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ABSTRACT 

 

A detailed investigation of reduction of low-frequency noise voltage power 

spectral density (PSD) of silicon germanium oxide (SixGeyO1-x-y) uncooled infrared (IR) 

microbolometers has been performed. The experimental methods used to conduct the 

research are presented. The noise reduction was achieved by passivating SixGeyO1-x-y 

with Si3N4 layers and by annealing the devices in vacuum at 200 °C, 250 °C, or 300 °C 

with different time interval from 1 to 5 hours. 

First, uncooled IR microbolometers with a pixel area of 40×40 µm2 were 

fabricated (by another research team member) on four wafers with different SixGeyO1-x-y 

compositions while the other layer thicknesses were fixed. The IR sensitive layer was 

passivated with Si3N4 thin films for the purpose of reducing the noise. Second, the 

temperature coefficient of resistance (TCR) and the corresponding resistivity () of each 

devices were measured as a function of temperature between 0  70 oC. The measured 

TCR and resistivity were -3.518/K and 0.763×103 V2/Hz, -2.590/K and 1.170×103 V2/Hz, 

-3.864/K and 3.573×103 V2/Hz and -3.103 and 0.730×103 V2/Hz for devices from W01, 

W02, W03 and W04, respectively. The voltage noise PSD was then measured using a 

bias current between 0.07 - 0.6 µA across many devices from each wafer, with each 

device given a unique number for the purpose of tracking them. Before annealing, the 

lowest noise voltage PSD measured at the corner frequency of several devices (W01D21, 

W02D45, W03D36 and W04D33) from the four fabricated wafers were 7.59×10-15 

V2/Hz, 1.89×10-14 V2/Hz,1.82×10-14 V2/Hz, and 2.79×10-14 V2/Hz, at 25 Hz, 12 Hz, 190 

Hz, and 160 Hz respectively. The corresponding 1/f-noise coefficients, Kf, were 3.65×10-
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14, 3.01×10-14, 1.97×10-14, and 2.74×10-13 respectively. To optimize and reduce the 

measured noise, the same measured devices and others from each wafer were annealed in 

vacuum (4mTorr) with different time interval from 1 to 5 hours at either 200 oC, or 250 

oC, or 300 oC. The measurements demonstrated that the voltage noise PSD was reduced 

as the annealing time interval was increased to a certain time period, after that the voltage 

noise PSD started to increase again. For example, the lowest measured noise of each 

device (W01D21, W03D45 and W04D33) from the four wafers at the corner frequency, 

after 3h or 4 h time interval, was 1.96×10-14 V2/Hz at 12 Hz, 1.5× 10-14 V2/Hz at 77.5 Hz, 

2.11 ×10-14 V2/Hz at 12 Hz, respectively. However, in wafer 02 (02D45), the voltage 

noise PSD was 1.13× 10-14 V2/Hz at 23 Hz with 1 h period of annealing. Thus, the results 

demonstrated that the voltage noise PSD of device W04D33 was significantly lowered 

after annealing at 300 °C for 4 hours. Annealing devices at higher temperature 300 °C 

reduced the low frequency voltage noise PSD more than that of 200 °C and 250 °C 

temperature. 

The measured Hooge’s parameter of the three devices from W04 after annealing 

were 2.39×10-13 for W04D43 at 200 °C in 2h period, 2.19×10-16 for W04D11 at 250 °C in 

3 h period and 1.36×10-14 for W04D33 at 300 °C in 3 h period. Other devices from W01, 

W02 and W03 the measured Hooge’s parameters decreased after annealing. For example, 

before annealing the noise parameters ( γ, β and Kf ) of the device W01D22 were 1.26, 

2.24 and 1.44×10-12 which are 0.95, 2.00 and  2.02×10-13 after annealing, and for the 

device W03D45 the noise parameters were 1.59, 3.71 and 1.19×10-12 but which were 

seen 1.50, 1.88 and 7.23×10-14 after annealing, respectively. However, annealing of 

devices reduced the noise parameter Kf . This clearly indicates that annealing the device 
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at higher temperature enabled the reduction of 1/f-noise. The possible reasons for the 

reduction of voltage noise are the dangling bonds, grain boundary and crystal structure 

were repaired in sensing layer after heating the devices. Trapping-detrapping mechanism 

stated inside the interfacial oxide was also a potential source of increasing 1/f noise.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

This chapter will introduce and define the thermal infrared detectors. It will also 

introduce infrared (IR) uncooled microbolometer. The Uncooled IR microbolometers 

performance is impacted by the noise that is the random fluctuations in the voltage or 

current at their terminals. This chapter will also discuss the most important noise sources 

found in these devices. It also presents a general review and comparison of 1/f-noise 

between several infrared detectors and materials.  A general outline of this thesis is 

presented at the end of the chapter. 

1.1 Thermal detector 

Thermal detector exhibits a change of some measurable electrical property that 

accompanies a change in the temperature of the sensitive element due to the absorption of 

IR radiation. This device has the ability to absorb radiation from X-rays to radio-wave 

range, and it does not require a cryo-cooling apparatus for operation. It consists of a 

sensitive pixel connected to a heat sink via the support/electrode arms (See Figure 1.1).  

The IR radiation falling on the detectors goes into heating the detector’s pixel.  Hence, 

heat flows from the pixel to the surrounding via conduction mechanism through the 

support arms, and convection mechanism through the surrounding air, and radiation 

mechanisms.  Therefore, we have to carefully design the support/electrode arms in order 

to reduce the thermal conductance path and to meet the thermal time response 
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requirements. Thermal detectors have three main types: uncooled microbolometers, 

pyroelectric detectors, and thermopile detectors. In this thesis, I will focus on noise study 

of uncooled SixGeyO1-x-y microbolometer. 

Figure 1.1 Thermal detector connected to its heat sink via an electrode arms. 

A microbolometer is defined as a device whose resistance changes with 

temperature, associated with the absorption of IR radiation. A schematic of the 

microbolometer operation is shown in Figure 1.2. The microbolometer performance is 

determined by certain figures of merit such as temperature coefficient of resistance 

(TCR), responsivity (Rv), and detectivity (D*). TCR shows how rapidly the resistance 

changes with respect to change in temperature, the voltage responsivity is defined as the 

output voltage divided by the input power falling on the detector, and detectivity 

measures signal to noise ratio and normalizes the detector performance with respect to its 

size.  

 
 
 
 
 
 
 
 

Figure 1.2 A Schematic of the microbolometer operation. 

 

Biasing Voltage, V 

Microbolometer, R
B
 

Load Resistor, RL 
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1.2 Low frequency noise of semiconductor 

Noise is an inevitable part of any electronic circuits or devices. It is unwanted 

electrical signal that degrades the quality of the devices or systems by interfering with the 

original signal. It is defined as the random and uncorrelated fluctuations in current, and 

voltage of a physical quantity. It is expressed as a power spectral density (Sv). 

 

f

V
S n

v 


2

 
(1.1)

 

Where Vn is the noise voltage (RMS) and f is the frequency bandwidth. The noise 

cannot be completely eliminated from any device or system due to the nature of the 

materials itself [1, 2]. The noise in electronic devices is treated as a problem for the 

semiconductor industry. Schottky predicted the occurrence of frequency-independent 

white noise in 1918 [3]. Several years later, Johnson successfully measured it but 

discovered unexpected “flicker” noise at low frequency referred to as 1/f-noise [4]. This 

low-frequency 1/f-noise decreases the performance of semiconductor devices that 

operates mainly at low frequencies.  

There are several types of noise that exist in uncooled microbolometers; the noise 

is generated by the sensitive element, which includes, Johnson noise, 1/f-noise, and shot 

noise [5, 6]. In addition, there are other types of noise seen in the microbolometer which 

includes temperature fluctuation noise, background noise and random telegraph noise. 

The total noise voltage is given by the sum of squares of the contributions due to Johnson 

noise, 1/f-noise, temperature fluctuation noise, and background noise. Our uncooled 

microbolometers have primarily been operated in the regime where Johnson noise is the 

dominant noise mechanism. In this project, we have studied voltage noise PSD and 
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reduced the 1/f-noise at different bias currents, and at different annealing temperatures 

(200 oC, 250 oC, and 300 oC) and time intervals, and determined some sources of 1/f- 

noise. 

1.2.1 Thermal Noise 

Thermal noise is often referred to as Johnson noise or white noise. It is generated by 

the random fluctuation and collision of charge carriers with a lattice under thermal 

equilibrium conditions since it does not require bias to be observed. The small 

fluctuations in charge carrier values specified by the most probable distribution are very 

small, but they are sufficient to produce small noise potentials within a device. 

Mathematically, neglecting quantum mechanical effects, the power spectral density of the 

open circuit noise voltage across the terminals of a resistor, R, is given by [5, 6] 

 
Sv(f)=

f

V j



2

= 4KBTR 
(1.2)

 

where, KB is the Boltzmann constant, R is the resistance of the device, T is the 

equilibrium and Δf is the bandwidth. Johnson’s noise is independent of the resistor 

composition, constant across the frequency domain, and is inherent in the detecting 

element and cannot be avoided.  

1.2.2 Flicker noise or 1/f-noise 

The flicker or excess noise, is also referred to as 1/f-noise, is observed at low 

frequencies such that it becomes dominant over other sources of noise [7], usually due to 

the fluctuations in both carrier concentration and carrier mobilities arising from carrier 

trapping and detrapping mechanisms and surface state scattering. The 1/f-noise also 
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depends on the deposition techniques, material, dimensions and electrical contacts. 

Another aspect of 1/f-noise is its volume dependency. Thus, increasing the thickness of 

the IR sensitive film will reduce the noise level significantly. However, this will result in 

large thermal mass and hence lower performance of the microbolometer and a larger 

thermal time constant [8]. Electrical noise increases at lower frequencies due to the 

increasing contribution of 1/f-noise, and at high frequency—it becomes equal to Johnson 

noise [9]. The noise generation mechanism is still not clear. The 1/f-noise and 1/f-noise-

corner-frequency (fc) can be determined using Hooge’s empirical equation [10]. At corner 

frequency, 1/f-noise equals the Johnson noise: 

 




f

VK

f

V
S ff dc

2
/1

V 



  

(1.3)

 

 
TRk

Nf

RI

f

V
B

c

bHn 4
222



 

 
(1.4)

 

where SV is the noise voltage PSD, f  is the electrical frequency with  close to 1 for 1/f-

noise [11], Kf is the 1/f-noise coefficient. It is given by H/N, where H gives the 

magnitude of 1/f-noise; N is the number of fluctuators in the sample and is volume 

dependent. Therefore, Kf is related to the volume normalized inherent noise. It depends 

on the quality of the crystal, bulk materials of device and on the scattering mechanisms 

that determine the mobilityµ. 


dcV
 is the DC bias voltage that equals IB×R where the value 

of β is 2. According to the Clarke and Voss hypothesis model, 1/f-noise comes from 

spontaneous fluctuations on a material [12]. This model has a good agreement with the 

microbolometer 1/f-noise since TCR (temperature coefficient of resistance) leads to more 

1/f-noise: 
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TTCR

R

R



)(

)(  (1.5)

Where
R

R  at 1 Hz is equivalent to the noise figure of merit.  

1.2.3 Temperature fluctuation noise 

In uncooled microbolometer, temperature fluctuation noise (VTF) arises from the 

fluctuations in the heat exchange between the isolated sensor and its heat sink. This 

variance in temperature is caused of temperature fluctuation which is called thermal 

fluctuation noise. It is given by [12]: 

 

 222

22
2

41

)2(




fG

kTRI

f

V
V Bb

TF
TF







  

(1.6)

 
1.2.4 Background temperature noise 

Background temperature noise (VBG) arises of radiative heat exchange between 

microbolometer at temperature Td and surrounding  environment at temperature  Tb [13] 

which is given by 

  
 222

5522
2

1

8)(













G

TTkARI

f

V
V bdBbBG

BG  
(1.7) 

 

 

Where T is the detector temperature and kB is Boltzmann’s constant, and G is the thermal 

conductance. The summation of total individual noise represents the total bolometer noise 

and it is written by: 

222
/1

22
TFBGfJn VVVVV   (1.8) 
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1.3 Overview of the uncooled microbolometer Temperature Coefficient of 
Resistance and voltage noise 

 

A microbolometer is a thermal sensor that exhibits a change in resistance with 

respect to a change of temperature of the sensing material accompanying the absorption 

of IR radiation [14]. It consists of a thin microbridge suspended above a silicon substrate. 

The bridge is supported by two narrow arms, which serve as a support structure with 

conductive legs and thermal isolation legs. Encapsulated in the center of the bridge is a 

thin layer of IR sensitive material. The performance of the microbolometers can be 

improved substantially, which means they can reach the temperature fluctuation noise 

performance if noise is eliminated or reduced. The reduction of noise is crucial to the 

next generation of uncooled thermal cameras since it will allow their detectors to reach 

the background limited noise performance and further improve the noise equivalent 

temperature difference (NETD). This will include the noise generated by the IR sensing 

element (Johnson noise, and 1/f or flicker noise), temperature fluctuation noise, and 

background voltage noise.  

Several IR sensitive materials have been used in uncooled IR detection, including 

vanadium oxide (VOx) [15-17], amorphous silicon (a:Si) [11, 18-21], yittrium barium 

copper oxide (YBaCuO) [22, 23], silicon germanium (SiGe) [20], silicon germanium 

oxide (Si-Ge-O) [7, 24-30], metals [31, 32], and poly:SiGe[9, 33] (See Table 1.2). These 

cameras are mainly based on two mainstream materials, namely, Vanadium Oxide (VOx) 

and amorphous silicon (a:Si) technology, and have comparable performance. They have 

been used for full production of cutting edge cameras for many years. VOX has a low 1/f-

noise of 2.339×10−8 V/Hz1/2 at 5 Hz with a bias of 19.3 µA [34]. YBaCuO films achieve 
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TCR between 3-3.5%/K and 1/f-noise of 4×10-14 V2/Hz at 7 Hz with 0.41 µA, but this 

material fails to use conventionally in semiconductor processing [22, 23]. Though SiGe 

exhibits upper limit to TCR which is 2.5 - 3%/K, the resistivity of SiGe can be kept low 

by controlling the doping level. Processing of poly:SiGe materials to achieve the desired 

crystallinity requires temperatures as high as 650o C [11]. The noise of poly:SiGe is 1×10-

11 V2/Hz at 1 Hz frequency and poly:Si is 36×10-14 V2/Hz at 10 Hz [35]. 

Several research groups have studied Si-Ge-O compound as an IR sensitive material (See 

Table 1.2). For example, Ahmed et al. reported the TCR value of –4.88%/K with high 

resistivity of 38 kΩ-cm for SixGe1–xOy with 2.5 atomic % of Si and 18.8 atomic % O2 

[28]. In addition, the measured voltage noise PSD was 7×10-13 V2/Hz at 250 Hz with 4 

µA, and the calculated noise coefficient Kf  value was 2.9×10-11. The voltage noise value 

and the corner frequency were high. Clement et al. deposited GeSi with atomic 

composition 85% and 15% respectively in argon or oxygen environment [29]. They were 

able to measure under optimum conditions a resistivity and a corresponding TCR of 10 

kΩ-cm and –5%/K, respectively. A similar deposition method was performed by Rana et. 

al. [7]. In earlier work, they fixed a piece of silicon (cut from silicon wafer) to a Ge target 

and deposited using one power source. In later work they deposited Si0.15Ge0.85from one 

target in an argon/oxygen environment [30]. Their findings agreed with Ahmed et al. 

However, this study used a specific film concentration Si0.15Ge0.85Oy while the O2 was 

varied between 0-9%. The 1/f-noise was optimized by annealing the devices at 250 °C in 

forming gases using the rapid thermal annealing system. The measured 1/f-noise at 70 Hz 

was 1×10-15 V2/Hz using 0.3 µA. The calculated 1/f-noise coefficient Kf was 2.21×10-10 

[36]. In this work, it is reporting the reduction of the voltage noise power spectral density 
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(PSD) of uncooled SixGeyO1-x-y microbolometers by passivating the devices with Si3N4 

layers and annealing them at 200 °C, 250 °C, or 300 °C in vacuum at different time 

intervals. Four sets of devices with different Si-Ge-O element compositions were studied 

in detail. The atomic composition of Si, Ge, and O2 on the deposited thin films were 

determined using energy dispersive X-ray spectroscopy (EDX).  

Table 1.1 Temperature coefficient of resistance (TCR) of common uncooled infrared 
materials. 

IR materials TCR (%/K) References 

a:Si (2 - 3.9) [37-44] 

VOx (2 - 2.4) [45, 46] 

YBaCuO (2.88 - 3.5) [22, 23] 

Si-Ge (2 - 3) [9, 47] 

Metal 0.2 [48] 

 

 

Table 1.2 The most recent results of noise voltage PSD. 

Reported Noise Performance References 

1×10-15 V2/Hz at 70 Hz with 0.3 µA [49] 

6.4×10-15-14.4×10-15 V2/Hz at 10 Hz with 0.1 µA [50] 

7×10-13 V2/Hz at 250 Hz with 4 µA [36] 

7.59×10-15 V2/Hz at 25 Hz with 0.7 µA Reported  
this thesis 

 



 
 
 

10 
 

1.4 Outline of this thesis 

Chapter 2 is an overview of the IR microbolomer working principle. Also, the 

design and thefabrication processes are discussed in this chapter along with a description 

of this research’s expeirmental setup. The final chapter 3 is a summary of the research 

presented herein.  
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CHAPTER 2 

DEVICE FABRICATION AND EXPERIMENT 

This chapter will focus on the design of uncooled SixGeyO1-x-y microbolometers 

and the experimental set up for resistance versus temperature, and 1/f-noise 

characterization. 

2.1 Microbolometer design and fabrication 

The microbolometer is designed with pixel sizes of 25×25 µm2 and 40×40 µm2, 

enabling the fabrication of mega pixel format arrays. It consists of a thin Si3N4 bridge 

suspended above a silicon substrate as shown in Figure 2.1. The bridge is supported by 

two narrow arms of Si3N4 and NiCr films. The arms serve as support structure with 

 

SiO
2
 Substrate Cr Au 

Si
3
 N

4
 Si

x
 Ge

x
 O

1-x-y
 NiCr 

Figure 2.1 Microbolometer fabrication steps: (a) cross sectional view, (b) top view of 
the tested device. 

(a) (b) 
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conductive legs and thermal isolation legs. Encapsulated in the center of the Si3N4 bridge 

is a thin layer of Si-Ge-O IR sensitive material and thin titanium (Ti) absorber. 

The Si3N4 was chosen for its excellent thermal properties, processing 

characteristics and high infrared absorption. The IR sensing layer of the Si-Ge-O is on 

top of a polyimide sacrificial layer. Subsequent etching of the sacrificial layer provides 

the air gap that thermally isolates the microbolometer. A thin film of gold (Au) layer 

under the polyimide sacrificial layer acts as a mirror for the resonant cavity between the 

mirror and Si-Ge-O thin film layer. This optical resonant cavity plays an important role in 

the absorption of infrared radiation for the suspended microbolometer since it is 

wavelength dependent. With the appropriate design, the resonant cavity maximizes the IR 

absorption and hence maximizes the responsivity with an absorption peak in the long 

wavelength band. The resonant cavity can be created between the incoming and reflected 

waves if the cavity depth is tuned accordingly:    4)(12 21   nd n
, where 

dn is the depth of the air gap, n is an integer, λ is the wavelength and 1, and 2 are the 

phase differences between the incoming and reflected light [16]. This work is mainly 

focused on measuring the noise behavior of Si-Ge-O thin film. Therefore, we have not 

used the sacrificial polyimide layer and top Ti absorber layer in the device in order to 

speed up fabrication process. The microbolometers’ fabrication was implemented on top 

of silicon substrates using surface micromachining technology. All microbolometer 

layers were deposited by an RF magnetron sputtering system in an Argon environment at 

room temperature, and at a low pressure of 4 mTorr with a base pressure below 5×10-6 

Torr, and were patterned using lift-off process. Two different shapes of supporting arm 

structure were implemented as shown in Figure 2.1 (a). The devices were fabricated by 
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another group member and it will be part of his thesis. Optical images of the fabricated 

devices are shown in Figure 2.2.  

 

 

 

 

 

 

2.2 Experimental set up and details 

The noise voltage power spectral density (PSD) of amorphous SixGeyO1-x-y based 

microbolometers were optimized and reduced by annealing the devices in vacuum at 200 

°C, 250 °C or 300 °C with a ramp rate of 10 °C/min with an annealing duration between 

1 to 5 hours . The noise measurements were performed on devices without air gaps with 

various Si-Ge-O compositions. Many devices from four wafers with different 

compositions of Si-Ge-O were measured before and after annealing at different bias 

currents. The noise measurements were performed in air inside a cryostat (DE 202 cold 

head), which was placed inside a shielding room in order to isolate the microbolometer 

from any external sources of noise. The output voltage was fed to a dynamic signal 

analyzer (HP 35670A) through a low noise preamplifier (Signal Recovery Model #5113). 

Figure 2.2 Optical images of the fabricated microbolometer with a pixel area of 40×40 
µm2 without an air gap. 
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Each device was voltage biased using Ni-Cd battery and 1 MΩ metal resistor connected 

in series with the device as shown in Figure 2.4 (a). The applied currents ranged between 

0.07-0.6 µA. 

To determine the atomic composition and electrical characterization of the IR 

sensing layer of the device, the SixGeyO1-x-y thin films was deposited on an n-type Si 

wafer and on a glass substrate simultaneously in step (4) of device fabrication as 

mentioned in the previous section. The film compositions of the IR sensing layer 

(SixGeyO1-x-y) were measured using energy-dispersive X-ray spectroscopy (EDX) in a 

FEI Quanta 600 FEG ESEM system. The SixGeyO1-x-y films deposited on bare silicon 

wafer were used for this purpose.  

Figure 2.3 Experimental set up for TCR and resistivity measurements: a) the whole 
setup (computer is not shown), b) a Si-Ge-O packaged sample mounted on the base 
stage of a special 4-probe sample holder inside the cryostat. 
 

For electrical characterization, the SixGeyO1-x-y films deposited on a glass slide was diced 

into small dies with an area of approximately 1×0.5 cm2 and then mounted in a ceramic 

flat pack package by a heat conductive epoxy. The package was heated at 150° for 5 min 

 

Current source

Nano‐voltmeter 

Temperature 

controller  

Probe holder

Probe

SiGeO packaged film

(a) (b) 



 
 
 

15 
 

to cure the epoxy. The sample was then mounted firmly on the base stage of a special 4-

probe sample holder inside a closed-cycle cryostat (Janis VPF-100 cryostat). The 

resistance versus temperature (R-T) characteristics, electrical resistivity and the 

corresponding temperature coefficient of resistance (TCR) measurements were performed 

using a 4-point probe technique (see Figure 2.3). A programmable current source 

(Keithley Model 220) was used to apply a fixed current, and a high precision voltmeter 

(Keithley Model 2182 Nanovoltmeter) was used to measure the voltage across the two 

inner probes. The temperature was varied from 0 °C to 70 °C with 1 °C intervals, and 

controlled by a temperature controller ( Lakeshore 336 Temperature Controller). At each 

temperature set-point, 150 data points were collected and averaged to measure the 

resistance versus temperature (R-T) behavior. The TCR shows how rapidly the resistance 

of a material responds to a change in temperature. It is given by: 

 
2

1

kT

E

dT

dR

R
TCR a  (2.1)

 

 








kT

E
RTR aexp=)( 0

 (2.2)

 

Where Ea is the activation energy, k is the Boltzmann constant R(T) is the resistance at 

temperature T, R0 is the initial resistance. The Ea was calculated from the slope of 

Arrhenius plot. Hooge’s empirical Eq. 1.3 for the 1/f-noise is used in order to determine 

the noise parameters: 

 




f

VK
S f dc

V   
(2.3)

The value of , , and Kf  were determined by taking the logarithm of Eq. (2.3): 
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fDC KLogfLogVSLog 101010V10 log    (2.4)

 

 

Figure 2.4 Noise measurement setup, from left to right a) schematic, b) Shielding room d) 
Measuring instruments (DSA and Pre-amplifier), d) APD Cryostat inside the shielding 
room. 

This is a straight line equation of )(log 10 VS versus )(log 10 DCV where  is the 

slope, and the last two terms of Eq.3.4 are constant for a specific frequency. Thus, the 

value of  can be determined from the average slope of  V10log S  versus  b10log I  plot 

using 1, 5 and 10 Hz at different levels of applied bias current. Similarly, the value  can 

be determined from the average slope of  V10log S  versus  f10log  plot at the same 

constant currents in the frequency range 1-10 Hz. The average value of Kf can be 

determined by substituting the calculated value of   and  for each bias current into Eq. 

2.3 at 1 Hz, 5 Hz and 10 Hz. 

  

b)

d) 
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CHAPTER 3 

RESULTS AND DISCUSIONS 

Chapter 3 discusses the noise study of uncooled SixGeyO1-x-y bolometer with four 

different compositions. The aim is to optimize the 1/f-noise by annealing the devices in 

vacuum at 200˚ C, 250˚ C or 300˚ C. 

3.1 Resistivity and TCR as a function of temperature 

This thesis features these four SixGeyO1-x-y compositions, which were selected 

from over 250 deposited and characterized films [24]. The film compositions and 

electrical properties of the fabricated four wafers are listed in Table 3.1. The TCR and the 

corresponding resistivity of devices from the four wafers were plotted as a function of 

temperature as shown in Figure 3.1.1. These figures includes four films with a relatively 

high TCR along with low resistivity values measured at room temperature of –3.518 

%/K, and 763 -cm, –2.590 and 1.170 k-cm, -3.864%/K and 3.573 k-cm, and –3.103 

%/K, and 730 -cm using Si0.053Ge0.875O0.072, Si0.041Ge0.902O0.057, Si0.081Ge0.853O0.066 and 

Si0.034Ge0.899O0.067, respectively. The TCR denoted by “Measured,” was plotted from the 

measured data directly. The TCR denoted by “Calculated,” was determined and plotted 

using Eq.3.1, where the Ea was deduced from the slope of Arrhenius plot. It is noted that 

the R-T behavior of the SixGeyO1-x-y films in the device were exponential and followed 

the relation in Eq.3.2. At room temperature, wafer 02 showed the lowest value of TCR 

while the other three wafers have TCR values at room temperature of –3.103/K, –

3.518/K, and –3.864/K. The figure shows that TCR values around room temperature of 
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wafer 03 (Figure 3.2c) were not stable with large fluctuations which may have resulted in 

a higher1/f-noise value.  In addition, the devices did not work with a large number of 

biasing current since the resistivity is very high. The current-voltage (I-V) 

characteristics were measured before and after annealing the fabricated devices. It 

was found to be linear. Thus, the devices do not suffer Joule-heating effect. The linear 

region of wafer 03, and wafer 01 is -300 nA to 300 nA, -760 nA to 760 nA, respectively. 

 

 

Figure 3.1 I-V graph from (a) wafer W01, (b) wafer W02, c) W03 and d) W04. 

 

 

(a) 

(c) 

(b) 

(d) 
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Table 3.1 Film composition and electrical properties of the devices. 

Wafer 
Film 

Composition 
Resistivity 

(×103 Ω-cm) 
TCR (%/K) 

Activation 
Energy Ea (eV) 

W01 Si0.053Ge0.875O0.072 0.763 –3.518 0.2656 

W02 Si0.041Ge0.902O0.057 1.170 –2.590 0.1956 

W03 Si0.081Ge0.853O0.066 3.573 –3.864 0.2917 

W04 Si0.034Ge0.899O0.067 0.730 –3.103 0.2402 

 

 

 

Figure 3.2 Resistivity and TCR versus temperature for devices from (a) wafer W01, (b) 
wafer W02, c) W03 and d) W04. 
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3.2 Noise study of metal resistor 

Each device was voltage biased using Ni-Cd battery and 1 MΩ load resistor 

connected in series with the device. The applied currents ranged between 0.08-0.6 µA. 

We have selected metal resistor because they have much lower 1/f-noise than that of 

carbon resistors [4], [51]. The measured 1/f-noise of 11.5 kΩ, 51 kΩ, and 1 MΩ metal 

resistors are shown in Figure 3.2.1. The 1/f-noise corner frequencies were 6 Hz, 3 Hz and 

2.5 Hz, respectively. The figure also shows how increasing the resistance increases PSD 

voltage noise without applying any biasing current or voltage, since Johnson noise is 

linearly dependent on resistance and excess fluctuation of electrons at room temperature.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
Figure 3.2.1 PSD noise comparison with different metal resistances: 11.5 KΩ, 51KΩ and 
1 MΩ without biasing current. 
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3.3 Noise Study of Microbolometer 

3.3.1 Noise study of microbolometer before annealing 

We have measured the voltage noise PSD of the fabricated wafers as a 

function of frequency at bias current between 0.07 – 0.6 µA before and after 

annealing. Figure 3.3.1.1 and Figure 3.3.1.2 show the noise spectrum of devices from 

wafer W01 (namely W01D21), W02 (namely W02D45), W03 (namely W03D46) and 

wafer W04 (namely W04D33) before annealing. The figure clearly demonstrates that 

the noise increases as the biasing current increases in all devices. The lowest measured 

noise voltage PSD with an acceptable Hooge’s parameters for these devices were 

7.59×10-15 V2/Hz, 1.89×10-14 V2/Hz, 3.24×10-14 V2/Hz, and 2.79×10-14 V2/Hz at 25 Hz,  

12 Hz, 70 Hz, and 160 Hz corner frequency, respectively, using 70 nA or 80 nA bias 

current. The corresponding Hooge’s parameters, , and Kf  were as follow: (W01) 1.19, 

1.71, 3.65×10-14, (W02) 1.83, 2.17, 2.35×10-12 , (W03) 1.85, 2.0, 3.19×10-16, and (W04) 

1.58, 2.19, 2.74×10-13, respectively. The (1/f-noise) corner frequency is smaller in 

wafer 02 than that of the other three wafers. Before annealing, the Hooge’s 

parameters and 1/f-noise at the corner frequency for the four wafers are shown in 

Table 3.2. We see in the table that the average value of   was close to 1, ranged between 

0.91 - 1.26 for wafer W01 and W02 indicating the dominant 1/f-noise at low frequencies. 

On other hand, for the wafer W03 and W04 we found that γ is closer to 2, indicating the 

presence of brown noise before annealing. This noise may have come from different part 

of the device, and from several sources of noise, i.e. surface defects, dangling bond, etc 

[1, 61]. The value of Kf  for different devices from the four wafers before annealing was 

ranged from 1.6×10-16 for wafer 03 to 3.65×10-14 for W01. The lower values of this  
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Figure 3.3.1.1 PSD noise with different biasing currents for before annealing: devices a) 
W01D21; b) W02D45 

(b) 

(a) 
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Figure 3.3.1.2 PSD noise with different biasing currents for before annealing: devices a) 
03D46, b) W04D33  
 

 

(b) 

(a) 
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range demonstrate that some film compositions have a relatively low voltage noise PSD. 

The results shows that the voltage noise PSD of the four wafers were different before 

annealing devices with the lowest being observed in wafer W01 and the highest is in 

wafer W04. This indicates that the noise sources in the bolometer are due to the presence 

of trapping states, detrapping of carriers, and defects in SixGeyO1-x-y sensing layer In this 

work, it will be shown that annealing the devices in vacuum will markedly eliminate the 

brown noise effect, and thus reinstating 1/f-noise as the main contributor. The 

encapsulation of SixGeyO1-x-y thin film with two Si3N4 passivation layers plays a 

dominant role in minimizing the surroundings and surface state effects in SixGeyO1-x-y 

which in turn reduces 1/f-noise [52]. This might have diminished the electron – hole 

recombination rate by lowering the density of interface traps. This results in decreasing 

the dangling bond, and thus reduces the 1/f-noise [5]. In addition, the passivation layers 

might have increased the mobility of the surface state in SixGeyO1-x-y thin films, which 

can be a result of dislocations, chemical residues and metallic sputter depositions on the 

surface [53, 54]. This will also lead to a lower 1/f-noise. Additionally, we have not 

observed any sudden increase in the noise level across the frequency spectrum in Figure 

3.3.1. Thus, our devices do not suffer from generation – recombination (g-r) noise. 

3.3.2 Noise study of microbolometer after annealing 

Many devices from the same four wafers were annealed at 200 °C, 250 °C or 300 

°C from 1 to 5 hours with a constant ramp of 20˚C/min using a bias current of 0.07 µA. 

Figure 3.3.2 shows the measured noise voltage PSD for 12 devices from wafer W01, 

W02, W03, and W04 before and after annealing at 200 °C, 250 °C, and 300 °C for 

duration from 1 hour to 5 hours using a bias current of 0.07 µA. The corresponding 
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Hooge's parameters for the devices from the four wafers are presented in Table 3.3, 

Table 3.4, Table 3.5 and Table 3.6, respectively. The results show that annealing the 

devices has reduced the voltage noise PSD significantly on one wafer (W04). 

However, this reduction was not lower than that of the lowest measured voltage noise 

in the other devices before annealing 

Table 3.2 Noise parameters of the devices before annealing for wafers W01 to W04. 

Wafer Device No. γ ß Kf Noise PSD (V2/Hz) at corner freq 

W01 

W01D21 1.19 1.71 3.65×10-14 7.59×10-15 at 25 Hz with 70 nA 

W01D22 1.26 2.24 1.44×10-12 1.88×10-14 at 80 Hz with 70 nA 

W01D52 0.93 2.21 3.46×10-13 3.56×10-14 at 30 Hz with 80 nA 

W02 

W02D63 

W02D64 

W02D62 

W02D45 

1.83 

1.37 

0.91 

0.91 

2.17 

1.58 

2.07 

1.93 

2.35×10-12

4.94×10-13

3.31×10-14

3.01×10-14

1.47×10-14 at 50 Hz with 80 nA 

1.08×10-13 at 10.5 Hz with 80 nA 

2.54×10-14 at 11 Hz with 80 nA 

1.89×10-14 at 12 Hz with 85 nA 

W03 

W03D36 

W03D45 

W03D46 

W03D48 

1.33 

1.59 

1.85 

1.61 

3.24 

3.71 

2.00 

4.92 

1.97×10-14

1.19×10-12

3.19×10-16 

1.6010-16 

1.82×10-14 at 190 Hz with 70 nA 

3.15×10-14 at 70 Hz with 80 nA 

3.24×10-14 at 70 Hz with 80 nA 

4.16×10-14 at 11 Hz with 75 nA 

W04 

W04D43 1.78 2.62 3.33×10-11 4.12×10-14 at 200 Hz with 80 nA 

W04D11 2.00 1.83 6.02×10-10 5.58×10-13 at 200 Hz with 80 nA 

W04D33 1.58 2.19 2.74×10-13 2.79×10-14 at 160 Hz with 90 nA 



 
 
 

26 
 

In addition, the 1/f-noise PSD was decreased significantly on devices that have 

abnormally high 1/f-noise before annealing (Figure. 3.3.2.5 b). The voltage noise PSD 

of the devices was decreased as the annealing time increased. For example, the lowest 

measured noise is 1.96×10-14 V2/Hz at 12 Hz for the device (W04D33) that annealed at 

300 °C. After 4 hours of annealing, the voltage noise starts to increase again. It is noted 

that annealing at higher temperature 300 °C reduced the low frequency voltage noise 

PSD more than that of 200 °C and 250 °C temperature. The average value of   was close 

to 1, was 0.8 for device W04D33, after 4 hours of annealing at 300 °C. This results 

clearly indicates that annealing have reduced the effect of any other noise sources, 

making the 1/f-noise as the main contributing source. The corresponding 1/f-noise 

coefficient (Kf) of device W04D33 was changed from 2.74×10-13 to 1.84×10-14 after 4 

hours of annealing at 300 °C. The Kf  value starts to increase after annealing at higher 

time interval. This increase is attributed to the reduction in 1/f-noise and the increase of  

with increasing annealing time interval. In addition, the results show that annealing the 

devices has reduced the voltage noise PSD significantly on one wafer (wafer W04), and 

the 1/f-noise PSD was decreased significantly on devices that had abnormally high 1/f-

noise before annealing (Figure. 3.3.2.1-3.3.2.6). 

As the annealing time interval of the devices increases, the electrical noise level was 

reduced. This indicates that annealing at a specific time interval reduced the trapping 

states or defects in SixGeyO1-x-y sensing layer. After 3-4 hours of annealing, the corner 

frequency was shifted from around 70 Hz to around 12 Hz which indicates that Johnson 

noise can be observed after 12 Hz. Before 12 Hz, the frequency is dominated by 1/f- 

noise. 
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Figure 3.3.2.1 Noise PSD before and after annealing for different durations: devices a)
W01D21, b) W01D22 annealed at 200°C, 250°C respectively. 

. 

(a) 

(b) 
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Figure 3.3.2.2 Noise PSD before and after annealing for different durations: devices a)
W01D52, b) W02D64 annealed at 300°C, 200°C respectively. 

(a) 

(b) 
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Figure 3.3.2.3 Noise PSD before and after annealing for different durations: devices a)
W02D64, b) W02D45 annealed at 250°C, 300°C respectively. 

(a) 

(b) 
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Figure 3.3.2.4 Noise PSD before and after annealing for different durations: devices a)
W01D52, b) W02D64 annealed at 300°C, 200°C respectively. 

 

(a) 

(b) 
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Figure 3.3.2.5 Noise PSD before and after annealing for different durations: devices a)
W03D48, b) W04D43 annealed at 300°C, 200°C respectively. 

 

(a) 

(b) 
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Figure 3.3.2.6 Noise PSD before and after annealing for different durations: devices a)
W04D11, b) W04D33 annealed at 250°C, 300°C respectively. 

 

(a) 

(b) 
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Table 3.3 Variation of Hooge’s parameters in different devices with different annealing 
time intervals for WaferW01. 

Annealing 
Duration 
(Hours) 

W01D21 @ 200 °C W01D22 @ 250 °C W01D52 @ 300 °C 

γ ß Kf γ ß Kf γ ß Kf 

0 1.19 1.71 3.65×10-14 1.26 2.24 1.44×10-12 0.93 2.21 3.46×10-13

1 1.06 2.68 7.53×10-12 1.60 1.73 8.49×10-11 1.03 2.00 6.34×10-13

2 1.13 1.94 9.74×10-11 1.00 1.88 2.23×10-13 1.01 2.38 5.00×10-13

3 1.62 2.00 8.02×10-11 1.02 1.99 3.90×10-13 0.92 2.11 3.26×10-13

4 1.48 1.70 1.27×10-10 0.95 2.00 2.02×10-13 0.86 2.30 1.44×10-13

5 1.58 0.65 8.90×10-09 0.88 3.82 1.96×10-14    

 

In for W 01, the annealing at 200 oC and 300 oC did not help reducing the voltage 

noise PSD. In fact, the noise was increased after annealing the devices at these 

temperatures, e.g., the value of γ for  (W01D21) was increased from 1.19 before 

annealing to 1.58 after annealing for 5 hours at 200 oC, while Kf  was increased from 

3.65×10-14 to 8.90×10-09 for the same duration of annealing. On the other hand, at 250 oC, 

the noise level was slightly decreased for (W01D22). The value of γ was decreased from 

1.26 before annealing to 0.88 after annealing for 5 hours, while Kf was decreased from 

1.44×10-12 to 1.96×10-14 for the same duration of annealing. The decrease in Kf value 

indicates reduction in the noise level of the device. 

In W 02, the voltage noise was slightly decreased after annealing the device for 1 

hour at 200 oC. For example, for device (W02D64) the voltage noise PSD was reduced 

from 1.94×10-12 V2/Hz to 2.36×10-13 V2/Hz at 1 Hz with70 nA. After 1 h , the voltage 

noise was increased with the highest measured noise was at 5 hours of annealing. The 
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value of γ for (W02D64) was increased from 1.37 before annealing to 0.79 after 

annealing for 1 hour at 200 oC, while Kf  was increased from 4.94×10-13 to 5.12×10-14 for 

the same duration of annealing.  At 250 oC, the noise level was decreased for (W02D63). 

The value of γ was decreased from 1.83 before annealing to 0.74 after annealing for 3 

hours, while Kf was decreased from 2.35×10-12 to 5.96×10-14 for the same duration of 

annealing. The same behavior was observed for annealing at 300 oC. 

In for W 03, the voltage noise was decreased after annealing the device at 200 oC, 

250 oC, and 300 oC. For device (W03D45) the voltage noise PSD was reduced from 

9.8×10-14 V2/Hz to 3.26×10-14 V2/Hz at 20 Hz with 70 nA. After 3 h , the voltage noise 

was increased. 

Table 3.4 Variation of Hooge’s parameters in different devices with different annealing 
time intervals for WaferW02. 

 

Annealing 
Duration 
 (Hours) 

W02D64 @ 200° C W02D63 @ 250° C W02D45 @ 300° C 

γ ß Kf γ ß Kf γ ß Kf 

0 1.37 1.58 4.94×10-13 1.83 2.17 2.35×10-12 0.91 1.79 3.73×10-14

1 0.79 1.71 5.12×10-14 1.37 2.23 2.08×10-10 0.83 1.60 4.12×10-14

2 1.47 2.60 8.94×10-12 1.26 2.83 2.12×10-14 0.87 1.67 4.65×10-14

3 0.67 0.55 6.09×10-12 0.74 1.19 5.96×10-14 0.81 1.88 2.88×10-14

4 1.57 4.74 6.00×10-14 0.75 1.22 6.90×10-14 1.21 0.33 6.23×10-11

5 1.70 3.23 6.07×10-09 0.95 2.00 3.70×10-14    

The value of γ was decreased from 1.59 before annealing to 1.50 after annealing 

for 3 hours at 200 oC, while Kf  was increased from 1.19×10-12 to 7.23×10-14 for the same 

duration of annealing. At 250 oC a similar behavior was observed, the noise level was 
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decreased for (W03D46). The value of γ was decreased from 1.84 before annealing to 

0.96 after annealing for 3 hours, while Kf  was decreased from 1.56×10-12 to 2.74×10-14 for 

the same duration of annealing. The annealing at 300 oC for various time intervals did not 

change the noise level at all. However, the γ and Kf  were changed from 1.61 and 1.60×10-

16 to1.05 and 2.26×10-14 after 2 hours of annealing, respectively. 

 
Table 3.5 Variation of Hooge’s parameters in different devices with different annealing 
time intervals for wafer W03. 

 

Annealing 
Duration 
(Hours) 

W03D45 @ 200° C W03D46 @ 250° C W03D48 @ 300° C 

γ ß Kf γ ß Kf γ ß Kf 

0 1.59 3.71 1.19×10-12 1.84 1.62 1.56×10-12 1.61 4.92 1.60×10-16 

1 1.54 4.04 2.58×10-13 0.88 1.96 1.74×10-14 1.20 3.05 3.32×10-15 

2 1.88 2.87 5.19×10-12 0.98 2.13 1.27×10-14 1.05 2.05 2.26×10-14 

3 1.50 1.88 7.23×10-14 0.96 1.73 2.74×10-14 1.46 3.38 1.97×10-15 

4 1.92 1.18 1.53×10-09 0.87 1.54 3.67×10-14 1.01 0.85 6.55×10-14 

5 1.72 1.81 5.98×10-11 0.92 1.66 3.70×10-14    

 

We have plotted the lowest measured voltage noise PSD at 0.07 µA of the four 

wafers before and after annealing at 300 °C (Figure 3.3.3). The results show that three 

wafers have relatively similar noise level while wafer W04 has the highest voltage noise 

before annealing. This might be due to the higher Ge concentration in the film. The 

voltage noise PSD after annealing was comparable with wafer W03 with the highest 

voltage noise. A potential source of 1/f-noise is the bond formation of SixGeyO1-x-y 

sensing layer in terms of Si-O and Ge-O bond formation [28, 29].  The bonds might have 
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resulted in large number of defects in the film and thus contributed to the presence of 1/f-

noise. 

Table 3.6 Variation of Hooge’s parameters in different devices with different annealing 
time intervals for wafer W04. 

Annealing 
Duration 
(Hours) 

W04D43@ 200° C W04D11@ 250° C W04D33@ 300° C 

γ ß Kf γ ß Kf γ ß Kf 

0 1.78 2.62 3.33×10-11 2.00 1.83 6.02×10-10 1.58 2.19 2.74×10-13

1 1.87 1.82 2.30×10-11 1.80 6.33 5.87×10-08 0.95 1.43 1.81×10-13

2 0.99 2.04 2.39×10-13 0.82 2.51 2.42×10-13 1.37 3.50 1.56×10-14

3 1.22 2.41 4.16×10-13 0.76 1.55 2.19×10-16 0.81 2.56 1.36×10-14

4 2.07 2.59 9.55×10-09 1.06 3.92 7.17×10-15 0.80 2.33 1.84×10-14

5 1.83 0.20 6.77×10-08 1.18 2.81 4.43×10-14

 

The bonding Si with O creates paramagnetic defects which leads to unpair of 

electron with a silicon dangling bond [55]. Similarly, Ge-O and Ge-Ge bonding leads to 

dangling bond of Ge. The XRD study of the four wafers, confirmed the presence of 

dangling bonds since we have not observed any sharp peak in the spectrum, suggesting 

amorphous nature of all films, and lack of long range order. In addition, to the presence 

of dangling bonds, the presence of deep traps and recombination centers in Si-Ge bond, 

and  the interface between NiCr metal and SixGeyO1-x-y semiconductor film might have 

contributed to the increase in 1/f-noise level [35, 56]. The metal semiconductor interface 

might have contributed to the noise level due to the cleanliness of the contacts and the 

possible formation of Schottky junction [28]. After 4 hours annealing in vacuum at low 
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pressure, we have observed significant reduction in noise in wafer W04, and slight 

reduction in the wafer W01. This indicates that annealing in vacuum has reduced the 

number of dangling bond, recombination centers, and impacted the metal-semiconductor 

interface. After 3-5 hours of annealing, the voltage noise PSD starts to increase 

significantly. This might be due to the increase of dangling bonds, low field mobility [54]  

and the oxide traps [57]. In addition, the long exposure to heat during annealing might 

have increased some source of 1/f-noise such as the dislocations, surface and bulk 

phenomena [19, 23, 58, 59]. From Table 3.7, it is seen that after annealing noise voltage  

 

 

PSD decreases for device number W02D45, W03D45 and W04D33 but device number 

W01D21 shows opposite behavior. Moreover, corner frequency reduces for W01D21 and 

W04D33 whereas other two devices W02D45 and W03D45 increase from 12 Hz to 23 

Hz and 70 Hz to 77.5 Hz. Therefore, after heating the devices the corner frequency 

decreases since the slope decreased. For example, device W01D21 the value of γ 

decreased from 1.19 to 1.06, device W02D45 was 0.91 to 0.83 at 1 h interval, device 

(a) (b)

Figure 3.3.3 Comparison with low PSD noise: a) before annealing and b) after annealing 
from four wafers W01-W04 at biasing current of 80 nA. 
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W03D45 was 1.59 to 1.50 at 3 h interval and device W04D33 was 1.58 to 0.80 at 4 h 

intervals. The value of ß also decreased. 

 
 

We have also compared the voltage noise PSD at 30 Hz camera frame rate. Table 

3.8 represents the noise voltage PSD for before and after annealing at 30 Hz. The noise 

voltage PSD was the highest for device W03D46 from wafer 03 before and after 

annealing at 30 Hz. The device W04D33 from wafer 04 demonstrated the lowest noise 

after annealing which reduced from 4.5×10-13 to 1.30×10-14  (V2/Hz). The results show 

that annealing has reduced the voltage noise PSD in all wafers.    

 

 

Wafer  

Before Annealing  After Annealing 

Noise 
Voltage 

PSD  

(V2/Hz)  

Corner 
Frequency 

(Hz) 

Noise 
Voltage 

PSD  

(V2/Hz)  

Annealing 
Interval 

(Hour)  

Corner 
Frequency 

         (Hz)  

W01D21  7.59×10-15  25 6.2×10-13 1h@200°C  12  

W02D45  1.89×10-14  12 1.13× 10-14 1h@300°C  23  

W03D45  3.15×10-14  70 1.5× 10-14 3h@200°C  77.5  

W04D33  2.79×10-13  160 1.96 ×10-14 4h@300°C  12  

Table 3.7 Comparison with Low voltage noise PSD before and after annealing at the 
corner frequency. 
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Table 3.8 Comparison with low noise voltage PSD before and after annealing at 30 Hz- 
IR thermal camera frame rate.  

 

 

 

 

 

 

 

 

 

 

 

Wafer  

Noise Voltage PSD  

Before Annealing 

(V2/Hz)  

Noise Voltage PSD  

After Annealing 

(V2/Hz)  

W01D52  3.89×10-14  2.59×10-14  

W02D63  4.77×10-14  2.33×10-14  

W03D46  8.1×10-14  3.42×10-14  

W04D33  4.5×10-13  1.30×10-14  
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CHAPTER 4  

 

CONCLUSION 

This thesis is focused on measuring and reducing the low-frequency noise voltage 

power spectral density (PSD) of silicon germanium oxide (SixGeyO1-x-y) uncooled IR 

microbolometers. These microbolometers were fabricated on four silicon wafers with 

four different compositions of silicon germanium oxide (namely Si0.053Ge0.875O0.072 is 

W01, Si0.041Ge0.902O0.057 is W02, Si0.081Ge0.853O0.066 is W03 and Si0.034Ge0.899O0.067 is 

W04). The microbolometer pixel area was 40×40 µm2. The noise reduction was achieved 

by passivating SixGeyO1-x-y with Si3N4 layers and by annealing the devices in vacuum at 

200 °C, 250 °C, or 300 °C with different time interval from 1 to 5 hours. The noise 

measurements results demonstrate that the voltage noise PSD depends on the percentage 

of silicon, germanium and oxygen. For example, a large concentration of germanium has 

reduced the performance of the microbolometer since it had a high voltage noise PSD. 

The measured TCR and resistivity at room temperature were-3.518/K and 

0.763×103.cm, -2.590/K and 1.170×103.cm, -3.864/K and 3.573×103.cm and -

3.103/K and 0.730×103.cm for devices from W01, W02, W03 and W04, respectively. 

The TCR is relatively high in comparison with other IR material. The corresponding 

resistivities were less than 1000 .cm, within the acceptable range for W01, and W04.  

The current-voltage of these devices were linear suggesting that they did not suffer from 

Joule-heating effect up to 0.8—1 µA, with the exception of wafer 3, it was up to 0.2 µA. 
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The lowest measured voltage noise PSD at the corner frequency of several 

devices (W01D21, W02D45, W03D36 and W04D33) from the four fabricated wafers 

before annealing were 7.59×10-15 V2/Hz at 80 Hz, 1.89×10-14 V2/Hz 11 Hz, 1.82×10-14 

V2/Hz 190 Hz, and 2.79×10-14 V2/Hz 160 Hz respectively. These values are relatively 

high since the corner frequency was above 30 HZ camera frame rate with the exception 

of wafer 2 where the corner frequency was at 11 Hz. The corresponding 1/f-noise 

coefficients for the four wafers, Kf, were 3.65×10-14, 3.01×10-14, 1.97×10-14, and 2.74×10-

13 respectively. These results demonstrate that devices from W01 (W01D21) have the 

lowest measured noise at the corner frequency (80 Hz). In contrast, W04 (W04D33) 

demonstrated the highest voltage noise PSD and the highest corner frequency (160 Hz). 

The annealing of these devices and others from the same four wafers in vacuum at 

4 m Torr for a time interval between 1-5 hours with each time interval increase by 1 hour 

at either 200 oC, or 250 oC, or 300 oC have reduced the voltage noise PSD. The 

measurements showed that the voltage noise PSD was reduced as the annealing time 

interval was increased to a certain time period, after that the voltage noise PSD started to 

increase again. For example, the lowest measured noise of each device from the four 

wafers at the corner frequency (W01D21, W03D45 and W04D33) after 3h or 4 h time 

interval, was1.96×10-14 V2/Hz at 12 Hz, 1.5× 10-14 V2/Hz at 77.5 Hz, 2.11 ×10-14 V2/Hz at 

12 Hz, respectively. However, in wafer 02 (02D45) the voltage noise PSD was 1.13× 10-

14 V2/Hz at 23 Hz with 1 h period of annealing. In addition, the results presented that the 

voltage noise PSD of device W04D33 was significantly lowered after annealing at 300 

°C for 4 hours while in devices in W01, W02, and W03, the noise was reduced slightly 

with the exception of W01D21 at 200 oC, in fact increased after annealing. It is clear that 
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annealing at higher temperature 300 °C has reduced the low frequency voltage noise PSD 

more than that of 200 °C and 250 °C temperature. 

The measured Hooge’s parameter of the three devices from W04 after annealing 

were 2.39×10-13 for W04D43 at 200 °C in 2 h period, 2.19×10-16 for W04D11 at 250 °C 

in 3 h period and 1.36×10-14 for W04D33 at 300 °C in 3 h period. Other devices from 

W01, W02 and W03 the measured Hooge’s parameters decreased after annealing. For 

example, before annealing the noise parameters ( γ, β and Kf ) of the device W01D22 

were 1.26, 2.24 and 1.44×10-12 which are 0.95, 2.00 and  2.02×10-13 after annealing, and 

for the device W03D45 the noise parameters were 1.59, 3.71 and 1.19×10-12 but which 

are seen 1.50, 1.88 and 7.23×10-14 after annealing, respectively. However, annealing of 

devices reduced the noise parameter Kf. Moreover, noise voltage PSD showed 

diminishing trend after heating devices at 30 Hz camera frame rate. This clearly indicates 

that annealing the device at higher temperature enabled the reduction of 1/f-noise. The 

possible reasons for the reduction of voltage noise are the dangling bonds, grain boundary 

and crystal structure were repaired in sensing layer after heating the devices. Trapping-

detrapping mechanism stated inside the interfacial oxide was also a potential source of 

increasing 1/f-noise. The problem of whether or not more annealing time intervals might 

have increased dislocation or the number of dangling bonds would be a good topic for 

future study. Future study is also needed to look at whether the annealing time created 

defects in sensing layers leading to further increase in the noise voltage PSD. 
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