
MODELING PROTEIN-LIGAND INTERACTIONS

WITH APPLICATIONS TO DRUG DESIGN

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

SAM Z. GRINTER

Dr. Xiaoqin Zou, Dissertation Supervisor

MAY 2014



The undersigned, appointed by the Dean of the Graduate School, have examined the

dissertation entitled:

MODELING PROTEIN-LIGAND INTERACTIONS

WITH APPLICATIONS TO DRUG DESIGN

presented by Sam Z. Grinter,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion,

it is worthy of acceptance.

Dr. Xiaoqin Zou

Dr. Dmitry Korkin

Dr. Jianlin Cheng

Dr. Ioan Kosztin



DEDICATION

To my family, who have served as inspiration and encouragement throughout life.



ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge my research advisor, Dr. Xiaoqin Zou,

who has devoted a great deal of time and energy through the years to encourage my growth

as a student and researcher. I would also like to acknowledge the other members of my

committee, Dr. Dmitry Korkin, Dr. Jianlin Cheng, and Dr. Ioan Kosztin, each of whom has

been a source of encouragement and training.

For enjoyable and enlightening discussions, I thank the members of the laboratory of

Dr. Xiaoqin Zou: Dr. Sheng-You Huang, Dr. Liming Qiu, Dr. Xianjin Xu, Dr. Shan Chang,

Chengfei Yan, Lin Jiang, Zhiwei Ma, and Benjamin Merideth, several of whom were also

co-authors of the research in this dissertation. Additionally, I would like to acknowledge the

experimentalists with whom we have collaborated during my doctoral research: those within

the laboratory of Dr. Salman Hyder including Dr. Yayun Liang and those within the laboratory

of Dr. Jianmin Cui. Discussions with two additional professors, Dr. Toni Kazic and Dr. Marco

Ferreira, provided insights relevant to the research in this dissertation. I have worked with

a few other professors on projects outside the scope of this dissertation: Dr. T. C. Huang,

Dr. Linda Randall, Dr. Adam Helfer, and Dr. Peter Pfeifer, all of whom provided a fulfilling

research experience.

I would like to thank the University of Missouri Informatics Institute (MUII), Department

of Physics and Astronomy, Department of Mathematics, and Dr. Chi-Ren Shyu, director of

MUII, for their supportive role in my undergraduate and graduate education. Support for

my graduate training was also provided by the National Library of Medicine Predoctoral

Fellowship (T15 LM07089, PI: Dr. Eduardo Simoes).

ii



Finally, I would also like to thank the numerous other people who throughout my life

have provided encouragement, inspiration, advice, and intellectual stimulation. There are

too many to list, but I will finish by mentioning three people who were instrumental in

my choice of an academic career path. Dr. Alex Iosevich provided me with a repeatedly

useful background in mathematical problem-solving skills; Dr. Jerzy M. Wrobel inspired me

to pursue an undergraduate degree in physics; finally, Rick L. Knowles provided me with an

early exposure to biology and the scientific method.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Knowledge-Based Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Evaluation of Docking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Biomedical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Virtual Database Screening . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Challenges in Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Scoring in Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Sampling in Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Recent Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Protein-Ligand Docking Approaches . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Screening for New Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Hybrid Approaches for Drug Design . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Mechanistic Studies Using Inverse Docking . . . . . . . . . . . . . . . . 26

iv



2.3.4 Docking for Detailed Binding Analysis . . . . . . . . . . . . . . . . . . . 27

2.4 Docking Benchmarks and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Making Testable Predictions . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Assuming Lack of Knowledge of the Native, Bound Conformation . . . 29

2.4.3 Assessing Binding Mode Predictions Involving Symmetric Molecules . . 30

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Improving Knowledge-Based Scoring Functions . . . . . . . . . . . . . . . . 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Consensus sparse data method . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Derivation of the weights A and B . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Estimation of sparse data inaccuracies . . . . . . . . . . . . . . . . . . . 40

3.2.4 The potential of mean force as a probability density function . . . . . . 43

3.2.5 The force-field-based potential . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6 Implementations of the other sparse data methods . . . . . . . . . . . . 47

3.2.7 Scoring function evaluations . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Evaluating Docking Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Summary of Evaluations Performed . . . . . . . . . . . . . . . . . . . . 66

4.2.2 CSAR Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 MDock Docking Preparation . . . . . . . . . . . . . . . . . . . . . . . . 70

v



4.2.4 Scoring Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Binding Affinity Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Binding Mode Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Active/Inactive Compound Discrimination . . . . . . . . . . . . . . . . . 81

4.3.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Application to Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 In Silico Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Cell Viability Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.3 p53 Activation Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 In Silico Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Cell Viability Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 p53 Activation Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX

A CSV Data File Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



LIST OF TABLES

2.1 Percent distribution of the gene families targeted by FDA-approved drugs . . . 6

5.1 Predicted energy components of PRIMA-1 and Ro 48-8071 docked to OSC . . 96

A.1 CSV Datafile Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.2 Size of CSAR Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



LIST OF FIGURES

3.1 Probability density function for upmf . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Example complex from the binding mode evaluation of STScore . . . . . . . . 54

3.3 Performance of STScore1 and STScore2, compared to their component potentials 56

3.4 Binding affinity predictions of STScore1 and STScore2 as scatterplots . . . . . . 57

3.5 Performance of several popular scoring functions along with STScore1 and

STScore2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Performance of STScore1 and STScore2, compared to other sparse data methods 60

4.1 Binding affinity and binding mode prediction accuracy of ITScore, STScore,

and VDWScore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Example binding modes for the six protein groups . . . . . . . . . . . . . . . . 79

4.3 Active/inactive compound discrimination of ITScore, STScore, and VDWScore,

as receiver operating characteristic (ROC) curves . . . . . . . . . . . . . . . . . 82

5.1 Chemical structure and 3D structure of PRIMA-1 . . . . . . . . . . . . . . . . . 89

5.2 Flowchart illustrating the inverse docking and assay approach . . . . . . . . . 92

5.3 Ribbon depiction of oxidosqualene cyclase (OSC) with PRIMA-1 shown in its

docked position along with Ro 48-8071 . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Effect of Ro 48-8071 on normal and breast cancer cell viability . . . . . . . . . 97

5.5 PRIMA-1 and Ro 48-8071 increase p53-DNA binding in BT-474 breast cancer

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



ABSTRACT

Protein-ligand docking methods streamline the process of drug design by helping identify

new chemical entities that bind to proteins. These methods provide a simplified model of

protein-ligand interactions that may be used to predict the affinity and binding mode of

a ligand for a protein receptor of interest. The protein receptor in question can be an

important disease target, permitting docking methods to play the important role of hypothesis

generation in early-stage drug discovery. The success of such methods depends greatly on

the extent to which they can provide a good tradeoff between accuracy and computational

efficiency, so researchers are very interested in the relative advantages of models that attempt

to approximate the physical processes involved in protein-ligand binding. In this dissertation,

we review the literature on protein-ligand docking methods, focusing especially on those

methods used for structure-based drug design. We develop new methodology for deriving

knowledge-based scoring functions, which are used in protein-ligand docking and many

other applications. We present a large-scale evaluation of our docking methods, with special

emphasis on the importance of accurate sampling of protein and ligand flexibility during

docking. Finally we present a structure-based virtual screening study that serves as a practical

application of the docking methods.
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CHAPTER 1

Introduction

1.1 Knowledge-Based Scoring Functions

One commonly-used approach for modeling protein-ligand interactions is the knowledge-

based (or statistical potential-based) scoring function. Knowledge-based scoring functions

attempt to abstract the many physical interactions involved in protein-ligand binding into a

simpler set of features [1–3]. Energies are assigned to this simpler set of features based on their

relative prevalence in a training set of suitable examples, such as a set of crystal structures

of native protein-ligand complexes [4]. Knowledge-based scoring functions have been used

successfully in a wide variety of applications, but still face a number of open problems

including the reference state problem and the sparse data problem [5], as described in the

next chapter.

In this dissertation, we present our novel approach to handle the sparse data problem

in knowledge-based scoring functions. The basis for this sparse data method is a Bayesian

statistical model of the relationship between sparse data errors in knowledge-based scoring

functions and the availability of training data. This model was used to choose the weights

in a consensus approach, which combines the knowledge-based scoring function with an

alternative force-field-based potential that does not rely on training data. This weighting

scheme gives less weight to the knowledge-based scoring function for any atom-pair types

or distances that occur rarely in the training data, thus providing a natural way to deal with

the sparse data problem. We demonstrated the utility of our method by developing it as a

scoring function for protein-ligand interactions called STScore. The performance of STScore
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is promising. For example, STScore achieved a binding mode prediction success rate of 91%

using the set of 100 complexes by Wang et al. [6], as described in Chapter 3. The methods

developed in this dissertation for protein-ligand docking may be generalized to many other

applications such as protein-protein docking and protein structure prediction.

1.2 Evaluation of Docking Methods

We performed further comparative evaluations of STScore and other docking methods using

the full 2012 Community Structure-Activity Resource (CSAR) data set, including 757 com-

pounds, the majority with known affinities, and 57 crystal structures [7]. We used the full

CSAR data set for binding affinity prediction and active/inactive compound discrimination,

and the subset with crystal structures to additionally evaluate the performance of the scoring

functions on binding mode predictions. This study gives special attention to the problem

of ligand and protein flexibility in docking, and the importance of adequate conformational

sampling. Using the subset with crystal structures, we found that the binding affinity pre-

dictions are less sensitive to non-native ligand and protein conformations than the binding

mode predictions. We also found the full CSAR data set to be more challenging in making

binding mode predictions than the subset with structures. We developed a set of scripts

for preparing the CSAR data set for docking, and these are offered freely to the academic

community. This comparative evaluation is discussed in Chapter 4.

1.3 Biomedical Application

We also employed protein-ligand docking methods in an inverse docking study to search

for new potential anti-cancer protein targets. In this study, we used our docking software

package MDock to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for

its ability to restore mutant p53 protein’s tumor suppressor function, leading to apoptosis in

2



several types of cancer cells [8]. The highest-ranked human protein of our PRIMA-1 docking

results is oxidosqualene cyclase (OSC). In followup experiments that treat OSC as a possible

anti-cancer target, we showed that both PRIMA-1 and Ro 48-8071, a known potent OSC

inhibitor [9], significantly reduce the viability of BT-474 and T47-D breast cancer cells relative

to normal mammary cell controls. In addition, like PRIMA-1, we found that Ro 48-8071

causes increased binding of p53 to DNA in BT-474 cells (which express mutant p53).

1.4 In a Nutshell

This dissertation is organized as follows. Chapter 2 reviews the literature on structure-based

virtual database screening. In particular, it covers the background within the field of rational

drug design. It also discusses the classic challenges facing docking methods and the recent

methodological advances, as well as popular applications, methods of evaluation, and future

directions. Chapter 3 presents new methodology for knowledge-based scoring functions.

Aside from protein-ligand interactions, our method could be applied to protein structure

prediction and protein-nucleic acid docking as well. In Chapter 4 we present our large-scale

docking evaluation study, with results relevant to the work in Chapter 3. Finally, in Chapter 5

we present an application of structure-based virtual database screening.

3



CHAPTER 2

Literature Review

The work in this chapter will be published in a special issue of Molecules entitled “In-Silico

Drug Design and In-Silico Screening.”

Abstract

The docking methods used in structure-based virtual database screening offer the ability

to quickly and cheaply estimate the affinity and binding mode of a ligand for the protein

receptor of interest, such as a drug target. These methods can be used to enrich a database of

compounds, so that more compounds that are subsequently experimentally tested are found

to be pharmaceutically interesting. In addition, like all virtual screening methods used for

drug design, structure-based virtual screening can focus on curated libraries of synthesizable

compounds, helping to reduce the expense of subsequent experimental verification. In

this review, we introduce the protein-ligand docking methods used for structure-based drug

design and other biological applications. We discuss the fundamental challenges facing these

methods and some of the current methodological topics of interest. We also discuss the main

approaches for applying protein-ligand docking methods. We end with a discussion of the

challenging aspects of evaluating or benchmarking the accuracy of docking methods for their

improvement, and discuss future directions.
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2.1 Introduction

In the not-so-distant past, the effects of drugs on disease were known only by empirical

observation. A century of subsequent research has revealed many intricacies in the work-

ing of cellular receptors and other drug targets, and likewise the methodology of finding

small molecules that bind to specific targets has become increasingly complex. This devel-

opment has been marked by the realization that the interacting surfaces of cellular receptors

are chemically active and often flexible, and that these properties tend to be critical to the

biological effects of the small molecules, or ligands, that bind to these receptors. Within this

climate of complexity, the field of rational drug design emerged to play an important role in

the search for new medications [10].

An important early step in rational drug design is the identification of a biological target

of interest [11]. This target of interest may be as simple as the ligand receptor of an enzyme

whose over-activity is associated with disease; a compound that attenuates the enzyme’s

action by competitive inhibition would be pharmaceutically interesting. However, there are

many other types of drug targets and a variety of chemicals that bind to them (see Table 2.1

for a list of the most frequently-targeted gene families) [12].

Rational drug design aims to use knowledge of the biological target of interest to opti-

mize the process of finding new medications. It may be divided into two broad categories:

de novo drug design, in which a novel compound is designed from scratch, and virtual

database screening, in which computational methods are used to search through libraries

of small molecules, in order to find those that are predicted to be the most likely to bind

to a drug target of interest [10]. De novo drug design has the advantage of versatility; only

the imagination and the need to synthesize the compound in question limit its conceptual

possibilities. However, this advantage can also be a disadvantage. New compounds can

prove difficult or expensive to synthesize, constraining the number of new compounds that

5



Table 2.1: The percent distribution of the gene families targeted by FDA-approved drugs as
of 2005. These statistics were compiled by Overington et al. from FDA data in 2005 [12].

Portion of Drugs Family of Drug Target

26.8 % Rhodopsin-like GPCRs
13.0 % Nuclear receptors
7.9 % Ligand-gated ion channels
5.5 % Voltage-gated ion channels
4.1 % Penicillin-binding protein
3.0 % Myeloperoxidase-like
2.7 % Sodium: neurotransmitter symporter family
2.3 % Type II DNA topoisomerase

≈ 35 % (other)

may be subsequently analyzed by experiment. In addition, predicting the interactions of en-

tirely novel compounds is inherently difficult. One approach to help mitigate the synthesis

problem is combinatorial chemistry, in which an easy-to-synthesize scaffold is chemically

modified at various positions of attachment, by adding chemical building blocks. This ap-

proach allows for more rapid synthesis of new chemical entities, but the diversity of the

new compounds may be limited in certain respects, especially chirality [13]. Virtual database

screening is another approach that helps mitigate the synthesis problem. In this approach,

screening usually focuses on large databases of synthesizable compounds and makes use of

knowledge of known binders to the drug targets of interest or structural knowledge of the

drug receptors themselves. The performance of these three approaches can be enhanced

by the identification of hot spots, which refers to small regions within a druggable binding

pocket that are more likely to contribute to the binding free energy [14, 15].

2.1.1 Virtual Database Screening

The main goal of rational drug design is to find a new molecule that binds to and changes the

activity of a drug target, given information about that drug target or the ligands that bind to

it. In virtual database screening, one uses computational techniques to search a database of

6



compounds for small molecules predicted to bind to a drug target [16]. Such predictions are

not meant to replace experimental affinity determination, but virtual screening methods can

compliment the experimental methods by producing an enriched subset of a large chemical

database; the enriched subset is one in which the proportion of compounds that actually

bind to the drug target of interest is increased, compared to the proportion within the whole

database [17]. Thus, compounds from the subset that pass the initial virtual screening are

found to be pharmaceutically interesting at a higher rate and at a lower cost.

In principal, the methods used in virtual screening may be applied to any conceiv-

able compounds, but in practice one usually focuses on curated libraries of purchasable

or synthesizable compounds, or close analogues of such compounds. Some examples in-

clude Accelrys Available Chemicals Directory (Accelrys, Inc. http://accelrys.com), eMolecules

Database (eMolecules, Inc. http://www.emolecules.com/), and the free ZINC database (http:

//zinc.docking.org/) [18].

There are two general types of virtual screening: ligand-based virtual screening ad

structure-based virtual screening. In ligand-based virtual screening, properties of a set of

ligands known to bind to the drug target of interest are used to build a model for the com-

mon features believed to be important for a ligand’s biological effects. This model can then

be used to find new ligands that share these common features [19]. In structure-based virtual

screening, the ligands are modeled as physical entities and computational techniques are

used to attempt to dock the ligands to a binding sites of interest [16].

Ligand-based virtual screening

The process of optimizing the properties of a lead compound in drug design tends to em-

ploy the premise that small changes in a biologically active compound will tend to lead to

small changes in its physiochemical properties [20]. The underlying premise of ligand-based

screening methods is similar. In ligand-based virtual screening, the structural and chemical
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properties of a ligand known to bind to a drug target of interest are used to find other com-

pounds predicted to bind to the same target, or compounds predicted to have other similar

properties which may be of interest.

There are a variety of ways that ligand-based virtual screening is undertaken. The basic

physicochemical properties of molecules such as volume or partition coefficient (log P), may

be related to their biological activities using regression or machine learning models such

as support vector machines. The resulting models associate the biological activity of com-

pounds to their structural properties and are therefore called quantitative structure–activity

relationship models (QSAR models) [21].

Expanding on this theme, one can look at the common structural and chemical features

(such hydrophobic/hydrophilic chemical groups and hydrogen bond donors/acceptors) of

ligands known to bind to a drug target of interest. The analysis of these known binders can

be used to build a structural map, known as a pharmacophore model, of the set of features

believed to be most important for molecular recognition. One can then use this model to find

other compounds that share the desired features. Producing good pharmacophore models

can be difficult, due to a variety of challenges such as ambiguities in defining protonation

states, but are nevertheless very popular for virtual database screening [22].

A simpler ligand-based approach is the 2D chemical similarity search. One can use the

2D connectivity data describing the active substructure of a known binder and search for

analogous compounds that contain the same substructure with the database of compounds.

To include more dissimilar results, one can include non-exact substructure matches that are

ranked by measures of structural similarity, such as the Jaccard-Tanimoto similarity coefficient

[23], or affinity fingerprints [24, 25].
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Structure-based virtual screening (protein-ligand docking)

In structure-based virtual screening, a set of small molecules are computationally docked to

a binding site of interest. Protein-ligand docking software attempts to sample the possible

ways each ligand can be positioned in the protein receptor of interest, and provide estimates

of the affinity and binding mode of a ligand for the protein receptor of interest [26–29].

Protein-ligand docking methods require a structural representation of the binding site, which

may come from X-ray crystal structures, NMR experiments, or homology models [30]. The

structure of the small molecules may similarly come from crystal structures, but for large-scale

database screening, it is often necessary to model the possible conformations de novo.

There is a great variety of software packages available for performing protein-ligand

docking. Some popular ones include DOCK [31–36], AutoDock [37], LUDI [38], FlexX [39, 40],

GOLD [41], Glide [42, 43], and AutoDock Vina [44], in addition to MDock [45–49], developed

in our laboratory. An exhaustive review of literature-cited protein-ligand docking software

packages was presented in reference 50. Depending on factors such as the scoring function

and sampling exhaustiveness, the docking software used to perform structure-based virtual

database screening may vary greatly in speed, but is often slower than the ligand-based

methods. While the ligand-based methods tend to be quite fast, they have the disadvantage

that they require a set of ligands known to bind to the target. The ability of ligand-based

method to find new active compounds is greatly dependent on the diversity or exhaustiveness

of the set of ligands used to build the model [51]. The present review will focus primarily

on structure-based methods, but will occasionally refer to ligand-based methods, given the

complementary role they often play in the drug design process.

In summary, we will review the application, methodologies, and evaluation of the protein-

ligand docking approaches. In Section 2.2, we will introduce the basics of computational

protein-ligand docking, discussing the fundamental challenges faced by these methods, and
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follow with some recent challenges that have been intensely researched in the last two years.

In Section 2.3 we will sample the main approaches used in the biological application of

protein-ligand docking methods. In Section 2.4 we discuss the benchmarks and evaluations

used to compare the success of various protein-ligand methods. Finally, we end with some

discussion and remarks about the future direction of the field.

2.2 Challenges in Protein-Ligand Docking

As aforementioned, protein-ligand docking software attempts to sample the possible ways

a ligand can be positioned in a protein receptor of interest, and typically provide an esti-

mate of the binding affinity and binding mode of a ligand for the protein receptor [26–28].

Docking involves an intrinsic trade-off between the speed of the docking algorithm and its

accuracy. In an attempt to achieve higher accuracy, one can employ more advanced scoring

functions or more exhaustive sampling of the possible binding modes and flexibility, but

these modifications usually add to the computational cost. This tradeoff is very evident in

large-scale virtual database screening, in which the number of compounds involved tends to

place practical limits on the available computational time per compound. Despite all these

challenges, protein-ligand docking methods have enjoyed considerable success in applica-

tions [52]. In this section, we will first introduce the basic methodologies of docking in the

context of the two fundamental challenges: sampling and scoring. We will then discuss more

recent methodological work.

2.2.1 Scoring in Protein-Ligand Docking

An essential component of docking methods is the scoring function. In protein-ligand dock-

ing, the scoring function typically assesses the overall favorability of a protein-ligand complex

and is meant to be comparable to the free energy of binding of the protein and ligand [53, 54].
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There are other attributes than one may want to score for practical reasons such as toxicity

and properties related to absorption, distribution, metabolism, and excretion [55]. In addi-

tion, even within the sampling algorithm itself it may be advantageous to use more than

one scoring function; for example one can use a quick, simple scoring function to discard

the worst binding modes before assessing the rest more thoroughly [34, 56]. However, ac-

curately predicting binding free energy with a general scoring function, while a lofty goal,

would revolutionize the utility of the docking methods in drug design and other applications

[57].

Computing the binding affinities of protein-ligand complexes cannot yet be done very

accurately by a general scoring function. The calculation is especially challenging due to the

combinatorial explosion of possible conformational states of the flexible protein and ligand,

and of the surrounding water molecules and ions. In addition, the binding process involves

a balance between many different physical interactions: a flexible ligand may gain favorable

interactions upon binding, while simultaneously suffering a substantial entropic penalty as a

result of binding. For example, charged polar groups may gain favorable electrostatic inter-

actions when binding, while simultaneously losing favorable interactions with the solvent.

Even when polar groups are solvent-exposed, as they like to be, this energetic favorabil-

ity is partially tempered by the loss of entropic freedom of nearby water molecules. The

contribution of each of these interactions can be substantial, yet tend to cancel each other

out; therefore the total binding free energy involves a delicate balance, and inaccuracies in

the computation of any one type of interaction can lead to substantial inaccuracies in the

computation of total binding free energies [53].

Here we discuss the three main types of scoring functions used for docking. Firstly, there

are the force-field-based approaches, which attempt to exhaustively model the many types

of interactions involved in protein-ligand binding using physics-based functional forms and
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parameters that are derived from experiments or quantum mechanical simulations. Secondly,

there are empirical approaches, in which regression or machine learning methods are used to

associate the desired prediction, typically the binding affinity of the complexes, with general

features of those complexes such as the number of hydrogen-bonding pairs. Finally, there are

statistical potentials, in which energy-like terms are assigned to structural features of protein-

ligand interactions based on the frequency with which those features occur in a training set

of protein-ligand complexes.

Force-field-based potentials

Force-field-based potentials can be used in protein-ligand docking as well as molecular dy-

namics (MD) simulations. They generally include a number of terms representing the various

kinds of physical interactions that dominate protein-ligand binding. There are many popular

force-field-based potentials in use for various applications, but most of them are quite similar

in functional form. The main differences between them are which terms are including in

the functional form and which specific values are used for the parameters in those terms.

These parameters can be derived for experiment or fitted based on quantum mechanical

simulations [58]. Consequently, the entities that are referred to as force fields in docking and

MD simulations are typically sets of a parameters for use with the functional forms described

below. One popular functional form of the force-field based potentials is the one associated

with the AMBER molecular dynamics software package [59].

The AMBER force fields take the following functional form [60].

EAMBER = Eangle + Ebond + Edihedral + Enon−bonded (2.1)

Eangle =
∑

angles

Kθ(θ − θ0)
2 (2.2)
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Ebond =
∑

bonds

Kr(l− l0)
2 (2.3)

Edihedral =
∑

torsions

∑
n

1
2
Vn[1 + cos(nω − γ)] (2.4)

Enon−bonded =

N−1∑
j=1

N∑
i=j+1

fij

{
ϵij

[(
r0ij
rij

)12

− 2

(
r0ij
rij

)6]
+

qiqj
4πϵ0rij

}
(2.5)

Eangle and Ebond are harmonic approximations of the bond angle and strain energies,

respectively, and Edihedral are energy terms associated with the dihedral angles of linearly-

bonded sets of four atoms (especially, the backbone dihedral angels of proteins). The term

Enon−bonded aggregates the non-bonded interactions: a Lennard-Jones 6-12 potential which

approximates the van der Waals attraction and Pauli replusion [61], and an electrostatic po-

tential term.

The ff94 force field, which uses the AMBER functional form, has been very popular for

simulating proteins [58], as have several subsequent versions such as AMBER 99SB force field,

which differs from ff94 in the parameters associated with the backbone torsion angels [58].

The general AMBER force field (GAFF) offers parameters suitable for simulating small organic

molecules such as drugs [59].

The CHARMM force fields are similar the AMBER force fields, but include some additional

terms.

ECHARMM = Eangle + Ebond + Edihedral + Enon−bonded + Eimproper + EUB (2.6)

EUB =
∑

Urey−Bradley

KUB (S− S0)
2 (2.7)

Eimproper =
∑

impropers

Kω(ω − ω0)
2 (2.8)

The terms Ebond , Eangle , Edihedral , and Enon−bonded have functional forms like those given in

equations 2.2–2.5, but the parameter values may differ. The Urey-Bradley term, EUB [62],

is based on the distance between the outer atoms when three atoms are linearly-bonded to

13



each other. The Eimproper term provides an energy penalty for improper dihedral angles and

helps to control the interconversion of stereocenters. The parameters in EUB and Eimproper

can be optimized based on vibrational spectra [62]. The CHARMM22 force field is one of

the popular ones that use the functional form defined in Equation 2.6 and is suitable for

modeling proteins [62]. The more-recent CGenFF is suitable as a general force field for small

molecules [63].

In addition to functional forms and parameterization, the force-field-based approaches

are also distinguished by the method of simulating the solvent. The most obvious approach

is simply to model all of the water molecules in the vicinity of a ligand-receptor explicitly and

their interactions with the protein and ligand. There are a variety of explicit water models,

which are distinguished by the number of sites used to represent the charge distribution of

each water molecules: TIP3P uses 3-sites to represent the charge of the oxygen and two

hydrogens, TIP4P splits the oxygen into two sites to better represent the charge distribution,

and so on [64]. Due to the large number of degrees of freedom of the water molecules,

simulating them explicitly is very computationally expensive.

To simulate some of the effects of the solvent while reducing the computational expense,

implicit solvent approximations were introduced. These approximations generally start with

the assumption that the solvent can be treated as a continuous dielectric medium with a

charge distribution and a resulting electrostatic potential that obeys the Poisson-Boltzmann

(PB) equation [65–68]. The PB equation can be used directly, or alternatively, further sim-

plifications are possible. The most common of these is the generalized Born (GB) model

of solvation, in which the protein and ligand atoms are modeled as spheres with a different

dielectric constant than the solvent [53, 69–75]. The PB and GB models provide adequate

approximations of the electrostatic effects of the solvent. In order to also include an ap-

proximation of favorable hydrophobic-hydrophobic interactions, the solvent-accessible (SA)

14



surface area method may be used in combination with the PB and GB models [69]. In this

method, the free energy of solvation is assumed to be proportion of the surface area of the

solvent accessible atoms, where the contribution of each atom depends on its type. The

resulting models, PB/SA and GB/SA respectively, provide high-speed approximations for the

major energetic effects of the solvent [76–81].

To further decrease the complexity, there are empirical solvent methods. In these meth-

ods, the electrostatic forces between the protein and ligand are modulated by an empirical

distance-dependent parameter that roughly models the tendency of water to screen the elec-

trostatic forces between charged atoms. For one example, this approach was used in DOCK

[32].

Finally, it is worth noting that the force-field-based potentials mentioned above give esti-

mates of the internal energy of the protein-ligand system in a specific microstate rather than

the free energy of binding. In principal, one can use direct integration of the partition func-

tion to compute the free energy. Computing the full partition function is typically intractable,

but sometimes approximations of the partition function are used [82]. In practice, to estimate

the binding free energy using force-field-based potentials, it is necessary to either include

the entropic contribution to free energy as an additional approximate term, or to employ

umbrella sampling or free energy perturbation methods [83].

Empirical scoring functions

Given their relatively complex functional forms, the force-field-based approaches described

in the previous subsection are computationally intensive. In order to provide a higher-speed

alternative, researchers introduced empirical scoring functions [84, 85]. Like force-field-based

potentials, empirical scoring functions contain terms that are based on structural features and

are often inspired by physical interactions. However, empirical scoring functions differ in

that the underlying functional form of these terms are simplified in an effort to capture the
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favorability of an interaction without capturing the underlying physics of the interaction [6].

Empirical scoring functions combine features such as hydrophobic contacts, hydrophilic

contacts, or number of hydrogen bonds, and parameterize these features as favorable or

disfavorable based on regression or machine learning methods. Typically the parameters are

optimized to predict the binding affinities of a set of protein-ligand complexes that are used

as a training set [84, 85]. In this way, empirical scoring functions are reminiscent of the ligand-

based models mentioned previously, except that instead of building a specialized model for

each drug target, one uses a diverse training set in an attempt to produce a scoring function

that can interpolate the binding affinities for drug targets not considered in the training set.

Nevertheless, the general performance of empirical scoring functions has been limited by

over-simplifications of some of the physical interactions [86]. Some examples of empirical

scoring functions include LUDI [38], ChemScore [84], and X-SCORE [87].

Statistical potentials

Besides the empirical scoring functions, there is another type of scoring function that uses

a simpler functional form than the ones given in Equations 2.1 and 2.6. Statistical potential-

based scoring functions (also known as knowledge-based scoring functions) assign energy-

like quantities to structural features, based on the frequency with which those features are

found to occur in a training set of suitable examples, such as a set of protein-ligand com-

plexes, relative to a reference state [1–3, 5, 88]. Usually, the inverse-Boltzmann equation is

used to provide the relationship between the frequency of features and the energy that is

assigned to those features. For protein-ligand interactions, the energy assigned to the inter-

action between ligand atom type i, protein atom type j, at a distance of rk (the distance of
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the k th bin), can be computed as follows [4].

upmf,ij (rk) = −kBT ln

[
ρij(rk)

ρij,ref

]
(2.9)

The quantity ρij(rk)/ρij,ref is the relative radial density for atom pair type ij within the training

set and is a function of the binned distance rk. The density ρij,ref associated with the reference

state may be computed using an ideal gas approximation or other approaches [89, 90]

The derivation of statistical potentials using the inverse-Boltzmann relation is not neces-

sarily physically rigorous, and typically involves some false assumptions. One example is

the assumption that the occurrences of features in the training set are conditionally indepen-

dent of each other, given the energies associated with those features. In applications such

as protein interactions and protein structure prediction, the interdependencies neglected by

the derivation can manifest in the form of problems such as the excluded volume problem

[3]. However, much like naïve Bayes classifiers, statistical potentials based on the inverse-

Boltzmann relation have performed well in a variety of applications, regardless of the exis-

tence of dependencies within the feature set. Some more recent works have used a multibody

approach that reduces this problem [91, 92].

Another open problem in the implementation of statistical potentials is the reference state

problem [3, 5, 90, 93, 94]. In order to use the inverse Boltzmann relation to assign energies to

features such as protein-ligand atom pair distances as in Equation 2.9, it is necessary to define

a representative non-interacting state, which provides the frequencies of features one would

expect to see in the training set if the features were energetically neutral. A simple ideal gas

approximation may be used, and many alternatives have been proposed [89, 95–97]. Thomas

et al. introduced an iterative method of deriving a statistical potential that helps avoid the

need to define a specific reference state. In this method, which was developed for protein

folding, the interaction potentials between residues were iteratively adjusted based on the
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difference between the residue pair frequencies in the native structures and the residue pair

frequencies in a Boltzmann-weighted ensemble of decoy conformations [2]. The extension

of this approach to atomic, distance-dependent statistical potentials is non-trivial, due to

the involvement of high-dimensional parameter optimization. This challenge was addressed

by later methods, which have been applied to protein-ligand interactions, protein-protein

interactions, and protein-RNA interactions [45, 98–100].

Finally, there is also the sparse data problem. The inverse-Boltzmann relation in Equation

2.9 maps the observed frequency of features in a training set to the energies assigned to

those features; for features that occur infrequently in the training set, the deriving energies

are inaccurate or undefined. Even when very large training sets are available, the problem

persists due to physically disallowed states such as very close atom pair distances (i.e. clashes)

[101, 102].

Given the many approaches that have been used to tackle the problems mentioned above

and the diverse applications, there are many examples of statistical potentials. Some of

the popular ones for protein-ligand interactions include DFIRE [103], DrugScore [104, 105],

ITScore [45, 46], PMF-score [4], and SMoG [106].

Consensus scoring methods

None of the existing scoring approaches are perfect, and sometimes a consensus scoring

approach is used to combine the advantages of various types of scoring functions in a way

that provides optimal general performance. The benefit of the consensus scoring approach

derives from the fact that the advantages and disadvantage of scoring functions vary from

one type to another, and from the fact that the accuracy varies depending on the intended

application. An early example of consensus scoring may be found in reference 107. Other

examples of the consensus scoring approach include MultiScore [108], X-Score [87], and

VoteDock [109]. The scoring function presented in reference 102 to deal with the sparse data
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problem can also be considered a consensus approach.

2.2.2 Sampling in Protein-Ligand Docking

The other fundamental challenge facing protein-ligand docking methods is sampling. Protein-

ligand binding involves changes in the relative orientation and conformation of the ligand,

as well as possible conformational changes to the protein. Docking software attempts to

sample these possible changes with varying degrees of exhaustiveness [110].

The simplest approach for sampling the possible ligand binding modes is rigid dock-

ing; the docking software can simply explore the six degrees of translational and rotational

freedom and filter those with poor shape complementarity before final scoring. This ap-

proach was used by older versions of DOCK [111] as well as MDock [45, 46]. Ligand

flexibility can still be considered by such software by pre-computing ensembles of puta-

tive ligand conformations, using software such as OMEGA (OpenEye Scientific Software

http://www.eyesopen.com) [112, 113], and rigidly docking each conformation to the pro-

tein receptor of interest.

There are also docking approaches that sample the possible ligands conformations on-

the-fly. One method of on-the-fly sampling is the incremental construction method, also

known as the anchor-and-grow method. A rigid central portion of the ligand is placed in the

binding site, and the rest of the ligand is incrementally grown from this rigid anchor, filtering

out those possibilities that clash with the protein receptor during the process [34, 114]. DOCK

uses this approach [34]. Similar to above, there are also fragmentation methods, in which

multiple rigid fragments are placed within the binding site and the docking software attempts

to link these pieces together to reconstruct plausible conformations of the target ligand. LUDI

uses this approach [38].

Another approach for sampling ligand conformations is the hierarchical docking method.

In this approach, low-energy conformations for each ligand are pre-computed and aligned so
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that as many atoms as possible are identically-positioned. Each ensemble of pre-generated

ligand conformations is organized into a hierarchy so that similar conformations are similarly

positioned within the hierarchy. Then, for each possible translation and rotation of the ligand,

the docking software makes use of the hierarchical data structure to simultaneously prune

or filter sets of conformations that are not sterically possible for the given translation and

rotation. For example, if an atom near the rigid center of the ligand is found to clash with the

protein in a given rotation/translation, the method can confidently reject all of the descendent

conformations in the hierarchy for that rotation/translation, because the descendants must

contain the same clash, without having to sample each descendant conformation individually

[115]. The Glide software package uses hierarchical filters during ligand sampling [42, 43].

In addition to these methods of sampling ligand conformations, there are methods to

handle protein flexibility. One simple approach is to rigidly dock the ligands to several

putative conformations of the protein, to represent some of the protein’s conformational

variability [47, 48, 116, 117]. Another approach, which may be used alone or in conjunction

with ensemble docking is energy minimization. Minimization may be performed using Monte

Carlo methods, or gradient descent minimization to help simulate some of the induced fit

that occurs when a ligand binds to a protein receptor [118]. Finally, one can also attempt to

explore the conformational space of critical residues of the protein, using methods analogous

to the ligand methods mentioned before. For example, AutoDock4 [119] and AutoDock

Vina [44] can adjust the rotatable bonds of critical residues in order to simulate protein

conformation changes during binding.

2.2.3 Recent Topics

While sampling and scoring constitute the fundamental challenges in docking, much research

focuses on more specialized topics. We do not attempt to exhaustively review all of the active

topics, but instead sample a few topics that have received a large amount of recent attention.
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Structural water

As mentioned in Section 2.2.1, water plays an important role in protein-ligand binding, often

counteracting out the attractive interactions between the protein and ligand and resulting in

a delicate balance of forces that is a difficult to model accurately [120]. One aspect of the

solvent that has been increasingly recognized as a major actor in protein-ligand interactions

is structural water. In the vicinity of the protein and ligand, molecules of water may become

bound or semi-bound in certain favorable positions, stabilized by hydrogen bonds, and

these structural water molecules can play a critical role in the stability of a protein-ligand

interaction [121, 122]. In work by Lie et al., modeling structural water molecules was found

to increase the accuracy of docking simulations, up to a binding mode success rate of 67%

[123]. Other work involving the inclusion of structural or bridging water molecules into high-

accuracy protein-ligand docking simulations also show improvements in accuracy [124]. In

another work, the ability of Rosetta (https://www.rosettacommons.org/) [125] to reproduce

the binding mode of the HIV-1 protease/protease inhibitor crystal structures was investigated,

and it was found that the inclusion of just a single structural water molecule in the interface

was crucial for accurate prediction of an inhibitor binding pose [126]. Docking methods

improved by structural water simulation have seen practical applications, such as an inverse

docking application in reference 127.

Ligand promiscuity

It has been well-recognized that drugs may bind to many targets with significant affinities, and

that this drug promiscuity gives rise to a complex polypharmacology with clinical relevance

to the toxicity and side effects of pharmaceuticals [12, 128]. The utility of considering such

ligand promiscuity early in the drug design process has already been well-recognized. A

review by Taboureau et al. noted the regulatory recommendation that all new drug candidates
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be tested for their potential to block human Ether-a-go-go Related-Gene (hERG) potassium

channel, given the substantial risk of cardiotoxic side effects such as arrhythmias [129]. They

considered in silico screening to be a useful step in identifying cardiotoxic leads before they

are given larger investments.

Besides the prediction of toxicity and side effects, the tendency of ligands to bind to sev-

eral sites presents another challenge: if a ligand binds tightly somewhere, even near the de-

sired binding site, it may still not substantially affect the drug target in question. Gowthaman

et al. point out that this is particularly important for non-traditional drug targets, such as a

target within the interface of protein-protein interactions. For such targets, compounds that

bind are often inadequate, if they do not bind in a sufficiently buried manner to achieve

good ligand efficiency [130]. Perez-Nueno et al. introduced a ligand-based approach that

uses shape matching to identify promiscuous ligands [131].

One the other hand, particularly for multifaceted diseases such as cancers or metabolic

disorders, it may be desirable for a drug to bind to multiple targets. Peng et al. review

the chemogenomics approaches in which a spectrum of a ligand’s interactions with many

drug targets is predicted by structure- or ligand-based methods. Using these approaches,

one can attempt to increase those interactions within the spectrum that are desired while

simultaneously reducing unwanted interactions [132].

Accurate models of the protein receptor

Docking studies often employ comparative (or homology) models of the protein target that

are based on the crystal structures of homologous proteins. The methodology behind build-

ing homology models is outside the scope of this review, but here we remark on the pop-

ularity of the approach in practice. It is notable that a number of recent successful virtual

screening projects used homology models of the protein receptor, and for some the best

template for homology modeling was fairly divergent from the target structure, in terms of

22



percent sequence identity [133–139].

Nguyen et al. investigated the accuracy of predicting ligand binding modes in comparative

models of G-protein coupled receptors. The researchers found that for the best models with

template structures over 50% sequence identity, the accuracy of binding mode prediction was

within 2.9 Å RMSD (root-mean-squared standard deviation) from the native experimental

structure on average. In cases of low sequence similarity, it is challenging to produce a

homology model with sufficient accuracy to use as a basis for virtual screening [140, 141],

but percent sequence identity is not the only useful metric. It has also been suggested that

choosing a template based on ligand occupancy can yield a better homology model for

docking than choosing one based on percent sequence identity [142].

2.3 Protein-Ligand Docking Approaches

Having introduced structure-based drug design and the methodologies of protein-ligand

docking, we will now sample the most common research approaches in which such methods

have been applied.

2.3.1 Screening for New Inhibitors

Docking methods have a long and successful history of identifying new protein inhibitors

and enriching compound databases in structure-based virtual screening. Here we discuss

some examples of this common application.

Recently, Mahasenan et al. used structure-based virtual screening to identify new in-

hibitors of maternal embryonic leucine zipper kinase (MELK), an important kinase target

known to be involved in several types of cancer. As signaling molecules, kinase targets tend

to be challenging for docking methods due to their tendency to undergo major conformation

changes induced by ligand binding [143]. Their three discovered inhibitors vary in affinity
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from 0.37 µM to 18 µM, and may have future applications in diseases involving mis-regulation

of MELK [143].

In another recent work, Heusser et al. performed virtual screening study of Gloeobacter

violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, to search

for compounds that bind to the same site as the anesthetic propofol. Among a database of

commercially available compounds, 29 compounds were experimentally tested of which 16

were found to exhibit significant inhibition of GLIC relative to dimethyl sulfoxide. The active

compounds were further tested on GABAA receptors. One of the compounds, like propofol,

was found to inhibit both GLIC and GABAA receptors, suggesting that the GLIC receptor may

be a plausible model system for GABAA receptor ligands.

In a third example, Tahir et al. used MODELLER (http://salilab.org/modeller) [144] to build

a homology model of TNFRSF10B protein, which is believed to inhibit tumor formation [137].

In an effort to further understand this protein, they also used protein-ligand docking to screen

compounds from the Mcule compound database (https://mcule.com/database) [145] for new

potential inhibitors [137].

In a final example, a series of substituted heteroaromatic piperazine and piperidine deriva-

tives were found through virtual screening based on the structure of human enterovirus 71

capsid protein VP1. The preliminary biological evaluation revealed that two of the com-

pounds (8e and 9e) have potent activity against EV71 and Coxsackievirus A16 with low

cytotoxicity [146].

2.3.2 Hybrid Approaches for Drug Design

The structure- and ligand-based methods of performing virtual database screening are not

simply competing alternatives to perform the same task. They each have unique strengths

and weaknesses and can therefore play a complementary role in the drug design process and

other applications. Such hybrid approaches have become increasingly popular [147]. Here
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are a few recent examples.

One example of a hybrid approach may be found in Ahmed et al. In this work, the binding

profiles of the spherical C60 version of fullerene and its derivatives were investigated. Aside

from the remarkable physico-chemical characteristics of these molecules, fullerene and its

derivatives are increasingly investigated for their unique biological effects [148]. The hybrid

approach used by Ahmed et al. included quantum-mechanical calculations, protein–ligand

docking and QSAR. They used quantum-mechanical calculations to determine geometries,

dipole moments, orbital energies, and other parameters of the fullerene derivatives. They

used protein-ligand docking software including AutoDock Vina [44] and Schrödinger Glide

[42, 43] to search for possible binding modes of the fullerene derivatives’ interactions with

HIV-1 protease and to identify which residues of HIV-1 protease tend to be involved in the

binding. They also compared the docking scores with experimental binding affinities. Finally

they used genetic algorithms to choose a suitable QSAR model predictive of the fullerene

derivatives’ binding activity. The most important features in the QSAR model were found to

be the 3D-molecular geometry of the fullerene derivative, its number of ring systems, and its

specific topology [148].

Another work that used a hybrid approach of structure- and ligand-based methods can

be found in a study identifying four inhibitors of heat shock protein 90 (Hsp90), which is an

important chaperone protein and anticancer drug target [149]. In this work, the researchers

built a QSAR model to perform ligand-based virtual screening [149], and use a combined

ligand-based/structure-based protocol to screen 1785 compounds for their predicted ability

to bind to Hsp90 [150]. 80 of the predicted compounds were further evaluated by experiment

and found to inhibit Hsp90 with IC50 values between 18 and 63 µM. The compounds contain

possible new molecular scaffolds capable of inhibiting Hsp90 [149, 150].

The last example of the hybrid approach that we will mention here involved DNA G-
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quadruplex structures, which are found in some critical positions within the genome such

as near the telomeres and gene promoter regions. Unsurprisingly, they are involved in cel-

lular aging and cancers [151]. Alcaro et al. used a hybrid approach to screen a database of

commercially available compounds for their predicted ability to bind G-quadruplex struc-

tures. Before this work, there were already a variety of knowns binders for G-quadruplex

structures. They first screened over one million compounds from the ZINC database [18]

using ligand-based methods that compared the compounds in this database to the known

binders using both 2D-similarity and 3D-similarity methods. The compounds which passed

this first screening were then investigated using ensemble docking simulations on a few of

the conformations of telomeric G-quadruplex structures that have been structurally character-

ized. They analyzed the compounds with the highest docking consensus score using several

experimental techniques, and determined that they had found a new G-quadruplex binding

moiety [151].

2.3.3 Mechanistic Studies Using Inverse Docking

Virtual database screening studies do not always start with the identification of a drug target of

interest. Often, one is interested in a compound that is known to have an important biological

effect, but for which the underlying molecular mechanism is unknown [152]. Consequently,

rather than looking for small molecules that bind to a binding site of interest, protein-ligand

docking methods may instead be used to perform the inverse search, called inverse docking

[153, 154]. Inverse docking involves some additional challenges. Relative scoring of protein-

ligand complexes that differ according to the protein rather than the ligand is challenging

for a number of reasons. Firstly, one needs structures or models of the protein receptors

to be screened, but the structures of many proteins have not been solved. This necessitates

the laborious process of gathering those proteins relevant to the research in question and

determining the location of the binding sites. Alternatively, one may use a curated repository
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of known drug targets, such as the Potential Drug Target Database (www.dddc.ac.cn/pdtd)

[155]. Secondly, proteins are often found to exist in several closely related isoforms, so the

scoring function in inverse docking is challenged by the need to rank these subtle differences

[156]. Thirdly, scoring functions are usually validated on benchmarks that determine their

ability to accurately rank entirely different protein-ligand complexes, or many ligands against

a smaller number of proteins. Benchmarks do not usually contains many examples of the

same ligand docked to many different proteins, so the performance of most docking methods

is more doubtful in this application. Despite these challenges, inverse docking is a popular

and useful approach.

A recent application of inverse docking may be found in reference 157. Some plant-

derived isoprenoids have antiparasitic effects but the relevant molecular targets of these

compounds were unknown. Noting the mortality of leishmaniasis, especially in some tropical

regions due to the poor availability of resources to fight drug-resistant parasites, Ogungbe and

Setzer used an inverse docking approach to investigate the underlying molecular mechanism

of the relevant antiparasitic isoprenoids. Specifically, they compiled the known protein targets

of the drugs used to treat Leishmania and docked the isoprenoids of interest to these proteins

in order to predict which of the isoprenoids may share similar targets and to offer some clues

regarding their functional mechanisms [157].

2.3.4 Docking for Detailed Binding Analysis

Another useful application of protein-ligand docking methods is to analyze the physical or

chemical mechanisms involved in binding. Depending on the type of scoring function used,

protein-ligand docking software may provide information about the dominant interactions

involved in binding, and are especially appropriate for predicting the binding position and

conformation of ligands. In Docking methods provide a picture of ligand binding that is less

computationally expensive than MD simulations, at the loss of information about binding
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kinetics.

As noted in Section 2.3.2 on hybrid methods, protein-ligand docking is often used to

further screen or refine the results of ligand-based screening, or to provide more accurate

pose selections for each ligand of interest. One example is found in research by Sakkiah

et al. These researchers used a pharmacophore model to select 85 compounds based on

drug-like properties and chemical features believed to be important in inhibition of c-Src

kinases, which are involved in cell proliferation and cancer. These selected compounds were

further subjected to molecular docking to provide a more thorough analysis of the suitable

orientations of the compounds in the c-Src active site [158]. In another work, Nguyen et al.

identified inhibitors of severe acute respiratory syndrome 3C-like protease using structure-

based virtual screening. In addition to its role in the screening, docking software was used to

analyze the hydrophobic and hydrogen bond interactions of the inhibitor compounds with

amino acids in the protease active site.

The binding information provided by protein-ligand docking methods are also useful

for in silico analysis of protein mutations and their influence on ligand binding. This is an

important biological application, as it can be used to help design ligands that overcome viral

or bacterial drug resistances. In a study by Yang et al., protein-ligand docking was used

by the researchers to make predictions about the importance of neuraminidase mutations

on ligand binding. The long-term goal of such research is to design new broad-spectrum

antiviral drugs [159].

2.4 Docking Benchmarks and Evaluation

Benchmarking plays an important role in the development and improvement of docking

methodologies [54]. Public databases combining crystal structures of protein-ligand com-

plexes with experimentally-determined affinity data provide a standard way of assessing the
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accuracy of the binding mode predictions and binding affinity predictions of protein-ligand

docking methods [6, 160, 161]. In addition of the standard benchmarks, there are prospective

evaluations for protein-ligand interaction predictions, also called blind competitions. These

prospective evaluations play an important role in the improvement of docking methods by

validating new methods on targets that were unknown to the researchers at the time the

methodology was developed [7, 162, 163]. Here we discuss a number of the challenges in

benchmarking docking methods.

2.4.1 Making Testable Predictions

It would be ideal for docking scoring functions, sampling schemes, and other methodologies

to be tested in prospective studies in which the targets of the benchmark were unknown at the

time the methodology was developed. Such prospective evaluations are not always available

when new methods are introduced. In such cases, a rigorous experimental design can help

ensure trustable evaluations, especially with regard to the independence of the benchmark

from the development of the methods. Examples of prospective evaluations of protein-

ligand docking methods include CSAR, the Community Structure Activity Resource (http://

www.csardock.org) [7, 162], and OpenEye SAMPL (http://www.eyesopen.com/SAMPL) [164].

2.4.2 Assuming Lack of Knowledge of the Native, Bound Conformation

In practice, docking methods do not benefit from structurally accurate knowledge of the

bound, native conformation of a protein binding site and ligand. A realistic evaluation of

docking require the method to dock an arbitrary conformation of the ligand to either a

ligand-free crystal structure of the protein, or if none are available, then a crystal structure

bound to a different ligand than the one being docked. The allows the docking software to

be tested for the available to either simulate the induced fit of binding, or test the success

of a smoother scoring function designed for soft docking. Examples of recent evaluations of
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docking methods that including unbound evaluations may be found in references [165] and

[166].

In addition to the change in protein conformation associated with the induced fit of

protein-ligand binding, docking methods also have to deal with the flexibility of ligands. To

evaluate scoring function performance in flexible binding mode predictions, one approach

is to pre-generate many decoy binding modes for a ligand in the vicinity of the binding site,

and test the ability of the scoring function to distinguish between the native pose and decoys.

This approach was used for decoy sets that extend the CSAR benchmark [161].

Korb et al. suggested that this approach of testing docking scoring functions with prede-

fined sets of decoy ligands is not adequate for distinguishing a scoring function that performs

well in practice from one that performs poorly. The reason is simple: in docking, sampling

that is sufficient to identify the native pose and conformation must be very thorough, and so

in practice many more diverse poses and conformations are considered during docking than

are typically generated for the decoy poses generated for scoring function evaluation [167].

It seems that this problem could be mostly avoided by ensuring that the generated decoys

are numerous and diverse, or entirely avoided by testing scoring functions simultaneously

with sampling, as in realistic practice [168].

2.4.3 Assessing Binding Mode Predictions Involving Symmetric Molecules

Another challenge in evaluating docking methods is the need for special handling of sym-

metric molecules when evaluating binding mode predictions. The binding mode predictions

of a docking method are commonly evaluated using the root-mean-squared standard devi-

ation (RMSD) of atom positions between the known native binding mode of a ligand and

its predicted mode according to the docking method. However, comparing the atom po-

sitions between two structures of a ligand requires mapping the atoms in the native ligand

conformation to the atoms in the docked conformation of the ligand. Due to the symmetry
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of entire molecules, or substructures within them, these mappings can be ambiguous and a

naïve treatment of binding mode evaluations can consider a perfect binding mode prediction

to be a poor prediction. Recently, work by Allen et al. addresses this problem by using the

Hungarian algorithm. The Hungarian algorithm can be used to find the optimal mapping

of two graphs under a cost function, and in addition to other applications in chemical in-

formatics, has recently been used by Allen et al. to find the optimal mapping between two

molecules in RMSD calculations, ensuring that a correct binding mode prediction will be

recognized as such [169]. This method has been implemented within DOCK 6 [36] and we

anticipate its wide adoption.

2.5 Discussion

The methods used to simulate the binding of proteins and small molecules face substantial

challenges. Two of the fundamental challenges are sampling and scoring [26]. Protein-ligand

interactions involve a delicate balance of competing forces, and these forces may occur

between flexible structures that can reposition themselves in far too many combinations

to sample exhaustively. Another challenge is the need to account for structural water in

approximative models of the solvent [121]. In addition, there is demand for methodologies

that can adequately evaluate the wide spectrum of possible binding partners of a given ligand;

this is especially important for designing drugs that maximize efficacy while minimizing side

effects and toxicity [12, 128]. Finally, there is also a need for rigorous, wide evaluations of

new docking methodologies, which are rapidly being introduced [54, 162].

Another important component of protein-ligand binding that is sometimes neglected is

the effect of entropy. Rigorous computation of the entropic contribution to binding free

energy is intractable for large molecular systems such as protein-ligand complexes. Some

approximations have been introduced to deal with entropy [49, 170, 171], but many of the
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most popular docking scoring functions for structure-based virtual screening either ignore

this important component of protein-ligand binding free energies or use overly simplistic

empirical approximations. Future efforts to find computationally efficient ways to include

the effect of entropy are likely to play a crucial role in the future advancement of docking

methodologies.

Despite all the challenges, protein-ligand docking has a long and successful history of

practical applications including newly discovered enzyme inhibitors, receptor antagonists

and agonists, ion channels blockers, as well as the later approval of new drugs discovered

with the help of structure-based drug design. Docking methods have provided new mecha-

nistic insights into protein-ligand binding mechanisms, and have also helped investigate the

influence of protein mutations on ligand binding, offering clues regarding the mutations that

enable the robust survival of drug-resistant pathogens. As the continued increases in com-

putational power expand the practical applications of molecular models, the field is quickly

advancing, with approximations that offer a better tradeoff between accuracy and compu-

tational cost. These efforts will undoubtably lead to many more intriguing applications into

the future.
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CHAPTER 3

Improving Knowledge-Based Scoring Functions

The work in this chapter has been published in Journal of Computational Chemistry* and was

selected for the front cover of the issue.

Abstract

Knowledge-based scoring functions are widely used for assessing putative complexes in

protein-ligand and protein-protein docking and for structure prediction. Even with large

training sets, knowledge-based scoring functions face the inevitable problem of sparse data.

Here, we have developed a novel approach for handing the sparse data problem that is

based on estimating the inaccuracies in knowledge-based scoring functions. This inaccuracy

estimation is used to automatically weight the knowledge-based scoring function with an

alternative, force-field-based potential (FFP) that does not rely on training data and can

therefore provide an improved approximation of the interactions between rare chemical

groups. The current version of STScore, a protein-ligand scoring function using our method,

achieves a binding mode prediction success rate of 91% on the set of 100 complexes by

Wang et al., and a binding affinity correlation of 0.514 with the experimentally-determined

affinities in PDBbind. The method presented here may be used with other FFPs and other

knowledge-based scoring functions and can also be applied to protein-protein docking and

protein structure prediction.

*S. Z. Grinter and X. Zou (2014) A Bayesian statistical approach of improving knowledge-based scoring
functions for protein–ligand interactions. J. Comp. Chem. 35(12): 932–943.
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3.1 Introduction

The interactions of proteins with other molecules play a fundamental role in life. Computa-

tional protein-ligand docking supports the study of such interactions by providing estimates

of the mode and affinity of ligand binding, done with less expense than is possible by exper-

imental determination [26–29]. An essential requirement of docking is the scoring function

[53, 54], which assesses the favorability of a complex based on its structural features.

Knowledge-based scoring functions [2, 3, 5, 88, 172] assign energy-like quantities to

feature-states, such as atom pair contacts, based on the frequency with which they are found

to occur in a training set of comparable systems. This approach offers the advantage of cap-

turing the typical energetics associated with the phenomena while using a simpler functional

form than is typically possible in force-field-based approaches [53, 66–69, 88, 172, 173]. In

general, a feature that is found to occur frequently relative to a reference state is considered

energetically favorable. There are a variety of ways to choose a representative set of features.

In protein-ligand docking, one may use contacts or other distance-dependent measures of the

interactions between atoms, residues, or chemical functional groups [4, 45, 46, 49, 95, 103–

105, 174–177].

In order to derive a knowledge-based scoring function from a training set of crystal

structures, a common approach has been to compute a distance-dependent radial density

function for the occurrences of atom pairs within a given distance of each other [4, 89, 95, 178].

For a protein-ligand scoring function, one may partition all the protein-ligand atom pairs into

a set of types and then count the frequency with which the atoms of each pair type are

found to occur within a given distance of each other, relative to a reference state. Based on

these frequencies, the inverse-Boltzmann relationship may be used to assign energies to the

interaction between ligand atom type i, protein atom type j, at a distance of rk (the distance
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of the k th bin), as follows [4, 45, 178].

upmf,ij (rk) = −kBT ln

[
ρij(rk)

ρij,ref

]
= −kBT ln

[
nijk/vk
Nij/V

]
(3.1)

where ρij(rk)/ρij,ref is the relative radial density for atom pair type ij within the training set

and is a function of the binned distance rk. The count nijk is the number of occurrences of

atom pairs of type ij found within distance bin k, and vk is the volume of the k th distance

bin. Nij is the total number of atom pairs of type ij with a distance between 6.0 and 10.0 Å,

and V is the total volume of a spherical shell with radii of 6.0 and 10.0 Å.

The statistical significance of upmf,ij (rk), the derived potential of mean force (PMF), is

dependent on the sufficiency of the training data. In the extreme case of pair types which

are absent from the training set, upmf,ij (rk) is undefined. This sparse data problem can affect

any knowledge-based scoring function, because even within huge training sets there are still

likely to be feature-states that never occur, such as atom pairs within unacceptably close

distances. Moreover, even if an atom pair is never found within a certain distance in the

training set, it may still occur in practice, such as during sampling [4].

There have been three commonly-used methods of handling the sparse data problem:

the cutoff method [45, 95, 104, 176], the pseudocount method [179–181], and the method

of Sippl [101]. Firstly, in the cutoff method one may simply discard features with too few

instances to be trustable. For atomic pair potentials, one may discard all pair types that occur

less frequently than a chosen number and treat them as non-interacting [45, 95, 104, 176].

This approach can be partially improved by combining rare types into broader groups [182],

however at the expense of losing atomic specificity. The second method is pseudocounts,

which are small quantities added to each count to prevent division by zero [179–181]. The

added quantities do not need to be whole numbers and are flexible enough to serve as an

initial guess for the atom pair densities. The most rigorous method of the three is Sippl’s
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method. Introduced in the context of protein structure prediction, this method treats each

residue pair from the training set as a quantum of information contributing to an aggregate

[101]. Starting with an initial estimate of a uniform density, Sippl’s method weights the

influence of each observed residue pair by a parameter so that no pair, by itself, has excessive

influence on the estimated density and consequently the derived interaction potentials.

In this work, we introduce a new approach for dealing with the sparse data problem

in docking. We start from the distinction between the observed counts which are obtained

from the finite training set and the hypothetical exact counts [101], which can be thought

of as the counts one would obtain after averaging over an infinite number of comparable

training sets. The hypothetical exact counts can never be known, but we can represent

their possible values as a probability density function based on the observed counts (see

Methods). We then use the inverse-Boltzmann relation (equation 3.1) to derive a probability

density function for the possible pair potential values given the available training data. The

variance of this probability distribution provides an estimate of the error in the PMF due to the

limited size of the training set. Used in conjunction with an alternative pair potential estimate,

a simple force-field-based potential, we derive a weighted sum of the two that minimizes the

estimated errors in the final scoring function, STScore. In this way, STScore inevitably gives

more weight to the force-field-based potential when there is a lack of training data, providing

an alternative way to limit the problems associated with sparse data. We conclude by showing

that the performance of this consensus potential significantly exceeds both the PMF and its

alternative force-field-based potential, and is competitive with other popularly-used scoring

functions. The Bayesian statistical approach in this work is not limited to protein-ligand

docking; it may also be applied to knowledge-based scoring functions in other applications

such as protein-protein docking or protein structure prediction. This approach is also not

limited to the simple force-field-based potential used in the present study; the force-field-
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based potential may be replaced by other more accurate potentials or other types of scoring

functions.

3.2 Methods

3.2.1 Consensus sparse data method

The problem of sparse data must be accommodated in any statistical potential. In this work

we present an alternative approach to handling this problem that relies on the use of a simple

force-field-based potential, uffp , as an alternative to the knowledge-based scoring function,

upmf . While upmf relies on training data, uffp does not, which enables a consensus approach

to handle the sparse data problem by giving more weight to the uffp for atom pair types or

distances that lack sufficient examples in the training set.

For each atom pair type, we define the consensus atomic pair potential function, u(r), as

follows:

u(r) = A(r) · uffp(r) + B(r) · upmf (r) (3.2)

The weights A and B are not free parameters, but mixing coefficients that are fixed by the

requirement that they minimize the estimated error in u. For each atom pair type and distance,

we compute the estimated random error in uffp and upmf (labeled Err(uffp) and Err(upmf )).

The detailed derivations of Err(uffp) and Err(upmf ) are given in Methods 3.2.4 and 3.2.5. The

following values of the coefficients A and B minimize Err(u) with the constraint that A and

B sum to 1.0, as derived in the next section (Methods 3.2.2):

A (r) =
1

1 + w
(3.3)

B (r) =
w

1 + w
(3.4)
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w =
Err (uffp(r))
Err (upmf (r))

(3.5)

For each atom pair type and distance, the relative error in the two pair potentials, w, is

estimated and used to determine the weighting coefficients A and B. In the extreme case of

large inaccuracy in upmf , B approaches 0.0 and A approaches 1.0; namely, uij is estimated

by uffp only.

Using equation 3.2, uij(rk) is computed for each protein-ligand atom pair type ij and

bin k where rk is the distance of the k th bin. The total energy score assigned to a protein-

ligand complex, referred to as STScore, is then computed as the sum of the interactions of

all protein-ligand atom pairs within a cutoff distance.

U =
∑

all L−R pairs ij
uij (r) (3.6)

In the present study, the cutoff distance was set to 6.0 Å.

3.2.2 Derivation of the weights A and B

For each atom pair type and distance, we wish to estimate the reliability of the two pair

potentials and use the reliability estimates to choose appropriate weights A and B. To ac-

complish this task, we use a simplified probability model in which all the errors in uffp and

upmf are considered to be random errors. Err(uffp) and Err(upmf ) represent the variance of

uffp and upmf , treated as random variables. The probability distribution for upmf is derived

precisely in Methods 3.2.4. Err(uffp) is an empirical quantity that is chosen based on physical

considerations as explained in Methods 3.2.5. Err(uffp) is needed as a basis of comparison

for Err(upmf ).

We also use the assumption that Err(uffp) is uncorrelated with Err(upmf ). This assump-

tion is not strictly true; in some cases the errors may be positively or negatively correlated.
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However, assuming that they are uncorrelated serves as a middle-point approximation and

will cause no problems other than an over- or under-estimation of the ideal values for A

and B in some cases. This assumption allows us to express Err(u) in terms of Err(uffp) and

Err(upmf ).

Err(u) = < (u− uactual)
2 > (3.7)

= A2 < (uffp − uactual)
2 > +B2 < (upmf − uactual)

2 > (3.8)

= A2 · Err(uffp) + B2 · Err(upmf ) (3.9)

A and B are computed separately for each atom pair type ij and distance rk, as follows:

Err(uij(rk)) = A2
ijk · Err(uffp,ij (rk)) + B2

ijk · Err(upmf ,ij (rk)) (3.10)

As mentioned in Methods, both uffp and upmf are, by themselves, estimates of the hypothet-

ical actual pair potential, uactual, so for any choice i, j, and k, the pair of coefficients A and

B should sum to 1.0:

Aij (rk) + Bij (rk) = 1.0 (3.11)

Given this constraint, the function for Err(u) in equation 3.10 may be minimized to de-

termine the optimal values of A and B as functions of Err(uffp) and Err(upmf ). For example,

the Lagrangian for this optimization problem (shown without indices, for simplicity) would

be given by:

Λ(A,B, λ) = A2 Err(uffp) + B2 Err(upmf ) + λ(A+ B− 1) (3.12)
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If a minimum of Err(u) exists, then partial derivatives of Λ at this minimum must go to zero.

0 =
δ(Λ)

δA
= 2A Err(uffp) + λ (3.13)

0 =
δ(Λ)

δB
= 2B Err(upmf ) + λ (3.14)

0 =
δ(Λ)

δλ
= A+ B− 1 (3.15)

Choosing λ to be any scalar, one may solve for A and B as functions of Err(uffp) and Err(upmf ).

A =
1

1 + Err(uffp)/Err(upmf )
(3.16)

B =
1

1 + Err(upmf )/Err(uffp)
(3.17)

These values of A and B exist for any pair of positive errors, Err(uffp) and Err(upmf ), and

minimize Err(u), to the extent possible given the assumption of uncorrelated random errors

in the two constituent potentials.

We defined the quantify w in equation 3.5 as the ratio of the expected error in the two

alternative pair potentials, uffp and upmf , and solved for A and B in terms of w in order to

allow these weighting coefficients to be expressed more simply in equations 3.3 and 3.4 from

the previous section. This notation emphasizes that only the relative accuracy of uffp and

upmf influences the weights A and B, which are evaluated separately for each protein-ligand

atom pair type ij and distance rk.

3.2.3 Estimation of sparse data inaccuracies

The consensus method described before requires an estimate of the error in upmf . There

are several potential sources of inaccuracies in upmf . In this work, we focus on estimating

the contribution of sparse count data to the error, and using these estimates to minimize the

influence of sparse data errors in the derived scoring function. The detailed steps are left
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to the subsequent sections (Methods 3.2.4 and 3.2.5), but here we summarize the general

approach.

As proposed by Sippl, it is useful to distinguish between the hypothetical exact counts

(nexact
k and Nexact) that would be obtained by averaging over an infinite number of comparable

training sets, and the observed counts (nk for the number of atom pairs observed in the k th

bin, and N, the total number of atom pairs observed in the reference shell)[101]. We define

uexactpmf as the hypothetical upmf that would be obtained if nexact
k and Nexact were known and

used in place of the observed counts nk and N. Using Bayesian statistics, one may derive a

probability density function for uexactpmf given the observed evidence in the training set. This

probability density function represents the range of possible values for uexactpmf . Figure 3.1

shows three examples of this probability density function as derived for uexactpmf . In these

three examples, the number of observed atoms in the bin is set to nk = 16, nk = 4, and

nk = 1. There are two important features in this figure. Firstly, as is typical for a uexactpmf , a

smaller number of observed atoms in a bin corresponds to a less favorable interaction, and

the distribution shifts towards the right (i.e., the positive direction). Secondly, with smaller

values of nk, the distribution becomes more spread out. As nk decreases, the variance of the

distribution, Var(uexactpmf ), increases. In this way, Var(uexactpmf ) provides a measure of the error

due to sparse count data.

As the amount of data for a particular atom pair type and bin becomes abundant, the

probability density function for uexactpmf approaches a Dirac delta function and Var(uexactpmf ) ap-

proaches zero. However, even with non-sparse data, upmf is not a perfect representation of

the actual pair potential. For this reason, we compute the estimated error between upmf and

uactual by adding a small constant, α, to the variance in uexactpmf as a rough representation of

other sources of inaccuracies.

Err(upmf ) = Var(uexactpmf ) + α (3.18)
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Figure 3.1: Three examples of the probability density function for upmf . The number
of atom pairs within a bin, nk, is adjusted from 1 (in blue) to 16 (in yellow) and the other
parameters are held constant. As nk increases, the variance approaches zero. In this example,
the number of atoms in the reference shell is set 100, which is a typical value of N for rare
atom pair types. For the pair types that are the most frequent in the training set, N > 50000.

Adding this constant implies that Err(upmf ) and A(r) will never be computed to be exactly

zero, and therefore uffp(r) will always have some influence on u(r), even when there is an

abundance of training data. In this study, we set α to 0.1, which gave better results than other

choices of α. The predictions given by STScore improve somewhat with this added value, but

with or without it the method still gives better results than the PMF by itself. Methods 3.2.4

and 3.2.5 provide detailed descriptions for how we computed the error values Err(upmf ) and

Err(uffp), respectively, including a derivation of the probability density function for uexactpmf .

It is emphasized that the derivation of the atom-based, distance-dependent pair potentials

for STScore is a one-time step. STScore is now a scoring function with tabulated potentials

that is ready for use, by adding up the pairwise interactions between protein and ligand

atoms (equation 3.6).
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3.2.4 The potential of mean force as a probability density function

We partition the protein-ligand atom pairs into a set of types, based on the subset of the

SYBYL atom types used in ref 45. Then, we count the number of times each pair type is

found to occur within a given distance in a set of protein-ligand crystal structures. The energy

assigned to the interaction between ligand atom type i, protein atom type j, at a distance of

rk (the distance of the k th bin), is based on the PMF described by Muegge in reference 178

and the subsequent work in reference 45.

upmf ,ij (rk) = −kBT ln
[
gij(rk)

]
= −kBT ln

[
ρij(rk)

ρij,ref

]
= −kBT ln

[
nijk/vk

Nij,6-10/V6-10

]
(3.19)

The quantity gij(rk) is the radial density function for atom pair type ij as a function of the

distance, rk, normalized relative to the reference state. We include the kBT constant to

emphasize that the computed quantity has the dimension of energy, but as is typical for a

knowledge-based scoring functions, upmf ,ij (rk) does not correspond to a specific physical

unit and in practice kBT was set to 1.0. Here, the reference state number density, ρij,ref, is

determined by computing Nij,6-10, the number of atom pairs of type ij with a distance between

6.0 Å and 10.0 Å, and dividing by V6-10, the volume of a shell with these distances as radii.

We first analyze this PMF by distinguishing between the hypothetical exact counts (nexact
ijk

and Nexact) that would be obtained by averaging over an infinite number of comparable

training sets, and the observed counts (nijk and Nij), following the distinction that is presented

in reference 101. The values nexact
ijk and Nexact

ij do not need to be whole numbers. We define

upmf ,exact,ij(rk) as the interaction potential one would obtain from the hypothetical exact

counts, for atom pair type ij and distance bin k.

upmf ,exact ,ij (rk) = −kBT ln

[
ρij (rk)

ρij,ref

]
= −kBT ln

[
nexact
ijk

Nexact
ij

V
vk

]
(3.20)
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Our aim in this subsection is to use a Bayesian statistical approach to compute a probabil-

ity density function for upmf ,exact,ij. This probability density function is computed for each

protein-ligand atom pair type, ij, but to simplify the equations we shall hide these indices

in the rest of this section. The ij indices should be understood to occur for the atom pair

counts nijk and Nij as well as the derived quantities upmf,ij and Err(upmf,ij). To find uexactpmf , we

start with an assumption that is already implicit in the use of the inverse-Boltzmann relation

(equation 3.19). That is, we assume that the probability that a pair of atoms will be observed

to be within bin k is determined only by the potential energy associated with their interaction

at a distance of rk and the volume of the corresponding bin k, relative to the reference state,

and conditionally independent of other considerations. In this way, when we count nijk, the

number of atoms of type ij assigned to bin k, we have observed the result of a Bernoulli

process, a sequence of coin tosses. However, the number of atoms of a given type is always

much larger than the number assigned to a single bin, so considering it to be a Poisson

process gives a very close approximation that is more mathematically convenient. We use

ñ to represent the possible values of n when n is unknown (that is, before a count value

is observed), in contrast to the notation nijk which represents the specific count values that

were observed in our training set:

fn (ñ | nexact) =
(nexact)ñ

ñ!
exp[−nexact] (3.21)

Because n << N, we may treat N as if it were exact without any substantial underestimation

of the inaccuracy in upmf due to sparse data. Including the contribution of N to the sparse

data error estimate gave nearly identical results (data not shown).

Finally, we assume that the prior probability of uexactpmf is uniform. That is, in the absence

of evidence from the training set, we consider any value for uexactpmf to be equally likely. This

assumption allows the variance of the probability density function for uexactpmf to be set to
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positive infinity for n = 0. In such cases, the weight A(r) will go to 1.0 and B(r) will go to

0.0, so that u(r) will be determined solely by uffp(r).

For values of n > 1, we use equations 3.20 & 3.21 to compute the probability density

function for uexactpmf . In this equation, ũpmf represents the possible values of uexactpmf , rather than

the specific upmf ,ij(rk) values that will be assigned for each atom pair type and distance at

the end of this section:

fuexactpmf
(ũpmf | nk) =

1
(nk − 1)!

(
N
vk
V

)nk
exp

[
− (nk) ũpmf −

(
N
vk
V

)
exp [−ũpmf ]

]
(3.22)

This probability density function is a log-gamma distribution. Its variance is known to be the

trigamma function, Ψ1(n):

Var
(
uexactpmf

)
=

∫ ∞

−∞

[
ũpmf − Mean

(
uexactpmf

)]2 · fuexactpmf
(ũpmf ) · d (ũpmf ) = Ψ1(n) (3.23)

The variance computed here is due only to stochastic variations in densities computed from

sparse data. As the amount of data for a particular uijk value becomes abundant, the probabil-

ity density function for uexactpmf approaches a Dirac delta function and its variance approaches

zero (see Figure 3.1). Even with non-sparse data, the potential of mean force is not a perfect

representation of the actual pair potential, so we compute the estimated error between upmf

and uactual by adding a small constant, 0.1, to the variance in uexactpmf as a rough representation

of other sources of inaccuracies. Adding this empirical constant implies that A(r) will never

be exactly zero, and uffp(r) will always have some influence on u(r).

Err(upmf ) = Var(uexactpmf ) + 0.1 = Ψ1(n) + 0.1 (3.24)

The results of STScore are somewhat better with this empirical constant, probably due to the

good performance of FFP Score.
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The upmf value which is substituted into equation 3.2 may be computed by taking the

most probable value from the probability density function in equation 3.22. However, this is

the same value as the one computed directly from equation 3.19. With kBT set to 1.0:

upmf = Mode(uexactpmf ) = − ln

[
nk
N
V
vk

]
(3.25)

Thus the statistical approach is just used to determine A and B, the mixing coefficients for

upmf and uffp , as functions of the atom pair type and distance.

3.2.5 The force-field-based potential

One of the main advantages of a knowledge-based approach is the ability to get good results

with a simple functional form. Moreover, our method required that the force-field-based

alternative potential, uffp , also be pairwise, in order to precompute all uij(r) values for com-

putational efficiency. For these reasons we chose to use a Lennard-Jones 6-12 potential as

uffp [61]. Of course, this is an unrealistically simple approximation of uactual, but we consider

it to be an improvement over disregarding rare atom pairs types or reducing their influence.

The Lennard-Jones 6-12 well depths are based on the AMBER force field [32, 183, 184] and

stored internally as kcal/mol. It was necessary to multiply these well depths by 4.2 in order

for their numeric values to scale appropriately to the PMF pair potentials.

Although the focus of this work was on determining when sparse data makes upmf un-

trustable, STScore also requires an estimate of the inaccuracy in uffp for comparison. As a

representation of the actual pair potential, the main deficiency of uffp is the lack of other kinds

of interactions, such as electrostatics. We use the empirical approximation that the energies

associated with these missing interactions diminish inversely with distance, r. Therefore, the

variance between uffp and uactual, which is the expected squared deviation between uffp and

the actual pair potential, diminishes with r2 rather than r. In other words, Err(uffp) can be
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represented by the following function:

Err (uffp (r)) = c

(
3.0 Å
r

)2

(3.26)

The parameter c represents the expected squared deviation between the uffp and the actual

potential at a distance of 3.0 Å. In this work, we set c to 0.4 to correspond with the scale of

the Lennard-Jones 6-12 well depths.

Now that Err(uffp) in equation 3.26 has been computed, it can be compared to Err(upmf )

to determine the weights A and B and compute the STScore pair potentials (see equations

3.2-3.5 of Methods 3.2.1). The distance-dependency of A and B is caused by both Err(upmf )

and Err(uffp), but in general Err(upmf ) is more influential because it is unbounded for close

distances that do not occur in the training set. In general, uffp dominates the pair potential

(i.e. A ≈ 1.0) whenever Err(upmf ) becomes very large, and this occurs in two situations: (1)

when the atom pair distance r is unusually small (i.e. clashes) and (2) when the atom pair

type is rare.

3.2.6 Implementations of the other sparse data methods

Here we discuss three sparse data methods, the cutoff method, method of pseudocounts,

and Sippl’s method, and present the specific implementations of each which were tested in

this work.

In the cutoff method one simply discards features with too few instances to be trustable.

For atomic pair potentials, one may discard all pair types that occur less frequently than a

chosen number and treat them as non-interacting. The specific implementation of the cutoff
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method in this work is based on the sparse data method used in references 95 and 45.

uCUTOFF
pmf ,ij (rk) =


0 : Nij,0-10 < 550

upmf ,ij (rk) : Nij,0-10 ≥ 550
(3.27)

A pair type was only regarded if 550 atom pairs of that type were found within 10.0 Å of

each other in the training set, otherwise the pair type was treated as non-interacting. For

unoccupied, very close distances a hard sphere interaction was used to represent the strong

exchange repulsion and prevent atomic clashes.

The second sparse data approach is the method of pseudocounts. A small quantity is

added to each count to prevent division by zero and to decrease the influence of sparse pair

types [180]. There is flexibility in how these quantities are chosen; they may be chosen in

a way that implies an initial estimate of the density distribution, which is the approach we

followed in this work. For each atom pair type and distance bin, we added a pseudocount,

ck, that is proportional to the volume of the k th bin, vk. Likewise, the pseudocount for the

reference shell, C6-10, was chosen to be proportional to the volume of the reference shell,

V6-10. The following equation is the same as equation 3.19 except for the addition of these

pseudocounts.

uPSEUDO
pmf ,ij (rk) = −kBT ln

[ (
nijk + ck

)
/vk(

Nij,6-10 + C6-10

)
/V6-10

]
(3.28)

In the absence of training data, the pair density computed for each bin in equation 3.28

would be the same, because only the pseudocounts would contribute to the count for each

bin in this case. This method ensures that the derived pair potential will tend towards zero

(non-interacting) wherever there is a lack of training data.

The criterion that the pseudocounts be proportional to bin volume is not sufficient to

determine their exact values. It was also necessary to specify a constant representing the

number of pseudocounts to add per unit volume of a bin. This density constant was chosen to
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be 0.131 pseudocounts per cubic Å, implying that for atom pair types with 550 occurrences

within 10 Å, about half of the counts would be from the training set and half would be

pseudocounts. Therefore, this implementation of the pseudocounts method is similar to the

550-occurrence cutoff method defined previously, except that there is a gradual, rather than

abrupt, transition between the treatment of sparse pairs as non-interacting and the treatment

of dense pairs as trustable.

Finally there is Sippl’s sparse data method [101]. Sippl’s method was originally introduced

as part of a knowledge-based scoring function for protein folding prediction that is based

on the interactions of amino acid residues. Sippl’s proposed sparse data method treats the

observation of each residue in the training set as a quantum of information, contributing

to an aggregate [101]. The relative influence of additional residues pairs, compared to the

initial pair density estimate, are weighted by the parameter σ = 0.02. This method offers the

advantage of including all the training data, while preventing sparse data noise from having

excessive influence on the derived PMF. Sippl’s method was introduced in the context of a

statistical potential for protein folding. The energy computed with Sippl’s method[101] (using

the protein-ligand notation in this work) may be expressed as:

uSIPPLSippl-pmf,ij (rk) = kBT ln
[
1 + σNij,0-6

]
− kBT ln

[
1 + σNij,0-6

(
gij(rk)

)]
(3.29)

This form of the equation closely follows reference 101, but the equation may also be rear-

ranged in terms of a weighted sum of two density estimates: the relative radial pair density

computed from the training set, gij(rk), and the initial estimate of the relative radial pair

density, 1.0.

uSIPPLpmf ,ij (rk) = −kBT ln

[
1

1 + σNij,0-6
· (1.0) +

σNij,0-6
1 + σNij,0-6

· (gij(rk))
]

(3.30)
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This rearrangement highlights some similarities between Sippl’s method and the one pre-

sented in this work. Sippl’s method uses an initial estimate of the pair density function

(uniform), which is then updated after observing the training data. Similarly, STScore can

be thought of as using an initial estimate of the pair energy function (uffp) which is then

updated based on the training data. Dissimilarly, uffp is a non-trivial initial estimate of the

pair energy function, which already gives good results in the form of FFP Score (see Results).

Sippl’s method and weighting scheme may be readily applied to other PMFs by substitut-

ing the appropriate definition of gij(rk) into equation 3.30 and letting Nij represent the total

pool of pairs for each type that may be assigned to a distance bin. To use Sippl’s method

with PMF Score, we set:

gij(rk) =
ρij(rk)

ρij,ref
=

nijk/vk
Nij,6-10/V6-10

(3.31)

as in equation 3.19, and then computed the energy from equation 3.30.

Finally, we also evaluated an alternative to PMF Score which is based on the protein

folding scoring function in Sippl’s work in reference 101, except adapted for protein-ligand

interactions [104]. This alternative is referred to as Sippl-PMF Score in the Results, and is

the basis PMF for STScore2. In this adaptation, the relative radial pair density function is

computed as:

gij(rk) =
nijk/Nij,0-6
nk/N0-6

(3.32)

where nk/N0-6 gives the proportion of atom pairs of any type that are found in distance

bin k, relative to the proportion of atom pairs within 6.0 Å. Consequently, the radial pair

density function for one type is computed relative to the radial pair density for all pair types

combined. This is unlike the PMF computed from equation 3.19, in which each radial pair

density is computed relative to the average density for a reference shell of the same pair type.

This protein-ligand adaptation of Sippl’s PMF lacks an important feature present in Sippl’s
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protein-folding PMF. Sippl’s protein-folding PMF separates the pair density distributions into

a set of topological levels; each topological level includes all the residue-residue interactions

of a specified sequence distance. This separation allows the pair potential between two

residues to vary not only with their geometric distance but also their sequence distance. This

feature is not directly applicable to protein-ligand interactions and was not adapted.

3.2.7 Scoring function evaluations

As mentioned in Section 3.2.1, STScore is the sum of pairwise atomic interactions within a

distance of 6.0 Å, using u(r) from equation 3.2 as the atomic pair potential. For the purpose

of evaluating STScore, we defined PMF Score and FFP Score. PMF Score is the sum of

pairwise interactions within 6.0 Å using upmf from equation 3.19 as the atomic pair potential,

and FFP Score likewise uses uffp for pairwire interactions within 6.0 Å. We also evaluated

Sippl-PMF Score, which was defined in the same way as PMF Score except substituting the

alternative relative radial pair density function given in equation 3.32 of the previous section.

We evaluated two versions of STScore which differ only according to the reference state

definition used for the PMF. [101] STScore1 used the PMF Score defined in equation 3.19,

while STScore2 used the aforementioned Sippl-PMF Score. For simplicity in this section, we

refer to the two as STScore, but all evaluations were done for both STScore1 and STScore2.

We evaluated STScore and its consensus components (PMF Score and FFP Score) based on

two criteria: binding affinity predictions and binding mode predictions. For binding affinity

predictions, we computed the Pearson correlation between the scores given by PMF Score,

FFP Score, and STScore, and the experimentally-determined binding affinities provided in

three testing sets, Wang, Muegge, and PDBbind. The testing set labeled Wang is a diverse

set of 100 complexes by Wang et al. [6]. There is no overlap between these 100 complexes

and our training set. PDBbind is a diverse set of 1300 complexes compiled by Wang et al.

[160, 185]. There is some overlap between PDBbind and the set of training complexes used
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to derive PMF Score and STScore; these duplicate complexes were removed from PDBbind,

leaving 1190 testing complexes. There is no overlap between the training set and Muegge’s

testing set, which contains 77 complexes [95].

For binding mode predictions, we used Wang’s set of 100 complexes [6] along with the

100 decoy poses generated for each complex by Morris et al. [37]. The heavy-atom root-

mean-squared standard deviation (RMSD) was computed between each native binding pose

and its respective decoy conformations. Each scoring function was used to evaluate the 100

binding modes and one native mode for each of the 100 complexes. Then, the binding

modes were ranked according to their computed scores. The RMSD between the best-scored

mode and the native binding mode was compared to a cutoff value, and the percentage of

the 100 complexes for which the highest-scored mode was within this cutoff was computed.

This percentage is a measure of the scoring function accuracy for the purpose of identifying

native binding poses. The success cutoff values include 0.0, 0.5, 1.0, 1.5, and 2.0 Å.

Finally, we also evaluated PMF Score using three alternative sparse data methods: the

cutoff method (the default, used for the comparisons with FFP Score) [45, 95, 104, 176],

Sippl’s method [101], and the method of pseudocounts [179–181], as implemented in the

previous section (Methods 3.2.6).

3.3 Results and Discussion

In the Methods we described how STScore1 uses two scoring functions, PMF Score and FFP

Score, as estimates of the interaction between atom pairs, and how our approach adjusts

the influence of the two in order to minimize the sparse data problem. We also evaluate

STScore2, which uses the same FFP with an alternative PMF that we label Sippl-PMF Score.

Here, we compare the performance of STScore1, PMF Score, STScore2, Sippl-PMF Score,

and FFP Score on both binding mode predictions and binding affinity predictions. We also
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evaluate the performance of PMF-Score and Sippl-PMF Score when used with other sparse

data methods.

First, we remark on a case study in which we used STScore1 and PMF Score to predict

the binding mode of the ligand in PDB: 2cgr [186] from the Wang testing set [6, 37]. STScore1

provides a pairwise interaction for all heavy atoms pairs, regardless of how rare their type.

With a cutoff of 550 instances for the inclusion of an atom-pair type, PMF Score excludes

about 5% of protein-ligand atomic contacts on average based on the complexes in the Wang

testing set. Using the cutoff method, PMF Score treats these excluded types as non-interacting.

Figure 3.2 illustrates the contrast between the two scoring functions. In panel (a) the ligand

labeled ‘Native’ is the binding pose from the crystal structure (PDB: 2cgr), which STScore1

correctly identified. The binding pose labeled ‘PMF’ is the lowest-scoring pose according to

PMF Score. In this example, PMF Score’s exclusion of rare atom types causes it to ignore 82

of the protein-ligand contacts (defined as protein-ligand atom pairs within 6.0 Å). Over half

of these are the contacts between the protein and ligand atom N17, which is labeled and

shown to be highly embedded within the binding pocket in panel (b). N17 is a rare cyano

nitrogen.

We evaluated STScore1 and STScore2 along with their component potentials, and these

results are shown in Figure 3.3. The left panels give the performance of STScore1 and its two

component potentials, FFP Score and PMF Score. The performance of STScore2 is also shown

next to its component potentials FFP Score and Sippl-PMF Score in the right panels. The top

panels give the binding affinity results for each testing set. The values shown are Pearson

correlation coefficients between the scores given by each scoring function and experimentally

determined binding affinities for all the complexes in each testing set. Considering its simple

Lennard-Jones 6-12 functional form, FFP Score (orange) gives unexpectedly good binding

affinity predictions, with a Pearson correlation of 0.596 for PDBbind, 0.469 for the Wang
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Figure 3.2: An example complex from the binding mode evaluation of STScore using Wang’s
testing set. In panel (a) the ligand is shown in two binding modes. The binding mode from
the crystal structure (PDB: 2cgr) [186] is labeled “Native.” In this example, STScore correctly
identified this native binding mode by scoring it better than all of the decoy modes. The
binding mode labeled “PMF” is the best-scoring mode according to PMF Score, which uses a
cutoff of 550 instances in the training set for the inclusion of an atom-pair type. As a result of
this cutoff, PMF Score ignores 82 of the protein-ligand contacts for this complex. Over half
of these are the contacts between the protein and ligand atom N17, a relatively infrequent
cyano nitrogen atom that PMF Score ignores entirely due to its rarity in the training set. N17
is highly embedded within the binding pocket in panel (b).
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testing set, and 0.517 for the Muegge testing set. PMF Score (lighter blue), on the other

hand, performed poorly. The Pearson correlation was −0.239 for PDBbind, −0.049 for the

Wang testing set, and +0.227 for the Muegge testing set. STScore1 (dark grey) gave much

better binding affinity predictions than PMF Score, but inconsistent improvements compared

to the FFP. STScore1 was better than FFP Score on the Wang and Muegge testing sets, but

worse on PDBbind. For STScore1, the Pearson correlation was 0.381 for PDBbind, 0.621 for

the Wang testing set, and 0.721 for the Muegge testing set.

In the binding affinity evaluation, Sippl-PMF Score (darker blue) performed better than

PMF Score. The Pearson correlation was 0.273 for PDBbind, 0.417 for the Wang testing

set, and 0.366 for the Muegge testing set. Likewise STScore2 (black) gave better binding

affinity predictions than Sippl-PMF Score, but inconsistent improvements compared to the

FFP. STScore2 was better than FFP Score on the Wang and Muegge testing sets, but worse on

PDBbind. For STScore2, the Pearson correlation was 0.514 for PDBbind, 0.607 for the Wang

testing set, and 0.482 for the Muegge testing set.

We also depicted the binding affinity predictions of STScore1 and STScore2 as an array

of scatterplots in Figure 3.4. The y-axis gives the scores output by STScore1 (top panels) and

STScore2 (bottom panels) and the x-axis gives the known affinities according to the three

testing sets, PDBbind, Wang’s testing set, and Muegge’s testing set. As mentioned previously,

STScore1 did well in making binding affinity predictions on the Muegge testing set. Both

scoring functions performed moderately well on Wang’s testing set. For the large PDBbind

testing set, STScore2 performed better than STScore1. We computed the best linear fit for

each evaluation (shown as a red line) to indicate the approximate relationship between the

docking scores and the known affinities.

Returning to Figure 3.3, the bottom panels give the binding mode prediction accuracy of

STScore1, STScore2, and their component potentials for each choice of cutoff: 0.0, 0.5, 1.0,
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Figure 3.3: The performance of STScore1 (left panels) and STScore2 (right panels), com-
pared to the component potentials upon which STScore1 and STScore 2 are based. STScore1
uses a force-field-based potential (FFP) and a simple potential of mean force (PMF), while
STScore2 uses the same FFP along with a different potential of mean force that is based
on Sippl’s work (Sippl-PMF) [101]. The top panels give the binding affinity prediction accu-
racy as Pearson correlation coefficients between the docking scores and the experimentally-
determined binding affinities in each testing set (PDBbind, Wang, and Muegge). The bottom
panels give the binding mode prediction as a percent success rate, using Wang’s testing set
with 100 diverse protein-ligand complexes [6, 37]. A binding mode prediction is considered
successful if the root-mean squared standard deviation between the highest-scoring pose and
the native pose is within the given cutoff (0.0, 0.5, 1.0, 1.5, or 2.0 Å).
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Figure 3.4: The binding affinity predictions of STScore1 and STScore2 shown as scatterplots
against the known affinity values for each testing set. The y-axis gives the scores output by
STScore1 (top panels) and STScore2 (bottom panels) and the x-axis gives the experimentally-
determined affinities provided by each testing set. In the first column, the evaluations use the
large PDBbind testing set. The second column shows the evaluations using Wang’s testing
set, and the third column uses Muegge’s testing set. The red line shows the best linear fit for
each evaluation.
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1.5, and 2.0 Å. A binding mode prediction is considered successful if the root-mean-square

deviation (RMSD) between the highest-scoring pose and the native pose is within the given

cutoff. As shown in the figure, STScore1’s binding mode predictions are consistently more

accurate than PMF Score and slightly better than FFP Score. For the 2.0 Å cutoff, STScore

had a binding mode prediction success rate of 80%, while FFP Score had a success rate of

75% and PMF Score a success rate of 41%. STScore2 gave good binding mode predictions

that consistently exceeded the performance of both Sippl-PMF Score and FFP Score. For the

2.0 Å cutoff, STScore2 had a binding mode prediction success rate of 91%, compared to FFP

Score’s success rate of 75%. Sippl-PMF Score had a binding mode prediction success rate of

78%, much better than PMF Score.

The results in Figure 3.3 show that STScore1 (dark grey) and STScore2 (black) maintain

the good binding affinity predictions of FFP Score while improving on both the PMF and

FFP in terms of binding mode predictions. To put the performance of STScore in a relative

context, we also show these results compared to other commonly-used scoring functions

that have been evaluated on Wang’s testing set [6, 37] in Figure 3.5.

We compared STScore to other commonly-used methods of dealing with the sparse data

problem. Specifically, we tried the fixed-cutoff method as a baseline (“Cutoff”), the method

of Sippl (“Sippl’s method”) [101], and the pseudocount method (“Pseudocounts”) [180]. These

three methods were adapted for and tested using the PMF defined in equations 3.1 and 3.19,

and are based on references 45 and 178. Figure 3.6 compares the binding mode prediction

success rate of STScore1 to PMF Score when using the three alternative sparse data methods.

We also compared STScore2 to Sippl-PMF Score using the same three sparse data methods.

In general, the cutoff method, pseudocounts method, and Sippl’s method gave similar results.

The top panel of Figure 3.6 gives the binding affinity results for each scoring function. The

y-axis is the Pearson correlation between the docking scores and known binding affinities in
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Figure 3.5: The performance of several popular scoring functions along with STScore1 and
STScore2 when using the test set by Wang et al. with 100 diverse protein-ligand complexes
[6, 37]. The top panel gives the binding affinity prediction accuracy as Pearson correlation
coefficients and the bottom panel gives the binding mode prediction success rates of each
scoring function. A prediction is considered successful if the best-scoring binding mode is
within 2.0 Å RMSD of the native mode. Results for scoring functions other than STScore
are from references 105, 103, 46, 49, and 6. The ordering of the scoring functions in this
figure was chosen by normalizing the binding affinity correlations and binding mode success
rates such that the highest value on each panel would be 1.0, and then averaging the two
normalized performance values. We used this ordering for consistency between the top and
bottom panels, and it is not meant as a general performance ranking of the listed scoring
functions.
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Figure 3.6: The performance of STScore1 (dark grey) and STScore2 (black), compared to
other sparse data methods: the cutoff method (blue), Sippl’s method (red), and the method
of pseudocounts (green). STScore1 uses a simple potential of mean force (PMF) defined in
equation 3.1. The performance of this PMF using the three alternative sparse data methods,
along with STScore1, are shown in the first four series and colored more lightly. STScore2
uses a different potential of mean force that is based on Sippl’s work (Sippl-PMF) [101]. The
performance of STScore2 along with that of Sippl-PMF using the three sparse data methods
are shown in the last four series and colored more darkly. The top panel gives the binding
affinity prediction accuracy of the eight scoring functions using each of three testing sets:
PDBbind, Wang, and Muegge. Values shown are Pearson correlation coefficients between the
scores given by each scoring function and the experimentally determined binding affinities in
the testing set. The bottom panel gives the binding mode prediction accuracy of the scoring
functions as percent success rates, using Wang’s testing set. A binding mode prediction
is considered successful if the root-mean squared standard deviation between the highest-
scoring pose and the native pose is within the given cutoff (0.0, 0.5, 1.0, 1.5, or 2.0 Å).
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three testing sets (PDBbind, Wang, and Muegge) [6, 95, 160, 185]. The Sippl-based PMF (see

Methods 3.2.6) performed much better than the PMF defined in equations 3.1 and 3.19. For

the Sippl-based PMF applied to PDBbind, which is the largest testing set of the three, the

binding affinity correlations were 0.241 when using Sippl’s sparse data method, 0.203 when

using the pseudocount method, and 0.273 when using the cutoff method. As presented

above, the binding affinity correlation of PMF Score was -0.239 when using the default cutoff

method for sparse data. When instead using the pseudocounts method the correlation was

-0.248 and for Sippl’s method the correlation was -0.245. It is worth emphasizing that the

alternative sparse data methods are inheriting the bad binding affinity performance of PMF

Score. STScore1 and STScore2, which benefit from a reasonable backup pair potential for

regions of sparse data, gave better binding affinity predictions. The Pearson correlation was

0.381 between STScore1 and the experimentally-determined affinities of PDBbind, and for

STScore2 the correlation was 0.514.

The Sippl-based PMF also gave much better binding mode predictions than PMF Score as

shown in the bottom panel of Figure 3.6. Using the 2.0 Å RMSD cutoff, the Sippl-based PMF

had a success rate of 78% when the cutoff method was used, 80% when Sippl’s method was

used, and 72% when using the method of pseudocounts. For PMF Score, the success rate

was 41% when using either the cutoff method or Sippl’s method, and was 39% when using

the pseudocounts method.

In summary, the three sparse data methods: the cutoff method, pseudocounts, and Sippl’s

sparse data method, gave similar results when using either PMF Score or the PMF based on

Sippl’s work [101]. The Sippl-based PMF consistently performed better than PMF Score in

both binding mode predictions and binding affinity predictions. In general, STScore1 and

STScore2 performed better than PMF Score and Sippl-PMF Score, respectively, using any

of the other three sparse data methods. STScore benefited from the influence of the FFP,
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which serves as an alternative atomic pair potential for atom pair types and distances lacking

training data. See Methods 3.2.2-3.2.5 for the derivation of STScore and Methods 3.2.6 for

the implementations of the other sparse data methods.

3.4 Conclusions

The sparse data problem is a long-standing issue that affects all statistical potentials. In this

work, we proposed a method of combining two types of scoring functions using weights

based on the estimated errors in each scoring function. This combination allows the method

to automatically prioritize the alternative force-field-based potential, whenever the derived

potential of mean force is untrustable. This method accommodates the sparse data problem

while avoiding the removal of any training data. We show that this composite potential,

STScore, makes better binding mode predictions than both of the two alternative potentials,

and demonstrates a new alternative to the existing sparse data methods.

One possible route for improving STScore would be to consider other, more rigorous,

PMFs for protein-ligand interactions. In this work, we found that the protein-ligand PMF

adopted from Sippl’s work gave much better results than PMF Score, and likewise STScore2,

which uses the Sippl-based PMF, gave better results than STScore1, which uses PMF Score.

This motivates us to consider adapting the STScore sparse data method for use with the

other knowledge-based scoring functions, to determine whether further improvements are

possible.

Similarly, future work includes the adoption of other force field-based scoring functions

to replace the simple force field-based scoring function used in the present study as a proof-

of-concept. The sparse data method presented here can be readily generalized to other

knowledge-based scoring functions, including those designed for protein structure prediction

and protein-protein docking.
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CHAPTER 4

Evaluating Docking Methodologies

The work in this chapter was published in Journal of Chemical Information and Modeling.*

Abstract

In this study, we use the recently released 2012 Community Structure-Activity Resource

(CSAR) Dataset to evaluate two knowledge-based scoring functions, ITScore and STScore,

and a simple force-field-based potential (VDWScore). The CSAR Dataset contains 757 com-

pounds, most with known affinities, and 57 crystal structures. We use a scripting approach

for docking preparation, and use the full CSAR Dataset to evaluate the performances of the

three scoring functions on binding affinity prediction and active/inactive compound discrim-

ination. The CSAR subset that includes crystal structures is used as well, to evaluate the

performances of the scoring functions on binding mode and affinity predictions. Within this

structure subset, we investigate the importance of accurate ligand and protein conformational

sampling and find that the binding affinity predictions are less sensitive to non-native ligand

and protein conformations than the binding mode predictions. We also find the full CSAR

Dataset to be more challenging in making binding mode predictions than the subset with

structures. The script files used for preparing the CSAR Dataset for docking, including scripts

for canonicalization of the ligand atoms, are offered freely to the academic community.

*S. Z. Grinter, C. Yan, S.-Y. Huang, L. Jiang, and X. Zou (2014) Automated large-scale file preparation,
docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource
benchmark. J. Comp. Chem. 53(8): 1905–1914.
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4.1 Introduction

The prospect of reliably predicting protein-ligand interactions has important implications for

studies of protein function at the molecular level and for the design of therapeutic interven-

tions [27, 29, 54, 187]. Abundant, publicly-accessible databases containing accurate protein-

ligand structures and binding affinity information are invaluable tools to assess and improve

the docking and scoring methods used to predict protein-ligand interactions [162, 188]. The

2012 Community Structure-Activity Resource (CSAR) Dataset, publicly released on July 3rd,

contains 757 compounds with provided SMILES strings, 508 with known affinity values, 185

compounds designated to be inactive, and 57 compounds with an available protein-ligand

crystal structure. These compounds span six protein targets. The compound affinities are

given as either Kd, Ki, or IC50 and come from several different assays. For compounds with

an available protein-ligand crystal structure, the CSAR Dataset provides the complex, the

separated ligand and protein in their native bound conformations, and a set of unbound

ligand conformations generated as MOL2 files. In this work, we use the 2012 CSAR Dataset

to evaluate two knowledge-based scoring functions recently developed by our laboratory,

ITScore and STScore. We also evaluate a Lennard-Jones potential as a point of reference.

ITScore [45, 46] was developed by using a statistical mechanics-based iterative method to

deal with the challenging reference state problem [3, 5] faced by knowledge-based scoring

functions [95, 103, 105, 174]. The approach starts by computing the native distance distribu-

tions for each atom pair type observed in the native ligand binding poses. This distribution

is then compared to the same distribution but generated using a set of many decoy poses.

Within the distribution that uses decoy ligand poses, each decoy is given a Boltzmann weight

based on the free energy predicted for that decoy. The pair potentials can then be adjusted

in a way that decreases the predicted free energy of the ligand in its native pose relative to

the nearby decoy poses. This adjustment is done iteratively until the pair potentials are able
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to reliably distinguish the native ligand poses from the decoys.

STScore is a knowledge-based scoring function that we developed to introduce a new

method of handling the sparse data problem (not yet published). The overall approach is to

combine a potential of mean force (PMF) with a simple force-field-based potential where the

relative weight given to either alternative is a function of their estimated inaccuracies. We use

a Bayesian statistical model to estimate the inaccuracies in the PMF due to sparse count data,

allowing the method to naturally increase the influence of the force-field-based alternative for

any pairs or distances lacking training data. Both the PMF and force-field-based potentials

used were simple, but the overall point of STScore is to demonstrate the concept of this

sparse data method, and to show that the method effectively combines the two component

potentials, giving better predictions than either the PMF or force-field-based potential alone.

The details of STScore will be described in a separate manuscript in preparation.

In this work, we use the 2012 CSAR Dataset to evaluate ITScore [45] and STScore. We also

perform the same evaluations on a simple Lennard-Jones 6-12 potential [32, 34] as a reference.

This potential, labeled VDWScore, uses the same van der Waals radii and well depths assigned

for the van der Waals force in the initial potential of ITScore [45]. Consequently, ITScore and

STScore are similar to VDWScore for close atom pair distances (e.g. clashes), and STScore is

also similar to VDWScore for rare atom pair types.

In the following section, we will discuss the details of our evaluations of these three

scoring functions. We will explain in detail how we prepared the 2012 CSAR Dataset for all

the docking calculations and introduce, in Appendix A, some scripts and data files for use

by future users of the CSAR Dataset. The scripts may also be of interest to others dealing

with large-scale file preparation for docking. Though similar scripts are frequently used by

scientists in pharmaceutical industry for large-scale docking, the scripts are not available to

many academic users. In the Results, we will give special emphasis to the importance of the
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native ligand and protein conformations, and discuss the challenge of handling protein and

ligand flexibility in docking.

4.2 Methods

We used the 2012 CSAR Dataset to evaluate two scoring functions, ITScore and STScore.

We also performed the same evaluations on a simple force-field-based potential based on

the Lennard-Jones 6-12 potential. These three scoring functions have been described in the

Introduction. All docking calculations were performed using the MDock 1.2 software pack-

age (http://zoulab.dalton.missouri.edu/software.htm) [45, 46]. MDock uses a rigid sampling

method that is based on DOCK 4 [34]. First, spheres tangent to the protein surface are gener-

ated along the binding site. These are used to generate the initial putative ligand orientations

by matching ligand atoms to the sphere points. These initial orientations are then minimized

and assessed by the chosen scoring function. ITScore is the default scoring function used

in MDock. For the STScore and VDWScore evaluations, the source code of MDock was

modified only to include the STScore and VDWScore pair potentials and otherwise left in its

original form.

4.2.1 Summary of Evaluations Performed

We evaluated the performance of ITScore, STScore, and VDWScore based on binding mode

predictions and binding affinity predictions. For binding mode predictions, we computed

the heavy-atom root-mean-square deviation (RMSD) between each docked ligand and the

native, bound-state ligand. These predictions were then evaluated in terms of the percent

success rate (where a prediction is considered successful if the top ranked ligand pose has

an RMSD less than 2.0 Å). For binding affinity predictions, we computed the Pearson cor-

relation between the docking scores and the known binding affinities of the compounds.
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These correlations were computed for three separate groups according to the affinity mea-

sure provided for the compound: Kd, Ki, or IC50. We also analyzed the ability of the scoring

functions to distinguish between known actives and known inactives and present the data

as a set of ROC curves.

We analyzed the performance of the three scoring functions using both the native struc-

tures, where available, and various structure ensembles. For the ligands, the structure

ensembles were generated using the software Omega (OpenEye Scientific Software http:

//www.eyesopen.com) [112, 113]. For the proteins, the structure ensembles consist of either

the available structures for a given protein group (for calculation on the full set of compounds

in CSAR) or all of the these structures except the one bound to the ligand being docked (for

subset of the CSAR Dataset that includes native protein-ligand structures). Because the full

set of compounds includes many compounds with no available structure, we evaluated the

scoring functions on the full set using only the Omega-generated ligand ensembles docked

to the protein ensembles. For this case we evaluated the binding affinity predictions and the

active/inactive compound discrimination (as ROC curves).

For the subset of the CSAR Dataset with structures, we further generated data for six

other cases. Specifically, to each native protein structure we docked 1) the corresponding

native ligand conformation, 2) an ensemble of conformations generated by Omega from

the connection table of the ligand MOL2 file, and 3) an ensemble consisting of the one

native conformation along with the set of Omega-generated conformations. For each protein

ensemble, we then docked 4) the ligand in its native, bound conformation, 5) the ensemble

of conformations generated by Omega from the MOL2 connection table, and 6) an ensemble

of conformations generated by Omega from the SMILES string provided in the CSAR Dataset.

For these six cases we evaluated the performance of the scoring functions on binding affinity

predictions and binding mode predictions. These data series are depicted in detail in the
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Results, and the preparation thereof is described in detail below.

4.2.2 CSAR Dataset Preparation

The CSAR Dataset contains SMILES strings for 757 compounds, 508 of which have known

binding affinities. It also contains 57 protein-ligand crystal structures, some with known

affinities and some without. In order to efficiently handle the data, we prepared a combined

CSV datafile which contains a consistent identifier for each compound and as well as all

of its associated non-structural information. This associated information includes the known

binding affinity, and a label specifying whether the affinity is given as Kd, Ki, or IC50. We also

included the SMILES string, the type of assay used to measure the affinity, and a three-letter

label specifying which protein the compound is associated with: ‘CDC’ for Cyclin-dependent

kinase 2 bound to Cyclin A, ‘CDK’ for Cyclin-dependent kinase 2, ‘CHK’ for Checkpoint

Kinase 1, ‘ERK’ for Extracellular signal-regulated kinase 2, ‘LPX’ for LpxC (a Zinc-dependent

bacterial deacetylase), and ‘URO’ for Urokinase plasminogen activator (a serine protease).

We also included several binary labels for each compound to aid in defining useful

subsets. For example, one of the labels specifies if a crystal structure is available containing

the compound bound to its associated protein, and other labels specify if the compound

is designated to be active or inactive. This labeling strategy allows one to easily apply

commands to subsets of the CSAR Dataset defined according to these labels. The CSV datafile,

which will be available at the CSAR website (http://www.csardock.org), will be of use to

future users of the CSAR Dataset. More details about this datafile can be found in Appendix A.

We began with the set of protein-ligand complexes provided as MOL2 files in the CSAR

Dataset and the datafile mentioned above. All other files were generated using a combination

of shell scripting, Python scripting of Chimera [189] in its command-line format, and the

tools distributed with the MDock software package. All statistics were done using R (http:

//cran.r-project.org).
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Within each of the six protein groups, we aligned all of the crystal structures provided

in the CSAR Dataset using Chimera’s default MatchMaker settings. We also used Chimera to

save the protein and the ligand into separate MOL2 files, and to convert these MOL2 files

into PDB format. All the ligand files were visually inspected. The CSAR Dataset includes

separated ligand and protein files, however we did not use these files because they were

generated from the unaligned structures, which are less convenient for evaluating binding

mode predictions.

We used Omega 2.4.3 (OpenEye Scientific Software http://www.eyesopen.com) to gen-

erate sets of ligand conformations. For each compound, the SMILES string [190] was used

to generate one set of ligand conformations. For each compound with an available crystal

structure (57 compounds), the MOL2 connection table was used to generate another set of

conformations. The conformations generated by these two methods are the same, except

in 11 cases where the SMILES strings contained ambiguous stereochemistry. In these cases,

Omega handled this ambiguity by generating extra conformations to explore the stereo-

chemistry. The conformations generated from the MOL2 file connection tables use the native

stereochemistry. We used both of these methods because the former method is necessary in

order to generate conformations for the full CSAR Dataset (including both compounds with

and without structures) and the latter method is necessary in order to generate conformations

having atom ID numbers consistent with the native structure. This ID number consistency

makes the binding-mode RMSD calculations easier. Evaluations using both of these types

of Omega-generated ligand ensembles give nearly identical results (as shown in the Results

section).

When running Omega, we used the -fromCT option to ensure that the native coordinates

were not being used to generate new conformations and the -flipper true option so that

SMILES strings with ambiguous stereochemistry would be handled. We set -strictfrags to
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true for accuracy and -maxconfs to 100 to keep the computational time reasonable for later

docking calculations. (For SMILES strings with ambiguous stereochemistry, this conformation

limit applies to each generated isomer). We also used Omega with the -includeInput option

to provide a MOL2 file of the native conformation but with the atom IDs modified to be

consistent with the other generated conformations. In summary, for each compound, Omega

was used to produce an ensemble of ligand conformations and a renumbered version of

the one native conformation. We also concatenated these conformations to generate an

ensemble consisting of the one native conformation along with the set of Omega-generated

conformations for docking.

4.2.3 MDock Docking Preparation

We used UCSF dms [189] to generate the molecular surface of each protein structure, with the

default probe radius of 1.4 Å. We used Sphgen_cpp [34] to generate spheres around the whole

surface of each protein. Finally, we used get_sph [34, 47], included with the MDock software

package (http://zoulab.dalton.missouri.edu/software.htm), to choose spheres in the vicinity

of the protein binding site, which may be defined by a PDB file. We defined this binding site

broadly by concatenated all the ligand PDB files from the native aligned structures into one

file for each protein group, in order to reduce bias. For native-protein docking, all binding

spheres within 3.0 Å of any ligand were included.

For non-native protein docking, we used the protein ensemble method [47, 48], consistent

with our approach in the CSAR benchmark exercise. To test this method on the full set, we

first produced six protein ensembles by combining all of the included protein structures for

each protein group (CDC, CDK, CHK, ERK, LPX, and URO). For example, the URO protein

ensemble consists of the seven URO protein structures available within the CSAR Dataset:

URO_4, URO_6, URO_7, URO_8, URO_9, URO_15, and URO_18. To prepare the binding

sphere files for these six ensembles, we first used get_sph to generate sphere files specific to
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each bound structure. For each structure, the corresponding binding sphere file contains only

the spheres generated for the protein surface of that structure, restricted to the spheres within

3.0 Å of the native, bound ligand position. Then for each protein ensemble, we concatenated

all of the sphere files corresponding to the protein structures that constitute the ensemble.

For example, the sphere file for the URO ensemble was made by concatenating the sphere

files specific to the seven URO protein structures: URO_4, URO_6, URO_7, URO_8, URO_9,

URO_15, and URO_18. Finally, we used clu_sph [34, 47], included with MDock, to remove

redundant spheres.

For the structure subset, we did not wish the docking calculations for any compound

to benefit from the inclusion of the native protein structure for that compound within the

ensemble. We therefore produced a different protein cross ensemble for each of the 56

compounds in the structure subset. Each cross ensemble includes all of the CSAR protein

structures in the same protein group, except excluding the one protein structure that was

bound to the compound in question. For example, the URO_6 cross ensemble consists of

the six proteins structures that were not bound to the URO_6 ligand, that is: URO_4, URO_7,

URO_8, URO_9, URO_15, and URO_18. This procedure was not possible for CDC (CDK2

bound to Cyclin A), for which only one crystal structure is available in the CSAR Dataset,

CDC_260. Therefore, it was necessary to exclude CDC_260 from the protein cross-ensemble

docking calculations performed on the structure subset, and for consistency, CDC_260 was

also excluded from the native protein calculations on the structure subset. To generate a

binding sphere file for each protein cross ensemble, we concatenated all of the sphere files

corresponding to the protein structures that constitute that cross ensemble. For example,

the sphere file for the URO_6 cross ensemble was made by concatenating the sphere files

specific to the six protein structures in the URO_6 cross ensemble: URO_4, URO_7, URO_8,

URO_9, URO_15, and URO_18. As with the full set ensembles, we used clu_sph [34, 47] to
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remove redundant spheres.

4.2.4 Scoring Method Evaluation

For binding mode predictions, we computed the RMSD between all non-hydrogen atoms in

each docked ligand and all non-hydrogen atoms in the native, bound ligand. We evaluated

the binding mode predictions in terms of the percent success rate. A prediction was consid-

ered successful if the RMSD between the docked ligand and the native ligand was less than

2 Å.

To evaluate the binding affinity predictions of the scoring functions, we computed the

Pearson correlation between the docked scores and the experimentally-determined binding

affinities provided in the CSAR Dataset. Computing score-affinity correlations for all proteins

in one group would not be appropriate, because the binding affinities for each group were

obtained from assays that use different affinity measures. We therefore computed the corre-

lation separately for each of the three affinity-measure groups: Ki, Kd, and IC50. The three

correlation values were then averaged to provide a generalization of the scoring functions’

performance across all the proteins in the CSAR Dataset. The average was computed by

taking a weighted mean of the three groups, where the weight given to a group is equal

to the number of proteins in that group: two protein targets in the Kd group (considering

CDC and CDK as one protein), two in the Ki group, and one protein in the IC50 group).

We did not weight each affinity group equally, or according to the number of compounds

in the group, because either of these methods would give about 30% of the weight to the

IC50 group, which would give its single protein member, CHK, excessive influence on the

averaged results. We present this weighted mean as the affinity performance measure used

in the Results section. We also computed the score-affinity correlations separately for each

protein group, and these correlations are provided in the Supporting Information.

In order to evaluate whether the scoring functions are able to discriminate active/inactive
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compounds, we labeled the compounds as active or inactive and analyzed the receiver oper-

ating characteristic (ROC) using the ROCR package [191], available in R (http://cran.r-project.

org). ROC curves, giving the ratio of the true positive rate to the false positive rate for various

choices of score cutoffs, are given in the Results.

Details on the labeling of all the compounds as active or inactive are provided in Ap-

pendix A, but are briefly summarized here: Compounds were considered active if their

experimentally-determined Kd, Ki, or IC50 value was less than 10µM; compounds were con-

sidered inactive if their Kd, Ki, or IC50 value was known to be greater than 100µM. A gap

from 10−100µM, within which compounds were considered neither active nor inactive, was

used to reduce the risk that a compound might be labeled differently depending on the affin-

ity measure and assay. This resulted in 491 compounds labeled active and 185 compounds

labeled inactive. We provided the ROC curve for all protein groups combined, and for CDK2-

Cyclin A and CDK2 separately, each of which have 22 actives and 84 inactives. Curves were

not provided for the other four protein groups (CDK2, ERK2, LPXC and Urokinase) because

they all had 12 or fewer labeled inactives, and two of them had no inactives.

4.3 Results and Discussion

We evaluated the performance of ITScore, STScore, and VDWScore on binding affinity predic-

tions, binding mode predictions, and active/inactive compound discrimination. The binding

affinity predictions were evaluated by computing the Pearson correlation between the dock-

ing scores and the known binding affinities for three groups, separated by affinity measure:

Kd, Ki, or IC50. Binding mode predictions were evaluated based on the heavy-atom root-

mean-square deviation (RMSD) between each docked ligand and the native, bound ligand.

Finally, ROC curves were plotted to show the active/inactive compound discrimination of

the three scoring functions. These three sets of results are described as follows.
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4.3.1 Binding Affinity Predictions

All binding affinity results are presented in the top panel of Figure 4.1. The y-axis values

are the weighted averages of the three Pearson correlations for each affinity group (Kd, Ki,

IC50) where the weight given to a group is proportional to its number of protein members,

as described in the Methods.

We divided these results into three different sets in order to more clearly show three

comparative relationships. The first set focuses on the effect of the native versus non-native

protein conformation on the affinity prediction accuracy. The second set shows the impor-

tance of the native ligand conformation versus the Omega-generated ligand conformations.

The third set presents the results for both the non-native protein and Omega-generated lig-

and ensembles used together, using either the structure subset (i.e., the subset in which the

crystal structure is provided for each protein-ligand complex) or the full set with affinities.

Each set begins with the native-ligand, native-protein results in order to make the visual

comparisons easier.

In the first comparison set (top-left of Figure 4.1, “native protein vs. cross ensemble”), the

native-ligand, native-protein affinity results are given in one group, followed by the native-

ligand, protein cross ensemble results in a second group. ITScore and STScore are found

to be sensitive to the non-native protein conformation. A substantial decrease in prediction

accuracy is seen when the docking is done on the protein cross ensembles instead of the

native protein structures. For ITScore, the average binding affinity correlation falls from 0.81

to 0.65, and for STScore it falls from 0.61 to 0.49. No significant difference is found for the

accuracy of the affinity prediction by VDWScore as a result of the protein conformation.

In the second comparison set (top-middle of Figure 4.1, “native ligand vs. Omega-

generated ensemble”), the native-ligand, native-protein affinity results are given as the first

group, followed by two groups that use Omega-generated ligand ensembles. The last group
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Figure 4.1: Binding affinity and binding mode predictions of the three scoring functions
evaluated in this study: ITScore (red), STScore (green), and VDWScore (blue). The results
are divided according to three attributes: the protein conformation (native, or ensemble),
the ligand conformation (native, native+ensemble, or ensemble), and the test set used (all
structures, structures with affinities, or full set with affinities). The top panel gives the binding
affinity accuracy. Each y-axis value is the mean of three Pearson correlations computed for
each affinity group (Kd, Ki, or IC50). The affinity groups are weighted according to the
number of different proteins in the group: 2.0 for Kd, 2.0 for Ki, and 1.0 for IC50. The bottom
panel gives the binding mode prediction results in terms of percent success rate. The binding
mode is considered successfully identified by a scoring function if the lowest-scored binding
mode according to that scoring function is within 2.0 Å RMSD of the native binding mode.
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uses an ensemble of up to 100 Omega-generated ligand conformations (“Ligand: Ensemble”),

while the middle group uses the same ensemble plus the native conformation (“Ligand: Na-

tive+Ensemble”). STScore performs similarly on all three groups with an average binding

affinity correlation of 0.63 for both of the ensemble-ligand cases. ITScore shows a trend

towards decreasing performance from the “Ligand: Native” group (R = 0.81) to the “Ligand:

Native+Ensemble” group (R = 0.72) to the “Ligand: Ensemble” group (R = 0.66). VDWScore

performs substantially worse on the “Ligand: Native+Ensemble” and “Ligand: Ensemble”

groups with average binding affinity correlations of 0.42 and 0.43, respectively. Overall, the

“Ligand: Native+Ensemble” and “Ligand: Ensemble” groups differ only slightly, suggesting

that the decrease in the performance of ITScore or VDWScore from the “Ligand: Native”

group is not purely the result of inadequate sampling of ligand conformations in the Omega-

generated ensembles. The binding mode results (presented in the next subsection) between

these two groups were also nearly identical.

On the top-right of Figure 4.1 (“native vs. ensemble protein/ligand on struct set and full

set”) this third comparison set shows the native-native results again, followed by three groups

of protein/ligand ensemble results. The first two sets of protein/ligand ensemble results use

the structure subset (“Test Set: structures with known affinity”), the same subset used for all

the results presented in the first and second comparison groups. The last group uses the

full set of compounds with known binding affinities. The first two groups of protein/ligand

ensemble results differ only in how the ligands were generated: in the first group (“Ligand:

Ensemble”), the ligand ensembles were generated by Omega from the connection table of

the native ligand MOL2 file, while in the second group (“Ensemble from SMILES”), the ligand

ensembles were generated by Omega from the SMILES string provided by CSAR. These two

sets are the same, except for 11 compounds with stereochemical ambiguities in the SMILES

strings; for these compounds, extra conformations were generated by Omega to explore
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the stereochemical space. The binding affinity results between these two ligand generation

methods were close, with ITScore having average binding correlations of 0.65 and 0.66 on the

two groups respectively. For STScore, these values were 0.54 and 0.60, and for VDWScore

they were 0.47 and 0.54. We conclude that the large difference in performance between

the first ensemble-ensemble group on the structure subset and the last ensemble-ensemble

group on the full set was due to the difficulty of the full test set versus the structure subset,

and not due to the method of generating the ensembles of ligand conformations.

In the first two groups of ensemble-ensemble results, a decrease in performance is seen

for ITScore relative to the native-native results. This decrease, from R = 0.81 to R = 0.65

is the same decrease seen for the native-ligand, ensemble-protein case (R = 0.65), and the

ensemble-ligand, native-protein case (R = 0.66). A similar decrease is seen for VDWScore

(from R = 0.61 to R = 0.54) although the decrease is insignificant for the “Ensemble from

SMILES” case (R = 0.60). Overall, the performance of STScore is close between the native-

native (R = 0.61) and ensemble-ensemble cases (R = 0.54 for ligand conformations from the

connection table, and R = 0.60 for the conformations from the SMILES strings).

In the last group of protein/ligand ensemble results, the full set of compounds (as en-

sembles generated from the CSAR-provided SMILES strings) were docked to the non-native

protein ensembles for each protein group. As with the other groups, the y-axis value is the

weighted average of the Pearson correlations for the Kd, Ki, and IC50 subsets, where the

weight given to each group is proportional to the number of proteins within the group (two

for Kd, two for Ki, and one for IC50). A decrease in performance is seen for all three scor-

ing functions on the full set of ensemble-ensemble results compared to the structure subset.

For ITScore the average binding affinity correlation was 0.31, for STScore it was 0.32 and

for VDWScore it was 0.34. For ITScore, which performed better than the other two scoring

functions in every other case, this decrease in the average binding affinity correlation was
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large (from R = 0.65 for the structure subset to R = 0.31 for the full set with affinities). As

discussed above, the ligand ensembles generated from the MOL2 connection table (“Ligand:

Ensemble”) and the SMILES ligand ensembles (“Ligand: Ensemble from SMILES”) give close

results. This consistency in results suggests that the substantial decrease in performance

seen with the full CSAR Dataset is due to greater difficulty in the full set itself. The full CSAR

Dataset includes many compounds with similar activity values, and these activity values are

less consistently related to the basic ligand parameters than is the case for the structure sub-

set. For example, the affinity values in the structure subset are moderately correlated to the

number of atoms in each ligand; however, for the full set, this correlation is very weak.

Overall, ITScore made better binding affinity predictions than the other two scoring func-

tions in every case except the ensemble-ensemble evaluation on the full set of compounds

with affinities. The binding affinity prediction accuracy of STScore and of VDWScore were

similar, with one doing better than the other in about half of the cases. Given the crudely

simple functional form of VDWScore, its comparable affinity performance was unexpected.

We suspect that its results may have been improved by the binding pocket hydrophobicity

of several of the proteins in the 2012 CSAR Dataset, as depicted in Figure 4.2. While the

surrounding regions can be seen to contain many hydrophilic residues, the actual contact

residues are predominately hydrophobic for four of the proteins, and mixed for the other

two proteins.

4.3.2 Binding Mode Predictions

All binding mode results are presented in the bottom panel of Figure 4.1. The y-axis values

are the percent of compounds for which the top ranked binding mode and the native binding

mode are within 2.0 Å RMSD (root-mean-square deviation), excluding hydrogen atoms. As

with the affinity results, the binding mode results are divided into three sets in order to

more clearly show the three comparative relationships: “native protein vs. cross ensemble,”
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Figure 4.2: Example binding modes for each of the six protein groups. The protein surface
around each residue is colored according to the Kyte and Doolittle scale of hydrophobicity
[192]. Hydrophilic residues are colored blue while more hydrophobic residues are colored
orange or red. The figure was generated using UCSF Chimera 1.6.2.
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“native ligand vs. Omega-generated ensemble,” and “native vs. ensemble protein/ligand.”

Because evaluating the binding mode requires knowledge of the native ligand position, the

binding mode evaluations were restricted to the structure subset of compounds (“Test Set:

all structures”).

In the first comparison set (bottom-left of Figure 4.1: “native protein vs. cross ensemble”),

the native-ligand, native-protein binding mode results are given in the first group, followed by

the native-ligand, ensemble-protein results in the second group. All scoring functions show

a decrease in binding mode predictions as a result of using the protein cross ensembles

instead of the native protein conformations. For ITScore, the success rate drops from 84% to

68%. For STScore the native-native success rate is 77%, and drops to 68% when the protein

ensemble is used instead. VDWScore does well in the native case, with a success rate of

88%, and the success rate drops to 70% with the protein ensemble.

In the second comparison set (bottom-middle of Figure 4.1: “native ligand vs. Omega-

generated ensemble”), it is shown that the native ligand conformation is very important for

successful binding mode predictions when testing the three scoring functions on the 2012

CSAR Dataset. All three scoring functions show a large decrease in performance when using

an Omega-generated ligand ensembles (“Ligand: Native+Ensemble” or “Ligand: Ensemble”)

rather than the native ligands, and this decrease in performance is substantially larger than

the decrease seen when using the protein cross ensembles versus the native protein con-

formations. For ITScore the success rate drops from 84% to 52% for both Omega-generated

ligand ensembles. For STStore the success rate drops from 77% to 39% for the “Ligand:

Native+Ensemble” case, and to 41% for the “Ligand: Ensemble” case. For VDWScore the de-

crease is the greatest, from 88% to 18% and 20%, suggesting that this scoring function (which

does not consider electrostatics, explicitly or implicitly) is especially bad at distinguishing the

native ligand conformation.
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On the bottom-right of Figure 4.1 (“native vs. ensemble protein/ligand”) is the third com-

parison set. It shows the native-native results as a point of comparison followed by the

protein/ligand ensemble results. As with the ensemble-ligand, native-protein results, the

ensemble-ensemble binding mode predictions are much worse than the native-native bind-

ing mode predictions for all three scoring functions. Between the ensemble-ligand, native-

protein results and the ensemble-ligand, ensemble-protein results, a trend of decreasing

performance is seen for all three scoring functions. The success rates decrease to 36% and

30% for ITScore and STScore, respectively. VDWScore, whose performance was already only

20% in the ensemble-ligand, native-protein case, does particularly poorly in the ensemble-

ensemble case, with a success rate of 11%.

To summarize, when the native, bound ligand conformation is used, all three scoring

functions give similar binding mode performance. For the native-native case, STScore per-

forms slightly worse than the other two scoring functions. Whenever the Omega-generated

ligand ensemble is used, the binding mode performance of all the three scoring functions

decreases substantially. For VDWScore this decrease is very large, because the shape com-

plementarity is not sufficient for docking in the absence of native ligand conformations, even

with the pockets that are mostly hydrophobic.

4.3.3 Active/Inactive Compound Discrimination

The performance of the three scoring functions on active/inactive compound discrimination

are presented as a set of three ROC curves for each scoring functions in Figure 4.3. These

curves give the ratio of the true positive rate to the false positive rate for each possible

choice of docking score cutoff. The labeled values on each curve give example cutoffs. For

example, at the top-left, the ROC curve titled “ITScore on Full Set” labels the curve at cutoffs

of ITScore = −65, ITScore = −60, ITScore = −55, ITScore = −50, and ITScore = −45.

The first set of ROC curves (left panels) give the ROC curves for ITScore, STScore, and
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Figure 4.3: The active/inactive compound discrimination of ITScore (row 1), STScore (row
2), and VDWScore (row 3), presented as receiver operating characteristic (ROC) curves.
These curves give the ratio of the true positive rate to the false positive rate for each possible
choice of docking score cutoff. The labeled values on each curve give example cutoffs. The
first column gives the ROC curves for the full set of active and inactive compounds. This
column combines compounds from all six protein groups and tests the ability of each scoring
function to discriminate between the actives and inactives of different proteins. The second
and third columns give ROC curves for CDK2-Cyclin A and CDK2. Specific ROC curves for
other protein groups were not provided because they all had 12 or fewer inactives.

82



VDWScore on the full set of active and inactive compounds. This combines compounds from

all six protein groups, testing the ability of each scoring function to discriminate between the

actives and inactives of different proteins. The second and third columns give ROC curves

for specific protein-group subsets of the full set. Only CDK2-Cyclin A and CDK2 are given

because these are the only protein groups for which more than 20 actives and 20 inactives

were available. The other protein groups have 12 or fewer inactives.

ITScore performs well in all three evaluations with an area under the curve (AUC) of 0.87

on the full set, and 0.74 and 0.83 for CDK2-Cyclin A and CDK2, respectively. STScore and

VDWScore do not perform as well as ITScore on the full set (AUC = 0.77 for the two). On the

individual protein evaluations, STScore and VDWScore perform poorly. For CDK2-Cyclin A,

the AUC equals 0.56 for both, narrowly better than random selection. For CDK2, the AUC

was 0.68 for STScore and 0.70 for VDWScore.

4.3.4 Summary of Results

In summary, ITScore performed relatively well in all binding affinity predictions on the struc-

ture subset. It also performed well in active/inactive compound discrimination. VDWScore

performed less well than ITScore in the binding affinity predictions on the structure sub-

set, but slightly better than ITScore in non-native protein/ligand ensemble binding affinity

predictions on the full set.

In binding mode predictions, ITScore and VDWScore performed similarly when the na-

tive ligand conformation was used. When the Omega-generated ligand ensembles were used

instead, ITScore performed much better than VDWScore. For all scoring functions, the gener-

ated ligand conformation ensembles gave worse binding mode results than the native ligand

conformation, and in these cases VDWScore did particularly poorly.

Overall, in the Omega-generated ligand ensemble cases, the performance of STScore was

consistently better than VDWScore in both binding mode and binding affinity predictions.
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The exception was the full set with known affinities: in this case the affinity predictions of

STScore and ITScore were slightly worse than those of VDWScore.

In the native-native case of the CSAR structure subset, the binding affinities had average

Pearson correlations of 0.81, 0.61, and 0.64 with the docking scores given by STScore, ITScore,

and VDWScore, respectively. For the ensemble-ensemble case on the structure subset, these

values fell to 0.65, 0.54, and 0.47. In the native-native case, the binding mode prediction

success rates were 84%, 77%, and 88% for STScore, ITScore, and VDWScore. These values

fell to 36%, 30%, and 11% in the ensemble-ensemble case (where the success criterion for

binding mode prediction is that the top ranked binding mode and the native binding mode are

within 2.0 Å RMSD). We also found the full CSAR dataset to be more challenging in making

binding mode predictions than the subset with structures. For the full set of compounds

with known affinity, the binding affinities had average Pearson correlations of 0.31, 0.32, and

0.34 with the docking scores given by STScore, ITScore, and VDWScore, respectively. For

the active/inactive compound discrimination all the scoring functions performed better. In

evaluating the ROC on the full set, the area under the curve was 0.87 for ITScore, and 0.77

for both STScore and VDWScore.

4.4 Conclusions

Our data supported some of our previous conclusions about ITScore and STScore, and in

other cases contradicted our expectations. Our results are consistent with our previous con-

clusion [161, 193] that ITScore’s iterative method of dealing with the reference state problem

is able to substantially increase binding mode and binding affinity predictions compared to its

initial potential (which is similar to STScore for abundant pair types and similar to VDWScore

for close atom pair distances). All three scoring functions were tested using MDock, which

positions an ensemble of pre-generated/rigid ligand conformations without further confor-
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mational sampling.

STScore is similar to the initial potential of ITScore for abundant pair types (which account

for the majority of interactions) but is also similar to VDWScore for rare atom pair types.

Consequently, it fell within our expectations that the performance of STScore was often in-

between that of ITScore and VDWScore. Evidently, the knowledge-based component of

STScore improves its binding mode predictions compared to its force-field based component

alone, which is a slightly modified version of VDWScore. Its binding mode predictions

were still not as good as ITScore, although our unpublished results suggest that ITScore-like

iterations can further improve the binding mode predictions of STScore.

Considering its simple functional form, it was initially surprising that the binding affinity

predictions of VDWScore exceeded STScore in some cases and ITScore in one case. It is pos-

sible that its performance was enhanced by the hydrophobicity of the protein binding pockets

in the 2012 CSAR Dataset. This would make the task easier for VDWScore, because it must

rely primarily on the shape complementarity of the protein and the ligand. In support of this

view (that the performance of VDWScore is highly dependent on shape complimentarily),

there was a significantly larger difference in the binding mode performance of VDWScore

depending on whether the native or Omega-generated ligand conformation ensemble was

used. This difference was much greater for VDWScore than for ITScore or STScore. When

docking the native ligand conformation, VDWScore gave quite accurate binding mode pre-

dictions, but in those cases that use the Omega-generated ligand ensembles, its binding mode

predictions were very poor. So in summary, these results suggest that the knowledge-based

aspect of ITScore and STScore is able to increase their binding mode predictions beyond that

of VDWScore by implicitly including other types of interactions. The contribution of other

interactions is especially important when the native conformation of the ligand is unknown.

Nevertheless, STScore and ITScore leave much room for improvement in binding affinity and
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binding mode predictions when using the non-native protein/ligand conformations.

In general, our scoring experiments with the full set of compounds from the 2012 CSAR

benchmark suggest that it is interesting yet challenging to predict binding modes and affini-

ties without the knowledge of native protein and ligand conformations. The van der Waals

scoring function may be used as a reference for scoring comparison; van der Waals performs

much better on predictions for native protein and ligand conformations than for non-native

conformations. The use of the pre-generated ligand conformations seems to lower the suc-

cess rates significantly more than the use of the non-native protein conformations for binding

mode predictions. The corresponding difference is less for binding affinity predictions. This

phenomenon may be due to the fact that the main conformational changes of the proteins are

side chain flexibility in 2012 CSAR Dataset. Future work may include adapting these scoring

functions and docking methods for use with on-the-fly ligand conformational sampling and

side chain rotamer sampling.

Supporting Information

Additional figures and a CSV datafile (see Appendix A) are provided in the Supporting Infor-

mation. This information is available free of charge via the Internet at http://pubs.acs.org.
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CHAPTER 5

Application to Breast Cancer

The work in this chapter has been published in Journal of Molecular Graphics and Modelling*

and includes experimental data from the laboratory of co-corresponding author Dr. Salman

M. Hyder generated by co-first author Dr. Yayun Liang.

Abstract

Inverse docking is a relatively new technique that has been used to identify potential receptor

targets of small molecules. Our docking software package MDock is well suited for such an

application as it is both computationally efficient, yet simultaneously shows adequate results

in binding affinity predictions and enrichment tests. As a validation study, we present the

first stage results of an inverse-docking study which seeks to identify potential direct targets

of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53’s tumor suppressor

function, leading to apoptosis in several types of cancer cells. For this reason, we believe that

potential direct targets of PRIMA-1 identified in silico should be experimentally screened for

their ability to inhibit cancer cell growth. The highest-ranked human protein of our PRIMA-1

docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic

pathway. The results of two followup experiments which treat OSC as a possible anti-cancer

target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC

inhibitor, significantly reduce the viability of BT-474 breast cancer cells relative to normal

mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased

*S. Z. Grinter, Y. Liang, S.-Y. Huang, S. M. Hyder, and X. Zou (2014) An inverse docking approach for
identifying new potential anti-cancer targets. J. Mol. Graph. Mod. 29(6): 795–799.
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binding of mutant p53 to DNA in BT-474 cells (which highly express p53). For the first time,

Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of

OSC as a new target for developing anticancer therapies is worth further investigation.

5.1 Introduction

Inverse docking, first proposed in 2001 by Chen et al. [153] refers to computationally docking

a specific small molecule of interest to a library of receptor structures. The technique may

be used to identify new potential biological targets of known compounds [194–196], or to

identify targets for compounds among a family of related receptors [197]. The technique has

shown success in distinguishing between homology models of receptors [197]. The technique

may also be used to generate a compound’s predicted pharmacological profile [198], or to

generate a virtual selectivity profile that characterizes the promiscuity of the inhibitors [199].

Given the multi-faceted nature of a pharmacologically active compound’s biological effects,

inverse docking is especially helpful, because it may generate new hypotheses for the action

mechanism.

Our docking software package, MDock, can be used for inverse docking, as demonstrated

in the present work (http://zoulab.dalton.missouri.edu/software.htm). MDock uses a novel

scoring function, ITScore, which was generated using an iterative method of deriving pair

interaction potentials that avoids the problem of defining a specific reference state [45]. For

the first time, the full energy landscape (both native and non-native modes) is considered

in the potential derivation using a physics-based global iterative function. ITScore’s binding

pose and affinity predictions have been extensively evaluated using diverse test sets prepared

by other labs [45, 46]. ITScore was also assessed using enrichment tests for virtual database

screening against four target proteins [46]. In the present study, we test the ability of MDock

on textitin silico inverse screening applications.
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Figure 5.1: (a) Chemical structure, generated using MarvinSketch 4.1.0 (http://www.
chemaxon.com), and (b) 3D structure of PRIMA-1. Hydrogen atoms are omitted from the 3D
structure for clarity.

Specifically, we aim at searching for potential protein targets of PRIMA-1. Found from

high-throughput screening, PRIMA-1 (p53 reactivation and induction of massive apoptosis,

shown in Figure 5.1), is a small molecule capable of activating mutant p53 protein, restoring

its ability to bind to DNA as well as the tumor suppressor function associated with wild-

type p53 [8, 200]. This effect has been demonstrated in vitro and in vivo, and has been

shown to trigger massive apoptosis in several types of human breast cancer cells [201, 202].

PRIMA-1 is also known to stimulate expression of p21 and other p53-dependent promoters

in mutant p53 breast cancer cell lines. p53’s importance as a potential agent against cancer is

well-established. Nevertheless, while specific mechanisms have been proposed for PRIMA-

1’s mutant p53 reactivation effect [8, 203, 204], none have gained wide acceptance and the

question remains unsettled. For this reason, we consider PRIMA-1 well suited as the subject

of an inverse docking study.

In this work, we used the inverse-docking approach to screen for potential molecular

targets of PRIMA-1. The objective is to guide future assays of the inhibitors of these predicted

targets for their efficacy in inhibiting tumor cell proliferation, as such results may lead to

potential cancer treatments, as well as provide clues regarding PRIMA-1’s action mechanism.

We used MDock to perform this study. In support of our approach, here we present the

first stage results of our assays of Ro 48-8071, a known potent inhibitor of oxidosqualene
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cyclase (OSC) [205, 206], the highest-ranked human protein of our in silico study. We show

that Ro 48-8071 is a novel potent agent in selectively reducing the viability of BT-474 cells, a

mutant-p53 human breast cancer cell line. In addition, we found that Ro 48-8071 increases

p53-DNA binding in BT-474 cells, an effect which is also characteristic of PRIMA-1 [200].

BT-474 cells are known to overexpress p53, even in the absence of cytotoxic stress [207].

5.2 Methods

5.2.1 In Silico Screening

We used our protein-ligand docking software package MDock [45, 46] (http://zoulab.dalton.

missouri.edu/software.htm) to dock PRIMA-1 into many potential drug targets. Although

MDock is sufficiently computationally efficient for PDB-wide database screening, we chose

to start with the well-characterized Potential Drug Target Database (PDTD), which at the time

of use contained about 1100 experimentally-determined structures of 830 actual or suspected

drug targets (http://www.dddc.ac.cn/pdtd) [155]. We also used the PDTD’s binding site

definitions, which in most cases are based on the set of amino acid residues that are within

6.5 Å of the bound ligand. OMEGA Version 2.2.1 was used to generate conformations of

PRIMA-1 for flexible-ligand docking (OpenEye Scientific Software Inc., Santa Fe, NM http://

www.eyesopen.com) with the rms parameter set to 0.1 Å, maxconfs to 1000000, maxconfgen

to 10000000, and ewindow to 10 [112, 113]. As PRIMA-1 has few rotatable bonds, this only

resulted in 42 generated ligand conformations. Each of these conformations was docked to

each protein as a rigid body.

Our docking procedure is described in detail in previous publications [45–49] and in

the tutorial of MDock. Briefly, for each protein in the database, a molecular surface of the

binding site was generated, along with the associated sphere points representing potential

initial positions for ligand atom centers [34, 208]. Ligand atoms were matched to these
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sphere points and orientations were sampled and ranked by our knowledge-based scoring

function, ITScore [45, 46]. All of MDock’s default parameters were used in this work, with the

exception of write_score_total, which was set to 1 so that only the highest-scoring orientation

is recorded when each protein/PRIMA-1-conformation pair is docked as a rigid body. We

then ranked each protein according to the lowest ITScore (corresponding to the highest

predicted affinity) recorded for any of the 42 PRIMA-1 conformations that were docked to

it. Because PDTD contains redundant experimental structures of the same protein [155], we

clustered the resulting docked structures into groups sharing ≥ 90% sequence identity. We

then ran a BLAST search [209] in order to map the PDTD proteins, which come from various

species, to human gene sequences. Inhibitors of the top human or human analogue proteins

were considered candidate anti-cancer agents for assay. A flowchart of our procedure is

shown as Figure 5.2.

5.2.2 Cell Viability Assay

We used the Sulforhodamine B (SRB) assay [210, 210–212] to evaluate the effect of the OSC-

inhibitor Ro 48-8071 on the viability of breast cancer cells. This cell protein dye-binding

assay determines the protein content in surviving cells as an index to determine cell growth,

viability, and survival [210, 210]. Briefly, BT-474, T47D, and AG11132A cells were seeded

into 96-well plates and incubated overnight at 37°C with 5% CO2. The culture medium was

removed after 24 h and cells were washed with DMEM/F12 medium and then treated with

various concentrations of Ro 48-8071 or PRIMA-1 in 5% FBS DMEM/F12 medium for 24 hours.

Surviving or adherent cells were fixed in situ by withdrawing the growth medium, adding

100 μl PBS and 100 μl 50% trichloroacetic acid and then incubating at 4°C for one hour. Cells

were washed with ice-cold water, dried at room temperature (RT), and then stained with

50 μl 4% SRB for eight minutes at RT. Unbound dye was removed by washing five times

with cold 1% acetic acid and plates were dried at RT. Bound stain was solubilized with 150
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Figure 5.2: A flowchart illustrating the inverse docking and assay approach used in this
work.

92



μl of 10 μM Tris buffer, and the absorbance of samples was read at 520nm with a SpecTRA

MAX 190 microplate reader (Molecular Devices, Sunnyvale, CA). Six wells were used for each

concentration and each experiment was performed twice. BT-474 and T47D breast cancer

lines were obtained from ATCC (Manassas, VA), and the AG11132A normal mammary cell line

was purchased from Coriell Institute for Medical Research (Camden, NJ). BT-474 and T47D

cells were grown in phenol red-free DME/F12 medium (Invitrogen Corporation; Carlsbad,

CA) and supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO).

AG11132A cells were grown in serum free MEBM (Mammary Epithelium Basal Medium)

medium (Lonza, Walkersville, MD) with supplementary 2mM L-glutamine. PRIMA-1 was

purchased from Tocris Bioscience (Ellisville, MO). Ro 48-8071, sulforhodamine B, and other

chemicals were purchased from Sigma-Aldrich (St. Louis, MO). The purity of Ro 48-8071 was

≥ 98% as determined by HPLC (Sigma-Aldrich data). The purity of PRIMA-1 was 99.8% as

determined by HPLC (Tocris data sheet).

5.2.3 p53 Activation Assay

In preparation for the assay, BT-474 cells were grown in DMEM/F12 medium supplemented

with 5% FBS overnight. Cells were washed with PBS once and treated with 50 µM PRIMA-1

or 25 µM Ro 48-8071 for 1 hour at 37°C. p53 activation was assessed using the TransAM p53

Transcription Factor Assay kit (Active Motif, Carlsbad, CA) according to the manufacturer’s

protocol. A summary of the procedure follows. The kit provides 96-well plates coated with

an oligonucleotide that contains the p53 consensus DNA binding site. 2.5 μg of nuclear ex-

tracts (prepared according to a nuclear extract kit provided from Active Motif) were incubated

with this oligonucleotide. Bound p53 was detected by adding the anti-p53 antibody (1:1000)

followed by addition of the secondary antibody (1:1000) that is conjugated to horseradish

peroxidase. Absorbance was read at 450nm in a Spectra MAX 190 Microplate Reader (Molec-

ular Device, Sunnyville, CA). MCF-7 nuclear extract treated with H2O2, provided with the
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TransAM kit, was used as a positive control.

5.2.4 Statistical Analysis

Differences among groups were tested using one-way analysis of variance (ANOVA) with

repeated measures over time. Values are reported as mean ± SE. When ANOVA indicated

a significant effect (F-ratio, p < 0.05), the Student-Newman-Keuls multi-range test was used

to compare the means of the individual groups. The statistics were conducted using the

SigmaStat software (version 3.5).

5.3 Results and Discussion

5.3.1 In Silico Screening

After docking PRIMA-1 to each structure of the Potential Drug Target Database (PDTD), we

ranked the proteins according to their predicted affinity, based on our knowledge-based

scoring function, ITScore. We searched for human proteins that are analogous to the best-

scoring (i.e., lowest-scoring or tightest-binding) proteins in our docking results, using a cutoff

of 30% sequence identity. Among these ten best-scoring proteins, one of them is a human

protein, the X-ray crystallographic structure of human OSC (PDB entry: 1W6K) [213, 214]. In

Figure 5.3, OSC (green) is shown docked with PRIMA-1 (magenta) along with the potent OSC-

inhibitor, Ro 48-8071 (yellow) [206, 215]. The binding pose indicated by docking PRIMA-1

into OSC partially overlaps the binding pose of Ro 48-8071 shown in the crystal structure. We

also found that docking Ro 48-8071 to this pocket reproduces the native binding orientation

shown in the crystal structure (RMSD = 0.25 Å). The score for PRIMA-1 calculated with

ITScore was -45.5 and the score for Ro 48-8071 in its crystallographic position was -102.8.

Approximately, this difference in score corresponds to a 6 kcal/mol difference in predicted

binding affinity between the two compounds.
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Figure 5.3: (a) Ribbon depiction of oxidosqualene cyclase (OSC), identified as a possible
target of PRIMA-1, generated using Chimera 1.4.0 [189]. PRIMA-1 (magenta) is shown in
its docked position along with the partially overlapping position of the OSC inhibitor Ro
48-8071 from the crystal structure (yellow). Hydrogen atoms are omitted for clarity. (b)
Chemical structure of Ro 48-8071.
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PRIMA-1 RO 48-8071
Binding score -38.7 -61.3

VDW score -24.3 -52.2
Electrostatics score -14.3 -9.2

Table 5.1: The binding energy scores and individual energy components of PRIMA-1 and
Ro 48-8071 docked to OSC, calculated with UCSF DOCK 6.0 [36].

To further compare the similarities and differences between the interactions involved in

PRIMA-1 binding and Ro 48-8071 binding, we attempted to decompose the total energy scores

into different energy components. Unfortunately this cannot be done with ITScore because

the potential function in ITScore derived for each atom pair combines different energetic

contributions into a single distance-dependent function. We therefore used the force field

scoring function [32] provided in DOCK 6.0 (UCSF, http://dock.compbio.ucsf.edu/) [189] to

analyze the natures of the interactions involved in binding of PRIMA-1 and Ro 48-8071 to

OSC, by calculating the contributions of different energy terms to the total binding scores.

Specifically, the force field scoring function in UCSF DOCK 6.0 is composed of two energy

terms, a van der Waals (VDW) term using Lennard-Jones 6-12 potentials and a Coulombic

electrostatic energy term using a distance-dependent function for the dielectric constant of

water. Table 1 lists the binding energy scores of PRIMA-1 and Ro 48-8071 and the corre-

sponding contributions of different energy components. It can be seen from the table that

Ro 48-8071 (-61.3) has a lower/better binding score than PRIMA-1 (-38.7), which is consis-

tent with the afore-mentioned results calculated with ITScore.  Table 1 also suggests that the

VDW interactions contribute to the binding energies significantly more than the electrostatic

interactions for both PRIMA-1 and Ro 48-8071, though the contribution of the VDW interac-

tion term is more dominant for Ro 48-8071 than PRIMA-1. The strong VDW interactions for

Ro 48-8071 arise from its highly hydrophobic fragments such as aromatic rings and aliphatic

chains.

Since PRIMA-1 inhibits cell growth in mutant-p53 tumor cell lines, we decided to deter-
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Figure 5.4: The effect of Ro 48-8071 on breast cancer and normal mammary cell viability.
BT-474 (1.0x104 / well), T47-D (0.6x104 / well), and AG11132A cells (0.7x104 / well) were
seeded into a 96-well plate overnight, and cells were washed and treated with the indicated
concentration of Ro 48-8071 or PRIMA-1 for 24 hours. Cell growth and viability were deter-
mined by the SRB assay described in Methods. The OSC-inhibitor Ro 48-8071 and PRIMA-1
significantly inhibit the viability of BT-474 (a) and T47-D (b) cells in a dose-dependent man-
ner, and there is significantly less inhibition of normal mammary AG11132A cell viability
shown in (c). (Data provided by co-corresponding author Dr. Salman M. Hyder and co-first
author Dr. Yayun Liang.)

mine whether the potent OSC-inhibitor Ro 48-8071 would have a similar anti-cancer effect.

5.3.2 Cell Viability Assay

The SRB assay showed that Ro 48-8071 dramatically destroys BT-474 human breast cancer

cells, exhibiting a dose-response relationship similar to that of PRIMA-1. IC50 was approx-

imately 10 μM for both compounds. The OSC-inhibitor also suppressed the growth of a

second human breast cancer cell line, T47D. The data for both cell lines are shown in Fig-

ure 5.4 (a) and (b). Using the same assay, we determined whether Ro 48-8071 would affect

normal mammary cells. Our data showed that Ro 48-8071 exhibits significantly less inhibition

of normal mammary cells from line AG11132A (Figure 5.4(c)), indicating an effect that is spe-

cific to tumor cells. From our Western blot analysis, the expression of OSC was confirmed for

both cancer cell lines (BT-474 and T47D), and normal mammary cells showed significantly

less expression of OSC.
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5.3.3 p53 Activation Assay

Finally, it is well known that PRIMA-1 increases the DNA-binding affinity of mutant p53,

which is highly expressed in several different types of cancer cells, including BT-474 and

T47D cells [200]. Since Ro 48-8071 and PRIMA-1 exhibited similar inhibition of breast cancer

cells (as shown above), we examined the capacity of Ro 47-8071 to restore the DNA-binding

of mutant p53 in BT-474 cells, by using a TransAM p53 Transcription Factor Assay kit (Active

Motif, Carlsbad, CA). In a time-course study we found that treatment of BT-474 cells with

either 25 μM Ro 48-8071 or 50 μM PRIMA-1 for 0.5 to 3.0 hours led to the activation of mutant

p53 activity (data not shown). Figure 5.5 compares the extent of mutant p53 activation in BT-

474 cells following 1-hour exposure to Ro 48-8071 (25 μM) and PRIMA-1 (50 μM). Treatment

with either Ro 48-8071 or PRIMA-1 increased the binding of mutant p53 to DNA. MCF-7

(wild-type p53) nuclear extract treated with H2O2 was provided in the TransAM kit, and

used as a positive control.

5.4 Conclusions

In this paper, we presented an application of inverse docking using our software package

MDock. Our in silico screening identified OSC as one possible target of PRIMA-1. This led

us to investigate whether the potent OSC-inhibitor Ro 48-8071 would selectively reduce the

viability of human breast cancer cells. It does, and in addition leads to increased binding

of mutant p53 to DNA. These effects of Ro 48-8071 are similar to the corresponding charac-

teristic effects of PRIMA-1. In conjunction with our computational mechanistic study, these

results lead us to suspect that these two ligands are exerting their anti-cancer effects in part

due to inhibition of OSC, but it remains to be shown experimentally whether or not PRIMA-1,

like Ro 48-8071, binds directly to OSC. Given the potent inhibition of breast cancer cells in-

duced by Ro 48-8071, we consider it and other OSC inhibitors worth investigating as possible
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Figure 5.5: Both PRIMA-1 and Ro 48-8071 increase p53-DNA binding in BT-474 breast
cancer cells. BT-474 cells were grown in DMEM/F12 medium supplemented with 5% FBS
overnight. Cells were then washed with PBS once and treated with 50 µM PRIMA-1 or 25 µM
Ro 48-8071 for 1 hour. Cells were harvested by scraping and nuclear extracts were prepared.
2.5 µg of nuclear extract were used for each TransAM assay and each sample was analyzed in
triplicate. The fold of activation was compared to the control group (i.e., without PRIMA-1 or
Ro 48-8071 treatment). MCF-7 nuclear extract treated with H2O2 provided by the TransAM
kit was used as a positive control. Data are shown as the Mean ± SEM from three different
determinations. Asterisk represents values differing significantly from the untreated BT-474
control (P < 0.05). (Data provided by co-corresponding author Dr. Salman M. Hyder and
co-first author Dr. Yayun Liang.)
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therapeutic agents against breast cancer. The present study is an onset of a series of future

experimental and theoretical studies exploring OSC as a new potential target for developing

anticancer therapies. Other future studies include conducting the direct binding assay of OSC

for PRIMA-1 and testing the inhibitors of other proteins in the top list of our inverse docking

study for their ability to inhibit cancer cell growth.
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APPENDIX A

CSV Data File Specification

We have prepared a CSV data file and several scripts which we believe will be of use to future

users of the CSAR Dataset. The CSV datafile, which is available in the Supporting Information

mentioned at the end of Chapter 4, specifies several labels for each of the 757 compounds in

the CSAR Dataset. By providing the information for each compound in one file, it becomes

simple to apply commands to relevant subsets of the CSAR Dataset. For copyright reasons,

the affinity columns from the CSV file have been excluded. The full datafile, including all

affinity data, is available on the CSAR website (http://www.csardock.org). The set of scripts

we used to set up the CSAR Dataset for docking (i.e. the steps in the Methods before docking)

are also available at the same website. One of these scripts can be used to generate a set

of ligand conformation files with canonicalized atom orders, and may be adapted for other

docking applications. The CSV file is described in detail as follows.

We assigned each of the 757 compounds in the CSAR Dataset a consistent filename of the

form code_id where code specifies the protein and id specifies the compound ID number.

There are six protein groups: CDK2-Cyclin A, CDK2, CHK1, ERK2, LPXC, and Urokinase. The

corresponding three-letter codes are CDC, CDK, CHK, ERK, LPX, and URO, respectively. For

each compound, we built a CSV file which combines all the basic information available for

each compound (other than its structural coordinates) into one file. The data series provided

in this CSV file are summarized in Table A.1. The first column gives the compound ID and

the second column gives its corresponding protein group. The compound IDs are unique

only within each protein group. The third column, the base filename for each compound,

combines the compound ID number and protein group name. These base filenames are
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Column Label Value
1 Compound ID integer
2 Protein Code string (CDC, CDK, CHK, ERK, LPX or URO)
3 Base Filename string (e.g. CDK_4)
4 Excluded? boolean (0 or 1)
5 Designated active? boolean (0 or 1)
6 Designated inactive? boolean (0 or 1)
7 Structure available? boolean (0 or 1)
8 Affinity available? boolean (0 or 1)
9 In March structure subset? boolean (0 or 1)

10 Affinity Measure string (Kd, Ki, or IC50)
11 Affinity Assay string (OctetRed, Abbott, Vertex, or Thermofluor)
12 Affinity in µM float
13 Affinity in M float
14 -log(Affinity in M) float
15 Compound SMILES string

Table A.1: CSV Datafile Specification. This table defines the 14 columns listed in our CSV
datafile for the 2012 CSAR Dataset. Each column represents a compound label; they are
explained in detail in the Appendix.

unique.

The next six columns in the CSV file provide binary labels, most of which describe what

information is available for each compound. Logical combinations of these may be used to

apply commands to relevant subsets. The first of the binary labels specifies whether or not

a compound is excluded from the final results calculations. For our calculations, we only

excluded one compound, CDK_5, because we had a doubt about its affinity data. In the

CSAR Dataset, the affinity data spreadsheet for CDK2 includes a table of designated inactive

compounds. For all of these inactives, the affinity is given as > 100µM. The other table of

compounds includes those with known activity from 0.023µM to 58.3µM and two additional

compounds CDK_5 and CDK_12. The affinity of CDK_12 is unknown, but the affinity of

CDK_5 is given as Kd > 100µM, the same value as given for the compounds in the list of

designated inactives. Nevertheless, the Kd value given for this compound was not trustable,

because the compound was reported to be insoluable. Therefore, we were suspicious of

CDK_5 and excluded it from our results calculations. CDC_5 is the same compound, and
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Protein Name Code Total Doubted Active Inactive Structure Affinity March
CDK2-Cyclin A CDC 111 1 22 84 1 23 0

CDK2 CDK 111 1 22 84 15 25 0
CHK1 CHK 159 0 106 0 17 107 14
ERK2 ERK 298 0 293 0 12 298 12
LPXC LPX 32 0 13 12 5 20 4

Urokinase URO 46 0 35 5 7 35 4
TOTALS 757 2 491 185 57 508 34

Table A.2: Size of CSAR Subsets. This table gives the number of compounds in each protein
group that satisfy each of the binary labels. These labels are listed in the column headers.

was also excluded.

The next two binary labels (Columns 5 and 6) specify whether a compound is designated

to be active or designated to be inactive. We considered a compound to be active only if its

affinity was known to be less than 10µM (whether Kd, Ki, or IC50). Due to the differences

between these affinity measures and assays, we left a gap from 10µM to 100µM between

which a compound is considered to be neither nor inactive. Compounds with Kd, Ki, or

IC50 > 100µM were labeled as inactive.

Column 7 specifies whether or not a crystal structure is available in the CSAR Dataset

containing the compound bound to its associated protein. This column defines the structure

subset referred to in the Methods. Likewise, Column 8 specifies if the precise affinity of the

compound for its associated protein is available in the CSAR Dataset. We labeled this field as

0 (false) when the affinity is given as a comparison (e.g. > 100µM). Finally, the last binary

label (Column 9) specifies if the protein-ligand structure for a compound was one of the

structures in the results of the 2011-2012 CSAR Benchmark Exercise, provided in March. The

number of compounds in the CSAR Database satisfying each condition is given in Table A.2.

Column 10 specifies which affinity measure was used (Kd, Ki, or IC50) and Column 11

states which assay was used to produce the data (OctetRed, Abbott, Vertex, or Thermofluor).

The next three columns are designated for the affinity data itself. Column 12 gives the affinity

of the compound for its associated protein in units of µM, Column 13 gives the affinity in
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units of M, and Column 14 gives the negative logarithm of the affinity. For three compounds,

the original CSAR Dataset includes duplicate entries with slightly different affinities. These

duplicate entries represent different salt forms of the same compound. For these compounds,

we provide the mean of the two values. Lastly we included all the SMILES strings in the

CSAR Dataset in Column 15. The version of this file provided in the Supporting Information

excludes the affinity data and SMILES strings. A version providing all data can be found on

CSAR’s website (http://www.csardock.org/).
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