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Abstract  

A common problem for premature infants is respiratory distress 

syndrome (IRDS), also called neonatal respiratory distress syndrome, 

or respiratory distress syndrome of newborn. Due to IRDS, the infant requires 

intervention in the form of respiratory support to increase the inspired oxygen. 

Physicians must keep the range of the Arterial Oxygen Saturation ( 𝑆𝑝𝑂2) 

between 82 – 95% to help the premature infants to get oxygen enough while 

preventing other complications. If the blood oxygen saturation is more than 95% 

or less than 82%, the infant is at risk for retinopathy of prematurity. The control is 

analyzed using PI, PID, Model Predictive Controller (MPC), Robust control wit 

PID and Robust control with MPC  to ensure stability and minimum settling time 

to reach the accuracy of output  𝑆𝑝𝑂2  by applying the Fraction of Inspired 

Oxygen (𝐹𝑖𝑂2) as control action. MPC is an optimal control strategy based on 

numerical optimization by using a system model and optimizing at regular 

intervals. We can predict the future control inputs and future plant responses. An 

error model is created using the resulting ranges of system gains and time 

constant from [18]. The 𝜇 − 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠  controller is developed to control the 

oxygen percentage of inspired air and performance specifications are defined. The 

𝐻∞ method is used to determine the robust stability and robust performance are 

achieved with the system uncertainty that described by the error model. A 

comparison among a static proportional integral, proportional integral derivative, 

the model predictive controller, the robust controller with PID controller, and the 
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robust controller with MPC found that the robust controller with MPC displays 

the best performance for a system with large ranges of model parameters.  
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Chapter 1: Introduction 

 

1.1.   Background, Problem, and Objectives 

  A wide spread problem for premature infants is respiratory distress 

syndrome (IRDS), also called neonatal respiratory distress syndrome, 

or respiratory distress syndrome of newborn, previously called hyaline membrane 

disease (HMD). IRDS is a syndrome in premature infants caused by 

developmental insufficiency of surfactant production and structural immaturity in 

the lungs. It can also result from a genetic problem with the production of 

surfactant associated proteins. IRDS affects about 1% of newborn infants and is 

the leading cause of death in preterm infants. The incidence decreases with 

advancing gestational age, from about 50% in babies born at 26–28 weeks, to 

about 25% at 30–31 weeks. The syndrome is more frequent in infants of diabetic 

mothers and in the second born of premature twins [1]. Respiratory distress 

syndrome (RDS) is a breathing disorder that affects newborns.  

RDS rarely occurs in full-term infants. The disorder is more common in 

premature infants born about 6 weeks or more before their due dates. RDS is 

more common in premature infants because their lungs are not able to make 

enough surfactant. Surfactant is a liquid that coats the inside of the lungs. It helps 

keep them open so that infants can breathe in air once they are born. Without 

enough surfactant, the lungs collapse and the infant has to work hard to breathe. 

He or she might not be able to breathe in enough oxygen to support the body's 

http://en.wikipedia.org/wiki/Syndrome
http://en.wikipedia.org/wiki/Premature_birth
http://en.wikipedia.org/wiki/Infant
http://en.wikipedia.org/wiki/Pulmonary_surfactant
http://en.wikipedia.org/wiki/Lung
http://en.wikipedia.org/wiki/Premature_birth
http://en.wikipedia.org/wiki/Gestational_age
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organs. The lack of oxygen can damage the baby's brain and other organs if 

proper treatment isn't given [2]. Respiratory distress syndrome occurs in infants 

born prematurely and is a consequence of immature lung anatomy and 

physiology. In premature of stressed infants, atelectasis from the collapse of the 

terminal alveoli resulting from lack of surfactant appears after the first few hours 

of life. In premature infants, surfactant production is limited and stores are 

quickly depleted. Surfactant production may be further diminished by other 

unfavorable conditions such as high oxygen concentration, poor pulmonary 

drainage, or effects of respirator management [3].The arterial oxygen saturation 

(𝑆𝑝𝑂2) must be kept within a certain range which is usually 85-92%. The clinics 

provided alarms to notify medical personal if the premature infant is outside of 

the range of safety of 𝑆𝑝𝑂2. If the 𝑆𝑝𝑂2 level is maintained above 92%, a state of 

hypoxia could result in visual impairment or blindness. If the 𝑆𝑝𝑂2 level is 

maintained below 85%, a state of hypoxia could result in tissue damage and brain 

injury.   

Research has shown that the neonatal infants spend only 50% of the time 

within the acceptable ranges under manual control of the 𝐹𝑖𝑂2. The remaining 

20% is spent below the acceptable 𝑆𝑝𝑂2  range and 30% above the acceptable 

𝑆𝑝𝑂2 range. However it has been shown that the safety limits are often set outside 

the recommended ranges [4, 5]. The  𝑆𝑝𝑂2 is measured using a noninvasive pulse 

oximeter and is regulated by increasing the fraction of inspired oxygen (𝐹𝑖𝑂2). 

The accuracy of pulse oximetry is limited when the readings decrease below 80%, 

particularly in neonates with fetal hemoglobin. In adults, an 𝑆𝑝𝑂2 of 85% to 94% 
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is associated with a 𝑃𝑎𝑂2  of 50 to 75 mm Hg. Comparable ranges of oxygen 

saturation measurements that account for fetal hemoglobin must be established for 

neonates [6]. 

      The goal of this dissertation is to design a controller for the 𝐹𝑖𝑂2 to regulate 

the measured  𝑆𝑝𝑂2. It is very important to alleviate the workload of nurses in an 

intensive care unit when this controller is used to reduce the time and amount of 

harmful desaturation events. The controller depends on model predictive control 

(MPC) to control 𝐹𝑖𝑂2 to get the best value of  𝑆𝑝𝑂2. The main motive of MPC is 

to find the input signal that best corresponds to some criterion which predicts how 

the system will behave applying this signal. Model Predictive Control (MPC) is 

an optimal control strategy based on numerical optimization. By using a systems 

model and optimizing at regular intervals, we can predict the future control inputs 

and future plant responses. Several different controllers were designed and tested 

to see which performed the best. The controller selected an optimal 𝐹𝑖𝑂2 input to 

keep the infant at a safe range of 𝑆𝑝𝑂2. The controller also attempted to reject the 

effects the heart rate (HR) and respiratory rate (RR) have on the infants 𝑆𝑝𝑂2. 

MPC has been developed so that stability, optimality, and robustness properties 

are well defined. A diagram of the device in the clinical setting can be seen in 

Figure 1. 
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Figure 1. Diagram of the respiratory control device.  
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1.2. Literature Review  

 

1.2.1 Review of Respiratory System Models  

The following researchers have developed models for the human 

respiratory system. The first formulation was made by L. Roa, and Ortega-

Martinez J.I. (1997) [7]. They considered the two external processes included in 

the term respiratory system as the absorption of 𝑂2 and the removal of 𝐶𝑂2 from 

the body and internal respiratory, the gaseous exchanges between the cells and 

their fluid mediums. Their mathematical model has been designed for the analysis 

of the response of the organism to different pathological situations. This paper 

explained how can transfer Oxygen ( 𝑂2)  and Carbon Dioxide ( 𝐶𝑂2)  in 

compartments like Intracellular, Interstitial, Vascular and Alveolar. 

         Revow et al. [8] presented a model in 1989 which could successfully 

simulate the respiratory system of the newborn infant during the epoch of quiet 

sleep. The cerebrospinal fluid compartment in this model was not separated from 

the brain. This paper showed how we can analyze the lung compartment and the 

tissue compartment and how we can create equations for that.  

        Fleur T. Tehrani et al. [9] presented a mathematical model in 1993 which 

was used to study the effects of prematurity of peripheral chemo receptors on the 

respiratory function during the newborn period and to simulate the neonatal 

respiratory control system. In this model, using a wide range of stimuli, the 
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transient and steady state behavior were examined. This paper enabled us to find 

the parameters that we took in modeling. 

           S. Kanae, K. Murmatsu, Z.J. Yang and K. Wada et al. [10] presented a 

model in 2004 which is to fit each patient who is receiving artificial respiration 

treatment. They built a respiratory model of a lung that describes the dynamics of 

respiration. This model is a second - order nonlinear differential equation. They 

used a numerical integration technique; and a continuous – time identification 

model was derived. They used off- line and on-line parameters estimation 

algorithms and the model and the parameter estimation method was validated by 

clinical data.      

          Scott A. Sands, Bradley A. Edwards, and Venessa J. Kelly [11] presented a 

model analysis of the rate of arterial oxygen desaturation during apnea to 

demonstrate that pre-apneic ventilation, lung volume, cardiac output, hemoglobin 

content and blood volume exert unique effects on the rate of arterial oxygen 

desaturation throughout the time-course of desaturation, while metabolic oxygen 

consumption is uniformly influential throughout the process. They have provided 

a mathematical framework for quantifying the relative importance of key 

cardiorespiratory factors on the rate of arterial oxygen desaturation during apnea, 

with particular relevance to preterm infants. 

           C.L. Yu [12] presented a model that considered a linearization of the 

oxygen dissociation curve to change the partial pressure of oxygen in the artery to 

the oxygen saturation percent. This oxygen dissociation curve was the first 
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proposed by Severinghaus, and it is used to convert partial pressure of oxygen to 

oxygen saturation in blood. This paper was very important for us to help us to 

create the modeling of the efficient controller for Arterial Saturation in Infants. 

They informed us above the ways to study the compartments work and how we 

can make the equation of modeling, how we can use the Oxygen Saturation curve 

and the limit of 𝑆𝑝𝑂2with changing in values of 𝑃𝑎𝑂2. 

We took these results in the creation of our modeling. 
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1.2.2 Review of Control Systems 

          There are many control systems that have been presented in the literature. 

L. Zhang, and R.G. Cameron proposed a real – time rule-based control strategy 

for blood gas regulation of preterm infants under ventilation treatment [13]. The 

General Predictive Control (GPC) controller was investigated using computer 

simulation.  They used a first - order autoregressive–moving-average (ARMA) 

model to represent the respiratory system and Recursive Least Square (RLS) 

estimation algorithm to cope with nonlinearity and time varying characteristics of 

the system. Based on the results of the simulation and support from experienced 

pediatritions, the scheme is very promising for clinical applications.  They chose 

GPC to control the partial pressure ( 𝑃𝑎𝑂2
)  and ( 𝑃𝑎𝐶𝑂2

)  by adjusting the 

concentration of oxygen ( 𝐹𝑖𝑂2)  in the air they inspire. The results of the 

simulation were very encouraging from the expert system for a set of ventilator 

adjustments. From this paper we learned what the effect is of constraints on the 

GPC to make decisions for changing 𝐹𝑖𝑂2 levels.  

        In 1991 Tehrani et al. proposed a PID controller using a feedback signal of 

arterial oxygen saturation of the premature infant. It was used to adjust the 

concentration of inspired oxygen under the incubator [14]. They used a computer 

simulation, and the performance of the control system was evaluated under 

different test conditions to investigate the performance of the control system. The 

concentration of oxygen in the inspired gas (𝐹𝑖𝑂2) of the neonate was adjusted to 

provide for sufficient oxygenation of the blood and was low enough to prevent the 

damaging effects of oxygen toxicity. They calculated the values of parameters of 
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a PID controller after a number of preliminary simulation experiments. The effect 

of the PID controller on the system is to make arterial pressure reach the set point 

with in a small time period. The results were stable and indicative of the 

effectiveness of the controller under two different tests. 

       In 1991 John Taube M.S. and Vinod Bhutani M.D. et al. proposed a computer 

simulation with PID controller between the oxygen sensing and an oxygen 

blender for premature infants in [15]. They used a closed loop oxygen controller 

for the automatic control of supplemental oxygen because the regulation in open 

loop is a mismatch between the supplemental oxygen provided and the needs of 

the patient. PID controller software program was used to calculate a signal to the 

control oxygen blender output by using hemoglobin saturation (HSAT) from a 

pulse oximeter as feedback. It produced a fast response of hemoglobin saturation 

with little overshoot and gave a desired steady state error. The automatic control 

of oxygen was a more accurate method of regulating the blood oxygen level in the 

premature infants. 

       C. Yu, W. He, J. So, R. Roy and H. Kaufman. et al proposed to use a multiple 

– model adaptive controller (MMAC) for regulating oxygen saturation with 

changing input  𝐹𝑖𝑂2 [16]. The procedure in MMAC assumes that the system can 

be represented by one of a finite number of models and used to desensitize the 

system to gain variation. Computer-based proportional – integral (PI) simulations 

demonstrated the effectiveness of the algorithm over a wide variation of plant 

parameters. The fixed PI controller was designed to give no steady state error and 

the simulation showed that variations in plant parameters did not adversely affect 
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the transient response. The controller was commanded to raise 𝑆𝑎𝑂2   from an 

initial value of about 80% to a reference level of 95% and to maintain it at the 

new set point and by changing the values of gain, time constant and dead space 

time for plant at constant sampling period. Atypical step response illustration 

𝑆𝑎𝑂2  changes, 𝐹𝑖𝑂2  level and the weights for each model. Results of both 

simulations and animal experiments demonstrate the ability of the MMAC 

controller to effectively regulate  𝑆𝑎𝑂2  despite the presence of system 

disturbances.  

         Paul E. Morozoff, Ron W. Evans and John A. Smyth et al proposed an 

automatic control to regulate blood oxygen saturation [17]. The automatic 𝑆𝑎𝑂2 

controller was constructed to assist clinical staff in improving a premature infant’s 

condition by reducing the duration and frequency of hypoxemic and hyperoxemic 

episodes. They used a control algorithm based on the sign of the error magnitude, 

velocity and acceleration as input and then applied these inputs to a state machine 

to determine the trend of the error. Error is defined as the observed oxygen 

saturation minus the target oxygen saturation. The feature of this algorithm was 

that it could accommodate the non-linearity of the system. Each of the state 

machines can provide 𝐹𝑖𝑂2  adjustment and delay times, and the state machine 

was built to identify trends of 𝑆𝑎𝑂2 moving towards or away from the target. A 

single set of machine parameters was used by the controller to regulate the 

oxygen saturation with eight infants in the clinical trials. During this study a 

generic set of state machine 𝐹𝑖𝑂2  increments, decrements and delay time was 

determined. They found that with large variability of physiology and 𝑆𝑎𝑂2 
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stability between neonates, a single set of state machine parameters could be used by 

the controller to regulate a patient’s𝑆𝑎𝑂2. They found that if  𝑆𝑎𝑂2 dropped suddenly 

as result of shunting, the controller could not react fast enough and that required 

the manual intervention as signaled by the controller’s 𝑆𝑎𝑂2  limiting. Results 

from this paper proved that the automatic control systems are becoming more 

prevalent and increased the duration that the neonate spent at normal 𝑆𝑎𝑂2 and the 

number of manual interventions required by clinical staff. 

          Keim proposed to design single robust controller based on a linear model of 

premature infants [18]. The robust controller was designed based on an error 

model and performance specifications.  He developed an adaptive controller 

based on estimated parameters and disturbances. The controller regulated the  

𝐹𝑖𝑂2  while mitigating disturbances. The 𝐻∞  is used in control theory to 

synthesize controllers achieving robust performance or stabilization. The 𝐻∞  is 

used for plants having problems involving multivariable systems. In this paper, a 

performance requirement is developed in the frequency domain for the purpose of 

control design and analysis.  To check for performance, the following inequality 

must hold for all frequencies,  

                                               ‖𝑁22‖∞  ≤   1 

where  ‖𝑁22‖∞ is a frequency domain performance measure. 

 The plot of the  𝐻∞  norm of  𝑁22 was always less than one, so the system has 

nominal performance. The control signals for adaptive and  𝐻∞  control systems 

have saturation limits such that the signals do not go below 0%, since that level is 



12 
 

considered to be equal to room air. The adaptive control system is able to reject 

the disturbances and has 0% overshoot. The 𝑆𝑝𝑂2 from the closed loop control 

simulation did not drop beneath 2% due to the disturbances. The robust control 

system has slow performance due to the low bandwidth frequency that is used for 

control design. The robust control system also has 0% overshoot. The control 

signal for the adaptive controller is smaller than that of the robust controller. For 

these reasons, the robust control is better than the adaptive control. 

          Deacha C., Anan W., and Kitiphol C. proposed to design an automatic 

control for oxygen intake via nasal cannula in premature infants [19]. They used a 

new computer - based system combining to the nasal cannula for automatically 

controlling the quantity of oxygen intake. A pulse oximeter is currently used in 

clinical settings for noninvasive and continuous monitoring of arterial oxygen in 

infants. In flow control of oxygen, commands are transferred from a computer 

into the data acquisition (DAC) interface by USB port. Then it sends digital data 

to drive a stepping motor for speed control. The performance of the system was 

evaluated by operating with a  𝑆𝑝𝑂2 simulator showing satisfactory results with 

low tracking error.   The computer controlled the natal cannula  𝐹𝑖𝑂2 flow by 

using a pulse oximeter as indicator for arterial oxygen saturation in blood ( 𝑆𝑎𝑂2) 

in the feedback loop control, oxygen intake needed, calculated from the model is 

fed via controlled values. The process operates on a microcomputer programmed 

on the national Instruments LabView(R). 

           Nelson C., Tilo G., Ruth E., Gabriel M., Carmen H., and Edua proposed an 

algorithm for closed-loop inspired oxygen control for mechanical ventilation [20]. 
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They developed an algorithm to maintain 𝑆𝑝𝑂2 within a target range. The closed 

– loop control was compared with continuous manual 𝐹𝑖𝑂2  adjustments by a 

nurse with a group of ventilated infants who presented with frequent episodes of 

hypoxemia. There were two 𝐹𝑖𝑂2 control modes : the 𝑐𝐹𝑖𝑂2 algorithm defines 

𝑆𝑝𝑂2 ranges based on a user - defined target range of normal blood levels of 

oxygen (normoxemia); the 𝑚𝐹𝑖𝑂2 was the reference mode to which the 𝑐𝐹𝑖𝑂2 

algorithm was compared consisted of manual adjustments of the 𝐹𝑖𝑂2  made 

continuously by a neonatal research nurse station, fully dedicated to maintain 

𝑆𝑝𝑂2 within the same target range of (normoxemia) . Computerized analysis was 

used to calculate mean  𝑆𝑝𝑂2, frequency and duration of episodes of hypoxemia. 

They selected fourteen very low birth weight (VLBW) infants undergoing 

mechanical ventilation which were included in this study. Although it remains to 

be proven, they speculated that long-term closed – loop 𝐹𝑖𝑂2 control may reduce 

nursing time spent to maintain adequate oxygenation and reduce the risk of 

morbidity associated with supplemental oxygen.    

     

  1.2.3 Review of PI Controllers      

            Proportional Integral (PI) Controllers have been used in industry with 

linear and nonlinear systems. S. Anand, Aswin. V., and S. Rakesh kumar showed 

in 2011 a design continuously tuned adaptive PI controller for a non-linear 

process as a conical tank [21]. A simple tuning system was used to continuously 

tune the controller parameters in correspondence with the change in operating 



14 
 

points. The tuning system had the ability to interpolate and extrapolate the 

relationship between the control variable and the controller parameters over entire 

span of control variables. Then the PI controller was able to produce minimum 

overshoots and minimum settling time. Rubiyah and Sigeru in 1994 used the PI 

controller to the temperature controlled water bath [22]. It has ability of the 

controllers to handle process with variable time delays. Tunyasrirut and 

Ngamwiwit in 1999 presented a design of adaptive PI controller to control the 

speed of separately excited DC motor by self – tuning [23]. The designed 

controller to control the armature voltage while the field voltage was fixed as a 

constant. F.T. Tehrani in 2001 designed control system was proposed for oxygen 

therapy for premature infants [24]. The control software is used as well as a PI 

control algorithm to provide fast and efficient response to changes in arterial 

oxygen saturation of the infant detected by pulse oximetery.  

 

1.2.4. Review of PID Controllers  

 

  PID Control systems have been used with many industrial devices. Noor and 

Mahanijah in 2009 presented the comparison of performance between a PID 

temperature controller and a conventional on-off temperature controller for a 

home – applied refrigerator [25]. They designed PID and evaluated it using 

MATLAB Simulink software. They found that the proposed PID temperature 

controller performed better than the on-off controller in maintaining the set value 



15 
 

of the system which is the inner temperature of the refrigerator and PID controller 

was working more efficiently to maintain the inner temperature of the refrigerator 

than the on-off controller. M.H. Moradi in 2003 presented to design of predictive 

PID controllers [26]. He proposed that a controller can deal with future set points 

and the process dead time can be incorporated without any need for 

approximation. He found that the main advantages of the proposed controller 

were that it can be used with systems of any order and the PID tuning can be used 

to adjust the controller performance. Arulmozhiyal and Kandiban in 2012 

proposed an improved PID controller to control speed of brushes DC motor [27]. 

They presented simulation results of conventional PID controller and Fuzzy PID 

controller of the three brushless DC motor. They found that the Fuzzy controller 

showed better performance than PID controller at lower and high speeds. Taube 

and Pillutla in 1988 developed with another colleague for closed loop 

supplemental oxygen treatment of newborn [28]. They used PID control design 

for an adaptive control system to maintain blood oxygen levels at desired levels. 

This design was clearly usable in an intensive care nursery environment.          

 

1.2.5. Review of Model Predictive Controller (MPC) 

         Model Predictive Control (MPC) has been used in the academic and 

industrial studies. Alicia and Alejandro in 2010 proposed two controls to manage 

the air supply of the fuel-cell system [29]. They improved transient responses and 

better fuel-cell efficiency in the case of the efficiency maximization objective. 
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 C. Yu and W. He proposed a computer – based proportional – integral (PI) 

controller has been developed to control arterial oxygen levels in mechanically – 

ventilated animals [16]. They designed a multiple model adaptive control 

(MMPC) to desensitize the system to these gain variables and compared it with 

the PI controller.     

 

1.2.6. Review of Robustness Analysis  

Very little work has been done to analyze the robustness of controllers for an 

oxygen saturation control system. In 2001 Tehrani showed robustness by testing 

the control system for two different desaturation periods [23]. The model range of 

parameters for testing the robustness of the controller was not large enough and 

no techniques such as H-infinity robustness analysis were used to show that the 

control systems guaranteed robust performance and stability. Keim proposed a 

controller to control arterial oxygen saturation in neonatal infants [18].  Krone 

also proposed a robust controller to reject the disturbances caused by variations in 

Heart Rate (HR) and Respiratory Rate (RR) to keep the 𝑆𝑝𝑂2 at given set point 

[30]. Keim developed a single robust controller based on a linear model. The 

robust controller was designed based on an error model and performance 

specifications. Keim developed an adaptive controller based on estimate 

parameters and disturbances. The controller attempted to regulate the  𝐹𝑖𝑂2 while 

mitigate the affect of the disturbances. Krone   designed a robust controller with 

an average  𝑆𝑝𝑂2 of 6.623e-004% and a maximum 𝑆𝑝𝑂2 value of 0.0725%. The 
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𝑆𝑝𝑂2 was normalized at 90% and the 𝐹𝑖𝑂2 was normalized at 21%. The  𝑆𝑝𝑂2 

and  𝐹𝑖𝑂2 values presented were the difference between the actual values and the 

nominal values. 

 

1.3. Overview of Following Chapters 

 

       In Chapter 2, the respiratory system model by Yu will be used to 

analyze the model after desaturation periods. We have chosen this model 

because it has one input that is 𝐹𝑖𝑂2 and one output that is 𝑆𝑝𝑂2. This model 

was relinearized to find a linear model at the operating point. Data from 

Columbia Regional Hospital now known as the University of Missouri 

Women’s and Children’s Hospital will be discussed and used to compare and 

will use Yu’s model. In Chapter 3, we designed PI, PID, and MPC for the 

systems. A digital PI and PID controller designed to control  𝐹𝑖𝑂2  to get the 

range values of 𝑆𝑝𝑂2 between 85% to 92% with minimum overshoot and 

zero steady state error. A model Predictive Control (MPC) was designed to 

predict 𝑆𝑝𝑂2  by finding the best values of control horizon and moving 

horizon. The most important part of strategy was obtaining the control law. 

With the control law found, the values of 𝐹𝑖𝑂2 were determined that control 

the plant to get good response without peak overshoot and zero error steady 

state. In Chapter 4, a robust analysis of the system is performed and a robust 

controller is developed. The range of system gains and time constants used in 

the analysis are taken from Krone’s thesis [30].  It is shown that a single, 
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static controller can guarantee robust performance for all the ranges of 

parameters. In Chapter 5, an overview of the construction of the whole 

system with designing controller of an oxygen control prototype is presented. 

We suggest conclusions and a plan for future work. 
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Chapter 2: Methodology: Modeling the Respiratory System Model 

     

   2.1. Overview of the Respiratory System Model 

        We used model that is based on prior research completed by Yu. This model 

was a nonlinear model to describe the relationship between 𝑆𝑝𝑂2   with the 

input   𝐹𝑖𝑂2. In this investigation, we took modeling by Yu with the effect of 

heart rate (HR) and respiratory rate (RR) as disturbances. 

     There are two major parts in the respiratory system: the lungs and the 

circulating blood that transports the oxygen to the other part of the human body. 

In the lungs, there are three compartments. The first compartment of the lung with 

volume, 𝑉𝐴, is perfused with blood flow, 𝑄𝑝 , and is ventilated with a respiratory 

rate of �̇�𝐴. The second lung compartment corresponds to the dead zone in the 

lung. All dead zone in the lung is lumped into one parameter called the dead zone 

ratio, 𝑥𝑑. The ventilation to the first lung volume can be define as  

𝑉�̇� = ( 1 − 𝑥𝑑) �̇�𝐼
̇                                                 (2.1) 

where  �̇�𝐼 is the total respiratory rate. The third lung compartment is perfused with 

blood. It introduces a shunt ratio, 𝑦𝑠. The ratio will affect how much blood flow 

will reach the first lung compartment by  

𝑄𝑝 = (1 − 𝑦𝑠)𝑄                                                 (2.2)  
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where Q is the total blood flow to the respiratory system. We took linear and 

nonlinear models with the assumption that all flow is constant and unidirectional. 

Figure 2 shows the three - compartment lung model. 

 

Figure 2.  The System diagram of the three compartment lung model. 

For the first lung compartment, the mass balance equation is derived as  

�̇�𝐴 𝑉𝐴 = 𝑃𝐼�̇�𝐴 − 𝑃𝐴�̇�𝐴 +
273+𝑃𝑇

273 
( 

760 𝑚𝑚𝐻𝑔

100 𝑣𝑜𝑙%
 ) 𝑄𝑝(𝐶𝑣 − 𝐶𝑐) , and          (2.3) 

�̇�𝐴 𝑉𝐴 = 𝑃𝐼�̇�𝐴 − 𝑃𝐴�̇�𝐴 + 8.63𝑄𝑝(𝐶𝑣 − 𝐶𝑐)   ,                                        (2.4) 

where 𝑉𝐴 is the volume of the lung compartment where the alveoli are open and 

perfused with blood, �̇�𝐴  is the volume rate of change of inspiratory air to the lung 

sub compartment, 𝑄𝑝  is the pulmonary capillary blood flow; 𝑃𝐴  is the alveolar 

oxygen partial pressure in the lung, 𝐶𝑐 is the oxygen content of pulmonary end – 

capillary blood in vol, and 𝐶𝑣 is the oxygen content of mixed venous blood in 

vol% [12].  𝑃𝑇 is the patient’s temperature which is assumed to be 370𝐶. The 
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constant 8.63 is a factor to convert gas concentrations and saturated and saturated 

water vapor conditions to temperature and pressure under normal body 

conditions. 

    By taking a first – order Taylor series expansion to linearization the mass 

balance nonlinear differential nonlinear equation in the work by Yu is given as  

�̇�𝐴 𝑉𝐴 = �̇�𝐴 𝑉𝑜,𝐴 + ∆�̇�𝐴 𝑉𝐴 . 

𝑃𝐼�̇�𝐴 = 𝑃𝑜,𝐼�̇�𝐴 + 𝑃𝐼∆�̇�𝐴 . 

𝑃𝐴�̇�𝐴 = 𝑃𝑜,𝐴�̇�𝐴 + 𝑃𝐴∆�̇�𝐴.                                                           (2.5) 

𝐶𝑣 = 𝐶𝑜,𝑣 + 𝛽𝑣∆𝑃𝑣. 

𝐶𝑐 = 𝐶𝑜,𝑐 + 𝛽𝑐∆𝑃𝐴. 

  

   �̇�𝐴 𝑉𝑜,𝐴 + ∆�̇�𝐴 𝑉𝐴 = 𝑃𝑜,𝐼�̇�𝐴 + 𝑃𝐼∆�̇�𝐴 – 𝑃𝑜,𝐴�̇�𝐴 − 𝑃𝐴∆�̇�𝐴 +  8.63𝑄𝑝((𝐶𝑜,𝑣 +

 𝛽𝑣∆𝑃𝑣) − (𝐶𝑜,𝑐 + 𝛽𝑐∆𝑃𝐴)).                                             (2.6)  

  With initial value is zero we get  

 ∆�̇�𝐴 𝑉𝐴 = 𝑃𝐼∆�̇�𝐴 −  𝑃𝐼∆�̇�𝐴 +   8.63𝑄𝑝( 𝛽𝑣∆𝑃𝑣 − 𝛽𝑐∆𝑃𝐴) .                          (2.7) 

Where 𝑃𝑣 is the partial pressure of oxygen in the venous blood and is assumed 

equal to the partial pressure in the tissue compartment, 𝑃𝑇 . By substituting Eq 

(2.1) and (2.2) in (2.7) and get  
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∆�̇�𝐴 𝑉𝐴 = ( 1 − 𝑥𝑑) �̇�𝐼 ∆𝑃𝐼 − ∆𝑃𝐴( 1 − 𝑥𝑑) + 8.63 (1 − 𝑦𝑠)𝑄 ( 𝛽𝑣∆𝑃𝑣 −

 𝛽𝑐∆𝑃𝐴).        (2.8) 

 

∆�̇�𝐴 𝑉𝐴 = ( 1 − 𝑥𝑑)  �̇�𝐼 (∆𝑃𝐼 − ∆𝑃𝐴) +  8.63 (1 − 𝑦𝑠)𝑄 ( 𝛽𝑣∆𝑃𝑇 − 𝛽𝑐∆𝑃𝐴).                   

(2.9) 

It is shown that the system can be modeled in as an open – loop system without 

the feedback of the partial pressure of oxygen in the tissue as was done by Yu 

[12]. This assumption eliminates the ∆𝑃𝑇 term from Eq (2.9) and gets  

∆�̇�𝐴 𝑉𝐴 = ( 1 − 𝑥𝑑)  �̇�𝐼 (∆𝑃𝐼 − ∆𝑃𝐴) −  8.63 (1 − 𝑦𝑠)𝑄  𝛽𝑐∆𝑃𝐴.                                   

(2.10) 

At the steady state space gain that leads that term in the left side will be zero and 

after that we get 

 

( 1 − 𝑥𝑑)  �̇�𝐼 (∆𝑃𝐼 − ∆𝑃𝐴) =  8.63 (1 − 𝑦𝑠)𝑄  𝛽𝑐∆𝑃𝐴.                                                  

(2.11) 

( 1 − 𝑥𝑑)  �̇�𝐼 ∆𝑃𝐼 − ( 1 − 𝑥𝑑)  �̇�𝐼∆𝑃𝐴 =  8.63 (1 − 𝑦𝑠)𝑄  𝛽𝑐∆𝑃𝐴.                               

(2.12) 

( 1 − 𝑥𝑑)  �̇�𝐼 ∆𝑃𝐼 = ( 1 − 𝑥𝑑)  �̇�𝐼∆𝑃𝐴 +  8.63 (1 − 𝑦𝑠)𝑄  𝛽𝑐∆𝑃𝐴.                                

(2.13) 

By finding the ratio between ∆𝑃𝐴 to ∆𝑃𝐼 we get  
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∆𝑃𝐴

∆𝑃𝐼
= 

( 1−𝑥𝑑 ) �̇�𝐼

8.63 (1−𝑦𝑠)𝑄  𝛽𝑐+( 1− 𝑥𝑑)  �̇�𝐼 
 .                                       (2.14) 

The variation in  𝑃𝑎  per unit change in alveolar oxygen over a variation in the 

oxygen content due to the intrapulmonary shunt is  

∆𝑃𝑎

∆𝑃𝐴
=  

(1−𝑦𝑠)𝛽𝑐

𝛽𝑎
.                                                                      (2.15) 

The fractional composition of a gas is related to its partial pressure as  

 ∆𝑃𝐼

 ∆𝐹𝐼
 =  𝑃𝐵 − 𝑃𝐻2𝑜                                                   (2.16) 

where 𝑃𝐻2𝑜 is water vapor pressure and 𝑃𝐵 is the barometric pressure. We can get 

the steady state gain is  

𝐺𝑝 = 
∆𝑃𝐴

∆𝑃𝐼
 
∆𝑃𝑎

∆𝑃𝐴
 
 ∆𝑃𝐼

 ∆𝐹𝐼
= 

( 1−𝑥𝑑 ) �̇�𝐼

8.63 (1−𝑦𝑠)𝑄  𝛽𝑐+( 1− 𝑥𝑑)  �̇�𝐼 
 
(1−𝑦𝑠)𝛽𝑐

𝛽𝑎
 (𝑃𝐵 − 𝑃𝐻2𝑜).            

(2.17) 

Where the parameter  𝛽𝑎 is the equivalent to the slope of the tangent line of the 

oxygen dissociation curve at the current partial pressure of oxygen in artery.  

from Eq (10) can we get the homogenous equation as 

𝑉𝐴 

[(1−𝑥𝑑) �̇�𝐼+8.63 (1−𝑦𝑠)𝑄  𝛽𝑐] 
 ∆�̇�𝐴 + ∆𝑃𝐴 = 0.                         (2.18) 

Where the parameter  𝛽𝑐 is the apparent solubility of oxygen in whole blood in the 

alveolar. From Eq (10) a time constant for the lung can be 

𝜏 =  
𝑉𝐴 

8.63 (1−𝑦𝑠)�̇�𝑃  𝛽𝑐+( 1− 𝑥𝑑)  �̇�𝐼
= 

𝑉𝐴 

�̇�𝐴+ 8.63 �̇�𝑃  𝛽𝑐
.                        (2.19) 
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We can find the time constant at nominal condition when using nominal system 

parameters. 

      A linearized model of the respiratory system of neonatal infants is derived as  

𝜏∆𝑃𝑎𝑠 + ∆𝑃𝑎 = 𝐺𝑝∆𝐹𝑖𝑜2.                                                 (2.20) 

Where 𝐺𝑝 is the steady state system gain, ∆𝑃𝑎 is the linearized partial pressure of 

oxygen in the lung. The parameters for the linear system are computed at nominal 

conditions. To modify the system such that the output is 𝑂2  , the oxygen 

dissociation curve that was derived by Severinghaus is evaluated at the partial 

pressure of oxygen in the artery, 𝑃𝑎 [11]. The oxygen dissociation curve is defined 

by  

𝑆𝑝𝑂2 = 
1

23400[𝑃𝑎 
3+150𝑃𝑎]−1+1

 (100%).                        (2.21) 

    The curve of the oxygen dissociation can be seen in Figure 2. The derivative of 

equation (2.21) with respect to 𝑃𝑎 is computed at nominal conditions curve gain, 

𝐺𝑐, is used to convert  𝑃𝑎 to 𝑆𝑝𝑂2 by  

                                                     ∆𝑆𝑝𝑂2 = 𝐺𝑐∆𝑃𝑎𝑂.2                  

∆𝑆�̇�𝑂2 = 𝐺𝑐∆�̇�𝑎𝑂2.                         (2.22) 

From Eq (2.22) we can get  ∆𝑃𝑎𝑂2 as 

∆𝑃𝑎𝑂2 = 
∆𝑆𝑝𝑂2

𝐺𝑐
.                           (2.23) 

By substitution equation from (2.23) in (2.20) and get 
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𝜏
∆𝑆𝑝𝑂2

𝐺𝑐
 𝑠 + 

∆𝑆𝑝𝑂2

𝐺𝑐
= 𝐺𝑝∆𝐹𝑖𝑜2.                  (2.24) 

𝜏 ∆𝑆𝑝𝑂2 𝑠 + ∆𝑆𝑝𝑂2 = 𝐺𝑝 𝐺𝑐 ∆𝐹𝑖𝑜2.                   (2.25) 

𝜏 ∆𝑆𝑝𝑂2 𝑠 + ∆𝑆𝑝𝑂2 = 𝐺𝑝𝑐 ∆𝐹𝑖𝑜2.        (2.26) 

𝐺𝑝𝑐 = 𝐺𝑝 𝐺𝑐 .                (2.27) 

We can solve 𝛽 parameters from the derivation of the oxygen dissociation curve 

and is evaluated for the range of partial pressure of oxygen and is given by the 

equation  

𝑑𝑠𝑝𝑂2

𝑑𝑃𝑎
= 

23400(3𝑃𝑎
2+150)

(𝑃𝑎
3+150𝑃𝑎)2(

23400

𝑃𝑎
3+150𝑃𝑎

+1)2
.                        (2.28) 

In Figure 3, we can show the graph of the derivative of the oxygen dissociation 

curve. In the alveolar capillary that the partial pressure of oxygen is not known 

from this model and is solved for based on the output  𝑃𝑎. The alveolar capillary 

partial pressure is solved for using  

𝑃𝐴𝑂2 = 𝑃𝑎𝑂2 + 𝐾𝑎.                         (2.29) 

where 𝐾𝑎 is the alveolar – arterial oxygen difference [9]. The alveolar – arterial 

oxygen difference is assumed to be 1.5% which is the nominal difference between 

the two saturations. By using Eq (2.27) and the oxygen dissociation curve, the 

alveolar capillary partial pressure can be determined. 
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Figure 3. The Graph of the oxygen dissociation curve.  

 

Figure 4. Graph showing the derivative of the oxygen dissociation curve. 
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The linear model is expanding to include time varying parameters. Instead of 

keeping 𝛽𝑐 and 𝛽𝑎  constant, these parameters are allowed to vary based on the 

output  𝑃𝑎. By computing the derivative of the oxygen dissociation curve we can 

solve the 𝛽 parameters at the current partial pressure of oxygen. By combining 

Eqs (2.17), (2.19), and (2.26), we can form the nonlinear system model and by 

including nonlinear terms and is given by  

 

𝑉𝐴

�̇�𝐴+8.63 �̇�𝑃
 ∆𝑆𝑝𝑂2𝑠 + ∆𝑆𝑝𝑂2 = 

(1−𝑥𝑑)�̇�𝐼 (1−𝑦𝑠)𝛽𝑐(𝑃𝐵−𝑃𝐻2𝑜)

(8.63(1−𝑦𝑠)𝑄𝛽𝑎+(1−𝑥𝑑)�̇�𝐼 )
∆𝐹𝑖𝑂2        (2.30) 

From Eq (2.30) we can divide to three parts, the first part is the time constant, 𝜏, 

gain , 𝐺𝑝 , and and can see it in Figure ( 5) –(7) 

 

Figure 5. The block diagram of time constant  𝝉. 
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Figure 6. The block diagram of gain, 𝑮𝒑. 

 

Figure 7. The block diagram of  ∆𝑺𝒑𝑶𝟐. 

For different step inputs, we can compare the nonlinear and linear model. The 

values of nominal values of  𝛽𝑐  and  𝛽𝑎  are different in linear and nonlinear 

according to Yu and Batzal paper. The nominal value for the parameter 𝛽𝑐 in the 

linear model is 0.0105 vol%/mm Hg and the nominal value for the parameter 𝛽𝑎 

in linear model is 0.0166 vol%/mm Hg. These  𝛽  parameters vary for the 

nonlinear model. Now, we can compare the linear and nonlinear models when we 

supply 0.1% 𝐹𝑖𝑂2 step input is chosen for the first simulation, and an 8% 𝐹𝑖𝑂2is 
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chosen for the second. The nominal conditions for the system parameters are 

taken from Yu and Batzel and can be seen in Table 1 [16]. 

 

 

Table 1. The nominal parameters that we took from Yu and Batzal papers 

Parameter Nominal value 

𝑉𝐴 0.491 L 

�̇�𝐴 4 – 6 L/min 

Q 5 L/min 

𝑥𝑑 5% 

𝑦𝑠 5% 

𝑃𝐵 760 torr 

𝑃𝐻2𝑜 47 torr 

 

               Now, the parameters in the Table above put to Eq (2.30) to get the 

output 𝑆𝑝𝑂2 from the linear system model when supplying a 𝐹𝑖𝑂2 step input as in 

Figure 8. 
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Figure 8. Output SpO2 from the linear system models when supplying FiO2 step input. 
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Chapter 3: Controller of the System 

          This chapter describes three controller methods; Proportional – integral 

(PI), Proportional – Integral – Derivative (PID) and Model Predictive Control 

(MPC). Theses controllers need algorithms to define how the control action will 

affect the behavior of the output response and we derive each controller to be 

input  𝐹𝑖𝑂2 to the plant to get output  𝑆𝑝𝑂2. 

                 

 

 

3.1. Proportional Integral (PI) Controller. 

              A fixed proportional – integral (PI) controller was connected in feed - 

forward to control arterial oxygen saturation 𝑆𝑝𝑂2 by adjusting inspired oxygen 

fraction,  𝐹𝑖𝑂2. The performance of the feedback system was found to be sensitive 

to the open-loop plant gain. To get an acceptable transient behavior, the controller 

was tuned using trial and error selection of 𝐾𝑝 and 𝐾𝑑  in the closed – loop system 

as in Fig 9. 
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Figure 9. The Block diagram of PI Controller.  

 

The differential equation of the continuous PI controller is  

𝑢(𝑠) =  𝐾𝑝 𝑒(𝑠) +  
𝐾𝑖

𝑠⁄   𝑒(𝑠). 

The Bilinear method to convert the continuous Laplace transform to discrete Z-

transform equation is applied by substituting 

𝑠 =  
2

𝑇

𝑧 − 1

𝑧 + 1
. 

  

After finding the Z-transform, the discrete equation of the digital PI controller is 

found to be 

 

𝑢(𝑛) =  2𝑢(𝑛 − 1) + 𝐾𝑝𝑒(𝑛) − 𝐾𝑝𝑒(𝑛 − 1) + 0.5𝐾𝑖𝑇𝑒(𝑛) + 0.5𝐾𝑖𝑇𝑒(𝑛 − 1).      

(3.1) 



33 
 

 

where 𝑢(𝑛),  is an output of the controller has an upward physical limit of 

100% 𝑂2 and a lower bound of 21 % 𝑂2, 𝑇 is the discrete sampling time 𝑇 is 1 

sec.   By tuning 𝐾𝑝 and  𝐾𝑖  we get good performance and minimum peak over 

shoot and zero steady state error for SpO2 output. Simulation results using the PI 

control are in Fig (10) – Fig (19).  

             

 

Figure 10. Simulated closed – loop SpO2 with Kp = 0.5 and Ki = 5.  
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Figure 11. Simulated closed – loop SpO2 with Kp = 0.005 and Ki = 10. 

  

Figure 12. Simulated closed – loop SpO2 with Kp = 0.0005 and Ki = 20. 
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Figure 13. Simulated closed – loop SpO2 with Kp = 0.0005 and Ki = 25. 

 

Figure 14. Simulated closed – loop SpO2 with Kp = 0.0005 and Ki = 30.. 
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Figure 15. Simulated closed – loop SpO2 with Kp = 0.0005 and Ki = 40. 

 

Figure 16. Simulated closed – loop SpO2 with Kp = 0.0005 and Ki = 50. 
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Figure 17. Simulated closed – loop SpO2 with Kp = 0.05 and Ki = 55. 

 

Figure 18. Simulated closed – loop SpO2 with Kp = 0.05 and Ki = 10.  
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Figure 19. Simulated closed – loop SpO2 with Kp = 0.05 and Ki = 2.2.  

           The control action in Eq (3.1) is simulated with tuning 𝐾𝑝 and 𝐾𝑖 by trial 

and error by Matlab codes and applied as input 𝐹𝑖𝑂2 to the plant to get 𝑆𝑝𝑂2  

ranging from  85 − 93 %. In this test, the best response is in Fig 19 because there 

is no steady state error and minimum settling time and the value of 𝑆𝑝𝑂2 after 180 

sec.  
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  3.2. Proportional Integral Derivative (PID) Controller. 

                 The developed system uses a pulse oximeter for blood oxygen 

feedback signals and a computer program with a PID controller design as shown 

in Figure 20. It then sends a signal to a modified oxygen blender which delivers a 

specified FiO2 level to a newborn infant. The control was tuned by using the trial 

and error of 𝐾𝑝, 𝐾𝑖,  and 𝐾𝑑 in the closed – loop system as in Fig 20. 

The differential equation of continues PID controllers is  

 

𝑢(𝑠) =  𝐾𝑝 𝑒(𝑠) + 
𝐾𝑖

𝑠⁄  𝑒(𝑠) + 𝐾𝑠 𝑠 𝑒(𝑠). 

The Bilinear method to convert the continuous Laplace transform to discrete Z-

transform equation is applied by substituting 

𝑠 =  
2

𝑇

𝑧 − 1

𝑧 + 1
. 

 The discrete equation of the digital PID controller is  

 

𝑢(𝑛) =  𝑛(𝑛 − 2) + ( 𝑇𝑘𝑝 + 0.5𝑇2𝑘𝑖 + 2𝑘𝑑)𝑒(𝑛) + (𝑇𝑘𝑖 − 4𝑘𝑑)𝑒(𝑛 − 1) +

(2𝑘𝑑 + 0.5𝑇𝑘𝑖 − 𝑇𝑘𝑝)𝑒(𝑛 − 2)                                     (3.2) 
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where  𝑢(𝑛) is control unit that put to the plant, 𝑇 is the sampling time to convert 

the continuous to discrete time and it was o.1 sec. We got after simulation and by 

tuning values of  𝐾𝑝 ,  𝐾𝑖 and  𝐾𝑑 good performance and zero steady state error as 

in Fig 31 because the zero steady state error is zero and settling time is 170 sec. 

 

Figure 20. The block diagram of PID controller. 
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Figure 21. Simulated closed – loop SpO2 with Kp = 0.1, Ki = 100, and Kd = 0.00001. 

 

 

Figure 22. Simulated closed – loop SpO2 with Kp = 0.1, Ki = 50, and Kd = 0.00001. 
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Figure 23. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 1000, and Kd = 0.00001. 

Figure 24. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 2000, and Kd = 0.00001. 
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Figure 25. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 3000, and Kd = 0.00001. 

 

Figure 26. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 4000, and Kd = 0.00001. 
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Figure 27. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 4500, and Kd = 0.00001. 

 

Figure 28. Simulated closed – loop SpO2 with Kp = 0.00001, Ki = 5000, and Kd = 0.00001. 
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Figure 29. Simulated closed – loop SpO2 with Kp = 0.1, Ki = 1000, and Kd = 0.00001. 

 

Figure 30. Simulated closed – loop SpO2 with Kp = 0.001, Ki = 1000, and Kd = 0. 001. 
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Figure 31. Simulated closed – loop SpO2 with Kp = 0. 1, Ki = 300, and Kd = 0.0001. 

 

           The control action in Eq (3.2) is simulated with tuning 𝐾𝑝,𝐾𝑖 and 𝐾𝑑  by 

trial and error by matlab codes and applied as input 𝐹𝑖𝑂2 to the plant to get 𝑆𝑝𝑂2  

with ranging from85 − 93 %. In this test, the best response is in Fig 16 because 

there is no steady state error and minimum settling time and the value of 𝑆𝑝𝑂2 

after 170 sec.  
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  3.3. Model Predictive Control (MPC). 

       The main function of Model Predictive Control is to find the input signal that 

best corresponds to some criteria which predict how the system will behave by 

applying this signal. Model predictive control (MPC) was initially developed for 

the control of large constrained systems with slow dynamics and has found 

application in the process control industries. Model Predictive Control (MPC) is 

an optimal control strategy based on numerical optimization. Future control inputs 

and future plant responses are predicted using a system model and optimized at 

regular intervals with respect to a performance index. Predictive control has 

become the most widespread advanced control methodology current in use in this 

industry. MPC has been developed so that stability, optimality, and robustness 

properties are well understood. Advances in real – time computational abilities are 

making this approach attractive for a wider range of applications. There are many 

methods used to introduce a guarantee of stability into the design optimization. 

The use of an infinite prediction horizon, Model Predictive Control (MPC), also 

referred to as Receding Horizon Control and moving optimal control, has been 

widely adapted in industry as an effective means to deal with multivariable 

constrained control problems [31]. 

        Most control design techniques need a control model of the plant with fixed 

structure and parameters. If the control model were an exact, rather than an 

approximate, description of the plant and there were no external disturbances, the 
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process could be controlled by an open – loop controller. Feedback is necessary in 

process control because of the external perturbations and model inaccuracies in all 

real processed. 

        The process of robust control is to design a controller which keeps the 

stability and performance even the models inaccuracies. In order to model the 

system, the most common techniques are frequency response uncertainty and 

transfer function parametric uncertainty modeling. Figure 32 shows the block 

diagram of the basic structure of MPC. 

 

 

Figure 32. The Basic Structure of MPC. 
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3.3.1 MPC Strategy  

 The MPC Strategy is represented as in Figure 33. 

1 – The future outputs for a determined horizon𝑁, called the prediction horizon, 

are predicted at each instant  𝑡  using the process model. All the predicted outputs 

rely on the known values which are past inputs and outputs and on the future 

control signals (𝑡 + 𝑘), 𝑘 = 0,…… . , 𝑁 − 1 .  

2 – The Optimizing used to calculate the future control signals in order to keep 

the process as close as possible to the reference trajectory 𝑤(𝑡 + 𝑘)  uses a 

criterion that usually takes the form of a quadratic function of the error between 

the predicted output signal and the predicted reference trajectory. An explicit 

solution can be obtained if the criterion is quadratic, the model is linear and there 

are no constraints. Otherwise an iterative optimization method has to be used.  

3 – The control signal is sent to the process. 

         For this strategy, a model is used to predict the future plant outputs, based 

on past and current values and on the proposed optimal future control actions.  

These actions are calculated by the optimizer taking into account the cost function 

(where the future tracking error is considered) as well as the constraints. 

     Transfer function models, are simple and is used in many control design 

methods, and is valid for many kinds of processes. The state – space model is also 

used in some formulations. The optimizer is another fundamental part of the 

strategy as it provides control actions. If the cost is quadratic, its minimum can be 
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obtained as an explicit linear function of past inputs and outputs and the future 

reference trajectory. In the presence of inequality constraints the solution has to 

be obtained by more computationally taxing numerical algorithms.  

   In this work, we consider a mathematical system model of recovery from 

desaturation events developed based on respiratory system. We use the step 

response model of the respiratory system because it has one input, 𝐹𝑖𝑂2and one 

output , 𝑆𝑝𝑂2 , that is developed and completed  by Yu.    

  

Figure 33.  Receding Horizon strategy. 
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3.4 Dynamic Matrix Control  

        Dynamic Matrix Control (DMC) was the first model predictive control MPC 

algorithm and available in almost all commercial industrial distributed control 

systems. The DMC algorithm includes as one of its major components, a 

technique to predict the future output of the system as a function of the inputs and 

disturbances. This prediction capability is necessary to determine the optimal 

future control inputs.   

All the MPC algorithms possess common elements, and different options can be 

chosen for each one of these elements giving rise to different algorithms. These 

are three  

 

- Prediction Model 

- Objective Function 

- Obtaining the control law 

 

The model is the corner – stone of the MPC; a complete design should include the 

necessary mechanisms for obtaining the best possible model, which should be 

complete enough to fully capture the process dynamics. The use of the process 

model is determined by the necessity to calculate the predicted output at future 

instants  ŷ (𝑡 + 𝑘). 

       

The process model employed in this formulation is the step response of the plant 

given as  
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𝑦(𝑡) =  𝑔1(𝑡)∆𝑢(𝑡 − 1) + 𝑔2(𝑡)∆𝑢(𝑡 − 2) + 𝑔3(𝑡)∆𝑢(𝑡 − 3)+..        

(3.3) 

 

where   𝑔𝑖 are the sampled output values for the step input and  ∆𝑢(𝑡) = 𝑢(𝑡) −

 𝑢(𝑡 − 1) and 𝑁 is usually a high value for prediction.    

 

As an impulse can be considered as the difference between two steps with a lag of 

one sampling period, it can be written for a linear system that: 

ℎ𝑖 = 𝑔𝑖 − 𝑔𝑖−1                     𝑔𝑖 = ∑ ℎ𝑗
𝑖
𝑗=1  

where  ℎ𝑖 is the sampled output when the process is excited by a unit impulse. 

 

Now the predictions can be computed along the prediction horizon ( 𝑘 =

1, ………… , 𝑝 ), considering 𝑚 control actions. 

 

ŷ (𝑡 + 𝑝) =  𝑔1(𝑡)∆𝑢(𝑡 + 𝑝 − 1) + 𝑔2(𝑡) + ∆𝑢(𝑡 + 𝑝 − 2) + 𝑔3(𝑡) +

∆𝑢(𝑡 + 𝑝 − 3)+ . .. (3.4)   

 

Define the system’s dynamic matrix 𝐺 as: 

 

𝐺 =  

[
 
 
 
 
 

𝑔1 0
𝑔2 𝑔1

 ⋯        
0
0

⋮ 
𝑔𝑚 𝑔𝑚−1 ⋯    𝑔1

⋮         ⋱              ⋮    
𝑔𝑝 𝑔𝑝−1  …        𝑔𝑝−𝑚+1]

 
 
 
 
 

                 (3.5) 
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 and it can be written that  ŷ = 𝐺𝑢. 

 

Observe that 𝐺 is made up of  𝑚 (the control horizon) columns of the system’s 

step response appropriately shifted down in order. 

 

- ŷ  is a p – dimensional vector containing the system prediction along the 

horizon. 

- 𝑢 represents the m – dimensional vector of control increments. 

- This is the expression that relates the future outputs with the control 

increments. 

       In the objective function, plant operation requirements determine the 

performance criteria of the control system. These criteria must be expressed in 

mathematical terms so that a control law can be obtained in algorithmic form. In 

DMC, a quadratic objective function is used which can be stated in its simplest 

form as  

 

𝑚𝑖𝑛∆𝑢(𝑘)……∆u(k+m−1)  ∑ ‖𝑦([𝑦(𝑘 + 𝑙|𝑘) − 𝑟(𝑘 + 𝑙)])‖2𝑝
𝑙=1          

 

       This criterion minimizes the sum of squared deviations of the predicted CV 

values from a time – varying reference trajectory or set point   𝑟(𝑘 + 𝑙)  over  𝑝 
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future time steps. The quadratic criterion penalizes large deviations proportionally 

more than smaller ones, so that on the average the output remains close to its 

reference trajectory and large excursions are avoided. 

      where   𝑚 ≤ 𝑝  always. This means that DMC determines the next  𝑚 moves 

only. The choices of  𝑚 and  𝑝 affect the closed – loop behavior. Moreover,  𝑚 , 

the number of degrees of freedom, has a dominant influence on the computational 

effort. 

         Due to inherent process interactions, it is generally not possible to keep all 

outputs close to their corresponding reference trajectories simultaneously. 

Therefore, in practice only a subset of the outputs is controlled well at the expense 

of larger excursion in others. This can be influenced transparently by including 

weights in the objective function as follows: 

 

𝑚𝑖𝑛∆𝑢(𝑘)……∆u(k+m−1) ∑ ‖𝛤𝑙
𝑦([𝑦(𝑘 + 𝑙|𝑘) − 𝑟(𝑘 + 𝑙)])‖

2𝑝
𝑙=1            (3.6) 

 

      If a system with two outputs  𝑦1  and  𝑦2 , and constant diagonal weight 

matrices of the form 

 

𝛤𝑙
𝑦

= [
𝑙1 0
0 𝑙2

] 
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The objective becomes  

 

𝑚𝑖𝑛∆𝑢(𝑘)……∆u(k+m−1) {𝑙1
2 ∑ [( [𝑦1(𝑘 + 𝑙|𝑘) − 𝑟1(𝑘 + 𝑙)])]2𝑝

𝑙=1 +

{𝑙2
2 ∑ [( [𝑦2(𝑘 + 𝑙|𝑘) − 𝑟2(𝑘 + 𝑙)])]2𝑝

𝑙=1              (3.7) 

 

Thus, the larger the weight is for a particular output, the larger is the contribution 

of its sum of squared deviations to the objective. This will make the controller 

bring the corresponding output closer to its reference trajectory. 

       Finally, the manipulated variable moves that make the output follow a given 

trajectory could be too severe to be acceptable in practice. This can be corrected 

by adding a penalty term for the manipulated variable moves to the objectives as 

the following:  

 

𝑚𝑖𝑛∆𝑢(𝑘)  ∑ ‖ 𝛤𝑙
𝑦[( [𝑦(𝑘 + 𝑙|𝑘) − 𝑟(𝑘 + 𝑙)])]‖

2𝑝
𝑙=1 + ∑ ‖ 𝛤𝑙

𝑢[∆𝑢(𝑘 + 𝑙 − 1]‖2𝑚
𝑙=1                       

(3.8) 

 

Note that the larger the elements of the matrix  𝛤𝑙
𝑢 are the smallest the resulting 

moves will be, and consequently, the output trajectories will not be followed as 

closely. Thus, the relative magnitude of  𝛤𝑙
𝑦

  and  𝛤𝑙
𝑢 will determine the trade – 

off between following the trajectory closely and reducing the action of the 

manipulated variables. 
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For any assumed set of present and future control moves ∆𝑢(𝑡), ∆𝑢(𝑡 +

1),…… . , ∆𝑢(𝑡 + 𝑚 − 1) then the future behavior of the process outputs 𝑦(𝑡 +

1), 𝑦, … . , 𝑦(𝑘 + 𝑝|𝑘)  can be predicted over a horizon   𝑃 . The 𝑚  present and 

future control moves (𝑚 ≤ 𝑝) are computed to minimize a quadratic objective of 

the form as in Eq (3.6). 

where  𝛤𝑙
𝑦

 and  𝛤𝑙
𝑢  are weighting matrices to penalize particular components of 

𝑦 or 𝑢 at certain future time intervals. 𝑟(𝑘 + 1) is the vector of future reference 

values (set point). At the first sampling, the 𝑚  control moves and ∆𝑢(𝑘)  is 

implemented. At the next sampling interval, new values of the measured output 

are obtained, the control horizon is shifted forward by one step, and the same 

computations are repeated. The moving horizon is leading to get the control law, 

the feedback control law is  

∆𝑢(𝑘) = 𝐾𝑀𝑃𝐶𝐸𝑝(𝑘 + 1|𝑘)                                                    (3.12) 

where  𝐸𝑝(𝑘 + 1|𝑘) is the vector of predicted future errors over the horizon 𝑃 

which would result if all present and future manipulated variable moves were 

equal to zero ∆𝑢(𝑘) =  ∆𝑢(𝑘 + 1) = ⋯ = 0. 

The nominal stability of the closed – loop system in the open – loop stable plants 

depends only on 𝐾𝑀𝑃𝐶  which depends on the values of horizon 𝑝 and, the number 

of  𝑚  and the weighting matrices 𝛤𝑙
𝑦

 and  𝛤𝑙
𝑢. The value of 𝛤𝑙

𝑢 is used as a tuning 

parameter which means that increasing 𝛤𝑙
𝑢 always has the effect of making the 

control action less aggressive.  
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          The objective of a DMC controller is to drive the output as close to the set 

point as possible in a least –squares sense with the possibility of the inclusion of a 

penalty term on the input moves. Disturbances and modeling errors may lead to 

deviations between the predicted behavior and actual observed behavior so that 

the computed manipulated variable moves are actually implemented. The DMC 

algorithm includes as one of its major components a technique to predict the 

future output of the system as a function of the inputs and disturbances. The 

prediction is necessary to determine the optimal future control input.  

     The optimization problem with a quadratic objective and linear inequalities, 

which it has defined is a Quadratic Program. By converting to the standard QP 

formulation the DMC problem becomes: 

 

𝑚𝑖𝑛∆𝑢(𝑘)   ∆𝑢(𝑘)𝑇 𝐻𝑢∆𝑢(𝑘) − 𝑔(𝑘 + 1)𝑇 ∆𝑢(𝑘)            (3.13) 

 

where the Hessian of the QP is  

𝐻𝑢 = 𝐷𝑇𝛤𝑙
𝑦𝑇

𝛤𝑙
𝑦
𝐷 + 𝛤𝑙

𝑢𝑇
 𝛤𝑙

𝑢                          (3.14) 

and the gradient vector is  

g(k + 1)  =  2 𝐷𝑇 𝛤𝑙
𝑦𝑇

 𝛤𝑙
𝑦
 𝐸𝑝(𝑘 + 1)                (3.15) 

 



58 
 

The DMC algorithm is implemented on – line as follow. 

1. Preparation. Do  not very the manipulated variables for at least n time 

intervals  ∆𝑢(−1) =  ∆𝑢(−2) = ⋯ = ∆𝑢(−𝑛) = 0.  

2. Initialization (k = 0). Measure the output �̂�(0) and initialize the model 

prediction vector. 

3. State Update: Set k = k+1. Then, update the state according to  

 

�̃� (𝑘) = 𝑀. �̃� (𝑘 − 1) + 𝐷 ∆𝑢(𝑘 − 1) 

where the first element of  �̃� (𝑘), is the model prediction of the output at 

time k. 

4. Compute the reference trajectory error vector  

𝐸𝑝(𝑘 + 1) = 𝑅(𝑘 + 1) − 𝑀�̃� (𝑘) + 𝐼𝑝(𝑦𝑚(𝑘) − �̃�(𝑘))  

5. Compute the QP gradient vector  

𝑔(𝑘 + 1) =  𝐷𝑇𝛤𝑙
𝑦𝑇

𝛤𝑙
𝑦
 𝐸𝑝(𝑘 + 1)     

 

6. Solve the QP  

 

𝑚𝑖𝑛∆𝑢(𝑘)   ∆𝑢(𝑘)𝑇 𝐻𝑢∆𝑢(𝑘) − 𝑔(𝑘 + 1)𝑇 ∆𝑢(𝑘) 

7. Go to 3. 

 

  In a moving horizon framework that QP in (3.13) is solved at each controller 

execution time after a new prediction is obtained. The only time varying elements 



59 
 

in this problem are the vectors 𝐸𝑝(𝑘 + 1) (or equivalently g (k+1)). That is, the 

Hessian 𝐻 of the QP remains constant for all executions. In that case, a parametric 

QP algorithm which employs the pre-inverted Hessian in its computations is 

preferable in order to reduce on-line computation effort. Of course, in case either  

𝛤𝑙
𝑦

 or  𝛤𝑙
𝑢 (or the step response coefficients) need to be updated, or the model’s 

step response coefficients have changed, the Hessian must be recomputed and 

inverted in background mode in order not to increase the on – line computational 

requirements. 
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Figure 34. Gain Kmpc of the closed loop system at  𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟏𝟎.   

 

Figure 34. b) Output SpO2 with manipulated variable at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟏𝟎. 
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Figure 35. a) Gain Kmpc of the closed loop system at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟐𝟎.   

 

 

Figure 35. b) Output SpO2 with manipulated variable at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟐𝟎. 

 



62 
 

 

Figure 36. a) Gain Kmpc of the closed loop system at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟓.   

 

 

 

Figure 36. b) Output SpO2 with manipulated variable at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟓 
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Figure 37. a)  Gain Kmpc of the closed loop system at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟐   

 

 

Figure 37. b) Output SpO2 with manipulated variable at 𝜞𝒚 = 𝟏,  𝜞𝒖 = 𝟐 
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Not that the larger the elements of the matrix  𝛤𝑙
𝑢 were, the smaller the resulting 

moves will be, and consequently, the output trajectories didn’t follow as closely. 

Therefore, the relative magnitude of 𝛤𝑙
𝑦

 and  𝛤𝑙
𝑢  determined the trade – off 

between the trajectory closely and reduced the action of the manipulated variable. 

The best response is in Fig (34) because there is no steady state error and 

minimum settling time and the value of 𝑆𝑝𝑂2 after 65 sec.  

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Chapter 4: Robustness  

 

4.1 Robust Control Oriented Modeling. 

            The first step in robust control oriented modeling is to get a model of the 

plant uncertainty using knowledge of the likely range of parameter variations. The 

system gain and time constant parameter ranged were shown in [30] the gain was 

from 1.6 to 6 and time constant from 0.1   to 200.  The ranges of parameters are 

found from transfer function model obtained by Krone. In order to account for 

perturbation in the system parameters, a multiplicative uncertainty transfer 

function weight, 𝑊𝐼, was added to the system. The multiplicative uncertainty error 

is defined as  

𝐸𝐼(𝑠) =  
𝐺𝑝(𝑠)−𝐺𝑛𝑜𝑚(𝑠)

𝐺𝑛𝑜𝑚(𝑠)
                                                         (4.1) 

where  𝐺𝑛𝑜𝑚  is the nominal plant and 𝐺𝑝  is the perturbation plant from the 

nominal. The nominal plant had a system gain of 1.6 and a time constant of 

0.5561 seconds. The 𝐺𝑛𝑜𝑚  was calculated by gain uncertainty multiplied the 

nominal plant. The line solid plotted in Fig 38.b is the  𝑊𝐼  uncertainty weight 

bounding the maximum error for all values of frequencies by plotting the 

multiplicative uncertainty transfer function, and we can see that in Figures 38.a 

and 38.b. A block diagram with uncertainty can be seen in Figure 39. The transfer 

function for the multiplicative uncertainty is  
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𝑤𝐼 = 
0.8 𝑠+  0.2

𝑠+0.375
                                             (4.2) 

 

(a) 

 

(b) 

Figure 38. (a)  Multiplicative uncertainty transfer function bounding the maximum error for the set 

parameter range  

(b) Bode plot for transfer function of  𝒘𝑰. 
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Figure 39. Block diagram of robust control model with multiplicative uncertainty. 

 

 

4.1.1 Robust Control Design 

        The nominal model was chosen for the control design. The safe level SpO2 

is 92% for a neonatal infant. The controller was designed to reject disturbances 

that tend to drive the SpO2 from the nominal set point conditions. The desired 

bandwidth frequency, 𝜔𝑏 , 1 radians/second obtained by finding the bandwidth 

frequency of the nominal model. A performance weight, 𝑤𝑃(𝑠), is multiplied by 

the error signal that corresponds to a maximum allowed 1% error at frequencies 

below the 𝑤𝑏 and 50% error at high frequencies. The performance weight, 𝑤𝑃(𝑠), 

is defined as    

𝑤𝑃(𝑠) =  
1

𝑀
 𝑠+𝜔𝑏 

𝑠+𝐴 𝜔𝑏
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where 𝑀 is high frequency , 𝐴 is the low frequency error , and 𝜔𝑏 is  band width 

for |
1

𝑤𝑝(𝑗𝑤)
|. The  |𝑆(𝑗𝑤)| is the magnitude of error the system and |

1

𝑤𝑝(𝑗𝑤)
| be 

upper bound on S or largest acceptable error is  

|𝑆(𝑗𝑤)| <  |
1

𝑤𝑝(𝑗𝑤)
|      ∀ 𝜔 

and for condition above we can get parameters of   𝑤𝑃(𝑠) as  

𝑤𝑃(𝑠) =  
1

2
 𝑠+𝜔𝑏 

𝑠+0.1 𝜔𝑏
                               (4.3) 

 

Figure 40 shows the Bode diagram of the performance weight, and  𝑤𝑢, is added 

onto the control signal to limit its maximum value.     

 

Figure 40.  Bode diagram of the 𝒘𝑷 performance weight 
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The block diagram in Figure 24 was transformed to form a diagram of the form in 

Fig 26. The generalized plant matrix, P, the P matrix for this system is  

 

[

𝑦∆

𝑧1

𝑧2
𝑣

] =  [

0 0 𝑤𝐼

−𝐺𝑤𝑃 𝑤𝑃 −𝐺𝑤𝑃

0 0 𝑤𝑢

−𝐺    1    −𝐺

] [
𝑢∆

𝑑
𝑢

]                   (4.4) 

𝑃11 = [
0 0

−𝐺𝑤𝑃 𝑤𝑃

0 0
]                     (4.5) 

𝑃12  [

𝑤𝐼

−𝐺𝑤𝑃

𝑤𝑢

]                                          (4.6) 

𝑃21 = [−𝐺 1]                              (4.7) 

𝑃22 = [ −𝐺]                                          (4.8)         

 

  where  𝐺𝑃 is the nominal system gain, 𝐺 is the nominal plant transfer function, 

the output 𝑧1 is connected to the weighted error signal, and output 𝑧2 is connected 

to the weighted control signal. The block diagram of the P matrix appears in 

Figure 41. 
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Figure 41.  Block diagram of the P matrix structure. 

 

 

 

       The 𝜇  - synthesis controller optimization is needed since a structure  

 matrix is considered where when the performance and uncertainty are included in 

the controller optimization. The  matrix can be defined as  

 

= [
∆ 0
0 ∆𝑃

]                           (4.9) 

  where   ∆𝑃 is the performance uncertainty and ∆ is the model uncertainty. 
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            There is one input 𝑦∆  , and one output 𝑢∆  for matrix ∆. There are two 

inputs 𝑧1 and 𝑧2 and one output, 𝑑 for matrix  ∆𝑃. The configuration of  𝑁 − ∆ 

can been seen in Figure 42 and it is combined of P matrix and controller and using 

the lower fractional transformation (LFT) as  

 

𝑁 = 𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)−1𝑃21                       (4.10) 

 

 

Figure  42.  Block diagram of the 𝑵 − ∆ configuration. 

In Matlab, dksyn.m was used to conduct the 𝜇 – synthesis design. The controller 

has one input, 𝑣, and one output , 𝑢. The resulting controller transfer function is  

𝑘 =  
633.2 𝑠 + 1146

𝑠2 + 490.7𝑠 + 24.53
 

    The conditions were checked for robust stability and performance and nominal 

stability and performance, so we took the matrices N and P. For the nominal 

stability, the closed-loop system must be in the left - half plane, so the system is 

nominally stable. Nominal performance checks to see if the controller performs 

according to the performance criteria under nominal conditions. The test for 

nominal performance is given as,  
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𝑁𝑃 = |𝑊𝑃(𝑗𝑤)(1 + 𝐾𝐺)−1|
∞

 

To check the nominal performance, the inequality must hold for frequencies [32].  

 

                                                          ‖𝑁22‖∞ ≤ 1                                    (4.11) 

 

      The system is nominally stable if only if the values of  𝑁22 less than one and 

can be seen the nominal performance  by plotting the H-infinty norm as shown in 

Figure 43.  

 

 

Figure 43. The H-infinity norm of 𝑵𝟐𝟐 is less than one for all frequencies. 
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For the robust stability , 𝑁11 is less or equal one for all frequencies and that the 

system is robust stable [31]. The equation for robust stability is  

𝑅𝑆 =  |𝑊𝑖(𝑗𝑤)𝐾𝐺(1 + 𝐾𝐺)−1|
∞

 

 The inequality  

‖𝑁11‖∞ ≤ 1                                                       (4.12 ) 

To achieve robust stability the maximum value from Eq (4.12) must be less than 

one. 

The h-infinity norm of  𝑁11 can bee seen in Figure (44 ). 

 

Robust performance checks to see if the controller performs according to the 

performance criteria over a range of input. Robust performance can be checked 

using Eq (4.13). 

 

𝑅𝑃 =  |𝑊𝑃(𝑗𝑤)(1 + 𝐾𝐺)−1|
∞

+  |𝑊𝑖(𝑗𝑤)𝐾𝐺(1 + 𝐾𝐺)−1|
∞

        (4.13) 

𝜇 (𝑁, ) < 1                                                   (4.14) 

The recursive algorithms and the iterative algorithms can estimate the parameters 

of linear regressive models from observation data [34-36].  



74 
 

              The 𝜇-synthesis controller is found to have robust performance which 

can bee seen in Figure (45). We can see that the amplitudes of max singular value 

and 𝜇-synthesis are less than one and that means that the robust controller is 

found to be able to achieve a desirable performance given the level of uncetainty 

in the system that was modeled.  

 

 

Figure 44. The H-infinity norm of 𝑵𝟏𝟏 is less than one for all frequencies for the 𝝁-synthesis controller.        
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Figure 45. The maximum singular value and structured singular value of the N matrix is less than one 

for all frequencies. 

 

 

4.2. Robust Control with MPC Controller. 

 

      4.2.1. Recursive Least Square (RLS) 

         For robust performance, the structured singular value of N must be below 

one for the entire frequency range and can be defined by the inequality in some 

matrix equations, and the parameter estimation algorithm can be implemented in a 

recursive form. Therefore, it is necessary to compute the criterion function in a 

recursive form since the criterion function values can measure the parameter 
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estimation accuracy [37]. To estimate the model control system that in model 

predictive section, we must find the coefficients of the polynomial of estimate 

system. This is usually accomplished by assuming a discrete time form for the 

control system model and then using a recursive estimation algorithm to obtain 

estimates of the parameters of the model. To determine the coefficient of the 

model parameters using the recursive least square, a scheme of new input/output 

data becomes available at each sample interval. The model based on past 

information (summarized in 𝜃 ,(𝑡 − 1) as a vector of unknown) is used to obtain 

an estimate 𝑦(𝑡) to generate an error  𝜀(𝑡). This in turn generates an update to the 

model which corrects 𝜃 ,(𝑡 − 1) to the new value𝜃 ,(𝑡). This recursive “predictor – 

corrector” form allows significant saving in computation, requiring the storage of 

all previous data. It is both efficient and elegant to merely store the “old” estimate 

calculated at time𝑡, denoted b  𝜃 ,(𝑡), and to obtain the “new” estimates 𝜃 ,(𝑡 + 1) 

by an updating step involving the new observation only. Recursive Least Square 

(RLS) is used as on – line identification [38 - 39]. 

The algorithm below was used to calculate the recursive least square.  

 

(i) From 𝑥(𝑡 + 1) using the new data. 

(ii) From 𝜀(𝑡 + 1) using  𝑋𝑇(𝑡 + 1). 

 

 

𝜀(𝑡 + 1) =  𝑦(𝑡 + 1) − 𝑋𝑇(𝑡 + 1)   𝜃 ,(𝑡)  
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(iii) From using  

𝑝(𝑡 + 1) =  𝑝(𝑡) [𝐼𝑚 + 
𝑥(𝑡 + 1)𝑋𝑇(𝑡 + 1)𝑝(𝑡 + 1)

1 + 𝑋𝑇(𝑡 + 1)𝑝(𝑡)𝑥(𝑡 + 1)
] 

(iv) Update   𝜃 ,(𝑡) 

 

𝜃 ,(𝑡 + 1) =    𝜃 ,(𝑡) + 𝑝(𝑡 + 1)𝑥(𝑡 + 1) 𝜀(𝑡 + 1) 

 

(v) Wait for the next time step to elapse and loop back to step (i). 

 

Now, we used RLS in the algorithm above to get an estimate of the control 

modeling system to get the discrete differential equation 𝑦(𝑛) and after that to 

convert the discrete equation to z-domain and after that convert to s- domain by 

using bilinear equation as shown in Figure 46. 

The discrete differential equation for control in MPC after RLS algorithm is  

𝑢(𝑛) = 0.01529 𝑢(𝑛 − 1) + 0.0075 𝑢(𝑛 − 2) + 0.7226 𝑢(𝑛 − 3)

+ 0.5515 𝑒(𝑛 − 1) + 0.5515 𝑒(𝑛 − 2) 

The Laplace transforms function for control in MPC after converting z- transform 

to  s – domain is  

𝑢(𝑠)

𝑒(𝑠)
=  

0.1234  𝑠2 + 0.8769 𝑠 + 1.879

𝑠3 + 0.3257 𝑠2 + 4.3313 𝑠 + 0.08534
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Figure 46. The real control output with the identification by RLS. 

 

 

4.2.2.   Robustness with Model Predictive Control. 

        The nominal model was chosen for control design. The safe level SpO2 is 

92% for a neonatal infant. The controller was designed to reject disturbances that 

tend to drive the SpO2 from the nominal set point conditions. The desired 

bandwidth frequency, 𝜔𝑏 , 1 radians/second obtained by finding the bandwidth 

frequency of the nominal model. A performance weight, 𝑤𝑃(𝑠), is multiplied by 

the error signal that corresponds to a maximum allowed 1% error at frequencies 
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below the 𝑤𝑏 and 50% error at high frequencies. The performance weight, 𝑤𝑃(𝑠), 

is defined as    

𝑤𝑃(𝑠) =  
1

𝑀
 𝑠+𝜔𝑏 

𝑠+𝐴 𝜔𝑏
    

where 𝑀 is high frequency , 𝐴 is the low frequency error , and 𝜔𝑏 is  band width 

for |
1

𝑤𝑝(𝑗𝑤)
|. The  |𝑆(𝑗𝑤)| is the magnitude of error the system and |

1

𝑤𝑝(𝑗𝑤)
| be 

upper bound on S or largest acceptable error is  

|𝑆(𝑗𝑤)| <  |
1

𝑤𝑝(𝑗𝑤)
|      ∀ 𝜔 

and for condition above we can get parameters of   𝑤𝑃(𝑠) as  

  

 

𝑤𝑃(𝑠) =  
1

6
 𝑠+0.05 

𝑠+0.5∗0.05
                               (4.3) 

 

Figure 47 shows the Bode diagram of the performance weight and  𝑤𝑢, is added 

onto the control signal to limit its maximum value.     
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Figure 47.  Bode diagram of the 𝒘𝑷 performance weight. 

 

 

The conditions were checked for robust stability and performance and nominal 

stability and performance, so we took the matrices N and P. For the nominal 

stability, the closed-loop system must be in the left - half plane, so the system is 

nominally stable. We performed nominal performance checks to see if the 

controller performs according to the performance criteria under nominal 

conditions. The test for nominal performance is given as 

𝑁𝑃 = |𝑊𝑃(𝑗𝑤)(1 + 𝐾𝐺)−1|
∞

 

To check the nominal performance, the inequality must hold for frequencies [32].  
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                                                          ‖𝑁22‖∞ ≤ 1                                    (4.11) 

 

      The system is nominally stable if only if the values of  𝑁22 are less than one 

and can be seen the nominal performance  by plotting the H-infinty norm in 

Figure 48.  

 

 

Figure 48. The H-infinity norm of 𝑵𝟐𝟐 is less than one for all frequencies. 
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is robust stable [31]. The equation for robust stability is  
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‖𝑁11‖∞ ≤ 1                                                       (4.12 ) 

To achieve robust stability the maximum value from Eq (4.12) must be less than 

one. 

The h-infinity norm of  𝑁11 can bee seen in Figure (49 ). 

 

Robust performance checks to see if the controller performs according to the 

performance criteria over a range of input. Robust performance can be checked 

using Eq (4.13). 

 

𝑅𝑃 =  |𝑊𝑃(𝑗𝑤)(1 + 𝐾𝐺)−1|
∞

+  |𝑊𝑖(𝑗𝑤)𝐾𝐺(1 + 𝐾𝐺)−1|
∞

        (4.13) 

 

         For robust performance, the structured singular value of N must be below 

one for the entire frequency range and can be defined by the inequality  

 

𝜇 (𝑁, ) < 1                                                   (4.14) 

              The 𝜇-synthesis controller is found to have robust performance which 

can bee seen in Figure 50. We can see that the amplitudes of max singular value 

and 𝜇-synthesis are less than one and that means that the robust controller is 
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found to be able to achieve a desirable performance given the level of uncetainty 

in the system that was modeled.  

 

Figure 49. The H-infinity norm of 𝑵𝟏𝟏 is less than one for all frequencies for the 𝝁-synthesis controller.          

 

Figure 50. The maximum singular value and structured singular value of the N matrix is less than one 

for all frequencies. 
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Chapter 5. Illustration of Prototype  

 

5.1 Overview of Device 

          The most problems for nurses are how takes care in the neonatal intensive 

care unit to adjust 𝐹𝑖𝑂2setting. The aim of this prototype is to maintain the level 

of care to neonate to help the nurses to reduce manual intervention and time that 

is needed to react to the alarms. The block diagram of device can be seen in 

Figure 51.  

 

 

Figure 51. Block Diagram of the device and connections. 

 

The main branch of the whole devices consists of how to design it to turn the 

blend valve automatically. The DC motor has a built in encoder to measure the 

angular position of the motor shaft as shown in Figure 52.a. The angular   position 

of the motor shaft can be measured by a DC motor as shown in Figure 52. b. The 
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motor is controlled by a National Instruments sbRIO microcontroller. There are 

two motors and four port serial adapter for microcontroller.   

 

 

Figure 52. a) DC motor with encoder. 
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(b) 

Figure 52. b. Knob tuning device connected to the blend valve knob. 

     

            The microcontroller will sample the patient’s vital signs from the port of 

Spacelab patient monitor, and these signals will be processed by software 

programming that is loaded onto the microcontroller via a laptop that is connected 

by link cable. The microcontroller can adjust the value of 𝐹𝑖𝑂2 percentage based 

on patient vital signs and we can see the microcontroller in Figure 53. 
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Figure 53. The National Instruments sbRIO microcontroller and power supply. 
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Chapter 6: Conclusion and Signification 

 

6.1. Conclusion of Data  

        A model for neonatal infants developed by Yu [12] was selected because 

there is one input that is 𝐹𝑖𝑂2 and other modes depend on lumped parameter and 

non-invasive measurements. The main problem is how we can introduce 𝐹𝑖𝑂2 to 

produce 𝑆𝑝𝑂2 between 85% to 93% to keep the infants alive without suffering 

from hypoxemia. In this dissertation, we designed PI, PID, MPC, Robust PID, and 

Robust MPC controllers to compare between them, which is the best model to 

use. The goal is to reduce the amount and spending time of harmful desaturation 

for the neonate and to reduce some of the demanding workload of nurses in the 

neonatal intensive care unit. The most points that are investigated in this 

dissertation are mathematical modeling, identification, controllers, and prototype 

instruction. 

        A nonlinear system model is developed on the system model by Yu [12]. 

This system model is chosen because it has one input and one output, and does 

not require invasive measurements to simulate, the input is 𝐹𝑖𝑂2 for a control 

input and output 𝑆𝑝𝑂2 for system model comparison. The linear system model 

simulates how the premature infant recovers after a desaturation event. By taking 

a first – order Taylor series to linearization and after that we got a linear equation 

with one input and one output. 
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        In the PI digital controller, we achieved a good response for output without 

zero steady state, and the minimum settling time was 180 sec. That needs more 

estimated values for 𝐾𝑝  and 𝐾𝐼  after converting the control law from the 

continuous domain to the discrete domain by bilinear method. The PI controller 

has large overshoots and large steady state error when using large values of 𝐾𝐼 but 

when decreasing the values of 𝐾𝐼 got good response with low overshoot and zero 

steady. 

       In the PID controller, we got a good response for output without zero steady 

state, and the minimum settling time at 170 sec. that needs more estimated values 

for  𝐾𝑝, 𝐾𝐼 and 𝐾𝑑 after converting the control law from the continuous domain to 

the discrete domain by bilinear method. The PID controller has large overshoots 

and large steady state error when using large values of 𝐾𝐼 and small values of 𝐾𝑝 

but when decreasing the values of 𝐾𝐼 and increasing values of 𝐾𝑝  got good 

response with low overshoot and zero steady. 

        The Model Predictive controller was very good in response for 𝑆𝑝𝑂2 with 

the input value for control input 21%. MPC needs to be produced first to find the 

prediction model, then it must be complete enough to fully capture the process. In 

this work, we used the step response produced by DMC to predict the future 

response of plant. DMC is a form of control algorithm in which the current 

control action is obtained by solving a finite horizon open-loop optimal control. 

This process is repeatedly done for each sampling point. The optimization yields 

an optimal control sequence, and the first control in this sequence is applied to the 
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plant. The parameters of control horizon and prediction horizon should be kept 

short to reduce the computational effort. We took some parameters for prediction 

control and the control horizon to see which values are useful for designing. In 

general, we concluded that the value of the control horizon should be small to 

keep the computational effort manageable, and the value of prediction horizon 

should large as possible to completely capture the consequences of the control 

action. On the other hand, the weight matrix was very important for the output to 

be close to its reference trajectory that we wanted for  𝑝𝑂2. The larger the weight 

is for a particular output, the larger is the contribution of its sum of squared 

deviations to the objective.  

Finally, the manipulated variable that makes the output follow a given trajectory 

moves, and the relative magnitude of weight matrix determined the trade - off 

between following the trajectory closely and reducing the action of the 

manipulated variable. In the result from the design of the MPC, we achieved 

𝑆𝑝𝑂2 to be a minimum settling time of 105 sec and zero steady state error. 

       A robust control system based on the PID controller was introduced to the 

plant using the range of parameters found from Bradley Krone’s thesis [30]. For 

the robust control system, a nominal model is chosen and perturbations due to 

system parameters from this nominal model are used to create a multiplicative 

error model. A 𝜇- synthesis controller optimization is used to find a controller 

such that the 𝐻∞ norm between the inputs and outputs must be less than one. . We 

showed that the result of controller can guarantee stability and performance for 

whole range of model parameters. Robust model predictive controller was 
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analyzed, we did get the robust stability, nominal performance and robust 

performance. The robust controller is found to have a robust stability and 

performance, but with a low bandwidth frequency due to a conservative control 

design required to achieve robust stability with an extremely high level of model 

error.  

In the robust controller with MPC, we estimated modeling for controller in MPC 

by RLS and got an accurate response for 𝐹𝑖𝑂2 by supplying error as input to get 

modeling. By converting function of the controller from discrete to continuous 

and put it as a function in s – domain to use it in robust control.  The result we got 

was very accuracy with an error model created a 𝜇 - synthesis controller 

optimization routine. The main goal of the robust controller was analyzed for 

performance and stability. It was shown to be more nominally stable and have 

nominal performance and robust stability and performance. We showed that the 

result of controller can guarantee stability and performance for a whole range of 

model parameters. 

 

We designed a robust control with Model Predictive Control to get a high 

accuracy response to be more nominally stable and to have nominal performance 

and robust stability and performance. We showed that the result of this controller 

can guarantee stability and performance for a whole range of model parameters. 

Therefore, the Robust MPC is superior to other controllers because it is more 

accurate to prove stability and performance for whole range of model parameters. 
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The robust with PID and robust with MPC control systems are compared to a 

static PI, PID, and MPC controllers. The PI and PID digital controller are 

designed by using bilinear method and by trial and error. The controllers are 

tested using a simulation with varying parameters. The PI controller has large 

overshoots and large steady state error when using large values of 𝐾𝐼  but we got 

good response with low overshoot and zero steady stare with varying low values 

of 𝐾𝐼  but it is less accurate than the robust MPC controller. The PID controller 

has low overshoot and zero steady state error with decreasing the values of 𝐾𝐼 and 

increasing values of 𝐾𝑝 but we got that with many attempts for trial and error. In 

MPC is very accurate with no overshoot and zero steady state, and faster than 

using PI and PID. The robust with PID is found to have robust stability and 

performance but the robust with MPC is more accurate guarantee stability and 

performance for whole range of model parameters. 

Future research on controller for arterial saturation in neonatal in infants should 

investigate the use of the Robust MPC in more neonates because it has range of 

uncertainty and more robust stability and performance to alleviate a load work for 

nurses. 
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Appendices 

 

Appendix A:    Nomenclature 

 

RDS         Respiratory distress syndrome 

ROP         Retinopathy of prematurity 

𝑆𝑝𝑂2        Arterial oxygen saturation 

 𝐹𝑖𝑂2        Fraction of inspired oxygen 

𝑉𝐴             Ventilated part of the lung is perfused with blood 

 �̇�𝐼             Total respiratory rate 

 𝑥𝑑            Dead space ratio 

𝑉�̇�             Respiratory rate of the 𝑉𝐴 section of the lung model 

𝑄𝑝            Pulmonary blood flow 

𝑄             Total blood flow to respiratory system 

𝑃𝐴            The alveolar oxygen partial pressure in the lung 

𝐶𝑐            The oxygen content of pulmonary end – capillary blood in vol% 

𝐶𝑣            The oxygen content of mixed venous blood in vol% 



94 
 

𝑃𝑇           The patient’s temperature 

𝑃𝑣            The partial pressure of oxygen in the venous blood 

∆𝑃𝐴          Linearized alveolar oxygen partial pressure in the lung 

∆𝑃𝐼          Linearized partial pressure of oxygen in inspired air 

𝛽𝑎         Apparent solubility of oxygen in arterial blood 

𝛽𝑐         The apparent solubility of oxygen in whole blood in the alveolar 

𝑦𝑠          Shunt ratio 

𝑃𝑎          Partial pressure of oxygen in the artery 

 𝑃𝐻2𝑜     Water vapor pressure 

𝑃𝐵          Barometric pressure 

𝐺𝑝         Steady state system gain 

𝐺𝑝𝑐        Total steady state system gain for linear system  

𝜏            Time constant for the lung model 

 𝑠           Laplace variable 

𝑃𝑎          Partial pressure of oxygen in the artery 

𝐺𝑐          Oxygen dissociation curve 

𝐾𝑎          Alveolar – arterial oxygen difference 
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∆𝑃𝐼         Linearized partial pressure of oxygen in inspired air 

𝐾𝑝           Proportional gain 

𝐾𝑑           Derivative gain 

𝐾𝑖            Integral gain 

𝑢(𝑠)        The output of controller 

𝑧             Z – Transform variable 

𝑇             Discrete sampling time 

ŷ (𝑡 + 𝑘)  Predicted output at future instants   

𝑔𝑖             Sampled output values for the step input 

∆𝑢(𝑡)       Variation of step input 

ℎ𝑖              Sampled output 

𝐺               System’s dynamic matrix 

𝑝                Dimensional vector of the system prediction along the horizon 

𝑚               Dimension vector of control increment 

𝛤𝑙
𝑦

              Weighting matrices to penalize particular components of 𝑦 

𝛤𝑙
𝑢              Weighting matrices to penalize particular components of  𝑢 

𝑦(𝑡 + 1)     Output predicted over a horizon 𝑝 
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𝑟(𝑘 + 1)      Vector of future reference values (set point) 

𝐸𝑝(𝑘 + 1|𝑘) Vector of predicted future errors over the horizon 𝑝 

𝐾𝑀𝑃𝐶            Stability of the closed – loop system gain 

𝑊𝐼(𝑠)           Multiplicative uncertainty transfer function weight 

𝐺𝑝(𝑗𝜔)         Perturbation plant used in error modeling analysis 

 𝐺𝑛𝑜𝑚(𝑗𝜔)    Nominal plant used in error modeling analysis 

 𝐸𝐼(𝑗𝜔)         Multiplicative uncertainty error 

𝑤𝑃(𝑠)           Error performance weight 

𝑤𝑢(𝑠)           Control signal performance weight 

𝜔𝑏                Bandwidth frequency of the error performance weight 

∆                  Model uncertainty 

∆𝑃                Performance uncertainty 

𝐾(𝑠)           Robust control  

𝑃                 Generalized plant matrix 

𝑋(𝑡)            Output and input matrix 

𝜀(𝑡)             Error between the true outputs with estimation output 

  𝜃 ,(𝑡)          Estimation output 
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𝑝(𝑡)             Auto – correlation matrix      
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