods, taking either a query-

single template pairwise alignment or a query-multi template alignment as input. The

assessment results illustrated that such a novel, effective method may help improve the

model selection, protein structure prediction and many other bioinformatics problems.

Based on the above methods, some in-house tools in our group, and other open

public tools, we built up a MULTICOM conformation ensemble system of protein

tertiary structure prediction. The system performed well in the CASP10 (Critical

Assessment of Techniques for Protein Structure Prediction) competition.

xi



Chapter 1

MSACompro: protein multiple
sequence alignment using predicted
secondary structure, solvent
accessibility, and residue-residue
contacts

1.1 Introduction

Aligning multiple evolutionarily related protein sequences is a fundamental technique

for studying protein function, structure, and evolution. Multiple sequence alignment

methods are often an essential component for solving challenging bioinformatics prob-

lems such as protein function prediction, protein homology identification, protein

structure prediction, protein interaction study, mutagenesis analysis, and phyloge-

netic tree construction. During the last thirty years or so, a number of methods

and tools have been developed for multiple sequence alignment, which have made

fundamental contributions to the development of the bioinformatics field.

State of the art multiple sequence alignment methods adapt some popular tech-

1



niques to improve alignment accuracy, such as iterative alignment [1], progressive

alignment [2], alignment based on profile hidden Markov models [3], and posterior

alignment probability transformation [4, 5]. Some alignment methods, such as 3D-

Coffee [6] and PROMALS3D [7], use 3D structure information to improve multiple

sequence alignment, which cannot be applied to the majority of protein sequences

without tertiary structures. In order to overcome this problem, we have developed a

method to incorporate secondary structure, relative solvent accessibility, and contact

map information predicted from protein sequences into multiple sequence alignment.

Predicted secondary structure information has been used to improve pairwise se-

quence alignment [8, 9], but few attempts had been made to use predicted secondary

structure information in multiple sequence alignment [10, 11, 12, 13, 14, 15]. To the

best of our knowledge, applying predicted relative solvent accessibility and residue-

residue contact map to multiple sequence alignment is novel.

In order to use the predicted structural information to advance the state of the

art of multiple sequence alignment, we first compared the existing multiple sequence

alignment tools [4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37] on the standard benchmark data sets such as BAliBASE [38],

SABmark [39] and OXBENCH [40], which showed that MAFFT [30], T-coffee [31],

MSAProbs [4], and ProbCons [5] yielded the best performance. Then we developed

MSACompro, a new multiple sequence alignment method, which effectively utilizes

predicted secondary structure, relative solvent accessibility, and residue-residue con-

tact map together with posterior alignment probabilities produced by both pair hid-

den Markov models and partition function as in MSAProbs [4]. The assessment

results of MSACompro compared to the benchmark data sets from BAliBASE, SAB-

mark and OXBENCH showed that incorporating predicted structural information

has improved the accuracy of multiple sequence alignment over most existing tools

without using structural features and sometimes the improvement is substantial.

2



1.2 Method

Following the general scheme in MSAProbs [4], MSACompro has five main steps: (1)

compute the pairwise posterior alignment probability matrices based on both pair-

HMM and partition function, considering the similarity in amino acids, secondary

structure, and relative solvent accessibility; (2) generate the pairwise distance matrix

from both the pairwise posterior probability matrices constructed in the first step

and the pairwise contact map similarity matrices; (3) construct a guide tree based on

pairwise distance matrix, and calculate sequence weights; (4) transform all the pair-

wise posterior matrices by a weighting scheme; (5) perform a progressive alignment by

computing the profile-profile alignment from the probability matrices of all sequence

pairs, and then an iterative alignment to refine the results from progressive align-

ment. Our method is different from MSAProbs in that it adds secondary structure

and solvent accessibility information to the calculation of the posterior residue-residue

alignment probabilities and computes the pairwise distance matrix with the help of

predicted residue-residue contact information.

1.2.1 Construction of pairwise posterior probability matrices
based on amino acid sequence, secondary structure and
solvent accessibility information

For two protein sequences X and Y in a sequence group S to be aligned, we denote

X =(x1,x2,. . . ,xn1), Y =(y1,y2,. . . ,yn2), where x1,x2,. . . ,xn1 and y1,y2,. . . ,yn2 are lists of

the residues in X and Y, respectively. n1 is the length of sequence X, and n2 is the

length of sequence Y. Suppose xi is the i-th amino acid in sequence X, and yj is the

j-th amino acid in sequence Y. We let aln denote a global alignment between X and

Y, ALN the set of of all the possible global alignments of X and Y, and aln* ∈ ALN

true pairwise alignment of X and Y. The posterior probability that the i-th residue

in X (xi ) is aligned to the j-th residue (yj ) in Y in aln* is defined as:
3



P (xi ∼ yj ∈ aln∗ | X, Y ) =
∑

aln∗∈ALN
P (aln | X, Y )I{xi ∼ yj ∈ aln}

I{xi ∼ yj ∈ aln} =

 1 if xi ∼ yj∈aln true

0 otherwise

(1.1)

(1 ≤ xi ≤ n1, 1 ≤ yj ≤ n2)

P (xi ∼ yj ∈ aln∗ | X, Y ) denotes the probability that is the true alignment aln∗ .

Thus, the posterior probability matrix is n1 × n2 a collection of all the values P (xi ∼

yj ∈ aln∗ | X, Y )(P (xi ∼ yj ∈ aln∗ | X, Y ) for short) for 1 ≤ xi ≤ n1, 1 ≤ yj ≤ n2.

The calculation process of the pairwise posterior probability matrix is described as

follows.

As in MSAProbs, two different methods (a pair hidden Markov model and a

partition function) are used to compute the pairwise posterior probability matrices

(P 1
XY and P 2

XY ), respectively. The first kind of pairwise probability matrix P 1
XY is

calculated by a partition function (F) of alignments based on dynamic programming.

F(i,j) denotes the probability of all partial global alignments of X and Y ending

at position (i, j). FM(i, j) is the probability of all partial global alignments with xi

aligned to yj, FY (i, j) is the probability of all partial global alignments with yj aligned

to a gap, and Fx(i, j) is the probability of all partial global alignments with xi aligned

to a gap. Accordingly, the partition function can be calculated recursively as follows:

FM(i, j) = F (i− 1, j − 1)eW1βs(xi,yj)+W2SS(ss(xi),ss(yj))+W3SA(sa(xi),sa(yj))

FY (i, j) = FM(i, j − 1)eβgap + FY (i, j − 1)eβext

FX(i, j) = FM(i− 1, j)eβgap + FX(i− 1, j)eβext

F (i, j) = FM(i, j) + FY (i, j) + FX(i, j)

(1.2)

4



Subject to the constraint W1 +W2 +W3 = 1.

In the formula above, s(xi, yj) is the amino acid similarity score between xi and

yj. One element of the substitution matrix s, SS(ss(xi), ss(yj)) is the similarity

score between the secondary structure (ss(xi) ) of residue xi in protein X and that

of residue in protein Y according to the secondary structure similarity matrix SS,

SA(sa(xi), sa(yj)) is the similarity score between the relative solvent accessibility

(sa(xi)) of residue xi in protein X and that of residue yj in protein Y accord-

ing to the solvent accessibility similarity matrix SA. W1,W2,W3 are weights used

to control the influence of the amino acid substitution score, secondary structure

similarity score, and solvent accessibility similarity score. The secondary structure

and solvent accessibility can be automatically predicted by SSpro / ACCpro [41]

(http://sysbio.rnet.missouri.edu/multicom toolbox/) using a multi-threading tech-

nique implemented in MSACompro, or alternatively be provided by a user. The

values of the three weights are set to 0.4, 0.5, and 0.1 by default, and can be adjusted

by users. The ensembles of bidirectional recurrent neural network architectures in

ACCpro are used to discriminate between two different states of relative solvent ac-

cessibility, higher or lower than the accessibility cutoff - 25% of the total surface area

of a residue [42], corresponding to e or b. As in MSAprobs, β is a parameter mea-

suring the deviation between suboptimal and optimal alignments, gap(gap≤0) is the

gap open penalty, and ext(ext≤0) is the gap extension penalty.

We used the Gonnet 160 matrix as a substitution matrix to generate the similarity

scores between two amino acids in proteins [43]. The 3 × 3 secondary structure sim-

ilarity matrix SS contains the similarity scores of three kinds of secondary structures

(E, H, C) as follows:

SS =


1 0 0

0 1 0

0 0 1


5



, where two identical secondary structures receive a score of 1 and different ones

receive a score of 0. The 2 × 2 solvent accessibility similarity matrix SA contains the

similarity scores of two kinds of relative solvent accessibilities (e, b) as follows:

SA =

 1 0

0 1


where two identical solvent accessibilities receive a score of 1 and different ones receive

a 0. It is worth noting that we used the simple identity scoring matrix for secondary

structure and solvent accessibility here. Employing more advance scoring matrices

defined in [44] may lead to further improvement. Each posterior residue-residue align-

ment probability element in the first kind of posterior probability matrix (P 1
XY ) can

be calculated from the partition function as:

P 1(xi ∼ yj) =
FM(i− 1, j − 1)F ′M(i+ 1, j + 1)

F
×eW1βs(xi,yj)+W2SS(ss(xi),ss(yj))+W3SA(sa(xi),sa(yj))

(1.3)

where F ′M(i, j) denotes the partition function of all the reverse alignments starting

from the position (n1, n2) till position (i, j) with xi aligned to yj.

As in MSAProbs, the second kind of pairwise probability matrix (P 2
XY ) is calcu-

lated by a pair hidden Markov model (HMM) combining both Forward and Backward

algorithm [4, 5, 45]. The pairwise probabilities can be generated under the guidance

of pair HMM involving state emissions and transitions. (P 2
XY ) is only derived from

protein sequences without using secondary structure and solvent accessibility, which

is different from PROMALS [15] that lets HMM emit both amino acids and secondary

structure alphabets.

The final posterior probability matrix PXY is calculated as the root mean square
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of the corresponding values in P 1
XY and P 2

XY as follows.

P (xi ∼ yj) =

√
P 1(xi ∼ yj)2 + P 2(xi ∼ yj)2

2
(1.4)

where P 1(xi ∼ yj) and P 2(xi ∼ yj) denote a posterior probability element in two

kinds of posterior probability matrices ( P 1
XY and P 2

XY ), respectively.

1.2.2 Construction of pairwise distance matrices based on
pairwise posterior probabilities and pairwise contact
map scores

The posterior probability matrix PXY is used as a scoring function to generate a

pairwise global alignment between sequences X and Y. The optimal global alignment

score Opt(X,Y) of the global alignment is computed according to an optimal sub-

alignment score matrix AS. The optimal sub-alignment score AS(i, j) denotes the

score of the optimal sub-alignment ending at residues i and j in X and Y. The AS

matrix is recursively calculated as:

AS(i, j) = max


AS(i− 1, j − 1) + PXY (xi ∼ yj)

AS(i− 1, j)

AS(i, j − 1)

(1.5)

AS(n1, n2) is the optimal score of the full global alignment between X and Y, which

is denoted as Optscore(X,Y).

In addition to the optimal alignment score, we introduce a contact map score,CMscore(X,Y),

for the optimal pairwise alignment of X and Y, assuming that the spatially neigh-

boring residues of two aligned residues should have a higher tendency to be aligned

together. CMscore(X,Y) is calculated from the contact map correlation score matrix

based on the residue-residue contact map matrices CMapX and CMapY of X and Y.
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Assuming the optimal global alignment of X and Y is represented as,

x1x2 . . .− xm . . . xp . . . xn1

y1 − . . . ykyk+1 . . .− . . . yn2

we can generate a new alignment after removing the pairs containing gaps:

x1 . . . xm . . . . . . xn1

y1 . . . yk+1 . . . . . . yn2,

where is the length of the new alignment without gaps From this alignment, we can

construct two contact map matrices, CMapX and CMapY , shown below:

CMapX =



x′11x
′
12 . . . . . . x

′
1n

x′21x
′
22 . . . . . . x

′
2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

x′n1x
′
n2 . . . . . . x

′
nn



CMapY =



y′11y
′
12 . . . . . . y

′
1n

y′21y
′
22 . . . . . . y

′
2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

y′n1y
′
n2 . . . . . . y

′
nn



(1.6)

x′ij is the contact probability score between amino acid x′i and y′j in protein sequence

X, and y′ij is the contact probability score between amino acid y′i and y′j in protein se-

quence Y. The residue-residue contact probabilities are predicted from the sequence by

NNcon [46] (http://sysbio.rnet.missouri.edu/multicom toolbox/). The contact map

correlation score matrix CMapXY is calculated as the multiplication of CMapX and
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CMapY :

CMapXY = CMapX × CMapY

=



xy′11xy
′
12 . . . . . . xy

′
1n

xy′21xy
′
22 . . . . . . xy

′
2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

xy′n1xy
′
n2 . . . . . . xy

′
nn


(1.7)

xy′ii is the contact map score for an aligned residue pair (amino acid x′i in protein X

and amino acid y′j in protein Y). The contact map score for the global alignment of

two sequences X and Y is calculated as

CMscore(X, Y ) = 1
n2

∑n
i=1CMapXY (i, i)

= 1
n2

∑n
i=1 xy

′
ii = 1

n2

∑n
i=1

∑n
i=1 x

′
ijy
′
ji

(1.8)

In practice, we only need to calculate the diagonal values in CMapXY .

Finally, we define the pairwise distance between sequences X and Y as

d(X, Y ) = 1− W4Optscore(X, Y )

min{n1, n2}
−W5CMscore(X, Y ) (1.9)

where W4 + W5 = 1. The weights W4 and W5 are used to control the influence of

sequences X and Y.

1.2.3 Construction of guide tree and transformation of pos-
terior probability

Akin to MSAProbs [4], a guide tree is constructed by the UPGMA method that uses

the linear combinatorial strategy [47]. The distance between a new cluster Z formed
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by merging clusters X and Y, and another cluster W is calculated as (10):

d(W,Z) =
d(W,X)×Num(X) + d(W,Y )×Num(Y )

Num(X) +Num(Y )
(1.10)

In which Num(X) is the number of leafs in cluster X.

After the guide tree is constructed, sequences are weighted according to the

schemes inferred in [4].

To reduce the bias of sampling similar sequences, we use a weighted scheme to

transform the former posterior probability as

P ′XY =
1

wN
((wX + wY )PXY +

∑
Z∈S,Z 6=X,Y

wZPXZPZY ) (1.11)

wX and wY are, respectively, the weight of sequences X and Y, wZ is the weight of a

sequence Z other than X or Y in the given group of sequences, and wN is the sum of

sequence weights in dataset S.

1.2.4 Combination of progressive and iterative alignment

We first use the guide tree to generate a multiple sequence alignment by progressively

aligning two clusters of the most similar sequences together. As in MSAProbs [4],

we also apply a weighted profile-profile alignment to align two clusters of sequences.

The sequence weights are the same as in the previous step. The posterior alignment

probability matrix of two clusters / profiles is averaged from the probability matri-

ces of all sequence pairs (X, Y), where x and y are from the two different clusters.

Formula (5) used to generate the global profile-profile alignment is based on the pos-

terior alignment probability matrices of the profiles. In order to further improve the

alignment accuracy, we then use a randomized iterative alignment to refine the ini-

tial alignment. This randomized iterative refinement randomly partitions the given
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sequence group S into two separate groups, and performs a profile-profile alignment

of the two groups. The iterative refinement can be completed after 10 iterations by

default, or a fixed number of iterations set by users. Generally speaking, the final

progressive alignment orders sequences along the guide tree from closely related to

distantly related. To improve the alignment accuracy, a final iterative alignment is

applied to refine the results from progressive alignment. In addition, a multi-thread

technology based on OpenMP is also used to improve the efficiency of the program

[48].

1.3 Results and discussion

1.3.1 Evaluation of MSACompro and other tools on the stan-
dard benchmarks

We tested MSACompro in comparison to three benchmarks: BAliBASE, SABmark

and OXBENCH, and evaluated the alignment results in terms of sum-of-pairs (SP)

score and true column (TC) score. The SP score is the number of correctly aligned

pairs of residue in the test alignment divided by the total number of aligned pairs of

residues in core blocks of the reference alignment [49]. The TC score is the number

of correctly aligned columns in the test alignment divided by the total number of

aligned columns in core blocks of the reference alignment [49]. We used the appli-

cation bali score provided by BAliBASE 3.0 to calculate these scores. We compared

MSACompro to 11 other MSA tools which do not have access to the structural in-

formation, including ClustalW 2.0.12, DIALIGN-TX 1.0.2 [27], FSA 1.15.5, MAFFT

6.818, MSAProbs 0.9.4, MUSCLE 3.8.31, Opal 0.2.0, POA 2, Probalign 1.3, Probcons

and T-coffee 8.93. It is worth noting that a fair comparison between our method with

these multiple se-quence alignment methods without using structural features is not
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possible because these methods use less input information. So, the goal of comparison

is to present the idea that structural information-based alignment may contain valu-

able information that is not available in sequence-based multiple sequence alignments

and can therefore be a supplement to sequence-based alignments. And to make the

evaluation more fair and comprehensive, we also compared MSACompro with four

tools which use structural information, including MUMMALS 1.01 [14],PROMALS

[15] and PROMALS3D [7].

To understand how various parameters of MSACompro affect alignment accuracy,

some experiments were carried out to evaluate these variants based on two algorithm

changes: (1) combining amino acids, secondary structure, and relative solvent acces-

sibility information into the partition function calculation using respective weights for

each of them; (2) computing the pairwise distance from both the pairwise posterior

probability matrices and the pairwise contact map similarity matrices by introducing

the weight wc for contact map information. To optimize the parameters, we used

BAliBASE 3.0 data sets as training sets, and SABmark 1.65 and OXBENCH data

sets as testing sets. Firstly, we focused on the effect of secondary structure and sol-

vent accessibility information by testing different values of weight w1 for amino acid

similarity and weight w2 for secondary structure information on BAliBASE 3.0 data

sets. MSACompro worked wholly the best if the weight w1 for amino acid similarity

and the weight w2 for secondary structure information were 0.4 and 0.5, respectively.

Since the sum of w1, w2 and wc is 1, we can deduce that wc is 0.1 if w1 and w2

are 0.4 and 0.5. Then we focused on the effect of residue-residue contact map infor-

mation under two different scenarios: using secondary structure and relevant solvent

accessibility information by keeping the w1, w2, and w3 at their optimum values (0.4,

0.5, 0.1), or excluding that information by setting both w2 and w3 as 0. Evaluation

results on BAliBASE 3.0 database were found to improve the most when wc is 0.9

by integrating both secondary structure and relevant solvent accessibility informa-
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tion. Additionally, to avoid over-fitting, we tested MSACompro against SABmark

1.65 and OXBENCH data sets using this set of parameters independently, and found

that a significant improvement was also gained in comparison to other leading pro-

tein multiple sequence alignment tools. More details can be found in the next section,

comprehensive study on the effect of predicted structural information on the align-

ment accuracy. Consequently, the weightw1, w2, w3 and wc are respectively set at

0.4, 0.5, 0.1 and 0.9 in MSACompro by default. All other tools were also evaluated

under default parameters.

Firstly, we evaluated these methods on BAliBASE [16] - the most widely used

multiple sequence alignment benchmark. The latest version, BAliBASE 3.0, contains

218 reference alignments, which are distributed into five reference sets. Reference set

1 is a set of equal-distant sequences, which are organized into two reference subsets,

RV11 and RV12. RV11 contains sequences sharing >20% identity and RV12 contains

sequences sharing 20% to 40% identity. Reference set 2 contains families with >40%

identity and a significantly divergent orphan sequence that shares <20% identity

with the rest of the family members. Reference set 3 contains families with >40%

identity that share <20% identity between each two different sub-families. Reference

set 4 is a set of sequences with large N/C-terminal extensions. Reference set 5 is a

set of sequences with large internal insertions. Tables 1.1, 1.2, and 1.3 report the

mean SP scores and TC scores of MSACompro and the tools without using structural

information for the six subsets and the whole database. All the scores in the tables

are multiplied by 100, and the highest scores in each column are marked in bold. The

results show that MSACompro received the highest SP and TC scores on the whole

database and all the subsets except for the SP score for the subset RV40. In some

cases, MSACompro’s improvement was substantial.

Secondly, we evaluated MSACompro and other tools without the help of structural

information on the SABmark database [4], which is a very challenging data set for
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Table 1.1: Total SP scores on the full-length BAliBASE 3.0 subsets. Bold
denotes the highest scores. MSACompro yielded the highest SP scores on all the
subsets except RV40. On some datasets such as RV11 and RV30, the improvement is
substantial.

MSA tools RV11 RV12 RV20 RV30 RV40 RV50
MSACompro 73.14 94.84 93.30 87.16 92.11 91.41
Clustalw 50.06 86.44 85.16 69.76 78.93 74.24
DIALIGN-TX 51.52 89.18 87.87 73.64 83.64 82.28
FSA 50.28 92.38 86.7 66.27 85.87 78.21
MAFFT 55.13 88.82 89.33 79.08 87.55 84.69
MSAProbs 68.18 94.65 92.81 83.19 92.47 90.76
MUSCLE 57.16 91.54 88.91 78.24 86.49 83.52
Opal 66.18 93.70 90.39 80.18 76.25 87.36
POA 37.96 83.19 85.28 69.18 78.22 71.49
Probalign 69.51 94.64 92.57 82.03 92.19 88.86
ProbCons 66.97 94.12 91.67 81.28 90.34 89.41
T-coffee 66.77 94.08 91.61 80.57 89.96 89.43

Table 1.2: Total TC scores on the full-length BAliBASE 3.0 subsets. Bold
denotes the highest scores. MSACompro yielded the highest TC scores on all the
subsets.

MSA tools RV11 RV12 RV20 RV30 RV40 RV50
MSACompro 47.13 86.93 47.16 58.63 64.42 63.43
Clustalw 22.74 71.30 21.98 25.63 39.55 30.75
DIALIGN-TX 26.53 75.23 30.49 36.83 44.82 46.56
FSA 26.95 81.77 18.68 24.63 47.43 39.81
MAFFT 28.05 74.36 32.85 41.07 47.51 49.31
MSAProbs 44.11 86.5 46.44 57.63 62.18 60.75
MUSCLE 31.79 80.39 35 38.6 45.02 45.94
Opal 41.97 84.05 34.61 42.03 51.35 50.06
POA 15.26 63.84 23.34 26.73 33.67 27
Probalign 45.34 86.20 43.93 53.6 60.31 54.94
ProbCons 41.66 85.55 40.63 51.47 53.22 57.31
T-coffee 42.29 85.25 38.88 47 55.94 58.69
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Table 1.3: Total TC scores on the full-length BAliBASE 3.0 subsets. Bold
denotes the highest scores. MSACompro yielded the highest TC scores on all the
subsets.

MSA tools Mean SP score Mean TC score
MSACompro 88.846 61.313
Clustalw 74.980 37.161
DIALIGN-TX 78.48 44.10
FSA 77.878 41.688
MAFFT 81.112 46.028
MSAProbs 87.336 60.248
MUSCLE 81.496 47.151
Opal 82.030 51.789
POA 71.795 33.165
Probalign 87.161 58.528
ProbCons 85.965 55.422
T-coffee 85.728 55.239

multiple sequence alignment according to a comprehensive study [50]. SABmark is

an automatically generated data set consisting of two sets. One set is from SOFI [51]

and the other is from the ASTRAL database [52], which contains remote homologous

sequences in twilight-zone or superfamily. Since some pairwise reference alignments in

SABmark are not generally consistent with multiple alignments, a subset of SABmark,

1.65 called SABRE [53], has been widely used as a multiple sequence alignment

benchmark database. SABRE was constructed by identifying mutually consistent

columns (MCCs) in the pairwise reference structure alignment. MCCs are considered

similar to BAliBASE core blocks. SABRE contains 423 out of 634 SABmark groups

that have eight or more MCCs. Table 1.4 shows the overall mean SP and TC scores

of the alignments. The mean SP and TC scores of MSACompro are 8.3 and 9.1

points higher than those of the second best-performer, MSAProbs, demonstrating

that incorporating predicted structural features into multiple sequence alignments

can substantially improve alignment accuracy for even remotely related homologous

sequences. Figure 1 shows an example comparison between the alignments generated

by our method, MSACompro, and MSAProbs from the SABRE database. The SP
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and TC scores significantly improved from 0.307 to 0.853 and 0 to 0.780, respectively.

This case demonstrates that taking predicted structural information can help avert

aligning unmatched regions, especially when the sequence similarity is unrecognizable.

Table 1.4: Overall mean SP and TC scores on the SABmark 1.65. Bold
denotes the highest scores. The improvement of SP and TC scores on this data set
is substantial.

MSA tools Mean SP score Mean TC score
MSACompro 68.85 49.07
Clustalw 52.18 31.17
DIALIGN-TX 50.49 29.66
FSA 46.03 25.73
MAFFT 51.99 31.72
MSAProbs 60.55 39.95
MUSCLE 54.99 34.35
Opal 58.28 37.84
POA 38.28 19.02
Probalign 59.96 38.66
ProbCons 59.81 38.99
T-coffee 59.49 39.08

Thirdly, we also assessed all the tools without using the structural information

on the OXBENCH database [54]. OXBENCH is also a popular benchmark database

generated by the AMPS multiple alignment method from the 3Dee database of pro-

tein structural domains [55]. The conserved columns in OX-BENCH can be consid-

ered similar to BAliBASE core blocks. The mean SP and TC scores over the whole

database are shown in Table 1.5. The results show that MSACompro improves the

alignment accuracy over all other methods. Finally, we also compared the SP scores

and TC scores of MSACompro and other tools which adopt the structural informa-

tion on the six subsets of BAliBASE database, SABmark database and OXBENCH

database. Tables 1.6 and 1.7 demonstrate the SP and TC scores across the three

databases. The results show that MSACompro gained the highest scores on three out

of six subsets of BAliBASE and achieved the third highest scores on other data sets,

which are lower than PROMALS3D that used true experimental structures as input
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Figure 1.1: an example in SABRE database comparing the alignments gen-
erated by our method and MSAProbs.The reference alignment and resulting
alignments generated by both methods are respectively shown in the figure. The
correct alignment regions significantly improved by our MSACompro after taking
structural information are marked in red rectangles. In contrast, the corresponding
incorrect alignment regions generated by MSAProbs are represented in green rectan-
gles. The predicted secondary structure and solvent accessibility information for the
correctly aligned regions are shown in circles.
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Table 1.5: Overall mean SP and TC scores on the OXBENCH. Bold de-
notes the highest scores. The improvement of SP and TC scores on this data set is
substantial.

MSA tools Mean SP score Mean TC score
MSACompro 92.60 84.99
Clustalw 89.45 80.19
DIALIGN-TX 86.25 75.29
FSA 86.47 75.79
MAFFT 87.58 76.75
MSAProbs 90.06 81.40
MUSCLE 89.50 80.34
Opal 89.38 79.77
POA 82.19 68.40
Probalign 89.97 81.39
ProbCons 89.68 80.52
T-coffee 89.56 80.27

and PROMALS that used both predicted secondary structures and additional homol-

ogous protein sequences found by PSI-BLAST search’s on a large protein sequence

database [15]. Overall, MSACompro performed similarly as PROMALS, whereas the

latter has an advantage on a remote homologous protein sequence data set SABmark

since it directly incorporates additional homologous protein sequences to improve the

alignment of remotely related target sequences during the progressive alignment pro-

cess. Moreover, the accuracy of MSACompro on the BAliBASE 3.0 data sets seems

to be higher than the published results of another alignment tool of using secondary

structure information - DIALIGN-SEC [12], which was not directly tested in our

experiment because it is only available as a web server other than a downloadable

software package. Therefore, MSACompro is useful to improve the accuracy of mul-

tiple sequence alignment in general and particularly for most cases in reality where

experimental structures are not available.

In order to check if alignment score differences between MSACompro and the

other alignment methods are statistically significant, we carried out the Wilcoxon

matched-pair signed-rank test [56] on both SP and TC scores of these methods
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Table 1.6: Total SP scores of the tools which use the structural information
on BAliBASE 3.0 subsets, SABmark data sets and OXBENCH data sets.
Bold denotes the highest scores.
MSA tools RV11 RV12 RV20 RV30 RV40 RV50 BAli SABmark OX
MSACompro 73.14 94.84 93.30 87.16 92.11 91.41 88.85 68.85 92.60
MUMMALS 66.94 94.30 91.04 84.79 87.15 87.91 85.53 62.12 90.25
PROMALS 79.08 93.55 93.31 88.30 89.80 90.27 89.00 77.40 93.76
PROMALS3D 83.58 92.33 93.62 89.42 90.93 89.73 90.14 88.89 97.37

Table 1.7: Total TC scores of the tools which use the structural informa-
tion on BAliBASE 3.0 subsets, SABmark data sets and OXBENCH data
sets.Bold denotes the highest scores.
MSA tools RV11 RV12 RV20 RV30 RV40 RV50 BAli SABmark OX
MSACompro 47.13 86.93 47.16 58.63 64.42 63.43 61.31 49.07 84.99
MUMMALS 41.61 83.98 42.83 49.40 48.55 52.88 53.85 41.96 81.43
PROMALS 58.24 81.73 49.59 51.63 50.84 57.19 59.27 60.95 86.73
PROMALS3D 66.71 79.30 55.95 61.07 51.67 54.38 62.16 80.22 93.25

on the three data sets. The p-values of alignment score differences calculated by

the Wilcoxon matched-pair signed-rank test are reported in Table 1.8. Generally

speaking, the alignment scores of MSACompro are significantly higher than all the

alignment methods without using structural information and MUMMALS of using

structural information in all but one case according to the significance threshold of

0.05. The exception is that MSACompro’s TC score is higher than MSAProbs on

the BAliBASE, but not statistically significant. However, the alignment scores of

MSA-Compro are mostly statistically lower than the other two alignment methods

(PROMALS or PROM-ALS3D) of using predicted structural features, more homolo-

gous sequences, or tertiary structures.

In addition to alignment accuracy, alignment speed is also a factor to consider in

time-critical applications. Because it is difficult to rigorously compare the speed of

different methods due to the difference in implementation and inputs, we only report

the roughly estimated running time of the different methods on BAliBASE based

our empirical observations. The fastest methods are ClustalW, MAFFT, MUSCLE,
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Table 1.8: The statistical significance (i.e. p-values) of SP and TC alignment
score differences between MSACompro and the other tools on three bench-
mark data sets. The p-values were calculated using the Wilcoxon matched-pair
signed-rank test. All the p-values except for ones denoted by ”(-)” are for hypoth-
esis testing that MSACompro has higher alignment scores than the other methods.
The p-values denoted by ”(-)” are for hypothesis testing that MSACompro has lower
alignment scores than the other methods.

MSA tools / Score Type Whole BAliBASE SABmark OXBENCH
Clustalw / SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

Clustalw / TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

DIALIGN-TX/ SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

DIALIGN-TX/ TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

FSA / SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

FSA / TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

MAFFET / SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

MAFFET / TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

MSAProbs / SP score 2.931× 10−3 2.2× 10−16 2.2× 10−16

MSAProbs / TC score 0.4839 2.2× 10−16 2.2× 10−16

MUSCLE / SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

MUSCLE / TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

Opal / SP score 3.384× 10−16 2.2× 10−16 2.2× 10−16

Opal / TC score 2.15× 10−14 2.2× 10−16 2.2× 10−16

POA / SP score 2.2× 10−16 2.2× 10−16 2.2× 10−16

POA / TC score 2.2× 10−16 2.2× 10−16 2.2× 10−16

Probalign / SP score 2.87× 10−6 2.2× 10−16 2.2× 10−16

Probalign / TC score 4.158× 10−3 2.2× 10−16 2.2× 10−16

ProbCons / SP score 2.16× 10−15 2.2× 10−16 2.2× 10−16

ProbCons / TC score 6.817× 10−7 2.2× 10−16 2.2× 10−16

T-coffee / SP score 1.225× 10−14 2.2× 10−16 2.2× 10−16

T-coffee / TC score 4.503× 10−8 2.2× 10−16 2.2× 10−16

MUMMALS / SP score 6.191× 10−10 2.2× 10−16 2.446× 10−15

MUMMALS / TC score 8.104× 10−5 2.2× 10−16 1.265× 10−12

PROMALS / SP score 0.0116(−) 2.2× 10−16(−) 0.0186(−)
PROMALS / TC score 0.529 2.2× 10−16(−) 0.0274(−)
PROMALS3D / SP score 0.0149(−) 2.2× 10−16(−) 2.2× 10−16(−)
PROMALS3D / TC score 0.0078(−) 2.2× 10−16(−) 2.2× 10−16(−)
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and POA, which used less than one hour. The medium-speed methods that used a

few hours to less than one day include FSA, Opal, Probalign, MSAProbs, ProbCons,

T-coffee, MUMMALS, and DIALIGN-TX. The more time demanding methods are

MSACompro, PROMALS, and PROMALS3D because they need to generate extra

information for alignment. We ran both PROMALS and MSACom-pro on the BAl-

iBASE 3.0 database on an 4 eight-core (i.e. 32 CPU cores) Linux server to calculate

their running time. It took about 4 days and 6 hours for PROMALS to run on the

whole BAliBASE 3.0 data sets, and about 9 hours and 13 minutes for MSACompro

to run on the same data sets. MSACompro was faster because it used a multiple-

threading implementation to call SSpro / ACCpro to predict secondary structure

and solvent accessibility in parallel. Out of about 9 hours and 13 minutes, about

four hours and 17 minutes were used by MSACompro to align sequences if secondary

structure and solvent accessibility information was provided. However, if only one

CPU core is used, it took around 6 days and 14 hours for SSpro and ACCpro called

by MSACompro to predict secondary structure and solvent accessibility information

alone, which is time-consuming. Therefore, MSACompro will be slower than PRO-

MALS if it runs a single CPU core, but faster on multiple (>=3) CPU cores. As

for PROMALS3D, it used about 9 days to extract tertiary structure information and

make alignments.

1.3.2 A comprehensive study of the effect of predicted struc-
tural information on the alignment accuracy

To understand the impact of predicted secondary structure, relative solvent accessi-

bility, and contact map on the accuracy of multiple sequence alignment, we tested

their effects on alignments individually or in combination by adjusting the values of

their weights used in the partition function (i.e. for secondary structure and solvent

accessibility) or in the distance calculation (i.e. for contact map).
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I. Effect of secondary structure information

We studied the effect of secondary structure information by adjusting the values

of w1 (weight for amino acid sequence information) and w2 (weight for secondary

structure information), the sum of which was kept as 1, and setting the values of w3

(weight for relative solvent accessibility) and wc (weight for contact map) to 0. The

results for different w2 values on the SABmark data sets are shown in Table 1.9.

The highest score is denoted in bold and by a superscript of star, and the second

highest is denoted in bold. The results show that incorporating secondary structure

information always improves alignment accuracy over the baseline established without

using secondary structure information (w2 = 0). The highest accuracy is achieved

when w2 is set to .5, at which point the score is 8 points greater than the baseline. w2

= 1 means that only secondary structure is used to calculate the posterior alignment

probability in the partition function (i.e. equation set (2)), but amino acid sequence

similarity is still used to calculate the other posterior alignment probability by the

pair Hidden Markov Models. Figures 1.2 and 1.3 plot the SP and TC scores against

weight values in Table 1.9 and Table 1.10, respectively.

Table 1.9: SP scores for different weights of secondary structures on the
SABmark benchmark.Bold denotes the two best scores, and an extra su-
perscript of star denotes the highest score.The results show that using sec-
ondary structure information (i.e. w2 > 0) always increases the alignment scores over
without using it (i.e. w2 = 0). MSACompro yielded the highest accuracy score of
68.70 when w2 is set to 0.5.
W2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SP 60.55 62.988 65.51 67.33 68.348 68.698* 68.465 68.159 67.28 66.15 64.745

II. Effect of relative solvent accessibility information

Similarly, we studied the effect of relative solvent accessibility on the SABmark

by adjusting the values of w1 and w3 and setting the values of w2 and wc to 0. The

SP and TC scores with respect to different weight values are shown in Tables 11

and 12, respectively. The scores are also plotted against the weights in Figures 1.4
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Figure 1.2: the 2D plot of SP scores against w2 on the SABmark dataset.

Table 1.10: TC scores for different weights of secondary structures on the
SABmark benchmark. Bold denotes the two best scores, and an extra
superscript of star denotes the highest score.The results show that using sec-
ondary structure information (i.e. w2 > 0) always increases the alignment scores over
without using it (i.e. w2 = 0). MSACompro yielded the highest accuracy score of
49.10 when w2 is set to 0.5.
W2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TC 39.948 42.64 45.26 47.44 48.75 49.005* 48.745 48.35 47.14 45.492 43.385
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Figure 1.3: the 2D plot of TC scores against w2 on the SABmark dataset.
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and 1.5, respectively. The highest SP and TC scores were achieved when w3 was set

to 0.5 or 0.6.

Figure 1.4: the 2D plot of SP scores against w3 on the SABmark dataset.

Table 1.11: SP scores for different weights of relative solvent accessibility
on the SABmark benchmark. Bold denotes the two best scores, and an
extra superscript of star denotes the highest score.The results show that using
relative solvent accessibility information (i.e. w3 > 0) always increases the alignment
scores over without using it (i.e. w3 = 0). MSACompro yielded the highest accuracy
score of 65.25 when w3 is set to 0.6.
W3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SP 60.55 61.75 63.26 64.17 65.12 65.199 65.249* 65.037 64.388 63.188 61.72

III. Effect of residue-residue contact map information

We investigated the effect of contact map information on the BAliBASE 3.0 data

set by adjusting wc and setting w2 and w3 to 0. We used NNcon to successfully

predict the contact maps for subset RV11, RV30, 42 out of 44 alignments in RV12,
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Figure 1.5: the 2D plot of TC scores against w3 against the SABmark
dataset.

Table 1.12: TC scores for different weights of relative solvent accessibility
on the SABmark benchmark. Bold denotes the two best scores, and an
extra superscript of star denotes the highest score.The results show that using
relative solvent accessibility information (i.e. w3 > 0) always increases the alignment
scores over without using it (i.e. w3 = 0). MSACompro yielded the highest accuracy
score of 45.25 when w3 is set to 0.6.
W3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SP 39.948 41.3 43.04 43.94 44.87 45.442* 45.184 45.03 44.038 42.447 41.012
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38 out of 40 in RV20, 33 out of 46 in RV40, and 14 out of 16 in RV50. We tested the

MSACompro method against this data with contact predictions. Tables 13 and 14

show the SP and TC scores for different wc values on the subsets of the BAliBASE

dataset. The results show that using contact information improved the alignment

accuracy on some, but not all, subsets.

Table 1.13: SP scores for different weights for contact map on the BAl-
iBASE3.0 database. Bold highlights the improved scores on each BAl-
iBASE subset.
subset
wc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RV11 0.6829 0.686 0.686 0.684 0.684 0.683 0.687 0.684 0.687 0.687 0.668
RV12 0.9461 0.946 0.946 0.945 0.946 0.945 0.946 0.945 0.946 0.945 0.944
RV20 0.9297 0.927 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.927 0.924
RV30 0.865 0.865 0.864 0.864 0.864 0.863 0.863 0.864 0.864 0.865 0.817
RV40 0.928 0.926 0.926 0.924 0.923 0.924 0.924 0.936 0.934 0.933 0.927
RV50 0.909 0.908 0.910 0.910 0.909 0.909 0.909 0.907 0.907 0.908 0.886

Table 1.14: TC scores for different weights for contact map on the BAl-
iBASE3.0 database. Bold highlights the improved scores on each BAl-
iBASE subset.
subset
wc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RV11 0.441 0.445 0.445 0.444 0.444 0.444 0.447 0.447 0.448 0.451 0.417
RV12 0.8669 0.865 0.866 0.866 0.866 0.866 0.867 0.867 0.867 0.865 0.858
RV20 0.482 0.479 0.473 0.460 0.457 0.462 0.453 0.453 0.457 0.453 0.419
RV30 0.607 0.605 0.594 0.594 0.592 0.592 0.591 0.591 0.593 0.592 0.415
RV40 0.67 0.667 0.667 0.661 0.659 0.662 0.662 0.682 0.682 0.681 0.642
RV50 0.625 0.621 0.634 0.633 0.629 0.628 0.631 0.615 0.615 0.603 0.556

IV. Effect of combining secondary structure and solvent accessibility

information

We adjusted the values of w1 (weight for amino acid), w2 (weight for secondary

structure) and w3 (weight for relative solvent accessibility) simultaneously to investi-

gate the effect of using secondary structure and relative solvent accessibility together.

SP and TC scores on different parameter combina-tions are shown in Tables 15 and
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16. The highest score is denoted in bold and by a superscript of 1, the second in

bold and by a superscript of 2, and the third in bold and by a superscript of 3. The

results show that the highest scores are achieved when w1 ranges from 0.4 to 0.5, w2

from 0.4 to 0.5, and w3 from 0.1 to 0.2. Also, using both secondary structure and

solvent accessibility improves alignment accuracy over using either one. The best

alignment score, which uses both secondary structure and solvent accessibility, is >8

points higher than the baseline approach, which does not use them. The changes of

SP scores and TC scores with respect to the weights are visualized by the 3D plots

in Figures 1.6 and 1.7. We conducted similar experiments on BAliBASE 3.0 and

OXBENCH and got the similar results (data not shown).

Table 1.15: SP scores for different weight combinations (w1 - amino acid,
w2 - secondary structure, w3 - solvent accessibility) on the SABmark 1.65
dataset.Bold denotes the top 3 highest scores. The highest score is indi-
cated by a superscript of 1, the second highest by a superscript of 2, and
the third highest by a superscript of 3. The table only shows the values
of w1 and w2 because w3 can be inferred by 1 - w1 - w2.
w2
w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 61.72 63.188 64.388 65.037 65.249 65.199 65.124 64.17 63.26 61.75 60.55
0.1 63.30 64.600 65.635 66.492 66.702 66.619 66.423 65.72 64.79 62.99
0.2 64.76 66.055 67.161 67.598 68.104 67.831 67.469 66.78 65.51
0.3 65.78 66.974 67.867 68.312 68.414 68.418 68.033 67.33
0.4 66.42 67.531 68.251 68.743 69.0161 68.9202 68.3475
0.5 66.85 67.907 68.4 68.8593 68.9333 68.698
0.6 66.84 67.911 68.544 68.560 68.465
0.7 66.74 67.800 68.135 68.159
0.8 66.39 67.119 67.282
0.9 65.45 66.153
1 64.75

V. Effect of using contact map information together with secondary

structure and solvent accessibility information

In order to study whether or not contact information can be used effectively with

secondary structure and solvent accessibility, we adjusted the weight wc for contact
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Table 1.16: TC scores for different weight combinations (w1 - amino acid,
w2 - secondary structure, w3 - solvent accessibility) on the SABmark 1.65
dataset.Bold denotes the top 3 highest scores. The highest score is indi-
cated by a superscript of 1, the second highest by a superscript of 2, and
the third highest by a superscript of 3. The table only shows the values
of w1 and w2 because w3 can be inferred by 1 - w1 - w2.
w2
w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 41.012 42.447 44.038 45.031 45.184 45.442 44.870 43.94 43.04 41.30 39.94
0.1 42.558 44.147 45.596 46.863 47.043 46.910 46.676 45.33 44.39 42.64
0.2 43.915 45.678 47.270 47.927 48.619 48.080 47.584 47.00 45.26
0.3 45.582 46.768 48.116 48.660 48.905 48.660 48.371 47.44
0.4 46.104 47.340 48.473 48.889 49.5081 49.1593 48.754
0.5 46.440 47.809 48.210 49.078 49.2222 49.005
0.6 46.577 47.619 48.487 48.797 48.745
0.7 46.147 47.579 48.083 48.352
0.8 45.714 46.898 47.142
0.9 44.442 45.492
1 43.385

Figure 1.6: 3D plot of SP scores against secondary structure weight w2 and
relative solvent accessibility weight w3.
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Figure 1.7: 3D plot of TC scores against secondary structure weight w2 and
relative solvent accessibility weight w3.

information, while keeping the w1, w2, and w3 at their optimum values (0.4, 0.5,

and 0.1 respectively). Tables 17 and 18 report the SP and TC scores on the

BAliBASE 3.0 data set for different wc values from no contact information (wc = 0)

to maximum contact information (wc = 1). The results show that the improvement

caused by contact information seems not to be substantial and significant.

1.4 Conclusion

In this work, we designed a new method to incorporate predicted secondary structure,

relative solvent accessibility, and residue-residue contact information into multiple

protein sequence alignment. Our experiments on three standard benchmarks showed

that the method improved multiple sequence alignment accuracy over most exist-

ing methods without using secondary structure and solvent accessibility information.
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Table 1.17: SP scores for different contact map weight wc on the BAl-
iBASE3.0 database while keeping the weights for amino acid, secondary
structure, solvent accessibility to 0.4, 0.5, and 0.1, respectively. Bold de-
notes the increased scores.
subset
wc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RV11 0.729 0.730 0.728 0.726 0.726 0.726 0.727 0.725 0.732 0.731 0.722
RV12 0.947 0.948 0.947 0.949 0.948 0.948 0.948 0.948 0.948 0.948 0.945
RV20 0.934 0.933 0.932 0.934 0.934 0.934 0.933 0.9328 0.9332 0.933 0.934
RV30 0.876 0.877 0.877 0.876 0.873 0.873 0.873 0.873 0.873 0.872 0.846
RV40 0.909 0.908 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.921 0.913
RV50 0.911 0.910 0.911 0.909 0.909 0.908 0.902 0.908 0.914 0.914 0.871

Table 1.18: TC scores for different contact map weight wc on the BAl-
iBASE3.0 database while keeping the weights for amino acid, secondary
structure, solvent accessibility to 0.4, 0.5, and 0.1, respectively. Bold de-
notes the increased scores.
subset
wc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RV11 0.470 0.472 0.471 0.469 0.468 0.468 0.468 0.468 0.475 0.471 0.450
RV12 0.870 0.870 0.869 0.872 0.872 0.871 0.871 0.872 0.870 0.869 0.863
RV20 0.481 0.465 0.460 0.478 0.478 0.477 0.477 0.472 0.471 0.472 0.468
RV30 0.609 0.591 0.590 0.588 0.589 0.588 0.588 0.587 0.589 0.586 0.434
RV40 0.628 0.626 0.624 0.625 0.625 0.625 0.625 0.624 0.625 0.644 0.612
RV50 0.601 0.595 0.601 0.601 0.596 0.596 0.586 0.625 0.636 0.634 0.55
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However, the performance of the method is comparable to PROMALS and PRO-

MALS3D by slightly lower scores on some subsets and behind it by a large margin

on SABMARK probably because these two methods used homologous sequences or

tertiary structure information in addition to secondary structure information. Since

multiple sequence alignment is often a crucial step for bioinformatics analysis, this

new method may help improve the solutions to many bioinformatics problems such as

protein sequence analysis, protein structure prediction, protein function prediction,

protein interaction analysis, protein mutagenesis and protein engineering.
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Chapter 2

New profile-profile pairwise protein
sequence alignment by
HMM-HMM comparison

2.1 Introduction

Homology searching and sequence alignment have drawn increasing attention in bioin-

formatics field, since many important bioinformatics tasks such as protein structure

and function prediction depends crucially on sensitivity of homology sequence search-

ing and accuracy of the resulting sequence alignment [57, 58, 59, 60, 9]. The devel-

opment of profile-sequence alignment or profile-profile alignment methods such as

PSI-BLAST, HHsearch, HHsuite [61, 60, 9] over sequence-sequence alignment meth-

ods has indicated that sequence profile can help improve the accuracy of alignment.

This is led by the reason that a sequence profile built by a multiple alignment of

homologous sequences can provide additional information compared to mere protein

sequence information, increasing the sensitivity in recognizing the conserved positions

among homologous sequences.

Moreover, profile-profile alignment methods have been widely used by many pro-
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tein structure prediction servers [62, 63, 64, 9]. These servers stand among the best-

performing methods in template-based structure prediction [65, 60, 66]. HHsearch,

one of top profile-profile alignment tools, is a software suite for detecting remote

homologues of proteins and generating profile-profile alignment for given query and

template protein sequences based on HMM-HMM comparison [9]. Based on HH-

search, another alignment tool HHsuite is developed to enable fast, iterative sequence

searches, as well as high-quality sequence alignments [60]. Here, we present HHpacom

(HMM-HMM pairwise protein sequence alignment combining structural information

and inferred residue pair coupling information), which extends HHsuite to enable fast

and high-quality profile-profile pairwise alignment by integrating secondary structure,

solvent accessibility, torsion angle and inferred residue pair coupling information.

2.2 Method

As shown in Figure 2.1, the work flow of our new method is as follows. Following

the basic scheme in HHsuite [60], HHpacom performs four main steps: (1) Discretize

profile columns into an alphabet of 219 states; (2) Prefilter the profiles by removing

sequences with coverage of template or query less than a certain percent (default

is 0, can be set by users) as well as those with sequence identity less than twenty

percent [67]; (3) Perform Viterbi alignment based on the secondary structure, solvent

accessibility and torsion angle information of the template and query sequences, cal-

culate E-value and probability; (4) Realign using the maximum accuracy algorithm

integrating secondary structure, solvent accessibility and torsion angle information,

and trace-back the alignments with the help of inferred residue coupling information.

Different from HHsuite, our method applies solvent accessibility and torsion angle in-

formation to both the Viterbi-alignment and the maximum accuracy alignment, and

trace-back to gain the final alignment with the help of inferred residue pair coupling
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information.

Figure 2.1: The work flow of our new method HHpacom of profile-profile
pairwise alignment.

2.2.1 Discretize profile columns and prefilter

Refer to the discretizing and prefiltering scheme of hhsuite, both the query and tem-

plate profile columns are discretized into an alphabet of 219 states, in which each one

is a printable ASCII character. The column scores are first calculated for both query

and template profiles, using equation (1) as follows:

Saa(qi, tj) = log2

20∑
a=1

qi(a)tj(a)

f(a)
(2.1)

in which qi(a) and tj(a) denote the query profile at position i and the template

profile at position j, respectively, and f(a) is the background frequency of residue a
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(a ∈ 1, 2, . . . , 20,representing 20 types of amino acids).

Then the same prefilter process as in HHsuite is performed on both query and

template profiles by removing sequences with coverage of template or query less than

a certain percent (default is 0, can be set by users) as well as those with sequence

identity less than twenty percent.

2.2.2 Viterbi alignment combining the structural informa-
tion

As introduced in HHsearch [9],alignment between two profile HMMs is gained by

maximizing the log-sum-odds score SLSO as defined below:

SLSO =
∑

k:XkYk=MM

Saa(qi(k), tj(k)) + logPtr (2.2)

where k denotes the number of columns that query HMM q aligned to template HMM

t, and are the respective columns from q and t, Ptr is the product of all transition

probabilities for the path through q and t.

Five matrices SAB are used to calculate the log-sum-of-odds score SLSO based on

dynamical programming, and AB ∈ {MM,MI, IM,DG,GD}. They are recursively

calculated as:

SMM(i, j) = Saa(qi, tj) + wssSss(qi, tj + wsaSsa(qi, tj) + wtorsStors(qi, tj)

+max



SMM(i− 1, j − 1) + log[qi−1(M,M)tj−1(M,M)]

SMI(i− 1, j − 1) + log[qi−1(M,M)tj−1(I,M)]

SIM(i− 1, j − 1) + log[qi−1(I,M)tj−1(M,M)] +Sshift

SDG(i− 1, j − 1) + log[qi−1(D,M)tj−1(M,M)]

SGD(i− 1, j − 1) + log[qi−1(M,M)tj−1(D,M)]

(2.3)
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(wss, wsa, wtors ∈ (0, 1))

SMI(i, j) = max

 SMM(i− 1, j) + log[qi−1(M,M)tj(M, I)]

SMI(i− 1, j) + log[qi−1(M,M)tj(I, I)]
(2.4)

SDG(i, j) = max

 SMM(i− 1, j) + log[qi−1(M,D)]

SDG(i− 1, j) + log[qi−1(D,D)]
(2.5)

Besides, SIM(i, j) and SGD(i, j) are calculated similarly. In the formula [67],

Sss(qi, tj) is the secondary structure score between column i in query HMM (qi) and

column j in template HMM (tj), which is originally applied in HHsuite. Ssa(qi, tj) is

the solvent accessibility score between qi and tj , and Stors(qi, tj) is the torsion angle

score between qi and tj, which are newly adopted in HHpacom. wss, wsa, wtors are

weights for the secondary structure score, solvent accessibility score and torsion angle

score respectively. Sshift is the score offset for match-match state. Three weights wss,

wsa, wtors and shift score Sshift are set to 0.11, 0.72, 0.4 and -0.03 by default, and can

be adjusted by users as well.

Secondary structure score Sss(qi, tj) is calculated the same way as in HHsuite.

HHsuite is able to score a predicted secondary structure either against a predicted

secondary structure or a known secondary structure [9].

HHpacom also allows scoring a predicted solvent accessibility either against a

predicted solvent accessibility or a known solvent accessibility. DSSP [68] is used to

parse the true solvent accessibility from the template sequence if the pdb file is known,

and PSpro 2.0 [69] is used to predict the solvent accessibility from the query sequence

and also the template sequence if true pdb file is not known. The solvent accessibility

can be automatically parsed or predicted in HHpacom, or alternatively provided by

a user. Two types of solvent accessibilities (e, b) are employed. Suppose query

sequence X and template sequence Y are respectively denoted as X =(x1,x2,. . . ,xn1)
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and Y =(y1,y2,. . . ,yn2), where n1 is the length of query sequence X as well as the query

HMM, and n2 is the length of template sequence Y as well as the template HMM. xi

is the i-th amino acid in sequence X, and yj is the j-th amino acid in sequence Y. The

corresponding predicted (by PSpro) or true (by DSSP) solvent accessibility states of

xi and yj are sa(xi) and sa(yj). Accordingly, the solvent accessibility score Ssa(qi, tj)

is defined as:

Ssa(qi, tj) = δ(sa(xi), sa(yj)) (2.6)

The score is gained by kronecker-delta δ(a, b), whichequals1ifa = b,0otherwise.

Similarly, the torsion angles including both phi angle (φ)and psi angle (ψ) can be

automatically predicted by SPINE-X [70, 71], or also provided by a user. The range

of both φ and ψ is (-180,180). Given the query X and template Y, the predicted phi

angle and psi angle of the i-th residue xi in the query are denoted as φ(xi) and ψ(xi),

and those of in the template are and . Consequently, we came up with the formula

(2.7) to calculate the torsion angle score Stors(qi, tj):

Stors(qi, tj) = 1−
√

0.5 ∗ [(φ(xi)− φ(yj))2 + (ψ(xi)− ψ(yj))2]

180
(2.7)

2.2.3 Re-align by maximum accuracy alignment combining
the structural information

It is found that maximum accuracy (MAC) algorithm can generally create a more

accurate alignment than the Viterbi algorithm, while the latter can generate better

scores, E-values and probabilities [60, 72]. Consequently, Viterbi algorithm is applied

to compute E-values and scores, and MAC algorithm is chosen to achieve the final

HMM-HMM pairwise alignment in HHpacom by default. Specifically speaking, re-

align with MAC is chosen by default in HHpacom. If a user prefers not to re-align

38



by MAC, -norealign can be used in the command.

The maximum accuracy alignment, employed in [60, 72], creates the local align-

ment that maximizes the sum of probabilities for each residue pair to be correctly

aligned minus a penalty (mact):
∑
i, j ∈ alignment[P (qi

M ∼ tj)
M)−mact]→ max,

where P (qi
M ∼ tj

M) represents the posterior probability of match state i in HMM

q aligned to match state j in HMM t. With the parameter mact, users can control

the alignment greediness, from nearly global, long (mact close to 0) to very precise,

short alignments. Parameter mact is set to be 0.3501 in HHpacom, as in HHsuite.

To find the best MAC alignment path, an optimal sub-alignment score matrix AS is

calculated recursively using the posterior probability P (qi
M ∼ tj

M) as substitution

scores:

AS(i, j) = max



P (qi
M ∼ tj

M)−mact

AS(i− 1, j − 1) + P (qi
M ∼ tj

M)−mact

AS(i− 1, j)− 0.5 ∗mact

AS(i, j − 1)− 0.5 ∗mact

(2.8)

Here, Forward-Backward algorithm in local or global mode is applied to calculate

the posterior probabilities P (qi
M ∼ tj

M). Firstly, referring to [72], a newly introduced

Pure Column Score PSaa(qi, tj) is defined as:

log2PSaa(qi, tj) = Saa(qi, tj) = log2

20∑
i=1)

qi(a)tj(a)

f(a)
(2.9)

Similar to HHsuite, we introduce Forward partition function FMM(i, j) and Back-

ward partition function BMM(i, j), so that the posterior probability for pair state

(qi
M , tj

M) to be part of an alignment between HMM q and HMM t is calculated as

formula (2.10):

P (qi
M ∼ tj

M) =
FMM(i, j)BMM(i, j)

1 +
∑

i,j FMM(i, j)
(2.10)
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However, different from HHsuite, we also integrate solvent accessibility and torsion

angle information in the process of calculating both Forward and Backward partition

function.

Five dynamic programming matrices FAB are used to compute the Forward par-

tition function FMM , and AB ∈ {MM,MI, IM,DG,GD}. We initialize the top row

and left column of the FMM matrix to 0, and fill all the matrices recursively:

FMM(i, j) = PSaa(qi, tj) ∗ 2wssSss(qi,tj) ∗ 2wsaSsa(qi,tj) ∗ 2wtorsStors(qi,tj)

(pmin

+FMM(i− 1, j − 1)qi−1(M,M)tj−1(M,M)

+FMI(i− 1, j − 1)qi−1(M,M)tj−1(I,M)

+FIM(i− 1, j − 1)qi−1(I,M)tj−1(M,M)

+FMM(i− 1, j − 1)qi−1(M,M)tj−1(M,M)

+FDG(i− 1, j − 1)qi−1(D,M)tj−1(M,M)

+FGD(i− 1, j − 1)qi−1(M,M)tj−1(D,M)

)

FMI(i, j) = FMM(i− 1, j)qi−1(M,M)tj(M, I)+

FMI(i− 1, j)qi−1(M,M)tj(I, I)

fDG(i, j) = FMM(i− 1, j)qi−1(M,M)tj(M,D)+

fDG(i− 1, j)qi−1(D,D)

(2.11)

where pmin is 0 if HHpacom is in global alignment mode, 1 if in local alignment mode.

In addition, FIM(i, j) and FGD(i, j) are calculated in a similar way. The calculation

scheme of solvent accessibility score Ssa(qi, tj) and torsion angle score Stors(qi, tj) is

already introduced in Viterbi algorithm.
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In analogy to Forward partition function, Backward algorithm recursively com-

putes Backward matrix BMM from the bottom:

BMM(i, j) =

pmin

+BMM(i+ 1, j + 1)PSaa(qi+1, tj+1) ∗ 2wssSss(qi+1,tj+1) ∗ 2wsaSsa(qi+1,tj+1) ∗ 2wtorsStors(qi+1,tj+1)

∗qi(M,M)tj(M,M)

+BGD(i, j + 1)tj(M,D)

+BIM(i, j + 1)qi(M, I)tj(M,M)

+BDG(i+ 1, j)qi(M,D)

+BMI(i+ 1, j)qi(M,M)tj(M, I)

BMI(i, j) = BMM(i+ 1, j + 1)PSaa(qi+1, tj+1) ∗ 2wssSss(qi+1,tj+1) ∗ 2wsaSsa(qi+1,tj+1)2wtorsStors(qi+1,tj+1)

∗qi(M,M)tj(I,M) +BMI(i+ 1, j)qi(M,M)tj(I, I)

BDG(i, j) = BMM(i+ 1, j + 1)PSaa(qi+1, tj+1) ∗ 2wssSss(qi+1,tj+1) ∗ 2wsaSsa(qi+1,tj+1)2wtorsStors(qi+1,tj+1)

∗qi(M,M)tj(M,M) +BDG(i+ 1, j)qi(D,D)

(2.12)

and similar calculation scheme for BIM(i, j) and BGD(i, j).

2.2.4 Trace-back maximum accuracy alignment based on in-
ferred residue coupling information

Evolutionary sequence variation, namely inferred residue coupling information, has

recently been employed to help improve the protein tertiary structure prediction [73,

74]. However, to our best knowledge, applying it to profile-profile pairwise alignment

is still novel.

The Evolutionary Coupling (EC) stands for the correlation between two positions
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or columns in a given multiple protein sequence alignment, in another word, a given

protein profile. For a multiple sequence alignment/profile, an EC score matrix can

represent the correlated scores of position pairs. The calculation of EC scores are

based on the frequencies of amino acids in single columns and paired columns in a

given profile, referring to [74]. Suppose a profile can be denoted as a N X L matrix

{Xim}, where each row represents one of m = 1, . . . , N proteins and each column

represents one of i = 1, . . . , L sequence positions. Each matrix element Xim can be

either one of the twenty amino acid types or the gap, namely, it has q = 21 different

values.

First, a weighting scheme is come up for the m-th sequence in the profile:

wm =
N∑

n=1)

U(δ(Xim, Xin − θL) (2.13)

with U denoting the unit step function, θ(0 < θ ≤ 1) as sequence similarity threshold.

So, the effective number of sequences in the profile after weighting can be Nef =∑N
m=1

1
wm

. θ is set as 0.28 in HHpacom.

Then, the frequency of amino acid type A in column i of the profile is defined as:

Fi(A) =
1

λ+Nef

(
λ

q2
+

N∑
m=1

1

wm
δ(Xim, A)) (2.14)

where kronecker-delta δ(a, b) equals 1 if a=b, 0 otherwise. Besides, λ is a pseudo-

count variable, and is set as 0.5 as suggested in [74]. Similarly, the frequency of a

amino acid pair A and B respectively in column i and j can be defined as:

Fij(A,B) =
1

λ+Nef

(
λ

q
+

N∑
m=1

1

wm
δ(Xim, A)δ(Xjm, B)) (2.15)

Empirically, the frequency distribution of A and B between columns i and j is

independent, namely, Fij(A,B)− Fi(A)Fj(B) ≈ 0.

Due to the computational efficiency in the empirical implementation, the Evolu-
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tionary Coupling matrix in HHpacom is computed through the mutual information

(MI) instead of the direct information (DI) based on the global probability model as

below [74]:

ECij = MIij =

q∑
Xi,Xj=1

Fij(Xi, Xj)ln
Fij(Xi, Xj)

Fi(Xi)Fj(Xj)
(2.16)

With higher EC values corresponding to a stronger correlation between two columns

in the given profile.

Based on the calculated EC value matrices for both the query and template pro-

files, top highly correlated paired positions (and the gaps between positions need to

be more than five residues) with higher EC values for each profile are selected. The

inferred evolutionary residue coupling information is then applied to check the coun-

terpart pairs during the process of trace-backing through the sub-alignment score

matrix AS from MAC algorithm. An application example is shown in Figure 2.2.

Specifically, suppose in query q, the coupled positions of i and i-1 are kq(i) and

kq(i − 1), respectively, and in analogy, in template t, the coupled positions of j and

j-1 are kt(j) and kt(j − 1). Moreover, Mq(i) denotes the correspondingly matched

position in template t to position i in query q when tracing back the original AS

matrix, Mt(j) denotes the correspondingly matched position in query q to position j

in template t when tracing back the original AS matrix, and wec is the weight for the

evolutionary information. Then, after integrating the inferred evolutionary informa-

tion, the modified AS scores for column pairs (i, j), (i, j-1), (i-1, j-1), and (i-1, j) are

as below:

43



AS
′
(i, j) = AS(i, j) + wec(EC(i,Mt(kt(j))) + EC(Mq(kq(i)), j))

AS
′
(i, j − 1) = AS(i, j − 1) + wec(EC(i,Mt(kt(j − 1))) + EC(Mq(kq(i)), j − 1))

AS
′
(i− 1, j − 1) = AS(i− 1, j − 1) + wec(EC(i− 1,Mt(kt(j − 1))) + EC(Mq(kq(i− 1)), j − 1))

AS
′
(i− 1, j) = AS(i− 1, j) + wec(EC(i− 1,Mt(kt(j))) + EC(Mq(kq(i− 1)), j))(2.17)

Basedonthisscheme,wecanmodifythetrace−backusingevolutionarycouplinginformation.

Figure 2.2: Trace-back from AS by integrating the evolutionary coupling
information.
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2.3 Evaluation and Results

2.3.1 Evaluation of HHpacom and other tools on CASP9
data

We compared pairwise alignment results by running our new method HHpacom, HH-

search1.2 [9] and HHsuite [60] against the testing data set in terms of two evaluation

schemes: (1) we generated true or reference pairwise alignments by TMalign [75], and

evaluated the alignment results from HHpacom, HHsearch1.2 and HHsuite in com-

parison with the true alignments in terms of sum-of-pairs (SP) score and true column

(TC) score. The SP score is the number of correctly aligned pairs of residue in the

test alignment divided by the total number of aligned pairs of residues in core blocks

of the true alignment. The TC score is the number of correctly aligned columns in

core blocks of the true alignment [76]. (2) 3D-models were obtained by MODELLER

[77] based on the pairwise alignments generated by these methods. TM-scores and

GDT-TS scores were calculated for the 3D-models generated by these methods to

assess the quality of the predicted models based on the profile-profile alignments.

GDT-TS score is the average coverage of the target sequence of the substructures

with four different distance threshold 1, 2, 4, and 8 . TM-score is a variation of the

Levitt-Gerstein (LG) score, also used to assess the similarity between the template

and native structures. Both of their values lie between zero and one, with better

templates having higher values [75].

To understand how various parameters of HHpacom affect the alignment accuracy,

some experiments were carried out based on two algorithm changes: (1) combining

relative solvent accessibility and torsion angle information in the process of calcu-

lating both Forward and Backward partition function; (2) Tracing-back maximum

accuracy alignment based on inferred residue coupling information. To optimize the

parameters, we divided 2621 pairs of which each contains a CASP9 target and its
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single homolog released in CASP9 website into training and testing data sets. The

training dataset is consisted of 1482 target-single template pairs generated from 60

CASP9 targets, and the testing dataset is consisted of 1138 pairs generated from 46

CASP9 targets. Firstly, we focused on the effect of solvent accessibility by testing

different values of weight wsa for solvent accessibility information ranging from 0 to

1, and discovered that HHpacom worked wholly the best on the training data if wsa

was set to 0.72. Then we focused on the effect of torsion angle by keeping wsa as

0.72 and testing different values of weight wtors for torsion angle information ranging

from 0.1 to 1, and HHpacom were found to perform the best when wtors were 0.4.

Finally, we focused on the evolutionary constraint information by keeping wsa and

wtors at their optimum values (0.72, 0.4), and found HHpacom was found to work the

best when wec was 0.1. However, evolutionary constraint information did not help

much to improve the alignment accuracy, yet we believe it provides a good direction

in protein sequence alignment to some extent. More details are going to be discussed

in the following section, A comprehensive study of the impact of the new information

on the alignment accuracy. The weights wsa, wtors and wec are respectively set as 0.72,

0.4 and 0 in HHpacom by default, and wec can be a choice for users to adopt. All

other tools were also evaluated under default parameters. Moreover, HHsearch and

HHsuite were both evaluated with and without secondary structure information.

The overall mean SP and TC scores for the resulting pairwise alignment results

generated by HHpacom and all the other tools against the whole testing data set are

illustrated in Table 2.1. It is not hard to conclude integrating the new features in

our method HHpacom helped improve the quality of the pairwise alignment.

MODELLER succeeded to generate models for 1127 out of 1138 resulting pair-

wise sequence alignments respectively by running HHsearch, HHsuite and HHpacom

against the testing data set. The average TM-scores and GDT-TS scores of the 3D-

models generated from the pairwise alignments by HHsearch1.2, HHsuite and our
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Table 2.1: Overall mean SP and TC scores of the pairwise alignments generated by
HHsearch1.2, HHsuite and HHpacom
Methods Mean SP score Mean TC score
HHsearch (without secondary structure information) 48.6936 48.3374
HHsearch (with secondary structure information) 50.0047 49.6520
HHsuite (without secondary structure information) 48.4668 48.1230
HHsuite (with secondary structure information) 49.7569 49.4051
HHpacom 50.3882 50.0237

new method are shown in Table 2.2 as below. The same as the previous conclusion,

HHpacom improved the alignment performance in comparison with HHsearch1.2 and

HHsuite.

Table 2.2: The average TM-scores and GDT-TS scores of the 3D models generated
from the pairwise alignments by running HHsearch1.2, HHsuite and HHpacom
Methods Average TM-score Average GDT- TS
HHsearch (without secondary structure information) 0.5268 0.4592
HHsearch (with secondary structure information) 0.5478 0.4787
HHsuite (without secondary structure information) 0.5250 0.4587
HHsuite (with secondary structure information) 0.5434 0.4757
HHpacom 0.5550 0.4828

In order to check if alignment score differences between HHpacom and the other

pairwise alignment methods are statistically significant, we carried out the Wilcoxon

matched-pair signed-rank test on both SP and TC scores of the methods on the testing

data set. The p-values of alignment score differences between HHpacom and the other

methods calculated by the Wilcoxon matched-pair signed-rank test are illustrated in

Table 2.3. The alignment scores HHpacom are significantly higher than the other

two tools without using secondary structure information yet not statistically higher

than the other tools with using secondary structure information according to the

significance threshold of 0.05.
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Table 2.3: The statistical significance (p-values) of SP and TC score differences be-
tween HHpacom and the other tools on the testing data set
Tools p-value of SP scores p-value of TC scores
HHpacom – HHsearch (without ss information) 1.078X10−6 3.414 X 10−7

HHpacom – HHsearch (with ss information) 0.7538 0.8082
HHpacom – HHsuite (without ss information) 1.724X10−6 1.515 X 10−9

HHpacom –HHsuite (with ss information) 0.1535 0.1087

2.3.2 A comprehensive study of the impact of the new infor-
mation on the alignment accuracy

To understand the effect of relative solvent accessibility, torsion angle and inferred

residue coupling information on the accuracy of profile-profile pairwise sequence align-

ment, we tested their effects on alignments individually or in combination by adjusting

the values of their weights.

I. Effect of solvent accessibility information

We studied the effect of solvent accessibility information by sorely adjusting the

value of wsa (weight for solvent accessibility information). The SP scores and TC

scores of the resulting alignments on different wsa by running HHpacom against the

training data set are shown in Table 2.4 as below. The highest score is denoted

in bold and by a superscript of star, and the second highest is denoted in bold.

The results show that incorporating solvent accessibility information always improves

alignment accuracy over the baseline established without using solvent accessibility

information (wsa = 0). The highest accuracy is achieved when wsa is set to 0.72.

Figure 2.3 and Figure 2.4 show the 2D plot of the results. So, the best value of

wsa is 0.72.

II. Effect of torsion angle information

We also studied the effect of torsion angle information by sorely adjusting the

value of wtors (weight for torsion angle information) and keep wsa as 0.72 at the

best point. The SP scores and TC scores of the resulting alignments generated by

HHpacom against the training data set on different wtors are shown in Table 2.5 as
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Table 2.4: SP scores and TC scores on different value of wsa using HHpacom. Bold
denotes the two best scores, and an extra superscript of star denotes the highest score
wsa 0 0.1 0.2 0.3 0.4 0.5 0.6 0.61 0.62
SP score 40.89 41.58 41.82 41.92 42.06433 42.18476 42.23399 42.17889 42.20202
TC score 40.58 41.25 41.49 41.58 41.72758 41.85098 41.9029 41.84828 41.87121

0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72
42.19 42.22 42.22 42.23 42.23 42.24821 42.24356 42.28746 42.29177 42.3056∗

41.86 41.89 41.89 41.90 41.90 41.91504 41.91301 41.95684 41.96224 41.97505∗

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.9 1
42.27 42.29 42.27 42.28 42.27 42.2768 42.27121 42.24555 42.24032 42.20094
41.94 41.96 41.94 41.95 41.94 41.94268 41.93729 41.91105 41.91099 41.86649

Figure 2.3: The 2D plot of the SP scores on different wsa.

Figure 2.4: The 2D plot of the TC scores on different wsa.
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below. The highest score is denoted in bold and by a superscript of star, and the

second highest is denoted in bold. The results show that incorporating torsion angle

information also helps improve alignment accuracy. The highest accuracy is achieved

when wtors is set to 0.4. Figure 2.5 and 2.6 show the 2D plot of the results. So,

the best value of wsa is 0.4.

Table 2.5: SP scores and TC scores on different value of wtors using HHpacom. Bold
denotes the two best scores, and an extra superscript of star denotes the highest score
wtors 0 0.1 0.2 0.3 0.31 0.32 0.33 0.34 0.35
SP score 42.31 42.32 42.35 42.45 42.47431 42.46999 42.47262 42.49 42.49616
TC score 41.98 41.99 42.02 42.12 42.14093 42.13621 42.14093 42.16 42.162511

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
42.50 42.51 42.50 42.51 42.52771∗ 42.52218 42.48584 42.49636 42.50 42.50755
42.17 42.17 42.17 42.18 42.19285∗ 42.18881 42.15172 42.16251 42.17 42.17195

0.46 0.47 0.48 0.49 0.5 0.6 0.7 0.8 0.9 1
42.51 42.50 42.50 42.50 42.50486 42.46116 42.45314 42.40175 42.46 42.40128
42.17 42.16 42.17 42.17 42.1733 42.12744 42.1207 42.07148 42.13 42.07417

Figure 2.5: The 2D plot of the TC scores on different wtors.

III. Case study on the effect of inferred residue coupling information

We also studied the effect of inferred residue coupling information in a similar

way. HHpacom worked the best when wec was 0.1. However, evolutionary constraint

information did not help much to improve the alignment accuracy on the training data
50



Figure 2.6: The 2D plot of the GDT-TS scores on different wtors.

set, since the average SP score and TC score are respectively 42.5171 and 42.1821 by

running HHpacom integrating the evolutionary constraint information. Specifically

speaking, the alignment quality increased in 57 out of the total 1483 resulting pairwise

alignments from the training data set, stayed the same in 1363, yet decreased in 61.

Moreover, we also run HHpacom by setting wec as 0.1 against the testing data set,

and the alignment quality increased in 59 out of the total 1138 resulting pairwise

alignments, stayed the same in 1024, yet decreased in 55. After taking a deep look at

the data, we discovered that integrating inferred residue coupling information mostly

helped improve the alignments of the proteins which are of short lengths, typically

100 to 500 residues. Figure 2.7 illustrated an example of a native 3D structure of

T0606, a 3D model structure predicted based on the pairwise sequence alignment by

running HHpacom integrating the evolutionary constraint information on the pair

of T0606 and its homolog 2nooA, and a 3D model structure predicted based on the

pairwise sequence alignment by running HHpacom without using the evolutionary

constraint information. The evolutionary constraint information helped increasing

the TM-score of the predicted model from 0.5965 to 0.6035. Consequently, in some

cases, the evolutionary constraint information could help improve the quality of the

pairwise alignment.
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Figure 2.7: An example of the case study.
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2.4 Conclusion

In this work, we designed a new method to incorporate relative solvent accessibility,

torsion angle information and inferred residue pair information into profile-profile

pairwise protein sequence alignment. Our experiments on the CASP9 data set showed

that the method improved pairwise sequence alignment accuracy over HHsearch and

HHsuite. However, the inferred residue pair information did not improve much on

the CASP9 data set, yet our case study of the effect of the inferred residue pair

information provided an useful view sight for the future direction in the pairwise

sequence alignment.
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Chapter 3

Predicting Protein Model Quality
from Sequence Alignment by
Support Vector Machines

3.1 Abstract

3.1.1 Background

Assessing the quality of a protein structural model is essential for protein structure

prediction. Here, we developed a Support Vector Machine (SVM) method to predict

the quality score (GDT-TS score) of a protein structure model from the features

extracted from the sequence alignment used to generate the model.

3.1.2 Results

We developed a Support Vector Machine (SVM) model quality assessment method,

taking either a query-single-template pairwise alignment or a query-multi-template

alignment as input. For the pairwise alignment scheme, the input features fed into the
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SVM predictor include the normalized e-value of the given alignment, the percentage

of identical residue pairs in the alignment, the percentage of residues of the query

aligned with those of the template, and the sum of the BLOSUM scores of all aligned

residues divided by the length of the aligned positions. Similarly, for the multiple-

alignment scheme, the input features include the percentage of the residues of the

target sequence aligned with those in one or more templates, the percentage of aligned

residues of the target sequence that are the same as that of any one template, the

average BLOSUM score of aligned residues, and the average Gonnet160 score of

aligned residues. A SVM regression predictor was trained on the training data to

predict the GDT-TS scores of the models from the input features. The root mean

square error (RMSE) and the absolute mean error (ABS) between predicted and

real GDT-TS scores were calculated to evaluate the performance. A five-fold cross

validation was applied to select the best parameter values based on the average RMSE

and ABS on the five folds. The RMSE and ABS of the optimized SVM predictor on

the testing data were close to 0.1.

3.1.3 Conclusions

The good performance of the SVM and sequence alignment based predictor indicates

that integrating sequence alignment features with a SVM is effective for protein model

quality assessment.

3.2 Background

The knowledge of protein three-dimensional (3D) structures is vitally important for

biomedical research, such as protein function analysis, mutagenesis experiments, and

rational drug design. Although the X-ray crystallography technique can determine

protein 3D structures with high resolution, they are still time-consuming, expensive,
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and cannot be readily applied to the proteins that cannot be successfully crystallized,

including most membrane proteins. The nuclear magnetic resonance (NMR) is a

powerful tool that can determine the 3D structures of membrane proteins of small

and medium size in solutions [78, 79, 80], but it is also time-consuming and costly.

In order to acquire the protein structural information at a large scale and in a timely

manner, high-throughput, fast computational protein structure prediction methods,

such as homology modeling (e.g. [81, 82]), need to be used. Since the accuracy

of predicted protein structures depend on the relatedness of homologous structural

templates and the correctness of sequence alignment [81], assessing the quality of

protein structural models is important for controlling and analysing the quality of

the predicted models.

Thus, protein model quality assessment plays a profound role in protein struc-

ture prediction and related applications [83]. Accurate quality assessment of protein

models can help rank a pool of candidate models predicted for a given query protein.

A number of model quality assessment methods and tools, such as ModelEvaluator

[84], APOLLO [84], QMEAN [85], have been developed. These methods evaluate the

quality of models based on the structural information extracted from protein models,

without considering the source information (e.g., sequence alignment, homologous

template structure) used to generate the models. The quality assessment methods

without utilizing the source information may be considered a black box approach,

while those considering the source information [86] is a white box approach [87].

Since the factors of largely determining the quality of a model such as the sequence

similarity between a query protein and a homologous template structure are generally

available in the template-based protein structure prediction (e.g., homology modelling

and fold recognition), the white box approach can take advantage of the information

to improve model quality assessment.

There are a few standard scores to assess the similarity between the model struc-
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ture and the native target structure, such as TM score and GDT-TS score [88, 89]

TM-score is to calculate the similarity of topologies of two protein structures. It can

be exploited to quantitatively access the quality of protein structure predictions rela-

tive to native. GDT Total Score (GDT-TS) is the average percentage of residues in the

model whose position is within 1.0, 2.0, 4.0, 8.0 α-carbon distance with that of their

counterparts in the native structure after four optimal superimpositions [90]. Neither

TM score nor GDT-TS score can directly tell the accuracy of a target-template align-

ment, yet given a few alignments consisted of the same target and different one or

more than one templates, they can effectively measure which alignment can generate

a model that is more structurally similar to the target. Consequently, if we succeed

to predict these scores, our prediction method can be an effective alignment-based

model selector, which plays a significant role in protein structure prediction, function

prediction, and other essential bioinformatics tasks.

Here, extending from our previous model quality assessment method based on a

query-single-template alignment [91], we designed and developed a support vector

machine (SVM) [92] and alignment-based model quality assessment method, taking

either a query-single template pairwise alignment or a query-multi template alignment

as input to predict the GDT-TS score of a model generated from the input alignment.

The method can be applied to select the protein models based on the query-template

alignments used to generate the models in the widely used template-based protein

modelling process.

3.3 Methods

Figure 3.1 shows the workflow of the SVM model quality assessment method based

on the features extracted from the query-single template pairwise alignment employed

to generate the model. The input features provided to the SVM predictor include the
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logarithm of e-value of the given query-template alignment, the percent of identical

residue pairs in aligned positions, the percent of residues of the query that are aligned

with a residue in the template, and the average of BLOSUM [93] scores of all aligned

residue pairs. The input feature vectors in the training data set were extracted from

245 pairwise protein sequence alignments generated for 50 CASP9 targets by PSI-

BLAST [61]. The output score of each input feature vector was the real GDT-TS [94]

score of the model generated from the corresponding pairwise alignment. The real

GDT-TS score is the structural similarity score between a model and its corresponding

native structure calculated by the TM-score program [89]. This data was used to

train a SVM regression predictor equipped with a Gaussian radial basis kernel (RBF)

to predict the GDT-TS scores of models from the input features. The SVM-Light

software package [95] was employed to carry out the training and testing experiments.

Three parameters of the SVM including the epsilon width of the regression tube (w),

the margin option (c) and the gamma in the RBF kernel (g) were tuned during the

training process. The root mean square error (RMSE) and the absolute mean error

(ABS) between the predicted and real GDT-TS scores were used as the evaluation

scheme to optimize the parameter values. Three standard cross-validation methods

are commonly adopted to check the effectiveness of a predictor: independent dataset

test, K-fold cross-validation, and jackknife test [96]. Here, we utilized the five-fold

cross validation approach as many other SVM based prediction methods due to the

computational efficiency. Specifically, many rounds of five-fold cross validations were

applied to the training data to select the best parameter values of w from 0.5, 0.2,

0.1, 0.05, 0.02, and 0.01, and c from 2.0, 1.0, 0.5, 0.1, 0.05, and 0.01, and g from

0.5, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001 in order to reduce the average ABS and

RMSE on all the five folds. The set of parameter values with the lowest RMSE and

ABS was selected.

Similarly, Figure 3.2 shows the workflow of the SVM model quality assessment
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Figure 3.1: The workflow of the pairwise alignment based SVM model quality pre-
diction method
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method based on the features extracted from the query-multi template alignment

employed to generate the model. Slightly different from the pairwise alignment based

scheme above, the input features include the percentage of the residues of the target

sequence aligned with those in one or more templates, the percentage of identical

residues of the target sequence that are the same as that of any one template, the

average BLOSUM score of aligned residues, and the average Gonnet160 score of

aligned residues. Specifically, as for the average BLOSUM score, if a residue of the

target is aligned in those from multiple templates, the pair BLOSUM score between

the residue of the target and that of the template ranked higher in the alignment

file (e.g., more significant) is counted. Consequently, the average BLOSUM score

associated with all aligned residues of the target sequence was calculated as one

feature. The average Gonnet 160 score of all aligned residues is calculated in a

similar way. The input feature vectors in the training data set were extracted from

4850 multiple protein sequence alignments generated for 60 CASP9 targets by many

different alignment tools, such as BLAST, PSI-BLAST [61], HHSearch [8], SAM [97],

SPEM [98] and the output score of each input feature vector was the real GDT-

TS score of the model generated from the corresponding multiple alignment. Many

rounds of ten-fold cross validations were applied to the training data to select the

best parameter values of w from 0.1, 0.08, 0.06, 0.05, 0.02, and 0.01, and g from 0.5,

0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001, and c from 2.0, 1.0, 0.5, 0.1, 0.05, and

0.01.
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Figure 3.2: The workflow of the multiple alignment based SVM model quality pre-
diction method
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3.4 Results

3.4.1 Evaluation of the pairwise alignment based SVM model
quality assessment method

The global average RMSE and ABS of the SVM trained with the best set of parameter

values (w, c, g) = (0.02, 1.0, 0.5) on the five-fold training data set were 0.083 and

0.061, respectively. The trained pairwise alignment based SVM predictor was applied

to predict the GDT-TS scores of models of 46 CASP9 targets not used in training

from the input features extracted from the corresponding 225 PSI-BLAST alignments.

The RMSE and ABS were respectively 0.098 and 0.073, illustrating that the predicted

GDT-TS scores are close to the real ones. The RMSE and ABS of the trained SVM

with the best parameter set on each fold of the training data as well as the testing

data set are shown in Table 3.1.

Table 3.1: The RMSE and ABS of the trained pairwise sequence alignment based
SVM with the best parameter set on each fold of the training data as well as the
testing data set

The data set RMSE ABS
Fold 1 of the training data 0.0868 0.0606
Fold 2 of the training data 0.0923 0.0674
Fold 3 of the training data 0.0821 0.0631
Fold 4 of the training data 0.0771 0.0557
Fold 5 of the training data 0.0783 0.0566
Test data 0.0978 0.0734

Moreover, we used the predicted model quality scores to rank the models of 46

CASP9 targets [87]. The total real GDT-TS score of the top 1 models selected by the

SVM predictor for these targets was compared with that of the top 1 models selected

according to the e-values (i.e. significance) of the PSI-BLAST alignments and that of

the top 1 models selected by APOLLO [85], a black box quality assessment tool using a

pairwise model comparison approach. The total GDT-TS score of the models selected

by the SVM predictor is 20.95, which is higher than 20.10 of the pure e-value based
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model selection method, as well as 19.53 of APOLLO [85]. The t-test and Wilcox-test

were respectively performed in order to calculate the p-values on the scores of our

SVM predictor and the e-value based model selection method, as well as the ones

on the scores of our predictor and APOLLO. The p-values are illustrated in Table

3.2. The results suggest the SVM predictor based on pairwise alignments performed

significantly better than the e-value based predictor and APOLLO according to the

standard p-value threshold (i.e. 0.05). Moreover, the Pearsons correlation coefficient

score between the predicted and true GDT-TS scores on the testing data set is 0.913,

indicating that the predicted and true scores are highly linearly correlated. The

results demonstrate that integrating alignment e-value with other features by SVM

can improve the accuracy of ranking models over the nave e-value based model ranking

method and a state-of-art black-box model evaluation method (i.e. APOLLO).

Table 3.2: the p-values on the scores of our SVM predictor and the e-value based
model selection method, and the ones on the scores of our predictor and APOLLO
based on t-test and Wilcox-test

p-value t-test Wilcox-test
Our predictor/ e-value based method 0.044 0.042
Our predictor/ APOLLO 0.044 0.016

3.4.2 Evaluation of the multiple alignment based SVM model
quality assessment method

The global average RMSE and ABS of the SVM trained with the best set of parame-

ter values (w, c, g) = (0.1, 2.0, 0.05) on the ten-fold training data set were 0.185 and

0.149, respectively. The trained SVM predictor was applied to predict the GDT-TS

scores of models of 47 CASP9 targets generated from 3809 multiple protein sequence

alignments that were not used in training. The RMSE and ABS were respectively

0.176 and 0.142. This error is higher than that of the pairwise alignment-based pre-

dictor tested on models generated from PSI-BLAST alignments alone in the previous

63



experiment, probably due to the higher diversity in alignments and model quality in

this experiment. However, the advantage of this SVM predictor is that it can be ap-

plied to the alignments generated from any alignment methods and does not require

an alignment e-value as input, which varies from one alignment method to another.

The RMSE and ABS of the trained SVM predictor with the best parameter values

on each fold of the training data as well as the test data set are shown in Table 3.3.

Table 3.3: The RMSE and ABS of the trained multiple sequence alignment based
SVM with the best parameter set on each fold of the training data as well as the
testing data set

The data set RMSE ABS
Fold 1 of the training data 0.2057 0.1678
Fold 2 of the training data 0.1516 0.1238
Fold 3 of the trainingdata 0.1746 0.1393
Fold 4 of the training data 0.1538 0.1226
Fold 5 of the training data 0.1677 0.1383
Fold 6 of the training data 0.1692 0.1348
Fold 7 of the training data 0.1900 0.1487
Fold 8 of the training data 0.2330 0.1873
Fold 9 of the training data 0.2287 0.1939
Fold 10 of the training data 0.1721 0.1377
Test data 0.1764 0.1423

We also used the predicted model quality scores to rank the models of 47 CASP9

targets in the testing data [11]. The total real GDT-TS score of the top 1 models se-

lected by the multiple alignment based SVM predictor for these targets was compared

with that of the top 1 models selected by APOLLO. The total GDT-TS score of the

top models selected by the multiple-alignment based SVM predictor is 22.59, which

is lower than 25.26 of APOLLO. The lower performance of this multiple sequence

alignment based SVM predictor is probably due to the lack of the alignment e-value

feature used in the pairwise alignment based SVM predictor. Thus, one direction

of improving multiple sequence alignment-based method is to include some features

similar to the e-value of measuring the significance of alignments. And despite the

lower performance of the current implementation of the multiple sequence alignment
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based SVM predictor, it is likely complementary with the black-box model quality

assessment methods like APOLLO because it used completely different features in

prediction. And compared to the pairwise model comparison method like APOLLO

that needs a pool of models of a protein as input, the alignment-based model quality

assessment methods can be applied to assess the quality of one single model. Fur-

thermore, the Pearsons correlation coefficient score between the predicted and true

GDT-TS scores on the testing data set is 0.969, indicating that the predicted and

true model quality scores are highly linearly correlated.

3.5 Conclusions

In this work, we designed and developed a SVM protein model quality prediction

method, taking either a pairwise sequence alignment or a multiple-sequence alignment

as input. The evaluation results showed that integrating pure sequence alignment

features with a SVM is an effective approach to protein model quality assessment.

The new method can be integrated with template-based protein modelling methods

to rank and select models. Since user-friendly and publicly accessible web-servers are

important for making bioinformatics methods available to the community [25], we

will make the model quality assessment methods developed in this work available as

a easy-to-use web service for the community in the future.
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Chapter 4

A Protein Tertiary Structure
Prediction Pipeline

4.1 Introduction

Nowadays, there have been large quantities of efforts from biologists on the protein

tertiary structure prediction. Among those efforts and outcome developed methods,

the most common ways are ab-initio protein modeling and comparative protein mod-

eling. Ab-initio protein modeling aims at building three-dimensional protein models

based on some characters such as physical features and so on for the query pro-

tein. Comparative protein modeling, in contrast, generates a model in terms of the

alignment between the target protein and its homologous template and the template

structure. However, few efforts have ever been made on protein structure prediction

by using protein similarity network especially structural similarity network so far. As

we know, some protein homology identification algorithms based on protein sequence

similarity network have been developed for detecting evolutionary, structural or func-

tional relationships [99, 100, 101, 102, 103]. Earlier algorithms mainly focused on

the individual edges of the network and performed local search through the protein
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sequence similarity network [99, 100, 101]. Improved from them, protein homology

ranking algorithms based on the global structure of the protein sequence similar-

ity network have been developed, such as RANKPROP algorithm [102, 103]. These

methods, in practical, build up a good foundation for protein structure prediction,

and we can take them as an important preliminary step. Taking advantage of global

protein network searching, we also adopt a network-based inference algorithm similar

to RANKPROP to rank the proteins in terms of the similarity to the query and pick

up the top ten hits as the templates for tertiary structure prediction of a query pro-

tein. However, different from RANKPROP, we build up a structure similarity-based

network. Furthermore, other steps including sequence/profile alignment, model gen-

eration, model quality assessment and model selection are carried out following the

template identification in our protein tertiary structure prediction pipeline.

4.2 Methods

4.2.1 Overview of the prediction pipeline

The protein tertiary structure prediction pipeline consists of four major components.

The template identification component accepts an input query sequence and searches

it against a non-redundant protein sequence database based on our proposed network-

based fold recognition method. A set of top ranked templates and the query protein

are fed into the query-template alignment component. This component returns a set

of query-single template pairwise alignments and query-multi template alignments.

The query-template alignments and template structures are fed into model generation

tools (model generator) to sample conformations for the query. The model generators

usually produce a number of models, which are then evaluated by the model quality

assessment component. The model quality assessment tools assign a global quality
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score to each model measuring its overall quality (e.g. overall similarity between

the model and the known native structure) and a local quality score to each residue

predicting its deviation compared with the native structure. At the end, the models

with the best predicted qualities are released from the system as the final predictions.

4.2.2 Fold recognition using protein structural similarity net-
work

In this component, we used TM-align [75, 104] on 12,775 proteins in PDB database

to construct all-versus-all weighted protein structure similarity based network. This

network represents the degree of similarity between each protein pair by assigning

weights to each edge. Then our proposed Netprop algorithm starts from the pre-

computed protein similarity network. It firstly performs similarity network weighting

and normalization, and helps the query protein find the target subnets which contain

hits in the structure similarity based network, and calculate the extracted global in-

formation for all nodes in the target subnets by propagating link information outward

from the query. As a result, all the proteins in the subnets are ranked in terms of the

amount of link information they received from the query. Last, we choose the top ten

protein from the structure similarity based subnets as the templates to predict the

tertiary structure for the query. The work flow is illustrated in Figure 4.1.

I. Data preparation

My labmate and I calculated the sequence similarity between each pair of proteins

of 32,227 proteins in the Protein Data Bank (PDB) [105](CASP1 ∼8). If the sequence

similarity between one pair of proteins was higher than 0.3, we deleted one of them

from this protein set and reserved the other. After that, 12,775 proteins were retained.

And then we calculated the TM-Score between each pair of proteins using TM-Align

[75]. If the TM-Score was higher than 0.5 between one pair of proteins, an edge was

generated between them. Consequently, we performed our novel homology ranking
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Figure 4.1: The work flow of our new methodology of network-based protein structure
prediction
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algorithm Netprop based on the pre-computed network.

II. Similarity network weighting and normalization

For the pre-computed structural similarity network, we can use TM-score to rep-

resent the degree of similarity between protein pairs, namely wij = TMij. TM-score

is order-independent, which means TMij = TMji, and wij = wji. TM-score can

assess the similarity of topologies of two protein structures [75, 104, 105]. TM-

score lies between 0 and 1, and the higher the score is, the closer the two struc-

tures are. So, when building the structure similarity based network, edges are only

included for TM-scores higher than threshold 0.5. Symmetric un-normalized weight-

ing matrices W can be constructed based on the above step. Based on these un-

normalized weights, we define that a diagonal matrix S in which S(i, i) is the sum

of row i in W , and create a normalized similarity matrix by transformation function

W ′ = S−
1
2WS−

1
2 (w′ij = wij/

√
S(i, i)S(j, j)) which constructs a symmetric matrix

with row sums no higher than 1 [106]. This weighting and normalization scheme is

different from Rankprop [102, 103].

III. Protein homology ranking by information retrieval in the similarity sub-

networks

Given the query protein, we search the hits against all the 12775 proteins we

used to build the similarity networks by HHSearch [9] or PSI-BLAST [61]. Then

the structure-based sub-networks which contain the hits are considered as the target

subnets. Based on the all-versus-all normalized similarity matrices for the chosen sub-

nets, we operate protein homology ranking for the query respectively by information

retrieval in each similarity subnet.

Similar to Rankprop, our approach also adopts a diffusion technique [107] which

is closely related to spreading activation networks [108, 109]. First, initial activation

scores are assigned to all the nodes in the subnet representing each target protein’s

similarity to the query. Then the activation score at each node is iteratively replaced
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by a function of the weighted sum of the scores between query and all its incoming

nodes. If the hits are found by HHSearch or PSI-BLAST, we denote the initial

activation scores X0
i as the probability between the query and node i by HHSearch or

PSI-BLAST, scores for other nodes in the target subnet are assigned as zero. We set

X0 as the initial column vector of activation scores, correspondingly, X t can be taken

as the column vector at iteration t of the diffusion process. The diffusion function is

X t+1
i = X0

i + αW ′′X t
i if Xi is not query and X t+1

i = 1 otherwise. is the normalized

weighting matrices of the subnet, and α is a constant parameter to control the rate

of diffusion. We set 20 for iteration number for each query, which makes the diffusion

process close to convergence. As a result, all the proteins in the subnet are ranked in

terms of activation scores they gain by the diffusion process.

IV. Protein homology ranking in the whole networks

Based on the previous step, we gained the activation scores for all the nodes in

the target subnets of structural similarity networks. The conceptual structure of the

whole network is illustrated in Figure 4.2.

However, we only calculate the activation scores for those nodes in the sphere of

each separate sub-network, so those scores can be just taken as local activation scores.

We propose a statistical transformation to convert these local activation scores for all

the nodes to global scores, otherwise it will be a bias if we directly compare the local

activation scores in the sphere of the whole network. Suppose in each subnet Si, the

initial local activation scores we gained from last step are Ki1, Ki2, . . . . . . , Kin for all

the nodes pi1, pi2, . . . . . . , pin . We use P (pij|Si), P (pij|S) to denote the possibility that

protein pij ranks the first in Si and S respectively. Our aim is to generate transformed

global activation scores K ′ij(1 ≤ i ≤ k, 1 ≤ j ≤ ni) . Kij is proportional to P (pij|Si)

, and K ′ij is proportional to P (pij|S).

First, we try to gain P (pij|S) according to P (pij|Si).
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Figure 4.2: The conceptual structure of the whole network
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P (pij|S) =
∑n

l=1 P (pij, Sl|S)

=
∑n

l=1 P (pij|Sl, S) • P (Sl|S)

=
∑n

l=1 P (pij|Sl) • P (Sl|S)

(4.0)

Since pij ∈ Si, P (pij|Sl) = 0 if l 6= i, namely:

P (pij|S) = P (pij|Si) • P (Sl|S) = P (pij|Si) •
ni

n1 + n2 + . . . . . .+ nn
(4.0)

From Kij ∝ P (pij|Si), K ′ij ∝ P (pij|S), we can get global activation scores K ′ij(1 ≤

k, 1 ≤ j ≤ ni) by transformation function:K ′ij = Kij • ni

n1+n2+......+nn
. Then, we can

rank all the nodes by global activation scores in either sequence-based or structure-

based network, and choose the top targets.

Ten top proteins are chosen from the structure-based network in terms of the final

global activation scores. Then we used these hits with known structure to predict the

tertiary structure of the query.

V. Analysis on the pre-computed network

The structure-based network was built including 2,214 sub networks after com-

puting the TM-Score for all pairs of proteins. The largest sub network was comprised

of 7,494 proteins and 199,736 edges. Figure 4.3-4.5 showed some statistics for this

structure-based network.

Figure 4.3 illustrated the frequency of the number of proteins for sub networks.

The x-axis means the number of proteins in sub networks. The y-axis means the num-

ber of sub networks which have the same number of proteins. Most of sub networks

have no more than 100 proteins.

Figure 4.4 showed the frequency of the number of edges for sub networks. The

x-axis means the number of edges in sub networks. The y-axis means the number of

sub networks which have the same number of edges. Most of sub networks have no

more than 1,000 edges.
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Figure 4.3: The frequency of proteins in sub-nets

Figure 4.4: frequency of the number of edges for subnets
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Figure 4.5 showed the frequency of the number of edges for proteins. The x-axis

means the number of edges in proteins. The y-axis means the number of proteins

which have the same number of edges. Most of proteins have no more than 300

edges.

Figure 4.5: The frequency of the number of edges for proteins

We used Cytoscape [110] to visualize the structure-based network of proteins.

Figure 4.6 showed the visualization of the second largest sub network.

In total, the SBN of proteins contains 2,214 disconnected sub-graphs (each one

has no edges connecting to any other sub-graphs); and most of the sub-graphs have

less than 100 nodes (proteins). (A) is the second largest SBN sub-graph of proteins

that has 146 nodes and 1,640 edges. (B) is an enlarged partial view of the second

largest SBN, in which protein 2F5KA is a hub. The graph shown in Figure 4.7 is

an actual example of the small sub-graphs in SBN.
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Figure 4.6: The frequency of the number of edges for proteins

Figure 4.7: The frequency of the number of edges for proteins
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4.2.3 Query-template alignment

For the new fold recognition component in our predition pipeline, a list of top ten

hits is returned. Multiple sequence alignments and profile-proflie pairwse alignments

are respectively performed afterwards. Specifically, for each template in the list, its

structure is first aligned with that of each of the remaining templates using TM-align

[75], and those with a high structural similarity score (i.e. GDT-TS score higher

than 0.5) are selected into the template group with the given template as the seed.

Consequently, ten different template groups are generated and the multiple sequence

alignments are carried out for each template group and the query sequence recur-

sively by MSACompro introduced in Chapter 1. Similarity, profile-profile pairwise

alignments are carried out recursively between the query and each template by the

old version of our pairwise alignment method introduced in Chapter 2. The latest ver-

sion of our pairwise alignment method could be adopted in our new tertiary structure

prediction pipeline.

4.2.4 Model generation

In the model generation component, for the simple target, two template-based model

generator tools (Modeller [77] and our in-house model generator) are adopted to gen-

erate models based on the query-template alignments and the corresponding template

structures. In contrast, for the hard target, a template-free model generator, Rosetta

[111] is utilized to generate models for the target in addition to the two template-based

model generator tools.

4.2.5 Model quality assessment

As model assessment is very challenging and none of the current methods can consis-

tently select the best model, three model quality assessment methods (single-model
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approach, model pairwise comparison approach (APOLLO) [85], and the SVM based

model quality assessment aproach introduced in Chapter 3) are employed to assess

the quality of the models in this layer. The single-model method (i.e. ModelEvaluator

[84]) assigns an absolute quality score (e.g. GDT-TS score, the expected similarity

between the model and the native structure) to each model by comparing the sec-

ondary structure, solvent accessibility, contact map, and beta-sheet topology of the

model with that predicted from the query sequence[41, 46]. This method is generally

effective at discriminating good models from poor models. The pairwise compari-

son method (APOLLO) compares a model against all other models using a structure

alignment tool (e.g. TM-score [88] and calculates their similarity in terms of GDT-TS

score, TM-score, and MaxSub score. The average similarity between a model and all

other models is used as the predicted quality of the model. Note that the accuracy

of the pairwise comparison method is input dependent (i.e. it works well only if the

size of the model pool is large enough and the largest group of similar models in the

pool are of good quality). At the end of this component, all models in the pool have

been ranked by the average quality scores predicted by these three methods. Five top

models are selected as the final models predicted by our pipeline.
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Chapter 5

Summary and concluding remarks

Protein sequence alignment has played an essential role in the Bioinformatics field. An

accurate sequence alignment among a protein target and its templates can successfully

lead to generate a better quality model for the query protein.

In the multiple sequence alignment work, we designed a new algorithm MSACom-

pro to incorporate predicted secondary structure, relative solvent accessibility, and

residue-residue contact information into multiple protein sequence alignment. Our ex-

periments on three standard benchmarks showed that the method improved multiple

sequence alignment accuracy over most existing methods without using secondary

structure and solvent accessibility information. However, the performance of the

method is comparable to PROMALS and PROMALS3D by slightly lower scores on

some subsets and behind it by a large margin on SABMARK probably because these

two methods used homologous sequences or tertiary structure information in addi-

tion to secondary structure information. Since multiple sequence alignment is often

a crucial step for bioinformatics analysis, this new method may help improve the

solutions to many bioinformatics problems such as protein sequence analysis, protein

structure prediction, protein function prediction, protein interaction analysis, protein

mutagenesis and protein engineering.
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Besides multiple sequence alignment, profile-profile pairwise sequence alignment is

another critical point to improve the protein tertiary structure prediction, since it has

the advantage of employing the information from the templates of the query protein.

In the profile-profile pairwise alignment work, we developed HHpacom (HMM-HMM

pairwise protein sequence alignment combining structural information and inferred

residue pair coupling information), which extends HHsuite to enable fast and high-

quality profile-profile pairwise alignment by integrating secondary structure, solvent

accessibility, torsion angle and inferred residue pair coupling information. To opti-

mize the parameters of HHpacom, we divided 2621 pairs of which each contains a

CASP9 target and its single homolog released in CASP9 website into training and

testing data sets. The training dataset is consisted of 1482 target-single template pairs

generated from 60 CASP9 targets, and the testing dataset is consisted of 1138 pairs

generated from 46 CASP9 targets. Two evaluation schemes were carried on for the

assessment: (1) we generated true or reference pairwise alignments by TMalign, and

calculated the SP score and TC score for the pairwise alignments generated by HH-

pacom, HHsearch and HHsuite; (2) 3D-models were obtained by MODELLER based

on the pairwise alignments generated by these methods. TM-scores and GDT-TS

scores were calculated for the 3D-models respectively. The evaluation results showed

that the method improved pairwise sequence alignment accuracy over HHsearch and

HHsuite by incoporating the solvent accessibility and torsion angle information, and

the accuracy significantly improved in comparision with both HHsearch and HHsuite

without applying secondary structure information. However, the inferred residue pair

information did not improve much on the CASP9 data set, yet our case study of the

effect of the inferred residue pair information provided a useful view sight for the fu-

ture direction in the profile-profile pairwise sequence alignment. Furthermore, there

are a few potential ways to improve our profile-profile pairwise alignment method in

the future work: (1) More states of solvent accessibility may be considered: eg. three
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states including exposed, buried, or intermediate. Or real values of solvent accessibil-

ities may be predicted, and then the similarity scores between residue pairs could be

calculated according to certain thresholds. (2) It is found that mutual information

(MI) may bring some noises in the calculation of residue coupling information, while

direct information (DI) is able to discover effective residue couplings from a global

maximum entropy model [74]. Consequently, we may use a maximum entropy model

to infer residue pair couplings, so as to improve the alignment quality.

Given different sequence alignments among a given target protein and its single

or multiple templates, how to effectively select the top alignments so as to generate

better-quality models for the target is the next key step. Consequently, we imple-

mented two SVM protein model quality prediction methods, taking either a pairwise

alignment or a multiple alignment as input. The evaluation results showed that in-

tegrating pure sequence alignment features with a SVM is effective, convenient and

cheap for protein model quality assessment. In addition, we believe that there is still

a large space to improve such a method. In the future work, we may improve the

method by adding more features from the 3-D models of the template sequences in

the sequence alignments into the Support Vector Machine.

Last, we developed a protein tertiary structure prediction pipeline. Some com-

ponents such as sequence alignment, profile-profile alignment and SVM based model

quality assessment were built into our group’s MULTICOM tertiary structure pre-

diction system. The automatic evaluation of MULTICOM on MODEL 1 released by

CASP10 website illustrated our performance in Protein Tertiary Structure Prediction

was ranked number four among all the participants.

Moreover, here is a list of my main publications during my PhD study:

[1] X. Deng and J. Cheng. (2013) New profile-profile pairwise protein sequence

alignment by HMM-HMM comparison (under submission).

[2] X. Deng and J. Cheng. (2013) Predicting Protein Model Quality from Sequence
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Alignments by Support Vector Machines (under submission).

[3] J. Li, X. Deng, J. Eickholt, J. Cheng. (2013) Designing and Benchmarking the

MULTICOM Protein Structure Prediction System. BMC Structural Biology. 13:2.

[4] B. Adhikari, X. Deng, J. Li, D. Bhattacharya, and J. Cheng. (2013) A Contact-

assisted Approach to Protein Structure Prediction and Its Assessment in CASP10.

AAAI workshop.

[5] M. Zhu, X. Deng, T. Joshi, D. Xu, G. Stacey, J. Cheng. (2012) Reconstructing

Differentially Co-expressed Gene Modules and Regulatory Networks of Soybean Cells.

BMC Genomics, 13:434.

[6] J. Cheng, J. Li, Z. Wang, J. Eickholt, and X. Deng. (2012) The MULTICOM

Toolbox for Protein Structure Prediction. BMC Bioinformatics, 13:65.

[7] J. Cheng, J. Eickholt, Z. Wang, and X. Deng. (2012) Recursive Protein Mod-

eling: a Divide and Conquer Strategy for Protein Structure Prediction and its Case

Study in CASP9. ournal of Bioinformatics and Computational Biology, vol. 10, no.

3.

[8] X. Deng and J. Cheng. (2011) MSACompro: Protein Multiple Sequence

Alignment Using Predicted Secondary Structure, Solvent Accessibility, and Residue-

Residue Contacts. BMC Bioinformatics, 12:472.

[9] X. Deng, J. Eickholt and J. Cheng. (2012) A Comprehensive Overview of Com-

putational Protein Disorder Prediction Methods. Molecular BioSystems, 8(1):114-

121.

[10] J. Eickholt, X. Deng and J. Cheng. (2011) DoBo: Protein domain boundary

prediction by integrating evolutionary signals and machine learning. BMC Bioinfor-

matics, February.

[11] X. Deng, J. Eickholt and J. Cheng. (2009) PreDisorder: Ab Initio Sequence-

based Prediction of Protein Disordered Regions. BMC Bioinformatics, 10:436.
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