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ABSTRACT 

 

 

Despite the possibility for misuse of their data, and previous research expressing 

consumer concern over privacy consumers continue to shop online.  This study tests the 

idea that consumers’ navigation online leading to eventual purchases online is so 

ritualized and driven by short-cuts (e.g., brand familiarity) that processing information 

about the privacy safety offered by individual websites is mostly under the control of 

heuristic information processing. This study hopes to offer an explanation for the privacy 

paradox (despite apparent privacy concerns, Internet users rarely take self-protective 

measures to alleviate those concerns) and additionally, privacy concerns online seem to 

have little effect on consumer behavior when on the Internet. Implications for regulators 

and advertising practitioners into the complex processes involved in consumer privacy 

concerns and online data collection.  
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I. INTRODUCTION 

 

Supreme Court Justices Samuel Warren and Louis Brandeis noted in an 1890 

Harvard law review that new technologies could cause what was once whispered behind 

closed doors to one day be screamed from rooftops (Warren and Brandeis 1890).  Though 

originally conceived as a worry focused on governmental violation of consumer privacy, 

the justices’ concerns about surveillance of consumers’ information and privacy issues 

foreshadow those of consumer advocates as advertisers and online retailers continue to 

amass consumer data in an effort to serve more relevant content to their consumers. 

Platforms such as Facebook pages and Google searches may have replaced the “rooftops” 

but the issue of consumer privacy has grown increasingly important and is being 

discussed at length by the current administration, the FTC, consumer advocates, and the 

advertising industry.  For example, a recent White House report included a note in its 

recommendations for protecting consumer privacy in the online based economy that 

“many consumers and privacy advocates find tracking and the advertising practices that it 

enables invade their expectations of privacy” (“Consumer Data Privacy In a Networked 

World: A Framework For Protecting Privacy And Promoting Innovation In The Digital 

Global Economy" 2012). Consumer privacy concerns arise every time a person clicks 

from site to site and when they make purchases.  Some research has pointed to the lack of 

knowledge consumers have about the way data is collected online which in turn leads 

them to distrust advertising that results from such collection (McDonald 2010). 

Additionally, previous reports have noted that such data collection could lead to changes 

in consumer behavior online such as a change in purchase intentions after learning about 
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how data is collected (Milne 2009) and used online, and that such collection could be 

perceived as invasive by the consumer (McDonald 2010). 

 Despite the possibility for misuse of their data, consumers continue to shop 

online.  In the United States, e-commerce increases about 10% each year (Weinstein 

2013). Additionally, consumers routinely express desire for privacy policies yet show 

little interest in paying attention to such policies, rarely taking proactive actions to protect 

their data (Joinson 2010; Metzger 2007). This lack of interest or notice of policies and the 

continued desire for policy as verbalized by consumers has led to what some call the 

“privacy paradox” (La Rose 2004; Yap, Beverland and Bove 2009; Norberg, Horne and 

Horne 2007). 

Ecommerce shows no signs of slowing, online behavioral advertising spending 

online is projected to increase (eMarketer 2013) and the voluminous amounts of data 

collected and stored to serve relevant advertisements opens the door for a plethora of data 

privacy and security issues.  Advertisers use clickstream data and data entered into 

websites to serve advertisements relevant to a consumer’s online behavior, a type of 

consumer targeting that allows consumers to receive information about products and 

services that they may be interested in, (eMarketer 2013) and allows advertisers and 

marketers to more efficiently communicate to their audiences. Advertisers are able to pay 

companies to use tracking technologies to create profiles of users based on clickstream 

data and then offer advertisements based on that profile (“Online Tracking and 

Behavioral Profiling” 2014).  However, the practice of online behavioral advertising 

(OBA) is riddled with controversy as consumers and advertisers negotiate the balance 

between privacy concerns and information flow.   
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The importance of this study is paramount to uncover both ways in which 

consumers navigate the online economy (in the narrow context of online search and 

shopping data collected on websites and aggregated by third parties to produce relevant 

advertisements), to offer an explanation for the privacy paradox, and offer insight for 

regulators and advertising practitioners into the complex processes involved in consumer 

privacy concerns and online data collection.  

The privacy issue stems from the assumption that the information collected and 

aggregated is, in some ways, regarded by the consumer as information that should not be 

shared without explicit permission and that the consumer should have a measure of 

control over how it is used. The method of regulation by the Federal Trade Commission 

and adopted by many advertisers as a self-regulation policy is that of allowing the 

consumer the ability to opt-out of activities online that may result in their data being used 

by other entities.  The idea behind any kind of opt-in or opt-out system is to allow 

consumers control over information they provide about themselves. Because privacy is a 

socially constructed term (Solove 2006), it is often operationalized by regulators as a 

more tangible concept of control and when consumers ignore privacy policies or 

information that may allow control over that data, the issue becomes more contentious 

(Joinson 2010; Metzger 2007).  

The issue of privacy in the realm of data collection online continues to appear in 

the news and ignite debates among consumer advocates and regulators alike (Podesta, 

Pritzker, Moniz, Holdren, and Zients 2014; Sableman, Shoenberger and Thorson 2013; 

Consumer Data Privacy In a Networked World: A Framework For Protecting Privacy 

And Promoting Innovation In the Digital Global Economy 2012; McDonald and Cranor 
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2010; Turow et. al. 2009). Yet, news coverage alone, even a series entitled “What They 

Know” run by the Wall Street Journal (“What They Know” 2010-2012), has not been 

enough to encourage consumers to pay attention to privacy policies let alone opt-out of 

tracking of clickstream data online (Sanger and Lohr 2014) despite studies noting that 

media may have influenced behavior in this realm (Poddar, Mosteller, Ellen 2009).  In 

fact, though studies allude to the idea that consumers desire more privacy protections 

online (McDonald and Cranor 2010; Turow et. al. 2009) according to a recent White 

House report, consumers almost always click on terms of agreement without reading 

them, adding incentive for privacy advocates and researchers to wonder whether the opt-

out system and current privacy policies are effective at ensuring consumers have 

adequate control over their data (Sanger and Lohr 2014; Leon, Ur, Shay, Wang, Balebako 

and Cranor 2012). This issue may be more pronounced in the area of clickstream data 

collection and the use of such data to serve relevant advertising (online behavioral 

advertising or “OBA”) as people are not asked to click on an agreement at all but instead 

may opt-out of click stream data collection, if they are aware of the process or desire to 

do so.  This type of data collection is examined in this study. 

The issue of advertiser collection and use of consumer data online has been 

examined from the assumption that the consumer is actively able and willing to search for 

information to protect her privacy and make decisions about when to disclose information 

to a website based on a rational, thoughtful process (Poddar, Mosteller, Ellen 2009; 

Milne, Labrecque, and Cromer 2009; McDonald and Cranor 2010; Turow et al 2009).  

This body of research has also largely focused on consumer disclosure of personal 

information to a website (see Norberg, Horne and Horne 2007 for a study largely based 
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on heuristic theory but dealing with disclosure of information to websites).  Online 

behavioral advertising does not necessarily demand online disclosure in the form of 

filling out information.  An item added to a cart, even if not purchased or clicking 

through a brand’s website may lead to an advertisement of that item(s) to follow the 

consumer to another site. The information is not personally identifiable but is aggregated 

in large databases in an effort to better serve relevant advertising based on profiles 

created with online clickstream and surfing behavior. The world today is complex and 

saturated with information. Theoretically, it is possible that people are using heuristics to 

guide their behaviors online as they do in so many other facets of life (Chaiken 1980; 

Gigerenzer and Gaissmaier 2011; Gigerenzer 2009). 

This study uses Shelly Chaiken’s Heuristic-Systematic Processing Model as a lens 

through which to help explain how consumers navigate the online economy to examine 

an explanation for the privacy paradox (Chaiken 1980).  It examines the issue of 

consumer behavior online and the voiced desires for additional regulation and privacy 

concerns from the theoretical standpoint that most consumer behavior online is driven by 

heuristics which are strategies employed by humans to make faster decisions, conserving 

mental energy and ignoring some information than a more systematic and well-reasoned 

approach (Gigerenzer and Gaissmaier 2011; Chaiken 1980).  

What is tested here is the idea that consumers’ navigation online leading to 

eventual purchases online is so ritualized and driven by short-cuts (e.g., brand familiarity) 

that processing information about the privacy safety offered by individual websites is 

mostly under the control of heuristic information processing (Siegrist 2000; Chaiken 

1980).  That is, people use existing knowledge structures or cues like brand familiarity to 
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determine whether to go to and interact with websites rather than systematically checking 

information about the sites before they venture through them.  It is theorized that in the 

online economy one of the most important heuristic cues is brand familiarity, presumably 

associated with extensive experience with the brand.  For example, a person who surfs 

the site and/or shops at Jcrew.com several times a month is probably unlikely to stop and 

look at the company’s website privacy policy, largely due to the overall familiarity and 

resulting trust in the brand itself that spills over to the site’s safety and data handling 

procedures.  However, a site that a consumer has never heard of or visited may present 

enough novelty and thus, perception of risk to warrant seeking information about the site 

privacy policy and additional information. 

This study involves using scenarios people may encounter in real life while 

shopping online.  The study also, unlike real life, alerts people in random fashion after a 

moment of calculation based on answers they provided previously that going to a website 

can trigger their clickstream data to be accumulated and used in ways they may 

disapprove of, or could embarrass them in some way.   It is posited that people who are 

alerted to the risk of their online data being used in the aforementioned ways will be more 

likely to check the privacy policy of websites before they click through or purchase from 

them, something that currently is rarely, if ever done (Smit, Van Noort, and Voorveld 

2014, Rifon, LaRose, Choi 2005).  Additionally, it is posited that the high risk (low risk) 

condition will interact with brand familiarity, such that high brand familiarity will lessen 

the likelihood of a consumer seeking of additional information about a website before 

clicking through it or offering the information necessary for a purchase, while low brand 

familiarity will not. That the online economy operates in a vacuum is an assumption not 
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made here and thus, individual difference variables of interpersonal trust and institutional 

trust are examined as two other types of heuristics that are likely to be more socially 

driven 

The individual difference variables of interpersonal trust and institutional trust 

may also play a role in how people perceive their risk online and desire for additional 

regulation despite the risk condition to which they are randomly assigned. Institutional 

trust and interpersonal trust are added as measured individual difference variables that 

enhance the context in which online behavioral advertising operates. With participation in 

e-commerce continuing to increase and advertising dollars increasingly being spent on 

messages made relevant through the use of clickstream data collected by cookies and 

other tracking technologies, it makes sense that there is some level of trust in one another 

and the institutions administering such advertising and those charged with policing e-

commerce activities, even if that trust is misplaced. 

This issue is of particular importance not only to advertisers looking to more 

efficiently communicate with their audience and consumer advocates concerned about the 

potential for personal data abuse but to regulators such as the Federal Trade Commission 

who assume a conscious, economical processing of safety online, conceptualizing 

privacy, in part as the ability to control one’s data. The idea of control over one’s data as 

a component of privacy requires a conscious effort on the part of the consumer to wield 

control over that data through decision-making that weighs the pros and cons involved. 

When a consumer relies on short-cuts (e.g., previous knowledge/experience with a brand 

or site and the resulting trust that a site will not do anything with their data that they are 

not aware of) a systematic evaluation of risks and benefits is not made and it is hard to 
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see the use of heuristics offering an economic argument made by the consumer about data 

control.  Additionally, there may be error in the judgment made by the consumer using 

heuristics. In fact, heuristic processing may inflate error by either accepting that the site is 

safe when it isn’t based on the reliance on mental short cuts or rejecting a site the 

consumer erroneously judges as unsafe (Chaiken 1980). If the consumer does not take the 

time to read and understand the use of online behavioral data on a website, the privacy 

policy and the suggestion by the FTC that consumers be given notice of how to control 

their data in online behavioral data collection processes may be seen as useless, though 

recent research into human reliance on heuristics has noted that the accuracy versus 

mental effort trade-off may not be as large a chasm as once believed as many heuristic 

cues are both usually accurate and time saving as far as mental effort (Gigerenzer and 

Gaissmaier 2011).  

For the purposes of this study, the online economy is defined as the environment in 

which a consumer both shops on the Internet and casually browses the Internet, often 

putting items in their virtual shopping carts at businesses’ sites only to see ads for items 

like the ones recently purchased or put in virtual shopping carts pop-up on websites like 

Facebook.com or other websites not affiliated with the initial site of interest.  These 

“third-party” advertisements made relevant to a consumer based on online behavior are 

made possible by “cookies” or small text files placed on a computer by a “third-party” to 

collect and aggregate information on the online surfing behavior of the consumer 

(“Tracking Cookie” 2014). 

There are a myriad of reasons a consumer discloses information online and/or 

does not opt-out of cooking tracking.  These sorts of transactions result in a tradeoff 
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between the consumer and marketer or advertiser: one gets information to target 

information more efficiently and perhaps more economically, and the consumer may get 

cheaper/free content and/or more relevant information from marketers. This study 

specifically looks at the situation when consumers’ clickstream data (online surfing 

behavior) and information offered to a website in order to make a purchase is aggregated 

by individual companies and big data aggregators to serve more relevant advertising. 

Specifically this study seeks to answer the following questions: Whether alerting 

consumers to a personal risk involving their online behavioral data will motivate them to 

systematically process the brand site, by measuring symptoms of careful processing such 

as information seeking in an effort to glean sufficient information on how their data is 

used and protected on that site.  

This study adds to the literature by first examining the idea that consumers are 

more reliant on heuristics to guide their behavior online with regards to privacy and 

security of their clickstream data than they are on systematically making rational, 

economical choices about when to disclose information online and what sites to trust. The 

phenomenon being studied here is perhaps the least transparent to the consumer. That is, 

when advertisers not only use actual shopping transactions where information is typed in 

and exchanged but data is aggregated about consumer behavior online without the 

solicitation of information, relying solely on cookies to record clickstream data and later 

aggregating that data alone or with purchase information to offer advertisements relevant 

to the search and online shopping behavior.  Additionally, the variable of institutional 

trust is included as predictor over and above the risk manipulation in an effort to address 
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the complex context in which online behavioral data collection occurs in everyday life 

and the significance of institutional trust in the area of everyday safety concerns. 

Additionally, suggestions will be made for what kind of regulations are necessary 

to maintain a balance between consumer privacy interests and the advertiser/marketers 

rights to disseminate information and the consumer’s right to receive information 

(Virginia State Pharmacy Board v. Virginia Citizens Consumer Council, 425 U.S. 748 

(1976)).   

 

 

  

http://en.wikipedia.org/wiki/Case_citation
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2. LITERATURE REVIEW 

 

Advertising professionals believe online behavioral advertising is integral to both 

the industry and consumers because it can offer relevant and thus, more positively 

received messages (Nyilasy & Reid, 2009a). To add leverage to this sentiment, digital 

advertising spending is expected to make up a quarter of all advertising spending around 

the world in 2014 (E-marketer.com 2014).  

The increase in ad spending in the area of online behavioral ads comes on the 

heels of consumer preference for relevant to irrelevant advertising as suggested by 

several advertising studies that have shown that personal relevance has both direct and 

indirect effects on attitude to the ad. High levels of personal relevance have been shown 

to increase positive attitude while the opposite has been found true of low levels of 

personal relevance (Liberman & Chaiken, 1996).  Further study by Claypool and 

colleagues (2004) found that participants shown relevant messages had increased positive 

disposition to the message as each message was repeated, however, attitude toward the 

repeated messages decreased when participants who received messages that were not 

personally relevant (Claypool, Mackie, Garcia-Marques, McIntosh and Udall 2004).  The 

result of this body of research was a consensus that consumers preferred personally 

relevant messages to those that were not personally relevant (Campbell and Wright 

2008).  

Yet, some studies have reported consumers do not want tailored advertising and that 

OBA violates consumer  privacy expectations and thus, in many cases, should be 

curtailed or have strict regulation applied (McDonald and Cranor 2010; Turow, King, 

Hoofnagle, Bleakley, and Hennessy 2009).  Interestingly, Joseph Turow, one author from 
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the aforementioned studies, recanted his original perceptions of his own research and 

said, “Who in his right mind wouldn’t want relevant ads over irrelevant ads (Goel 2014).”  

The admission does not change the fact that there is still a lack of understanding as to just 

how consumers negotiate the online economy. A gap exists in the literature on the 

examination of how consumers navigate the online economy, and the attempt to discover 

when consumer privacy interests emerge in the form of systematic or careful processing 

of information about consumer data in relationship to that economy. 

When asked about their concerns online, consumers voicing concerns about privacy 

online seem to be approaching the privacy concept with conscious systematic processing 

or at the very least a socially constructed bias whereby the “right” response is always the 

response thought acceptable by society (Haidt 2012). In this case, the acceptable response 

includes indicating that additional privacy measures should be implemented and a 

consumer should indicate concern about their privacy.  However, when consumers are 

not asked about their privacy or exposed to a message about the potential risks, it appears 

those shopping/surfing online seem to be doing so using “shortcuts” such as brand 

familiarity to guide their navigation online (Shoenberger and Thorson 2013). Though 

consumers routinely express desire for privacy policies, they show little interest in paying 

attention to such policies, rarely taking proactive actions to protect their data (Joinson 

2010; Metzger  2007). This lack of interest or notice of policies and the continued desire 

for policy as verbalized by consumers has led to what some call the “privacy paradox” 

(La Rose 2004; Norberg, Horne and Horne 2007). Norberg and colleagues verified the 

existence of the paradox in an online information disclosure setting, noting in their 

discussion that now the task was to flesh out the antecedent conditions that may help 
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explain why the paradox exists (2007). The “privacy paradox” though noted by several 

researchers, has been rarely empirically examined (Yap, Beverland and Bove 2009) and, 

as discussed by Norberg and colleagues, is not yet fully understood. 

In line with the privacy paradox phenomenon, research has suggested that even 

though consumers assert concern over their data privacy, there is little correlation 

between that concern and self-protective behavior (Regan 1995; Sheehan and Hoy 1999; 

Norberg, Horne and Horne 2007).  Research implies that it is often the case that 

shopping, in general, is accomplished through the use of shortcuts such as using brand 

familiarity or habit to make decisions about the desirability of a product (DelVecchio 

2005).  In the literature, shortcuts are often referred to as heuristics (Chaiken 1980).  

Heuristics are “cues” used to guide behavior and are defined as “any variable whose 

judgmental impact is hypothesized to be mediated by a simple decision rule” (Chaiken, 

Liberman, and Eagly 1999, p. 216).  For example, a familiar brand is likely to equate to 

perceptions of a safe brand website (recent breaches or low brand trust notwithstanding). 

People who shop online know there are dangers from technology they do not 

understand (Rohm and Milne 1998; Miyazaki and Fernandez 2001), and they know there 

are frightening stories about what happens when people’s private affairs are shared 

publicly (privacyassociation.org) but it doesn’t seem to affect their shopping/surfing 

habits, perhaps because they have not been personally affected or threatened by potential 

data misuse, or because they are relying on trust in familiar brands and in a larger social 

context, institutional trust or trusting that the government, advertising industry, etc is 

going to keep them safe. It is likely that despite voiced concerns about data when asked 

on a survey, consumers continue to share online behavioral data and/or fail to opt-out, 
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especially in online business because they rely on “cues,” that is, they rely on heuristics 

such as the trust they have in a brand to guide online behavior and it is only when they 

are asked about or alerted to immediate and personally relevant risks associated with data 

collection that they deem privacy to be a motivationally relevant issue to explore. The 

following literature review will first examine the relevant literature on the Heuristic-

Systematic Processing Model as it applies to the issue of consumer concerns about 

privacy in the online economy and its ability to posit a plausible explanation for the 

privacy paradox. Then it will assess the relevant risk perception literature, and the 

literature speaking to brand familiarity as a heuristic and the individual variables of 

institutional trust and interpersonal trust within light of data collected for the purposes of 

online behavioral advertising.  Lastly, to add context to this study in the political realm a 

portion of the Literature Review will be dedicated to online advertising context, and the 

concept of privacy in the online advertising context. 

Heuristic-Systematic Processing Model 

 The idea that some cognitive processing is automatic is an old assumption 

(Uleman and Bargh 1989) but the assumption that most of the time, human beings 

possessed controlled, intentional and rational thought and decision making processes was 

the primary theory gripped cognitive psychology until the middle of the 1970s when the 

assumption of the rational decision maker was revisited (Uleman and Bargh 1989).  By 

the late 1970s, some researchers had begun to reject the assumption that humans made 

most of their decisions through deliberate thought processes and the study of automatic 

thought, along with the reliance on heuristics in decision-making made a resurgence 

(Uleman and Bargh 1989). 
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Every day human beings rely on heuristics, or cues to guide their behavior.  Starting 

at the physiological level, a person has no control over preconscious automaticity (Bargh 

1989).  This kind of activity has been likened to a reflex whereby they are triggered 

automatically by a certain stimulus with no conscious control asserted by the person. For 

example, in the instance of vision, there is an allocation of spatial attention to record the 

environmental stimuli, although the resources used in garnering that attention do not 

reach a conscious level, though are not thought to be entirely effortless (Bargh 1989). 

This idea makes sense as people must constantly scan their environments for elements of 

danger but cannot devote a great deal of effort in doing so or they would get nothing else 

done.  Heuristics are rules of thumb that do not look to maximize the likelihood that they 

will lead to a predicted outcome as in the case of statistics but instead are considered to 

be frugal or looking to satisfice (Gigerenzer 2008). Heuristics fill the brain with tools to 

be used to adapt to certain situations and allow people to do so with minimal cognitive 

effort (Gigerenzer 2008). Heuristic processing is often thought of as less useful or error 

prone in contrast to more systematic or effortful processing of a stimuli or situation. 

However, Gigerenzer (2008) notes that this is not the case, that not only are heuristics 

used in an adaptive way when cognitive resources are limited but also when the problem 

presented may not be able to be solved through a more rational process.  One example 

would be selecting a friend (not able to be rationally thought out with an optimal solution 

reached) versus playing a game like tic-tac-toe (Gigerenzer 2008).  Additionally, 

heuristic cues can be arranged to allow human beings to rely on the most important 

heuristics within a certain situation to adapt to a complex environment where some of the 
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information has to be ignored (Gigerenzer 2008).  In the present study, heuristics will be 

examined as useful cues that guide consumer behavior online. 

The Heuristic-Systematic processing model asserts that individuals will use either 

or both the heuristic or systematic processing systems in an effort to evaluate information 

and come to a conclusion (Trumbo 1999).  The theory assumes that systematic processing 

happens when an individual exerts “considerable cognitive effort” and “actively attempts 

to comprehend and evaluate the message’s arguments as well as to assess their validity in 

relation to the message’s conclusion” (Chaiken, 1980, p. 752).  On the other hand, 

heuristic processing occurs when the emphasis is not on conscious effort but on the “role 

of simple rules or cognitive heuristics” which are formed by previous information that the 

individual has stored conceptually as knowledge structures (p. 752).  Heuristic processing 

is not conceptualized as effortless processing, though at times it may share criteria for the 

concept of “automaticity” or lack of conscious awareness (Chaiken, Liberman and Eagly 

1989).  Other times, individuals actively search for heuristic cues to guide their 

judgments (Chaiken, Liberman and Eagly 1989).  The most important distinction is that 

systematic processing is theorized to take significantly more cognitive effort and 

inspection of a message than heuristic processing. Heuristic processing has been 

identified in studies like the one where a message is kept constant and the manipulation is 

the likeability of the speaker.  Holding the message constant, the more liked speaker led 

to indications of a more liked speech (Chaiken 1986).This heuristic was deemed the 

liking-agreement heuristic or the assumption that people usually agree with people they 

like (Chaiken, Liberman and Eagly 1989).  Another example is found with brand 

familiarity as a heuristic.  Another study found that people generally preferred high 
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quality peanut butter. However, when a familiar brand label was placed on a low quality 

peanut butter jar, the participants indicated a preference for the branded peanut butter 

(Hoyer and Brown 1990). Both studies illustrated a heuristic cue at work. 

Heuristic processing tends to be the rule for most information processing due to 

the need for an both appropriate amount of cognitive resources and the motivation to 

systematically process a message (Maheswaran, Mackie, and Chaiken 1992).  Put simply, 

humans are constantly looking to minimize the amount of cognitive effort expended. 

Simple rules or short-cuts are used to reduce the cognitive effort and are used to judge the 

environment because they have proved reliable in the past (Averback, Jones and 

Robertson 2011).  When an individual has only a small amount of prior information, 

there is not likely to be an attitude developed that is relevant to the topic of the message. 

Thus, being able to use a heuristic, or a previous piece of knowledge to arrive at a 

conclusion based on a cue or short-cut, is important for the individual (Averberck, Jones 

and Robertson 2011). 

Though, heuristic processing is considered the most common of the dual 

processing model the two processes can co-occur (Griffin, Dunwoody, Nuewirth 1999, 

Chaiken, Liberman and Eagly 1989). Heuristic cues are assumed to be less persuasive 

when the individual is able and motivated to examine information systematically and in 

the contrast, more persuasive (assuming their existence in the information presented) 

when the individual has less cognitive ability available and limited motivation to process 

systematically (Chaiken, Liberman and Eagly 1989. Most of the research in this area has 

been in an experimental setting starting with the seminal Chaiken study published in 

1980, but some research is also being conducted via survey methods as HSM is applied to 
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other contexts such as risk communication (Kahlor, Dunwoody, Griffin, Neuwirth, and 

Giese 2003). 

Although the Heuristic-Systematic Processing Model was developed to address 

persuasion contexts, Chaiken encouraged its expansion to other contexts (Chaiken, 

Libeman and Eagly 1989). For instance, the theory can be applied as a framework for a 

large range of environments where a person’s decision making process is the focus.  The 

idea that the use of heuristic cues may be the driver of consumer behavior in the context 

of online data collection, disclosure and shopping was derived from what is referred to as 

the game of give and take which is attributed by evolutionary psychologists as a 

necessary but sometimes flawed mechanism behind human behavior and survival 

(Simmel 1978, Luhmann 1979).  The idea is that humans, in an effort to lead more 

efficient lives, began to make pre-commitments or giving something of value to another 

with the expectation that the other will, in the future, return with something of value.  

Inherent in the game of give and take is risk but also, the foundation of trust (Nooteboom 

1975).  According to evolutionary psychologists, humans are hard-wired to partake in the 

game of give and take in an effort to lead productive and efficient lives and thus, perhaps 

hardwired to use heuristics to guide daily decision making (Nooteboom 1975).  The 

online economy would be less efficient if every transaction warranted cognitive effort 

and a conscious weighing of risks and benefits. Additionally, the convenience of online 

shopping and relative enjoyment of surfing online may diminish if the consumer had to 

constantly put forth effortful concentration and expend cognitive resources to the 

risk/benefit analysis before clicking to the next site.   
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An individual may be more likely to carefully evaluate the safety of their data on 

a particular website if they are motivated to do so.  Because the Heuristic-Systematic 

Processing Model is based on effort and capacity assumptions and heuristic processing in 

the rule instead of the exception, an individual requires motivation to systematically 

process but also the cognitive resources to do so.  Motivation as the driver of systematic 

processing when there is the cognitive ability to do so has been supported by voluminous 

literature (see Chaiken 1987; Chaiken and Stangor 1987; Petty and Caccioppo 1986 and 

Chaiken, Liberman and Eagly 1989). Motivations were manipulated in these studies by 

exposing individuals to messages with high (low) personal relevance, who were led to 

believe that their judgment had important consequences.  Those in the high motivated 

conditions exerted more effort/systematically processing as measured by time spent 

reading the message, recall of arguments, more elaboration through thought listing 

(Chaiken, Liberman and Eagly 1989).  While the systems can be employed 

simultaneously, a heuristic judgment is made using a cue such as brand familiarity while 

a systematic judgment would be one arrived at upon tasting and deliberating each jar of 

peanut butter as mentioned in the above example. Those individuals under time 

constraints or other impairments to cognitive capacity were less likely to systematically 

process even with heightened motivation to do so (Chaiken, Liberman and Eagly 1989). 

Essentially, heuristics allow for efficiency in everyday life but may come at a 

price, though recent research discusses the possibility that the costs are minimal 

(Gigerenzer 2008).  There is error that may come into play when someone relies on a 

short-cut to make a judgment (Chaiken 1980).  For example, a person may rely on a 

short-cut that a brand is trustworthy based on previous experience but later find out that it 



20 
 

was selling their data to third parties, something they disapproved of.  However, the 

individual is likely to carefully evaluate their environment when a risk is introduced 

(Turner, Mitchell and Rimal 2006) increasing risk perception and as a result, information 

seeking and systematic processing.  For example, the individual may be more likely to 

carefully evaluate the privacy information on a website (e.g., privacy policy) if alerted to 

the risk of their data being stolen online. Otherwise, the individual may use simple cues 

such as the attractiveness of a spokesperson to arrive at a conclusion about the message 

the spokesperson delivers with no emphasis on the content of the message. For example, 

if a celebrity endorses a washing machine in an advertisement, the advertisement may be 

effective for the person who is looking to purchase a washing machine but likes the 

celebrity whereas someone in the market for a new washing machine may be less affected 

by the celebrity and systematically process the contents of the message (Averbeck, Jones 

and Robertson 2011).   

Once a risk or incongruency in information is introduced and systematic 

processing is at work, the sufficiency principle applies.  The principle asserts that an 

individual will exert the effort necessary to attain confidence in their judgment of content.  

Thus, when there is no prior knowledge structure with which to use heuristics or when 

the use of heuristics does not supply the information necessary to feel confident in one’s 

judgment, systematic processing will occur (Chaiken, Liberman and Eagly 1989).  The 

motivation of personal relevance, manipulated in this study with personally relevant 

information about the risk of an individual’s online data, is assumed to influence the 

effort given to processing because it affects the individual’s sufficiency threshold. In 

other words, when content becomes personally relevant, the individual is theorized to 
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desire more information about the content in an effort to reach a higher level of 

confidence in their attitude and/or judgment about the content (Chaiken, Liberman and 

Eagly 1989).  Thus, if they perceive a personal risk to their data online, they will be 

motivated to search for additional information about mitigating that risk. 

Based on findings of previous studies conducted on the issue of online behavioral 

data collection, it seems that the consumers’ voiced  privacy concerns online are  

triggered by rational, systematic processing but that effortful, systematic processing is not 

happening when consumers are surfing online in a real-life or natural setting due to the 

lack of self-protective behaviors exhibited and the continued growth of e-commerce 

despite the voiced concerns (Sableman et. al. 2013; Shoenberger and Thorson 2014).  It 

would seem that if the consumer was consciously weighing privacy concerns in a 

conscious and effortful way, she would actively seek out information about how the data 

collection worked and what it was used for but that doesn’t seem to happen as noted in 

previous research belying consumers’ poor sense of how online data collection works or 

why it is used (Smit et. al. 2014; Shoenberger and Thorson 2014).  The idea that 

knowledge is a poor predictor of privacy concerns online may seem counterintuitive but 

is a common finding in the area of complex sciences and new technologies (Brossard, 

Scheufele, Kim and Lewenstein 2009). As Chaiken notes, motivations that lead to 

systematic processing are contextual and driven also by individual factors (Chaiken, 

Liberman and Eagly 1989).  It appears that in this context, knowledge of the complexities 

of the technology of online tracking and resulting targeted advertising are not motivations 

capable of producing systematic processing in the context of the online economy, 
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specifically in the context of online tracking and the relevant advertising served to 

consumers as a result of an online profiled compiled by that tracking.  

It is theorized that for most data exchanges online the consumer is relying on the 

short-cuts or heuristics to navigate the online economy unless motivated to systematically 

process.  The consumer may be more apt to carefully, systematically process the 

information if a personal risk is made salient.   

Risk Perception as Motivation 

The Risk Information Seeking Perception Model has worked to identify the important 

factors that lead an individual to search for additional information and systematically 

process information (Griffin, Dunwoody, and Neuwirth 1999).  The model was 

constructed, in part, based on the premise of the Heurisitic Systematic Model (HSM) 

(Yang, Aloe, and Feeley 2014) and works well within its parameters.  The model posits, 

like the HSM, that individuals who process information systematically, carefully do so 

because they lack information sufficiency (Yang et. al. 2014). For example, if an 

individual is exposed to a personally relevant risk they may be more likely to want to 

know what is happening with their online data and may click to find out what the policy 

is because they perceive risk to their data in the online environment.  Increasing their 

knowledge, or information seeking may remedy that once they have reached a sufficient 

amount of information necessary to satisfy their processing aims (Eagly and Chaiken 

1993; Yang et. al. 2014).  Personally relevant information has predicted information 

seeking behavior in circumstances of perceived risk (Ter Huume and Guttelng 2008).  

Based on the literature, it seems to follow that risks that are perceived as personally 
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relevant, such as a compromise of consumer data, are likely to elicit information seeking 

behavior (Ter Huume and Guttenlng 2008).  

High perceived risk with low/moderate fear may translate to systematic processing 

through motivation to seek additional information in the content and not just cues, such 

as privacy policies of a brand’s advertisement as a protective measure (Turner, Rimal and 

Morrison 2006). Previous research has found perceived risk to occur through cognitive 

evaluation which would implicate systematic processing (Dholakia 2001). In the 

consumer psychology literature, perceived risk has been theorized to present itself when 

there is an unanticipated and uncertain set of consequences resulting from buying a 

product (Bauer 1960). One distinction the consumer psychology literature makes about 

risk perception in comparison to other branches of psychology is that risk perception is 

thought to arise only through the possibility of negative events and not a risk/benefit 

calculation (Dholakia 2001) and has been defined as perceived potential for personal 

harm (Ter Huurne and Gutteling 2008).  

From the health communication literature, the Risk Perception Attitude Framework 

posits that when risk perception and perceived efficacy are high people are likely to seek 

out information about the risk (Turner et al 2009).  Even those with high perceived risk 

and low efficacy tend to information seek, though their retention of the information 

sought is significantly lower than those with high perceived risk and high efficacy, a 

phenomenon thought to be linked, perhaps, to the anxiety reduction hypothesis (Turner 

et. al 2009). However, in the realm of health risk communication, more fearful people 

were more likely to defensively process health risk information while those with low to 



24 
 

moderate fear did not appear to be on the defensive and processed in the health risk 

information in a careful, and objective way (Biek, Wood and Chaiken 1996).   

The perception of risk in the online economy can be abstract for consumers who may 

not be able to visualize the threats of data misuse they may be subject to in contrast to a 

more tangible risk of contracting an illness. Because this study is interested in when 

consumers are motivated to systematically process and search for information about the 

risks they may encounter in the online economy, only the high risk and high efficacy 

condition is of theoretical importance. 

Consumer online data privacy breaches are not risks associated with physical pain 

or ailments, but consumer data collected online and attached either by inference or 

through personally identifiable links could cause embarrassment, anxiety, job loss, the 

loss of a job, denial of certain benefits or discrimination (Podesta et. al. 2014). The risks 

associated with loss of control over ones data has been coined a diffused risk (Turrow 

and Hennessey 2007) and as a result, may not motivate attention to privacy as a more 

salient risk might.  

We theorize that if alerted to the potential misuse of data and the embarrassing and 

dangerous consequences associated with that misuse, consumers will be more likely to 

seek out information about how their data is being used to serve a certain type of 

advertisement.  Higher perceived risk has consistently been linked to information search 

as a way to reduce risk (Dholkia 2001; Richens and Root-Schaffer 1998; Neuwirth, 

Dunwoody, and Griffin 2000).   However, a necessary condition to motivate information 

search behavior is situational involvement (Dholkia 2001).  Thus, the risk must be 

considered personally relevant to the consumer to elicit information seeking behavior. 
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The present study seeks to induce the desire for information in times of perceived 

personal risk by manipulating risk perception. It is theorized that people in the high risk 

group will systematically process website information by reporting a desire for additional 

information about how their data is used and other information about the site and 

perceive greater privacy risk, and less control over their data.   

The types of risk involved in this study involve consumer data being used in ways 

that consumers have not previously approved of and represents a loss of control over the 

data.  Heuristic cues are likely to mitigate any feelings of risk even in the face of the risk 

manipulation, especially in the scenarios, brand familiarity. 

Brand Familiarity as a Heuristic in the Online Economy 

As noted earlier, a heuristic is any variable that mediates a consumer’s attitude or 

judgment about a particular message or circumstance (Chaiken, Liberman, Eagly 1989).  

As motivations may be contextual and driven by individual difference factors, so too are 

heuristics relied upon differently and with varying strengths depending on the situation 

(Chaiken, Liberman and Eagly 1989).  In the online economy, where it is all too easy to 

stumble across an unfamiliar and website, brand famiarity is theorized to play a vital role 

in determining a data privacy safety and allow for convenience of online 

shopping/surfing to continue. Brand familiarity may be among the most important 

heuristics to consider online and the material entities to trust online are the brand 

websites that consumers frequent, a phenomenon intrinsically linked to mere exposure 

(Zanjoc 1968). 
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The Meaning of Brands 

This section aims to underline the importance of brands without exhausting the 

vast amount literature on the topic. In the online economy, the branding has become 

integral for companies to survive (Aaker and Joachimsthaler 2000; Kapferer 2005).  A 

strong brand is attributed with the ability to increase advertising and marketing 

effectiveness, making consumers more likely to pay attention to additional 

communication from the brand with more favorably and the recall the brand with 

matching affective or cognitive reactions (Keller 2009). A brand can become linked to a 

set of colors or words and unconsciously processed as associated with that brand (Galli 

and Gorn 2011), allowing the theorizing that consistent branding may help create an 

unconscious representation and set of expectations for a brand and allowing for those 

representations to act as heuristics. As mentioned in the previous chapter, brands are 

capable of great influence and used as heuristics even overriding senses like taste as 

noted in the peanut butter with no brand label and peanut butter with brand label 

example.  The peanut butter with a brand label was preferred regardless of the actual 

peanut butter taste (Hoyer and Brown 1990).   

Brand familiarity is as an important heuristic in a complex society over-saturated 

with information, especially in the online economy.  In fact, the perceived risk literature 

notes that consumers tend to know the risks involved with certain actions and take steps 

to reduce that risk such as information seeking or relying on a brand image (Sheth and 

Venkatesan 1968).  Sheth and Venkatesan (1968) manipulated perceived risk, and found 

that information seeking and deliberation about a purchase declined as a result of lack of 

brand loyalty.  
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Based on previous studies, familiar brand name will be manipulated because a 

familiarity is a necessary prerequisite for brand trust. Past experience and the resulting 

familiarity with any type of organization is the number one reason cited for trusting that 

organization with personal information (Milne, Rohm and Boza 1999).  Brand familiarity 

and favorable brand name have been found to represent existing knowledge structures 

from which brand trust is derived and may operate as a judgmental heuristic 

(Maheswaran, Mackie, and Chaiken 1992).  Such a knowledge structure, much like an 

existing stereotype, may create expectations about a product (Maheswaran, Mackie, and 

Chaiken 1992).  Here, the knowledge structure offers information about brand’s relative 

safety. It is expected that a familiar brand name and thus more trusted brand name may 

serve as a heuristic cue in the online shopping/surfing environment. For example, an 

individual may not stop to check the privacy or be wary of their navigation on a brand 

website with which they are familiar and specifically that they trust.  An unknown brand 

website, because the heuristic rule relied upon for a familiar and liked brand name does 

not apply to a brand the consumer has not experienced, will likely increase the motivation 

to get more information about the advertisement’s privacy policy and result in higher 

voiced privacy concerns.  It is also theorized that brand familiarity will lessen the 

perceived risk felt by those in high risk condition and unfamiliar brand is likely to 

increase feelings of risk in the high risk condition. 

Trust 

Trust is essential to a functioning society, beginning with its most basic 

manifestations in daily life (Morgan and Hunt 1994). Here trust is defined as “a 

generalized expectancy held by an individual that the word of another…can be relied on” 
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(Rotter 1967, p. 651).  This study involves trust of one another, or interpersonal trust and 

trust of the institutions involved in online behavioral advertising. 

 General trust in the government, is integral to the functioning of a peaceful and 

happy complex society where it is not possible to examine every claim of safety a 

government makes.  For example, the Food and Drug Administration is charged with 

making sure food passes safety inspections and is approved for human consumption. 

There is error in the agency’s judgment as many drugs are recalled and some excite trial 

lawyers looking for large settlements with the help of injured patients (Maris 2012). Still, 

in general, people trust that the medicines their doctor prescribes will make them better 

and they move on with their lives with little thought to the contrary.  

The human brain is a considered a limited capacity processer and as such often 

uses heuristics, such as trust, to make decisions on the daily basis and exert mental 

energy on less mundane tasks (Lang, 2000).   Following this logic, a society with higher 

institutional trust, or a citizens’ general trust in other people and institutions, will likely 

be both happier and more efficient (Putnam, 1993).   

Interpersonal Trust 

Nowhere is the bombardment of information greater than it is on the Internet.  

Understanding the facets of how online data collection works may not only be a 

seemingly daunting task, but one many people have little interest in understanding. The 

human brain a limited capacity processor and as such often uses heuristics, such as trust, 

to make decisions on a daily basis, thus preventing exertion of mental energy on 

mundane tasks (Lang 2000).  It makes sense then that interpersonal trust may serve as a 
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heuristic for consumers as they navigate the risks and benefits of shopping online as well 

as the privacy risks involved in doing so.   

A personality trait related to a person’s trust of others, interpersonal trust has been 

linked to concern or lack thereof about security online and the likelihood of purchasing 

online (Das 2003).  Interpersonal trust seems a likely antecedent to how people view the 

risks and benefits of shopping online and the privacy risks associated with online 

activities.   Interpersonal trust here is conceptualized as an enduring psychological state 

wherein a consumer has the intention to accept vulnerability in reaction to the positive 

behavior or expectations of the other (Evans 2008; Rousseau 1998). More trusting people 

are likely to disclose more private information than those who are less trusting (Joinson 

2010). In addition, research has found that while there is a disconnect in the lack of self- 

protective behaviors consumers take to protect their privacy, that high trust predicts lower 

levels of privacy concern (Joinson 2010). People with high trust levels may focus on the 

benefits of online shopping because it is just another environment where trusted others 

are operating.  Theoretically, when citizens trust each other, it may seem easier and 

“more rewarding for them to participate in community and civic affairs” (Zmerli & 

Newton, 2008, p. 6) which may further be bolstered by institutional trust. 

Institutional Trust 

As beings in a complex society, our trust in institutions may also be influential on 

the perception of online privacy risks.  Some institutions like governments and industry 

are charged with influencing societal norms and perceptions through mechanisms of 

socialization (Freitag 2009). Institutional trust is linked to the maintenance of a 

cooperative social climate (Zmerli & Newton, 2008) and integral for the efficient 
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functioning of society. Research by Freitag & Bühlmann (2009) argued that political 

institutions could foster generalized trust. This study adds to the government, also 

individual brands, the advertising industry and the individual advertiser to the concept of 

institutional trust in the realm of online behavioral advertising.   

That said, the privacy paradox that exists may exist in part because of trust in 

institutions.  For example, people may generally trust that the Internet is generally safe 

and that advertisers and the government will work to keep their data safe, so they are left 

to worry about more motivationally relevant issues.  It is theorized that people continue 

to shop online despite news of data breaches and the known potential for data collection 

aggregation and abuse because, at the end of the day they trust the institutions charged, in 

their minds, with regulating such behaviors. This phenomenon is also witnessed in food 

safety, an issue that would seem, on its face, be quite motivationally relevant. There are 

dozens of recalls of certain types of foods each year that can cause deathly illness but 

consumers still flock to the grocer to buy their lettuce and beef trusting it is safe. The 

United States does have a Food and Drug Administration charged with protecting us, 

does it not? 

The crux of the privacy paradox is that despite consumers’ calls for more privacy 

protections and complaints that they have lost control over their personal data online, 

evidence suggests they do little or nothing to protect that privacy and in fact, disclose far 

more information in reality than they say they will when asked by researchers (Norberg, 

Horne and Horne 2007; Nowak and Phelps 1992) and few opt-out of tracking 

technologies (Winkler 2001).  It might be that consumers are motivated by social 

acceptability perceptions (response bias) to express privacy concerns when asked on a 
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survey questionnaire or in a lab setting (Milne 1997).  The social desirability bias 

accumulates over time and through cultural norms leading groups of people to respond to 

certain issues in similar ways (Haidt 2012). It is likely that the cultural norm in our 

society is that privacy is a value that should be preserved and thus, most people simply 

select the desire for additional privacy (regardless of what that word may mean in reality) 

in line with the current American culture.  However, once immersed back into the real 

world, consumers continue to behave as they had before, ignoring privacy policies and 

agreeing to terms of use on websites with no so much as a second thought. The idea that 

people trust in the very institutions they site as needing regulation, until perhaps 

something very embarrassing or inconvenient were to happen to their data, and regain 

their complacency in the comfort of that notion. That behavioral intentions in the realm 

of online privacy research have not accurately predicted actual behavior (Norberg, Horne 

and Horne 2007) is the piece of the privacy paradox issue we seek to explain through the 

lens of the Heuristic-Systematic Processing Model (Chaiken 1980) and especially, 

through the use of institutional trust, as a powerful heuristic in the e-commerce context 

and one theorized, here, to offer a reason why people may say they want protections and 

feel risk to their online data but do nothing to remedy the situation in everyday life. 

 Previous research on acceptance of new technologies (e.g., gene therapy) notes 

that new technology is reliant on “consumer shopping behavior and political regulations” 

to determine its use in the future (Siegrist 2000, p.195).  Data collection online and its use 

in online behavioral advertising, like all new technologies, is also subject to the habits 

and preference of consumers and of course must operate within the boundary of 

governmental regulations.  Trust in institutions has been theorized to be a useful coping 
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mechanism for the consumer who has a lack of knowledge in a new technology or 

experience (Siegrist 2000). This trust could be developed in a myriad of ways but some 

researchers have noted that previous experience purchasing from a company or product 

familiarity may lead to the likelihood of repeat business (Milne 2009; Sheehan and Hoy 

2000). In accordance with the findings that previous experience may predict future 

behavior, internet users are more trusting that non-internet users (Hampton 2011). We 

theorize that our participants have likely purchased items online and surfed online often, 

thus increasing their trust in institutions involved in such transactions, namely: 

advertisers, the advertising industry, individual brands and the government.  For example, 

if a consumer is shopping online and is ignorant of the process that allows a book similar 

to the one they have just chosen on Amazon.com to be suggested, the suggestion is not 

likely to increase perceptions of online privacy risk or online shopping risk because the 

consumer trusts Amazon.com or online retailers, in general because of previous 

experience. Several previous studies have found “a negative association among perceived 

risk and trust in experts, government and industry” (Siegrist 2000 p.196).  

Online Advertising Context 

Behavioral Targeting and Data Privacy 

Behavioral advertising, and how consumers perceive it, has been central to the 

public debate on consumer privacy.  Online behavioral advertising (“OBA” for short), 

broadly speaking, refers to tracking an individual’s online activities in order to deliver 

advertising tailored to the individual’s interests (FTC Staff Report: Self-Regulatory 

Principles For Online Behavioral Advertising 2009).   

Behavioral advertising first received national attention in late 2008 when 

U.S.Rep. Edward Markey, D-Mass., held hearings on deep packet inspection 
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technology(“DPI”)—a process by which a user’s Internet service provider (ISP) allowed 

an advertising network access to all of the user’s activities, and an advertising network 

then directed ads to that user, directly targeting the user’s interests suggested by his or her 

browsing activities.  Soon after it received national scrutiny, DPI largely faded away, and 

the public focus shifted to other behavioral advertising programs.   

First party online behavioral advertising, which is common, involves behavioral 

ads placed on a website based on the consumer’s browsing activity on that website. An 

Internet user browses a website, and the website generates one or more “cookies.” 

“Cookies” are data phrases which gather and save information about a user’s preferences, 

so that different web applications can tailor their information to those preferences. They 

allow users to save particular page designs and content, to save and correctly place 

usernames and passwords, and to utilize “shopping cart” programs at e-commerce 

sites.(FTC Staff Report: Self-Regulatory Principles For Online Behavioral Advertising 

2009, 26).  Cookies are central to most OBA. To take an oversimplified example, a user 

of the mythical usasports.com website who checks baseball scores and articles may 

prompt that website to post a cookie to the user’s computer, noting that interest.  The 

website operator, thereby knowing the users baseball interest, may then divert baseball-

related content and ads to the user.  Similarly if the user made purchases through the 

website’s e-commerce application, cookies may be generated and posted based on those 

purchases.   

First party OBA has been generally viewed as acceptable. In its February 2009 

report, the FTC staff defined OBA to encompass only the activities that it felt needed 

supervision and possible regulation, and it excluded first-party behavioral advertising 
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from that definition.  The FTC staff noted that in first-party OBA no data is shared with 

any third parties, and it found the practice generally appropriate and permissible: “The 

staff agrees that first party behavioral advertising practices are more likely to be 

consistent with consumer expectations, and less likely to lead to consumer harm, than 

practices involving the sharing of data with third parties or across multiple 

websites”(FTC Staff Report: Self-Regulatory Principles For Online Behavioral 

Advertising 2009, 26) Put simply, users generally are assumed to trust the websites they 

frequent, and to understand that that trusted websites will monitor their activities, and 

post related content in response to the user’s apparent interests. 

Third party online behavioral advertising—behavioral advertising placed on a 

website based on a consumer’s browsing activity on an unrelated site—takes behavioral 

advertising to the next step.  This practice has been the focus of regulatory and 

Congressional attention since late 2008.  In third party behavioral advertising, the 

suppliers of behavioral advertising (chiefly advertising networks) collect and use 

consumer information across various websites by placing “cookies” on user computers, 

and then generating ads in response to what they know about the consumer identified by 

the cookies.  That is, because of information learned about a user’s activities on website 

A, targeted interest-based ads may be placed to that user weeks later, when he or she is 

visiting unaffiliated website B. 

Ad networks place their behavioral ads based on information about particular 

users’ browsing activities.  More precisely, they use cookies to identify users with certain 

interests, as revealed by past browsing activity.  As an example, a user of usasports.com 

who frequently views hockey-related content on that website might be presented with 
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hockey-related ads when he or she browsed unrelated websites.  That would occur 

because an ad network allied with usasports.com initially recognized the user’s hockey 

interest, and placed a cookie on his computer.  Then, when the consumer visits another 

website, the ad network was able to place a hockey-related ad there, knowing that hockey 

was one of the consumer’s interests.  Although oversimplified, this example describes 

how advertising networks work—they take note of user interests as found on various 

websites, and they then arrange for posting of targeted ads when those users visit 

websites where the ad networks have contracts to place ads(Kahn 2007).  The FTC has so 

far concluded that this kind of cookie-based behavioral advertising across unaffiliated 

websites should be subject to either government regulation or robust self-regulation (FTC 

Staff Report: Self-Regulatory Principles For Online Behavioral Advertising 2009; 

Protecting Consumer Privacy in an Era of Rapid Change: A Proposed Framework for 

Businesses and Policymakers  2010). 

The Federal Trade Commission is charged with the regulation of advertising and 

has historically conceptualized privacy as the control a consumer has over transactions 

involving information between individuals and others (Sheehan and Hoy 1998).  Online 

behavioral advertising has made consumer control over such transactions more difficult.  

First party advertising involves a website using consumer data to make suggestions 

within the site available to the consumer (e.g., a consumer puts a book in their cart at an 

online bookstore and other books are suggested based on that selection).  Third-party 

advertising involves the consumer click stream data and purchase behavior online to be 

aggregated and used to show products and advertisements of interest to consumers on 

sites apart from the ones they initially viewed.  The FTC is more concerned about third-
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party advertising because the potential for consumers to become confused about how 

their data is being used and as a result has made suggestions to the advertising industry in 

the effort of making consumers aware of the practice and to increase informed decision-

making on their behalf.  According to the agency, “Every Web site where data is 

collected for behavioral advertising should provide a clear, consumer-friendly, and 

prominent statement that data is being collected to provide ads targeted to the consumer 

and give consumers the ability to choose whether or not to have their information 

collected for such purpose (FTC 2007).” 

In an effort to prevent the creation of Federal Trade Commission regulations, the 

advertising industry has worked to provide regulatory logos on advertisements generated 

through the use of consumer online behavioral data based on the FTC’s notice provision 

based on the idea that consumer control over data is a feature of privacy (Sheehan & 

Hoy, 2000).   

The icons, when clicked, offer information about how to opt-out of targeted 

advertising services and how the advertisements are generated.  The use of warning labels 

have been used to offer consumers the chance to make informed decisions about purchase 

and usage of products, an activity considered inseparable from a free-market system (Cox 

III, Wogalter, Stokes, & Tipton Murff, 1997).  However, the studies on the effectiveness 

of warning labels have been inconsistent (Cox III, et. al., 1997).  The issue with privacy 

seals is that they have often been interpreted by consumers, not as a gateway to additional 

information, but as safety seals (LaRose & Rifon, 2006).   

The mere presence of a privacy policy easily visible on a website may be enough 

to increase consumer trust in the site regardless of the content of the policy (Pan and 
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Zinkhan 2006) belying the fact that most people don’t read the policies but simply rely on 

them as a heuristic cue denoting safety.   The Digital Advertising Alliance’s use of the 

AdChoices icon on behaviorally targeted ads online have been shown to increase the 

consumer’s click-thru rate. Over half of those surveyed said they would be more likely to 

click on an ad with the icon and upwards of 73 percent said they were more comfortable 

with advertisements that followed the privacy policies of the Digital Adverting Alliance’s 

self-regulatory program (Bachman 2013).  The article is silent on the number of people 

who actually read and understood the privacy policy offered by the DAA however 

previous research has noted that few people read privacy policies or choose to opt-out 

(Langenderfer and Miyazaki 2009).  

The mere fact that research has shown that consumers are unlikely to read the 

privacy policy but that the presence of a logo denoting safety of some sort may increase 

trustworthiness and decrease perceived risk is enough to point to the idea that unless 

motivated by a personally relevant threat to their data, consumers are unlikely to actively 

search for information that may lead to their increased control of their personal data. The 

effectiveness of the icons or privacy policies will not be assessed in this study but it is 

worth noting the efforts by the industry to inform consumers of privacy issues with online 

behavioral advertising as context.   

The Privacy Paradox, Some Context 

The privacy paradox or the voiced desired by consumers for privacy protection 

and rights but the limited or non-existent measures of self-protection consumers take in 

the area of data collection is not a new phenomenon.   Nowak and Phelps and others 

noted as early as 1992 that many consumers support privacy protection measures, 



38 
 

including restrictions on information exchanges (Nowak and Phelps 1992; Wang and 

Petrison 1993).  However, the high level of consumer privacy concern appears to have no 

significant impact on consumers' shopping behaviors. Most consumers are willing to give 

up some of their privacy to participate in the online economy (Norberg, Horne and Horne 

2007; Nowak and Phelps 1992).    

The reasons for this paradox have rarely been outlined and represent an understudied 

area but some theories have been put forth to describe the reasons behind the paradox 

such a perceived behavioral control or the idea that consumers are required to provide 

personal information to participate in the online economy and thus have relinquished 

control in order to participate, they may not have the knowledge to comprehend when 

and how to withhold information online, some  may fall prey to immediate gratification 

or have limited time to fully think through the consequences of providing information 

(e.g., signing up for the chance to win a boat may result 

in mailings from boat dealerships) (Yap et. al. 2009). Finally, consumers may have 

become accustomed to the idea of providing information to retailers and a habit forms 

(Yap et. al. 2009), a theory that supports the idea that familiarity with the process of 

online shopping leads to lower privacy concerns and more information disclosure to 

retailers and marketers, a finding shown across cohorts (Milne, Gabisch, Markos, and 

Phelps 2012). Thus, each age cohort has shown lower privacy concerns with information 

disclosure as Internet use in each cohort increased. 

Currently, there is no empirical support to suggest one theory’s superiority over 

another, although some research corroborates the idea that familiarity with the online 

economy and the brands that inhabit it may play an important role in decreased privacy 
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concerns (Sheehan and Hoy 1999; Chaiken and Maheswaran 1994). In other words, 

brand familiarity is theorized to reduce privacy concerns in the online economy because 

it is used as a heuristic tool by consumers to reduce cognitive load and make decision 

faster and more efficiently. The current study theorizes that under normal, everyday 

online browsing and shopping conditions, the consumer relies on heuristics (such as 

institutional trust and brand familiarity) to guide his judgments about privacy issues that 

may lurk on the Internet and only when asked about their concerns or made to feel a 

personal risk about their data, will they take self-protective measures (e.g., seek 

additional information) and/or voice concerns about their data privacy, a type of social 

desirability bias (Milne 1997). 

Privacy in an Online Advertising Context 

One of the reasons the balance between consumer perceived expectations of 

privacy in the online behavioral data collection context and the interests of advertisers 

and marketers has been so difficult to strike is that consumer privacy interests are 

malleable and situational. Privacy is a concept that suffers from an embarrassment of 

meanings in the offline world (Solove 2006).  When dealing with the aggregation of 

click-stream data or online behavioral data, the issue is even more abstract.  As a result, 

this study will work from two definitions, one legal and one behavioral.  However, it is 

important to note that these definitions of the privacy concept in online behavioral data 

collection context are not mutually exclusive and work to inform one another. The legal 

definition of privacy is the reasonable expectation a consumer has that the act, words, etc. 

that is at issue should be kept from (Solove 2006). Then following from the legal 

definition is the consumer’s perceived expectation of privacy or the claim a consumer 
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makes over what information about himself or herself should be known to others (Westin 

2003).  The behavioral definition was derived from Westin (1967) who said that people 

have the right to decide when, how, why and to what extent they will share information, a 

notion of control over personal information.  He notes that this is a process that is socially 

constructed by culture and is constantly being renegotiated.   

 A brief history of the privacy beginning from a biological and moving to a legal 

concept will be offered as a way of exemplifying the complexity of nailing down a 

precise conceptualization of the consumer’s perceived expectation of privacy when it 

comes to online behavioral data.  

Westin (1967) in his book on privacy, noted that its roots are biological.  

Interestingly, he notes that barnyard cattle, birds on a telephone wire and wild animals all 

stand a certain distance a part, a space attributed to privacy.  In fact, the beautiful song 

once attributed to birds who simply love to sing may actually be a call for privacy or to 

keep others from their territory (Nelson and Croner 1991). 

Humans also have privacy stemming from biological bases.  There is always a 

constant balance that must be struck between privacy and the need to be stimulated by 

other human beings/species of your own kind.  The way privacy manifests in the human 

world is described by Westin as comprising four distinct types of privacy.  They are 

described roughly as solitude (being completely away from other people), intimacy 

(being close to friends/family), anonymity (this is equivalent to being a stranger walking 

amongst people in a town in which you know no one), and a psychological privacy (not 

being as open with one’s thoughts).  Interestingly, violations of any of these types of 

privacy can be harmful to the human psyche. For example, those whose psychological 
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privacy has been invaded (e.g., their thoughts, ideas, deeds, etc. spewed across the news) 

can lead to suicide.  We have seen this with high profile people.  When their secrets are 

exposed, a sense of control lost – they occasionally commit suicide (Fuchs 2012; 

McRoberts and Simpson 2002). 

The role of the consumer in protecting her data has been emphasized because 

control of where and how one’s data is used is an essential part of the concept of 

consumer privacy online and thus, consumer advocates have urged the growth of 

consumer knowledge in this area (Foxman and Kilcoyne 2001).  Though it makes sense 

that increasing knowledge of how data is collected and how it is used to serve relevant 

advertising may reduce the voiced concern about data privacy and the desire for more 

privacy protections, actual knowledge is at best a weak predictor of privacy concerns 

(Smit, Van Noort, and Voorveld 2014; Shoenberger and Thorson 2014; McDonald and 

Cranor 2010).  In fact, knowledge of the intricacies of a new technology is typically a 

weak predictor of concern about or support for the new technology (Brossard, Scheufele, 

Kim and Lewenstein 2009). Thus, here we do not hypothesize that  knowledge of OBA is 

a relevant variable in our analyses. 

 Different types of information may be considered more important than others. For 

example, consumers may be more likely to be concerned about medical and financial 

information being shared with others than they are about clickstream data being collected 

(Nowak and Phelps 1992). Also, it is likely that the idea of other people looking at 

information collected would be considered more of an invasion of privacy than an 

algorithm putting together information using unidentified online behavioral data, but 

again, knowledge of this phenomenon seems to have no effect on behavior. 
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Westin (1967) also talks about how different societies handle privacy.  For 

instance, American households have separate bedrooms for parents and children whereas 

some cultures sleep side by side or have only mosquito netting in-between the parents 

and children.  Privacy in the latter culture tends to come from a psychological source or 

not being as open with one’s thoughts (and taking to the woods for times when intimacy 

is intended) (Westin, 1967). The American culture derives privacy from physical space 

delineations.  Westin wrote his book during a time when the biggest technological threats 

were lie detector tests and wiretapping which he thought may intimately invade personal 

privacy.  His concern was mainly for the ability for technology to increase surveillance 

and to be used by the government.  Indeed, an excerpt from Humphreys (2011) it was 

noted that any information society or high tech society was in fact, a surveillance society.   

In their famous law review Warren and Brandeis (1890) were also concerned 

about the potential for surveillance from the government with the advent of new 

technologies.  They noted that what was once whispered behind closed doors would one 

day be screamed from the rooftops.  Their concerns seem to echo those of consumer 

advocates today who worry that information people put online and the behavior that is 

tracked is capable of inferring identification and eventually leading to profiles of an 

individual that may exist online and exist with error, leading to minor consequences such 

as price discrimination and serious ones, employment discrimination (Podesta et. al. 

2014; Turow, Feldman and Meltzer 2005; Marcoux 2012). 

Distilled from the Warren and Brandeis law review, the first to mention a 

potential right to privacy which had not been included in the Constitution or the Bill of 

Rights, was the idea that a citizen has the right to “be left alone.”  It wasn’t until 1965 in 
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the case of Griswold v. Connecticut that the court suggested that citizens of the United 

States had a constitutional right to privacy found within the matrix of amendments. The 

case involved the dissemination of birth control to married couples and it was found that 

this was within the realm of their marital privacy.  The judges noted that zones of privacy 

existed under what was eloquently named “penumbras.” However, the aggregation of 

click-stream data has not been clearly covered under the zones and leaves it largely free 

from the reach of legal remedies, thus consumers have no legal right to exert control over 

the use of that data (Rotfeld 2009). 

 The United States is in a in a phase now where the law can try to build 

boundaries to protect violations of privacy or under the definition struck here, control 

over their clickstream data online, but first privacy boundaries have to be established by 

consumers and articulated to regulators using sound empirical research. Beginning to 

discover those boundaries begins with understanding the limits of consumers’ 

expectations of privacy in the online economy, what drives them to view their data 

exchanges as potentially risky and what underlies the privacy paradox.   

The issues that arise as the result of the use of a socially constructed and 

contextual definition of privacy as it applies to the online economy, essentially when and 

where a consumer should have the right to informed consent about how to control their 

clickstream data, will be studied through the lens of Shelly Chaiken’s Heuristic-

Systematic Model 

Institutional trust, while controlling for the manipulations and interpersonal trust 

is expected to do the same. 
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3. HYPOTHESES 

 

The primary question guiding this study was whether heuristics are guiding 

consumer behavior in the online economy. Thus the following hypotheses are proposed: 

Participants randomly assigned to the high risk group are theorized to be more 

likely to systematically process information offered on the scenarios’ websites. 

Additionally, they will be more likely to desire more regulation, perceive greater online 

privacy risk, perceive less control over their data online and search for information about 

how to protect their privacy in the future.  Thus: 

H1: Those in the “high risk message” group will be more likely to report (H1a) higher 

perceived online privacy risk, (H1b) higher desire for regulation of online privacy, (H1c) 

express less perceived control over their data online, (H1d) higher intention to search for 

additional information about privacy on the website information on the website in 

general, (He) higher intention to search for additional information on the website in 

general, (H1f) higher intention to search for information to protect their privacy in the 

future than those in the “low risk” group. 

Brand familiarity is expected to act as a heuristic cue, denoting safety and offering 

a short-cut for consumers to rely on when they are in the online economy.  Thus, brand 

familiarity is expected to mitigate the effects of high risk on all of the dependent 

variables: reduce perceived online privacy risk, reduce desire for regulation, increase the 

perception of control over data online, decrease the desire to search for information in 

general and about privacy on the scenarios’ websites, and decrease the desire to search 

for information to protect data privacy online in the future. Thus: 
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H2: When the brand name associated with a website is familiar those in the “high brand 

familiarity” group will be more likely to report (H2a) lower perceived online privacy risk, 

(H2b) lower desire for regulation of online privacy, (H2c) express more perceived control 

over their data online, (H2d) lower intention to search for additional information about 

privacy on the website information on the website in general, (H2e) lower intention to 

search for additional information on the website in general, (H2f) lower intention to 

search for information to protect their privacy in the future than those in the “low risk” 

group. 

H3: Level of manipulated brand familiarity and level of manipulated risk will interact in 

the following ways: (H3a) high brand familiarity will decrease perceived online privacy 

risk in the high risk group, (H3b) high brand familiarity will decrease desire for 

regulation of online privacy in the high risk group, (H3c) high brand familiarity will 

increase perceived control over their data online in the high risk group, (H3d) high brand 

familiarity will decrease intention to search for additional information about privacy on 

the website information on the website in general in the high risk group, (H3e) brand 

familiarity will decrease intention to search for additional information on the website in 

general in the high risk group,  and (H3f) brand familiarity will decrease intention to 

search for information to protect their privacy in the future in the high risk group. 

Further, predicting above and beyond the manipulations of risk (high/low) and 

brand familiarity (familiar/unfamiliar) are the measured individual difference variables of 

interpersonal trust and institutional trust. The trust in others, as a trait, may work as a 

heuristic over and above the risk manipulation and brand familiarity as a heuristic 

because of its importance for a person to move through her day without needing to 
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evaluate every person she may encounter (Joinson 2010). Thus, over and above the 

manipulations it is expected that interpersonal trust will predict reduced perceived online 

privacy risk, reduced desire for regulation, increased the perception of control over data 

online, decreased the desire to search for information in general and about privacy on the 

scenarios’ websites, and decreased the desire to search for information to protect data 

privacy online in the future. 

H4: Higher interpersonal trust will predict while controlling for brand familiarity and 

level of manipulated risk (H4a) lower perceived online privacy risk, and (H4b) lower 

desire for regulation of online privacy, (H4c) higher perceived control over data online, 

(H4d) lower intention to search for privacy information on the scenario websites, (H4e) 

lower intention to search for additional information on the website in general and (H4f) 

lower intention to search for privacy information in the future. 

Institutional trust is linked to increasing interpersonal trust and also essential for 

the efficient functioning of society (Freitag 2009). Previous studies have linked trust to 

online disclosure behavior (Norberg, Horne and Horne 2007) and here, institutional trust, 

like interpersonal trust is expected to predict over and above the manipulations of risk 

and brand familiarity and because it has been considered a precursor to interpersonal trust 

(Freitag 2009) it is also expected to predict beyond interpersonal trust. Thus: 

H5: Higher institutional trust (here, in individual advertisers, the advertising industry, 

individual brands and the government) will predict while controlling for brand familiarity 

and level of manipulated risk and interpersonal trust (H5a) lower perceived online 

privacy risk, and (H5b) lower desire for regulation of online privacy, (H5c) higher 

perceived control over data online, (H5d) lower intention to search for privacy 
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information on the scenario websites, (H5e) lower intention to search for additional 

information on the website in general and (H5f) lower intention to search for privacy 

information in the future. 
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4. METHOD 

 

Pre-Test  

The pre-test of the 2 (familiar brand/unfamiliar brand) x risk (high/low) x 4 (2 

familiar brands and 2 unfamiliar (fake) brands) was run between subjects. Between-

subjects designs may reduce the potential influence of other treatment levels on 

participants’ processing and responses (Reeves and Geiger 1994) and was chosen due to 

the possibility of participants’ guessing the manipulation.  The experiment was conducted 

using a population of staff members recruited from a large Midwestern University via an 

email announcement in an effort to determine the effectiveness of the language of the risk 

used in the high risk condition.  Brand familiarity was another of the manipulation checks 

integral in the pre-test. Participants were offered a chance to win $50.   There were 76 

participants, 8 male and 68 female. The average age of this sample was 43 years old.  

These participants indicated spending on average, at least 2-3 hours a day online, 

M=4.19, SD= 1.79 (where 4= 2-3 hours per day) and the average time spent shopping 

online each day was less than an hour M=2.00, SD = .52 (where 2=less than an hour per 

day). All 76 participants indicated they had made at least one purchase online in the past 

month, M=3.93, SD= 1.59.  See Appendix 1 for the pre-test questionnaire in its entirety. 

Pre-test manipulation checks 

 Manipulation checks were calculated in an effort to determine whether the 

manipulations were successful. For both manipulations, the test statistic showed 

significant differences between the means, where those in the low risk condition reported 
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less risk and less concern, and those in the low brand familiarity condition reported 

significantly lower brand familiarity than those in the high brand familiarity condition.  

An independent samples t test demonstrated that participants in the high risk 

condition perceived greater sense of personal risk (M = 3.68, SD= 1.00) than those in the 

low risk condition (M= 2.68, SD=.75), t =4.88, p <.001.  An additional independent 

samples t test demonstrated that participants in the high risk condition perceived greater 

sense of concern (M = 3.58, SD= 1.10) than those in the low risk condition (M= 2.70, 

SD=1.0), t =3.63, p <.05.  The results of the pre-test manipulation checks determined that 

the high and low risk messages would be retained for the main study. 

An independent samples t test demonstrated that participants in the high brand 

familiarity condition perceived greater brand familiarity (M = 4.27, SD= 1.10) than those 

in the no familiarity condition (M= 1.00, SD=.00), t =25.83, p <.001.   

The results of the pre-test manipulation checks determined that the high and low 

risk messages would be retained for the main study. It also indicated that the “real” 

brands selected were significantly more familiar to the participants than the fake brands. 

Main Experiment 

Participants 

Three hundred participants were recruited from an online survey provider, 

Mechanical Turk (MTurk) at Amazon.com. People can sign up to be “workers” through 

Amazon.com. They can choose to participate in any survey/online experiment for which 

they qualify. As compensation, participants were offered $1.00 Amazon credit provided 

through the Amazon marketplace.  The campus IRB approved of the recruitment methods 

and payment plan.  MTurk is a relatively popular tool to collect population data through 

an online platform, even though validating MTurk data for research use has just begun 
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(Buhrmester, Tracy, & Gosling 2011; Simnos and Chabris  2013). The allure of MTurk 

for the researcher is the accessibility to participants and the reasonable price at which 

responses can be gathered. MTurk workers indicate that earning additional money 

motivates their work while 4% of them state that it is a primary source of income 

(Paolacci et al. 2010). However, MTurk participants produce reliable results that are 

consistent with previous decision- making research (Goodman, Cryder and Cheema 

2012) and exhibit similar judgment and decision biases compared with online discussion 

board participants (Paolacci et al. 2010). Buhrmester et al (2011) asserted that MTurk 

participants were more demographically diverse and more representative of non-college 

populations than those of typical Internet and traditional convenience samples. Simnos 

and Chabris (2013) compared data collected from MTurk to data from a nationally 

representative telephone survey. Their results indicate that an MTurk sample reflected a 

nationally representative sample of the United States population as the pattern of results 

for a self-selected MTurk sample closely matched those of their random telephone 

survey. MTurk has an option to use “Masters” only or people who have completed N 

number of surveys and received a certain quality score. This study did not include only 

Masters as participants in an effort to include those who may not share the biases of those 

who essentially take surveys for a living. This effort was based on an assumption by the 

researcher and not on actual data 

The number of participants used was determined using an a priori power analysis 

G-Power analysis software (Faul, Erdfelder, Lang and Buchner 2007).  The software 

concluded that the sample size needed to detect a small-to-medium effect (f=.2) for an F 

test on a between-subjects factor and interactions at an alpha of .05 with four groups was 
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estimated to be 199.  Due to the researchers’ lack of familiarity with MTurk and the 

possibility of needing to remove quite a few participants due to incomplete questionnaires 

or other issues, the sample actually collected was larger. 

The ease of MTurk allowed for over-sampling in the case that some of the 

participants had to be removed due to incomplete questionnaires or insincere 

participation. Insincere participation was quantified by the time people took to complete 

the study.  It seemed unreasonable for any person to take less than five minutes when the 

average was close to 15 minutes. Thus, people taking less than five minutes were 

rejected. The links were assigned randomly and some conditions received more 

participants than others as a result. Participants were removed from the dataset and 

rejected from the MTurk payment for either taking too little time (5 minutes or less when 

the average time to complete the survey was 14 minutes and 39 seconds), not entering the 

survey code found at the conclusion of the survey or in Qualtrics for significantly 

incomplete questionnaires. Twenty-three people were rejected due to insincere 

participation (taking 5 minutes or less or not supplying the survey code at the conclusion 

of the questionnaire) and four were removed from the Qualtrics dataset for substantially 

incomplete questionnaires. The four deleted from the Qualtrics dataset were deleted 

based on substantial blanks on questions (10 or more blank questions). The resulting 

N=287.   Although participants did not receive credit for their M-Turk for insincere 

participation, the completion of their dataset as unknown until examining the datasets in 

Qualtrics. This is because forced responses were not approved by the IRB in an effort to 

allow participation to remain voluntary at every stage of the study. 
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The average age of the sample was 35 with 52 % female participants and 48% 

male participants. Just over 87% of the participants indicated that they had completed at 

least some college. At least 87 % of the sample indicated encountering advertisements 

based on items they had previously searched for online, M=3.48, SD=.93 (where 1=never 

and 5 = always) and 26.8% indicated clicking on advertisements that offered discounts, 

M= 1.99, SD= .86 (where 1=never and 5 = always). Over 63% of the sample indicated 

spending four or more hours online each day M=5.36, SD= .96 (where 5=3-4 hours a 

day) and 93% indicated they had made at least one purchase online in the past month, M= 

3.73, SD= 1.53.  When asked if they had read the privacy policies that appeared in the 

scenarios they viewed, most indicated they had not: Walmart.com: M=2.65, SD=.74; 

BestBuy.com: M=2.71, SD=.65; SuppliesPlus.com, M=2.94, SD=.32; 

CamerasGalore.com, M=2.94, SD=.32 (where 1=yes, 2= I don’t know, and 3= No).  

Please see Appendix 2 for the questionnaire used in the main experiment in its entirety.  

Procedure 

  

The experiment took place online using a combination of MTurk crowd sourcing 

and Qualtrics survey software. Participants were recruited through MTurk’s marketplace 

and self-selected to take the study and once they selected the study, it was administered 

via a link hosted by Qualtrics.com. There were four conditions. Participants were 

randomly assigned to one of the condition links. 

First, the participants were shown the information disclosure instructions required 

by the IRB. They proceeded to answer demographic questions and questions about their 

online shopping habits (e.g., how often they shop online, how often they click 

advertisements that offer discounts for a product, how often they use Facebook, etc.).  
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After completion of the demographic and shopping/surfing habits, the participants saw a 

screen that said, “Please wait while we calculate your risk quotient.” A ten second 

counter counted down on the page and at the conclusion of the countdown, participants 

randomly saw the high risk message or the low risk message.  

The main stimulus was meant to induce perceptions of information insufficiency 

by means of a personally relevant message that raised concern about data privacy issues.  

The high risk group received a sign after completion of the demographic section that 

read: Based on the information you provided, you are at HIGH RISK of your data being 

stolen or used in a way you find embarrassing or inappropriate.  In line with the most 

effective messages according to Turner and colleagues (2009) in the health 

communication research, the message had another component: One way you can reduce 

your risk is to fully understand a website’s privacy policy before clicking through its 

pages or making a purchase (please see Appendix for an example of both the high and 

low risk messages). 

After the exposure to the high risk message (low risk message) the participants 

were given two scenarios. All participants received two familiar brand or unfamiliar 

brand scenarios of items similarly priced to avoid confounds that price may add to the 

experiment. Participants were instructed to imagine they were going to purchase either a 

camera for $500 from Bestbuy.com or CamerasGalore.com or a bicycle for $650 from 

Walmart.com or SuppliesPlus. After viewing this page, the participant was directed to 

click to the next page which said: Please click the type(s) of information you would want 

to check before ordering your camera/bike from this site.  The options for this section 

were derived from the actual sites used, Bestbuy and Walmart and included: How to 
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place an order, information the website collects about you, use of cookies on the website, 

rebates, how the site uses pattern recognition to link your purchase history to products 

you might life, information the site exchanges with third party advertisers, defective 

items, exchanges, refunds, return exceptions, how the site uses your credit card 

information, order processing time, how to opt-out of the site’s cookie tracking system, 

how the site ensures consumer data privacy, the website’s mobile application privacy 

options, contact information in case you have privacy related questions, a pledge of 

accountability by the company, how your IP address and other information are collected 

by social media widgets on the site (for example, Facebook or Pinterest icon), customer 

reviews about the site, and a privacy seal or icon. For example, E-Verify or Better 

Business Bureau icons. 

At the conclusion of the scenarios, the participants filled out questions about 

information they would like in the future and the remaining questionnaire including 

measured items such as brand familiarity, perceived risk to data online,  and perceived 

control over data. Participants were thanked for their time. As required by IRB due to the 

deceptive nature of the study, participants were given the opportunity to withdraw their 

click-through data if they would like after learning the true purpose of the study. There 

were no participants who indicated a desire to withdraw their answers. 

Manipulation Checks  

Brand Familiarity.  Participants will note how familiar they are with the brand 

that they are exposed to with one question on a 7 point scale: “How familiar are you with 

the real/fake brand?” Based on a previous study (Campbell & Keller, 2003).   
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Risk perception. Participants will on a 7 point Likert scale how much personal 

risk they felt after being told they were in the high risk group.  

Measurements 

Demographic items: Age, gender, education level (main test), income (main test), 

how often do you surf online? How often do you shop online? How confident are you 

that you understand how online behavioral advertising works (ie. When you see an 

advertisement on another webpage clicking or searching for the item/brand advertised?) 

How often do you click advertisements that offer discounts for a product? How often do 

you use Facebook? Some of the questions are, of course, unnecessary to the analysis but 

serve the purpose of setting the participants up for the main manipulation. 

Institutional Trust.  Trust in institutions was measured using a scale adapted to 

the issue of online data collection used to create online behavioral advertising (Siegrist 

2000).  The scale consists of four items measured on a 7-point Likert scale. Following the 

prompt of  “How much do you trust the following institutions or persons in terms of how 

well they fulfill their responsibilities in collecting and handling consumer data collected 

online?” the four items included: the government, individual advertisers, the advertising 

industry and individual brands.  

Interpersonal Trust. Conceptualized in this study as a personality trait related to a 

person’s trust of others, interpersonal trust was measured with an established scale 

consisting of five items measured on a seven-point Likert scale (Das 2003).  The items 

included, “ In dealing with strangers one is better off to be cautious until they have provided 

evidence that they are trustworthy,” “If you are not careful, others can easily manipulate 

you.”  “Most repairmen will not overcharge even if they think you are ignorant of their 

specialty.” α = .75. 
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Dependent Variables  

Amount of general information desired.  Systematic processing is 

operationalized an effortful information search/desire for information.  When individuals 

seek out information in order to increase their confidence in a particular judgment, 

systematic processing is said to be at work (Chaiken, Liberman and Eagly 1989).  The 

items were presented at the conclusion of each scenario with the following prompt” The 

following information is available on the (brand’s) website. Please indicate how likely 

you would be to seek out and read the following pieces of information before clicking 

through the website and choosing your new camera/bike. There were two factors used for 

the general information search. The first was entitled: Refund Search. Conceptualized as 

searching for general information about the site but operationalized as a scale comprised 

of “defective items,” “exchanges,” “refunds” and “return exceptions.”α=.964. Ordering 

Search. Conceptualized as search for general information about the site but 

operationalized as a scale comprised of: “how to place your order” and “payment 

options.” r=.711**. 

Privacy Information Search. Because the risk manipulation is specifically 

designed to alert individuals to the risk to their data online, the items dealing with privacy 

will also be made into a scale and analyzed as an indicator of systematic processing of 

privacy information separately.  Participants were asked at the conclusion of each 

scenario: The following information is available on the (brand’s) website. Please indicate 

how likely you would be to seek out and read the following pieces of information before 

clicking through the website and choosing your new camera/bike: “How secure the 

website is,” “Information the website collect about you,” “Use of cookies on the 

website,” “How the site uses pattern recognition to link your purchase history to products 
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you might like,” “Information the site exchanges with third party advertisers,” “How the 

site uses your credit card information,” “How to opt-out of the site's cookie tracking 

system,” “How the site ensures consumer data privacy,” “The website's mobile 

application privacy options,” “Contact information in case you have privacy related 

questions,” “A pledge of accountability by the company,” “How your IP address and 

other information are collected by social media widgets on the site (for example, 

Facebook or Pinterest icon).” α = .982. 

Online Privacy Risk.  Perceived online privacy risk was conceptualized as the 

perceived privacy risks associated with shopping online and using the internet, in general.  

The scale consisted of four items asked on a 7-point Likert scale.  The items included 

“Data used to serve relevant advertising may be compromised,” “Data companies collect 

about me could end up in the hands of criminals,” “Data companies collect about me 

might be used in ways that make me feel uncomfortable,” and “Once my data is 

collected, I have no control over how it is used.” α=.827. 

Desire for Regulation. This variable is conceptualized as the voiced desire for 

privacy regulations surrounding online behavioral data usage.  Participants will be asked 

to indicate their level of desire for additional regulation using a seven-point bipolar scale 

asking Please indicate your level of agreement with the following: “ Regulators should do 

more to protect my data online,” “I am concerned about my privacy online,” “I would 

like to know what safeguards are in place in the event of a data breach,” “I would like to 

know how I may be compensated in the event of a data breach,” “I would like to know 

what companies are doing to keep my personal data secure,” “I would like to know what 

the federal government is doing to keep my personal data secure,” “I would like to see 
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additional regulation enacted to protect my data privacy online,” “I would like a new law 

enacted to protect my data online.” α=.933. 

Perceived Control Over Data.  Perceived control over data is conceptualized as 

the amount of control a participant believes they have over their data online. Participants 

will be asked to rank statements on a 7 point scale (strongly agree/strongly disagree). “I 

feel that I have control over my data online.” “I believe I can opt-out of allowing 

advertisers and companies to collect my online behavioral data (ie. Remembering what 

sites I visit, remember what I click on in those sites to serve advertising that they believe 

will be more relevant to me).”  “I can use online privacy tools to remain anonymous 

online.” “I understand how my online behavioral data is used online.” α=.766. 

  Future Privacy: This variable was conceptualized as another potential symptom 

of systematic processing or information search. It was operationalized by a scale of two 

items. The prompt for this set of items was: Please indicate how likely you would be to 

do the following before clicking through a website in the future: “Choose not to register 

with a site because it asks for too much personal information, “Search for instructions 

about how to protect yourself on the web.” r=.540**.  
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5. RESULTS 

 

It was theorized that people in the high risk group would systematically process 

website information by reporting a desire for additional information about how their data 

is used and other information about the site and perceive greater privacy risk. 

Hierarchical regression analyses were calculated to test hypotheses 4-5. 

Manipulation checks 

Manipulation checks were calculated in an effort to determine whether the 

manipulations were successful. For both manipulations, the test statistic showed 

significant differences between the means, where those in the low risk condition reported 

less risk and less concern, and those in the low brand familiarity condition reported 

significantly lower brand familiarity than those in the high brand familiarity condition.  

An independent samples t test demonstrated that participants in the high risk 

conditions perceived greater sense of risk (M = 3.03, SD= 1.59) than those in the low risk 

condition (M= 2.44, SD=.85), t =4.99, p <.001.  An additional manipulation check meant 

to measure feelings of risk as a result of the manipulation was also conducted. An 

independent samples t test was demonstrated that participants in the high risk conditions 

perceived more concern (M = 2.97, SD= 1.27) than those in the low risk condition (M= 

2.30, SD=.84), t =5.23, p <.001. 

 An independent samples t test demonstrated that participants in the high familiar 

brand conditions indicated higher brand familiarity (M = 5.60, SD= .73) than those in the 

low brand familiarity condition (M= 1.20, SD=.63), t =83.96, p <.001.   

 

 



60 
 

 

Main Hypotheses  

Hypotheses 1-3 were tested by means of a series of two-way Anovas. In each of 

the tests, the independent variables were manipulated risk (high, low) and brand 

familiarity (high, low).   

Main effects of risk 

Hypothesis 1a suggested that people would more likely to indicate feelings of 

Online Privacy Risk in the high risk message group (for a list of items making up the 

factors, please see Table 1).  This hypothesis was not supported, F(1, 283) = 5.27, p<.05, 

η2 = .017. Interestingly, the high risk group had a lower mean than the low risk group M= 

5.29 SD = 1.11 (high risk), M=5.52, SD= .99 (low risk).  This could be a result of the 

types of questions asked as they reflect a more general risk online instead of a personal 

risk felt by the participant. 

Hypothesis 1b suggested there would higher Desire For Regulation of online 

privacy in the high risk group. This hypothesis was not supported. In fact, it appears that 

in the high risk group, people are less likely to desire additional regulation, F (1,284) 

=7.20, p<.05, η2 = .024.  M = 5.51, SD = 1.26 (high risk), 5.87, SD = 1.04(low risk). 

Again, it could be that people saw the no need for regulation as a result of their own high 

risk because that risk was a result (they were led to believe) of their own doing. 

Hypothesis 1c suggested that people would feel less Control Over Their Data 

Online in the high risk group than in the low risk group. This hypothesis was not 

supported F (1, 284) = 2.50, p=.115, η2= .01, r = .07. M=4.52, SD=1.43 (high risk), 

M=4.82, SD=1.44 (low risk). 
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Hypothesis 1d suggested that people would be more likely to indicate an intention 

to Search For Information About Privacy on the website in the high risk group. This 

hypothesis was not supported, F (1,284) = 1.933, p =.166, η2 =.01. M=3.54, SD=1.57 

(high risk), M=3.80, SD=1.73 (low risk). 

Hypothesis 1e suggested that the Search For Information In General on the 

website, information about refund policies and information about how to order on the site 

would be higher in the high risk group. This hypothesis was not supported for the intent 

to search for information about refunds, F(1,284) = .019, p=.89, η2=.00 . M=5.31, SD= 

1.53 (high risk), M=5.34, SD=1.66 (low risk). The hypothesis was also not supported for 

the intent to search for information about ordering off the site F(1,284) = .084, p=.773, 

η2=.00. M=4.62, SD=1.81 (high risk), M=4.58, SD=1.87 (low risk). 

Hypothesis 1f suggested that those in the high risk condition would indicate a 

greater desire to search for information to protect their Future Privacy. This hypothesis 

was not supported. There was a marginally significant main effect of risk level on “search 

for information to protect privacy,” F(1, 283) = 3.619, p = .058, η2=.01. The higher the 

risk, the less people indicated their intent to search for information about their privacy 

(M=4.52, SD=1.43) and the lower the risk the more likely they were to search for 

information about their privacy (M=4.82, SD=1.44). 

Main effects of brand familiarity 

Hypothesis 2a suggested that high brand familiarity would reduce perception of 

Online Privacy Risk. This hypothesis was not supported. The main effect of brand 

familiarity was non-significant F(1, 283) = 1.92, p =.167. η2 = .006. M=5.48, SD=.98 

(high brand familiarity), M=5.27, SD=1.11(low brand familiarity).  



62 
 

Hypothesis 2b suggested there would higher Desire For Regulation of online 

privacy in the low brand familiarity group. This hypothesis was not supported. The main 

effect of brand familiarity was non-significant. F (1,283) =.110, p=.741, η2 = .00. 

M=5.71, SD=1.03 (high brand familiarity), M=5.67, SD=.092 (low brand familiarity).  

Hypothesis 2c suggested that people would feel less Control Over their Data 

online in the high brand familiarity group than in the low brand familiarity group. This 

hypothesis was not supported F (1, 284) = .001, p=.982, η2 =.00. M=4.64, SD=1.49 (high 

brand familiarity), M=4.64, SD=1.49 (low brand familiarity).  

Hypothesis 2d suggested high brand familiarity would have decrease the intention 

to Search For Information About Privacy on the website. This hypothesis was supported, 

F (1, 283) = 8.49, p <.05, η2 =.03. Those in the familiar brand condition were less likely 

to seek information about privacy on the website than those in the unfamiliar brand 

condition, M=3.39, SD=1.75, M=3.96, SD=1.49, respectively. 

Hypothesis 2e suggested high brand familiarity would decrease the indicated 

desire to Search For Information On The Website In General: search for refund and 

exchange information “refund” and search for information about how to place and order 

“ordering”. This hypothesis was supported for the search for information about refunds 

factor, F(1, 283) = 4.29, p <.05, η2 = .02. People within the familiar brand group were 

less likely to indicate that they were interested in additional information about how to 

make exchanges and what the policy was on refunds, M=5.13, SD=1.70 (high 

familiarity), M=5.52, SD=1.45(low familiarity). The hypothesis was also supported for 

the search for information about how to order, F(1, 284) = 11.01, p <.001, η2=.04.  In the 

familiar brand condition, people were less likely to indicate the desire to search for 
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information about ordering products from the site M=4.26, SD= 1.96 (high familiarity) 

versus the low familiarity group, M=4.97, SD=1.63. 

Hypothesis 2f suggested brand familiarity would reduce the indicated desire to 

search for information to protect their Future Privacy where those in the low brand 

familiarity condition would search for more information on the topic. This hypothesis 

was not supported. There was a non-significant effect for level of brand familiarity on 

search for information privacy,  F(1, 283) = .029, p=.864, η2= .00. M=4.64, SD=1.50 

(high brand familiarity), M=4.69, SD=1.39 (low brand familiarity).  

Interaction effects 

Hypothesis 3a suggested high brand familiarity would decrease perceived Online 

Privacy Risk in the high risk group. This hypothesis was not supported. The interaction 

was non-significant F(1, 284) = .17, p =.681, η2 = .00. 

Hypothesis 3b suggested high brand familiarity would decrease Desire For 

Regulation of online privacy in the high risk group. This hypothesis was not supported. 

The interaction was non-significant F(1, 284) = .065, p =.799, η2  =.00. 

Hypothesis 3c suggested high brand familiarity would increase perceived Control 

Over Their Data Online in the high risk group. This hypothesis was supported. The 

interaction was significant F(1,284) = 4.211, p <.05, η2  =.02. It appears in the high risk 

condition brand familiarity interacts to lessen feelings of lower perceived control. 

Hypothesis 3d suggested high brand familiarity would decrease intention to 

Search For Additional Information About Privacy on the website provided in the 

scenarios in the high risk group. This hypothesis was supported. This hypothesis was not 

supported. The interaction was non-significant F(1,284) = 2.511, p=.114, η2= .01. 
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Hypothesis 3e suggested high brand familiarity would decrease intention to 

Search for Additional Information In General on the website provided in the scenarios in 

the high risk group was not supported. Neither interaction for either search for refund 

information or ordering information was significant F(1, 284) = 1.99, p=.159, η2  =.00, 

F(1, 283) = 1.30, p=.263, η2  =.00, respectively.  

Hypothesis 3f suggested high brand familiarity would decrease intention to search 

for information to protect Future Privacy in the high risk group. This hypothesis was not 

supported. The interaction of brand familiarity level and risk level Future Privacy was 

non-significant, F(1,283) = 1.694 p=.194, η2=.01. 

Regression Analyses  

To test hypothesis 4a a hierarchical regression analysis was used to test the 

hypothesis. The hypothesis was supported. Interpersonal Trust significantly predicted 

perceived online privacy risk while controlling for demographics and the manipulations, 

R2 = .14, F(7, 278)=6.369, p<.001). The R squared change for the fourth model, 

(Interpersonal Trust was entered only in the fourth model through forced enter method) 

was .090, p<.001. Interpersonal trust significantly predicted perceived online privacy risk 

(β =-.302 , p<.001). Lower Interpersonal Trust is associated with higher perceived Online 

Privacy Risk. This interpretation is only true if the effects of the manipulation and 

demographics are held constant (See Table 4a). 

To test hypothesis 4b, a hierarchical regression analysis was calculated to test the 

hypothesis. The hypothesis was supported. Interpersonal Trust significantly predicted 

Desire For Regulation while controlling for demographics and the manipulations, (R2 = 

.15, F(7, 278)=7.166, p<.001). The R squared change for the fourth model, (interpersonal 
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trust was entered only in the fourth model through forced enter method) was .083, 

p<.001. Interpersonal Trust was a significant predictor (β =-.290, p<.001).    It was found 

that the risk manipulation was a marginally significant predictor of perceived online 

privacy risk (β = -.108, p=.057). Gender (β =.160, p<.05) and Age (β =.116, p<.05) were 

also significant predictors in this model. Lower interpersonal trust is associated with 

higher desire for regulation. This interpretation is only true if the effects of the 

manipulation and demographics are held constant (See Table 4b) 

To test hypothesis 4c, a hierarchical regression analysis was calculated to test the 

hypothesis. The hypothesis was not supported. Interpersonal Trust did not significantly 

predict perceived Control Over Data while controlling for demographics and the 

manipulations and the model was not significant (F(7, 278)=1.638, p=.125) (See Table 

4c). 

To test hypothesis 4d, a hierarchical regression analysis was calculated to test the 

hypothesis. The hypothesis was not supported. Interpersonal Trust did not significantly 

predict intention to Search For Privacy Information on the websites provided in the 

scenarios while controlling for demographics and the manipulations, (R2 = .070, F(7, 

278)=3.008, p<.05). The R squared change for the fourth model, (Interpersonal Trust was 

entered only in the fourth model through forced enter method) was .012, p=.063. 

Interpersonal Trust was not a significant predictor in the model (β =-.108, p=.063).  It 

was found that brand familiarity was a significant predictor (β = -.183, p<.05). Gender (β 

=-.134, p<.05) was also a significant predictor in this model (See Table 4d). 

To test hypothesis 4e, a series of hierarchical regression analyses was calculated 

to test the hypothesis. The hypothesis was not supported. Interpersonal Trust did not 
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significantly predict intention to search Information In General. Interpersonal Trust did 

not significantly predict refund information on the websites provided in the scenarios 

while controlling for demographics and the manipulations and the model was not 

significant, F(7, 278)=1.347, p=.216).  Interpersonal Trust did not significantly predict 

intention to search for ordering information on the websites provided in the scenarios 

while controlling for demographics and the manipulations and the model was not 

significant, F(7, 278)=1.347, p=.053) (See Table 4e). 

To test hypothesis 4f, a hierarchical regression analysis was calculated to test the 

hypothesis. The hypothesis was not supported. Interpersonal Trust did not significantly 

predict intention to search for Future Privacy while controlling for demographics and the 

manipulations and the model was not significant (F(7, 278)=1.740, p=.10).  

To test hypothesis 5a, a hierarchical regression analysis was used to test the 

hypothesis. The hypothesis was supported. Institutional trust significantly predicted 

perceived Online Privacy Risk while controlling for demographics, the manipulations and 

interpersonal trust, R2 = .19, F(8, 277)=8.142, p<.001). The R squared change for the 

final model, (Institutional Trust was entered only in the final model in the last block 

through forced enter method) was .052, p<.001. Institutional Trust was a significant 

predictor (β = -.239, p<.001). Lower institutional trust is associated with a higher 

perceived online privacy risk. This interpretation is only true if the effects of the 

manipulation, demographics and Interpersonal Trust are held constant. Age was also a 

significant predictor in this model (β = .137, p<.05) (See Table 5a). 

To test hypothesis 5b, a hierarchical regression analysis was used to test the 

hypothesis. The hypothesis was not supported. Institutional Trust did not significantly 
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predict perceived desire for additional regulation while controlling for demographics, the 

manipulations and Interpersonal Trust (R2 = .16, F(8, 277)=6.550, p<.001); (β = -.083, 

p=.153).  However, in this model, Gender (β = .156, p <.05) and Age (β = .115, p<.05) 

were significant predictors).  Risk was a marginally significant predictor (β = -.110, p 

=.052). (See Table 5b). 

To test hypothesis 5c, a hierarchical regression analysis was used to test the 

hypothesis. The hypothesis was supported. Institutional Trust significantly predicted 

perceived control over data online while controlling for demographics, the manipulations 

and Interpersonal Trust, R2 = .073, F(8, 277)=2.730, p<.05). The R squared change for 

the final model, (Institutional Trust was entered only in the final model in the last block 

through forced enter method) was .033, p<.05. Institutional Trust was a significant 

predictor (β = .191, p<.05). Higher Institutional Trust is associated with a higher 

perceived control over data online. This interpretation is only true if the effects of the 

manipulation, demographics and interpersonal trust are held constant (See Table 5c). 

To test hypothesis 5d, a hierarchical regression analysis was used to test the 

hypothesis. The hypothesis was not supported. Institutional Trust did not significantly 

predict intention to search for privacy information controlling for demographics, the 

manipulations and Interpersonal Trust, R2 = .072, F(8, 277)=2.693, p<.05); (β = .044, 

p=.469). However, in model five, Interpersonal Trust remained significant (β = -.119, 

p<.05). Brand Familiarity was a significant predictor (β = -.178, p<.05) as was Gender (β 

= -.132, p <.05). (See Table 5d). 

To test hypothesis 5e, a series of hierarchical regression analyses were calculated. 

The hypothesis was not supported. Institutional Trust did not significantly predict 
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intention to search for refund information on the websites provided in the scenarios while 

controlling for demographics, the manipulations, and Interpersonal Trust and the model 

was not significant, F(8, 277)=1.258, p=.265).  Institutional Trust did significantly predict 

intention to search for additional information about ordering information on the websites 

provided in the scenarios while controlling for demographics, the manipulations, and 

Interpersonal Trust R2= .035, F(8, 278)=2.291, p<.05); β = .122, p <.05.  Higher 

Institutional Trust is associated with a higher desire to search for information about 

ordering products. Brand Familiarity was also a significant predictor (β = -.191, p <.001).  

This finding makes sense in the ordering and refund mechanisms where all consumers 

care about is how fast the product will arrive and if they can return the product.  Trust in 

institutions may paradoxically lead them to search for more information in this arena 

because while they trust the institutions, order information is motivationally relevant at 

the time and encourages systematic processing despite heuristic cues, however, it appears 

that Brand Familiarity is still an important predictor for ordering behavior from a 

theoretical standpoint (See Table 5e). 

To test hypothesis 5f, a hierarchical regression analysis was calculated to test the 

hypothesis. The hypothesis was not supported. Institutional Trust did not significantly 

predict intention to search for Future Privacy in the scenarios while controlling for 

demographics, the manipulations, and Interpersonal Trust and the model was not 

significant (F(8, 277)=1.528, p=.147).  
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6. DISCUSSION AND CONCLUSION  

 

“Reason, is and ought only to be the slave of the passions, and can never pretend to any 

other office than to serve and obey them” – Thomas Hume 

This study was based on the idea that people are not approaching the issue of 

online data privacy, exerting control over that data, giving meaningful consent to the use 

of their data in a deliberate, systematic way.  Amid cries from consumer advocates, 

privacy researchers and the Edward Snowden leaks, a white paper was released in May of 

2014 by the White House after an extensive look into the ways data online were being 

used and aggregated for both national security purposes, other issues of national concern, 

and for advertising and marketing purposes. The latter drew the most concern from the 

report, as the potential for discrimination based on inferred identification and the 

potential loss of personhood or “free will” as one becomes what they click as far as 

advertisements they see and potentially price ranges they receive in offers (Podesta, 

Pritzker, Moniz, Holdren, and Zients 2014).  Dressed ominously in the popular press in 

on-going series like the Wall Street Journal’s “What They Know” series, the title alone 

suggesting that “what they know” is more than the average person would like others to 

know and addressed by research entitled “American’s Reject Tailored Advertising and 

Three Activities That Enable It” (Turow et. al. 2009), it would seem that consumers 

would be concerned about the process of surfing and shopping online. And it would seem 

from the aforementioned studies that people disliked relevant versus irrelevant ads.  

Joseph Turow would later in The New York Times while talking about Facebook privacy 

issues (outside the scope of this paper) say that everyone wanted relevant versus 

irrelevant advertisements (Goel 2014). 
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Previous studies suggest that when asked, people will say that they desire extra 

privacy protection and are concerned about their privacy online (Norber, Horne and 

Horne 2007; LaRose 2004). However, their behaviors belie their stated concerns and 

intentions as e-commerce continues to grow and advertisers gear up to increase the use of 

aggregated consumer data to serve more relevant advertisements to their audiences. The 

mismatch between the stated concerns and actual behaviors has been labeled the “privacy 

paradox” (Norberg, Horne and Horne 2007; Yap, Beverland and Bove 2009). Some 

suggest that a knowledge of the processes behind online behavioral advertising would 

both lessen concern and decrease feelings of risk. However, two studies, one conducted 

in the United States where an opt-out system is employed (Shoenberger and Thorson 

2014) and one conducted in Europe where an opt-in system is employed (Smit et. al. 

2014) found no correlation between actual knowledge of the processes of how data are 

used in OBA and perceptions of online privacy risk.  Those studies culminated to this 

one.  There are still many people who likely operate blindly online and are unaware of 

how their clickstream data are used. However, there are many others who are aware of at 

least the basics, and do nothing to protect themselves (whether that is deciding to not opt-

in to receive relevant advertising or to opt-out of receiving relevant advertising) and yet, 

all of the above voice concern about their privacy online.   

This study meant to tackle this unusual phenomenon, theorizing that people use 

heuristics to guide their behaviors online in everyday situations and when asked about 

their privacy, almost always opt for more privacy as that is what society deems as an 

acceptable stance (Haidt 2012).  If informed consent is the goal, and it seems it should be 

if the predictions of a personhood being created, sold and then used to sell to the person 
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who created it, then how can a person be nudged into searching for and systematically or 

carefully considering options for their data collection online? And are brand familiarity 

and more contextually, in the United States, interpersonal and institutional trust important 

heuristics in lieu of the desired deliberate processing of data exchanges online?  The 

following discussion of results may help to illuminate some of this complex issue. 

Discussion of Findings and Implications for Theory, And Regulatory Action in the 

Realm of Consumer Data Used For Online Behavioral Advertising Purposes 

 The following sections review the findings reported in the previous chapter, 

examining the implications for consumer behavior in the online behavioral advertising 

context (online surfing, clicking and shopping) through the lens of HSM. Findings will be 

discussed and arranged by hypothesis and finally, a discussion of implications for future 

regulation of online data collection and aggregation will be discussed. 

An overarching theme for the use of risk as a manipulation was that the high risk 

group behaved in an unusual, almost learned helplessness way. These findings, though, at 

first glance seem counterintuitive may point to a phenomenon found in the health 

communication literature. Turner and colleagues noted that even with topics more salient 

to the individual, such as health concerns and risks, not all people behave as though they 

may be at risk or search out information, perhaps because thinking about the risk causes 

anxiety and is distressing (2006).  As a result, those in the high risk groups may have 

simply decided their ability to search for information to protect privacy or protect 

themselves in the future was out of their control and answered as such. It may have led 

them to exert a self-protective measure of indicating less online privacy risk and less 

desire for additional regulations to protect privacy in the future.  
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 Additionally, it is possible that the high risk condition was too severe and caused 

an avoidance reaction which would account for lower desire to search for information to 

protect oneself in the future, lower perception of privacy risk online and less desire for 

additional regulation. A message about how to protect oneself was noted in the high risk 

message as suggested by those studying health risks in an effort to provide feelings of 

self-efficacy and reduce anxiety but the nature of online behavioral data collection is 

complex and a simple message to check privacy information may not have been enough 

to reduce the anxiety our participants felt when they received the high risk message. On 

the other hand, those in the low risk groups may have felt empowered by their status and 

encouraged, then, to indicate a greater perceived online privacy risk and desire additional 

regulation, keeping in line with the social desirability bias.  

Brand familiarity, for the most part, fulfilled its role as a heuristic. For the 

questions asked immediately following each scenario, the pattern was the same. Brand 

familiarity always predicted less information search for ordering information, refund 

information or information about the privacy terms on the website in the scenario.  This 

series of findings alluded to an important issue, namely what Rifon and colleague 

suggested in their discussion that “shopping concerns may be more salient than privacy 

concerns” (2005, p. 358).  Certainly, amongst our participants, the more technical items 

such as ordering information and refunds were important, regardless of risk and searching 

for information about such concerns was driven solely by brand familiarity. When faced 

with an unfamiliar brand people want to know about issues relevant to their purchase; 

when will it arrive, and can I return it?  
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Only one of the hypothesized interactions was significant. When it came to 

perceived control over ones’ data, the high risk condition interacted with the brand 

familiarity condition to mitigate feelings of lower perceived control. Again, it seems 

brand familiarity as a heuristic was useful in helping consumers navigate the online 

economy and offered a greater sense of control in the familiar condition even when a 

participant was in the high risk condition. 

In an effort to add context to the discussion of online privacy and consumer 

behavior, especially in light of the privacy paradox, the results for hypotheses 4-5 were 

useful in getting one step further to the privacy paradox and a plausible explanation.  

Lower interpersonal trust was associated with higher perceived online privacy risk and 

desire for additional regulation. This finding made sense in light of the theory that 

interpersonal trust could be an overarching heuristic even when controlling for brand 

familiarity.  When people trust each other, they tend to trust in the regulations as they 

stand and tend to trust that their data will not end up in the hands of criminals.  Higher 

interpersonal trust was not associated with higher perceived control over data online but 

higher institutional trust did predict higher perceived control.  This may be because while 

someone may trust another person, they do not trust them to control their data or have the 

ability to do so. However, consumers may trust in institutions to keep their data secure 

and safe and thus when trust in those institutions is high, so too is perceived control over 

data online. 

 Institutional and interpersonal trust were not significant predictors of future 

privacy search, searching for privacy on the scenario websites or searching the scenario 

websites for information about refunds. However, while not hypothesized, on searching 
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for information about privacy on the scenario websites was predicted by brand 

familiarity. This heuristic was integral in the decision-making of how much privacy 

information to search for while on the scenario’s website where low brand familiarity led 

to higher desire to search for information. This alludes to the idea that in scenarios that 

are personally relevant, when a consumer is actually shopping and surfing online, brand 

familiarity is the main heuristic.  Brand familiarity also predicted the desire to search for 

ordering information.  In that case, high institutional trust also led to additional search. 

This finding was reconciled in the ordering and refund mechanisms where all consumers 

care about is how fast the product will arrive and if they can return the product.  Trust in 

institutions may paradoxically lead them to search for more information in this arena 

because while they trust the institutions, order information is motivationally relevant at 

the time and encourages systematic processing despite heuristic cues, however, it appears 

that Brand Familiarity is still an important predictor for ordering behavior from a 

theoretical standpoint 

 People tend to say they feel high privacy risk when asked and it was assumed 

they would also ask for additional regulations regardless of condition. Both of the means 

were relatively high across the conditions on a 1-7 scale: desire for regulation, M=5.69, 

Median = 5.90, SD= 1.17, and perceived online privacy risk M=5.40,  Median =5.50, 

SD= 1.03. Even though it seems that most people perceived online privacy risk and 

indicated a desire for additional regulation, institutional trust still predicted that those 

with high institutional trust desired less regulation and had less perceived privacy risk 

than those with lower institutional trust. This is an important finding, lending support to 

the theory that people lean on institutional trust as a heuristic in the online economy even 
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when answering questions in ways they believe are socially appropriate, thus the essence 

of the privacy paradox. 

These findings taken together are of theoretical importance because they offer 

evidence about how consumers operate online. They do not appear to be consciously 

weighing pros and cons of website policies. In fact, even in the face of high risk for their 

data being used in ways they find inappropriate (high risk condition), only brand 

familiarity, operating as a heuristic, drove the decision whether to seek additional 

information about a website or not. Institutional trust was able to predict above and 

beyond the manipulations both perceived online privacy risk and desire for additional 

regulation, two variables thought to be linked to the privacy paradox. Their high means 

across conditions suggested the privacy paradox was at work via social desirability bias 

and institutional trust was able lessen even that paradox, predicting both desire for 

additional regulation and online privacy risk.  

Discussion of Direction For Future Regulations 

The idea that consumers take the time from their information soaked days to 

process privacy policies or information that would allow them to control their data online 

is a essentially a fiction.  If the crux of the online behavioral advertising debate is actually 

about consumer privacy concern and consumer willingness to exert control over 

personal/clickstream data via an opt-out system, that goal is likely to fail.  

The White House recently published a paper broadly exploring online data 

collection and the analyses of that data (Podesta et. al. 2014). The study encompassed not 

only the technologies used by the intelligence community but also those employed by 

industry. Especially concerning to the advertising industry was the report’s focus on 
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“learning algorithms” used to serve online advertisements to consumers based on their 

online browsing activities and to predict purchase behaviors.  The report noted that these 

algorithms could be used not just to serve relevant advertisements but also to discriminate 

based on inferences destined to error created by the aggregation and analyses of 

consumer data (Sanger and Lohr 2014).   

The White House recommendations included (among others): increase 

transparency about how consumer data is used (especially in the realm of third party 

advertising, and tools that allow consumers to opt-out of online tracking should be 

strengthened (Podesta et. al. 2014).  This study suggests that new ideas be proliferated as 

increased transparency has usually meant privacy seals and even the most knowledgeable 

consumers fall victim to the false security of a safety seal, not looking to read its contents 

or find out what kinds of safety it promises (Rifon, LaRose, Choi 2005).  The issue with 

opt-out and opt-in systems were nearly addressed by Podesta himself as he noted that 

consumers click on terms of service nearly all the time without reading them and 

pondered whether such a process sill gave consumers the control to protect the privacy of 

their data online (Podesta, et. al. 2014). To continue to pressure industry to follow either 

of the aforementioned paths would do a disservice to both the industry and consumers. 

The fact that consumers tend to ignore privacy icons or information about how to 

protect their information online and continue to act in ways that are counter to self-

protection even in the face of a serious warning that their personal data is at risk of being 

used in ways they will find inappropriate is a blow to the notion that consumers desire to 

exercise control over their data online. It may be that consumers are not as interested in 
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exercising control but instead desire the ability to trust their data is being used in ways 

they deem appropriate and have remedies to address perceived mishandling of data.  

Trust in the institutions supporting data collection such as the advertising industry 

and the government have likely led to the success of such collection with minimal outcry 

from consumers/citizens because consumers/citizens believe, in large part, that their data 

will be kept secure by responsible institutions.  Accountability to consumers/citizens 

when data are mishandled or handled in ways in which they can reasonably disapprove 

must be outlined and upheld.  

Those housing and analyzing the voluminous amounts of consumer data should 

work within an ethical framework and take care to be transparent in the collection and 

use of the data to consumers and maintain the integrity and safety of the data or risk 

instances of mishandling and data breaches.  Data breaches and leaks of consumer data 

may eventually result in the erosion of public trust in institutions such as the advertising 

industry and the government.  Remedies must be woven into regulations for those injured 

by data breaches. Public trust in such institutions is integral to an efficiently functioning 

society (Freitag & Buhlmann , 2009).  

The ability to correct information that is false or inferences derived from 

imperfect analysis must be easy for the consumer.  The ability to correct false 

information is entwined with the notion of institutional trust but also touches on fairness.  

If information being collected about a consumers’ online activities are in any way 

attached to personally identifiable information, something it should not be but inferences 

from complex analyses of large amounts of data may come dangerously close to linking 
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the consumer to her searches, she should have the ability to correct that information in the 

aggregator database.  

Through the vast amount of data collected on consumers as they surf online, it is 

possible that inferences could be made that nearly identify the person surfing online and 

despite the lack of personally identifiable information (e.g., social security numbers).  It 

would be possible then for a company to use information to predict those who would not 

show up to work or those with certain illnesses and discriminate based on such 

predictions.  Safeguards must be in place to prevent those who would discriminate based 

on inferences made from big data statistics which always comes with a percentage of 

error.  

The effort and expense put into designing and promoting privacy seals (e.g., the 

Trust-E icon) that can be placed like badges on a website are meant to offer transparency 

and comply with the Federal Trade Commissions’ insistence on notice and choice in the 

realm of online data collection.  The opt-out system in the United States currently 

requires a consumer to click on the privacy seal or icon and read the instructions for ways 

to opt-out of online tracking used to serve relevant advertisements and predict buying 

behaviors.  The efforts concentrating on a seal, alone, may be misguided. 

Consumers must be given reasonable notice of personal data collection and use 

and the ability to make informed decisions on whether to opt out of data collection.  Due 

to the lack of consumer attention paid to privacy seals, further research in this area is 

needed.  Either privacy notices that catch the consumer’s attention and motivate them to 

fully understand the contents must be created or those using a privacy policy should abide 
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by regulations guaranteeing an agreed upon set of rules for data security, and permissible 

uses (Turow et.al., 2008).   

This set of regulations would also benefit from empirical research belying the 

important elements of privacy in regards to online data and perhaps, because not all data 

is equal in terms of sensitivity, a taxonomy of the types of data consumers would like to 

have control over. Gamefication of privacy seals may be an interactive way to assure 

informed consent to data use and make a normally boorish boilerplate privacy seal or 

information more likely to be attended to. 

Limitations 

This study suffered from limitations. One being the potential over aggressiveness 

of the high risk message. Instead of eliciting an information search behavior, it appears 

the message may have elicited an avoidance and self-protective type behavior.  

Conclusion 

This study meant to attempt to understand the way in which consumers navigate 

the online economy, in the narrow context of clickstream data collection and shopping 

online. As theorized, it appears that consumers are using heuristics such as brand 

familiarity and institutional trust to guide their decisions of how much information they 

will look for and understand on a website before making a purchase. A familiar brand 

leads to significantly less indication to search than an unknown brand leading to the 

conclusion that brand familiarity is a heuristic employed in this situation. 

The privacy issue stems from the assumption that the information collected and 

aggregated is, in some ways, regarded by the consumer as private. However, this may not 

be the case. The aggregation of information about a consumer could in the near future, 
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perhaps depriving the consumer of the ability to define themselves online.  People who 

study this issue make the assumption for consumers that they would be wiser to keep this 

information within their control at the very least, but if they decide to exert no control, as 

we have seen for the majority of our sample, then that is a valid choice, as well.   

When the choice hinges on control over data, social contract theory offers useful 

guidance asserting that a contract between a consumer and a business/advertiser is 

breached if the data is collected and/or used in a fraudulent way.  The existence of 

consumer privacy on the Internet is derived from control exerted over the data they 

release (Milne and Gordon 1993). Social contract theory also posits that consumers will 

actively seek out information, carefully examining privacy policies before committing to 

a relationship with a business (Milne and Gordon 1993). We know the latter part of the 

equation, for the most part, does not happen. Further evidence that privacy policies affect 

behavior, influencing consumer decisions on whether or not to trust a site, interestingly 

regardless of the length/content of the policy, add further support to the theory that 

consumers navigate the online environment using a heuristics and rarely, if ever, seek 

ways to control their data or salvage any piece of privacy they may lay claim to online 

(Milne and Gorndon 1993; Miyazaki and Fernandez 2000).  

The trust that data are safe and transactions online are safe will persist until there 

are serious consequences that ignite the passions of the consumer. Until then, they will 

save more effortful processing for things more motivationally relevant to them. 
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7. TABLES  

 

TABLE 1 

          Measurement Scales Used in the Study  

Scale  Scale items α, r 

Institutional Trust 

(adapted from  

Siegrist, 2000) 
 

How much do you trust the following institutions or 

persons in terms of how well they fulfill their 

responsibilities in collecting and handling consumer data 

collected online… 
1. The government   
2. Individual advertisers   
3. The advertising industry   
4. Individual brands 

0.772 

Interpersonal Trust 

(adapted from: Das, 

2003) 
 

 

Please indicate your level of agreement… 
1. It is safe to believe that in spite of what people say. 
2. In dealing with strangers one is better off to be 

cautious until they have provided evidence that they are 

trustworthy. 
3. If you are not careful, others can easily manipulate 

you. 
4. Most repairmen will not overcharge even if they think 

you are ignorant of their specialty (flipped). 

0.753 

Perceived Online 

Privacy Risk 

(Shoenberger & 

Thorson, 2014) 

Please indicate your level of agreement with the 

following… 
1. Data used to serve relevant advertising may be 

compromised. 
2. Data companies collect about me could end up in the 

hands of criminals. 
3. Data companies collect about me might be used in 

ways that make me feel uncomfortable. 
4. One my data is collected, I have no control over how it 

is used 

0.827 

Perceived Control 

Over Data Online 
(lower scores 

indicate lower 

perception of 

control) 

Please indicate your level of agreement with the 

following… 
1. I feel that I have control over my data online.   
2. I believe I can opt-out of allowing advertisers and 

companies to collect my online behavioral data (ie. 

remembering what sites I visit, remembering what I click 

on in those sites to serve advertising that they believe will 

be more relevant to me).   
3. I can use online privacy tools to remain anonymous 

online.   
4. I understand how my online behavioral data is used 

online 

0.766 
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Table 1, cont. 

Scale  Scale items α, r 
Desire for Regulation  
(adapted from 

concerns espoused in 

(Podesta, Pritzker, 

Moniz, Holdren, and 

Zients, 2014) 

Please indicate your level of agreement with the 

following… 
1. Regulators should do more to protect my data online. 
2. I am concerned about my privacy online. 
3. I would like to know what safeguards are in place in 

the event of a data breach 
4. I would like to know how I may be compensated in the 

event of a data breach. 
5. I would like to know what companies are doing to 

keep my personal data secure. 
6. I would like to know what the federal government is 

doing to keep my personal data secure. 
7. I would like to see additional regulation enacted to 

protect my data privacy online. 
8. I would like a new law enacted to protect my data 

online. 

0.933 

Privacy Search 

(symptom of 

systematic 

processing)  
 
(created from items 

on actual 

Bestbuy.com and 

Walmart.com 

websites) 

The following information is on X’s website. Please 

indicate how likely you would be to seek out and read 

about the following pieces of information before 

clicking through the website and choosing your new 

camera/bike?... 
1. How secure the website is. 
2. Information the website collect about you. 
3. Use of cookies on the website. 
4. How the site uses pattern recognition to link your 

purchase history to products you might like 
5. Information the site exchanges with third party 

advertisers. 
6. How the site uses your credit card information. 
7. How to opt-out of the site's cookie tracking system. 
8. How the site ensures consumer data privacy. 
9. The website's mobile application privacy options. 

 10. Contact information in case you have privacy 

related questions. 
11. A pledge of accountability by the company. 
12. How your IP address and other information are 

collected by social media widgets on the site (for 

example, Facebook or Pinterest icon). 
 

0.982 
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Table 1, cont.  

Scale  Scale items α, r 
Refund Search 

(symptom of 

systematic 

processing)  
 
(created from items 

on actual 

Bestbuy.com and 

Walmart.com 

websites) 

The following information is on X’s website. Please 

indicate how likely you would be to seek out and read 

about the following pieces of information before 

clicking through the website and choosing your new 

camera/bike?... 
1. Defective items. 
2. Exchanges. 
3. Refunds. 
4. Return exceptions. 
 

r = .711 

Ordering Search 

(symptom of 

systematic 

processing)  
 
(created from items 

on actual 

Bestbuy.com and 

Walmart.com 

websites) 
 

The following information is on X’s website. Please 

indicate how likely you would be to seek out and read 

about the following pieces of information before 

clicking through the website and choosing your new 

camera/bike?... 
 
1. How to place your order. 
2. Payment Options. 

0.912 

Future Privacy 

(adapted from 

Turow and 

Hennessey, 2007) 
 
 

Please indicate how likely you would be to do the 

following before clicking through a website in the 

future… 
1. Choose not to register with a site because it asks for 

too much personal information. 
2. Search for instructions about how to protect yourself 

on the web. 

 
r = .662 
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TABLE 2 

Intercorrelations Among Variables  

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. Gender ___               
2. Age .106 ___              

3. Education .004 .079 ___             

4. Income -.010 .034 .254*

* 
___            

5. Desire for 

regulation 
.189*

* 
.144* .038 .021 ___           

6. Perceived 

Risk 
.082 .159*

* 
.035 .029 .458** ___          

7. Risk 

(High/Low) 
-.079 -.108 -.005 .142

* 
-

.154** 
-128* ___         

8.  Brand 

Familiarity  
-

.121* 
.095 -.065 -

.041 
.015 .075 .024 ___        

9. Institutional 

Trust 
-.034 -.025 -.086 -

.003 
-

.161** 
-

.309** 
-

.004 
-.107 ___       

10. 

Interpersonal 

Trust 
.044 .027 .056 .017 -

.300** 
-

.300** 
.084 .020 .243*

* 
___      

11. Control 

Over Data 
-.047 -.090 -

.129* 
-

.003 
-.046 -.099 -

.087 
-.004 .204*

* 
.036 ___     

12. Ordering 

Search 
-.011 -.025 -.022 -

.017 
.200** .063 .012 -

.193** 
.119* -.071 .092 ___    

13. Refund 

Search 
-.032 .016 .035 .042 .247** .109 -

.009 
-.121* -.055 -.116* .133* .421** ___   

14. Privacy 

Search 
-.105 -.068 -.041 -

.062 
-

.295** 
.017 -

.078 
-

.170** 
.042 -.116. .355*

* 
.472** .507*

* 
__  

15. Future 

Privacy 
.015 .057 .031 .020 .474** .271** -

.105 
-.017 -.026 -

.170** 
.262*

* 
.287** .350*

* 
.647*

* 
__ 

 

** Correlation is significant at the .01 level (2-tailed) 

   *Correlation is significant at the .05 level (2-tailed) 
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TABLE 3 

                                 Summary of Anova Results 

Factor/DV Risk Main Effect Brand Familiarity 

Main Effect 
Interaction 

Perceived 

online 

privacy 

risk  

Yes, but means are lower 

in the high risk group. 
HR M = 5.29, LR M = 

5.52 
F(1,283) = 5.27, p < .05. 

no no 

Desire for 

Regulatio

n  
 
 

Yes but again: High risk 

had lower M for high risk 

group. 
HR M = 5.51, LR M = 

5.87 

F(1,283) = 7.20, p < .05. 

no no 

Perceived 

control 

over data  

Marginal, p = .12 high risk 

M = 4.52, Low risk: 4.82: 
This makes sense because 

in high risk you perceive 

less control over your data. 
 

F(1, 283) = 2.50, p = .115 

no Yes. It appears 

in the high risk 

condition 

brand 

familiarity 

interacts to 

lessen feels of 

lower 

perceived 

control 
 

F(1,284) = 

4.21, P < .05. 

Privacy 

search  
 

no Yes, familiar brand 

condition were less 

likely to seek 

information about 

privacy on the 

website than those in 

the unfamiliar brand 

condition. 
 

F(1, 283) = 8.49, p < 

.05 

M = 3.39, SD = 1.75 

(familiar) 
M = 3.96, SD = 1.49 

(unfamiliar) 
 
 

no 
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Table 3, 

cont. 

   

Factor/DV Risk Main Effect Brand Familiarity 

Main Effect 
Interaction 

Refund 

search  
 

no Yes, people in the 

familiar brand group 

were less likely to 

indicate they would 

search for 

information about 

making refunds and 

exchanges. 
 

F(1, 283) = 4.29, p < 

.05 
M = 5.13, SD = 1.70 

(familiar) 
M = 5.52, SD = 1.45 

(unfamiliar) 

no 

Ordering 

search  
 

no Yes, people in the 

familiar brand group 

were less likely to 

indicate they would 

search for 

information about 

how to order from the 

website in the 

scenario. 
 

F(1, 283) = 11.01, p < 

.001 
M = 4.26, SD = 1.96 

(familiar) 
M = 4.97, SD = 1.63 

(unfamiliar) 

no 

Future 

Privacy 
Marginal and in the wrong 

direction.  

F(1, 283) = 3.62, p = .058 
 

M = 4.52, SD = 1.43 (High 

Risk) 

M = 4.82, SD = 1.44 (Low 

Risk) 

no no 
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                                    ANOVAs by Dependent Variable 

Table 4a 

Online Privacy Risk  

 df F η2 p 

Risk  1 5.27 .02 .02 

Brand Familiarity 1 1.92 .01 .17 

Risk x Brand Familairty 1 .17 .00 .68 

*significant at p < .05 

 

Table 4b 

Desire for Regulation 

 df F η2 p 

Risk  1 7.20 .02 .01 

Brand Familiarity 1 .11 .00 .74 

Risk x Brand Familairty 1 .07 .00 .80 

*significant at p < .05 

 

Table 4c 

Perceived Control Over Data 

 df F η2 p 

Risk  1 2.50 .01 .12 

Brand Familiarity 1 .001 .00 .98 

Risk x Brand Familairty 1 4.50 .02 .04 

*significant at p < .05 

 

Table 4c 

Intention to Search for Privacy Information on Website 

 df F η2 p 

Risk  1 1.93 .01 .17 

Brand Familiarity 1 8.49 .03 .00 

Risk x Brand Familairty 1 4.21 .01 .19 

*significant at p < .05 
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Table 4e (Refund Search) 

Intention to Search for General Information on Website (Refund) 

 df F η2 p 

Risk  1 .02 .00 .89 

Brand Familiarity 1 4.29 .02 .04 

Risk x Brand Familairty 1 1.99 .01 .16 

*significant at p < .05 

 

Table 4e (Ordering Search) 

Intention to Search for General Information on Website (Ordering) 

 df F η2 p 

Risk  1 .084 .00 .77 

Brand Familiarity 1 11.01 .04 .00 

Risk x Brand Familiarity 1 1.30 .00 .26 

*significant at p < .05 

 

Table 4f 

Intention to Search for Information to Protect Privacy in the Future 

 df F η2 p 

Risk  1 3.62 .01 .06 

Brand Familiarity 1 .03 .00 .86 

Risk x Brand Familiarity 1 1.69 .01 .19 

*significant at p < .05 

 

 

 

 

 

 

 

 

 

  



89 
 

Table 5 

Table 5a: Predictors of Perceived Online Privacy Risk 

  b SE B β p 

Step 1      

 Constant 4.643 .325  .000 

 Gender 
Age 
Education 
HHI 

.137 

.013 

.017 

.013 

.122 

.005 

.057 

.039 

.066 

.150 

.018 

.020 

.262 

.012 

.769 

.740 
    R2 = .030  
Step 2      

 Constant  4.541 .335  .000 

 Gender 
Age 
Education 
HHI 

.156 

.012 

.021 

.014 

.123 

.005 

.057 

.039 

.076 

.141 

.023 

.022 

.204 

.018 

.709 

.715 
 Brand Familiarity  .149 .123 .072 .227 

    R2 = .035  
Step 3       

 Constant  4.692 .342  .000 

 Gender 
Age 
Education 
HHI 

.141 

.011 

.018 

.025 

.123 

.005 

.057 

.039 

.068 

.129 

.019 

.040 

.252 

.032 

.753 

.515 
 Brand Familiarity .157 .123 .076 .201 

 Risk (Low/High) -.238 .123 -.115 .054 

    R2 = .048  
Step 4  Constant  5.444 .355  .000 

 Gender 
Age 
Education 
HHI 

.117 

.012 

.034 

.023 

.117 

.005 

.054 

.037 

.057 

.140 

.036 

.037 

.318 

.015 

.534 

.528 
 Brand Familiarity  .164 .117 .080 .161 

 Risk (Low/High) -.183 .118 -.089 .120 

 Interpersonal Trust  -.297 .055 -.302 .000 

    R2 = .116  
Step 5 Constant  6.227 .391  .000 

 Gender 
Age 
Education 
HHI 

.098 

.012 

.009 

.027 

.114 

.005 

.053 

.036 

.048 

.137 

.009 

.042 

.343 

.025 

.858 

.437 
 Brand Familiarity  .104 .114 .051 .479 

 Risk (Low/High) -.198 .114 -.096 .040 

 Interpersonal Trust  -.238 .055 -.242 .000 

 Institutional Trust  -.411 .097 -.239 .000 

    R2 = .190  
Note: R2 = .05 for step 3; Δ R2 = .090 for step 4 (p < .001); R2 = .14 for step 4; Δ R2 = .052 for step 5 (p < 

.001) 
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Table 5b: Predictors of Desire for Regulation 

  b SE B β p 

Step 1      

 Constant 4.535 .364  .000 

 Gender 
Age 
Education 
HHI 

.412 

.012 

.025 

.009 

.137 

.006 

.064 

.043 

.176 

.123 

.024 

.013 

.003 

.037 

.694 

.834 
    R2 = .052  
Step 2      

 Constant  4.493 .376  .000 

 Gender 
Age 
Education 
HHI 

.420 

.012 

.027 

.010 

.138 

.006 

.064 

.043 

.179 

.120 

.026 

.013 

.003 

.043 

.673 

.825 
 Brand Familiarity  .062 .138 .026 .656 

    R2 = .053  
Step 3       

 Constant  4.690 .383  .000 

 Gender 
Age 
Education 
HHI 

.399 

.010 

.023 

.024 

.137 

.006 

.064 

.044 

.171 

.105 

.021 

.034 

.004 

.076 

.723 

.577 
 Brand Familiarity  .072 .137 .031 .598 

 Risk (High/Low) -.312 .138 -.133 .024 

    R2 = .070  

Step 4      

 Constant  5.508 .399  .000 

 Gender 
Age 
Education 
HHI 

.373 

.011 

.040 

.022 

.131 

.005 

.061 

.042 

.160 

.116 

.038 

.031 

.005 

.041 

.513 

.594 
 Brand Familiarity  .080 .131 .034 .543 

 Risk (High/Low) -.252 .132 -.108 .057 

 Interpersonal Trust   -.323 .062 -.290 .000 

    R2 = .153  

Step 5      

 Constant  5.815 .452  .000 

 Gender 
Age 
Education 
HHI 

.366 

.011 

.030 

.024 

.131 

.005 

.061 

.042 

.156 

.115 

.028 

.033 

.006 

.042 

.624 

.573 
 Brand Familiarity  .057 .132 .024 .669 

 Risk (High/Low) -.258 .132 -.110 .052 

 Interpersonal Trust  -.300 .064 -.269 .000 

 Institutional Trust  -.161 .112 -.083 .153 

    R2 = .159  

Note: R2 = .070 for step 3; Δ R2 = .083 for step 4 (p < .001); R2 = .153 for step 4; Δ R2 = .006 for step 5 (p 

is NS) 
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Table 5c: Predictors of Perceived Control Over Data Online 

  b SE B β p 

Step 1      

 Constant 5.107 .361  .000 

 Gender 
Age 
Education 
HHI 

-.088 
-.007 
-.136 
.023 

.136 

.006 

.063 

.043 

-.038 
-.077 
-.131 
.033 

.518 

.199 

.033 

.591 
    R2 = .025  
Step 2      

 Constant  5.120 .373  .000 

 Gender 
Age 
Education 
HHI 

-.090 
-.007 
-.137 
.023 

.137 

.006 

.063 

.043 

-.039 
-.076 
-.131 
.033 

.511 

.208 

.033 

.594 
 Brand Familiarity  -.019 .137 -.008 .891 

    R2 = .026  
Step 3       

 Constant  5.276 .382  .000 

 Gender 
Age 
Education 
HHI 

-.106 
-.008 
-.140 
.035 

.137 

.006 

.063 

.043 

-.046 
-.088 
-.135 
.049 

.437 

.146 

.028 

.425 
 Brand Familiarity  -.010 .137 -.004 .940 

 Risk (High/Low) -.248 .137 -.108 .072 

    R2 = .037  

Step 4      

 Constant  5.128 .415  .000 

 Gender 
Age 
Education 
HHI 

-.102 
-.009 
-.143 
.035 

.137 

.006 

.064 

.044 

-.044 
-.090 
-.138 
.050 

.458 

.138 

.025 

.420 
 Brand Familiarity  -.012 .137 -.005 .932 

 Risk (High/Low) -.259 .138 -.113 .062 

 Interpersonal Trust   .058 .065 .054 .366 

    R2 = .040  

Step 5      

 Constant  4.433 .464  .000 

 Gender 
Age 
Education 
HHI 

-.085 
-.008 
-.121 
.032 

.135 

.006 

.063 

.043 

-.037 
-.087 
-.116 
.046 

.528 

.141 

.056 

.452 
 Brand Familiarity  .042 .136 .018 .760 

 Risk (High/Low) -.246 .136 -.107 .071 

 Interpersonal Trust  .006 .066 .005 .930 

 Institutional Trust  .365 .115 .191 .002 

    R2 = .073  

Note: R2 = .037 for step 3; Δ R2 = .003 for step 4 (p is NS); R2 = .040 for step 4; Δ R2 = .033 for step 5 (p 

< .05) 
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Table 5d: Predictors of Privacy Search 

  b SE B β p 

Step 1      

 Constant 4.737 .521  .000 

 Gender 

Age 

Education 

HHI 

-.328 

-.007 

-.033 

-.056 

.196 

.008 

.092 

.062 

-.099 

-054 

-.022 

-.055 

.095 

.396 

.715 

.367 

    R2 = .002  

Step 2      

 Constant  5.161 .530  .000 

 Gender 

Age 

Education 

HHI 

-.410 

-.004 

-.052 

-.062 

.194 

.008 

.090 

.061 

-.124 

-.032 

-.035 

-.061 

.036 

.586 

.567 

.314 

 Brand Familiarity  -.616 .195 -.187 .002 

    R2 = .043  

Step 3       

 Constant  5.329 .543  .000 

 Gender 

Age 

Education 

HHI 

-.427 

-.006 

-.056 

-.049 

.194 

.008 

.090 

.062 

-.129 

-.041 

-.037 

-.048 

.029 

.490 

.536 

.430 

 Brand Familiarity  -.608 .194 -.184 .002 

 Risk (High/Low) -.270 .195 -.082 .168 

    R2 = .043  

Step 4      

 Constant  5.763 .588  .000 

 Gender 

Age 

Education 

HHI 

-.441 

-.005 

-.047 

-.050 

.194 

.008 

.090 

.062 

-.134 

-.037 

-.031 

-.049 

.02 

.531 

.604 

.417 

 Brand Familiarity  -.603 .194 -.183 .002 

 Risk (High/Low) -.239 .195 -.073 .221 

 Interpersonal Trust   -.170 .091 -.108 .063 

    R2 = .048  

Step 5      

 Constant  5.533 .699  .000 

 Gender 

Age 

Education 

HHI 

-.435 

-.005 

-.039 

-.051 

.194 

.008 

.091 

.062 

-.132 

-.037 

-.026 

-.050 

.026 

.536 

.665 

.409 

 Brand Familiarity  -.586 .195 -.178 .003 

 Risk (High/Low) -.235 .195 -.071 .230 

 Interpersonal Trust  -.280 .095 -.119 .048 

 Institutional Trust  .120 .166 .044 .469 

    R2 = .062  

Note: R2 = .059 for step 3; Δ R2 = .012 for step 4 (p is NS); R2 = .070 for step 4; Δ R2 = .002 for step 5 (p 

is NS) 
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Table 5e: Predictors of Ordering Search 

  b SE B β p 

Step 1      

 Constant 4.706 .583  .000 

 Gender 
Age 
Education 
HHI 

-.015 
.004 
-.035 
-.015 

.220 

.009 

.103 

.070 

-.014 
.029 
-.021 
-.013 

.816 

.633 

.735 

.831 
    R2 = .002  
Step 2      

 Constant  5.228 .593  .000 

 Gender 
Age 
Education 
HHI 

-.152 
.008 
-.058 
-.022 

.218 

.009 

.101 

.069 

-.041 
.052 
-.034 
-.019 

.488 

.377 

.570 

.751 
 Brand Familiarity  -.758 .218 -.206 .001 

    R2 = .043  
Step 3       

 Constant  5.175 .610  .000 

 Gender 
Age 
Education 
HHI 

-.147 
.008 
-.056 
-.026 

.218 

.009 

.101 

.070 

-.040 
.055 
-.034 
-.023 

.502 

.359 

.580 

.710 
 Brand Familiarity  -.761 .218 -.207 .001 

 Risk (High/Low) .085 .219 .023 .699 

    R2 = .043  

Step 4      

 Constant  5.489 .663  .000 

 Gender 
Age 
Education 
HHI 

-.157 
.009 
-.050 
-.027 

.218 

.009 

.102 

.069 

-.043 
.057 
-.030 
-.023 

.473 

.337 

.626 

.701 
 Brand Familiarity  -.758 .218 -.206 .001 

 Risk (High/Low) .107 .220 .029 .626 

 Interpersonal Trust   -.123 .103 .070 .233 

    R2 = .048  

Step 5      

 Constant  4.775 .749  .000 

 Gender 
Age 
Education 
HHI 

-.140 
.009 
-.027 
-.030 

.217 

.009 

.102 

.069 

-.038 
.059 
-.016 
-.026 

.521 

.323 

.794 

.669 
 Brand Familiarity  -.703 .219 -.191 .001 

 Risk (High/Low) .121 .219 .033 .582 

 Interpersonal Trust  -.177 .106 -.101 .095 

 Institutional Trust  .375 .186 .122 .045 

    R2 = .062  

Note: R2 = .043 for step 3; Δ R2 = .005 for step 4 (p is NS); R2 = .048 for step 4; Δ R2 = .014 for step 5 (p 

< .05) 
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Table 6: Summary of exploratory factor analysis results for the online data security items. 

  Rotated 

Factor 

Loadings 

 

Item Desire 

for 

Regulatio

n 

Perceived 

Online 

Privacy Risk 

Control 

Over 

Data 

I feel I have control over my data online. -.076 -.218 .678 

I believe I can opt-out of allowing advertisers 

and companies to collect my online behavioral 

data. 

.026 -.132 .673 

I can use online privacy tools to remain 

anonymous. 
-.024 .047 .688 

I understand how my online behavioral data is 

used online. 
.006 .073 .582 

Data used to serve relevant advertising may be 

compromised. 

.181 .744 .047 

Data companies collect about me could end up 

in the hands of criminals. 
.216 .752 -.038 

Data companies collect about me might be 

used in ways I find uncomfortable. 

.242 .751 -.011 

Once my data is collected, I have no control 

over how it is used. 
.168 .582 -.209 

I would like to see additional regulation 

enacted to protect my data online. 
.791 .248 -.233 

I would like a new law enacted to protect my 

data online. 
.816 .157 -.254 

Regulators should do more to protect my data 

online. 
.828 .120 -.233 

I am concerned about my privacy online. .630 .352 -.102 

I would like to know what safeguards are in 

place in the event of a data breach. 
.757 .206 .204 

I would like to know how I may be 

compensated in the event of a data breach. 
.735 .213 .176 

I would like to know what companies are 

doing to keep my personal data secure. 
.798 .243 .151 

I would like to know what the federal 

government is doing to keep my personal data 

secure. 

.838 .078 .045 

Eigenvalues 6.31 2.57 1.90 

% of variance 39.50 16.03 11.81 

α .93 .83 .77 
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Table 7: Means and Standard Deviations by Condition for Perceived Control Over Data 

 

Condition N M STD 

Low Risk Unfamiliar Brand 70 4.55 1.17 

Low Risk Familiar Brand 71 4.27 1.15 

High Risk Unfamiliar Brand 71 4.06 1.13 

High Risk Familiar Brand 77 4.33 1.10 
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   8. APPENDICES 

Appendix A 

Pre-test Questionnaire 

You are invited to participate in a research project about preferences for online shopping.  The 

purpose of this study is to find out if people shop online in different ways.  Participants will be 

entered into a drawing for a chance to win $50. Participation in the study is voluntary and you 

must be 18 years of age to participate. Your name and responses to the questions will be 

completely anonymous. You may refuse to answer any questions with no penalty. The risk in 

participating is no greater than what would be expected in a daily conversation about similar 

topics. By emailing for the link to complete this experiment, you are agreeing to participate in 

the study. If you have any questions or concerns about this research project please contact 

Heather Shoenberger at hrskv9@mail.missouri.edu or Dr. Esther Thorson at 

thorsone@missouri.edu or the Campus IRB at 573-882-9585 
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Please tell us a little about yourself. 
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 Never Rarely Sometimes 
Most of the 

Time 
Always 

Have your 
computer save 

passwords. 

●  ●  ●  ●  ●  

Read 
unsolicited e-

mail. 

●  ●  ●  ●  ●  

Provide a false 
or fictitious 
name when 

registering on a 
website. 

●  ●  ●  ●  ●  

Use public wi-fi. ●  ●  ●  ●  ●  

Log onto online 
accounts using 

public 
computers. 

●  ●  ●  ●  ●  

Have a virus 
checker 

installed on 
your computer. 

●  ●  ●  ●  ●  

Set up your 
browser to 

reject 
unnecessary 

cookies. 

●  ●  ●  ●  ●  

Lock your 
computer when 
it is not in use. 

●  ●  ●  ●  ●  

Upgrade your 
browser to the 
newest version. 

●  ●  ●  ●  ●  

Open an email 
without a 
subject. 

●  ●  ●  ●  ●  

Use a password 
that can be 
found in the 
dictionary. 

●  ●  ●  ●  ●  

Accept 
unknown 

"friends" on 
social 

networking 
sites. 

●  ●  ●  ●  ●  

Make sure 
online forms 

are secure 
before filling 

them out. 

●  ●  ●  ●  ●  
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Clear 
computer's 
cache after 
browsing 

●  ●  ●  ●  ●  

Frequently scan 
your computer 

for spyware. 

●  ●  ●  ●  ●  

Use a separate 
email account 
that you use 
solely for the 

purpose of 
registering on 

websites. 

●  ●  ●  ●  ●  

Save your credit 
card 

information in 
an online 

store's 
database. 

●  ●  ●  ●  ●  

When you get 
an e-mail from 

a financial 
institution 
asking for 

information 
updates, you 
click the link 

and fill out their 
update form. 

●  ●  ●  ●  ●  

Look for and 
read privacy 

statements on 
the Web. 

●  ●  ●  ●  ●  

Use 
anonymizers 

while browsing 
the web. 

●  ●  ●  ●  ●  

Include 
biographical 
information 
about you 

online (e.g., on 
Facebook or 
other site). 

●  ●  ●  ●  ●  

Use social 
networking 

sites. 

●  ●  ●  ●  ●  

Post on social 
networking 

sites. 

●  ●  ●  ●  ●  

Please indicate your answer to the following questions. 
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 Never Rarely Sometimes 
Most of the 

time 
Always 

How often do 
you encounter 

advertising based 
on what you have 

previously 
searched for? 

●  ●  ●  ●  ●  

How often do 
you click on 

advertisements 
that offer 

discounts for a 
product? 

●  ●  ●  ●  ●  
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 0 hours 
less than 
an hour 

1-2 hours 2-3 hours 3-4 hours 

4 or 
more 
hours 

About how 
much time 

do you spend 
online each 

day? 

●  ●  ●  ●  ●  ●  

About how 
much time 

do you spend 
on social 

networking 
sites each 

day? 

●  ●  ●  ●  ●  ●  

About how 
much time 

do you spend 
shopping 

online each 
day? 

●  ●  ●  ●  ●  ●  

How many purchases would you estimate you have made online in the past month? 

● 0 

● 1 

● 2 

● 3 

● 4 

● 5 or more 

 

What is your gender? 

● Male 

● Female 

 

What is your age? 

Please indicate your highest level of education. 

● some high school 

● high school/GED 

● some college 

● college 

● some graduate school 

● graduate school 
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Please indicate your yearly household income 

● Under 10,001 

● 10,001-20,000 

● 20,001-40,000 

● 40,001-60,000 

● 60,001- 80,000 

● 80,001 - 100,000 

● Over 100,001 

 

Thank you!  Please be patient while we calculate your personal online data risk quotient. 

<<<Here participant saw a timer counting backwards for 10 seconds>>> 

Randomly the participant was shown either a high risk or low risk message after the ten 

seconds had passed. 

The second part of the study asks you to tell us a little bit more about your online purchasing 

habits.  Please try to imagine yourself in the following online shopping scenarios. 

SCENARIO 1:  

Imagine you have decided to add biking to your fitness routine. You have decided to buy a 

bicycle that costs about $650 and that you believe is a good fit for your biking needs.   

You have decided to purchase your new bicycle from Walmart.com OR SuppliesPlus.com. 

The following information is available on the Walmart.com/SuppliesPlus.com website. Please 

indicate how likely you would be to seek out and read about the following pieces of information 

before clicking through the website and choosing your new bike. 
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 Very Unlikely Unlikely Undecided Likely Very Likely 

How to place 
your order. 

●  ●  ●  ●  ●  

Payment 
options. 

●  ●  ●  ●  ●  

How secure the 
website is. 

●  ●  ●  ●  ●  

Fair Credit 
Billing Act. 

●  ●  ●  ●  ●  

Information the 
website collects 

about you. 

●  ●  ●  ●  ●  

Use of cookies 
on the website. 

●  ●  ●  ●  ●  

Rebates. ●  ●  ●  ●  ●  

How the site 
uses pattern 

recognition to 
link your 
purchase 
history to 

products you 
might like. 

●  ●  ●  ●  ●  

Information the 
site exchanges 

with third party 
advertisers. 

●  ●  ●  ●  ●  

Defective 
items. 

●  ●  ●  ●  ●  

Exchanges. ●  ●  ●  ●  ●  

Refunds. ●  ●  ●  ●  ●  

Return 
exceptions. 

●  ●  ●  ●  ●  

How the site 
uses your credit 

card 
information. 

●  ●  ●  ●  ●  

Order 
processing 

time. 

●  ●  ●  ●  ●  

How to opt-out 
of the site's 

cookie tracking 
system. 

●  ●  ●  ●  ●  

How the site 
ensures 

consumer data 
privacy. 

●  ●  ●  ●  ●  
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SCENARIO 2: 

Imagine you are about to go on a once in a lifetime vacation. In preparation for this trip, you 

plan to buy a new camera to capture all of the important moments.  You have decided to buy a 

camera that costs about $500 and that you believe meets all of your photography needs.    

You have decided to purchase your new camera from BestBuy.com OR CamerasGalore.com. 

The following information is available on the BestBuy.com (CamerasGalore.com) website. Please 

indicate how likely you would be to seek out and read about the following pieces of information 

clicking through the website and choosing your new camera. 
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 Very Unlikely Unlikely Undecided Likely Very Likely 

How to place 
your order. 

●  ●  ●  ●  ●  

Payment 
options. 

●  ●  ●  ●  ●  

How secure the 
website is. 

●  ●  ●  ●  ●  

Fair Credit 
Billing Act. 

●  ●  ●  ●  ●  

Information the 
website collects 

about you. 

●  ●  ●  ●  ●  

Use of cookies 
on the website. 

●  ●  ●  ●  ●  

Rebates. ●  ●  ●  ●  ●  

How the site 
uses pattern 

recognition to 
link your 
purchase 
history to 

products you 
might like. 

●  ●  ●  ●  ●  

Information the 
site exchanges 

with third party 
advertisers. 

●  ●  ●  ●  ●  

Defective 
items. 

●  ●  ●  ●  ●  

Exchanges. ●  ●  ●  ●  ●  

Refunds. ●  ●  ●  ●  ●  

Return 
exceptions. 

●  ●  ●  ●  ●  

How the site 
uses your credit 

card 
information. 

●  ●  ●  ●  ●  

Order 
processing 

time. 

●  ●  ●  ●  ●  

How to opt-out 
of the site's 

cookie tracking 
system. 

●  ●  ●  ●  ●  

How the site 
ensures 

consumer data 
privacy. 

●  ●  ●  ●  ●  

 
Strongly 
Disagree 

Disagree 
Neither Agree 
Nor Disagree 

Agree 
Strongly 

Agree 
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I feel that I 
have control 
over my data 

online. 

●  ●  ●  ●  ●  

I believe I can 
opt-out of 
allowing 

advertisers and 
companies to 

collect my 
online 

behavioral data 
(ie. 

remembering 
what sites I 

visit, remember 
what I click on 

in those sites to 
serve 

advertising that 
they believe 
will be more 
relevant to 

me). 

●  ●  ●  ●  ●  

I can use online 
privacy tools to 

remain 
anonymous 

online. 

●  ●  ●  ●  ●  

I understand 
how my online 
behavioral data 
is used online. 

●  ●  ●  ●  ●  

Data used to 
serve relevant 

advertising may 
be 

compromised. 

●  ●  ●  ●  ●  

Data 
companies 

collect about 
me could end 

up in the hands 
of criminals. 

●  ●  ●  ●  ●  

Data 
companies 

collect about 
me might be 
used in ways 

that make me 
feel 

uncomfortable. 

●  ●  ●  ●  ●  
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Once my data is 
collected, I 

have no control 
over how it is 

used. 

●  ●  ●  ●  ●  

I would like to 
see additional 

regulation 
enacted to 
protect my 

data privacy 
online. 

●  ●  ●  ●  ●  

I would like a 
new law 

enacted to 
protect my 
data online. 

●  ●  ●  ●  ●  

Regulators 
should do more 
to protect my 
data online. 

●  ●  ●  ●  ●  

I am concerned 
about my 

privacy online. 

●  ●  ●  ●  ●  

I would like to 
know what 

safeguards are 
in place in the 
event of a data 

breach. 

●  ●  ●  ●  ●  

I would like to 
know how I 

may be 
compensated 
in the event of 
a data breach. 

●  ●  ●  ●  ●  

I would like to 
know what 

companies are 
doing to keep 
my personal 
data secure. 

●  ●  ●  ●  ●  

I would like to 
know what the 

federal 
government is 
doing to keep 
my personal 
data secure. 

●  ●  ●  ●  ●  
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Please indicate how likely you would be to desire the following types of information before 

clicking through a website's pages 

 Very Unlikely Unlikely Undecided Likely Very Likely 

information 
about the data 
privacy policies 
about how your 
data is used on 

the site you 
visited. 

●  ●  ●  ●  ●  

information 
about how to 

opt-out of 
online 

behavioral 
tracking used to 

offer you 
advertisements 
based on your 

browsing 
history. 

●  ●  ●  ●  ●  

information 
about what 3rd 
parties (if any) 
with which the 

site shares 
consumer data. 

●  ●  ●  ●  ●  

 

Is there any other type of information you would seek out before browsing on a website? 

In part 3, we are switching gears to questions about brands. 
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Please indicate which brand websites you are familiar with. 

 
Not Familiar 

At All 
Somewhat 
Unfamiliar 

Not Sure 
Somewhat 

Familiar 

Very 
Familiar 

BestBuy.com ●  ●  ●  ●  ●  

Amazon.com ●  ●  ●  ●  ●  

Walmart.com ●  ●  ●  ●  ●  

CamerasGalore.co
m 

●  ●  ●  ●  ●  

Suppliesplus.com ●  ●  ●  ●  ●  

ComputerMart.com ●  ●  ●  ●  ●  
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Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

Bestbuy.com 
meets my 

expectations. 

●  ●  ●  ●  ●  

I feel 
confidence in 

the 
BestBuy.com 
brand name. 

●  ●  ●  ●  ●  

BestBuy.com is 
a brand that 

never 
disappoints me. 

●  ●  ●  ●  ●  

BestBuy.com is 
a brand name 
that would be 

honest and 
sincere in 

addressing my 
concerns. 

●  ●  ●  ●  ●  

I could rely on 
BestBuy.com to 

solve the 
problem. 

●  ●  ●  ●  ●  

BestBuy.com 
would make an 
effort to satisfy 

me. 

●  ●  ●  ●  ●  

BestBuy.com 
would 

compensate me 
in some way for 

the problem 
with the 
product I 

purchased. 

●  ●  ●  ●  ●  
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Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

Amazon.com 
meets my 

expectations. 

●  ●  ●  ●  ●  

I feel 
confidence in 

the 
Amazon.com 
brand name. 

●  ●  ●  ●  ●  

Amazon.com is 
a brand that 

never 
disappoints me. 

●  ●  ●  ●  ●  

Amazon.com is 
a brand name 
that would be 

honest and 
sincere in 

addressing my 
concerns. 

●  ●  ●  ●  ●  

I could rely on 
Amazon.com to 

solve the 
problem. 

●  ●  ●  ●  ●  

Amazon.com 
would make an 
effort to satisfy 

me. 

●  ●  ●  ●  ●  

Amazon.com 
would 

compensate me 
in some way for 

the problem 
with the 
product I 

purchased. 

●  ●  ●  ●  ●  

 

 

  



113 
 

 

Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

CamerasGalore.co
m meets my 
expectations. 

●  ●  ●  ●  ●  

I feel confidence in 
the 

CameraGalor.com 
brand name. 

●  ●  ●  ●  ●  

CamerasGalore.co
m is a brand that 
never disappoints 

me. 

●  ●  ●  ●  ●  

CamerasGalore.co
m is a brand name 

that would be 
honest and sincere 
in addressing my 

concerns. 

●  ●  ●  ●  ●  

I could rely on 
CamerasGalore.co

m to solve the 
problem. 

●  ●  ●  ●  ●  

CamerasGalore.co
m would make an 

effort to satisfy me. 

●  ●  ●  ●  ●  

CameraGalore.com 
would compensate 
me in some way for 

the problem with 
the product I 
purchased. 

●  ●  ●  ●  ●  
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Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

Walmart.com 
meets my 

expectations. 

●  ●  ●  ●  ●  

I feel 
confidence in 

the 
Walmart.com 
brand name. 

●  ●  ●  ●  ●  

Walmart.com is 
a brand that 

never 
disappoints me. 

●  ●  ●  ●  ●  

Walmart.com is 
a brand name 
that would be 

honest and 
sincere in 

addressing my 
concerns. 

●  ●  ●  ●  ●  

I could rely on 
Walmart.com 
to solve the 

problem. 

●  ●  ●  ●  ●  

Walmart.com 
would make an 
effort to satisfy 

me. 

●  ●  ●  ●  ●  

Walmart.com 
would 

compensate me 
in some way for 

the problem 
with the 
product I 

purchased. 

●  ●  ●  ●  ●  
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Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

SuppliesPlus.co
m meets my 
expectations. 

●  ●  ●  ●  ●  

I feel confidence 
in the 

SuppliesPlus.co
m brand name. 

●  ●  ●  ●  ●  

SuppliesPlus.co
m is a brand that 

never 
disappoints me. 

●  ●  ●  ●  ●  

SuppliesPlus.co
m is a brand 

name that would 
be honest and 

sincere in 
addressing my 

concerns. 

●  ●  ●  ●  ●  

I could rely on 
SuppliesPlus.co
m to solve the 

problem. 

●  ●  ●  ●  ●  

SuppliesPlus.co
m would make 

an effort to 
satisfy me. 

●  ●  ●  ●  ●  

SuppliesPlus.co
m would 

compensate me 
in some way for 

the problem 
with the product 

I purchased. 

●  ●  ●  ●  ●  
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Please indicate your level of agreement with the following: 

 
Strongly 
Disagree 

Disagree 

Neither 
Agree nor 
Disagree 

Agree 
Strongly 

Agree 

ComputerMart.com 
meets my 

expectations. 

●  ●  ●  ●  ●  

I feel confidence in 
the 

ComputerMart.com 
brand name. 

●  ●  ●  ●  ●  

ComputerMart.com 
is a brand that 

never disappoints 
me. 

●  ●  ●  ●  ●  

ComputerMart.com 
is a brand name 
that would be 

honest and sincere 
in addressing my 

concerns. 

●  ●  ●  ●  ●  

I could rely on 
ComputerMart.com 

to solve the 
problem. 

●  ●  ●  ●  ●  

ComputerMart.com 
would make an 

effort to satisfy me. 

●  ●  ●  ●  ●  

ComputerMart.com 
would compensate 
me in some way for 

the problem with 
the product I 
purchased. 

●  ●  ●  ●  ●  

 

 

 

Please indicate how much personal risk you felt after being told you have high (low) risk 

regarding your online data privacy? 

 No Risk . Some Risk . A Lot of Risk 

. ●  ●  ●  ●  ●  
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Please indicate how much concern you felt after being told you have high (low) risk regarding 

your online data privacy? 

 No Concern . Some Concern . A Lot of  Concern 
. ●  ●  ●  ●  ●  

 

  

Before our calculations, were you previously aware of the high (low) risk your personal data 

being compromised and used in ways you may find embarrassing or inappropriate? 

 
Not at all 

Aware 
. 

Somewhat 
Aware 

. Very Aware 

. ●  ●  ●  ●  ●  

 

 

Participants were debriefed and given the opportunity to have their data removed from the 

study. 
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Appendix B 

Main Experiment Questionnaire 

For the following questions please indicate how often you are likely to do the following: 
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Very 

Unlikely 
Unlikely 

Somewha
t Unlikely 

Undecide
d 

Somewha
t Likely 

Likely 
Very 
Likely 

Have your 
computer 

save 
passwords

. 

●  ●  ●  ●  ●  ●  ●  

Read 
unsolicite
d e-mail. 

●  ●  ●  ●  ●  ●  ●  

Provide a 
false or 

fictitious 
name 
when 

registering 
on a 

website. 

●  ●  ●  ●  ●  ●  ●  

Use public 
wi-fi. 

●  ●  ●  ●  ●  ●  ●  

Log onto 
online 

accounts 
using 
public 

computers
. 

●  ●  ●  ●  ●  ●  ●  

Have a 
virus 

checker 
installed 
on your 

computer. 

●  ●  ●  ●  ●  ●  ●  

Set up 
your 

browser 
to reject 

unnecessa
ry cookies. 

●  ●  ●  ●  ●  ●  ●  

Lock your 
computer 
when it is 
not in use. 

●  ●  ●  ●  ●  ●  ●  

Upgrade 
your 

browser 
to the 

newest 
version. 

●  ●  ●  ●  ●  ●  ●  

Open an 
email 

without a 
subject. 

●  ●  ●  ●  ●  ●  ●  
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Use a 
password 
that can 
be found 

in the 
dictionary. 

●  ●  ●  ●  ●  ●  ●  

Accept 
unknown 
"friends" 
on social 

networkin
g sites. 

●  ●  ●  ●  ●  ●  ●  

Make sure 
online 

forms are 
secure 
before 
filling 

them out. 

●  ●  ●  ●  ●  ●  ●  

Clear 
computer'

s cache 
after 

browsing 

●  ●  ●  ●  ●  ●  ●  

Frequentl
y scan 
your 

computer 
for 

spyware. 

●  ●  ●  ●  ●  ●  ●  

Use a 
separate 

email 
account 
that you 

use solely 
for the 

purpose 
of 

registering 
on 

websites. 

●  ●  ●  ●  ●  ●  ●  

Save your 
credit card 
informatio

n in an 
online 
store's 

database. 

●  ●  ●  ●  ●  ●  ●  
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When you 
get an e-
mail from 
a financial 
institution 
asking for 
informatio
n updates, 
you click 
the link 

and fill out 
their 

update 
form. 

●  ●  ●  ●  ●  ●  ●  

Look for 
and read 
privacy 

statement
s on the 

Web. 

●  ●  ●  ●  ●  ●  ●  

Use 
anonymiz
ers while 
browsing 
the web. 

●  ●  ●  ●  ●  ●  ●  

Include 
biographic

al 
informatio

n about 
you online 

(e.g., on 
Facebook 
or other 

site). 

●  ●  ●  ●  ●  ●  ●  

Use social 
networkin

g sites. 

●  ●  ●  ●  ●  ●  ●  

Post on 
social 

networkin
g sites. 

●  ●  ●  ●  ●  ●  ●  
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Please indicate your answer to the following questions. 

 Never Rarely Sometimes 
Most of the 

time 
Always 

How often do 
you encounter 

advertising 
based on what 

you have 
previously 

searched for? 

●  ●  ●  ●  ●  

How often do 
you click on 

advertisements 
that offer 

discounts for a 
product? 

●  ●  ●  ●  ●  

 

 

Please indicate approximately how many hours per day you devote to the following activities. 

 0 hours 
less than 
an hour 

1-2 hours 2-3 hours 3-4 hours 

4 or 
more 
hours 

About how 
much time 

do you spend 
online each 

day? 

●  ●  ●  ●  ●  ●  

About how 
much time 

do you spend 
on social 

networking 
sites each 

day? 

●  ●  ●  ●  ●  ●  

About how 
much time 

do you spend 
shopping 

online each 
day? 

●  ●  ●  ●  ●  ●  
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How many purchases would you estimate you have made online in the past month? 

● 0 

● 1 

● 2 

● 3 

● 4 

● 5 or more 

 

What is your gender? 

● Male 

● Female 

 

What is your age? 

 

Please indicate your highest level of education. 

● some high school 

● high school/GED 

● some college 

● college 

● some graduate school 

● graduate school 

 

Please indicate your yearly household income 

● Under 10,001 

● 10,001-20,000 

● 20,001-40,000 

● 40,001-60,000 

● 60,001- 80,000 

● 80,001 - 100,000 

● Over 100,001 
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Thank you!  Please be patient while we calculate your risk quotient. 

 

Participants saw randomly, a high or low risk message. 

 

Please indicate on the scale below your level of awareness of your risk level previous to our 

short test. 

 
Not at all 

Aware 
2 3 4 5 6 

Very 
Aware 

. ●  ●  ●  ●  ●  ●  ●  

 

Moving on to part 2 of the study. 

 

The second part of the study asks you to tell us a little bit more about your online purchasing 

habits.  Please try to imagine yourself in the following online shopping scenarios. 

 

SCENARIO 1: 

Imagine you have decided to add biking to your fitness routine. You have decided to buy a 

bicycle that costs about $650 and that you believe is a good fit for your biking needs.   

 

You have decided to purchase your new bicycle from (Walmart.com) SuppliesPlus.com.  

 

The following information is available on the SuppliesPlus.com (Walmart.com) website. Please 

indicate how likely you would be to:  seek out and read about the following pieces of 

information clicking through the website and choosing your new bike. 
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Very 

Unlikely 
Unlikely 

Somewhat 
Unlikely 

Undecided 
Somewhat 

Likely 
Likely 

Very 
Likely 

How to place 
your order. 

●  ●  ●  ●  ●  ●  ●  

Payment 
options. 

●  ●  ●  ●  ●  ●  ●  

How secure 
the website is. 

●  ●  ●  ●  ●  ●  ●  

Information 
the website 

collects about 
you. 

●  ●  ●  ●  ●  ●  ●  

Use of cookies 
on the 

website. 

●  ●  ●  ●  ●  ●  ●  

Rebates. ●  ●  ●  ●  ●  ●  ●  

How the site 
uses pattern 

recognition to 
link your 
purchase 
history to 

products you 
might like. 

●  ●  ●  ●  ●  ●  ●  

Information 
the site 

exchanges 
with third 

party 
advertisers. 

●  ●  ●  ●  ●  ●  ●  

Defective 
items. 

●  ●  ●  ●  ●  ●  ●  

Exchanges. ●  ●  ●  ●  ●  ●  ●  

Refunds. ●  ●  ●  ●  ●  ●  ●  

Return 
exceptions. 

●  ●  ●  ●  ●  ●  ●  

How the site 
uses your 

credit card 
information. 

●  ●  ●  ●  ●  ●  ●  

Order 
processing 

time. 

●  ●  ●  ●  ●  ●  ●  

How to opt-
out of the 

site's cookie 
tracking 
system. 

●  ●  ●  ●  ●  ●  ●  

How the site 
ensures 

consumer 
data privacy. 

●  ●  ●  ●  ●  ●  ●  
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The 
website&#39;s 

mobile 
application 

privacy 
options. 

●  ●  ●  ●  ●  ●  ●  

Contact 
information in 
case you have 
privacy related 

questions. 

●  ●  ●  ●  ●  ●  ●  

A pledge of 
accountability 

by the 
company. 

●  ●  ●  ●  ●  ●  ●  

How your IP 
address and 

other 
information 
are collected 

by social 
media widgets 
on the site (for 

example, 
Facebook or 

Pinterest 
icon). 

●  ●  ●  ●  ●  ●  ●  

Customer 
reviews about 

the site. 

●  ●  ●  ●  ●  ●  ●  

A privacy seal 
or icon. For 
example, E-

Verify or 
Better 

Business 
Bureau icons. 

●  ●  ●  ●  ●  ●  ●  

 

Now, let’s move to the second shopping scenario. 

SCENARIO 2: 

Imagine you are about to go on a once in a lifetime vacation. In preparation for this trip, you 

plan to buy a new camera to capture all of the important moments.  You have decided to buy a 

camera that costs about $500 and that you believe meets all of your photography needs.   

You have decided to purchase your new camera from CamerasGalore.com (BestBuy.com). 
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The following information is available on the (BestBuy.com) CamerasGalore.com website. Please 

indicate how likely you would be to seek out and read about the following pieces of information 

clicking through the website and choosing your new camera. 
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Very 

Unlikely 
Unlikely 

Somewhat 
Unlikely 

Undecided 
Somewhat 

Likely 
Likely 

Very 
Likely 

How to place 
your order. 

●  ●  ●  ●  ●  ●  ●  

Payment 
options. 

●  ●  ●  ●  ●  ●  ●  

How secure 
the website 

is. 

●  ●  ●  ●  ●  ●  ●  

Information 
the website 

collects about 
you. 

●  ●  ●  ●  ●  ●  ●  

Use of 
cookies on 

the website. 

●  ●  ●  ●  ●  ●  ●  

Rebates. ●  ●  ●  ●  ●  ●  ●  

How the site 
uses pattern 

recognition to 
link your 
purchase 
history to 

products you 
might like. 

●  ●  ●  ●  ●  ●  ●  

Information 
the site 

exchanges 
with third 

party 
advertisers. 

●  ●  ●  ●  ●  ●  ●  

Defective 
items. 

●  ●  ●  ●  ●  ●  ●  

Exchanges. ●  ●  ●  ●  ●  ●  ●  

Refunds. ●  ●  ●  ●  ●  ●  ●  

Return 
exceptions. 

●  ●  ●  ●  ●  ●  ●  

How the site 
uses your 

credit card 
information. 

●  ●  ●  ●  ●  ●  ●  

Order 
processing 

time. 

●  ●  ●  ●  ●  ●  ●  

How to opt-
out of the 

site's cookie 
tracking 
system. 

●  ●  ●  ●  ●  ●  ●  
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How the site 
ensures 

consumer 
data privacy. 

●  ●  ●  ●  ●  ●  ●  

The website's 
mobile 

application 
privacy 
options. 

●  ●  ●  ●  ●  ●  ●  

Contact 
information 
in case you 

have privacy 
related 

questions. 

●  ●  ●  ●  ●  ●  ●  

A pledge of 
accountability 

by the 
company. 

●  ●  ●  ●  ●  ●  ●  

How your IP 
address and 

other 
information 
are collected 

by social 
media 

widgets on 
the site (for 

example, 
Facebook or 

Pinterest 
icon). 

●  ●  ●  ●  ●  ●  ●  

Customer 
reviews about 

the site. 

●  ●  ●  ●  ●  ●  ●  

A privacy seal 
or icon. For 
example, E-

Verify or 
Better 

Business 
Bureau icons. 

●  ●  ●  ●  ●  ●  ●  

 

 Just a few more questions on this topic 
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Please indicate how likely you would be to do the following before clicking through a website in 

the future. 
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Very 

Unlikely 
Unlikely 

Somewhat 
Unlikely 

Undecided 
Somewhat 

Likely 
Likely 

Very 
Likely 

Look for an 
icon that, 

when 
clicked, will 

give you 
information 
about how 
your data is 
being used. 

●  ●  ●  ●  ●  ●  ●  

Look for an 
icon that, 

when 
clicked, will 

give you 
information 
about how 
to opt-out 

of 
collection 

of your 
online data. 

●  ●  ●  ●  ●  ●  ●  

Give an 
email 

address to 
a site you 

do not 
know. 

●  ●  ●  ●  ●  ●  ●  

Give an 
email 

address to 
a site that 

you are 
familiar 

with. 

●  ●  ●  ●  ●  ●  ●  

Give your 
real name 

to a 
familiar 

site. 

●  ●  ●  ●  ●  ●  ●  

Give your 
real name 

to an 
unfamiliar 

site. 

●  ●  ●  ●  ●  ●  ●  
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Use 
software 

that hides 
your 

computers’ 
identity 

from 
websites 
you visit. 

●  ●  ●  ●  ●  ●  ●  

Erase some 
or all of the 
unwanted 
cookies on 

your 
computer. 

●  ●  ●  ●  ●  ●  ●  

Check 
privacy 

settings on 
websites 
on sites 

you visit in 
the future. 

●  ●  ●  ●  ●  ●  ●  

Talk with 
friends and 

family 
about data 

privacy 
issues. 

●  ●  ●  ●  ●  ●  ●  

Check your 
privacy 

settings on 
all of your 
wireless 
enabled 
devices. 

●  ●  ●  ●  ●  ●  ●  

Ensure sites 
you visit 

have 
privacy 

safety seals 
(for 

example, 
Better 

Business 
Bureau or 

E-verify 
icons) 

●  ●  ●  ●  ●  ●  ●  

Check for 
customer 
reviews 

about the 
site. 

●  ●  ●  ●  ●  ●  ●  
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Choose not 
to register 
on a site 

because it 
asks for 
personal 

information 
to get into 

the site. 

●  ●  ●  ●  ●  ●  ●  

Search for 
instructions 
about how 
to protect 

information 
about 

yourself on 
the web. 

●  ●  ●  ●  ●  ●  ●  

 

 

Now, we will switch gears and ask you about online data security. 
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Please indicate your level of agreement with the following. 
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Strongly 
Disagree 

Disagree 
Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree 
Strongly 

Agree 

I feel that I 
have control 
over my data 

online. 

●  ●  ●  ●  ●  ●  ●  

I believe I can 
opt-out of 
allowing 

advertisers and 
companies to 

collect my 
online 

behavioral 
data (ie. 

remembering 
what sites I 

visit, 
remember 

what I click on 
in those sites 

to serve 
advertising 
that they 

believe will be 
more relevant 

to me). 

●  ●  ●  ●  ●  ●  ●  

I can use 
online privacy 

tools to remain 
anonymous 

online. 

●  ●  ●  ●  ●  ●  ●  

I understand 
how my online 

behavioral 
data is used 

online. 

●  ●  ●  ●  ●  ●  ●  

Data used to 
serve relevant 

advertising 
may be 

compromised. 

●  ●  ●  ●  ●  ●  ●  

Data 
companies 

collect about 
me could end 

up in the 
hands of 
criminals. 

●  ●  ●  ●  ●  ●  ●  
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Data 
companies 

collect about 
me might be 
used in ways 

that make me 
feel 

uncomfortable
. 

●  ●  ●  ●  ●  ●  ●  

Once my data 
is collected, I 

have no 
control over 

how it is used. 

●  ●  ●  ●  ●  ●  ●  

I would like to 
see additional 

regulation 
enacted to 
protect my 

data privacy 
online. 

●  ●  ●  ●  ●  ●  ●  

I would like a 
new law 

enacted to 
protect my 
data online. 

●  ●  ●  ●  ●  ●  ●  

Regulators 
should do 
more to 

protect my 
data online. 

●  ●  ●  ●  ●  ●  ●  

I am concerned 
about my 

privacy online. 

●  ●  ●  ●  ●  ●  ●  

I would like to 
know what 

safeguards are 
in place in the 
event of a data 

breach. 

●  ●  ●  ●  ●  ●  ●  

I would like to 
know how I 

may be 
compensated 
in the event of 
a data breach. 

●  ●  ●  ●  ●  ●  ●  

I would like to 
know what 

companies are 
doing to keep 
my personal 
data secure. 

●  ●  ●  ●  ●  ●  ●  
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I would like to 
know what the 

federal 
government is 
doing to keep 
my personal 
data secure. 

●  ●  ●  ●  ●  ●  ●  
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Please indicate how likely you would be to desire the following types of information before 

clicking through a website's pages. 

 
Very 

Unlikely 
Unlikely 

Somewhat 
Unlikely 

Undecided 
Somewhat 

Likely 
Likely 

Very 
Likely 

information 
about the data 
privacy policies 

about how 
your data is 
used on the 

site you 
visited. 

●  ●  ●  ●  ●  ●  ●  

information 
about how to 

opt-out of 
online 

behavioral 
tracking used 
to offer you 

advertisement
s based on 

your browsing 
history. 

●  ●  ●  ●  ●  ●  ●  

information 
about what 

3rd parties (if 
any) with 

which the site 
shares 

consumer 
data. 

●  ●  ●  ●  ●  ●  ●  

 

Is there any other type of information you would seek out before browsing on a website? 

How much do you trust the following institutions or persons in terms of how well they fulfill 

their responsibilities in collecting and handling consumer data collected online? 

 A Lot Some Little None 

The government ●  ●  ●  ●  

Individual 
advertisers 

●  ●  ●  ●  

The advertising 
industry 

●  ●  ●  ●  

Individual brands ●  ●  ●  ●  
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Please mark your level of agreement or disagreement with the following statements. 

 
Strongly 
Disagree 

Disagree 
Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree 
Strongly 

Agree 

It is safe to 
believe that 
in spite of 

what people 
say, most 

people are 
primarily 

interested 
in their own 

welfare. 

●  ●  ●  ●  ●  ●  ●  

In dealing 
with 

strangers, 
one is 

better off 
being 

cautious 
until they 

have 
provided 
evidence 
that they 

are 
trustworthy. 

●  ●  ●  ●  ●  ●  ●  

Most 
repairmen 

will not 
overcharge 
even if they 
think they 

can get 
away with 

it. 

●  ●  ●  ●  ●  ●  ●  

If you are 
not careful, 
others can 

easily 
manipulate 

you. 

●  ●  ●  ●  ●  ●  ●  

It's 
important 
to me to 

know how a 
brand 

website will 
use my 
data. 

●  ●  ●  ●  ●  ●  ●  
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In part 3, we are switching gears to questions about brands. 

Please indicate which brand websites you are familiar with. 

 
Not Familiar 

At All 
Somewhat 
Unfamiliar 

Not Sure 
Somewhat 

Familiar 
Very 

Familiar 

BestBuy.com ●  ●  ●  ●  ●  

Amazon.com ●  ●  ●  ●  ●  

Walmart.com ●  ●  ●  ●  ●  

CamerasGalore.co
m 

●  ●  ●  ●  ●  

Suppliesplus.com ●  ●  ●  ●  ●  

ComputerMart.com ●  ●  ●  ●  ●  

 

Please tell us how often you shop at the following: 

 Never 
Less than 

Once a 
Month 

Once a 
Month 

2-3 Times 
a Month 

Once a 
Week 

2-3 
Times a 
Week 

Daily 

SuppliesPlus.com ●  ●  ●  ●  ●  ●  ●  

CamerasGalore.co
m 

●  ●  ●  ●  ●  ●  ●  

 

Have you ever read the privacy policy on the following brand websites? (The other condition 

had the Bestbuy.com/Walmart.com) 

 Yes I don't know No 

CamerasGalore.com ●  ●  ●  

SuppliesPlus.com ●  ●  ●  

 

Please indicate your level of agreement with the following statements about brand names. 
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Strongly 
Disagree 

Disagree 
Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree 
Strongly 

Agree 

Brand 
names 

inform me 
about the 
functional 

capabilities 
of a 

product. 

●  ●  ●  ●  ●  ●  ●  

Brand 
names help 
me decide 
how well a 

product 
will 

perform. 

●  ●  ●  ●  ●  ●  ●  

Brand 
names help 

me 
determine 
the safety 

of a 
brand's 
website. 

●  ●  ●  ●  ●  ●  ●  

 

 

Please indicate your level of agreement with the following: 
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Strongly 
Disagree 

Disagree 
Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree 
Strongly 

Agree 

SuppliesPlus.co
m meets my 
expectations. 

●  ●  ●  ●  ●  ●  ●  

I feel confidence 
in the 

SuppliesPlus.co
m brand name. 

●  ●  ●  ●  ●  ●  ●  

SuppliesPlus.co
m is a brand that 

never 
disappoints me. 

●  ●  ●  ●  ●  ●  ●  

SuppliesPlus.co
m is a brand 

name that would 
be honest and 

sincere in 
addressing my 

concerns. 

●  ●  ●  ●  ●  ●  ●  

I could rely on 
SuppliesPlus.co
m to solve the 

problem. 

●  ●  ●  ●  ●  ●  ●  

SuppliesPlus.co
m would make 

an effort to 
satisfy me. 

●  ●  ●  ●  ●  ●  ●  

SuppliesPlus.co
m would 

compensate me 
in some way for 

the problem 
with the product 

I purchased. 

●  ●  ●  ●  ●  ●  ●  

 

 

Please indicate your level of agreement with the following. 
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Strongly 
Disagree 

Disagree 
Somewha
t Disagree 

Neither 
Agree 

nor 
Disagree 

Somewhat 
Agree 

Agre
e 

Strongly 
Agree 

CamerasGalore.co
m meets my 
expectations. 

●  ●  ●  ●  ●  ●  ●  

I feel confidence in 
the 

CamerasGalore.co
m brand name. 

●  ●  ●  ●  ●  ●  ●  

CamerasGalore.co
m is a brand that 
never disappoints 

me. 

●  ●  ●  ●  ●  ●  ●  

CamerasGalore.co
m is a brand name 

that would be 
honest and sincere 
in addressing my 

concerns. 

●  ●  ●  ●  ●  ●  ●  

I could rely on 
CamerasGalore.co

m to solve the 
problem. 

●  ●  ●  ●  ●  ●  ●  

CamerasGalore.co
m would make an 

effort to satisfy 
me. 

●  ●  ●  ●  ●  ●  ●  

CamerasGalore.co
m would 

compensate me in 
some way for the 
problem with the 

product I 
purchased. 

●  ●  ●  ●  ●  ●  ●  

 

Please indicate how much personal risk you felt after being told you have high risk regarding 

your online data privacy? 

 No Risk . Some Risk . A Lot of Risk 

. ●  ●  ●  ●  ●  

 

Please indicate how much you felt after being told you have high (low) risk regarding your online 

data privacy? 

 No Concern . Some Concern . 
A Lot of  
Concern 

. ●  ●  ●  ●  ●  
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What would you say was the primary purpose of this study? 

PARTICIPANTS WERE DEBRIEFED 

I would like to  withdraw all of the answers I provided from this experiment. 

● No 

● Yes 
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Appendix 3 

 

High Risk Message  
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Low Risk Message 
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Appendix 4 

Debriefing Language 

Using Heuristic-Systematic Processing Theory To Understand Consumer Shopping Behavior 

  

IRB # 1211667 

Study Debriefing  

  

The risk level you were assigned was simulated and NOT based on any real calculation.  You were 

randomly assigned to a risk level that had no connection to the questions you answered at the 

beginning of the experiment. 

  

Deception was necessary in this study in an effort to create a “real” feeling of risk so that you may (if you 

were in the high risk group) feel that your data was potentially at risk as a result of the information you 

provided at the beginning of the study. Theoretically, a feeling of risk is necessary to motivate people to 

protect their privacy online. 

  

This study is concerned with people paying attention to website privacy policies.  Previous studies have 

found that people do not pay attention to privacy policies and as a result, their consumer data may be used 

in ways they did not anticipate. One hypothesis this study tests is whether a warning about the risk to a 

consumer’s data will motivate them to desire more information about websites they shop on. 

  

  

How was this tested? 

In this study, you were asked to perform two tasks—filling out demographic information (age, gender, 

shopping habits), and completing the questions after reading a scenario about shopping online. One group 

saw a warning page after the completion of the demographic questions that said their data was at high risk, 

while the other group saw a page that indicated that their data was low risk. 

  

Hypotheses and main questions: 

I expect to find that those who received the warning about their data being at risk are going to be more likely 

to ask for additional information about the sites they are asked to assume they are making a purchase from 

in the scenarios than those who did not get a warning. 

  

I am also interested in the influence of brand familiarity on the effects of the warning. Some participants 

received familiar brands in their scenarios while others did not.  I suspect that when people are shopping on 

a familiar brand’s website, they will be less likely to be concerned about data privacy. 

  

  

Why is this important to study? 

There are many times when consumers do not know how their data is being used online.  This study may 

help to advance policy initiatives in an effort to make sure that consumers are clearly informed and/or notice 

the policies on websites that will offer them information about potential risks. 

  

Want to remove your data from the study? 

If you would like to remove your data from the study, there will be a place to click following this 

debrief.  Please click that box if you would like your data to be removed from the study. 

  

What if you want to know more? 

  

If you would like to receive a report of this research when it is completed (or a summary of the findings), 

please contact Heather Shoenberger at hrskv9@mail.missouri.edu or Dr. Esther Thorson at 

thorsone@mail.missouri.edu 
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If you have concerns about your rights as a participant in this experiment, please contact the Campus IRB at 

573-882-9585. 

  

Thank you again for your participation. 
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