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ABSTRACT 

Post-transcriptional gene silencing is a fascinating mechanism that regulates gene 

expression and protects the genome from invaders. In Neurospora crassa, genes that are 

unpaired during meiosis are silenced by a process known as Meiotic Silencing by 

Unpaired DNA (MSUD).  Utilizing the genetic advantages of this filamentous fungus, we 

are able to further characterize this RNAi pathway.  Previously, we have developed a 

suppressor screen to identify mutants defective in this process.  We are currently 

characterizing two newly identified MSUD genes, sad-a' and sad-c.  Homology searches 

reveal that these genes encode proteins related to known RNA interference factors.  Our 

analyses suggest that they are essential for sexual development but not vegetative growth.  

Like many other known MSUD proteins, SAD-A' and SAD-C preferentially localize in 

the perinuclear region, a presumed center of meiotic silencing activity.  Furthermore, 

SAD-A´ and SAD-C interact with one another and with other well-known MSUD 

components.  Identification and characterization of these two new components will add 

significantly to our understanding of the MSUD process.  We propose that SAD-A´ and 

SAD-C form a complex with the Argonaute SMS-2 and are important for MSUD.
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CHAPTER I -   RNA INTERFERENCE IN NEUROSPORA CRASSA 

 

History of Neurospora crassa 

The first documented account of Neurospora was recorded as a bread mold 

infestation occurring in French bakeries in 1843 (DAVIS and PERKINS 2002).  This orange 

powdered substance was later named Neurospora by Shear and Dodge in 1927 for its 

nerve-like markings on the ascospore.  Dodge also identified three different species 

within the genus and established a role for Neurospora in genetics (PERKINS 1992).  In 

1941, Beadle and Tatum utilized Neurospora for its advantages as a model system to 

study if and how genes regulate biochemical processes (BEADLE and TATUM 1941). This 

concept, commonly known as the “one-gene-one enzyme hypothesis,” laid the foundation 

for modern molecular biology and later resulted in the shared award of the Nobel Prize in 

Physiology or Medicine 1958.  After a visit to Beadle’s lab at Stanford, Barbara 

McClintock identified the seven chromosomes of Neurospora and described the phases 

of meiosis and post-meiotic mitosis (PERKINS 1992).  These significant early discoveries 

using Neurospora set a strong foundation for the fungal biology community that exists 

today. 

The genus Neurospora is a part of the Kingdom Fungi and has been classified 

under the phylum Ascomycota due to the spore sac, the ascus.  Neurospora is further 

classified into the class Sordariomycetes because of the formation of the female fruiting 

body, the perithecia.  The genome of the species Neurospora crassa was fully sequenced 

in 2003.  N. crassa has a genomic size of 43 megabases and about 10,000 genes 
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(GALAGAN et al. 2003).  Because of the public access to the genome and the relative ease 

to which N. crassa can be obtained and grown, this species is the most widely used in 

laboratory research. 

Life Cycle of Neurospora crassa 

  One advantage of using N. crassa as a model organism is that there are two 

distinct phases, vegetative and sexual, that give rise to differentiated cell types.  The three 

most common cell types are macroconidia, microconidia, and ascospores.   

 In nature, N. crassa is found in tropical, subtropical, and temperate forests on 

burned vegetation.  The heat of the fire causes ascospores (sexual spore) to germinate 

(JACOBSON et al. 2004) and allows this haploid filamentous fungus to grow over and 

under its substrate to form a highly branched network of hyphae (filamentous cells) 

known as mycelium.  Hyphae have incomplete crosswalls through which nutrients, 

organelles, and cytoplasmic contents flow freely.  Aerial hyphae then grow away from 

the substrate towards the air.  Large multi-nucleate asexual spores, macroconidia, bud 

from the macroconidiophore and are dispersed by wind to repeat the cycle.  Microconidia 

are uninucleated asexual spores that bud from the mycelia and are important for sexual 

reproduction (Figure 1-1) (SHIU et al. 2001; BISTIS et al. 2003). 

Under stress conditions, such as carbon or nitrogen starvation, N. crassa can 

undergo a sexual cycle. This begins with the development of a female structure called the 

protoperithecium.  Once fertilized by a male conidial cell, the nuclei from each mating 

type fuse, creating a transient diploid cell housed within the perithecium (fruiting body).  

After two rounds of meiosis and a mitotic division, eight haploid nuclei form and mature 
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within the spore sac known as an ascus.  Once matured at about fourteen days post 

fertilization, these ascospores are ejected out of the perithecia (Figure 1-1) (SPRINGER 

1993; SHIU et al. 2001).  Once exposed to a heat source, such as a forest fire, these 

ascospores will germinate (JACOBSON et al. 2004). 

History of RNA Interference (RNAi) 

RNA Interference (RNAi) is a gene silencing mechanism that is found in plants, 

animals, and fungi, and its purpose is to provide genomic defense and gene regulation.  

The first organism most scientists recall when discussing RNAi is Caenorhabditis 

elegans; however, before Fire and Mellow conducted their Nobel-prize winning research 

defining RNAi, co-suppression was first characterized in plants.  In an attempt to 

generate a darker violet petunia plant,  NAPOLI et al. (1990) inserted the chalcone 

synthase (CHS) gene which resulted in pale or white, not purple, petunias. When further 

examined, they noticed that both endogenous and ectopic levels of CHS were 

dramatically reduced compared to wild type and named this phenomenon co-suppression.   

A few years later, ROMANO and MACINO (1992) obtained a similar result when they 

inserted the carotenoid pathway gene, al-1, in multiple copies within the Neurospora 

genome and ended up with a range in vegetative colors from a dark yellow to white and a 

decreased al-1 mRNA level. This phenomenon was termed quelling.  Finally in 1998, 

Fire and Mellow explained the reason for these results and others like them.  Through 

elegant experimentation, they showed that it was the production of the double-stranded 

RNA (dsRNA) that led to the silencing action (FIRE et al. 1998).  It was this 

groundbreaking result that led to the discovery of the RNAi machinery components. 
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RNAi Machinery 

There are three main components in RNAi systems:  Dicer, Slicer, and RNA-

dependent RNA polymerase (RdRP); although, it has been shown that some systems do 

not require the classical RdRP for silencing (MATZKE and BIRCHLER 2005).  Researchers 

in the Drosophila field first hypothesized that dsRNA had to be converted into small 

interfering RNAs (siRNAs).  These siRNAs act as guides to cleave the target mRNA 

(SEN and BLAU 2006).  The next step was to determine what enzyme(s) were responsible 

for this process.  Dicer was first identified in Drosophila and later found to be conserved 

across organisms with RNAi.    In addition to RNaseIII domains, Dicer typically has a 

helicase and a Piwi-Argonaute-Zwille (PAZ) domain. The RNaseIII cleaves the dsRNA 

into 20-25 nucleotide siRNAs while the helicase presumably acts to unwind the dsRNA. 

The PAZ domain is not necessarily required (CATALANOTTO et al. 2004).  

 The next discovery was the Slicer proteins, called Argonautes.  This group is 

very diverse with many functions.  Argonautes are characterized by their PAZ and PIWI 

domains.  The PAZ domain acts to bind the 3´ end of a small RNA molecule while the 

PIWI domain acts to cleave the RNA.  There are two main subgroups of Argonautes:  

AGO and PIWI.  The AGO group mediate siRNA generation, and the PIWI group 

mediates piRNAs as first described in the Drosophila germline (CASTEL and 

MARTIENSSEN 2013).   

Lastly, a role for RNA-dependent RNA polymerase (RdRP) in RNAi has been 

described in organisms such as Neurospora, C. elegans, and Arabidopsis. These proteins 

are important for initiating RNAi by converting aberrant RNA (aRNA), a single-stranded 
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RNA template, into double-stranded RNA (dsRNA). Once the dsRNA is constructed by 

the RdRP, then Dicer can cleave the molecule into siRNAs.  Argonautes slice the double-

stranded siRNA into single-stranded siRNA (ss siRNA).  These ss siRNAs are loaded 

onto the RNA-induced Silencing Complex (RISC) by Argonaute which destroys the 

target mRNAs.  Not all organisms require an RdRP for silencing activity (MATZKE and 

BIRCHLER 2005).   

Applications of RNAi 

 Since its discovery, the RNAi mechanism has been exploited for use in the 

laboratory.  The first step for using RNAi knock down is to decide the method of 

delivery.  Long dsRNAs or synthetic siRNAs can be injected into the studied organism to 

trigger the RNA-induced Silencing Complex (RISC) to degrade target mRNAs.  

Alternatively, small hairpin RNA (shRNA) can be delivered via transformation or a viral 

particle to be converted into siRNAs by Dicer proteins.  Different mechanisms for small 

RNA delivery are dependent upon the model organism used and the transgene being 

studied (PERRIMON et al. 2010).  RNAi-based knockdown has been utilized in many 

model organisms to demonstrate a role for genes that otherwise could not be studied.  

Many genes are essential for development and must be expressed for viability.  This is 

true for the Neurospora gene frh.  A shRNA under the control of an inducible promoter 

was transformed in to knock down frh allowing researchers to determine its important 

role in circadian clock regulation (CHENG et al. 2005).  RNAi can also be used as a high 

throughput genome screening method as in C. elegans and Drosophila.  In an effort to 

understand cardiac development, KIM et al. (2004) used RNAi knockdown in Drosophila 

embryos to identify heart loss-of-function mutant phenotypes.  Over 5,000 genes were 
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identified using this method which led to an important understanding of cardiac 

development.   

 The uses of RNAi in clinical research and as a therapeutic agent are also being 

developed.  Many human diseases can be studied and possibly treated using RNAi such 

as cancer, immunity, neurodegenerative disorders, developmental disorders, and aging.   

Synthetic siRNAs, like anti-bcl-2 siRNA, have been shown to have antitumor properties 

in mouse cancer models. When injected, this siRNA decreased bcl-2 levels and tumor 

growth in vitro and in vivo (YANO et al. 2004).  While a promising technique, more 

studies are needed to evaluate the effectiveness of RNAi-mediated knockdown as a 

therapeutic agent.  Many of the delivery vehicles are not yet efficient enough to induce 

long-lasting RNAi activity, thus silencing is temporary without further injections.  This is 

a painful proposition for an individual seeking treatment.  Getting the siRNA to the 

appropriate cells in target tissues also poses a challenge.  Modifications to the delivery 

particles or to the RNAs themselves are being developed to overcome these concerns 

(PERRIMON et al. 2010). 

 Benefits of RNAi knock down are not limited to the animal kingdom.  RNAi can 

also be utilized in agricultural pursuits.  RNAi-mediated modifications can lead to 

improved nutritional value, reduction of toxins, pest resistance, and increased plant 

productivity.  For example, lysine content in the corn plant has been increased by the 

RNAi-mediated knockdown of enzymes that reduce lysine levels (HEBERT et al. 2008).  

Corn is a staple for both human consumption and for livestock feed.  By increasing lysine 

levels through RNAi, there is no need to supplement diets with this essential amino acid 

thus reducing costs.  This aspect is particularly exciting for those in developing countries.  
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With all of these emerging applications, it makes sense to continue to identify new 

components of the RNAi machinery in all model organisms to better understand this 

particularly useful phenomenon.   

RNAi Mechanisms in Neurospora crassa 

Quelling 

Because vegetative N. crassa has incomplete crosswalls that allow the exchange 

of cytoplasmic contents between cells, it is susceptible to harmful agents such as 

transposons and viral invasion.  Quelling is one mechanism designed to protect the 

genome integrity (DANG et al. 2011).  Quelling is a post-transcriptional gene silencing 

mechanism that can become activated during the vegetative phase of the N. crassa life 

cycle.  In essence, target mRNAs are reduced in response to the presence of a transgene.  

al-1 encodes phytoene dehydrogenase, an important enzyme in the production of N. 

crassa’s vegetative orange coloring.  Without al-1, N. crassa becomes albino, thus al-

1can be used as a phenotypic marker for silencing.   ROMANO and MACINO (1992) 

discovered that when they ectopically inserted the al-1 gene in many copies, it resulted in 

a decreased al-1 mRNA level.  Furthermore, it was shown in subsequent experiments that 

this phenomenon was not unique to the albino genes, but many genes could be silenced in 

this way (PICKFORD et al. 2002).  Gene expression was inactivated by introduction of a 

repeated homologous sequence.  This mechanism is trans-acting in that it affects both 

transgenes and the endogenous gene.  In another study, COGONI et al. (1996) revealed 

that quelling is a dominant trait and transgenes are required for its establishment and 

maintenance. 
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Using al-1 as a marker in a mutagenesis screening, several qde (quelling-

defective) mutants were identified.  Three qde genes were further characterized:  qde-1, 

qde-3, and qde-2.  qde-1 shared homology with the tomato plant RdRP.  qde-3 was 

homologous to a RecQ DNA helicase.  qde-2 shared homology with Arabidopsis 

argonaute (PICKFORD et al. 2002).  Over time, more components of the quelling pathway 

were identified and characterized.  The current model for quelling begins with the 

recognition of a tandemly repeated gene (ZHANG et al. 2013).  Aberrant RNA (aRNA) is 

recognized and made into dsRNA by QDE-1, a DdRP/ RdRP, with the assistance of the 

DNA helicase QDE-3.  Two Dicer-like proteins, DCL-1 and DCL-2, cleave the dsRNA 

into ~25 nt siRNAs.  These ds siRNAs then bind to the argonaute protein, QDE-2, and 

are sliced. QDE-2-interacting Protein (QIP)  acts as an exonuclease, removing the 

passenger strand (Figure 1-2) (LI et al. 2010). 

Meiotic Silencing by Unpaired DNA (MSUD) 

Meiotic Silencing by Unpaired DNA (MSUD) is another RNAi mechanism that 

N. crassa utilizes to protect the genome from mobile elements.  Originally considered a 

form of transvection, ARAMAYO and METZENBERG (1996) showed that when the wild-

type ascospore maturation gene, asm-1, was crossed to asm-1
Δ, it resulted in white, 

inviable spore production  instead of the usual mature black spores.  In 2001, this unique 

phenomenon was renamed Meiotic Silencing by Unpaired DNA (MSUD).  During 

prophase I of meiosis, one unpaired copy of a gene anywhere within the genome silences 

all homologous DNA copies through MSUD (SHIU et al. 2001).   
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 To date, nine components of MSUD have been identified and characterized:  

SAD-1, SAD-2, SMS-2, DCL-1, QIP, SAD-3, SAD-4, SAD-5, and SAD-6. The first of 

these identified through a mutagenesis screening was SAD-1 (suppressor of ascus 

dominance). SAD-1 shares homology with other RdRPs, and was suggested to replicate 

aberrant RNA (aRNA) into dsRNA (SHIU et al. 2001; SHIU and METZENBERG 2002).  

The second gene involved was named sad-2.  This gene is interesting in that it shared 

similarity with the proteins from many RNAi mechanism-containing organisms; 

however, no functions of the protein were known.  SHIU et al. (2006) were the first to tag 

any MSUD genes with the reporters, green fluorescent protein (GFP) and red fluorescent 

protein (RFP).  When sad-1 and sad-2 were independently tagged with GFP, they 

localized to the perinuclear region during prophase I of meiosis.  Furthermore, it was 

shown that these two proteins co-localized in this region.  In a sad-2
Δ 

background, SAD-

1-GFP could no longer localize to the perinuclear region; however, this was not the case 

for SAD-2-GFP in a sad-1
Δ
 background suggesting that SAD-2 recruits SAD-1to the site 

of MSUD activity (SHIU et al. 2006).  A gene called sms-2 (suppressor of meiotic 

silencing) was found to be paralogous to the quelling argonaute qde-2 and also played a 

role in MSUD. This suggested that an argonaute protein was required for MSUD (LEE et 

al. 2003).  Next, it was shown that dcl-1, but not dcl-2, was also required for MSUD.  

DCL-1-GFP also localized to the perinuclear region and co-localized with the other 

established MSUD components (ALEXANDER et al. 2008).   

Identifying the three main components, RdRP, Argonaute, and Dicer, suggested 

that MSUD was indeed a bona fide RNAi pathway.  Recently, additional genes were 

identified as also playing a role in MSUD.  QIP (QDE-2 interacting protein), which also 



10 
 

functions for quelling, acts as an exonuclease that removes the passenger strand, an 

important step in the silencing process (LEE et al. 2010; XIAO et al. 2010).  With the 

construction of the N. crassa knockout library (COLOT et al. 2006), a new approach to 

genetic screening was utilized to identify more members of this pathway starting with 

sad-3.  SAD-3 encodes a putative helicase and may serve to assist SAD-1 in dsRNA 

production.  Like the other MSUD components, SAD-3 localizes to the perinuclear 

region and co-localizes with the other MSUD proteins  (HAMMOND et al. 2011a).  sad-4 

and sad-5 are fungal specific genes that do not encode known functional protein domains.  

SAD-5 is the first identified MSUD protein that localizes to the nucleus.  While functions 

for SAD-4 and SAD-5 in MSUD are unclear, it is known that they both are upstream of 

siRNA production (HAMMOND et al. 2013).  SAD-6, a Rad54-like homology search 

protein,  is the most recent nuclear MSUD factor identified and may be the key to 

understanding how unpaired DNA is recognized (SAMARAJEEWA et al. 2014). 

The current model for MSUD begins in the nucleus with the production of an 

aberrant RNA (aRNA) from an unpaired gene identified by an unknown mechanism, 

possibly involving SAD-5 and/or SAD-6.  Once in the perinuclear region, SAD-1 acts to 

convert the aRNA to dsRNA.  SAD-3 may serve to assist SAD-1 by unwinding nucleic 

acids.  SAD-2 acts to recruit SAD-1, and possibly other MSUD components, to the 

perinuclear region, an important location for meiotic silencing activity.  DCL-1 cleaves 

the dsRNA into siRNAs where then SMS-2 acts as an argonaute-like protein guided by 

the siRNAs to target mRNAs for degradation.  QIP acts as an exonuclease that removes 

the passenger strand.  This working model is depicted in Figure 1-3 (HAMMOND et al. 

2011a).  
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Figures 

 

Figure 1-1.  Life cycle of Neurospora crassa.   

Macroconidiation (vegetative) pathway produces multinucleated, genetically-identical 

macroconidia through aerial hyphae whereas the microconidiation pathway produces 

uninucleated, genetically-identical microconidia through mycelia. The sexual cycle 

begins with the development of the female structure, the protoperithecium.  After 

fertilization by a male conidium, the diploid cell gives rise to eight haploid ascospores 

within the ascus.  Figure reprinted from SHIU et al. (2001). 
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Figure 1-2.  Quelling in Neurospora crassa.   

Diagram illustrating the quelling pathway, a post-transcriptional gene silencing 

mechanism that occurs during the vegetative phase of the N. crassa life cycle. Tandemly 

repeated genes are recognized and converted to an aberrant RNA.  The aRNA is made 

into dsRNA by QDE-1.  That dsRNA is diced by DCL-1/DCL-2.  With the help of QIP, 

the duplex siRNA is converted to a single-stranded siRNA which guides QDE-2 to target 

homologous mRNA.  
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Figure 1-3.  MSUD in Neurospora crassa.   

Diagram illustrating the MSUD pathway, a post-transcriptional gene silencing 

mechanism that occurs in N. crassa during prophase I of meiosis. Unpaired genes are 

recognized and converted to an aberrant RNA.  The aRNA is made into dsRNA by SAD-

1.  That dsRNA is diced by DCL-1.  With the help of QIP, the duplex siRNA is converted 

to single-stranded siRNA which guides SMS-2 to target homologous mRNA.  Figure 

reprinted from HAMMOND et al. (2011a). 
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CHAPTER II -   IDENTIFICATION OF SAD-AˊΔ
 AND SAD-C

Δ
 AS 

SEMIDOMINANT SUPPRESSORS OF MSUD 

 

Introduction 

In an attempt to identify additional MSUD candidates, HAMMOND et al. (2011a) 

employed a high-throughput reverse genetic screen using the N. crassa knockout library.  

The library is made up of knockout strains for the entire annotated genome provided on 

96-well plates (COLOT et al. 2006).  Conidia from the library are transferred to MSUD 

suppression tester strains cultured on 96-well plates. Once spores are produced, the plates 

can quickly be examined under the microscope for evidence of MSUD suppression. This 

method provides an efficient way to screen the entire N. crassa genome for candidates of 

MSUD.  The two MSUD suppression tester strains used in the screening process contain 

unpairing of ascospore maturation-1 (asm-1) or round spore (r) genes. When asm-1 is 

unpaired, white, inviable spores are produced whereas when r is unpaired, round spores 

are produced instead of the wild-type, American football-shaped spores (SHIU et al. 

2001).  Any candidates displaying the wild-type phenotype are considered MSUD-

deficient and most likely play a role in this process.  Many MSUD candidates have been 

identified using this method, including sad-a´ and sad-c.   

A search using the NCBI conserved domain database for the sad-a´ and sad-c 

sequences identified two argonaute binding proteins, Arb1 and Arb2, respectively.  Arb1 

and Arb2 have been identified and characterized in the fission yeast 
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Schizosaccharomyces pombe.  Arb1 and Arb2 form a complex with S. pombe Ago1 

(Argonaute) known as the ARC (Argonaute siRNA chaperone).  ARC contains mostly 

double-stranded siRNA, and it has been proposed that ARC may function to transfer the 

double-stranded siRNA from Dcr1 (Dicer) to Ago1 (BUKER et al. 2007).  It is possible 

that SAD-A´ and SAD-C form a complex with the N. crassa argonaute protein SMS-2 in 

MSUD and/or QDE-2 in quelling and perform a similar biological function. 

Loss of any of the published MSUD genes leads to a defect in MSUD efficiency, 

according to the “silencing the silencer” model (SHIU et al. 2001). When an MSUD gene 

is unpaired by deletion in one of the parents, it triggers MSUD to silence that gene.  This 

negative feedback mechanism severely impedes the MSUD process, and other unpaired 

genes within the genome can no longer be silenced.  Accordingly, we can use this 

“silencing the silencer” phenomenon to test new genes for a role in MSUD.  Four tester 

strains are used to specifically test for MSUD suppression: ascospore maturation-1
Δ
 

(asm-1
 Δ

), round spore 
Δ
 (r

 Δ
), ectopic β-tubulin (::bml

R
), and ectopic actin (::act

+
).   

Whereas asm-1
 Δ

 and r
 Δ

 are assayed by a spore phenotype, bml and act are essential 

genes and cannot be deleted.  These genes are ectopically inserted at the his-3 locus, 

generating an unpaired copy of that gene.  When ::bml
R
 or ::act

+
 is silenced by MSUD, 

there is a significant reduction in ascopore production.  To determine if sad-a´ and sad-c 

are indeed components of MSUD, we tested their ability to suppress MSUD when 

crossed to these four unpaired tester strains. 

Roles for the newly identified sad genes may not be limited to MSUD. Six of the 

nine previously well-characterized MSUD components have also been shown to be 

required for sexual development (SHIU et al. 2001; LEE et al. 2003; SHIU et al. 2006; 
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ALEXANDER et al. 2008; XIAO et al. 2010; HAMMOND et al. 2011a; 2013; SAMARAJEEWA 

et al. 2014). Of these six, homozygous crosses of dcl-1
Δ
, qip

 Δ
, and sms-

 
2

 Δ
 produced no 

recognizable asci and were found to be required at an early stage in sexual development. 

The relationship between MSUD components and sexual development is not yet well 

understood.  In this study, we tested the effect of sad-a´
Δ
, sad-c

Δ
, and sad-a´

Δ
 sad-c

Δ
 in  

homozygous/heterozygous crosses to wild-type to determine if they also play a role in 

sexual development.   

While some MSUD genes are unique to silencing during the sexual phase only, 

there does seem to be some redundancy between the quelling and MSUD pathways.  

Both silencing mechanisms require dcl-1 and qip (ALEXANDER et al. 2008; XIAO et al. 

2010).  sad-6 RNA transcripts are expressed in both vegetative and sexual tissue samples, 

suggesting a role in both phases of the life cycle (SAMARAJEEWA et al. 2014).  In an 

effort to identify additional roles for these sad genes, it is important to understand if and 

how these genes affect all phases of the N. crassa life cycle.  Vegetative assays have been 

developed and utilized to examine all MSUD components for linear growth, branching, 

and conidiation patterning defects.  To date, none of the published MSUD components 

display any vegetative growth defects. We also included these assays in the 

characterization of sad-a´ and sad-c. 

Methods  

Most of the methods described herein are modified from standard Neurospora protocols 

(http://www.fgsc.net/Neurospora/NeurosporaProtocolGuide.htm). 
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Table 2-1. Strains used in this study 

Strain Genotype 

F2-01 fl A (FGSC 4317) 

F2-29 rid r
Δ
::hph; fl A 

F2-35 his-3::his-3
+
 actin

+
; fl A 

F2-36 his-3::his-3
+
 Bml; fl A 

F3-23 rid his-3
+
:: asm-1; fl; asm-1

Δ
::hph A 

F4-17 sms-2
∆
::hph; fl A 

F5-24 sad-1
Δ
::hph; fl A 

F6-36 sad-a'
Δ
::hph sad-c

Δ
::hph fl A 

P3-08 Oak Ridge wild type A (FGSC 2489) 

P3-25 mep sad-1
Δ
::hph a 

P8-44 sms-2
Δ
::hph a (FGSC 1160) 

P9-42 Oak Ridge wild type a  

P13-06 sad-c
∆
::hph a 

P13-07 sad-c
∆
::hph A 

P15-25 sad-a'
Δ
::hph a 

P15-26 sad-a'
Δ
::hph sad-c

Δ
::hph a 

P15-28 sad-a'
Δ
::hph A 

P16-21 sad-1
Δ
::hph a 

 

Growth Media 

Vogel trace elements- 5 g citric acid hydrate, 5 g zinc sulfate septahydrate, 1 g ferrous 

ammonium sulfate hexahydrate, 250 mg cupric sulfate pentahydrate, 50 mg manganese 

sulfate hydrate, 50 mg boric acid, and 50 mg sodium molybdate dihydride were dissolved 

in 95 mL of nanopure water, then sterilized into 50 mL conical vials via a 0.45 μm pore 

filter (Vogel 1964). The solution was stored at room temperature. 

Vogel minimal media- 25× Vogel’s salts was made as follows: 100 g sodium citrate 

septahydrate, 166.5 g anhydrous monobasic potassium phosphate, 66.5 g ammonium 
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nitrate, 6.65 g magnesium sulphate septahydrate, 3.34 g calcium chloride dehydrate, 1.67 

mL of 100 µg/mL biotin solution, and 3.34 mL of Vogel’s trace elements were mixed and 

brought to a total volume of 1 L with nanopure water. 5 mL of choloroform was added as 

a preservative. 

Westergaard (WG) trace elements-  To 1 L of water the following was added: 57 mg 

boric acid, 396 mg copper (II) sulfate pentahydrate, 72 mg manganese chloride 

hexahydrate, 4.2 g zinc chloride, 100 g sodium choloride, and 100 g calcium chloride 

dehydrate. The resulting solution was autoclaved for 30 minutes and stored at room 

temperature (Westergaard and Mitchell 1947). 

Westergaard (WG) media-  20× WG salts were made as follows: 20 g potassium nitrate, 

20 g potassium phosphate monobasic, 10 g magnesium sulfate septahydrate, 2 g sodium 

chloride, 2 g calcium chloride dihydrate were added to 1 L of nanopure water and 

autoclaved.  To make WG plates, an appropriate amount of 20× WG salts was diluted 

with water and 1.5% (w/v) sucrose. Next, 1.5% (w/v) Bacto Agar (BD), 1 mL WG Trace 

Elements per liter of media, and 5 µg/mL biotin were added. The media was autoclaved 

and 45 mL was added to 100 x 100 x 15 mm square petri dishes (Westergaard and 

Mitchell 1947). 

Brockman and de Serres (BDS) 20×  solution- 200 g sorbose, 10 g fructose, and 10 g 

glucose were added to 1 L of nanopure water, autoclaved for 30 minutes, and stored at 

room temperature. 

Brockman and de Serres (BDS) media-  An appropriate amount of 25× Vogel’s salts and 

1.5% (w/v) Bacto Agar (BD) was added to water and autoclaved for 30 minutes. After 
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sterilization, an appropriate amount of 20× BDS was added; the solution was mixed, and 

stored at room temperature until needed. 

Genomic DNA Isolation 

25 mL of Vogel’s liquid media was added to a 125 mL Erlenmeyer flask and then 

autoclaved for 30 minutes. Flasks were then inoculated with conidia from a strain of 

interest and placed in an incubator at 30°C. After 2-4 days, the resulting vegetative tissue 

was blotted dry with paper towels and then put in a desiccator containing sodium 

hydroxide. After the tissue was dried, it was ground using a glass rod in a test tube and a 

vortexer. The resulting powder was then used with the DNeasy Plant Mini Kit from 

Qiagen. 

Long Template PCR 

All PCR was set up according to the protocol enclosed with the Roche Expand Long 

dNTP Pack (Roche Applied Science, Indianapolis, IN). 

DNA gel electrophoresis 

0.8% (w/v) agarose in 1× TAE with 0.5 μg/mL of ethidium bromide was utilized in both 

analytical and purification procedures. 50 mL gels were used for sample groups of ten or 

fewer, while samples greater than ten were run on a 200 mL gel. TAE buffer was made in 

accordance to Sambrook and Russell (2001), page A1.17. Gels were run at varying 

voltages depending on the size of the DNA bands in question; 120 V for one hour was the 

most common setting for both analytical and purification applications. 
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Quantitative Analysis of MSUD Suppression and Ascospore Production 

r
Δ
, asm-1

Δ
, ::β-tubulin, ::actin, and wild-type fluffy strains were inoculated on the center 

of 60 mm WG  plates and incubated at room temperature for 6 days.  Conidia from each 

male of mating type a were adjusted to a concentration of 1000 counts per microliter.  

Fluffy plates were fertilized with 3 × 33µL aliquots of male conidial suspension.  Each 

cross was replicated in triplicate.  Ascopores were collected from the lids at 21 days post-

fertilization and analyzed using a hemocytometer under the microscope.   

Microscopy and photography 

Rosettes of asci were dissected from 11-14 day old perithecia in 25% glycerol using a 

VanGuard 1231CM Trinocular Microscope. A Canon Power Shot S3 IS digital camera 

with a Canon conversion lens adapter was attached to this microscope and used to 

photograph the rosettes.  

Vegetative Assays 

Plate Assay- Conidial strains of mating type a were adjusted to 1000 counts per 

microliter.  4 µL of each strain was inoculated on the center of 150 mm Vogel’s + his 

plate and incubated for 7 days at room temperature.   Two replicates per strain were used. 

Race Tube Assay- Conidial strains of mating type a were adjusted to 1000 counts per 

microliter.  4 µL of each strain was inoculated at one end of race tubes containing 15 mL 

of Vogel’s + his media.  Position of the leading hyphae was marked every 12 hours, 

starting at 18 hours post-inoculation.  Three race tubes per strain were used.   
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Permanent Stocking of Strains 

Conidial strains were inoculated to agar/milk tubes (with appropriate nutrients) and 

incubated at 30°C for 2-4 days. After sufficient conidiation, tubes were vortexed to allow 

the sterile milk and conidia to mix. One mL of conidia mix was then pipetted into sterile 

silica stock tubes, vortexed and placed in the 4°C refrigerator. Another 0.9 mL of the 

conidia mix was added to cryogenic vials containing 0.9 mL of 50% sterile glycerol, 

vortexed, and then placed in the -80°C freezer. 

 

Results 

sad-aˊΔ and sad-c
Δ
 semi-dominantly suppress meiotic silencing 

 To determine if sad-a´Δ 
and sad-c

Δ
 are in fact suppressors of MSUD, we crossed 

these strains and the double mutant to our four MSUD suppression assay testers.  Crosses 

of sad-a´
Δ to an asm-1

Δ tester yielded ~87.50% white spores.  Crosses of sad-c
Δ to an 

asm-1
Δ tester yielded ~75.76% white spores.  Crosses of wild-type, MSUD-proficient 

strains to an asm-1
Δ tester yielded 99.24% white spores (Figure 2-1).  Similar to the 

suppressors found in Sk-2 and Sk-3 (RAJU et al. 2007), sad-a´, sad-c, and the double 

mutant did not suppress r
 Δ 

(Figure 2-2).   On the other hand, crosses to ::bml
R
 or ::act

+ 

were suppressed (Figures 2-3; 2-4).   The double mutant suppressed asm-1
Δ 

nearly the 

same as sad-a´Δ
; however, suppression of  ::bml

R
 and ::act

+ 
was significantly higher in the 

double mutant than the single mutants combined.  sad-a´
Δ
 and sad-c

Δ
 suppression levels 
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were low compared to sad-1
Δ
 and sms-2

Δ
; therefore, these two candidates are considered 

semi-dominant suppressors of MSUD.   

sad-aˊ and sad-c
 
are required for sexual development 

Many of the previously characterized MSUD genes are required for sexual 

development.  Quantitative analysis shows that crosses heterozygous for sad-a´
Δ
 or for 

sad-c
Δ
 produce a normal level of progeny (Table 2-2); however, homozygous crosses for 

sad-a´
Δ
 or for sad-c

Δ
 produce perithecia without normal beaks, and no ascospores are 

produced (Figure 2-5).  Because single sad-a´
Δ
 and sad-c

Δ
 knockout strains are barren in 

homozygous crosses, we expected that the sad-a´
Δ
 sad-c

Δ 
homozygous cross would also 

be barren.  We tested the effect of sad-a´
Δ
 sad-c

Δ 
in a heterozygous cross by quantifying 

the ascospores from a cross to wild-type (Table 2-2).  Like the single mutants, the double 

mutant was also barren (Figure 2-5).  When examining the contents of the perithecia, no 

recognizable asci were present in homozygous crosses for sad-a´
Δ
, sad-c

Δ
, or sad-a´

Δ
 

sad-c
Δ
. 

 
These results resembled what has been previously described for dcl-1, qip, and 

sms-2 (LEE et al. 2003; ALEXANDER et al. 2008; XIAO et al. 2010) and suggest that sad-

a´
Δ
 and sad-c

Δ
 are required for the early stages of sexual development. 

sad-aˊ and sad-c are not required for vegetative growth 

To monitor the linear growth rate of sad-a´Δ 
and sad-c

Δ
, each strain was 

inoculated into a set of race tubes.  None of the sad deletion strains had a linear growth 

rate significantly different from the wild-type strain (Figure 2-6 B).   In addition, no 

obvious morphological differences were seen in the vegetative plate assay between the 

sad deletion strains.  Branching and conidiation patterns were all comparable to wild-type 
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(Figure 2-6 A).  In contrast to the sexual phase, sad-aˊ
Δ
, sad-c

Δ
, and sad-aˊ

Δ
 sad-c

Δ 
are 

normal during the vegetative phase.  This is true for all of the well-characterized MSUD 

genes. 

Discussion 

 In a previous study, HAMMOND et al. (2011a) set out to identify new components 

of the Meiotic Silencing by Unpaired DNA (MSUD) pathway.  sad-a´ and sad-c were 

identified as potential candidates through this high-throughput reverse genetic screen.  In 

this study, we used the “silencing the silencer” approach to confirm that sad-a´Δ 
and sad-

c
Δ
 are semi-dominant suppressors of MSUD.  The strongest suppressor of MSUD to date 

has been sad-1
Δ (SHIU et al. 2001; SHIU and METZENBERG 2002).  While all of the 

characterized sad genes are needed for MSUD, it is unclear why some appear to be semi-

dominant suppressors when knocked out.  It is possible that they are less efficient at self-

silencing compared to sad-1
Δ
. Perhaps the proteins produced from these genes may have 

a high expression or a long protein half-life.  Despite the fact that sad-a´Δ 
and sad-c

Δ
 are 

weaker suppressors of MSUD, there is no indication that they are any less important to 

this process than other sad genes.   

Double mutants had not yet been exhaustively explored for MSUD, and this 

experiment aimed to examine the effect of relationships between components of the 

silencing machinery on MSUD suppression.  Interestingly, there was no effect on 

silencing of r
Δ in either the single or double mutants.  This is reminiscent of the case seen 

in Sk strains (RAJU et al. 2007).  For MSUD suppression using the asm-1
Δ
 tester, the 

double mutant did not seem to be stronger than the individual knock outs.  Interestingly, 
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the effect of the double mutant using  ::bml
R
 or ::act

+ 
testers was nearly twice as strong 

as in the single mutants.  These results support the idea of a cumulative effect of sad-a´Δ 

and sad-c
Δ 

on MSUD suppression.   

sad-a´Δ 
and sad-c

Δ 
are barren in homozygous crosses and do not form any 

recognizable asci, thus these sad genes must play a role in early sexual development.  

Perhaps, MSUD may act as part of a meiotic checkpoint for cell cycle progression (SHIU 

et al. 2006).  Alternatively, certain sad genes may have other important roles independent 

of MSUD activity.  The latter seems more plausible considering the recent identification 

of sad genes not required for sexual development (HAMMOND et al. 2013; SAMARAJEEWA 

et al. 2014).  Both quelling and MSUD mechanisms require dcl-1 and qip.  Our data 

show that homozygous crosses for sad-a´Δ 
and sad-c

Δ 
resemble those of dcl-1

Δ
, qip

 Δ
, and 

sms-
 
2

Δ (LEE et al. 2003; ALEXANDER et al. 2008; LEE et al. 2010; XIAO et al. 2010).    

No other arb-1 or arb-2 homologs have been discovered in the N. crassa genome; 

therefore, it is reasonable to suggest that they might also play a role in the quelling 

pathway.  Analysis of mRNA for sad-a´ and sad-c from vegetative and sexual tissues 

would lend stronger support to this hypothesis.   
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Figures 

 

Figure 2-1.  MSUD is semi-dominantly suppressed in sad-a´
Δ
 and sad-c

Δ
 × asm-1

Δ
. 

Wild-type (WT) strain included as MSUD-proficient control, and two MSUD-deficient 

controls are sms-2
Δ
 and sad-1

Δ
.  Experimental strains are sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 

sad-c
Δ
.  When MSUD is suppressed, the percentage of white spores decreases in a cross 

to asm-1
Δ
. sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 sad-c

Δ  
act as semi-dominant suppressors of 

MSUD, allowing the production of  black spores in a cross to asm-1
Δ.  Bar represents the 

mean for three replicates. Error bars represent the standard deviation. 
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Figure 2-2.  MSUD is not affected in sad-a´
Δ
 and sad-c

Δ
 × r

Δ
. 

Wild-type (WT) strain included as MSUD-proficient control, and two MSUD-deficient 

controls are sms-2
Δ
 and sad-1

Δ
.  Experimental strains are sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 

sad-c
Δ
.  When MSUD is suppressed, the percentage of round-shaped spores decreases in 

a cross to r
Δ
. sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 sad-c

Δ 
produce a wild-type level of round-

shaped spores when crossed to r
Δ
.  Bar represents the mean for three replicates. Error bars 

represent the standard deviation.  
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Figure 2-3.  MSUD is semi-dominantly suppressed in sad-a´
Δ
 and sad-c

Δ
 × ::actin

+
. 

Wild-type (WT) strain included as MSUD-proficient control, and two MSUD-deficient 

controls are sms-2
Δ
 and sad-1

Δ
.  Experimental strains are sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 

sad-c
Δ
.  When MSUD is suppressed, the amount of ascospores produced increases in a 

cross to ::actin
+
. sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 sad-c

Δ  
act as semi-dominant suppressors of 

MSUD, increasing the production of ascospores in a cross to ::actin
+.  MSUD 

suppression in sad-a´
Δ
 sad-c

Δ  
is higher than in the single mutants. 
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Figure 2-4.  MSUD is semi-dominantly suppressed in sad-a´
Δ
 and sad-c

Δ
 × ::bml

R
. 

Wild-type (WT) strain included as MSUD-proficient control, and two MSUD-deficient 

controls are sms-2
Δ
 and sad-1

Δ
.  Experimental strains are sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 

sad-c
Δ
.  When MSUD is suppressed, the amount of ascospores produced increases in a 

cross to::bml
R
. sad-a´

Δ
, sad-c

Δ
, and sad-a´

Δ
 sad-c

Δ  
act as semi-dominant suppressors of 

MSUD, increasing the production of ascospores in a cross to ::bml
R 

(β-tubulin).  MSUD 

suppression in sad-a´
Δ
 sad-c

Δ  
is higher than in the single mutants. 
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Table 2-2.  Quantitative analysis of sad-aˊΔ and sad-c
Δ
 in sexual development. 

Quantitative analysis of shot ascospores. Heterozygous crosses produce a normal level of 

progeny; however, homozygous crosses are completely barren for sad-a´
Δ
, sad-c

Δ
, and 

sad-a´
Δ
 sad-c

Δ
.   
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Figure 2-5.  sad-aˊΔ and sad-c
Δ
 are required for sexual development. 

Normal perithecia (left) and rosettes (right) can be seen in the wild-type cross compared 

to the undersized beaks and absence of asci in the homozygous cross for sad-a´
Δ
, sad-c

Δ
, 

and sad-a´
Δ
 sad-c

Δ
.  Arrow shows the beak on wild-type perithecia. 
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Figure 2-6. sad-aˊand sad-c are not required for vegetative growth. 

(A) Plate Assay. No obvious morphological differences are visible between WT and sad 

deletion strains in the vegetative phase. (B) Race Tube Assay. Linear growth of sad 

deletion strains is normal. The identification number for each strain is included.     

 

 

 

 

 

  

A 

B 
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CHAPTER III -   LOCALIZATION AND PHYSICAL INTERACTION OF 

MSUD PROTEINS 

 

Introduction 

It is possible that MSUD proteins form a complex and process aberrant RNA 

molecules as they exit the nucleus.  It has already been shown that SAD-1, SAD-2, DCL-

1, SMS-2, QIP, SAD-3, and SAD-4 all localize to the perinuclear region.  Furthermore, 

many of these MSUD proteins colocalize in this region during prophase I of meiosis 

(SHIU et al. 2006; ALEXANDER et al. 2008; XIAO et al. 2010; HAMMOND et al. 2011a; 

HAMMOND et al. 2013).  We asked if we could also tag sad-a´ and sad-c with GFP to 

determine their subcellular localization. 

A variety of genetic tools have been developed to understand relationships among 

different genes and proteins.  Bimolecular fluorescence complementation (BiFC) is one 

technique used to directly visualize protein-protein interactions in vivo (HU et al. 2002).  

The yellow fluorescence protein (YFP) is first split into two molecules.  Each protein of 

interest is tagged with one half of the YFP molecule.  If these two proteins of interest 

physically interact, then the two halves of the YFP molecule will be in close enough 

proximity to fluoresce under the microscope.  If the two proteins of interest do not 

interact, then there will be no fluorescence emitted due to the fact that the split YFP 

molecules cannot fluoresce on their own.  It has been shown through BiFC that SAD-1 

and SAD-2 (BARDIYA et al. 2008) as well as QIP and SMS-2 (HAMMOND et al. 2011b) 
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have direct interactions.  In addition, SAD-3 interacts with SAD-1, SAD-2, SMS-2, and 

QIP (HAMMOND et al. 2011a).  Because Arb1 and Arb2 form a complex in the fission 

yeast S. pombe (BUKER et al. 2007), it is likely that SAD-A´ and SAD-C will also directly 

interact in N. crassa.      

siRNAs cannot be detected in S. pombe arb1
Δ 

and arb2
Δ
 cells, indicating their role 

in siRNA generation.  Arb1 and Arb2 localize to the same region as Ago1 (Argonaute) 

and form a complex with it known as the ARC (Argonaute siRNA chaperone) (BUKER et 

al. 2007).  It is possible that SAD-A´ and SAD-C interact with the N. crassa argonaute 

SMS-2 during MSUD activity.  In this study, we set out to determine if SAD-C has direct 

interaction with SMS-2 in N. crassa.  

Until recently, the use of biochemical methods in N. crassa was quite challenging, 

but improvement of these techniques provides another valuable tool for researchers to 

investigate biological processes.  HONDA and SELKER (2009) constructed an expression 

vector containing the HAT-FLAG epitope for use in verifying a histone protein complex 

through a protein purification mechanism.  The standard biochemical protocols 

established for N. crassa have been improved and expanded upon by GUO et al. (2010).  

Co-immunoprecipitation is a technique using antibodies for a specific target protein to 

identify interacting proteins within a protein complex. Following protein extraction, 

FLAG-tagged samples are incubated with anti-FLAG-coupled beads.  Any unbound 

proteins are washed away, and the bound complexes are eluted from the beads.  The 

eluate is analyzed on a Western blot to detect protein complexes bound to the anti-FLAG-

coupled beads.  In this study, we utilized the HAT-FLAG epitope tag provided by 
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HONDA and SELKER (2009) and the protocols described by GUO et al. (2010) to perform 

biochemical analysis on SAD-C and SMS-2.   

Methods  

Most of the methods described herein are modified from standard Neurospora protocols 

(http://www.fgsc.net/Neurospora/NeurosporaProtocolGuide.htm). 

Table 3-1. Strains used in this study 

Strain Genotype 
F2-23 rid fl A 
F4-36 rid sad-c-gfp::hph fl a 
F4-37 rid sad-a´-gfp::hph fl a  
F5-06 gfp-sms-2::hph fl a  
F6-37 rid his-3; flag-hat-sms-2::hph fl a 
P6-59 rid sad-1

∆
::hyg;  his-3

+
::yfpn A 

P8-25 rid his-3
+
::yfpc; inv sad-2

RIP
 a 

P9-42 Oak Ridge wild type a  
P15-12 rid his-3; sad-c-gfp::hph A 
P15-13 rid his-3; sad-a´-gfp::hph A  
P15-37 rid yfpn-sms-2::hph A  
P21-63 rid his-3; flag-hat-sad-c::hph A  
P21-64 rid mus52::bar; yfpn-sad-a´::hph A 
P21-65 rid yfpc-sad-c::hph a 
P21-66 rid flag-hat-sad-c::hph; gfp-sms-2::hph a 
P21-67 rid his-3; flag-hat-sad-c::hph; gfp-sms-2::hph A 
P21-68 rid; flag-hat-sms-2::hph A 
 

 Media 

10× FIGS- 100 g sorbose, 2.5 g fructose, 2.5 g glucose, and 1 g inositol were added to 

500 mL nanopure water and autoclaved for 30 minutes. The solution was stored at room 

temperature. 
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Top agar- 2 g Bacto Agar (BD), 36.4 g sorbitol, 8 mL 25× Vogel’s salts, and 172 mL 

nanopure water were added to 500 mL bottle and autoclaved. After sterilization, 20 mL 

of 10× FIGS was added. The agar was kept molten at 50°C until it was needed. 

Bottom agar-  24 mL 25× Vogel’s salts, 9 g Bacto Agar (BD), and 516 mL nanopure 

water were added to a 1 L bottle and autoclaved for 30 minutes. After sterilization, 60 mL 

10× FIGS was added to the molten mix. Twenty mL was poured into 100 x 15 mm round 

petri dishes to solidify. 

Fungal Transformation 

Recipient strains were inoculated to 100 mL of Vogel’s agar (plus any additional 

necessary supplements) in a 500 mL flask. Flasks were then incubated at 30°C for 5-7 

days to allow for robust conidial growth.  Conidia from the flasks was collected to 30 mL 

of 1M sorbitol, in 50 mL tubes, and then shaken. Next, conidia were passed through a 

100 μm vacuum filter column into another 50 mL tube. 100 μL of filtered conidia were 

diluted to 1000 μL by adding 900 μL of 1M sorbitol. Absorbance was measured at 420 

nm on a spectrophotometer. The remaining filtered conidia were then spun down at 3200 

rpm for 10 minutes. The supernatant was then gently removed and the conidial pellet re-

suspended in 1M sorbitol at 1 unit/μL. Transformation DNA (50 ng) was diluted to 10 μL 

with water and 90 μL of the conidia/sorbitol mix was added to the DNA. The entire mix 

was then added to a 1 mm gap cell and placed on ice.  When all of the samples were 

ready, an electroporator was set to 1500 volts. Post-electrocution, 750 μL of 1M sorbitol 

was added to the gap cell before the entire mix was transferred to a new 50 mL tube and 

placed on ice. To aid in the recovery of the conidial cells, 4.2 mL of Vogel’s liquid media 
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was added to the cell mix and the entire solution was placed in a shaker for 3-4 hours at 

30°C and 80 rpm.  Finally, 500 μL of the conidia mix was mixed with 20 mL of top agar 

and then poured onto a bottom agar plate and incubated at 37°C for ~3 days. 

Double-Joint PCR 

Double-joint PCR was conducted in the manner described in (HAMMOND et al. 2011b).  

This process requires the production of 5´ and 3´ regions flanking a gene of interest and a 

center fragment containing the fluorescent or epitope tag (-gfp, -yfpn, -yfpc, or -hat-flag). 

The first round of PCR amplifies the three components (5´ and 3´ flanking fragments and 

the center fragment). Reactions from the first round are combined into one tube without 

any specific primers for the second round of PCR as the overhanging chimeric extensions 

in the flanking regions act as primers.  In the third round of PCR, nested primers amplify 

the final product.  The final product is subsequently transformed into a N. crassa strain 

by electroporation.  gfp-tagged sad-a´ and sad-c strains used in this study were tagged at 

the C-terminus while all other strains were tagged at the N-terminus.  

Sample Preparation and Fluorescence Microscopy 

Perithecia were fixed in a fresh solution of 4% paraformaldehyde, 90 mM PIPES pH 6.9, 

10 mM EGTA, and 5 mM MgSO4 for 20 minutes at room temperature. After a brief rinse 

with phosphate buffered saline (PBS), perithecial contents were dissected out into a drop 

of 90% glycerol, 10% 100 mM K2HPO4 pH 8.7, 10 mg/mL DAPI, and 100 mg/mL 1,4-

diazabicyclo[2,2,2]octane. Once the perithecial contents were dispersed under a cover 

slip, they were sealed with clear nail polish and imaged after storage at -20° C overnight.  

All samples were imaged under an Olympus BX61 fluorescence microscope using FITC, 
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Cy5, and DAPI filter cubes. Images were captured using Metamorph (Molecular 

Devices) software. 

Fungal Protein Extraction 

N. crassa strains were grown at 32°C in 250-mL flasks containing 50 ml Vogel’s 

minimal medium and supplements required based on their genotypes.  After 48 hours, the 

resulting vegetative tissue was blotted dry with paper towels and ground into a fine 

powder using a mortar and pestle then quickly placed in liquid nitrogen.  Sexual tissue 

was prepared by crossing strains on WG plates overlaid with a single layer of Miracloth 

(Calbiochem) and incubated at room temperature for 6 days.  Perithecia were then 

scraped from the Miracloth using a razor blade and ground into a fine powder using a 

mortar and pestle then quickly placed in liquid nitrogen.     

Frozen samples were suspended in 1 ml of ice-cold lysis buffer (50 mM HEPES [pH 7.5], 

137 mM NaCl, 10% glycerol, 1mg/ml pepstatin A, 1 mg/ml leupeptin, and 100 mM 

phenylmethylsulfonyl fluoride [PMSF]). Extracts were incubated on ice for 10 minutes 

followed by centrifugation at 15,000 g for 15 minutes at 4°C.  Protein concentrations 

were measured by Bradford Assay. 

Co-Immunoprecipitation and Western Blots 

Protein samples (1 mg each) were incubated with ANTI-FLAG M2 affinity gel (Sigma) 

at 4°C overnight. Immune complexes were washed three times in PBS and suspended in 

2× LDS sample buffer. Samples were separated by SDS polyacrylamide gel 

electrophoresis and transferred to nitrocellulose membranes in transfer buffer 

(Invitrogen) for 1 hour. Membranes were blocked in 1× PBS and 0.05% Triton X-100 
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containing 5% skim milk powder for 1 hour and incubated for 1 hour at room 

temperature with anti-FLAG M2 antibody (Sigma) in PBST containing 5% skim milk; 

rabbit anti-GFP antibody (Abcam) in PBST containing containing 5% skim milk.  

Immunoprecipitates were detected by using horseradish peroxidase-conjugated secondary 

antibodies and ECL chemiluminescent substrate (GE Life Sciences) as described in the 

manufacturer’s instructions. 

Immunoprecipitation with Mass Spectrometry 

Protein samples (1 mg each) were incubated overnight at 4° with anti-FLAG M2 affinity 

gel (Sigma) on a rotator.  Mass spectrometry analysis was done at the University of 

Missouri Proteomics Core. The supplied beads were washed once with 25 mM 

ammonium bicarbonate pH 7.8, centrifuged and the supernatant removed, and then 

resuspended in 20 µL of 6M urea/100mM HEPES pH 7.8.  Proteins (Cys residues) were 

reduced with DTT and alkylated with IAA, and then digested overnight with trypsin (0.6 

µg per reaction).  Digestion was halted by adding formic acid to 1% final concentration 

(v/v) and then peptides were pre-enriched using a large-format 100 µL C18 tip (Pierce).  

Peptides were eluted from the tips in 70% acetonitrile (ACN)/1% formic acid (FA), 

lyophilized, and resuspended in 21 µL of 5/1 % ACN/FA.   

A full-loop injection (18 µL) was loaded onto a C8 trap column (Pepmap 100 C8, 

Dionex/Thermo) and then eluted onto a 25 cm long, 150 µm inner diameter, pulled-

needle analytical column packed with HxSIL C18 reversed phase resin (The Hamilton 

Co.).  Peptides were separated and eluted from the analytical column with a gradient of 

acetonitrile as follows: initial conditions (during trap load) and for the first 2 min was 5% 
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B (A: 0.1% formic acid in water; B: 99.9% acetonitrile, 0.1% FA), followed by a gradient 

from 5 to 20% B over 20 min, gradient from 20-30% B over 30 min, ramp to 90% B over 

10 min, hold at 90% B for 22 min, ramp to 5% B over 1 min, hold at 5% B for 5 min 

prior to loading next sample.  The Proxeon Easy nLC system is attached to an LTQ 

Orbitrap XL mass spectrometer.  Following a high-resolution (30,000 res, profile) FTMS 

scan of the eluting peptides (300-1800 m/z range), each cycle, the 9 most abundant 

peptides (reject porcine trypsin autolysis ions, reject +1 ions, >2000 counts) were 

subjected to ion-trap CID peptide fragmentation (NCE of 35%, centroid, isolation width 

of 2).  Dynamic exclusion was enabled with repeat count of 1, repeat duration of 30 sec, 

exclusion list of 500, and exclusion duration of 180 sec.  Data across a total of 90 minutes 

of elution were collected. 

Raw data were copied to the Sorcerer2 IDA and searched against the NCBI-Ncrassa-only 

database.  A scaffold (.sfd) file was outputted by the Sorcerer and imported into the 

Scaffold software V3.4.8 and examined for hits.  Full details of data processing and 

search parameters are available on request. 

Results 

SAD-A´ and SAD-C are preferentially localized in the perinuclear region  

To determine the subcellular localization of SAD-A´ and SAD-C, their genes 

were tagged with GFP using double-joint PCR (HAMMOND et al. 2011b).  Microscopic 

analysis indicates that both SAD-A´-GFP and SAD-C-GFP are present diffusely 

throughout the cytoplasm, but intense expression is visualized as a ring around the 

nucleus during prophase I of meiosis (Figure 3-1).  Both fusion constructs are fully 
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functional in that they allow production of ascospores when put through a homozygous 

cross.  These results are consistent with the other perinuclear MSUD components. 

Bimolecular complementation reveals interaction between MSUD components 

 yfpn-sad-a´ and yfpc-sad-c strains were constructed using double-joint PCR 

(HAMMOND et al. 2011b).  These two strains were crossed, and the resulting asci were 

examined using fluorescence microscopy.  We observed intense yellow fluorescence in 

the perinuclear region, indicating an interaction (Figure 3-2 A).  YFPN-SAD-A´ (Figure 

3-2 C) or YFPC-SAD-C (data not shown) does not fluoresce on their own.  When co-

expressed, the untagged split-YFP molecules do not fluoresce on their own (Figure 3-2 

D), confirming that the protein-protein interaction above is genuine.  

 The previously constructed yfpn-sms-2 (HAMMOND et al. 2011b) strain was 

crossed to the yfpc-sad-c strain, and fluorescence was observed under the microscope. A 

direct interaction between the protein products of these constructs was visualized (Figure 

3-2 B).  Taken together, these data suggest that SAD-A´ and SAD-C are a part of the 

MSUD complex and interact in the perinuclear region.   

Co-immunoprecipitation suggests SAD-C and SMS-2 are part of an MSUD protein 

complex  

 SAD-C encodes a 450 amino acid protein that includes an Arb2 domain.  The 

flag-hat-sad-c strain was constructed using double-joint PCR (HAMMOND et al. 2011b) 

and crossed to a gfp-sms-2 strain to confirm the interaction between SAD-C and SMS-2.  

Co-IP assays were performed on flag-hat-sad-c; gfp-sms-2 and control protein samples.  

A Western blot for anti-FLAG detected a protein at the expected size of approximately 58 
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kDa in the flag-hat-sad-c and flag-hat-sad-c; gfp-sms-2 samples.  A Western blot for 

anti-GFP detected a protein for gfp-sms-2 in the input samples and for flag-hat-sad-c; 

gfp-sms-2 in the IP samples at the expected size of 145 kDa. (Figure 3-3).  No signal was 

detected in strains without the FLAG epitope.  These data strongly support the BiFC 

results in which SAD-C and SMS-2 form a protein complex. 

Immunoprecipitation by FLAG-affinity with Mass Spectrometry identifies potential 

protein interactions for SMS-2 

 Mass spectrometry (MS) is a sophisticated tool for measuring characteristics of 

individual molecules.  Coupling MS with immunoprecipitation provides a sensitive and 

accurate way to identify new protein complexes.  In this work, we set out to detect novel 

interacting partners for the MSUD Argonaute SMS-2.  SMS-2 encodes a 990 amino acid 

protein containing both PAZ and PIWI domains.    The flag-hat-sms-2 strain was 

constructed using double-joint PCR (HAMMOND et al. 2011b).  In a preliminary work, 

mass spectrometry analysis of immunoprecipitated FLAG-HAT-SMS-2 from vegetative 

tissues identified several previously unknown interacting partners (Table 3-2).  

Interestingly, but perhaps not surprising,  no known interacting partners of SMS-2 were 

pulled down in this assay, since they are not highly expressed during the vegetative phase 

(SAMARAJEEWA et al. 2014).  Ongoing work in our laboratory is aimed at determining if 

these proteins interact with SMS-2 during the sexual phase and if they are important for 

MSUD.   
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Discussion 

Like many of the other MSUD components, SAD-A´ and SAD-C preferentially 

localize in the perinuclear region.  Presumably, aberrant RNAs are exported from the 

nucleus to be processed immediately by the MSUD machinery in this region.  Previous 

experiments suggest that SAD-2 acts as a scaffold protein in MSUD.  Functional sad-2
+
 

is required for the localization of SAD-1 to the perinuclear region; however, the reverse 

is not true (SHIU et al. 2006; BARDIYA et al. 2008).  Other lab members are currently 

determining if SAD-2 recruits other MSUD components to the perinuclear region.  

Recently, it was shown that SAD-2 is required for SAD-A´ and SAD-C’s localization in 

the perinuclear region (BOONE et al., unpublished results).  This supports the idea that 

SAD-A´ and SAD-C are being recruited to the perinuclear region and are critical to the 

production of siRNAs. 

Using BiFC, we revealed the interaction of SAD-A´ and SAD-C in vivo.  

Additionally, SAD-C and SMS-2 also directly interact.  This SAD-A´, SAD-C, and SMS-

2 complex is currently being examined further.  Experiments for YFPN-SMS-2 and 

YFPC-SAD-A´ are currently underway.  If these three proteins are forming a complex 

similar to that in S. pombe, it is possible that they are performing a similar function.  In S. 

pombe, Arb1, Arb2, and Ago1 form a complex known as ARC.  It is proposed that Arb1 

and Arb2 act to shuttle dsRNAs from Dicer to Ago1.  Once Arb1 and Arb2 dissociate 

from the ARC, Ago1 can then cleave the dsRNAs into ssRNAs.  This is supported by the 

fact that Arb1 and Arb2 are only associated with dsRNAs (BUKER et al. 2007). 

Additional studies exploring SAD-A´ and SAD-C’s interactions with DCL-1 (and others) 
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may define the link between DCL-1 and SMS-2 and would provide more insight into 

their proposed function for MSUD. 

This work marks the first time biochemical methods have been used to examine 

MSUD interactions.  The results of our experiments confirmed the SMS-2 and SAD-C 

interaction and revealed potential new interactions for SMS-2.  While it would be ideal to 

examine MSUD interactions using sexual tissue, these studies were conducted using 

vegetative tissue containing constitutive protein expression for tagged constructs.  The 

problem with using sexual tissue in biochemical analysis is the difficulty in obtaining 

sufficient amounts for detection.  Several attempts were made at protein extraction from 

sexual tissue during the course of this work; however, a signal was never detected by 

Western blot or by Mass Spectrometry analysis (data not shown).  We anticipate that over 

time the development of more efficient extraction and/or more sensitive detection 

methods will allow proteins from sexual tissue to be investigated by these assays; 

however, the results in this study provide additional insight into MSUD protein-protein 

interactions.  Co-IP can be used as a tool to support BiFC analysis.  IP with Mass 

Spectrometry may identify other MSUD components not detected through our “silencing 

the silencer” screenings.  It will be interesting to learn if these previously unknown SMS-

2-interacting proteins identified by MS are important for meiotic silencing.  For now, we 

propose that SAD-A´ and SAD-C form a complex with the Argonaute SMS-2 and are 

important for MSUD. 
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Figures 

 

Figure 3-1.  SAD-A´ and SAD-C are preferentially localized in the perinuclear 

region. 

Asci expressing SAD-A´-GFP (left) and SAD-C-GFP (right) during prophase I of 

meiosis. Both proteins are localized throughout the cytoplasm with a preference for the 

perinuclear region.  Chromatin was stained with DAPI.  
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Figure 3-2.  in vivo interactions among MSUD proteins 

Asci expressing (A) YFPN-SAD-A´;YFPC-SAD-C, (B) YFPN-SMS-2;YFPC-SAD-C, 

(C)YFPN-SAD-A´; YFPN-SAD-A´ (D) YFPN; YFPC during prophase I of meiosis.  

Chromatin was stained with DAPI. 
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Figure 3-3.  Co-IP assays of epitope-tagged SAD-C and SMS-2 confirm interaction. 

Extracts from strains with or without FLAG-HAT-tagged SAD-C and/or GFP-tagged 

SMS-2 were immunoprecipitated with ANTI-FLAG M2 affinity gel.  Input (total protein 

lysate) and immunoprecipitation (IP) samples were separated by SDS-PAGE and 

transferred to nitrocellulose membranes and immunoblotted with anti-FLAG antibodies 

or anti-GFP antibodies, as indicated. 

 

 

  



47 
 

Table 3-2. Summary of identified proteins detected in FLAG-HAT- SMS-2 affinity-

purified sample 

Identified Proteins Molecular Weight 

(kDa) 
Fold Change* Exclusive Unique 

Spectral Count†  
   FLAG-

HAT-SMS-2 
WT 

SMS-2 (#09434) 112 INF 12.33 0.00 

RNA binding domain-

containing protein 

(#01793) 

26 INF 2.33 0.00 

Eukaryotic 

Translation Initiation 

Factor-3 (#06279) 

54 7.0 4.67 0.67 

Hypothetical protein 

with 

hyaluronan/mRNA-

binding family 

domain (#00225) 

34 2.3 7.00 3.00 

Subunit of the Arp2/3 

complex (#03050) 

49 2.5 9 3.67 

Hypothetical protein 

with RNA recognition 

motifs & Nuclear 

transport factor 2 

domain (#07574) 

56 2.7 5.33 2.00 

 

 

 

 

 

 

  

* Fold change provides a relative quantification measure between two sample sets. It is defined as 

the ratio between the average of FLAG-HAT-SMS-2 samples versus the average of wild-type 

samples.  Fisher’s Exact Test of spectral counts for the differentially-abundant proteins show 

p<0.05; therefore, fold-changes >2 indicate a statistically significant change between sample sets.  

If a zero appears in the denominator, an INF will appear. 

† Spectral count is the primary measure of protein abundance. Exclusive Unique Spectral Count 

refers to the total number of distinct spectra associated only with a single protein, averaged over 

three replicates.  Spectra are considered distinct when they identify different amino acids or 

peptides that were observed in the MS experiment. A minimum of 2 spectral counts are needed for 

identification; however, a minimum of 4 spectral counts are needed for quantification. 
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